JPWO2014083627A1 - Refrigerant distributor - Google Patents

Refrigerant distributor Download PDF

Info

Publication number
JPWO2014083627A1
JPWO2014083627A1 JP2014549679A JP2014549679A JPWO2014083627A1 JP WO2014083627 A1 JPWO2014083627 A1 JP WO2014083627A1 JP 2014549679 A JP2014549679 A JP 2014549679A JP 2014549679 A JP2014549679 A JP 2014549679A JP WO2014083627 A1 JPWO2014083627 A1 JP WO2014083627A1
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
pipe
opening
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014549679A
Other languages
Japanese (ja)
Other versions
JP5869696B2 (en
Inventor
小谷 正直
正直 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Application granted granted Critical
Publication of JP5869696B2 publication Critical patent/JP5869696B2/en
Publication of JPWO2014083627A1 publication Critical patent/JPWO2014083627A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Multiple-Way Valves (AREA)

Abstract

冷媒分配器(100)は、本体(1)と、本体(1)内に冷媒を流入させる配管(2)と、本体(1)内において分配された冷媒を、複数の熱交換部(25a,25b)に向けてそれぞれ流出させる複数の接続管(3a,3b)と、本体(1)内に設けられ、複数の接続管(3a,3b)とそれぞれ連通する複数の開口(31a,31b)を複数の弁体(12a,12b)によりそれぞれ開度調整する複数の調整弁(30a,30b)と、本体(1)内における開口(31a,31b)の配管(2)側の冷媒の圧力から熱交換部(25a,25b)の接続管(3a,3b)と反対側の出口における冷媒の圧力を差し引いた圧力差に基づいて、前記圧力差が大きいほど調整弁(30a,30b)の開度を小さくする駆動装置(40)と、を備える。これにより、種々の外乱に応じて冷媒の分流比を調整できる冷媒分配器(100)を提供することができる。The refrigerant distributor (100) includes a main body (1), a pipe (2) through which the refrigerant flows into the main body (1), and the refrigerant distributed in the main body (1) into a plurality of heat exchange units (25a, 25b) and a plurality of connection pipes (3a, 3b) that respectively flow out, and a plurality of openings (31a, 31b) provided in the main body (1) and communicating with the plurality of connection pipes (3a, 3b), respectively. Heat is generated from the pressure of the refrigerant on the piping (2) side of the plurality of regulating valves (30a, 30b) whose opening degree is adjusted by the plurality of valve bodies (12a, 12b) and the openings (31a, 31b) in the main body (1). Based on the pressure difference obtained by subtracting the refrigerant pressure at the outlet on the side opposite to the connection pipe (3a, 3b) of the exchange unit (25a, 25b), the opening of the adjusting valve (30a, 30b) increases as the pressure difference increases. A drive device (40) for reducing . Thereby, the refrigerant | coolant divider | distributor (100) which can adjust the shunt ratio of a refrigerant | coolant according to various disturbances can be provided.

Description

本発明は、冷媒分配器に関し、特に、空気調和装置に使用される冷媒分配器に関する。   The present invention relates to a refrigerant distributor, and more particularly, to a refrigerant distributor used in an air conditioner.

空気調和装置に使用される冷媒分配器として、特開2003−4340号公報(特許文献1)に記載の技術が知られている。この特許文献1には、「密閉容器である器体3内に、複数の流出管2の開口端を夫々開閉する複数の第一弁体5と、同複数の第一弁体5を前記開口端を解放するように夫々付勢する付勢部材6と、同付勢部材6による付勢力に抗して、前記複数の第一弁体5の先端部を前記開口端に近接または当接するように移動させてその開度を調節するカム13からなる調節部7と、同調節部7を駆動する駆動部8とで構成され、前記複数の流出管2に分岐される冷媒流量を任意に調節する調節手段4を設けた。」と記載されている(要約参照)。   As a refrigerant distributor used in an air conditioner, a technique described in Japanese Patent Laid-Open No. 2003-4340 (Patent Document 1) is known. In this patent document 1, “a plurality of first valve bodies 5 that open and close the open ends of a plurality of outflow pipes 2 in the container body 3 that is a sealed container, and the plurality of first valve bodies 5 that are opened to the opening. An urging member 6 that urges each end so as to release the end, and a front end portion of the plurality of first valve bodies 5 approaches or abuts against the opening end against the urging force by the urging member 6. The adjusting unit 7 is composed of a cam 13 that adjusts the opening degree and the driving unit 8 that drives the adjusting unit 7, and arbitrarily adjusts the flow rate of the refrigerant branched into the plurality of outflow pipes 2. The adjusting means 4 is provided "(see the summary).

特開2003−4340号公報JP 2003-4340 A

ところで、空気調和装置に使用され気液二相の冷媒を分配する冷媒分配器の分流比は、冷媒分配器の下流側に設置される複数の熱交換部を備えた室内熱交換器内を流れる冷媒の流量に応じた圧力損失の影響を受けて変化する。   By the way, the shunt ratio of the refrigerant distributor used in the air conditioner for distributing the gas-liquid two-phase refrigerant flows in the indoor heat exchanger having a plurality of heat exchange units installed on the downstream side of the refrigerant distributor. Changes under the influence of pressure loss according to the flow rate of the refrigerant.

特許文献1に記載の冷媒分配器は、器体内に組み込んだ複数のカムによって複数の弁体による開度を調節することにより、冷媒の分流比を任意に調節して、器体に接続されている複数の流出管へ冷媒を分配する。したがって、特許文献1に記載の冷媒分配器によれば、空気調和装置の圧縮機の回転数や温度条件が変化した場合、その変化に対応した適切な分流比を選択することができ、熱交換器の効率を低下させることがない。すなわち、圧縮機の回転数や温度条件が変化して、室内熱交換器内を流れる冷媒の流量が変化した結果、室内熱交換器内での圧力損失に変化があった場合でも、その場合における適切な分流比を予め設計時に算出しておき、運転時に調節すればよい。   The refrigerant distributor described in Patent Document 1 is connected to the body by arbitrarily adjusting the flow ratio of the refrigerant by adjusting the opening degree of the plurality of valve bodies by a plurality of cams incorporated in the body. Distribute the refrigerant to a plurality of outlet pipes. Therefore, according to the refrigerant distributor described in Patent Document 1, when the rotation speed or temperature condition of the compressor of the air conditioner changes, it is possible to select an appropriate diversion ratio corresponding to the change, and heat exchange The efficiency of the vessel is not reduced. That is, even if there is a change in the pressure loss in the indoor heat exchanger as a result of changes in the flow rate of the refrigerant flowing in the indoor heat exchanger due to changes in the rotational speed and temperature conditions of the compressor, An appropriate diversion ratio may be calculated in advance during design and adjusted during operation.

しかし、空気調和装置に使用される冷媒分配器の分流比は、室内熱交換器内で発生する圧力損失のみならず、冷媒分配器自体によっても影響を受けて変化する。具体的には、冷媒分配器の分流比は、気液二相状態で冷媒分配器へ流入する冷媒の二相流の状態、冷媒分配器の設置角度や製造精度、冷媒分配器を搭載する空気調和装置本体の設置角度等のその他の種々の外乱によっても変化する。   However, the flow dividing ratio of the refrigerant distributor used in the air conditioner is influenced and changed not only by the pressure loss generated in the indoor heat exchanger but also by the refrigerant distributor itself. Specifically, the flow dividing ratio of the refrigerant distributor is the state of the two-phase flow of the refrigerant flowing into the refrigerant distributor in the gas-liquid two-phase state, the installation angle and manufacturing accuracy of the refrigerant distributor, and the air on which the refrigerant distributor is mounted. It changes also by other various disturbances, such as an installation angle of a harmony device main part.

一方、特許文献1に記載の冷媒分配器において調整される分流比は、器体内に設けた複数のカムのカム径比の組合せによって、圧縮機の回転数や温度条件の変化に対応して設計時に一意に決定されるものである。このため、特許文献1に記載の冷媒分配器は、圧縮機の回転数や温度条件の変化による冷媒流量の変化に応じた分流比の制御は可能であるが、前記したその他の種々の外乱には対応できないといった課題を有している。   On the other hand, the diversion ratio adjusted in the refrigerant distributor described in Patent Document 1 is designed in accordance with changes in the rotational speed of the compressor and temperature conditions by a combination of cam diameter ratios of a plurality of cams provided in the container body. Sometimes it is uniquely determined. For this reason, the refrigerant distributor described in Patent Document 1 can control the diversion ratio according to the change in the refrigerant flow rate due to the change in the rotational speed of the compressor and the temperature condition. Has a problem that it cannot respond.

本発明は、前記した事情に鑑みてなされたものであり、種々の外乱に応じて冷媒の分流比を調整できる冷媒分配器を提供することを課題とする。   This invention is made | formed in view of an above described situation, and makes it a subject to provide the refrigerant distributor which can adjust the diversion ratio of a refrigerant | coolant according to various disturbances.

前記した目的を達成するために、本発明に係る冷媒分配器は、内部に空間を有する本体と、前記本体内に冷媒を流入させる配管と、前記本体内において分配された冷媒を、複数の熱交換部に向けてそれぞれ流出させる複数の接続管と、前記本体内に設けられ、前記複数の接続管とそれぞれ連通する複数の開口を複数の弁体によりそれぞれ開度調整する複数の調整弁と、前記本体内における前記開口の前記配管側の冷媒の圧力から前記熱交換部の前記接続管と反対側の出口における冷媒の圧力を差し引いた圧力差に基づいて、前記圧力差が大きいほど前記調整弁の開度を小さくする駆動装置と、を備える。   In order to achieve the above-described object, a refrigerant distributor according to the present invention includes a main body having a space therein, a pipe through which the refrigerant flows into the main body, and the refrigerant distributed in the main body. A plurality of connecting pipes that respectively flow out toward the exchange part, a plurality of adjusting valves that are provided in the main body and that respectively adjust a plurality of openings that communicate with the plurality of connecting pipes by a plurality of valve bodies; Based on the pressure difference obtained by subtracting the pressure of the refrigerant at the outlet on the opposite side of the connection pipe of the heat exchange section from the pressure of the refrigerant on the piping side of the opening in the main body, the adjustment valve increases as the pressure difference increases. A driving device for reducing the opening degree of the.

本発明によれば、冷媒分配器の調整弁は、各熱交換部に向けて冷媒を分配する際の分流比を、冷媒分配器から各熱交換部の出口までの圧力損失に基づいて調整することができる。したがって、冷媒の流動条件、温度条件、冷媒分配器の設置角度や製造精度等の、種々の外乱によって分流比の制御量が乱されることはない。この結果、複数の熱交換部におけるパスバランスを適正に保つことができ、熱交換部の性能を常に良好な状態に保つことができる。
すなわち、本発明によれば、種々の外乱に応じて冷媒の分流比を調整できる冷媒分配器を提供することができる。
According to the present invention, the adjusting valve of the refrigerant distributor adjusts the diversion ratio when the refrigerant is distributed toward each heat exchange unit based on the pressure loss from the refrigerant distributor to the outlet of each heat exchange unit. be able to. Therefore, the control amount of the diversion ratio is not disturbed by various disturbances such as refrigerant flow conditions, temperature conditions, refrigerant distributor installation angle and manufacturing accuracy. As a result, the path balance in the plurality of heat exchanging units can be maintained appropriately, and the performance of the heat exchanging units can be always kept in a good state.
That is, according to the present invention, it is possible to provide a refrigerant distributor capable of adjusting the refrigerant diversion ratio according to various disturbances.

第1実施形態に係る冷媒分配器が適用される空気調和装置の全体構成の概略を示す図である。It is a figure showing the outline of the whole composition of the air harmony device to which the refrigerant distributor concerning a 1st embodiment is applied. 第1実施形態に係る冷媒分配器の構成の概略を示す一部断面正面図である。It is a partial cross section front view showing the outline of the composition of the refrigerant distributor concerning a 1st embodiment. 第2実施形態に係る冷媒分配器が適用される空気調和装置の全体構成の概略を示す図である。It is a figure which shows the outline of the whole structure of the air conditioning apparatus with which the refrigerant distributor which concerns on 2nd Embodiment is applied. 第1実施形態に係る冷媒分配器の構成の概略を示す断面正面図である。It is a section front view showing the outline of the composition of the refrigerant distributor concerning a 1st embodiment.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
なお、以下に示す図面において、同一の部材または相当する部材間には同一の参照符号を付し、重複した説明を省略する。また、部材のサイズおよび形状は、説明の便宜のため、変形または誇張して模式的に表す場合がある。
Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
Note that, in the drawings shown below, the same members or corresponding members are denoted by the same reference numerals, and redundant description is omitted. In addition, the size and shape of the member may be schematically represented by being modified or exaggerated for convenience of explanation.

≪第1実施形態≫
まず、図1および図2を参照しながら本発明の第1実施形態について説明する。
図1は、第1実施形態に係る冷媒分配器100が適用される空気調和装置の全体構成の概略を示す図である。図2は、第1実施形態に係る冷媒分配器100の構成の概略を示す一部断面正面図である。
<< First Embodiment >>
First, a first embodiment of the present invention will be described with reference to FIG. 1 and FIG.
FIG. 1 is a diagram schematically illustrating an overall configuration of an air conditioner to which a refrigerant distributor 100 according to the first embodiment is applied. FIG. 2 is a partial cross-sectional front view illustrating the outline of the configuration of the refrigerant distributor 100 according to the first embodiment.

図1に示すように、本発明の第1実施形態に係る冷媒分配器100が適用される空気調和装置は、圧縮機21、四方弁22、室外熱交換器23、室外熱交換器用膨張弁24、冷媒分配器100、室内熱交換器25を順次環状に管部材で連結して構成されている。すなわち、冷媒分配器100は、空気調和装置の要素機器として使用される。   As shown in FIG. 1, an air conditioner to which the refrigerant distributor 100 according to the first embodiment of the present invention is applied includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, and an outdoor heat exchanger expansion valve 24. The refrigerant distributor 100 and the indoor heat exchanger 25 are sequentially connected in an annular manner by a pipe member. That is, the refrigerant distributor 100 is used as an element device of the air conditioner.

圧縮機21は、冷媒を吸入・圧縮して、圧縮した高温のガス冷媒を吐出する。四方弁22は、暖房運転時と冷房運転時とで冷媒の流れ方向を切り替える。室外熱交換器23は、室外空気と冷媒との間で熱交換を行う。室外熱交換器用膨張弁24は、暖房運転時において冷媒の減圧を行う。冷媒分配器100は、冷房運転時において流入した冷媒を所定の分流比となるように分配して室内熱交換器25に向けて送る機能を有する。また、冷媒分配器100には、膨張弁5(図2参照)が付設されており、膨張弁5は、暖房運転時において冷媒の減圧を行う。室内熱交換器25は、室内空気と冷媒との間で熱交換を行う。室内熱交換器25は、互いに独立した通路を有する複数(ここでは2つ)の熱交換部25a,25bを備えている。   The compressor 21 sucks and compresses the refrigerant and discharges the compressed high-temperature gas refrigerant. The four-way valve 22 switches the refrigerant flow direction between the heating operation and the cooling operation. The outdoor heat exchanger 23 performs heat exchange between the outdoor air and the refrigerant. The outdoor heat exchanger expansion valve 24 decompresses the refrigerant during the heating operation. The refrigerant distributor 100 has a function of distributing the refrigerant that has flowed in during the cooling operation so as to have a predetermined diversion ratio and sending it to the indoor heat exchanger 25. Further, the refrigerant distributor 100 is provided with an expansion valve 5 (see FIG. 2), and the expansion valve 5 decompresses the refrigerant during the heating operation. The indoor heat exchanger 25 performs heat exchange between the indoor air and the refrigerant. The indoor heat exchanger 25 includes a plurality (here, two) of heat exchange units 25a and 25b having mutually independent passages.

次に、冷房運転時の冷媒の流れについて説明する。
圧縮機21で圧縮・加熱された冷媒は、図1の四方弁22における実線で示す経路を経て、室外熱交換器23に送られる。室外熱交換器23に送られた冷媒は、凝縮器として作用する室外熱交換器23を通過して室外空気との間で熱交換して冷却され、液化する。室外熱交換器23を通過し液化した冷媒は、室外熱交換器用膨張弁24を通過して、冷媒分配器100へ流入する。このとき、室外熱交換器用膨張弁24は全開状態とされており、冷媒を減圧しない。
Next, the flow of the refrigerant during the cooling operation will be described.
The refrigerant compressed and heated by the compressor 21 is sent to the outdoor heat exchanger 23 through a path indicated by a solid line in the four-way valve 22 of FIG. The refrigerant sent to the outdoor heat exchanger 23 passes through the outdoor heat exchanger 23 that acts as a condenser, exchanges heat with outdoor air, and is cooled and liquefied. The liquefied refrigerant that has passed through the outdoor heat exchanger 23 passes through the outdoor heat exchanger expansion valve 24 and flows into the refrigerant distributor 100. At this time, the outdoor heat exchanger expansion valve 24 is fully opened, and the refrigerant is not decompressed.

冷媒分配器100へ送られた冷媒は、冷媒分配器100に付設されている膨張弁5(図2参照)において、所定の圧力に減圧された後、後記するように冷媒分配器100において所定の流量比(分流比)となるように複数(ここでは2つ)に分配されて、蒸発器として作用する室内熱交換器25の各熱交換部25a、25bへそれぞれ流入する。室内熱交換器25に流入した冷媒は、室内空気との間で熱交換して、加熱されてガス化し、圧縮機21へ還流する。一方、室内熱交換器25において室内空気が冷却される。   The refrigerant sent to the refrigerant distributor 100 is depressurized to a predetermined pressure in the expansion valve 5 (see FIG. 2) attached to the refrigerant distributor 100, and then the refrigerant distributor 100 has a predetermined value as described later. It is distributed into a plurality (here, two) so as to have a flow rate ratio (diversion ratio), and flows into the respective heat exchanging portions 25a and 25b of the indoor heat exchanger 25 acting as an evaporator. The refrigerant that has flowed into the indoor heat exchanger 25 exchanges heat with the indoor air, is heated and gasified, and returns to the compressor 21. On the other hand, the indoor air is cooled in the indoor heat exchanger 25.

次に、暖房運転時の冷媒の流れについて説明する。
圧縮機21で圧縮・加熱された冷媒は、図1の四方弁22における破線で示す経路を経て、室内熱交換器25に送られる。室内熱交換器25に送られた冷媒は、凝縮器として作用する室内熱交換器25を通過して室内空気との間で熱交換して、冷却されて液化した後、冷媒分配器100へ流入する。一方、室内熱交換器25において室内空気が加熱される。この際、後記するように冷媒分配器100における調整弁30a,30b(図2参照)は、冷媒の通過抵抗体として作用しない。
Next, the flow of the refrigerant during the heating operation will be described.
The refrigerant compressed and heated by the compressor 21 is sent to the indoor heat exchanger 25 through a path indicated by a broken line in the four-way valve 22 of FIG. The refrigerant sent to the indoor heat exchanger 25 passes through the indoor heat exchanger 25 acting as a condenser, exchanges heat with indoor air, is cooled and liquefied, and then flows into the refrigerant distributor 100. To do. On the other hand, indoor air is heated in the indoor heat exchanger 25. At this time, as will be described later, the regulating valves 30a and 30b (see FIG. 2) in the refrigerant distributor 100 do not act as refrigerant passage resistors.

調整弁30a,30b、および膨張弁5(図2参照)を通過した冷媒は、室外熱交換器用膨張弁24を通過して所定の圧力に減圧され、蒸発器として作用する室外熱交換器23へ流入する。このとき、膨張弁5は全開状態とされる。室外熱交換器23に流入した冷媒は、室外空気との間で熱交換して、加熱されてガス化し、圧縮機21へ還流する。   The refrigerant that has passed through the regulating valves 30a and 30b and the expansion valve 5 (see FIG. 2) passes through the outdoor heat exchanger expansion valve 24 and is reduced to a predetermined pressure, to the outdoor heat exchanger 23 that acts as an evaporator. Inflow. At this time, the expansion valve 5 is fully opened. The refrigerant that has flowed into the outdoor heat exchanger 23 exchanges heat with the outdoor air, is heated and gasified, and returns to the compressor 21.

次に、図2を参照して、前記したような空気調和装置における冷媒分配器100の詳細について説明する。   Next, the details of the refrigerant distributor 100 in the air conditioner as described above will be described with reference to FIG.

図2に示すように、冷媒分配器100は、内部に空間を有する本体1と、本体1内に冷媒を流入させる配管2と、本体1内において分配された冷媒を、複数の熱交換部25a,25b(図1参照)に向けてそれぞれ流出させる複数の接続管3a,3bと、本体1内に設けられ、複数の接続管3a,3bとそれぞれ連通する複数の開口31a,31bを複数の弁体12a,12bによりそれぞれ開度調整する複数の調整弁30a,30bと、を備えている。ここで、本体1は、密閉容器として形成されている。   As shown in FIG. 2, the refrigerant distributor 100 includes a main body 1 having a space inside, a pipe 2 for allowing the refrigerant to flow into the main body 1, and the refrigerant distributed in the main body 1 into a plurality of heat exchange portions 25 a. , 25b (see FIG. 1), a plurality of connection pipes 3a, 3b that respectively flow out, and a plurality of openings 31a, 31b provided in the main body 1 and communicating with the plurality of connection pipes 3a, 3b, respectively, And a plurality of regulating valves 30a and 30b for adjusting the opening degree by the bodies 12a and 12b, respectively. Here, the main body 1 is formed as a sealed container.

配管2の端部43には、膨張弁5が接続されている。すなわち、膨張弁5は、冷媒分配器100と一体に形成されている。そして、配管2の端部43と開口31a,31bとの間の距離Lは、配管2の内径をDiとしたとき、L/Di≦10に設定されている。すなわち、距離Lが配管2の内径Diの10倍以下に設定される。   An expansion valve 5 is connected to the end 43 of the pipe 2. That is, the expansion valve 5 is formed integrally with the refrigerant distributor 100. The distance L between the end 43 of the pipe 2 and the openings 31a and 31b is set to L / Di ≦ 10 when the inner diameter of the pipe 2 is Di. That is, the distance L is set to 10 times or less of the inner diameter Di of the pipe 2.

本体1内には、配管2から流入された冷媒を分配するための複数(ここでは2つ)の分配部11a,11bが設けられている。複数の分配部11a,11bは、室内熱交換器25における熱交換部25a,25b(図1参照)の数に応じた個数だけ設置されている。そして、複数の接続管3a,3bは、複数の分配部11a,11bにそれぞれ接続されており、複数の弁体12a,12bは、複数の分配部11a,11b内にそれぞれ配置されている。   In the main body 1, a plurality of (here, two) distribution units 11 a and 11 b for distributing the refrigerant flowing in from the pipe 2 are provided. The plurality of distribution units 11a and 11b are installed in a number corresponding to the number of heat exchange units 25a and 25b (see FIG. 1) in the indoor heat exchanger 25. The plurality of connection pipes 3a and 3b are connected to the plurality of distribution portions 11a and 11b, respectively, and the plurality of valve bodies 12a and 12b are disposed in the plurality of distribution portions 11a and 11b, respectively.

調整弁30a,30bは、弁体12a,12bと弁体12a,12bにより開度調整される開口31a,31bとを有している。ここでは、開口31a,31bは、分配部11a,11bの入口に形成されており、したがって、調整弁30a,30bは、分配部11a,11bへ流入する冷媒の流量を調整する機能を有する。   The regulating valves 30a and 30b have valve bodies 12a and 12b and openings 31a and 31b whose opening degrees are adjusted by the valve bodies 12a and 12b. Here, the openings 31a and 31b are formed at the inlets of the distributors 11a and 11b. Therefore, the regulating valves 30a and 30b have a function of adjusting the flow rate of the refrigerant flowing into the distributors 11a and 11b.

弁体12a,12bは、円錐状の側面35a,35bを有する先端部36a,36bを備えている。また、開口31a,31bの周囲に、先端部36a,36bの側面35a,35bに対向する傾斜部13a,13bが設けられている。   The valve bodies 12a and 12b are provided with tip portions 36a and 36b having conical side surfaces 35a and 35b. In addition, inclined portions 13a and 13b are provided around the openings 31a and 31b so as to face the side surfaces 35a and 35b of the tip portions 36a and 36b.

開口31a,31bの周辺部37a,37bと、弁体12a,12bの基端側に設けられるフランジ部38a,38bとの間には、圧縮コイルばね14a,14bが装着されている。また、フランジ部38a,38bの開口31a,31bと反対側に、圧縮コイルばね14a,14bによる付勢力に抗してフランジ部38a,38bの移動を規制するストッパ39a,39bが設けられている。ストッパ39a,39bは、分配部11a,11bの内周面に、周方向において分離して複数個所(例えば3箇所)設けられている。   Compression coil springs 14a and 14b are mounted between the peripheral portions 37a and 37b of the openings 31a and 31b and the flange portions 38a and 38b provided on the base end sides of the valve bodies 12a and 12b. Further, stoppers 39a and 39b for restricting the movement of the flange portions 38a and 38b against the urging force of the compression coil springs 14a and 14b are provided on the opposite side of the openings 31a and 31b of the flange portions 38a and 38b. The stoppers 39a and 39b are provided at a plurality of locations (for example, three locations) on the inner peripheral surfaces of the distribution portions 11a and 11b separately in the circumferential direction.

また、冷媒分配器100は、本体1内における開口31a,31bの配管2側の冷媒の圧力(入口圧力)から熱交換部25a,25b(図1参照)の接続管3a,3bと反対側の出口における冷媒の圧力(出口圧力)を差し引いた圧力差に基づいて、前記圧力差が大きいほど調整弁30a,30bの開度を小さくする駆動装置40を備えている。   In addition, the refrigerant distributor 100 is located on the side opposite to the connection pipes 3a and 3b of the heat exchange sections 25a and 25b (see FIG. 1) from the refrigerant pressure (inlet pressure) on the pipe 2 side of the openings 31a and 31b in the main body 1. Based on the pressure difference obtained by subtracting the pressure of the refrigerant at the outlet (outlet pressure), a drive device 40 is provided that reduces the opening of the adjusting valves 30a and 30b as the pressure difference increases.

第1実施形態では、駆動装置40は、弁体12a,12bにロッド41a,41bを介して接続されるピストン6a,6bと、ピストン6a,6bが摺動可能に配置されるシリンダ4a,4bと、を有している。シリンダ4a,4bは、分配部11a,11bに隣接して配置されており、分配部11a,11bとシリンダ4a,4bとは、隔壁42a,42bにより仕切られている。隔壁42a,42bには、ロッド41a,41bがその軸方向に移動自在に挿通される貫通孔が形成されており、ロッド41a,41bと前記貫通孔との間はシール部材(図示せず)によりシールされている。   In the first embodiment, the drive device 40 includes pistons 6a and 6b connected to the valve bodies 12a and 12b via rods 41a and 41b, and cylinders 4a and 4b in which the pistons 6a and 6b are slidably disposed. ,have. The cylinders 4a and 4b are disposed adjacent to the distribution portions 11a and 11b, and the distribution portions 11a and 11b and the cylinders 4a and 4b are partitioned by partition walls 42a and 42b. The partition walls 42a and 42b are formed with through holes into which the rods 41a and 41b are inserted so as to be movable in the axial direction. A seal member (not shown) is provided between the rods 41a and 41b and the through holes. It is sealed.

シリンダ4a,4b内は、ピストン6a,6bによって第1圧力室7a,7bと第2圧力室8a,8bとに仕切られている。ここで、第1圧力室7a,7bは、シリンダ4a,4b内におけるピストン6a,6bの弁体12a,12b側に形成されており、第2圧力室8a,8bは、シリンダ4a,4b内におけるピストン6a,6bの弁体12a,12bと反対側に形成されている。   The cylinders 4a and 4b are partitioned into first pressure chambers 7a and 7b and second pressure chambers 8a and 8b by pistons 6a and 6b. Here, the first pressure chambers 7a and 7b are formed on the valve bodies 12a and 12b side of the pistons 6a and 6b in the cylinders 4a and 4b, and the second pressure chambers 8a and 8b are formed in the cylinders 4a and 4b. The pistons 6a and 6b are formed on the opposite side to the valve bodies 12a and 12b.

また、駆動装置40は、第1圧力室7a,7bと、熱交換部25a,25b(図1参照)の接続管3a,3bと反対側の出口と、を連通する第1連通路9a,9bを有しており、また、第2圧力室8a,8bと、本体1内における開口31a,31bの配管2側と、を連通する第2連通路10を有している。このようにして、弁体12a,12bは、第1圧力室7a,7b内の圧力(P1a,P1b)と第2圧力室8a,8b内の圧力(P2)との差に基づいて、ピストン6a,6bおよびロッド41a,41bを介して移動させられるように構成されている。   The driving device 40 includes first communication passages 9a and 9b that communicate the first pressure chambers 7a and 7b with the outlets on the opposite side of the connection pipes 3a and 3b of the heat exchange portions 25a and 25b (see FIG. 1). Moreover, it has the 2nd communication path 10 which connects 2nd pressure chamber 8a, 8b and the piping 2 side of opening 31a, 31b in the main body 1 is provided. In this manner, the valve bodies 12a and 12b are configured so that the piston 6a is based on the difference between the pressures (P1a and P1b) in the first pressure chambers 7a and 7b and the pressures (P2) in the second pressure chambers 8a and 8b. 6b and rods 41a and 41b.

次に、前記のように構成された冷媒分配器100の作用について説明する。
冷房運転時においては、冷媒分配器100へ送られた冷媒は、冷媒分配器100に付設されている膨張弁5において、所定の圧力に減圧される。
Next, the operation of the refrigerant distributor 100 configured as described above will be described.
During the cooling operation, the refrigerant sent to the refrigerant distributor 100 is decompressed to a predetermined pressure at the expansion valve 5 attached to the refrigerant distributor 100.

冷媒分配器100における駆動装置40のピストン6a,6bは、第1圧力室7a,7b内の圧力(P1a,P1b)と、第2圧力室8a,8b内の圧力(P2)との差に基づいて移動する。ピストン6a,6bが調整弁30a,30bの弁体12a,12bに接続されているため、調整弁30a,30bの弁体12a,12bは、ピストン6a,6bの移動量に応じて移動し、開口31a,31bの開度を変化させる。   The pistons 6a and 6b of the driving device 40 in the refrigerant distributor 100 are based on the difference between the pressures (P1a and P1b) in the first pressure chambers 7a and 7b and the pressures (P2) in the second pressure chambers 8a and 8b. Move. Since the pistons 6a and 6b are connected to the valve bodies 12a and 12b of the regulating valves 30a and 30b, the valve bodies 12a and 12b of the regulating valves 30a and 30b move according to the movement amount of the pistons 6a and 6b, and are opened. The opening degree of 31a, 31b is changed.

第1圧力室7a,7bは、第1連通路9a,9bを介して熱交換部25a,25bの下流側と連通されているため、第1圧力室7a,7b内の圧力(P1a,P1b)は、熱交換部25a,25bの下流側の出口圧力と概ね同圧として検知される。また、第2圧力室8a,8bは、第2連通路10を介して分配部11a,11bの上流側と連通されているため、第2圧力室8a,8b内の圧力(P2)は、分配部11a,11bの上流側の入口圧力と概ね同圧として検知される。そして、この際、圧力損失により、P2>P1a,P1bとなる。   Since the first pressure chambers 7a and 7b communicate with the downstream side of the heat exchange portions 25a and 25b via the first communication passages 9a and 9b, the pressures (P1a and P1b) in the first pressure chambers 7a and 7b Is detected as substantially the same pressure as the outlet pressure on the downstream side of the heat exchange sections 25a, 25b. Further, since the second pressure chambers 8a and 8b communicate with the upstream side of the distribution portions 11a and 11b via the second communication passage 10, the pressure (P2) in the second pressure chambers 8a and 8b is distributed. It is detected as substantially the same pressure as the inlet pressure on the upstream side of the portions 11a and 11b. At this time, P2> P1a and P1b are satisfied due to pressure loss.

したがって、各々の接続管3a、3bから流出する冷媒は、冷媒分配器100における分配部11a,11bの上流側の入口圧力から、熱交換部25a,25bの下流側の出口圧力を差し引いた圧力差に応じた、流量比(分流比)に調整されて、室内熱交換器25の各熱交換部25a、25bへそれぞれ流入する。   Therefore, the refrigerant flowing out from each of the connection pipes 3a and 3b has a pressure difference obtained by subtracting the outlet pressure on the downstream side of the heat exchanging portions 25a and 25b from the inlet pressure on the upstream side of the distributing portions 11a and 11b in the refrigerant distributor 100. Is adjusted to a flow rate ratio (diversion ratio) and flows into the heat exchange units 25a and 25b of the indoor heat exchanger 25, respectively.

ここで、駆動装置40のピストン6a,6bは、第2圧力室8a,8b内の圧力(P2)から第1圧力室7a,7b内の圧力(P1a,P1b)を差し引いた圧力差ΔPa=P2−P1a、ΔPb=P2−P1bが大きいほど移動距離が大きくなる。これにより、ピストン6a,6bとともに移動する弁体12a,12bによる開口31a,31bの開度は、圧力差ΔPa,ΔPbが大きいほど小さくなるように(閉口側に)調整され、圧力差ΔPa,ΔPbが小さいほど大きくなるように(開口側に)調整される。   Here, the pistons 6a and 6b of the driving device 40 have a pressure difference ΔPa = P2 obtained by subtracting the pressure (P1a, P1b) in the first pressure chambers 7a, 7b from the pressure (P2) in the second pressure chambers 8a, 8b. The larger the −P1a and ΔPb = P2−P1b, the longer the moving distance. Thereby, the opening degree of the openings 31a and 31b by the valve bodies 12a and 12b moving together with the pistons 6a and 6b is adjusted so as to decrease as the pressure differences ΔPa and ΔPb increase (to the closing side), and the pressure differences ΔPa and ΔPb. Is adjusted so as to increase as it becomes smaller (toward the opening side).

一般に、蒸発器として作用する室内熱交換器25の内部へ流入する冷媒の流量(G)は、冷媒分配器100から室内熱交換器25の出口までで発生する圧力損失(ΔP)と比例の関係にある(G∝ΔP)。このため、本実施形態では、調整弁30a,30bの弁体12a,12bによる開口31a,31bの開度を、圧力損失(ΔP)として検出される前記圧力差ΔPa,ΔPbが大きいほど小さく、前記圧力差ΔPa,ΔPbが小さいほど大きくなるように、つまり逆方向に変化させるようにしている。   Generally, the flow rate (G) of the refrigerant flowing into the indoor heat exchanger 25 acting as an evaporator is proportional to the pressure loss (ΔP) generated from the refrigerant distributor 100 to the outlet of the indoor heat exchanger 25. (G∝ΔP). For this reason, in this embodiment, the opening degree of the openings 31a and 31b by the valve bodies 12a and 12b of the regulating valves 30a and 30b is smaller as the pressure differences ΔPa and ΔPb detected as pressure loss (ΔP) are larger. The pressure difference ΔPa, ΔPb is increased as it is smaller, that is, it is changed in the opposite direction.

一方、暖房運転時においては、圧力損失により、P2<P1a,P1bとなる。したがって、冷媒分配器100における調整弁30a,30bの弁体12a,12bは、開口31a,31bの開度を大きくする方向に移動する。つまり、調整弁30a,30bは、フランジ部38a,38bがストッパ39a,39bに当接する最大開度(図2における右側の調整弁30aが示す開度)に設定されるため、冷媒分配器100は、冷媒の通過抵抗体として作用しない。   On the other hand, during heating operation, P2 <P1a and P1b are satisfied due to pressure loss. Therefore, the valve bodies 12a and 12b of the regulating valves 30a and 30b in the refrigerant distributor 100 move in the direction of increasing the opening degree of the openings 31a and 31b. That is, since the regulating valves 30a and 30b are set to the maximum opening degree (the opening degree indicated by the right regulating valve 30a in FIG. 2) at which the flange portions 38a and 38b contact the stoppers 39a and 39b, the refrigerant distributor 100 is It does not act as a refrigerant passage resistor.

前記したように、本実施形態に係る冷媒分配器100は、本体1と、本体1内に冷媒を流入させる配管2と、本体1内において分配された冷媒を、複数の熱交換部25a,25bに向けてそれぞれ流出させる複数の接続管3a,3bと、本体1内に設けられ、複数の接続管3a,3bとそれぞれ連通する複数の開口31a,31bを複数の弁体12a,12bによりそれぞれ開度調整する複数の調整弁30a,30bと、本体1内における開口31a,31bの配管2側の冷媒の圧力から熱交換部25a,25bの接続管3a,3bと反対側の出口における冷媒の圧力を差し引いた圧力差に基づいて、前記圧力差が大きいほど調整弁30a,30bの開度を小さくする駆動装置40と、を備えている。   As described above, the refrigerant distributor 100 according to the present embodiment includes the main body 1, the pipe 2 that allows the refrigerant to flow into the main body 1, and the refrigerant distributed in the main body 1 into a plurality of heat exchange units 25 a and 25 b. A plurality of connection pipes 3a and 3b that respectively flow out toward each other, and a plurality of openings 31a and 31b provided in the main body 1 and communicating with the plurality of connection pipes 3a and 3b, respectively, are opened by a plurality of valve bodies 12a and 12b. The pressure of the refrigerant at the outlet on the opposite side to the connection pipes 3a, 3b of the heat exchange sections 25a, 25b from the pressure of the refrigerant on the pipe 2 side of the openings 31a, 31b in the main body 1 And a drive device 40 that reduces the opening degree of the regulating valves 30a and 30b as the pressure difference increases.

これにより、冷媒分配器100の調整弁30a,30bは、室内熱交換器25の各熱交換部25a,25bに向けて冷媒を分配する際の分流比を、冷媒分配器100から各熱交換部25a,25bの出口までの圧力損失に基づいて調整することができる。   As a result, the regulating valves 30a and 30b of the refrigerant distributor 100 change the diversion ratio when the refrigerant is distributed toward the heat exchange parts 25a and 25b of the indoor heat exchanger 25 from the refrigerant distributor 100 to the heat exchange parts. It can adjust based on the pressure loss to the exit of 25a, 25b.

したがって、本実施形態に係る冷媒分配器100によれば、冷媒の流動条件、温度条件、冷媒分配器100の設置角度や製造精度等の、種々の外乱によって分流比の制御量が乱されることはない。この結果、複数の熱交換部25a,25bにおけるパスバランスを適正に保つことができ、熱交換部25a,25bの性能を常に良好な状態に保つことができる。   Therefore, according to the refrigerant distributor 100 according to the present embodiment, the control amount of the diversion ratio is disturbed by various disturbances such as the refrigerant flow condition, the temperature condition, the installation angle of the refrigerant distributor 100, and the manufacturing accuracy. There is no. As a result, the path balance in the plurality of heat exchanging parts 25a and 25b can be kept appropriate, and the performance of the heat exchanging parts 25a and 25b can always be kept in a good state.

また、本実施形態では、本体1内に複数の分配部11a,11bが設けられ、複数の接続管3a,3bは複数の分配部11a,11bにそれぞれ接続されている。このような構成によれば、弁体12a,12bにより開度調整される開口31a,31bを分配部11a,11bの例えば入口に設けることができる。これにより、調整弁30a,30bや駆動装置40等のレイアウトの自由度が増し、冷媒分配器100のコンパクト化を図ることができる。   Moreover, in this embodiment, the some distribution part 11a, 11b is provided in the main body 1, and the some connecting pipe 3a, 3b is each connected to the some distribution part 11a, 11b. According to such a configuration, the openings 31a and 31b whose opening degrees are adjusted by the valve bodies 12a and 12b can be provided, for example, at the inlets of the distribution portions 11a and 11b. Thereby, the freedom degree of layout, such as adjustment valve 30a, 30b, the drive device 40, increases, and the refrigerant distributor 100 can be made compact.

また、本実施形態では、弁体12a,12bは、円錐状の側面35a,35bを有する先端部36a,36bを備え、開口31a,31bの周囲に、先端部36a,36bの側面35a,35bに対向する傾斜部13a,13bが設けられている。このような構成によれば、滑らかな流路形状を形成することができ、冷媒の通過抵抗を低減することができる。   In the present embodiment, the valve bodies 12a and 12b include tip portions 36a and 36b having conical side surfaces 35a and 35b, around the openings 31a and 31b, and on the side surfaces 35a and 35b of the tip portions 36a and 36b. Opposing inclined portions 13a and 13b are provided. According to such a configuration, a smooth channel shape can be formed, and the passage resistance of the refrigerant can be reduced.

また、本実施形態では、開口31a,31bの周辺部37a,37bと、弁体12a,12bの基端側に設けられるフランジ部38a,38bとの間に圧縮コイルばね14a,14bが装着され、フランジ部38a,38bの開口31a,31bと反対側に、圧縮コイルばね14a,14bによる付勢力に抗してフランジ部38a,38bの移動を規制するストッパ39a,39bが設けられている。このような構成によれば、第1圧力室7a,7b内の圧力(P1a,P1b)と第2圧力室8a,8b内の圧力(P2)との差が小さく、ピストン6a,6bを圧縮コイルばね14a,14b側に押す力が圧縮コイルばね14a,14bの弾発力(反力)よりも小さいときには、弁体12a,12bは、圧縮コイルばね14a,14bにより付勢され、フランジ部38a,38bがストッパ39a,39bに当接する位置で停止して保つことができる。この結果、冷媒分配器100が想定している流れと逆方向に冷媒が流されるような場合(例えば、暖房運転時)においては、調整弁30a,30bが開口側に動作し、一定の開度を保って冷媒を流動させることができ、無用な流量調整を行わなくて済む。   In the present embodiment, the compression coil springs 14a and 14b are mounted between the peripheral portions 37a and 37b of the openings 31a and 31b and the flange portions 38a and 38b provided on the proximal ends of the valve bodies 12a and 12b. Stoppers 39a and 39b that restrict the movement of the flange portions 38a and 38b against the urging force of the compression coil springs 14a and 14b are provided on the opposite sides of the flange portions 38a and 38b from the openings 31a and 31b. According to such a configuration, the difference between the pressures (P1a, P1b) in the first pressure chambers 7a, 7b and the pressures (P2) in the second pressure chambers 8a, 8b is small, and the pistons 6a, 6b are compressed coils. When the force pushing toward the springs 14a, 14b is smaller than the elastic force (reaction force) of the compression coil springs 14a, 14b, the valve bodies 12a, 12b are urged by the compression coil springs 14a, 14b, and the flange portions 38a, 38b can be stopped and held at a position where it abuts against the stoppers 39a and 39b. As a result, in the case where the refrigerant flows in the direction opposite to the flow assumed by the refrigerant distributor 100 (for example, during heating operation), the regulating valves 30a and 30b operate on the opening side and have a constant opening degree. Thus, the refrigerant can be made to flow and unnecessary flow rate adjustment is not required.

また、本実施形態では、配管2は膨張弁5と接続される側の端部43を有しており、配管2の端部43と開口31a,31bとの間の距離Lは、配管2の内径をDiとしたとき、L/Di≦10に設定されている。つまり、配管2の内径Diと比較して距離Lが内径Diの10倍以下に設定される。ここで、膨張弁5の出口の冷媒の相の状態は液−ガス成分が均一に混合した噴霧状態である。そして、L/Di≦10に設定することにより、膨張弁5から流出した冷媒を、気液が均質な状態の噴霧状態を保ったまま、冷媒分配器100の本体1内へ流入させることができる。したがって、液冷媒が一部の分配部(例えば11a)に偏る等の問題が生じ難く、噴霧状態の冷媒を分配することができるため、相の状態に依存しないで冷媒の分流比を制御することができる。   In the present embodiment, the pipe 2 has an end portion 43 on the side connected to the expansion valve 5, and the distance L between the end portion 43 of the pipe 2 and the openings 31 a and 31 b is the same as that of the pipe 2. When the inner diameter is Di, L / Di ≦ 10 is set. That is, the distance L is set to 10 times or less of the inner diameter Di as compared with the inner diameter Di of the pipe 2. Here, the state of the refrigerant phase at the outlet of the expansion valve 5 is a sprayed state in which liquid-gas components are uniformly mixed. By setting L / Di ≦ 10, the refrigerant that has flowed out of the expansion valve 5 can be caused to flow into the main body 1 of the refrigerant distributor 100 while maintaining a sprayed state in which the gas and liquid are in a homogeneous state. . Therefore, the problem that the liquid refrigerant is biased to a part of the distribution sections (for example, 11a) hardly occurs, and the sprayed refrigerant can be distributed. Therefore, the refrigerant diversion ratio is controlled without depending on the phase state. Can do.

≪第2実施形態≫
次に、図3および図4を参照しながら本発明の第2実施形態について説明する。
図3は、第2実施形態に係る冷媒分配器101が適用される空気調和装置の全体構成の概略を示す図である。図4は、第2実施形態に係る冷媒分配器101の構成の概略を示す断面正面図である。
<< Second Embodiment >>
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 3 is a diagram illustrating an outline of an overall configuration of an air conditioner to which the refrigerant distributor 101 according to the second embodiment is applied. FIG. 4 is a cross-sectional front view showing an outline of the configuration of the refrigerant distributor 101 according to the second embodiment.

第2実施形態は、第1実施形態に係る機械式の駆動装置40に代えて、電気式の駆動装置50を備えている点で、第1実施形態と相違している。以下、第2実施形態について、第1実施形態と相違する点を中心に説明し、共通する点についての説明を省略する。   The second embodiment is different from the first embodiment in that an electric drive device 50 is provided instead of the mechanical drive device 40 according to the first embodiment. Hereinafter, the second embodiment will be described with a focus on differences from the first embodiment, and description of common points will be omitted.

第2実施形態では、駆動装置50は、熱交換部25a,25bの接続管3a,3bと反対側の出口における冷媒の圧力を検出する第1圧力検出部S1a,S1bと、本体1内における開口31a,31bの配管2側の冷媒の圧力を検出する第2圧力検出部S2と、弁体12a,12bを開口31a,31bに対して近接または離間移動させる駆動部51a,51bと、第1圧力検出部S1a,S1bによる検出値と第2圧力検出部S2による検出値との差に基づいて駆動部51a,51bを制御する制御部56と、を有している。   In the second embodiment, the driving device 50 includes first pressure detection units S1a and S1b that detect refrigerant pressure at the outlets of the heat exchange units 25a and 25b opposite to the connection pipes 3a and 3b, and openings in the main body 1. A second pressure detection unit S2 for detecting the pressure of the refrigerant on the pipe 2 side of 31a, 31b; drive units 51a, 51b for moving the valve bodies 12a, 12b closer to or away from the openings 31a, 31b; And a control unit 56 that controls the drive units 51a and 51b based on the difference between the detection values of the detection units S1a and S1b and the detection value of the second pressure detection unit S2.

駆動部51a,51bは、弁体12a,12bの基端側に連結されたロッド52a,52bと、ロッド52a,52bの基端側の外周面に形成された雄ねじ部に螺合される雌ねじ部が内面に形成されたナット部材53a,53bと、ナット部材53a,53bの外周面に形成された歯部に噛合する駆動ギヤ54a,54bと、駆動ギヤ54a,54bを回転駆動する電動モータ55a,55bとを備えている。なお、ナット部材53a,53bは、図示しない規制部材により軸方向の移動が規制されるように構成されている。また、ロッド52a,52bは、図示しない規制部材により軸まわりの回転が規制されるように構成されている。   The drive parts 51a, 51b are rods 52a, 52b connected to the base end sides of the valve bodies 12a, 12b, and female screw parts screwed into male screw parts formed on the outer peripheral surfaces of the base end sides of the rods 52a, 52b. Nut members 53a, 53b formed on the inner surface, drive gears 54a, 54b meshing with teeth formed on the outer peripheral surfaces of the nut members 53a, 53b, and an electric motor 55a, which rotates the drive gears 54a, 54b. 55b. The nut members 53a and 53b are configured such that axial movement is restricted by a restriction member (not shown). Further, the rods 52a and 52b are configured such that rotation around the axis is restricted by a restriction member (not shown).

ここで、電動モータ55a,55bの作動によりナット部材53a,53bが回転させられると、ねじ送り作用によりロッド52a,52bが軸方向に移動させられる。この結果、弁体12a,12bを開口31a,31bに対して近接または離間移動させることができる。なお、電動モータ55a,55bの回転駆動力を弁体12a,12bの軸方向の直線運動力に変換するための動力伝達機構は、前記した構造に限定されるものではなく任意であり、例えばボールねじ機構を利用するものであってもよい。   Here, when the nut members 53a and 53b are rotated by the operation of the electric motors 55a and 55b, the rods 52a and 52b are moved in the axial direction by the screw feeding action. As a result, the valve bodies 12a and 12b can be moved closer to or away from the openings 31a and 31b. The power transmission mechanism for converting the rotational driving force of the electric motors 55a and 55b into the linear motion force in the axial direction of the valve bodies 12a and 12b is not limited to the above-described structure, and is arbitrary, for example, a ball A screw mechanism may be used.

このような第2実施形態では、駆動装置50の制御部56は、本体1内における開口31a,31bの配管2側の冷媒の圧力から熱交換部25a,25bの接続管3a,3bと反対側の出口における冷媒の圧力を差し引いた圧力差に基づいて、前記圧力差が大きいほど調整弁30a,30bの開度を小さくするように、駆動部51a,51bを制御する。   In such 2nd Embodiment, the control part 56 of the drive device 50 is the opposite side to the connection pipes 3a and 3b of the heat exchange parts 25a and 25b from the pressure of the refrigerant | coolant by the side of the piping 2 of the opening 31a and 31b in the main body 1. FIG. Based on the pressure difference obtained by subtracting the pressure of the refrigerant at the outlet, the drive units 51a and 51b are controlled so that the opening degree of the adjusting valves 30a and 30b decreases as the pressure difference increases.

したがって第2実施形態によっても、前記した第1実施形態と同様の作用効果を奏することができる。また、第2実施形態によれば、調整弁30a,30bの開度制御の自由度が増し、熱交換部25a,25bの性能をより良好に保つことができる。   Therefore, according to the second embodiment, the same effects as those of the first embodiment can be obtained. Moreover, according to 2nd Embodiment, the freedom degree of opening degree control of the regulating valves 30a and 30b increases, and the performance of the heat exchange parts 25a and 25b can be kept more favorable.

以上、本発明について実施形態に基づいて説明したが、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、一方の実施形態の構成の一部を他方の実施形態の構成に置き換えることが可能であり、また、一方の実施形態の構成に他方の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Also, a part of the configuration of one embodiment can be replaced with the configuration of the other embodiment, and the configuration of the other embodiment can be added to the configuration of the one embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

例えば、前記実施形態では、冷媒分配器100,101へ送られた冷媒は、2つに分配されるように構成されているが、本発明はこれに限定されるものではなく、例えば4つ等の任意の複数に分配されるように構成されてもよい。   For example, in the above-described embodiment, the refrigerant sent to the refrigerant distributors 100 and 101 is configured to be divided into two, but the present invention is not limited to this, and for example, four, etc. It may be configured to be distributed to any plurality of the above.

また、前記実施形態では、本体1内に複数の分配部11a,11bが設けられ、複数の接続管3a,3bが複数の分配部11a,11bにそれぞれ接続されているが、本発明はこれに限定されるものではない。例えば、本体1内に複数の分配部11a,11bを設けずに、本体1の外壁に複数の接続管3a,3bが接続されていてもよい。この場合、弁体12a,12bにより開度調整される開口31a,31bを、複数の接続管3a,3bの本体側の端部に設けることができる。   Moreover, in the said embodiment, the some distribution part 11a, 11b is provided in the main body 1, and the some connecting pipe 3a, 3b is each connected to the some distribution part 11a, 11b, but this invention is this. It is not limited. For example, a plurality of connecting pipes 3 a and 3 b may be connected to the outer wall of the main body 1 without providing the plurality of distribution portions 11 a and 11 b in the main body 1. In this case, the openings 31a and 31b whose opening degree is adjusted by the valve bodies 12a and 12b can be provided at the end portions on the main body side of the plurality of connecting pipes 3a and 3b.

1 本体
2 配管
3a,3b 接続管
4a,4b シリンダ
5 膨張弁
6a,6b ピストン
7a,7b 第1圧力室
8a,8b 第2圧力室
9a,9b 第1連通路
10 第2連通路
11a,11b 分配部
12a,12b 弁体
13a,13b 傾斜部
25 室内熱交換器
25a,25b 熱交換部
30a,30b 調整弁
31a,31b 開口
35a,35b 側面
36a,36b 先端部
37a,37b 周辺部
38a,38b フランジ部
39a,39b ストッパ
40 駆動装置
43 端部
50 駆動装置
51a,51b 駆動部
56 制御部
100,101 冷媒分配器
Di 内径
L 距離
S1a,S1b 第1圧力検出部
S2 第2圧力検出部
ΔPa,ΔPb 圧力差
DESCRIPTION OF SYMBOLS 1 Main body 2 Piping 3a, 3b Connection pipe 4a, 4b Cylinder 5 Expansion valve 6a, 6b Piston 7a, 7b 1st pressure chamber 8a, 8b 2nd pressure chamber 9a, 9b 1st communicating path 10 2nd communicating path 11a, 11b Distribution Part 12a, 12b Valve body 13a, 13b Inclined part 25 Indoor heat exchanger 25a, 25b Heat exchange part 30a, 30b Regulating valve 31a, 31b Opening 35a, 35b Side face 36a, 36b Tip part 37a, 37b Peripheral part 38a, 38b Flange part 39a, 39b Stopper 40 Drive unit 43 End 50 Drive unit 51a, 51b Drive unit 56 Control unit 100, 101 Refrigerant distributor Di Inner diameter L Distance S1a, S1b First pressure detection unit S2 Second pressure detection unit ΔPa, ΔPb Pressure difference

Claims (10)

内部に空間を有する本体と、
前記本体内に冷媒を流入させる配管と、
前記本体内において分配された冷媒を、複数の熱交換部に向けてそれぞれ流出させる複数の接続管と、
前記本体内に設けられ、前記複数の接続管とそれぞれ連通する複数の開口を複数の弁体によりそれぞれ開度調整する複数の調整弁と、
前記本体内における前記開口の前記配管側の冷媒の圧力から前記熱交換部の前記接続管と反対側の出口における冷媒の圧力を差し引いた圧力差に基づいて、前記圧力差が大きいほど前記調整弁の開度を小さくする駆動装置と、
を備えることを特徴とする冷媒分配器。
A body having a space inside;
Piping for flowing refrigerant into the body;
A plurality of connecting pipes for allowing the refrigerant distributed in the main body to flow out toward the plurality of heat exchange sections,
A plurality of adjusting valves provided in the main body, each of which adjusts the opening degree of the plurality of openings respectively communicating with the plurality of connecting pipes by a plurality of valve bodies;
Based on the pressure difference obtained by subtracting the pressure of the refrigerant at the outlet on the opposite side of the connection pipe of the heat exchange section from the pressure of the refrigerant on the piping side of the opening in the main body, the adjustment valve increases as the pressure difference increases. A drive device for reducing the opening of
A refrigerant distributor comprising:
前記駆動装置は、
前記弁体に接続されるピストンと、
前記ピストンが摺動可能に配置されるシリンダと、
前記シリンダ内における前記ピストンの前記弁体側に形成される第1圧力室と、前記熱交換部の前記接続管と反対側の出口と、を連通する第1連通路と、
前記シリンダ内における前記ピストンの前記弁体と反対側に形成される第2圧力室と、前記本体内における前記開口の前記配管側と、を連通する第2連通路と、を有し、
前記弁体は、前記第1圧力室内の圧力と前記第2圧力室内の圧力との差に基づいて前記ピストンを介して移動させられることを特徴とする請求項1に記載の冷媒分配器。
The driving device includes:
A piston connected to the valve body;
A cylinder in which the piston is slidably disposed;
A first communication passage that communicates a first pressure chamber formed on the valve body side of the piston in the cylinder and an outlet on the opposite side of the connection pipe of the heat exchange section;
A second pressure chamber formed on the opposite side of the piston to the valve body in the cylinder and a second communication path communicating with the pipe side of the opening in the main body;
2. The refrigerant distributor according to claim 1, wherein the valve body is moved via the piston based on a difference between a pressure in the first pressure chamber and a pressure in the second pressure chamber.
前記本体内に、前記配管から流入された冷媒を分配するための複数の分配部が設けられ、前記複数の接続管は前記複数の分配部にそれぞれ接続されていることを特徴とする請求項2に記載の冷媒分配器。   The plurality of distribution units for distributing the refrigerant flowing in from the pipe are provided in the main body, and the plurality of connection pipes are connected to the plurality of distribution units, respectively. The refrigerant distributor according to 1. 前記弁体は、円錐状の側面を有する先端部を備え、前記開口の周囲に、前記先端部の前記側面に対向する傾斜部が設けられていることを特徴とする請求項2に記載の冷媒分配器。   The refrigerant according to claim 2, wherein the valve body includes a tip portion having a conical side surface, and an inclined portion is provided around the opening so as to face the side surface of the tip portion. Distributor. 前記開口の周辺部と前記弁体の基端側に設けられるフランジ部との間に圧縮コイルばねが装着され、前記フランジ部の前記開口と反対側に、前記圧縮コイルばねによる付勢力に抗して前記フランジ部の移動を規制するストッパが設けられていることを特徴とする請求項2に記載の冷媒分配器。   A compression coil spring is mounted between a peripheral portion of the opening and a flange portion provided on the proximal end side of the valve body, and resists the biasing force of the compression coil spring on the opposite side of the opening of the flange portion. The refrigerant distributor according to claim 2, further comprising a stopper for restricting movement of the flange portion. 前記配管は膨張弁と接続される側の端部を有し、前記配管の前記端部と前記開口との間の距離Lは、前記配管の内径をDiとしたとき、L/Di≦10に設定されていることを特徴とする請求項2乃至請求項5のいずれか一項に記載の冷媒分配器。   The pipe has an end connected to an expansion valve, and the distance L between the end of the pipe and the opening satisfies L / Di ≦ 10, where Di is the inner diameter of the pipe. The refrigerant distributor according to any one of claims 2 to 5, wherein the refrigerant distributor is set. 前記駆動装置は、
前記熱交換部の前記接続管と反対側の出口における冷媒の圧力を検出する第1圧力検出部と、
前記本体内における前記開口の前記配管側の冷媒の圧力を検出する第2圧力検出部と、
前記弁体を前記開口に対して近接または離間移動させる駆動部と、
前記第1圧力検出部による検出値と前記第2圧力検出部による検出値との差に基づいて前記駆動部を制御する制御部と、
を有することを特徴とする請求項1に記載の冷媒分配器。
The driving device includes:
A first pressure detection unit that detects a pressure of the refrigerant at an outlet of the heat exchange unit opposite to the connection pipe;
A second pressure detector for detecting the pressure of the refrigerant on the pipe side of the opening in the body;
A drive unit for moving the valve body toward or away from the opening;
A control unit that controls the drive unit based on a difference between a detection value by the first pressure detection unit and a detection value by the second pressure detection unit;
2. The refrigerant distributor according to claim 1, comprising:
前記本体内に、前記配管から流入された冷媒を分配するための複数の分配部が設けられ、前記複数の接続管は前記複数の分配部にそれぞれ接続され、前記複数の弁体は前記複数の分配部内にそれぞれ配置されていることを特徴とする請求項7に記載の冷媒分配器。   In the main body, a plurality of distribution portions for distributing the refrigerant flowing in from the pipe are provided, the plurality of connection pipes are connected to the plurality of distribution portions, respectively, and the plurality of valve bodies are the plurality of the plurality of valve bodies. The refrigerant distributor according to claim 7, wherein the refrigerant distributor is disposed in each distribution section. 前記弁体は、円錐状の側面を有する先端部を備え、前記開口の周囲に、前記先端部の前記側面に対向する傾斜部が設けられていることを特徴とする請求項7に記載の冷媒分配器。   The refrigerant according to claim 7, wherein the valve body includes a tip portion having a conical side surface, and an inclined portion is provided around the opening so as to face the side surface of the tip portion. Distributor. 前記配管は膨張弁と接続される側の端部を有し、前記配管の前記端部と前記開口との間の距離Lは、前記配管の内径をDiとしたとき、L/Di≦10に設定されていることを特徴とする請求項7乃至請求項9のいずれか一項に記載の冷媒分配器。   The pipe has an end connected to an expansion valve, and the distance L between the end of the pipe and the opening satisfies L / Di ≦ 10, where Di is the inner diameter of the pipe. The refrigerant distributor according to any one of claims 7 to 9, wherein the refrigerant distributor is set.
JP2014549679A 2012-11-28 2012-11-28 Refrigerant distributor Active JP5869696B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080715 WO2014083627A1 (en) 2012-11-28 2012-11-28 Refrigerant divider

Publications (2)

Publication Number Publication Date
JP5869696B2 JP5869696B2 (en) 2016-02-24
JPWO2014083627A1 true JPWO2014083627A1 (en) 2017-01-05

Family

ID=50827303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014549679A Active JP5869696B2 (en) 2012-11-28 2012-11-28 Refrigerant distributor

Country Status (2)

Country Link
JP (1) JP5869696B2 (en)
WO (1) WO2014083627A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359576B2 (en) * 2019-06-20 2023-10-11 東芝キヤリア株式会社 Flow divider and refrigeration cycle equipment
KR102405378B1 (en) * 2020-10-27 2022-06-03 이진환 Distributor Structural

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480392B2 (en) * 1999-10-15 2003-12-15 三菱電機株式会社 Refrigerant distributor and refrigeration cycle device using the same
JP2003004340A (en) * 2001-06-20 2003-01-08 Fujitsu General Ltd Refrigerant distributor
JP5083107B2 (en) * 2008-08-05 2012-11-28 株式会社デンソー Expansion valve and vapor compression refrigeration cycle provided with the same

Also Published As

Publication number Publication date
JP5869696B2 (en) 2016-02-24
WO2014083627A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
US9657861B2 (en) Flow passage switching unit
KR20150020615A (en) Heat exchanger assemblies with integrated valve
JP2011235753A (en) Air conditioning device for vehicle
RU2010101151A (en) CONTROL VALVE WITH DISTRIBUTION DEVICE
RU2474771C2 (en) Valve unit with inbuilt collector
JP2008196832A (en) Expansion valve mechanism and passage switching device
WO2019049255A1 (en) Air conditioning device
US20150377368A1 (en) Modulating balance ported three way valve
JP5869696B2 (en) Refrigerant distributor
JP2015175533A (en) Heat exchanger of air conditioner
US20190162320A1 (en) Flow control valve
JP5663330B2 (en) Four-way selector valve
JP2011052699A (en) Four-way selector valve
JP2012211688A (en) Four-way valve, and heat pump device with the same
US20110308274A1 (en) An expansion valve comprising a diaphragm and at least two outlet openings
JP2013204695A (en) Three-way valve and air conditioner with the three-way valve
WO2017220351A1 (en) Flow control valve
JP2006308257A (en) Evaporator, refrigerant mixer, and heat pump using them
JP6234849B2 (en) Air conditioner heat exchanger
JP5310242B2 (en) Shunt and refrigeration equipment
JP2017072352A (en) Refrigerating device
JP5754197B2 (en) Four-way valve and heat pump device equipped with it
US11884129B2 (en) Device for regulating a throughflow and distributing a fluid in a fluid circuit
US20230194135A1 (en) Oil management for dual compressor modulation
JP6413692B2 (en) Air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160107

R150 Certificate of patent or registration of utility model

Ref document number: 5869696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250