JP2011235753A - Air conditioning device for vehicle - Google Patents

Air conditioning device for vehicle Download PDF

Info

Publication number
JP2011235753A
JP2011235753A JP2010108610A JP2010108610A JP2011235753A JP 2011235753 A JP2011235753 A JP 2011235753A JP 2010108610 A JP2010108610 A JP 2010108610A JP 2010108610 A JP2010108610 A JP 2010108610A JP 2011235753 A JP2011235753 A JP 2011235753A
Authority
JP
Japan
Prior art keywords
valve
flow path
refrigerant
switching
valve means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010108610A
Other languages
Japanese (ja)
Other versions
JP5488185B2 (en
Inventor
Tetsuya Ito
哲也 伊藤
Teruyuki Hotta
照之 堀田
Atsushi Inaba
淳 稲葉
Seiji Ito
誠司 伊藤
Tatsuhiro Matsuki
達広 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010108610A priority Critical patent/JP5488185B2/en
Priority to DE102011100301A priority patent/DE102011100301A1/en
Publication of JP2011235753A publication Critical patent/JP2011235753A/en
Application granted granted Critical
Publication of JP5488185B2 publication Critical patent/JP5488185B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning device for a vehicle which has an integral integrated valve integrating a three-way valve 30 and a valve unit 25 on the inlet side of an outdoor heat exchanger 21.SOLUTION: A refrigerant flow path change-over control valve 41 is formed of an integrated valve, which consists of a solenoid valve forming a valve unit 25 provided between an indoor condenser 12 and an inlet side of an outside heat exchanger 21, a heating throttle 26 provided in parallel to the valve unit 25 and a three-way valve 30 provided with a common flow path 50 on the outlet side of the outside heat exchanger 21, and accommodates the valve unit 25, heating throttle 26, three-way valve 30, first change-over flow path 55 and second change-over flow path 56 in the same body 40. The three-way valve 30 includes a differential pressure valve which changes over valve operation by changing pressure in accordance with the opening and closing of the valve unit 25. In this arrangement, easy piping, miniaturization and simple wiring work are achieved.

Description

本発明は、室内熱交換器と室外熱交換器とを有し、室内を暖房または冷房し、冷媒の流れる経路を切り替える弁機構を一体化した車両用空調装置に関する。特に、室外用熱交換器に弁機構を一体的に取り付けた車両用空調装置に関する。   The present invention relates to a vehicle air conditioner that includes an indoor heat exchanger and an outdoor heat exchanger, and that integrates a valve mechanism that heats or cools a room and switches a path through which a refrigerant flows. In particular, the present invention relates to a vehicle air conditioner in which a valve mechanism is integrally attached to an outdoor heat exchanger.

車両用空調システムにおいて、暖房の熱源にエンジン廃熱を利用するのが一般的であったが、近年、暖房に使用できる廃熱が少ないハイブリッド車、電気自動車(以下、EV車という)の開発が盛んになってきており、特にEV車では、暖房で使用できる廃熱は、僅少である。そのため、ヒートポンプシステムを利用した車両用空調装置が増加している傾向にある。   In vehicle air conditioning systems, it was common to use engine waste heat as a heat source for heating, but in recent years there has been development of hybrid vehicles and electric vehicles (hereinafter referred to as EV vehicles) with little waste heat that can be used for heating. The amount of waste heat that can be used for heating is very small, especially in EV cars. Therefore, the vehicle air conditioner using a heat pump system tends to increase.

このヒートポンプシステムを利用した車両用空調装置として特許文献1に記載の空調装置が知られている。この公知の空調装置は、自動車車室内の空調を行う自動車用空調装置に関するものである。   As a vehicle air conditioner using this heat pump system, an air conditioner described in Patent Document 1 is known. This known air conditioner relates to an automobile air conditioner that performs air conditioning in an automobile interior.

この自動車用空調装置は、エンジン冷却水が充分な熱源とならないようなエンジンを備えた自動車、または電気自動車の如く余剰熱源を全く有さない自動車において、冷凍サイクルを構成する凝縮及び蒸発に伴う熱の変動を巧みに利用して、望ましい空調を行えるようにするものである。   This automotive air conditioner is used in a vehicle equipped with an engine in which engine coolant is not a sufficient heat source, or in a vehicle that does not have any surplus heat source such as an electric vehicle. It makes it possible to perform desirable air conditioning by skillfully utilizing the fluctuations in the above.

そして、ダクト内に配置される熱交換器を、加熱器と室内蒸発器とでその機能を特定しておくことで、単一の熱交換器が加熱器としての機能を果たしたり、室内蒸発器としての機能を果たしたりすることがないようにしている。すなわち、この特許文献1の装置では空気調和の各運転条件の切り替え時においても、多量の水分が蒸発して窓ガラスの曇り等を起すことがないように成されている。   And, by specifying the function of the heat exchanger arranged in the duct with the heater and the indoor evaporator, a single heat exchanger can function as a heater, or the indoor evaporator It does not perform the function as. In other words, the apparatus of Patent Document 1 is configured so that a large amount of moisture does not evaporate and cause fogging of the window glass even when switching the operating conditions of air conditioning.

また、圧縮機を電動モータにより駆動することで、圧縮機容量を可変制御できるようにし、この圧縮機吐出容量と、加熱器による空気の再加熱とを適宜コントロールすることで、空調を小動力で効率的に行えるようにしている。   In addition, by driving the compressor with an electric motor, the compressor capacity can be variably controlled, and by appropriately controlling the compressor discharge capacity and the reheating of the air by the heater, air conditioning can be performed with low power. It is designed to be efficient.

また、ダクト内に配置された加熱器及び室内蒸発器の能力を補完すべく室外熱交換器を設け、この室外熱交換器への冷媒流れを制御することで、冷房運転もしくは暖房運転をより効率的に行えるようにしている。   In addition, an outdoor heat exchanger is provided to complement the capabilities of the heater and indoor evaporator arranged in the duct, and the cooling or heating operation is made more efficient by controlling the refrigerant flow to the outdoor heat exchanger. I can do it.

更に、ダクト内に配置された室内蒸発器及び加熱器をバイパスして流れる空気流れをダンパで可変制御することで、冷房運転、及び暖房運転をより一層効果的に行えるようにしている。   Furthermore, the air flow that bypasses the indoor evaporator and the heater disposed in the duct is variably controlled by a damper, so that the cooling operation and the heating operation can be performed more effectively.

より具体的には、図14に示す公知の冷媒回路図のように、ダクト1内には冷凍サイクルを構成する室内蒸発器11が配置されている。そして、この室内蒸発器11の下流側には、同じく冷凍サイクルを構成する室内凝縮器12が配置されている。   More specifically, as shown in a known refrigerant circuit diagram shown in FIG. 14, an indoor evaporator 11 constituting a refrigeration cycle is arranged in the duct 1. And the indoor condenser 12 which comprises the refrigerating cycle similarly is arrange | positioned in the downstream of this indoor evaporator 11. FIG.

なお、室内蒸発器11は空調空気と熱交換時空気中より気化熱を奪って空気の冷却を行い、冷却器として作動する。一方、室内凝縮器12は熱交換時空気中に凝縮熱を放出して空気の加熱を行い、加熱器として作動する。   Note that the indoor evaporator 11 takes the heat of vaporization from the air during heat exchange with the conditioned air, cools the air, and operates as a cooler. On the other hand, the indoor condenser 12 releases the condensation heat into the air during heat exchange to heat the air and operates as a heater.

また、冷凍サイクルは、図示しない電気モータにより駆動され冷媒を圧縮吐出する圧縮機20を備える。圧縮機20より吐出された高温高圧の冷媒は、室外熱交換器21で凝縮する。上述のダクト1内の室内凝縮器12は、室外熱交換器21と弁手段25をなす電磁弁及び暖房用絞り26を介して冷媒配管によって結ばれている。   The refrigeration cycle includes a compressor 20 that is driven by an electric motor (not shown) and compresses and discharges the refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 20 is condensed in the outdoor heat exchanger 21. The indoor condenser 12 in the duct 1 described above is connected to the outdoor heat exchanger 21 by a refrigerant pipe through a solenoid valve and a heating throttle 26 that form valve means 25.

室外熱交換器21から流出した冷媒は、一方は、冷房用絞り31をなすキャピラリーチューブを介してダクト1内の室内蒸発器11の入口に導かれ、他方は、下流側電磁弁32を介してアキュムレータ35とダクト1内の室内蒸発器11の出口に導かれる。   One of the refrigerant that has flowed out of the outdoor heat exchanger 21 is guided to the inlet of the indoor evaporator 11 in the duct 1 through a capillary tube that forms a cooling throttle 31, and the other through a downstream electromagnetic valve 32. It is guided to the outlet of the accumulator 35 and the indoor evaporator 11 in the duct 1.

また、エアミックスダンパ16を用いてダクト1内の室内凝縮器12の能力を切り替えるようにしている。即ち、暖房時にはエアミックスダンパ16によって、空気がダクト1内の室内凝縮器12へ流入するようにしている。   Further, the capacity of the indoor condenser 12 in the duct 1 is switched using the air mix damper 16. In other words, the air mix damper 16 causes air to flow into the indoor condenser 12 in the duct 1 during heating.

一方、冷房時には原則としてエアミックスダンパ16が破線のように閉じ、空気が室内凝縮器12へ流れないようにしている。ただ、冷房時であっても吹出温度を可変するダンパとしてエアミックスダンパ16が作動し、必要吹出温度に応じてエアミックスダンパ16の開度が制御され、一部空気を室内凝縮器12で加熱するよう作動する。   On the other hand, as a general rule, the air mix damper 16 is closed as indicated by a broken line during cooling so that air does not flow to the indoor condenser 12. However, even during cooling, the air mix damper 16 operates as a damper that varies the blowing temperature, the opening degree of the air mixing damper 16 is controlled according to the necessary blowing temperature, and a part of the air is heated by the indoor condenser 12. Operates to

特許第3538845号公報Japanese Patent No. 3538845

発明者は、この公知の車両空調装置を使用してEV車用の空調装置を開発したが、開発過程において、図14の室外熱交換器21と室内蒸発器11との間の冷房用絞り31をなすキャピラリーチューブに至る配管経路及び室外熱交換器21とアキュムレータ35間の下流側電磁弁32を図1のように三方弁30に置き換えた。   The inventor has developed an air conditioner for an EV vehicle using this known vehicle air conditioner. In the development process, the air conditioner 31 between the outdoor heat exchanger 21 and the indoor evaporator 11 shown in FIG. 1 and the downstream solenoid valve 32 between the outdoor heat exchanger 21 and the accumulator 35 are replaced with a three-way valve 30 as shown in FIG.

これは、熱効率を考慮した場合に、暖房時に冷房用絞り31をなすキャピラリーチューブを介して室内蒸発器11に漏れる冷媒を完全に遮断したいためである。   This is because, in consideration of thermal efficiency, it is desired to completely block the refrigerant leaking into the indoor evaporator 11 through the capillary tube that forms the cooling throttle 31 during heating.

上記特許文献1の技術から開発過程において案出した図1の空調装置は、室外熱交換器21の周辺に三方弁30、弁手段25を成す電磁弁、及び暖房用絞り26を必要としている。これらの機器が分散して取り付けられると、取り付け作業、配管作業に時間がかかり、好ましくない。よって、更なる工夫を必要とした。また、弁手段25を成す電磁弁の制御と共に三方弁30も制御しなければならないため、電気配線も複雑になる。   The air conditioner of FIG. 1 devised in the development process from the technique of Patent Document 1 requires a three-way valve 30, an electromagnetic valve forming valve means 25, and a heating throttle 26 around the outdoor heat exchanger 21. If these devices are mounted in a distributed manner, it takes time for mounting work and piping work, which is not preferable. Therefore, further ingenuity was required. Further, since the three-way valve 30 must be controlled together with the control of the electromagnetic valve constituting the valve means 25, the electrical wiring becomes complicated.

本発明は、このような従来の技術に存在する問題点に着目して成されたものであり、その目的は、配管本数を削減し、取り付け作業、及び配管作業が容易な車両用空調装置を提供することにある。   The present invention has been made paying attention to such problems existing in the prior art, and its purpose is to reduce the number of pipes and to provide a vehicle air conditioner that can be easily installed and installed. It is to provide.

従来技術として列挙された特許文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用することができる。   Descriptions of patent documents listed as prior art can be introduced or incorporated by reference as explanations of technical elements described in this specification.

本発明は上記目的を達成するために、下記の技術的手段を採用する。すなわち、請求項1に記載の発明では、空調用のダクト(1)内に室内蒸発器(11)と室内凝縮器(12)とを備え、室内蒸発器(11)と室内凝縮器(12)と室外熱交換器(21)とに圧縮機(20)からの冷媒を流すヒートポンプサイクルによる熱交換を行う車両用空調装置であって、室外熱交換器(21)の入口側と室内凝縮器(12)の間に設けられた弁手段(25)、弁手段(25)によって開閉される冷媒の流路に対して並列に冷媒の流れを絞る流路が設けられた暖房用絞り手段(26)、室外熱交換器(21)の出口側に連通したコモン流路(50)が設けられた三方弁(30)、コモン流路(50)からの冷媒が、三方弁(30)を介して冷房運転時に流れる第1切替流路(55)、及びコモン流路(50)からの冷媒が、三方弁(30)を介して暖房運転時に流れる第2切替流路(56)を備え、
弁手段(25)、暖房用絞り手段(26)、三方弁(30)、第1切替流路(55)、及び第2切替流路(56)の少なくとも一部をボディ(40)内に収納して、統合弁から成る冷媒流路切替制御弁(41)を構成していることを特徴とする。
In order to achieve the above object, the present invention employs the following technical means. That is, in the invention described in claim 1, the air conditioning duct (1) includes the indoor evaporator (11) and the indoor condenser (12), and the indoor evaporator (11) and the indoor condenser (12). It is a vehicle air conditioner that performs heat exchange by a heat pump cycle in which refrigerant from the compressor (20) flows to the outdoor heat exchanger (21), and an inlet side of the outdoor heat exchanger (21) and an indoor condenser ( 12), and a heating throttle means (26) provided with a passage for restricting the flow of the refrigerant in parallel to the refrigerant passage opened and closed by the valve means (25). The three-way valve (30) provided with the common channel (50) communicating with the outlet side of the outdoor heat exchanger (21), and the refrigerant from the common channel (50) is cooled through the three-way valve (30). Refrigerant from first switching channel (55) and common channel (50) flowing during operation Comprises a three-way valve second switching flow path that flows during the heating operation through the (30) (56),
At least a part of the valve means (25), the heating throttle means (26), the three-way valve (30), the first switching flow path (55), and the second switching flow path (56) is accommodated in the body (40). The refrigerant flow switching control valve (41) comprising an integrated valve is configured.

この発明によれば、弁手段(25)、暖房用絞り手段(26)、三方弁(30)の少なくとも3つの機器が、ボディ(40)内に収納されて一体化されているため、冷媒配管はボディ(40)に接続すれば良く、個々の機器に接続しなくても良いため、取り付け作業、及び配管作業が容易になる。   According to this invention, since at least three devices of the valve means (25), the heating throttle means (26), and the three-way valve (30) are housed and integrated in the body (40), the refrigerant pipe Can be connected to the body (40), and does not have to be connected to individual devices.

請求項2に記載の発明では、三方弁(30)を弁手段(25)の開閉に伴って圧力が変化することにより弁作動が切り替わる差圧弁で構成したことを特徴とする。   The invention according to claim 2 is characterized in that the three-way valve (30) is constituted by a differential pressure valve whose valve operation is switched when the pressure changes in accordance with opening and closing of the valve means (25).

この発明によれば、更に、三方弁(30)を差圧弁で構成したから、三方弁(30)のための電気配線が不要となり、配線作業も簡素化できる。   Further, according to the present invention, since the three-way valve (30) is constituted by a differential pressure valve, the electric wiring for the three-way valve (30) becomes unnecessary, and the wiring work can be simplified.

請求項3に記載の発明では、ボディ(40)と室外熱交換器(21)との接続は、室外熱交換器(21)に装着された接続部とボディ(40)側に設けられた接続部とを凹凸嵌合させて形成した室外熱交換器(21)の入口側の第1ジョイント部(71)と、室外熱交換器(21)の出口側の第2ジョイント部(72)とで行い、第1ジョイント部(71)が弁手段(25)側に設けられ、第2ジョイント部(72)がコモン流路(50)側に設けられていることを特徴とする。   In the invention according to claim 3, the connection between the body (40) and the outdoor heat exchanger (21) is a connection provided on the body (40) side with a connection part mounted on the outdoor heat exchanger (21). A first joint part (71) on the inlet side of the outdoor heat exchanger (21) formed by fitting the concave and convex parts, and a second joint part (72) on the outlet side of the outdoor heat exchanger (21). The first joint portion (71) is provided on the valve means (25) side, and the second joint portion (72) is provided on the common flow path (50) side.

この発明によれば、ボディ(40)と室外熱交換器(21)との接続に配管を必要とせず、単にボディ(40)を直接的に室外熱交換器(21)に接合するだけでよいから、配管接続が不要となり、組み立て作業を簡素化できる。   According to this invention, piping is not required for the connection between the body (40) and the outdoor heat exchanger (21), and the body (40) may be simply joined directly to the outdoor heat exchanger (21). Therefore, piping connection is not necessary, and assembly work can be simplified.

請求項4に記載の発明では、ボディ(40)内に室内凝縮器(12)からの冷媒が流れ込む弁手段入口側流路(44)と、室外熱交換器(21)に冷媒を流し込む弁手段出口側流路(45)とが形成され、弁手段(25)は、弁手段入口側流路(44)と弁手段出口側流路(45)との間に介在し、弁手段出口側流路(45)から室外熱交換器(21)を経由した冷媒が導かれるコモン流路(50)をボディ(40)内に有し、コモン流路(50)に連通する三方弁(30)内のコモン室(51)の一方側にコモン流路(50)と室内蒸発器(11)側とを接続する第1切替流路(55)を有し、コモン室(51)の他方側に圧縮機(20)側に戻る冷媒の流路を成す第2切替流路(56)を有することを特徴とする。   In the invention according to claim 4, the valve means inlet side flow path (44) through which the refrigerant from the indoor condenser (12) flows into the body (40), and the valve means through which the refrigerant flows into the outdoor heat exchanger (21). An outlet side flow path (45) is formed, and the valve means (25) is interposed between the valve means inlet side flow path (44) and the valve means outlet side flow path (45), and the valve means outlet side flow A three-way valve (30) having a common flow path (50) in the body (40) through which the refrigerant is led from the path (45) via the outdoor heat exchanger (21) and communicating with the common flow path (50). The common chamber (51) has a first switching channel (55) that connects the common channel (50) and the indoor evaporator (11) side on one side of the common chamber (51), and is compressed on the other side of the common chamber (51) It has the 2nd switching flow path (56) which comprises the flow path of the refrigerant | coolant which returns to the machine (20) side, It is characterized by the above-mentioned.

この発明によれば、弁手段(25)は、ボディ(40)内の弁手段入口側流路(44)と弁手段出口側流路(45)との間に介在し、三方弁(30)は、弁手段出口側流路(45)から室外熱交換器(21)を経由した冷媒が導かれるコモン流路(50)をボディ(40)内に有し、コモン流路(50)に連通する三方弁(30)内のコモン室(51)の一方側にコモン流路(50)と室内蒸発器(11)側とを接続する第1切替流路(55)を有し、コモン室(51)の他方側に第2切替流路(56)を有するから、ボディ(40)内に弁手段(25)と三方弁(30)を組み込み、かつ冷媒流路を切替えることができる。   According to this invention, the valve means (25) is interposed between the valve means inlet side flow path (44) and the valve means outlet side flow path (45) in the body (40), and the three-way valve (30). Has a common channel (50) in the body (40) through which the refrigerant is led from the valve means outlet side channel (45) via the outdoor heat exchanger (21), and communicates with the common channel (50). The first switching channel (55) for connecting the common channel (50) and the indoor evaporator (11) side is provided on one side of the common chamber (51) in the three-way valve (30). 51) Since the second switching channel (56) is provided on the other side of 51), the valve means (25) and the three-way valve (30) can be incorporated in the body (40) and the refrigerant channel can be switched.

請求項5に記載の発明では、三方弁(30)は、第1切替流路(55)と第2切替流路(56)との間を往復動する往復弁体(60)を有し、往復弁体(60)の動きに応じて、三方弁(30)はコモン流路(50)を第1切替流路(55)と第2切替流路(56)のいずれかに連通させ、三方弁(30)は、弁手段入口側流路(44)から往復弁体(60)の一方側に圧力導入路(42)を介して導入された圧力とコモン流路(50)の圧力との差圧で往復動する差圧弁から構成されていることを特徴とする。   In the invention according to claim 5, the three-way valve (30) has a reciprocating valve body (60) that reciprocates between the first switching flow path (55) and the second switching flow path (56), In response to the movement of the reciprocating valve body (60), the three-way valve (30) causes the common flow path (50) to communicate with either the first switching flow path (55) or the second switching flow path (56). The valve (30) includes a pressure introduced from the valve means inlet side flow path (44) to one side of the reciprocating valve body (60) via the pressure introduction path (42) and a pressure of the common flow path (50). It is characterized by comprising a differential pressure valve that reciprocates with a differential pressure.

この発明によれば、往復弁体(60)は弁手段入口側流路(44)から往復弁体(60)の一方側に導入された圧力とコモン流路(50)の圧力との差圧で往復動する。つまり、三方弁(30)は差圧弁から構成されている。このため、三方弁(30)を制御するための専用の電気配線が不要となり、配線作業が簡単になる。   According to this invention, the reciprocating valve body (60) is a differential pressure between the pressure introduced from the valve means inlet side flow path (44) to one side of the reciprocating valve body (60) and the pressure of the common flow path (50). To reciprocate. That is, the three-way valve (30) is composed of a differential pressure valve. For this reason, a dedicated electric wiring for controlling the three-way valve (30) is not required, and the wiring work is simplified.

請求項6に記載の発明では、弁手段入口側流路(44)から往復弁体(60)の一方側に導入された圧力は、ボディ(40)内に形成された圧力導入路(42)を介して導入されることを特徴とする。   In the invention according to claim 6, the pressure introduced from the valve means inlet side flow path (44) to one side of the reciprocating valve body (60) is a pressure introduction path (42) formed in the body (40). It is introduced through this.

この発明によれば、三方弁(30)を差圧弁として構成するための、弁手段入口側流路(44)から往復弁体(60)の一方側に導入される圧力を、ボディ(40)内に形成された圧力導入路(42)によって導いているから、三方弁(30)を制御するための専用の電気配線が不要となり、配管上に圧力導入路(42)を別途設ける場合に比べ小型化することができる。   According to the present invention, the pressure introduced into one side of the reciprocating valve body (60) from the valve means inlet-side flow path (44) for configuring the three-way valve (30) as a differential pressure valve is changed to the body (40). Since it is led by the pressure introduction path (42) formed in the inside, a dedicated electric wiring for controlling the three-way valve (30) becomes unnecessary, and compared with the case where the pressure introduction path (42) is separately provided on the pipe. It can be downsized.

請求項7に記載の発明では、三方弁(30)は、往復弁体(60)の一方側に導入された圧力とコモン流路(50)の圧力との差圧と、往復弁体(60)の他方側に設けられたばね部材(63)の弾性力とで、往復弁体(60)が往復動することによって往復弁体(60)の一部が第1弁座(65)及び第2弁座(66)に当接する一対のポペット弁部を有することを特徴とする。   In the invention according to claim 7, the three-way valve (30) includes the pressure difference between the pressure introduced to one side of the reciprocating valve body (60) and the pressure of the common flow path (50), and the reciprocating valve body (60). ) By the elastic force of the spring member (63) provided on the other side, the reciprocating valve body (60) reciprocates, so that a part of the reciprocating valve body (60) becomes the first valve seat (65) and the second valve seat (65). It has a pair of poppet valve parts which contact | abut to a valve seat (66), It is characterized by the above-mentioned.

この発明によれば、三方弁(30)は、往復弁体(60)の一方側に導入された圧力とコモン流路(50)の圧力との差圧と、ばね部材(63)の弾性力とで往復動する一対のポペット弁部を有するから、スプール弁で構成する場合に比較すると、往復動のストロークを短くすることができ、三方弁(30)部分を小型に構成できる。   According to this invention, the three-way valve (30) includes the differential pressure between the pressure introduced to one side of the reciprocating valve body (60) and the pressure of the common flow path (50), and the elastic force of the spring member (63). Therefore, the stroke of the reciprocating motion can be shortened and the three-way valve (30) portion can be made compact.

請求項8に記載の発明では、一対のポペット弁部は、一対のポペット弁部のうちの一方のポペット弁部と、該一方のポペット弁部に一端が固定された連結部材(60c)とを有し、一対のポペット弁部のうちの他方のポペット弁部に連結部材(60c)の他端が挿入され、連結部材(60c)を介して一対のポペット弁部が少なくとも所定方向に連動することを特徴とする。   In the invention according to claim 8, the pair of poppet valve portions includes one poppet valve portion of the pair of poppet valve portions and a connecting member (60c) having one end fixed to the one poppet valve portion. The other end of the connecting member (60c) is inserted into the other poppet valve portion of the pair of poppet valve portions, and the pair of poppet valve portions are interlocked in at least a predetermined direction via the connecting member (60c). It is characterized by.

この発明によれば、連結部材(60c)が一対のポペット弁部のうちの他方のポペット弁部に挿入され、この連結部材(60c)を介して一対のポペット弁部が連動するから、往復弁体(60)の一方側に導入された圧力とコモン流路(50)の圧力との差圧と、往復弁体(60)の他方側に設けられたばね部材(63)の弾性力とで一対のポペット弁部が連動する三方弁(30)を構成することができる。   According to the present invention, the connecting member (60c) is inserted into the other poppet valve portion of the pair of poppet valve portions, and the pair of poppet valve portions are interlocked via the connecting member (60c). A pair of pressure difference between the pressure introduced to one side of the body (60) and the pressure of the common flow path (50) and the elastic force of the spring member (63) provided on the other side of the reciprocating valve body (60). The three-way valve (30) with which the poppet valve part of this is interlocked can be configured.

請求項9に記載の発明では、暖房用絞り手段(26)は、弁手段(25)と並列に形成された細径流路から成り、該細径流路は、弁手段内を冷媒が流れる流路よりも細径のボディ(40)内に形成された流路からなることを特徴とする。   In the invention described in claim 9, the heating throttle means (26) comprises a narrow-diameter channel formed in parallel with the valve means (25), and the narrow-diameter channel is a channel through which refrigerant flows in the valve means. It is characterized by comprising a flow path formed in a body (40) having a smaller diameter.

この発明によれば、弁手段(25)は、弁手段入口側流路(44)と弁手段出口側流路(45)との間に介在し、暖房用絞り手段(26)はボディ(40)内に形成された細径流路からなるから、ボディ(40)内に暖房用絞り手段(26)を作り込むことができ、配管上に暖房用絞り手段を別途形成する場合に比べると、小型化することができる。   According to this invention, the valve means (25) is interposed between the valve means inlet side flow path (44) and the valve means outlet side flow path (45), and the heating throttle means (26) is the body (40). ), The heating throttle means (26) can be formed in the body (40), and is smaller than the case where the heating throttle means is separately formed on the pipe. Can be

請求項10に記載の発明では、弁手段(25)によって開閉される冷媒の流路に対して並列に冷媒の流れを絞る流路が設けられた暖房用絞り手段(26)は、弁手段(25)を完全に閉弁せずに微小隙間を残して閉弁動作する弁手段(25)閉弁後の隙間流路からなることを特徴とする。   In the invention according to claim 10, the heating throttle means (26) provided with the flow path for narrowing the flow of the refrigerant in parallel with the flow path of the refrigerant opened and closed by the valve means (25) includes the valve means ( 25) The valve means (25) which does not completely close but leaves a minute gap and performs a valve closing operation (25) is characterized by comprising a gap flow path after the valve is closed.

この発明によれば、暖房用絞り手段(26)を弁手段(25)の閉弁後の漏れ流路となる隙間流路から形成するから、特別に暖房用絞り手段を弁手段(25)の外部に形成する場合に比し、製造コストを削減し易い。   According to this invention, since the heating throttle means (26) is formed from the gap flow path which becomes the leakage flow path after the valve means (25) is closed, the heating throttle means is specially provided for the valve means (25). Compared with the case of forming outside, it is easy to reduce the manufacturing cost.

請求項11に記載の発明では、微小隙間を残して閉弁する弁手段は、微小隙間の大きさである閉弁後の弁の開度を調整できる弁手段からなることを特徴とする。   According to an eleventh aspect of the present invention, the valve means for closing the valve while leaving a minute gap comprises valve means for adjusting the opening degree of the valve after closing, which is the size of the minute gap.

この発明によれば、微小隙間の大きさである弁の開度を調整できるから、冷媒サイクルの運転状態に適した開度に暖房用絞り手段(26)の絞り開度を設定することができる。   According to this invention, since the opening degree of the valve, which is the size of the minute gap, can be adjusted, the opening degree of the heating throttle means (26) can be set to an opening degree suitable for the operating state of the refrigerant cycle. .

請求項12に記載の発明では、閉弁動作後の弁の開度を調整できる弁手段(25)は電動弁からなることを特徴とする。   The twelfth aspect of the invention is characterized in that the valve means (25) capable of adjusting the opening degree of the valve after the valve closing operation is constituted by an electric valve.

この発明によれば、暖房用絞り手段(26)の絞り開度を、冷媒サイクルの運転状態に適した開度に、電動弁からなる弁手段(25)で容易に設定することができる。   According to this invention, the throttle opening degree of the heating throttling means (26) can be easily set to the opening degree suitable for the operating state of the refrigerant cycle by the valve means (25) comprising the motor operated valve.

請求項13に記載の発明では、ヒートポンプサイクルは、更にアキュムレータ(35)と冷房用絞り(31)と第1切替配管(55a)と第2切替配管(56a)とを有し、コモン流路(50)からの冷媒を冷房運転時に流す第1切替流路(55)は、第1切替配管(55a)と冷房用絞り(31)とを介して室内蒸発器(11)に冷媒を流し、暖房運転時に冷媒を流す第2切替流路(56)は、第2切替配管(56a)とアキュムレータ(35)とを介して圧縮機(20)に冷媒を戻すことを特徴とする。   In a thirteenth aspect of the present invention, the heat pump cycle further includes an accumulator (35), a cooling throttle (31), a first switching pipe (55a), and a second switching pipe (56a), and a common flow path ( The first switching flow path (55) for flowing the refrigerant from 50) during the cooling operation causes the refrigerant to flow to the indoor evaporator (11) through the first switching pipe (55a) and the cooling throttle (31), thereby heating the The second switching channel (56) for flowing the refrigerant during operation returns the refrigerant to the compressor (20) via the second switching pipe (56a) and the accumulator (35).

この発明によれば、第1切替流路(55)を介して冷房運転を行うことができ、第2切替流路(56)を介して暖房運転を行うことができる。   According to this invention, the cooling operation can be performed via the first switching flow path (55), and the heating operation can be performed via the second switching flow path (56).

なお、特許請求の範囲および上記各手段に記載の括弧内の符号ないし説明は、後述する実施形態に記載の具体的手段との対応関係を分かり易く示す一例であり、発明の内容を限定するものではない。   In addition, the code | symbol in parentheses described in a claim and each said means is an example which shows the correspondence with the specific means as described in embodiment mentioned later easily, and limits the content of invention is not.

本発明の第1実施形態及び開発段階としてのEV車用のヒートポンプサイクルを使用した車両用空調装置における冷媒回路図である。It is a refrigerant circuit figure in the air-conditioner for vehicles using the heat pump cycle for EV vehicles as a 1st embodiment of the present invention and a development stage. 図1の冷媒配管図を更に詳細に書いた実体冷媒配管図である。FIG. 2 is a substantial refrigerant piping diagram in which the refrigerant piping diagram of FIG. 1 is written in more detail. 図2に示したボディ内に収納された弁手段をなす電磁弁、絞り手段を成す暖房用絞り、及び三方弁から成る冷房状態での冷媒流路切替制御弁の具体的構成を示した一部断面図である。A part of a specific configuration of the refrigerant flow switching control valve in a cooling state including a solenoid valve forming valve means housed in the body shown in FIG. 2, a heating throttle forming throttle means, and a three-way valve It is sectional drawing. 図3の電磁弁が閉弁し室外熱交換器からの冷媒がアキュムレータに向かう暖房状態での冷媒流路切替制御弁の具体的構成を示した一部断面図である。FIG. 4 is a partial cross-sectional view showing a specific configuration of a refrigerant flow switching control valve in a heating state in which the solenoid valve of FIG. 3 is closed and refrigerant from an outdoor heat exchanger is directed to an accumulator. 図4の冷媒流路切替制御弁の右側面図である。It is a right view of the refrigerant flow path switching control valve of FIG. 図3の矢印Z6−Z6線に沿う一部断面図である。FIG. 4 is a partial cross-sectional view taken along line Z6-Z6 in FIG. 3. 図3の矢印Z7−Z7線に沿う一部断面図である。FIG. 4 is a partial cross-sectional view taken along line Z7-Z7 in FIG. 3. 本発明の第2実施形態を示す三方弁としてスプール弁を採用した冷媒流路切替制御弁の具体的構成を示した一部断面図である。FIG. 6 is a partial cross-sectional view showing a specific configuration of a refrigerant flow switching control valve that employs a spool valve as a three-way valve showing a second embodiment of the present invention. 図8の状態から往復弁体が右方向へ移動した状態を示すスプール弁を採用した冷媒流路切替制御弁の具体的構成を示した一部断面図である。FIG. 9 is a partial cross-sectional view showing a specific configuration of a refrigerant flow switching control valve employing a spool valve showing a state in which the reciprocating valve body has moved to the right from the state of FIG. 8. 本発明の第3実施形態を示す電動弁を採用した冷媒流路切替制御弁の具体的構成を示した電動弁全開時の一部断面図である。It is a partial cross section figure at the time of a motor operated valve full opening showing the concrete composition of the refrigerant channel change control valve which adopted the motor operated valve which shows a 3rd embodiment of the present invention. 図10の電動弁が、微小開度の漏れ通路を残して閉弁した状態を示した一部断面図である。FIG. 11 is a partial cross-sectional view showing a state in which the motor-operated valve of FIG. 10 is closed while leaving a leak passage having a minute opening. その他の実施形態を示す三方弁の要部を模式的に示した模式図である。It is the schematic diagram which showed typically the principal part of the three-way valve which shows other embodiment. その他の実施形態を示し、室外熱交換器と冷媒流路切替制御弁との結合状態を示す図5に対応する右側面図である。It is a right view corresponding to FIG. 5 which shows other embodiment and shows the coupling | bonding state of an outdoor heat exchanger and a refrigerant | coolant flow path switching control valve. 公知の車両用空調装置における冷媒回路図である。It is a refrigerant circuit figure in a publicly known vehicle air-conditioner.

以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。   A plurality of modes for carrying out the present invention will be described below with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration.

各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。   Not only combinations of parts that clearly indicate that the combination is possible in each embodiment, but also a combination of the embodiments even if they are not clearly specified unless there is a problem with the combination. It is also possible.

(第1実施形態)
以下、本発明の第1実施形態について図1ないし図7を用いて詳細に説明する。まず作動を含め構成を全体的に説明した後、改めて作動を冷房と暖房に分けて説明する。図1は、上記第1実施形態としてのEV車用のヒートポンプサイクルを使用した車両用空調装置における冷媒回路図である(この詳細でない冷媒回路図自体では、開発過程のものと同一である)。図1中1は空気通路をなすダクトで、車室内に配置されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. First, the entire configuration including the operation will be described, and then the operation will be described separately for cooling and heating. FIG. 1 is a refrigerant circuit diagram in a vehicle air conditioner using the heat pump cycle for an EV vehicle as the first embodiment (this refrigerant circuit diagram which is not detailed is the same as that in the development process). In FIG. 1, reference numeral 1 denotes a duct that forms an air passage, and is disposed in the passenger compartment.

このダクト1の一方にはファンケース2が接続され、ファンケース2内にはシロッコファン3から成る送風機4が配置されている。この送風機4はその中央部に配置された送風機モータ5によって回転駆動される。さらに、ファンケース2には内外気切替部6が接続され、この内外気切替部6には内気導入口7と外気導入口8とが開口している。   A fan case 2 is connected to one side of the duct 1, and a blower 4 including a sirocco fan 3 is disposed in the fan case 2. The blower 4 is rotationally driven by a blower motor 5 disposed at the center thereof. Furthermore, an inside / outside air switching unit 6 is connected to the fan case 2, and an inside air introduction port 7 and an outside air introduction port 8 are opened in the inside / outside air switching unit 6.

また内外気切替部6には内外気切替ダンパ9が配置されており、この内外気切替ダンパ9により、ダクト1に導入される空気を室内空気と車外空気とで切り替えることができる。ダクト1の図1上方には空調された空気を車室内に向けて吹出す図示しない吹出口が形成されている。   An inside / outside air switching damper 9 is disposed in the inside / outside air switching unit 6, and the inside / outside air switching damper 9 can switch the air introduced into the duct 1 between the room air and the outside air. An air outlet (not shown) that blows out air-conditioned air toward the vehicle interior is formed above the duct 1 in FIG.

この吹出口は、乗員の頭胸部に向けて主に冷風を吹出すフェイス吹出口と、乗員の脚元に向けて主に暖風を吹出すフット吹出口と、窓ガラスに向けて主に暖風を吹出すデフ吹出口とが形成されている。そして、各吹出口にはそれぞれ吹出口への空気流を制御するフェイスダンパ、フットダンパ及びデフダンパが設けられている。   This air outlet has a face air outlet that mainly blows cool air toward the head and chest of the occupant, a foot air outlet that mainly blows warm air toward the legs of the occupant, and a warm air mainly toward the window glass. A differential outlet for blowing wind is formed. Each air outlet is provided with a face damper, a foot damper, and a differential damper that control the air flow to the air outlet.

また、ダクト1内には冷凍サイクルを構成する室内蒸発器11が配置されている。そして、この室内蒸発器11の下流側には、同じく冷凍サイクルを構成する室内凝縮器12が配置されている。なお、室内蒸発器11は、空調空気と熱交換時に空気中より気化熱を奪って空気の冷却を行い、冷却器として作動する。   An indoor evaporator 11 constituting a refrigeration cycle is disposed in the duct 1. And the indoor condenser 12 which comprises the refrigerating cycle similarly is arrange | positioned in the downstream of this indoor evaporator 11. FIG. Note that the indoor evaporator 11 takes the heat of vaporization from the air during heat exchange with the conditioned air, cools the air, and operates as a cooler.

一方、室内凝縮器12は、熱交換時に空気中に凝縮熱を放出して空気の加熱を行い、加熱器として作動する。そして、室内蒸発器11と室内凝縮器12とで室内熱交換器11、12を構成している。   On the other hand, the indoor condenser 12 releases the heat of condensation into the air during heat exchange, heats the air, and operates as a heater. The indoor evaporator 11 and the indoor condenser 12 constitute indoor heat exchangers 11 and 12.

ダクト1内の室内凝縮器12の側方にはバイパス通路15が配置されており、ダクト1内にはこのバイパス通路15を流れる空気の風量と、室内凝縮器12を流れる空気の風量との割合を連続的に可変制御するエアミックスダンパ16が一端を中心に回動自在に配置されている。   A bypass passage 15 is disposed on the side of the indoor condenser 12 in the duct 1, and the ratio of the air volume flowing through the bypass path 15 and the air volume flowing through the indoor condenser 12 in the duct 1. An air mix damper 16 that continuously and variably controls is arranged so as to be rotatable around one end.

なお、冷凍サイクルは、図示しない電気モータにより駆動され冷媒を圧縮吐出する圧縮機20を備える。この圧縮機20は、電動モータと一体的に密封ケース内に配置されるため、その設置場所は特に限定されない。   The refrigeration cycle includes a compressor 20 that is driven by an electric motor (not shown) and compresses and discharges the refrigerant. Since the compressor 20 is disposed in a sealed case integrally with the electric motor, the installation location is not particularly limited.

ただ、保守点検等の要求より自動車の車室以外の部位に圧縮機20が配置されることが望まれる。室外熱交換器21は、車外空気と良好な熱交換が行えるよう、自動車の進行方向前方に配置される。   However, it is desired that the compressor 20 be disposed in a portion other than the passenger compartment of the automobile due to a request for maintenance and inspection. The outdoor heat exchanger 21 is disposed in front of the traveling direction of the automobile so that good heat exchange with outside air can be performed.

即ち、室外熱交換器21は、自動車走行時には走行風を受け、冷媒と空気の熱交換が良好に行えるようになっている。上述のダクト1内の室内凝縮器12は、特に、パイロット式電磁弁から成る弁手段25を成す電磁弁及び暖房用絞り26を介して、室外熱交換器21と冷媒配管によって結ばれている。   That is, the outdoor heat exchanger 21 receives traveling wind when the vehicle is traveling, and can perform heat exchange between the refrigerant and the air satisfactorily. The indoor condenser 12 in the duct 1 is connected to the outdoor heat exchanger 21 and the refrigerant pipe through an electromagnetic valve and a heating throttle 26 that constitute valve means 25 composed of a pilot type electromagnetic valve.

図示しない操作パネルは、車室内の乗員の視認し易い位置に配置される。操作パネル内には、送風機モータ5の回転数を制御するファンレバー、エアミックスダンパ16の開度を制御する温度調節レバー、各吹出口ダンパを制御するモード切替レバー、内外気切替ダンパ9を切替制御する操作レバー、空調装置の作動を開始するエアコンスイッチ、空調装置を省動力運転するエコノミースイッチ、空調装置の作動を停止するオフスイッチ等が設けられている。   An operation panel (not shown) is disposed at a position where the passenger can easily see the vehicle interior. In the operation panel, a fan lever for controlling the rotation speed of the blower motor 5, a temperature adjusting lever for controlling the opening degree of the air mix damper 16, a mode switching lever for controlling each outlet damper, and an inside / outside air switching damper 9 are switched. There are provided an operation lever to be controlled, an air conditioner switch for starting the operation of the air conditioner, an economy switch for performing a power saving operation of the air conditioner, an off switch for stopping the operation of the air conditioner, and the like.

室内蒸発器11の出口側の空気温度を検出する図示しない温度センサからの信号に基づき、室内蒸発器11出口側温度が3度ないし4度になるように圧縮機20の回転数が制御される。但し、上記エコノミースイッチが投入された時には、上記温度センサからの信号に基づき、室内蒸発器11出口側の空気温度が10ないし11度となるように圧縮機20の回転数が可変制御される。   Based on a signal from a temperature sensor (not shown) that detects the air temperature on the outlet side of the indoor evaporator 11, the rotational speed of the compressor 20 is controlled so that the temperature on the outlet side of the indoor evaporator 11 is 3 to 4 degrees. . However, when the economy switch is turned on, the rotational speed of the compressor 20 is variably controlled so that the air temperature at the outlet side of the indoor evaporator 11 becomes 10 to 11 degrees based on the signal from the temperature sensor.

図示しないエアコンスイッチの投入及びファンスイッチをLO、MID、もしくはHI状態にすることで、圧縮機20が回転起動し、かつ送風機モータ5が選択された回転数で回転する。   By turning on the air conditioner switch (not shown) and setting the fan switch to the LO, MID, or HI state, the compressor 20 starts rotating and the blower motor 5 rotates at the selected number of rotations.

車室内冷房時においては、圧縮機20より吐出された高温高圧の冷媒は、室内凝縮器12を通り、弁手段25から室外熱交換器21に流入して凝縮する。三方弁30が冷房用絞り31側に冷媒を流すように切り替わっており、室外熱交換器21で凝縮した冷媒が冷媒用絞り31を成す固定絞りを介してダクト1内の室内蒸発器11を通過した後、アキュムレータ35内で気液分離され、圧縮機20に供給される。   During the cooling of the passenger compartment, the high-temperature and high-pressure refrigerant discharged from the compressor 20 passes through the indoor condenser 12 and flows into the outdoor heat exchanger 21 from the valve means 25 and is condensed. The three-way valve 30 is switched so that the refrigerant flows to the cooling throttle 31 side, and the refrigerant condensed in the outdoor heat exchanger 21 passes through the indoor evaporator 11 in the duct 1 through the fixed throttle that forms the refrigerant throttle 31. After that, the gas and liquid are separated in the accumulator 35 and supplied to the compressor 20.

冷房用絞り31で断熱膨張し、低温低圧の霧状となった冷媒が室内蒸発器11に供給される。この室内蒸発器11で送風機4より供給された空気と熱交換する。すなわち空気中より気化熱を奪い、冷媒は低圧のまま蒸発する。そして蒸発した冷媒は再び圧縮機20に吸入される。   The refrigerant which is adiabatically expanded by the cooling throttle 31 and becomes a low-temperature and low-pressure mist is supplied to the indoor evaporator 11. The indoor evaporator 11 exchanges heat with the air supplied from the blower 4. That is, it takes heat of vaporization from the air, and the refrigerant evaporates at a low pressure. The evaporated refrigerant is sucked into the compressor 20 again.

エアミックスダンパ16に関して図1中破線で示したのは、エアミックスダンパ16が全閉となった状態である。すなわち、この全閉状態では室内凝縮器12には、空気流が導入されない。従って、冷媒の凝縮は室外熱交換器21でなされることになる。   The air mix damper 16 indicated by a broken line in FIG. 1 is a state in which the air mix damper 16 is fully closed. That is, no air flow is introduced into the indoor condenser 12 in this fully closed state. Therefore, the refrigerant is condensed in the outdoor heat exchanger 21.

そして、破線に示したように、エアミックスダンパ16を全閉とした状態では、室内凝縮器12によるエンタルピの損失が無視できるため、室内蒸発器11の冷却機能をそのまま冷房用に用いることができる。   As indicated by the broken line, in the state where the air mix damper 16 is fully closed, the enthalpy loss due to the indoor condenser 12 can be ignored, so the cooling function of the indoor evaporator 11 can be used for cooling as it is. .

次に、この際の空気の流れ状態につき説明する。内外気切替ダンパ9により選択的に供給された空気は送風機4より室内蒸発器11に供給される。ここで室内蒸発器11通過時に冷媒の気化によって冷却され、出口側空気温度が3度ないし4度となった状態でバイパス通路15及び室内凝縮器12へ向かう。   Next, the air flow state at this time will be described. The air selectively supplied by the inside / outside air switching damper 9 is supplied from the blower 4 to the indoor evaporator 11. Here, the refrigerant is cooled by vaporization of the refrigerant when passing through the indoor evaporator 11, and goes to the bypass passage 15 and the indoor condenser 12 in a state where the outlet side air temperature becomes 3 to 4 degrees.

この空気流はエアミックスダンパ16によって適宜選択される。すなわち最大冷房が要求される状態ではエアミックスダンパ16が室内凝縮器12を閉じ、冷却された空気をそのまま吹出口側へ導く。   This air flow is appropriately selected by the air mix damper 16. That is, in a state where maximum cooling is required, the air mix damper 16 closes the indoor condenser 12 and guides the cooled air as it is to the outlet.

冷房が効きすぎるので、吹出し空気の温度を高めたい時には、圧縮機の回転数を下げる。そして圧縮機の回転数を下げても充分に温度が上がらない場合に、エアミックスダンパ16を開き、空気の一部を室内凝縮器12へ流す。この室内凝縮器12へ流れた空気は、室内凝縮器12下流のエアミックスチャンバーでバイパス通路15を通過した冷気と混合される。   Cooling is too effective, so if you want to raise the temperature of the blown air, lower the compressor speed. If the temperature does not rise sufficiently even when the rotational speed of the compressor is lowered, the air mix damper 16 is opened and a part of the air is allowed to flow to the indoor condenser 12. The air that has flowed to the indoor condenser 12 is mixed with the cold air that has passed through the bypass passage 15 in the air mix chamber downstream of the indoor condenser 12.

混合された空気は、各吹出口への空気流を制御する周知のフェイスダンパ、フットダンパ及びデフダンパの切り替えにより車室内に吹出される。図示しない操作パネルのモードスイッチがフェイスモードの時はフェイスダンパのみ開き、他のフットダンパ及びデフダンパは閉じる。従って、冷風が主に乗員の頭胸部に向けて吹出されることになる。   The mixed air is blown into the vehicle interior by switching between a known face damper, foot damper, and differential damper that controls the air flow to each outlet. When the mode switch on the operation panel (not shown) is in the face mode, only the face damper is opened and the other foot damper and differential damper are closed. Therefore, the cold air is blown mainly toward the passenger's head and chest.

モードスイッチをバイレベルモードとした時には、デフダンパが閉じ、フェイスダンパ及びフットダンパが開く。   When the mode switch is set to the bi-level mode, the differential damper is closed and the face damper and the foot damper are opened.

モードスイッチをフットモードとした時にはフットダンパのみ開き、他のフェイスダンパ及びデフダンパは閉じる。その結果、室内凝縮器12を通過した空気がフット吹出口より乗員の足元部に吹出される。   When the mode switch is set to the foot mode, only the foot damper is opened, and the other face damper and differential damper are closed. As a result, the air that has passed through the indoor condenser 12 is blown out from the foot outlet to the feet of the passenger.

モードスイッチをデフモードとした場合にはデフダンパのみ開き、他のフェイスダンパ及びフットダンパは閉じる。その結果、空気がデフ吹出口より自動車の窓ガラスに向けて吹出される。   When the mode switch is set to the differential mode, only the differential damper is opened and the other face dampers and foot dampers are closed. As a result, air is blown out from the differential outlet toward the window glass of the automobile.

上述の例では、エアミックスダンパ16の開度や送風機モータ5の回転数及び圧縮機20の回転数を乗員のマニュアル操作により行うようにしても、自動操作とするようにしてもよい。   In the above-described example, the opening degree of the air mix damper 16, the rotational speed of the blower motor 5, and the rotational speed of the compressor 20 may be manually operated by the occupant or may be automatically operated.

なお、圧縮機20の吐出容量を減少させるときは、実際の温度の方が目標とする温度より低い場合のように、冷凍装置としての車両用空調装置の能力が過剰となっている状態であり、インバータの周波数を下げ、圧縮機20を駆動する回転速度を低下させて圧縮機20の吐出容量を減少する。   When the discharge capacity of the compressor 20 is decreased, the capacity of the vehicle air conditioner as the refrigeration device is excessive as in the case where the actual temperature is lower than the target temperature. The frequency of the inverter is lowered, the rotational speed for driving the compressor 20 is lowered, and the discharge capacity of the compressor 20 is reduced.

なお、図1に示すように、この第1実施形態では冷凍サイクルがアキュムレータサイクルとなっている。すなわち室内蒸発器11の出口側で圧縮機20の吸入側に冷媒を溜めるアキュムレータ35が設置され、一方、減圧手段としては、冷房用絞り31となるキャピラリーチューブを用いている。   As shown in FIG. 1, in the first embodiment, the refrigeration cycle is an accumulator cycle. That is, an accumulator 35 for collecting refrigerant is installed on the outlet side of the indoor evaporator 11 on the suction side of the compressor 20, while a capillary tube serving as a cooling throttle 31 is used as the pressure reducing means.

以下において、冷房暖房の切替が可能なEV車に搭載された第1実施形態の車両用空調装置において、主として空調装置内の制御弁に関して説明する。以下、制御弁として、特にパイロット電磁弁から成る弁手段25と三方弁30を成す差圧弁とを同一ボディ40内に配置した冷媒流路切替制御弁41を採用した例について述べる。   Hereinafter, the control valve in the air conditioner will be mainly described in the vehicle air conditioner of the first embodiment mounted on the EV vehicle capable of switching between cooling and heating. Hereinafter, an example in which the refrigerant flow switching control valve 41 in which the valve means 25 including a pilot electromagnetic valve and the differential pressure valve forming the three-way valve 30 are arranged in the same body 40 will be described as a control valve.

図2は、図1の冷媒配管図を、更に詳細に、実体に即して書いた実体冷媒配管図である。図2において、ダクト1内の室内凝縮器12は、室外熱交換器21と電磁弁から成る弁手段25及び暖房用絞り26を介して冷媒配管によって結ばれている。また、三方弁30が設けられている。   FIG. 2 is an actual refrigerant piping diagram in which the refrigerant piping diagram of FIG. In FIG. 2, the indoor condenser 12 in the duct 1 is connected by refrigerant piping through an outdoor heat exchanger 21, valve means 25 including a solenoid valve, and a heating throttle 26. A three-way valve 30 is also provided.

図2において、上記電磁弁から成る弁手段25、暖房用絞り26、及び三方弁30は同一のつまり共通のボディ40内に収納されている。すなわち、室外熱交換器21と室内凝縮器12の間の弁手段25及び、この弁手段25に対して流路が並列に設けられた暖房用絞り手段を成す暖房用絞り26、更に室外熱交換器21に接続された三方弁30を同一の金属より成るボディ40内に一体に収納している。なお、弁手段25の一例として電磁弁、特に、パイロット式電磁弁を採用している。   In FIG. 2, the valve means 25 including the electromagnetic valve, the heating throttle 26, and the three-way valve 30 are housed in the same or common body 40. That is, the valve means 25 between the outdoor heat exchanger 21 and the indoor condenser 12, the heating throttle 26 which constitutes the heating throttle means in which the flow path is provided in parallel to the valve means 25, and the outdoor heat exchange The three-way valve 30 connected to the vessel 21 is integrally stored in a body 40 made of the same metal. As an example of the valve means 25, a solenoid valve, particularly a pilot solenoid valve is employed.

電磁弁から成る弁手段25の開閉に伴って弁作動が切り替わる差圧弁から三方弁30を形成している。詳細は後述するが、電磁弁から成る弁手段25が閉弁すると、三方弁30の弁体の一方の圧力である圧力導入路42の圧力と三方弁30内の弁体の他方の圧力との差圧、及びばね力との関係で弁体が駆動されて三方弁30が作動する。   The three-way valve 30 is formed from a differential pressure valve whose valve operation is switched in accordance with opening and closing of the valve means 25 composed of an electromagnetic valve. As will be described in detail later, when the valve means 25 composed of an electromagnetic valve is closed, the pressure of the pressure introduction passage 42 which is one pressure of the valve body of the three-way valve 30 and the other pressure of the valve body in the three-way valve 30 The valve body is driven in relation to the differential pressure and the spring force, and the three-way valve 30 operates.

ボディ40内に室内凝縮器12からの冷媒が流れる弁手段入口側流路44と室外熱交換器21に冷媒を流す弁手段出口側流路45とが形成されている。弁手段25は、弁手段入口側流路44と弁手段出口側流路45との間に介在している。   A valve means inlet side flow path 44 through which refrigerant from the indoor condenser 12 flows and a valve means outlet side flow path 45 through which refrigerant flows to the outdoor heat exchanger 21 are formed in the body 40. The valve means 25 is interposed between the valve means inlet side flow path 44 and the valve means outlet side flow path 45.

暖房用絞り26は、弁手段25を介さずに、弁手段入口側流路44と弁手段出口側流路45との間を橋絡している細径流路からなる。この細径流路から成る暖房用絞り26は、弁手段入口側流路44と弁手段出口側流路45より細径でボディ40内に形成されている。   The heating restrictor 26 is composed of a small-diameter channel that bridges between the valve unit inlet-side channel 44 and the valve unit outlet-side channel 45 without using the valve unit 25. The heating restrictor 26 composed of the small diameter channel is formed in the body 40 with a smaller diameter than the valve means inlet side channel 44 and the valve means outlet side channel 45.

弁手段出口側流路45から室外熱交換器21を経由した冷媒が導かれる三方弁30のコモン流路50をボディ40内に有する。コモン流路50に連通する三方弁30内のコモン室51の一方側と他方側に、第1切替流路55と第2切替流路56とを同一のボディ40内に有する。第1切替流路55と第2切替流路56には、第1切替配管55aと第2切替配管56aが夫々接続されている。   The body 40 has a common flow path 50 of the three-way valve 30 through which the refrigerant is guided from the valve means outlet side flow path 45 via the outdoor heat exchanger 21. A first switching channel 55 and a second switching channel 56 are provided in the same body 40 on one side and the other side of the common chamber 51 in the three-way valve 30 communicating with the common channel 50. A first switching pipe 55a and a second switching pipe 56a are connected to the first switching path 55 and the second switching path 56, respectively.

図3は、図2に示したボディ40内に収納された弁手段25、絞り手段を成す暖房用絞り26(図3では見えない)、及び三方弁30から成る、冷媒流路切替制御弁41の具体的構成を示した一部断面図である。   FIG. 3 shows a refrigerant flow switching control valve 41 comprising a valve means 25 housed in the body 40 shown in FIG. 2, a heating throttle 26 (not visible in FIG. 3) forming a throttle means, and a three-way valve 30. It is a partial sectional view showing the concrete composition of.

図3において、弁手段25は特にパイロット式電磁弁である。三方弁30は、第1切替流路55と第2切替流路56との間を往復動する往復弁体60の動きに応じてコモン流路50を第1切替流路55と第2切替流路56のいずれかに連通させる。   In FIG. 3, the valve means 25 is in particular a pilot type electromagnetic valve. The three-way valve 30 moves the common channel 50 between the first switching channel 55 and the second switching channel according to the movement of the reciprocating valve body 60 that reciprocates between the first switching channel 55 and the second switching channel 56. Communicate with one of the paths 56.

往復弁体60は、弁手段入口側流路44から圧力導入路42を介して往復弁体60の一方側の圧力室61に導入された圧力とコモン流路50に連通したコモン室51の圧力との差圧で往復動する。つまり三方弁30は、差圧弁から構成されている。   The reciprocating valve body 60 is configured such that the pressure introduced into the pressure chamber 61 on one side of the reciprocating valve body 60 from the valve means inlet side passage 44 via the pressure introduction passage 42 and the pressure of the common chamber 51 communicating with the common passage 50. It reciprocates with the differential pressure. That is, the three-way valve 30 is composed of a differential pressure valve.

三方弁30は、往復弁体60の一方側の圧力室61に導入された圧力とコモン流路50ないしコモン室51の圧力との差圧と、往復弁体60の他方側のばね収納室62に設けられたばね部材となる単一のコイルスプリング63の弾性力とで往復弁体60が往復動する。   The three-way valve 30 includes a differential pressure between the pressure introduced into the pressure chamber 61 on one side of the reciprocating valve body 60 and the pressure of the common flow path 50 or the common chamber 51, and the spring housing chamber 62 on the other side of the reciprocating valve body 60. The reciprocating valve body 60 is reciprocated by the elastic force of a single coil spring 63 serving as a spring member provided on the reciprocating member.

往復弁体60の往復運動方向と直交方向に第1切替流路55の始端と第2切替流路56の始端が存在する。往復弁体60は一対の第1往復弁体部60a及び第2往復弁体部60bと、これらの第1、第2往復弁体部60a、60b間を橋絡する連結棒から成る連結部材60cとから構成されている。   The starting end of the first switching channel 55 and the starting end of the second switching channel 56 exist in a direction orthogonal to the reciprocating motion direction of the reciprocating valve body 60. The reciprocating valve body 60 includes a pair of first reciprocating valve body portion 60a and second reciprocating valve body portion 60b, and a connecting member 60c comprising a connecting rod that bridges between the first and second reciprocating valve body portions 60a and 60b. It consists of and.

コモン流路50が連通するコモン室51には円筒形状の第1弁座65を構成する第1突起と、第2弁座66を成す第2突起が形成されている。往復弁体60の動きによって第1往復弁体部60aが第1弁座65と対面し、第1往復弁体部60aのシール部60a1が第1弁座65に圧接されて、コモン流路50と第1切替流路55との連通状態を遮断することが可能である。   A common chamber 51 that communicates with the common flow path 50 is formed with a first protrusion that forms a cylindrical first valve seat 65 and a second protrusion that forms a second valve seat 66. Due to the movement of the reciprocating valve body 60, the first reciprocating valve body portion 60a faces the first valve seat 65, the seal portion 60a1 of the first reciprocating valve body portion 60a is pressed against the first valve seat 65, and the common flow path 50 And the communication state between the first switching channel 55 and the first switching channel 55 can be blocked.

一方、往復弁体60の動きによって第2往復弁体部60bが第2弁座66と図3のように対面し第2往復弁体部60bのシール部60b1が第2弁座66に圧接されて、コモン流路50と第2切替流路56との連通状態を遮断することが可能である。   On the other hand, the movement of the reciprocating valve body 60 causes the second reciprocating valve body portion 60b to face the second valve seat 66 as shown in FIG. 3, and the seal portion 60b1 of the second reciprocating valve body portion 60b is pressed against the second valve seat 66. Thus, the communication state between the common channel 50 and the second switching channel 56 can be blocked.

このように、電磁弁から成る弁手段25のON/OFFに応じて差圧弁を成す三方弁30が所定位置に移動する事で冷房回路と暖房回路とに切り替わる。往復弁体60の第1往復弁体部60a、第2往復弁体部60b、第1弁座65、及び第2弁座66によって一対のポペット弁部60a、60b、65、66を構成している。   As described above, the three-way valve 30 constituting the differential pressure valve moves to a predetermined position in accordance with ON / OFF of the valve means 25 formed of an electromagnetic valve, thereby switching between the cooling circuit and the heating circuit. A pair of poppet valve portions 60a, 60b, 65, 66 is constituted by the first reciprocating valve body portion 60a, the second reciprocating valve body portion 60b, the first valve seat 65, and the second valve seat 66 of the reciprocating valve body 60. Yes.

この一対のポペット弁部60a、60b、65、66は、一対のポペット弁部60a、60b、65、66のうちの一方のポペット弁部60a、65に固定された上記連結部材60cを成す連結棒が、他方のポペット弁部60b、66に挿入されているため、連結部材60cを介して一方と他方のポペット弁部相互間が連結されている。   The pair of poppet valve portions 60a, 60b, 65, 66 is a connecting rod that constitutes the connecting member 60c fixed to one of the pair of poppet valve portions 60a, 60b, 65, 66. However, since the other poppet valve portions 60b and 66 are inserted, the one and the other poppet valve portions are connected to each other via the connecting member 60c.

このように一対のポペット弁部60a、60b、65、66を使用することによって、往復弁体60のスライド距離が小さくても、大きな開口面積の流路の開閉が可能となり、弁の小型化が可能となる。また、高いシール性能を確保できるため、選択されなかった流路に冷媒が漏れることがない。   By using the pair of poppet valve portions 60a, 60b, 65, 66 in this way, a flow path with a large opening area can be opened and closed even when the reciprocating valve body 60 has a small sliding distance, and the valve can be downsized. It becomes possible. Moreover, since a high sealing performance can be ensured, the refrigerant does not leak into the unselected flow path.

図2において、室外熱交換器21とボディ40とは第1ジョイント部71、及び第2ジョイント部72を介して接続されている。ボディ40内の弁手段入口側流路44と冷媒配管としての弁手段入口配管44aとは、第3ジョイント部73によって接続されている。   In FIG. 2, the outdoor heat exchanger 21 and the body 40 are connected via a first joint portion 71 and a second joint portion 72. The valve means inlet side flow path 44 in the body 40 and the valve means inlet pipe 44 a as the refrigerant pipe are connected by a third joint portion 73.

更に、ボディ40内の第1切替流路55と冷媒配管としての第1切替配管55aとは、第4ジョイント部74によって接続されている。ボディ40内の第2切替流路56と冷媒配管としての第2切替配管56aとは、第5ジョイント部75によって接続されている。   Further, the first switching flow passage 55 in the body 40 and the first switching piping 55 a as the refrigerant piping are connected by a fourth joint portion 74. The second switching flow path 56 in the body 40 and the second switching pipe 56 a as the refrigerant pipe are connected by a fifth joint portion 75.

このように、ボディ40には5つのジョイント部(配管接続口)71、72、73、74、75が取り付けられており、大きく分けて上部の電磁弁から成る弁手段25部分のジョイント部71、73と下部の三方弁30部分のジョイント部72、74、75より成り立っている。   As described above, the body 40 is provided with the five joint portions (piping connection ports) 71, 72, 73, 74, 75, and is roughly divided into the joint portion 71 of the valve means 25 portion comprising the upper electromagnetic valve, 73 and joint portions 72, 74, 75 of the lower three-way valve 30 portion.

図4は、図3の冷媒流路切替制御弁41がコモン流路50と第1切替流路55とを遮断した状態の具体的構成を示した一部断面図である。図4においては、電磁弁から成る弁手段25はOFF(閉成)している。   FIG. 4 is a partial cross-sectional view showing a specific configuration in a state where the refrigerant flow path switching control valve 41 in FIG. 3 blocks the common flow path 50 and the first switching flow path 55. In FIG. 4, the valve means 25 comprising an electromagnetic valve is OFF (closed).

電磁弁から成る弁手段25はOFF(閉成)により、弁手段25の下流側(二次側)の圧力が低下し、圧力導入路42を通して流れる圧力室61内の圧力とコモン室51の圧力との差圧で、第1往復弁体部60aが第1弁座65に当接して、コモン流路50と第1切替流路55との連通状態を遮断する。一方、第2往復弁体部60bが第2弁座66から離間して、コモン流路50と第2切替流路56との連通状態を形成する。   When the valve means 25 composed of an electromagnetic valve is turned off (closed), the pressure on the downstream side (secondary side) of the valve means 25 decreases, and the pressure in the pressure chamber 61 and the pressure in the common chamber 51 flowing through the pressure introduction path 42. The first reciprocating valve body portion 60a abuts on the first valve seat 65 and the communication state between the common flow path 50 and the first switching flow path 55 is shut off. On the other hand, the second reciprocating valve body 60 b is separated from the second valve seat 66 to form a communication state between the common flow path 50 and the second switching flow path 56.

図4において、弁手段入口側流路44から電磁弁から成る弁手段25内に入った冷媒は、ボディ40内の弁手段出口側流路45を通り図2の第1ジョイント部71を介して室外熱交換器21に流れ込む。図5は、図4の冷媒流路切替制御弁41の右側面図である。図2の室外熱交換器21と室内凝縮器12の間の弁手段25に並列に設けられた絞り手段を成す暖房用絞り26が図5のように設けられている。   In FIG. 4, the refrigerant that has entered the valve means 25 comprising the electromagnetic valve from the valve means inlet-side flow path 44 passes through the valve means outlet-side flow path 45 in the body 40 and passes through the first joint portion 71 of FIG. It flows into the outdoor heat exchanger 21. FIG. 5 is a right side view of the refrigerant flow path switching control valve 41 of FIG. As shown in FIG. 5, a heating throttle 26 is provided as a throttle means provided in parallel with the valve means 25 between the outdoor heat exchanger 21 and the indoor condenser 12 in FIG. 2.

この暖房用絞り26は、電磁弁から成る弁手段25を完全に閉弁しても微小の冷媒がバイパスして流れる細径流路から形成される。図5のように暖房用絞り26を成す細径流路は、ボディ40内に形成され、電磁弁から成る弁手段25の弁座の上流側から冷媒を弁手段出口側流路45側に漏らすバイパス用の隙間流路を構成している。   The heating restrictor 26 is formed of a small-diameter channel through which a minute amount of refrigerant flows even if the valve means 25 composed of an electromagnetic valve is completely closed. As shown in FIG. 5, the small-diameter flow path forming the heating restrictor 26 is formed in the body 40, and bypasses the refrigerant leaking from the upstream side of the valve seat of the valve means 25 made of an electromagnetic valve to the valve means outlet-side flow path 45 side. This constitutes a gap flow path.

また、図5に示されているように、ボディ40には第1ジョイント部71と第2ジョイント部72とが設けられ、これらの第1ジョイント部71と第2ジョイント部72には、図2に示すように室外熱交換器21が配管を介さず直接取付けられている。   Further, as shown in FIG. 5, the body 40 is provided with a first joint portion 71 and a second joint portion 72, and the first joint portion 71 and the second joint portion 72 are provided with FIG. 2. As shown in FIG. 2, the outdoor heat exchanger 21 is directly attached without a pipe.

すなわち、図5の第1ジョイント部71と第2ジョイント部72は、雌型ジョイントしか図示していないが、この雌型ジョイントに室外熱交換器21と一体化された図示しない雄型ジョイントが直接結合される。これにより配管の本数が少なくなっている。   That is, only the female joint is shown in the first joint portion 71 and the second joint portion 72 in FIG. 5, but a male joint (not shown) integrated with the outdoor heat exchanger 21 is directly connected to the female joint. Combined. This reduces the number of pipes.

以下、上記実施形態の作動について説明する。冷房、暖房それぞれについて冷媒の流れを追って説明する。   The operation of the above embodiment will be described below. The flow of the refrigerant will be described for each of cooling and heating.

<冷房時>
図2において、圧縮機20から吐出された高温高圧冷媒は室内凝縮器12に流入する。ただし、HVACを構成するダクト1内のエアミックスダンパ16は、破線の位置であるMAX COOL位置に保持されているため、ダクト1内空気と室内凝縮器12との熱交換は行われない。
<When cooling>
In FIG. 2, the high-temperature and high-pressure refrigerant discharged from the compressor 20 flows into the indoor condenser 12. However, since the air mix damper 16 in the duct 1 constituting the HVAC is held at the MAX COOL position, which is the position of the broken line, heat exchange between the air in the duct 1 and the indoor condenser 12 is not performed.

室内凝縮器12からの冷媒は、統合弁を成す冷媒流路切替制御弁41の第3ジョイント部73を成す配管接続口に流入する。冷房時は電磁弁から成る弁手段25が開くように図示しない制御回路からの信号で弁手段25が駆動されるため、冷媒は、高温高圧冷媒のまま弁手段出口側流路45から第1ジョイント部71を通り室外熱交換器21へ流入する。   The refrigerant from the indoor condenser 12 flows into the pipe connection port forming the third joint portion 73 of the refrigerant flow switching control valve 41 forming the integrated valve. Since the valve means 25 is driven by a signal from a control circuit (not shown) so that the valve means 25 composed of an electromagnetic valve is opened during cooling, the refrigerant remains in the first joint from the valve means outlet side flow path 45 as a high-temperature and high-pressure refrigerant. It passes through the section 71 and flows into the outdoor heat exchanger 21.

室外熱交換器21で凝縮した高圧液冷媒は、第2ジョイント部72より再び冷媒流路切替制御弁41内に流入する。ここで、図3における差圧弁から成る三方弁30の往復弁体60には、右向きの力F1=S1(P1−P2)と、左向きの力F2=kΔX
(S1:往復弁体60の受圧面積、P1:第1往復弁体部60aの左側に印加される単位面積あたりの圧力、P2:第1往復弁体部60aの右側に印加される単位面積あたりの圧力、k:コイルスプリング63のばね定数、ΔX:コイルスプリング63のたわみ長)が印加されている。なお、第2往復弁体60bには、後述する均圧孔67が設けられているため、第2往復弁体60bの左右両側から印加される圧力は略等しくなる。
The high-pressure liquid refrigerant condensed in the outdoor heat exchanger 21 flows into the refrigerant flow switching control valve 41 from the second joint portion 72 again. Here, a rightward force F1 = S1 (P1-P2) and a leftward force F2 = kΔX are applied to the reciprocating valve body 60 of the three-way valve 30 including the differential pressure valve in FIG.
(S1: pressure receiving area of the reciprocating valve body 60, P1: pressure per unit area applied to the left side of the first reciprocating valve body part 60a, P2: per unit area applied to the right side of the first reciprocating valve body part 60a Pressure, k: spring constant of the coil spring 63, and ΔX: deflection length of the coil spring 63). The second reciprocating valve body 60b is provided with a pressure equalizing hole 67 which will be described later, so that the pressure applied from the left and right sides of the second reciprocating valve body 60b is substantially equal.

ここで、上述のように電磁弁から成る弁手段25が開いているときは、F1<F2となるようにコイルスプリング63を選定しているため、往復弁体60は、図3のように左に移動している。   Here, since the coil spring 63 is selected so that F1 <F2 when the valve means 25 composed of the electromagnetic valve is open as described above, the reciprocating valve body 60 has a left side as shown in FIG. Has moved to.

よって、図2の室外熱交換器21から図3のコモン流路50に流れてきた高圧液冷媒は、矢印Y3のように、第1切替流路55及び図2の第1切替配管55aを通って、冷房用絞り31へと流れる。   Therefore, the high-pressure liquid refrigerant flowing from the outdoor heat exchanger 21 in FIG. 2 to the common flow path 50 in FIG. 3 passes through the first switching flow path 55 and the first switching pipe 55a in FIG. 2 as indicated by an arrow Y3. And flows to the cooling diaphragm 31.

この固定絞りから成る冷房用絞り31により減圧された低圧2相冷媒は、室内蒸発器11で蒸発する。室内蒸発器11を通過した冷媒は、アキュムレータ35から圧縮機20へと流れる。   The low-pressure two-phase refrigerant depressurized by the cooling throttle 31 including the fixed throttle evaporates in the indoor evaporator 11. The refrigerant that has passed through the indoor evaporator 11 flows from the accumulator 35 to the compressor 20.

<暖房時>
圧縮機20から吐出された高温高圧冷媒は、室内凝縮器12に流入する。室内凝縮器12の熱は送風機4からのブロア風と熱交換する。室内凝縮器12からの冷媒は、図2の統合弁から成る冷媒流路切替制御弁41の第3ジョイント部73を成す配管接続口に流入する。
<When heating>
The high-temperature and high-pressure refrigerant discharged from the compressor 20 flows into the indoor condenser 12. The heat of the indoor condenser 12 exchanges heat with the blower air from the blower 4. The refrigerant from the indoor condenser 12 flows into the pipe connection port forming the third joint portion 73 of the refrigerant flow switching control valve 41 including the integrated valve in FIG.

暖房時は、電磁弁から成る弁手段25が閉じるように図示しない制御装置からの制御信号により弁手段25が制御されているため、冷媒は暖房用絞り26にて減圧され、低圧2層冷媒となり、第1ジョイント部71を通り室外熱交換器21へ流入する。そして、室外熱交換器21で蒸発した低圧ガス冷媒は、第2ジョイント部72より再び統合弁から成る冷媒流路切替制御弁41内に流入する。   During heating, the valve means 25 is controlled by a control signal from a control device (not shown) so that the valve means 25 comprising an electromagnetic valve is closed, so that the refrigerant is decompressed by the heating throttle 26 and becomes a low-pressure two-layer refrigerant. , Flows through the first joint portion 71 and flows into the outdoor heat exchanger 21. Then, the low-pressure gas refrigerant evaporated in the outdoor heat exchanger 21 flows again into the refrigerant flow switching control valve 41 including an integrated valve from the second joint portion 72.

上述のように、電磁弁から成る弁手段25が閉じていることにより、図4の弁手段25の下流側の圧力が低下し、第1往復弁体部60aの左側に印加される単位面積当たりの圧力P1と第1往復弁体部60aの右側に印加される単位面積当たりの圧力P2の差圧が右向きの力F1>左向きの力F2となり、往復弁体60は右に移動する。   As described above, when the valve means 25 made of an electromagnetic valve is closed, the pressure on the downstream side of the valve means 25 in FIG. 4 decreases, and the unit area applied to the left side of the first reciprocating valve body 60a is reduced. The pressure difference between the pressure P1 and the pressure P2 per unit area applied to the right side of the first reciprocating valve body 60a is the rightward force F1> the leftward force F2, and the reciprocating valve body 60 moves to the right.

よって、図2の室外熱交換器21から流れてきた低圧ガス冷媒は、図4のコモン流路50から矢印Y4のように第2切替流路56及び図2の第2切替配管56aを通り、アキュムレータ35から圧縮機20へと流れる。   Therefore, the low-pressure gas refrigerant flowing from the outdoor heat exchanger 21 in FIG. 2 passes through the second switching channel 56 and the second switching pipe 56a in FIG. 2 from the common channel 50 in FIG. It flows from the accumulator 35 to the compressor 20.

以上より、1つの電磁弁から成る弁手段25への制御信号で冷房回路と暖房回路との切替が可能となる。差圧弁から成る三方弁30を2つのポペット弁部(図4の第1往復弁体部60a、第2往復弁体部60b、連結部材60c、第1弁座65、及び第2弁座66)で構成したことにより、往復弁体60のスライド距離(弁体が移動するストローク)が小さくても、大きな流路開口面積での開閉が可能となる。したがって、この第1実施形態は、後述するスプール弁を用いる実施形態よりも統合弁から成る冷媒流路切替制御弁41のボディ40の小型化が可能である。次に各部の寸法及び構造について更に説明する。   As described above, it is possible to switch between the cooling circuit and the heating circuit by the control signal to the valve means 25 composed of one electromagnetic valve. The three-way valve 30 composed of a differential pressure valve has two poppet valve portions (first reciprocating valve body portion 60a, second reciprocating valve body portion 60b, connecting member 60c, first valve seat 65, and second valve seat 66 in FIG. 4). With this configuration, even when the slide distance of the reciprocating valve body 60 (stroke through which the valve body moves) is small, opening and closing can be performed with a large channel opening area. Therefore, in the first embodiment, the body 40 of the refrigerant flow switching control valve 41 including an integrated valve can be made smaller than the embodiment using a spool valve described later. Next, the dimensions and structure of each part will be further described.

(1)暖房用絞りの一体化
電磁弁から成る弁手段25の外側のボディ40内に図5に示したように、直径0.8mm〜1.0mmの細径流路から成る暖房用絞り26を構成している。暖房時に、主弁となる電磁弁から成る弁手段25が閉じた際、冷媒は、この暖房用絞り26で減圧されて弁手段出口側流路45から室外熱交換器21へと流れる。暖房用絞り26をボディ40内に一体化することで配管接続部が減少し、システムの簡素化、コストダウンが可能となる。
(1) Integration of heating throttle As shown in FIG. 5, a heating throttle 26 comprising a small-diameter channel having a diameter of 0.8 mm to 1.0 mm is provided in the body 40 outside the valve means 25 consisting of an electromagnetic valve. It is composed. During the heating, when the valve means 25 comprising the electromagnetic valve serving as the main valve is closed, the refrigerant is depressurized by the heating throttle 26 and flows from the valve means outlet side flow path 45 to the outdoor heat exchanger 21. By integrating the heating restrictor 26 into the body 40, the number of pipe connections is reduced, and the system can be simplified and the cost can be reduced.

(2)室外熱交換器に冷媒流路切替制御弁を直接取付ける構造
図2及び図5に示すように、ボディ40には第1ジョイント部71及び第2ジョイント部72が設けられている。第1ジョイント部71及び第2ジョイント部72は、室外熱交換器21と一体の図示しない一対の雄型ジョイントに、図5の弁手段出口側流路45とコモン流路50を内部に形成する一対の雌型ジョイントを結合してボディ40と室外熱交換器21とを一体化している。
(2) Structure in which refrigerant flow path switching control valve is directly attached to the outdoor heat exchanger As shown in FIGS. 2 and 5, the body 40 is provided with a first joint portion 71 and a second joint portion 72. The first joint part 71 and the second joint part 72 form the valve means outlet side flow path 45 and the common flow path 50 in FIG. 5 in a pair of male joints (not shown) integral with the outdoor heat exchanger 21. A pair of female joints are combined to integrate the body 40 and the outdoor heat exchanger 21.

この構造にすることにより、省スペース、及び接続配管の削減が可能となる。なお、雌型ジョイントに雄型ジョイントを嵌合して結合し、嵌合部分はOリングでシールしている。   With this structure, space saving and connection piping can be reduced. The male joint is fitted and joined to the female joint, and the fitting portion is sealed with an O-ring.

(3)スライド弁部(一対のポペット弁部)の構造に関して
図3に示すように、例えば、水平方向の同一直線状に、対となる第1、第2弁座65、66と第1、第2往復弁体部60a、60bを配置し、第1、第2往復弁体部60a、60bがスライドする円筒状のコモン室51を形成している。このコモン室51からボディ40の外側へ冷媒通路となる第1切替通路55と第2切替通路56とを設けている。
(3) Regarding the structure of the slide valve portion (a pair of poppet valve portions) As shown in FIG. 3, for example, the first and second valve seats 65, 66 and the first, The second reciprocating valve body portions 60a and 60b are arranged to form a cylindrical common chamber 51 in which the first and second reciprocating valve body portions 60a and 60b slide. A first switching passage 55 and a second switching passage 56 serving as a refrigerant passage are provided from the common chamber 51 to the outside of the body 40.

図6は、図3の矢印Z6−Z6線に沿う一部断面図、図7は、図3の矢印Z7−Z7線に沿う一部断面図である。これらの図6、図7から判明するように、コモン室51内で円筒形の第1弁座65、第2弁座66が設けられ、この第1弁座65、第2弁座66内に連結部材60cが延在している。また、コモン室51に連通するコモン流路50と第1切替流路55及び第2切替流路56とは90度回転させている。   6 is a partial cross-sectional view taken along line Z6-Z6 in FIG. 3, and FIG. 7 is a partial cross-sectional view taken along line Z7-Z7 in FIG. As can be understood from FIGS. 6 and 7, a cylindrical first valve seat 65 and a second valve seat 66 are provided in the common chamber 51, and the first valve seat 65 and the second valve seat 66 are provided in the common chamber 51. The connecting member 60c extends. Further, the common flow path 50 communicating with the common chamber 51, the first switching flow path 55, and the second switching flow path 56 are rotated by 90 degrees.

図3の第1、第2往復弁体部60a、60bを有する往復弁体60は、ばね部材と成るコイルスプリング63により第2往復弁体部60bが第2弁座66に対して閉弁する方向に力を発生させているが、このコイルスプリング63のばね力を調整螺子64により容易に変更可能としている。   In the reciprocating valve body 60 having the first and second reciprocating valve body portions 60a and 60b in FIG. 3, the second reciprocating valve body portion 60b is closed with respect to the second valve seat 66 by a coil spring 63 serving as a spring member. Although force is generated in the direction, the spring force of the coil spring 63 can be easily changed by the adjusting screw 64.

(4)第2往復弁体60bに微小貫通孔から成る均圧孔67を開けた構造
この微小貫通孔から成る均圧孔67によって、コイルスプリング63が存在するばね収納室62に冷媒が押し込められ、ばね収納室62の内圧が上がることで、往復弁体60の作動である弁動作が不安定になるのを回避している。
(4) Structure in which the pressure equalizing hole 67 made of a minute through hole is formed in the second reciprocating valve body 60b The refrigerant is pushed into the spring housing chamber 62 where the coil spring 63 exists by the pressure equalizing hole 67 made of the minute through hole. The valve operation, which is the operation of the reciprocating valve body 60, is prevented from becoming unstable due to an increase in the internal pressure of the spring storage chamber 62.

かつ、電磁弁から成る弁手段25のOFFからONの切替時に、差圧弁を成す往復弁体60の作動である弁動作が一気に切り替わることによる振動、及び騒音を低減可能である。なお、往復弁体60には弁座用のシール部60a1、60b1及びピストンリング60a2、60b2が設けられている。   In addition, when the valve means 25 composed of an electromagnetic valve is switched from OFF to ON, vibration and noise due to switching of the valve operation, which is the operation of the reciprocating valve body 60 forming the differential pressure valve, can be reduced. The reciprocating valve body 60 is provided with valve seat seal portions 60a1 and 60b1 and piston rings 60a2 and 60b2.

また、可動弁体を成す往復弁体60を主として第1、第2往復弁体60a、60bの2部品で構成し、一方の弁体60aにはロッドから成る連結部材60cが一体部品となっており、他方の弁体60bには連結部材60cを受ける穴を設けた構造を採用している。この形状にすることで、ボディ40内に差圧弁の構成部品である第1、第2往復弁体60a、60b及び連結部材60cを挿入可能になる。   Further, the reciprocating valve body 60 constituting the movable valve body is mainly composed of two parts, a first reciprocating valve body 60a and a second reciprocating valve body 60b, and a connecting member 60c made of a rod is an integral part of one valve body 60a. The other valve body 60b employs a structure in which a hole for receiving the connecting member 60c is provided. With this shape, the first and second reciprocating valve bodies 60a and 60b and the connecting member 60c, which are components of the differential pressure valve, can be inserted into the body 40.

以上のように、この実施形態に言う統合弁となる冷媒流路切替制御弁41は、室外熱交換器21への流路の選択(大口径の電磁弁から成る弁手段25を通過するか暖房用絞り26を通過するかの選択)を行う作用と、室外熱交換器21出口側の流路の選択(冷房時であって冷房用絞り31から室内蒸発器11への流路、あるいは暖房時であってアキュムレータ35への流路の選択)作用とを単一の弁用のボディ40内に組み込んだ装置である。   As described above, the refrigerant flow path switching control valve 41 serving as an integrated valve in this embodiment selects the flow path to the outdoor heat exchanger 21 (passes through the valve means 25 including a large-diameter electromagnetic valve or performs heating. Selection of whether or not to pass through the throttle 26 and the selection of the flow path on the outlet side of the outdoor heat exchanger 21 (cooling and flow path from the cooling throttle 31 to the indoor evaporator 11 or during heating) And the operation of selecting the flow path to the accumulator 35) is incorporated in the body 40 for a single valve.

このように、三方弁30、及び弁手段25を有する冷媒流路切替制御弁41を同一のボディ40内に収納し一体化した統合弁としているため、小型化することができ、配管の接続部及び分岐部が減少する。このため、システムの構造が簡素化され、コストダウン及び省スペース化が達成できる。   As described above, the refrigerant flow switching control valve 41 having the three-way valve 30 and the valve means 25 is housed in the same body 40 and integrated into an integrated valve. And branching is reduced. For this reason, the structure of the system is simplified, and cost reduction and space saving can be achieved.

なお、電磁弁には、直動型とパイロット式があり、直動型は、電磁石の吸引力だけで作動を切り替えるが、大きな弁をバネに逆らって動かすために駆動電流が大きい。このように、直接ソレノイドの電磁力で冷媒通路を開閉する直動型の電磁弁でなく、ソレノイドの電磁力でパイロット通路と呼ばれる小さな通路の開閉状態を切替え、それによって大きな冷媒通路開閉用弁体を駆動するパイロット式電磁弁が周知である。   There are two types of solenoid valves, the direct acting type and the pilot type. In the direct acting type, the operation is switched only by the attractive force of the electromagnet, but the drive current is large because the large valve is moved against the spring. Thus, instead of a direct-acting solenoid valve that opens and closes the refrigerant passage by the electromagnetic force of the solenoid directly, an opening and closing state of a small passage called a pilot passage is switched by the electromagnetic force of the solenoid, whereby a large valve body for opening and closing the refrigerant passage A pilot-type solenoid valve for driving is well known.

この実施形態では、パイロット式電磁弁を電磁弁から成る弁手段25として使用している。こうすることにより、弁手段25を小型化することができる。このパイロット式電磁弁の例は、特開2003−254467号公報及び特開平9−264449号公報に開示されている。   In this embodiment, a pilot type electromagnetic valve is used as the valve means 25 composed of an electromagnetic valve. By doing so, the valve means 25 can be reduced in size. Examples of this pilot type solenoid valve are disclosed in Japanese Patent Laid-Open Nos. 2003-254467 and 9-264449.

(第2実施形態)
次に、本発明の第2実施形態について説明する。なお、以降の各実施形態においては、上述した第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成および特徴について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the following embodiments, the same components as those in the first embodiment described above are denoted by the same reference numerals, description thereof will be omitted, and different configurations and features will be described.

図8は、本発明の第2実施形態を示す三方弁30としてスプール弁を採用した冷媒流路切替制御弁41の具体的構成を示した一部断面図である。図8において、25は弁手段を成す特にパイロット式電磁弁である。   FIG. 8 is a partial cross-sectional view showing a specific configuration of the refrigerant flow switching control valve 41 that employs a spool valve as the three-way valve 30 showing the second embodiment of the present invention. In FIG. 8, 25 is a pilot type solenoid valve which constitutes valve means.

第1切替流路55と第2切替流路56との間を往復動する往復弁体60の動きに応じて三方弁30は、図2の室外熱交換器21からのコモン流路50からの冷媒を第1切替流路55と第2切替流路56のいずれかに連通させる。   In response to the movement of the reciprocating valve body 60 that reciprocates between the first switching channel 55 and the second switching channel 56, the three-way valve 30 is connected to the common channel 50 from the outdoor heat exchanger 21 in FIG. The refrigerant is communicated with either the first switching channel 55 or the second switching channel 56.

図8の弁手段入口側流路44から圧力導入路42を介して往復弁体60の一方側の圧力室61に導入された圧力とコモン流路50に連通したコモン室51の圧力との差圧を利用して往復弁体60が往復動する。つまり三方弁30は、差圧弁から構成されている。   The difference between the pressure introduced into the pressure chamber 61 on one side of the reciprocating valve body 60 via the pressure introduction path 42 from the valve means inlet side flow path 44 of FIG. 8 and the pressure of the common chamber 51 communicating with the common flow path 50. The reciprocating valve body 60 reciprocates using the pressure. That is, the three-way valve 30 is composed of a differential pressure valve.

三方弁30は、往復弁体60の一方側の圧力室61に導入された圧力とコモン室51の圧力との差圧と、ばね部材となる単一のコイルスプリング63の弾性力とで往復弁体60が往復動する。   The three-way valve 30 is a reciprocating valve based on the differential pressure between the pressure introduced into the pressure chamber 61 on one side of the reciprocating valve body 60 and the pressure in the common chamber 51 and the elastic force of a single coil spring 63 serving as a spring member. The body 60 reciprocates.

往復弁体60の往復運動方向と直交方向に第1切替流路55の始端と第2切替流路56の始端が存在する。往復弁体60は一対の第1往復弁体部60a及び第2往復弁体部60bと、これらの第1、第2往復弁体部60a、60b間を橋絡する連結部材60cとから構成されている。   The starting end of the first switching channel 55 and the starting end of the second switching channel 56 exist in a direction orthogonal to the reciprocating motion direction of the reciprocating valve body 60. The reciprocating valve body 60 includes a pair of first reciprocating valve body 60a and second reciprocating valve body 60b, and a connecting member 60c that bridges the first and second reciprocating valve bodies 60a and 60b. ing.

連結部材60cは、円筒形の弁体の外周を一部切削して、室外熱交換器21からコモン流路50を介して流れこんだ冷媒が、ばね収納室を兼ねるコモン室51の内部と第2往復弁体部60bの内部を通過して、全方向に冷媒を吹出すことが可能とされた部分からなる。   The connecting member 60c is formed by cutting a part of the outer periphery of the cylindrical valve body, and the refrigerant flowing from the outdoor heat exchanger 21 through the common flow path 50 is connected to the inside of the common chamber 51 that also serves as the spring storage chamber and the second member. It consists of the part which passed the inside of 2 reciprocating valve body part 60b, and was able to blow out a refrigerant | coolant to all directions.

図8では、往復弁体60の動きによって第2往復弁体部60bが第2切替流路56と対面し、第2切替流路56を閉塞している。この時、第1往復弁体部60aは第1切替流路55を閉塞しておらず、コモン流路50からの冷媒は第1切替流路55に矢印Y8のように流れる。   In FIG. 8, the movement of the reciprocating valve body 60 causes the second reciprocating valve body portion 60 b to face the second switching flow path 56 and close the second switching flow path 56. At this time, the first reciprocating valve body 60a does not block the first switching flow path 55, and the refrigerant from the common flow path 50 flows through the first switching flow path 55 as indicated by an arrow Y8.

図9は、図8の状態から往復弁体60が右方向へ移動した状態を示すスプール弁を採用した冷媒流路切替制御弁41の具体的構成を示した一部断面図である。   FIG. 9 is a partial cross-sectional view showing a specific configuration of the refrigerant flow switching control valve 41 that employs a spool valve showing a state in which the reciprocating valve body 60 has moved rightward from the state of FIG.

このように、電磁弁から成る弁手段25が閉弁し、弁手段25の下流側の圧力が低下して、往復弁体60の図9右方向への動きによって、第2往復弁体部60bが第2切替流路56を開放し、第1往復弁体部60aが第1切替流路55を閉塞すると、図2の室外熱交換器21からのコモン流路50と第1切替流路55とが遮断され、コモン流路50と第2切替流路56とが連通する。   In this way, the valve means 25 composed of an electromagnetic valve is closed, the pressure on the downstream side of the valve means 25 decreases, and the second reciprocating valve body portion 60b is moved by the reciprocating valve body 60 moving in the right direction in FIG. Opens the second switching channel 56 and the first reciprocating valve body 60a closes the first switching channel 55, the common channel 50 and the first switching channel 55 from the outdoor heat exchanger 21 of FIG. And the common flow path 50 and the second switching flow path 56 communicate with each other.

このように、電磁弁から成る弁手段25のON/OFFに応じて、差圧弁を成す三方弁30のスプール弁を構成する往復弁体60が所定位置に移動する事で冷房回路と暖房回路とに切り替わる。   As described above, the reciprocating valve body 60 constituting the spool valve of the three-way valve 30 constituting the differential pressure valve moves to a predetermined position in accordance with ON / OFF of the valve means 25 composed of an electromagnetic valve, so that the cooling circuit and the heating circuit Switch to

(第3実施形態)
次に、本発明の第3実施形態について説明する。なお、以降の各実施形態においては、上述した第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成および特徴について説明する。
(Third embodiment)
Next, a third embodiment of the present invention will be described. In the following embodiments, the same components as those in the first embodiment described above are denoted by the same reference numerals, description thereof will be omitted, and different configurations and features will be described.

図10は、本発明の第3実施形態を示す。この第3実施形態では弁手段として電動弁を採用している。図10は、冷媒流路切替制御弁41の具体的構成を示した電動弁全開時の一部断面図である。また、図11は、図10の電動弁が微小開度の漏れ通路を残して閉弁した状態を示した一部断面図である。図10、図11において、25は弁手段をなす電動弁であり、モータ部分にステップモータを採用している。   FIG. 10 shows a third embodiment of the present invention. In the third embodiment, an electric valve is employed as the valve means. FIG. 10 is a partial cross-sectional view showing the specific configuration of the refrigerant flow switching control valve 41 when the motor-operated valve is fully opened. FIG. 11 is a partial cross-sectional view showing a state in which the motor-operated valve of FIG. 10 is closed leaving a leak passage having a minute opening. 10 and 11, reference numeral 25 denotes a motor-operated valve that serves as valve means, and employs a step motor for the motor portion.

弁手段入口側通路44からは、例えば1.7MPa程度の圧力の冷媒が冷媒流路切替制御弁41内に導かれる。この弁手段入口側通路44と、図2の室外熱交換器21に向かう弁手段出口側流路45との間に、冷媒通路を開閉する電動弁から成る弁手段25の弁体と弁座を有する。   From the valve means inlet side passage 44, for example, a refrigerant having a pressure of about 1.7 MPa is guided into the refrigerant flow switching control valve 41. Between the valve means inlet side passage 44 and the valve means outlet side flow path 45 toward the outdoor heat exchanger 21 in FIG. 2, the valve body and valve seat of the valve means 25 comprising an electric valve for opening and closing the refrigerant passage are provided. Have.

この弁体が動くストロークは、電動弁から成る弁手段25内のステップモータの回転角度によって制御される。従って、電動弁から成る弁手段25の弁体と弁座とは可変ストローク弁を形成し、弁手段25を成す電動弁の開度を冷凍サイクルの運転状態に見合った理想的なポイントに設定できる。   The stroke of the movement of the valve body is controlled by the rotation angle of the step motor in the valve means 25 comprising an electric valve. Therefore, the valve body and the valve seat of the valve means 25 composed of a motorized valve form a variable stroke valve, and the opening degree of the motorized valve constituting the valve means 25 can be set to an ideal point corresponding to the operating state of the refrigeration cycle. .

図11は、図9の電動弁から成る弁手段25を採用した冷媒流路切替制御弁41が少し開いた状態を保つ位置まで弁手段25の弁体が弁座に接近した位置で停止した状態を示した一部断面図である。この電動弁から成る弁手段25は、全開機能付き電子膨張弁とも称されるものであり、冷媒が流れる弁口径として直径10mm程度の寸法を有する。   FIG. 11 shows a state in which the valve body of the valve means 25 is stopped at a position close to the valve seat until the refrigerant flow switching control valve 41 employing the valve means 25 comprising the motorized valve of FIG. FIG. The valve means 25 comprising this electric valve is also called an electronic expansion valve with a fully open function, and has a diameter of about 10 mm as a valve diameter through which the refrigerant flows.

この電動弁から成る弁手段25は、冷房時には図10のように全開して図2の室内凝縮器12からの冷媒を圧力降下最小の状態で室外熱交換器21へと流す。この時、弁手段25の下流側の圧力が高くなる。一方、弁手段入口側流路44から圧力導入路42を介して往復弁体60の一方側の圧力室61に導入される圧力は弁手段25の開閉であまり変化しない。   The valve means 25 comprising this electric valve is fully opened as shown in FIG. 10 during cooling, and allows the refrigerant from the indoor condenser 12 shown in FIG. 2 to flow to the outdoor heat exchanger 21 with a minimum pressure drop. At this time, the pressure on the downstream side of the valve means 25 increases. On the other hand, the pressure introduced into the pressure chamber 61 on one side of the reciprocating valve body 60 from the valve means inlet side flow path 44 via the pressure introduction path 42 does not change much when the valve means 25 is opened and closed.

また、ばね手段をなすコイルスプリング63の設定圧は0.3〜0.2MPa付近に設定されている。このため、図10のように往復弁体60は左に移動する。これにより図2の室外熱交換器21を通過した冷媒は、第1切替流路55を流れて図2の室内蒸発器11に向かう。   Further, the set pressure of the coil spring 63 that constitutes the spring means is set in the vicinity of 0.3 to 0.2 MPa. For this reason, the reciprocating valve body 60 moves to the left as shown in FIG. Thus, the refrigerant that has passed through the outdoor heat exchanger 21 in FIG. 2 flows through the first switching flow path 55 and travels toward the indoor evaporator 11 in FIG. 2.

一方、暖房時に、電動弁から成る弁手段25は、図11のように、内部のステップモータが弁開度を微小開度に調整し、図2の室内凝縮器12からの高圧冷媒を減圧して室外熱交換器21へと流す。   On the other hand, during heating, the valve means 25 composed of an electric valve is configured such that the internal step motor adjusts the valve opening to a very small opening and decompresses the high-pressure refrigerant from the indoor condenser 12 in FIG. To the outdoor heat exchanger 21.

このときの状態は、図11のように、電動弁から成る弁手段25が閉弁した時の漏れ流路から暖房用絞り26が形成されている。すなわち、図11においては電動弁から成る弁手段25の弁体が弁座に完全に接触せず、接近した位置で停止することによって、暖房用絞り26を成す細径流路と同様の漏れ通路が形成できるようになっている。   In this state, as shown in FIG. 11, the heating restrictor 26 is formed from the leakage flow path when the valve means 25 including the motor-operated valve is closed. That is, in FIG. 11, the valve body of the valve means 25 composed of an electric valve does not completely contact the valve seat and stops at an approached position, so that a leakage passage similar to the small-diameter flow path forming the heating throttle 26 is formed. It can be formed.

電動弁から成る弁手段25が、暖房用絞り26を成す細径流路と同様の漏れ通路を残して閉弁したときに、電動弁から成る弁手段25の下流側の圧力が低下する。このときの差圧弁から成る三方弁30は、弁手段入口側流路44から圧力導入路42を介して往復弁体60の一方側の圧力室61に導入された圧力とコモン流路50に連通したコモン室51の圧力との差圧が大きくなる。   When the valve means 25 composed of an electric valve is closed while leaving a leak passage similar to the small-diameter flow path forming the heating restrictor 26, the pressure on the downstream side of the valve means 25 composed of the electric valve decreases. The three-way valve 30 comprising the differential pressure valve at this time communicates with the pressure introduced into the pressure chamber 61 on one side of the reciprocating valve body 60 from the valve means inlet side passage 44 via the pressure introduction passage 42 and the common passage 50. The differential pressure from the pressure of the common chamber 51 increases.

従って、往復弁体60は右に移動する。これにより図2の室外熱交換器21を通過した冷媒は、コモン流路50に連通したコモン室51と第2切替流路56を流れて図2の第2切替配管56aからアキュムレータ35に向かう。   Therefore, the reciprocating valve body 60 moves to the right. Thus, the refrigerant that has passed through the outdoor heat exchanger 21 in FIG. 2 flows through the common chamber 51 and the second switching channel 56 that communicate with the common channel 50, and travels from the second switching pipe 56 a in FIG. 2 to the accumulator 35.

このように、暖房用絞り26を構成する微小隙間を残して閉弁する弁手段25を成す電動弁は、微小隙間の大きさである弁の開度を調整できる。また、微小隙間の大きさである弁の開度を調整できるから、冷媒サイクルの運転状態に適した開度に暖房用絞り26を弁手段25を成す電動弁で設定することができる。   As described above, the motor-operated valve constituting the valve means 25 that closes the minute gap constituting the heating throttle 26 can adjust the opening of the valve, which is the size of the minute gap. Further, since the opening degree of the valve, which is the size of the minute gap, can be adjusted, the heating throttle 26 can be set to an opening degree suitable for the operating state of the refrigerant cycle by an electric valve constituting the valve means 25.

このため、暖房用絞り26を可変絞りとして構成することができる。このように、さまざまな運転条件に応じて暖房用絞り26の微小隙間の大きさを最適値に制御できる構造を提供できることで、第1、第2実施形態のような固定暖房用絞りに比べ空調性能を向上させることができる。   For this reason, the heating throttle 26 can be configured as a variable throttle. In this way, by providing a structure that can control the size of the minute gap of the heating throttle 26 to an optimum value according to various operating conditions, air conditioning can be performed as compared with the fixed heating throttle as in the first and second embodiments. Performance can be improved.

車両用空調装置は、車室内温度が設定温度よりかなり低く車室内温度と設定温度の偏差が大きいときは暖房負荷が大きくなる。固定暖房用絞りでは、暖房負荷が高い時に微小隙間が小さ過ぎて室内凝縮器12でのサブクールが極大になり空調装置の必要入力が増加してエネルギー効率が悪化する。   The vehicle air conditioner has a large heating load when the vehicle interior temperature is considerably lower than the set temperature and the deviation between the vehicle interior temperature and the set temperature is large. In the fixed heating restrictor, when the heating load is high, the minute gap is too small, the subcooling in the indoor condenser 12 becomes maximum, the required input of the air conditioner increases, and the energy efficiency deteriorates.

一方、暖房負荷が低い時には、固定暖房用絞りの場合、微小隙間が大き過ぎて、室外熱交換器で冷媒が充分に蒸発できず、アキュムレータ35に冷媒が溜まる運転となり、室内凝縮器12でのサブクールが極小となることによる性能低下等の問題を生じる。しかし、上述のように暖房用絞り26を可変絞りとして構成することにより、このような問題は解消でき、空調性能を向上させることができる。   On the other hand, when the heating load is low, in the case of the fixed heating throttle, the minute gap is too large, and the refrigerant cannot be sufficiently evaporated by the outdoor heat exchanger, so that the refrigerant accumulates in the accumulator 35. Problems such as performance degradation due to the subcool being minimized. However, such a problem can be solved and the air conditioning performance can be improved by configuring the heating throttle 26 as a variable throttle as described above.

(その他の実施形態)
本発明は上述した実施形態にのみ限定されるものではなく、次のように変形または拡張することができる。図12は、その他の実施形態を示す三方弁の要部を模式的に示した模式図である。
(Other embodiments)
The present invention is not limited to the above-described embodiments, and can be modified or expanded as follows. FIG. 12 is a schematic view schematically showing a main part of a three-way valve showing another embodiment.

図12において、第1、第2往復弁体部60a、60b間を橋絡する連結棒から成る連結部材60cの一端側は、第1往復弁体部60aと一体の材料から製作され、かつストッパ部60dも一体に形成されている。   In FIG. 12, one end side of a connecting member 60c composed of a connecting rod that bridges between the first and second reciprocating valve body portions 60a and 60b is manufactured from a material integral with the first reciprocating valve body portion 60a, and is a stopper. The part 60d is also integrally formed.

ストッパ部60dは、第1往復弁体部60aが左に行きすぎて圧力導入路42の出口を閉じないように第1往復弁体部60aの動きに制限を設けている。この場合、第1往復弁体部60aが、冷房時において、図12の(a)部分の位置にある。   The stopper 60d limits the movement of the first reciprocating valve body 60a so that the first reciprocating valve body 60a does not go too far to the left and close the outlet of the pressure introduction path 42. In this case, the first reciprocating valve body 60a is located at the position (a) in FIG. 12 during cooling.

万一、冷房時において、第1往復弁体部60aが最も左側に移動しても、図12の(b)部分のように、連結部材60cの他端が第2往復弁体部60bの穴60b3から抜けないようにされ、かつ、ストッパ部60dが第1往復弁体部60aの動きに制限を設け、圧力導入路42の出口を閉じないようにしている。   Even if the first reciprocating valve body 60a moves to the leftmost side during cooling, the other end of the connecting member 60c is a hole in the second reciprocating valve body 60b as shown in FIG. 12 (b). The stopper portion 60d limits the movement of the first reciprocating valve body portion 60a so that the outlet of the pressure introduction path 42 is not closed.

次に、暖房時においては、図12の(c)部分のように、第1往復弁体部60aが第1弁座65に当接し、第2往復弁体部60bが第2弁座66から離間する。この離間寸法Lsは、3mmから4mm程度でよい。   Next, during heating, the first reciprocating valve body 60a abuts on the first valve seat 65 and the second reciprocating valve body 60b is moved from the second valve seat 66 as shown in FIG. Separate. This separation dimension Ls may be about 3 mm to 4 mm.

次に、図5ないし図7において、冷媒通路を形成する第1切替流路55と第2切替流路56とは、図中下側に向かって延在するように構成したが、図6及び図7の連結部材60cの中心を中心として、図6においては反時計回りに、図7においては時計回りに、90度回転させた位置に第1切替流路55と第2切替流路56とが延在するようにしても良い。   Next, in FIGS. 5 to 7, the first switching channel 55 and the second switching channel 56 that form the refrigerant passage are configured to extend downward in the figure. Centering on the center of the connecting member 60c in FIG. 7, the first switching channel 55 and the second switching channel 56 are rotated counterclockwise in FIG. 6 and clockwise in FIG. May be extended.

次に、第1実施形態を示す図5において説明したように、ボディ40には第1ジョイント部71と第2ジョイント部72とが設けられ、これらの第1ジョイント部71と第2ジョイント部72には、室外熱交換器21が配管を介さない直接取付け構造によって結合されている。   Next, as described in FIG. 5 showing the first embodiment, the body 40 is provided with the first joint portion 71 and the second joint portion 72, and the first joint portion 71 and the second joint portion 72 are provided. The outdoor heat exchanger 21 is coupled by a direct mounting structure without a pipe.

図13は、上記直接取付け構造のその他の実施形態を示し、室外熱交換器21と冷媒流路切替制御弁41との結合状態を示す側面図である。つまり、図13は、冷媒流路切替制御弁41を室外熱交換器21に第1ジョイント部71及び第2ジョイント部72を介して結合した状態を示す冷媒流路切替制御弁41と室外熱交換器21との右側面図である。   FIG. 13 is a side view showing another embodiment of the direct mounting structure and showing a coupling state between the outdoor heat exchanger 21 and the refrigerant flow switching control valve 41. That is, FIG. 13 shows the refrigerant flow switching control valve 41 and the outdoor heat exchange in a state where the refrigerant flow switching control valve 41 is coupled to the outdoor heat exchanger 21 via the first joint portion 71 and the second joint portion 72. FIG.

室外熱交換器21の入口及び出口に溶接またはロウ付けした雄型ジョイント23m、24mに、雌型ジョイント23f、24fを結合してスルーボルト22で螺子締めして取付ける。この構造にすることにより、省スペース、及び接続配管の削減が可能となる。なお、雌型ジョイント23f、24fに雄型ジョイント23m、24mを嵌合して結合し、嵌合部分はOリングでシールしている。このような構造を採用することにより、配管本数を削減することが出来る。   The female joints 23f, 24f are joined to the male joints 23m, 24m welded or brazed to the inlet and outlet of the outdoor heat exchanger 21, and are screwed with the through bolts 22 for attachment. With this structure, space saving and connection piping can be reduced. The male joints 23m and 24m are fitted and joined to the female joints 23f and 24f, and the fitting portions are sealed with O-rings. By adopting such a structure, the number of pipes can be reduced.

1 ダクト
11 室内蒸発器
12 室内凝縮器
11、12 室内熱交換器
15 バイパス通路
16 エアミックスダンパ
20 圧縮機
21 室外熱交換器
23m、24m 雄型ジョイント
23f、24f 雌型ジョイント
25 弁手段
26 暖房用絞り
30 三方弁
31 冷房用絞り
35 アキュムレータ
40 ボディ
41 冷媒流路切替制御弁
42 圧力導入路
44 弁手段入口側流路
45 弁手段出口側流路
50 コモン流路
51 コモン室
55 第1切替流路
56 第2切替流路
55a 第1切替配管
56a 第2切替配管
60 往復弁体
61 圧力室
62 ばね収納室
63 コイルスプリング
60a 第1往復弁体部
60a、60b、65、66 一対のポペット弁部
60a、65 一方のポペット弁部
60b、66 他方のポペット弁部
60b 第2往復弁体部
60c 連結部材
60d ストッパ部
64 調整螺子
65 第1弁座
66 第2弁座
67 均圧孔
71 第1ジョイント部
72 第2ジョイント部
73 第3ジョイント部
74 第4ジョイント部
75 第5ジョイント部
DESCRIPTION OF SYMBOLS 1 Duct 11 Indoor evaporator 12 Indoor condenser 11, 12 Indoor heat exchanger 15 Bypass passage 16 Air mix damper 20 Compressor 21 Outdoor heat exchanger 23m, 24m Male joint 23f, 24f Female joint 25 Valve means 26 For heating Restrictor 30 Three-way valve 31 Cooling restrictor 35 Accumulator 40 Body 41 Refrigerant flow path switching control valve 42 Pressure introduction path 44 Valve means inlet side flow path 45 Valve means outlet side flow path 50 Common flow path 51 Common chamber 55 First switching flow path 56 2nd switching flow path 55a 1st switching piping 56a 2nd switching piping 60 Reciprocating valve body 61 Pressure chamber 62 Spring storage chamber 63 Coil spring 60a 1st reciprocating valve body 60a, 60b, 65, 66 A pair of poppet valve 60a , 65 One poppet valve portion 60b, 66 The other poppet valve portion 60b Second reciprocating valve Parts 60c connecting member 60d stopper 64 adjustment screw 65 fourth joint portion 75 fifth joint portion first valve seat 66 second valve seat 67 pressure equalizing hole 71 first joint portion 72 second joint 73 third joint portion 74

Claims (13)

空調用のダクト(1)内に室内蒸発器(11)と室内凝縮器(12)とを備え、前記室内蒸発器(11)と前記室内凝縮器(12)と室外熱交換器(21)とに圧縮機(20)からの冷媒を流すヒートポンプサイクルによる熱交換を行う車両用空調装置であって、
前記室外熱交換器(21)の入口側と前記室内凝縮器(12)の間に設けられた弁手段(25)、
前記弁手段(25)によって開閉される前記冷媒の流路に対して並列に前記冷媒の流れを絞る流路が設けられた暖房用絞り手段(26)、
前記室外熱交換器(21)の出口側に連通したコモン流路(50)が設けられた三方弁(30)、
前記コモン流路(50)からの前記冷媒が、前記三方弁(30)を介して冷房運転時に流れる第1切替流路(55)、及び
前記コモン流路(50)からの前記冷媒が、前記三方弁(30)を介して暖房運転時に流れる第2切替流路(56)を備え、
前記弁手段(25)、前記暖房用絞り手段(26)、前記三方弁(30)、前記第1切替流路(55)、及び前記第2切替流路(56)の少なくとも一部を前記ボディ(40)内に収納して統合弁から成る冷媒流路切替制御弁(41)を構成したことを特徴とする車両用空調装置。
The air conditioning duct (1) includes an indoor evaporator (11) and an indoor condenser (12), and the indoor evaporator (11), the indoor condenser (12), and an outdoor heat exchanger (21). A vehicle air conditioner that performs heat exchange by a heat pump cycle in which the refrigerant from the compressor (20) flows through
Valve means (25) provided between the inlet side of the outdoor heat exchanger (21) and the indoor condenser (12),
The heating throttle means (26) provided with a flow path for narrowing the flow of the refrigerant in parallel with the refrigerant flow path opened and closed by the valve means (25),
A three-way valve (30) provided with a common flow path (50) communicating with the outlet side of the outdoor heat exchanger (21),
The refrigerant from the common flow path (50) flows through the three-way valve (30) during cooling operation, the first switching flow path (55), and the refrigerant from the common flow path (50) A second switching channel (56) that flows through the three-way valve (30) during heating operation;
At least a part of the valve means (25), the heating throttle means (26), the three-way valve (30), the first switching flow path (55), and the second switching flow path (56) are disposed in the body. (40) A vehicle air conditioner comprising a refrigerant flow switching control valve (41) housed in an integrated valve.
前記三方弁(30)を前記弁手段(25)の開閉に伴って圧力が変化することにより弁作動が切り替わる差圧弁で構成したことを特徴とする請求項1に記載の車両用空調装置。   2. The vehicle air conditioner according to claim 1, wherein the three-way valve (30) is a differential pressure valve whose valve operation is switched when the pressure changes with the opening and closing of the valve means (25). 前記ボディ(40)と前記室外熱交換器(21)との接続は、前記室外熱交換器(21)に装着された接続部と前記ボディ(40)側に設けられた接続部とを凹凸嵌合させて形成した前記室外熱交換器(21)の入口側の第1ジョイント部(71)と、前記室外熱交換器(21)の出口側の第2ジョイント部(72)とで行い、前記第1ジョイント部(71)が前記弁手段(25)側に設けられ、前記第2ジョイント部(72)が前記コモン流路(50)側に設けられていることを特徴とする請求項1または2に記載の車両用空調装置。   The connection between the body (40) and the outdoor heat exchanger (21) is performed by fitting a connection portion mounted on the outdoor heat exchanger (21) and a connection portion provided on the body (40) side into an uneven shape. The first joint portion (71) on the inlet side of the outdoor heat exchanger (21) formed by combining the second joint portion (72) on the outlet side of the outdoor heat exchanger (21), The first joint part (71) is provided on the valve means (25) side, and the second joint part (72) is provided on the common flow path (50) side. The vehicle air conditioner according to 2. 前記ボディ(40)内に前記室内凝縮器(12)からの前記冷媒が流れ込む弁手段入口側流路(44)と、前記室外熱交換器(21)に前記冷媒を流し込む弁手段出口側流路(45)とが形成され、
前記弁手段(25)は、前記弁手段入口側流路(44)と前記弁手段出口側流路(45)との間に介在し、
前記弁手段出口側流路(45)から前記室外熱交換器(21)を経由した前記冷媒が導かれる前記コモン流路(50)を前記ボディ(40)内に有し、
前記コモン流路(50)に連通する前記三方弁(30)内のコモン室(51)の一方側に前記コモン流路(50)と前記室内蒸発器(11)側とを接続する前記第1切替流路(55)を有し、前記コモン室(51)の他方側に前記圧縮機(20)側に戻る前記冷媒の流路を成す前記第2切替流路(56)を有することを特徴とする請求項1ないし3のうちいずれか一項に記載の車両用空調装置。
Valve means inlet side flow path (44) through which the refrigerant from the indoor condenser (12) flows into the body (40), and valve means outlet side flow path through which the refrigerant flows into the outdoor heat exchanger (21). (45) is formed,
The valve means (25) is interposed between the valve means inlet side flow path (44) and the valve means outlet side flow path (45),
The body (40) has the common channel (50) through which the refrigerant is guided from the valve means outlet side channel (45) via the outdoor heat exchanger (21),
The first channel connecting the common channel (50) and the indoor evaporator (11) side to one side of the common chamber (51) in the three-way valve (30) communicating with the common channel (50). It has a switching flow path (55), and has the 2nd switching flow path (56) which constitutes the flow path of the refrigerant which returns to the compressor (20) side on the other side of the common room (51). The vehicle air conditioner according to any one of claims 1 to 3.
前記三方弁(30)は、前記第1切替流路(55)と前記第2切替流路(56)との間を往復動する往復弁体(60)を有し、
前記往復弁体(60)の動きに応じて、前記三方弁(30)は前記コモン流路(50)を前記第1切替流路(55)と前記第2切替流路(56)のいずれかに連通させ、
前記三方弁(30)は、前記弁手段入口側流路(44)から前記往復弁体(60)の一方側に圧力導入路(42)を介して導入された圧力と前記コモン流路(50)の圧力との差圧で往復動する差圧弁から構成されていることを特徴とする請求項4に記載の車両用空調装置。
The three-way valve (30) has a reciprocating valve body (60) that reciprocates between the first switching channel (55) and the second switching channel (56),
Depending on the movement of the reciprocating valve body (60), the three-way valve (30) moves the common flow path (50) between the first switching flow path (55) and the second switching flow path (56). Communicate with
The three-way valve (30) includes the pressure introduced from the valve means inlet side flow path (44) to one side of the reciprocating valve body (60) via the pressure introduction path (42) and the common flow path (50). The vehicle air conditioner according to claim 4, comprising a differential pressure valve that reciprocates at a pressure difference from the pressure of (5).
前記弁手段入口側流路(44)から前記往復弁体(60)の一方側に導入された圧力は、前記ボディ(40)内に形成された前記圧力導入路(42)を介して導入されることを特徴とする請求項5に記載の車両用空調装置。   The pressure introduced from the valve means inlet side flow path (44) to one side of the reciprocating valve body (60) is introduced through the pressure introduction path (42) formed in the body (40). The vehicle air conditioner according to claim 5. 前記三方弁(30)は、前記往復弁体(60)の一方側に導入された圧力と前記コモン流路(50)の圧力との差圧と、前記往復弁体(60)の他方側に設けられたばね部材(63)の弾性力とで、前記往復弁体(60)が往復動することによって前記往復弁体(60)の一部が第1弁座(65)及び第2弁座(66)に当接する一対のポペット弁部を有することを特徴とする請求項6に記載の車両用空調装置。   The three-way valve (30) has a differential pressure between the pressure introduced to one side of the reciprocating valve body (60) and the pressure of the common flow path (50), and the other side of the reciprocating valve body (60). Due to the elastic force of the provided spring member (63), the reciprocating valve body (60) reciprocates, whereby a part of the reciprocating valve body (60) becomes a first valve seat (65) and a second valve seat ( 66. The vehicular air conditioner according to claim 6, further comprising a pair of poppet valve portions that abut against the inner wall 66). 前記一対のポペット弁部は、前記一対のポペット弁部のうちの一方のポペット弁部と、該一方のポペット弁部に一端が固定された連結部材(60c)とを有し、前記一対のポペット弁部のうちの他方のポペット弁部に前記連結部材(60c)の他端が挿入され、前記連結部材(60c)を介して前記一対のポペット弁部が少なくとも所定方向に連動することを特徴とする請求項7に記載の車両用空調装置。   The pair of poppet valve portions includes one of the pair of poppet valve portions, and a connecting member (60c) having one end fixed to the one poppet valve portion, and the pair of poppet valves. The other end of the connecting member (60c) is inserted into the other poppet valve portion of the valve portions, and the pair of poppet valve portions are interlocked in at least a predetermined direction via the connecting member (60c). The vehicle air conditioner according to claim 7. 前記暖房用絞り手段(26)は、前記弁手段(25)と並列に形成された細径流路から成り、該細径流路は、前記弁手段内を前記冷媒が流れる流路よりも細径の前記ボディ(40)内に形成された流路からなることを特徴とする請求項1ないし8のうちいずれか一項に記載の車両用空調装置。   The heating throttle means (26) is composed of a small diameter channel formed in parallel with the valve means (25), and the narrow diameter channel is smaller in diameter than the channel through which the refrigerant flows in the valve means. The vehicle air conditioner according to any one of claims 1 to 8, characterized by comprising a flow path formed in the body (40). 前記弁手段(25)によって開閉される前記冷媒の流路に対して並列に前記冷媒の流れを絞る流路が設けられた前記暖房用絞り手段(26)は、前記弁手段(25)を完全に閉弁せずに微小隙間を残して閉弁動作する前記弁手段(25)閉弁後の隙間流路からなることを特徴とする請求項1ないし8のうちいずれか一項に記載の車両用空調装置。   The heating throttle means (26) provided with a flow path for restricting the flow of the refrigerant in parallel with the refrigerant flow path opened and closed by the valve means (25) is configured to completely connect the valve means (25). The vehicle according to any one of claims 1 to 8, characterized in that the valve means (25) which closes the valve without closing the valve and closes the valve is operated to close the valve. Air conditioner. 前記微小隙間を残して閉弁する前記弁手段は、前記微小隙間の大きさである前記閉弁後の弁の開度を調整できる弁手段からなることを特徴とする請求項10に記載の車両用空調装置。   11. The vehicle according to claim 10, wherein the valve means for closing the valve while leaving the minute gap includes valve means for adjusting an opening degree of the valve after the valve closing, which is the size of the minute gap. Air conditioner. 前記閉弁動作後の弁の開度を調整できる弁手段(25)は電動弁からなることを特徴とする請求項11に記載の車両用空調装置。   The vehicle air conditioner according to claim 11, wherein the valve means (25) capable of adjusting the opening degree of the valve after the valve closing operation comprises an electric valve. 前記ヒートポンプサイクルは、更にアキュムレータ(35)と冷房用絞り(31)と第1切替配管(55a)と第2切替配管(56a)とを有し、前記コモン流路(50)からの前記冷媒を冷房運転時に流す前記第1切替流路(55)は、前記第1切替配管(55a)と前記冷房用絞り(31)とを介して前記室内蒸発器(11)に前記冷媒を流し、暖房運転時に冷媒を流す前記第2切替流路(56)は、前記第2切替配管(56a)と前記アキュムレータ(35)とを介して前記圧縮機(20)に前記冷媒を戻すことを特徴とする請求項1ないし12のいずれか一項に記載の車両用空調装置。   The heat pump cycle further includes an accumulator (35), a cooling throttle (31), a first switching pipe (55a), and a second switching pipe (56a), and the refrigerant from the common flow path (50). The first switching channel (55) that flows during the cooling operation causes the refrigerant to flow to the indoor evaporator (11) through the first switching pipe (55a) and the cooling throttle (31), thereby heating operation. The second switching flow path (56) for flowing the refrigerant sometimes returns the refrigerant to the compressor (20) via the second switching pipe (56a) and the accumulator (35). Item 13. The vehicle air conditioner according to any one of Items 1 to 12.
JP2010108610A 2010-05-10 2010-05-10 Air conditioner for vehicles Expired - Fee Related JP5488185B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010108610A JP5488185B2 (en) 2010-05-10 2010-05-10 Air conditioner for vehicles
DE102011100301A DE102011100301A1 (en) 2010-05-10 2011-05-03 Vehicle air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108610A JP5488185B2 (en) 2010-05-10 2010-05-10 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2011235753A true JP2011235753A (en) 2011-11-24
JP5488185B2 JP5488185B2 (en) 2014-05-14

Family

ID=44803233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108610A Expired - Fee Related JP5488185B2 (en) 2010-05-10 2010-05-10 Air conditioner for vehicles

Country Status (2)

Country Link
JP (1) JP5488185B2 (en)
DE (1) DE102011100301A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137180A (en) * 2011-11-29 2013-07-11 Tgk Co Ltd Expansion valve
KR20140024810A (en) * 2012-08-20 2014-03-03 한라비스테온공조 주식회사 Heat pump system for vehicle
WO2014054218A1 (en) * 2012-10-03 2014-04-10 株式会社デンソー Refrigeration cycle device and pilot-operated on-off valve
JP2014149123A (en) * 2013-02-01 2014-08-21 Denso Corp Refrigeration cycle device
JP2016121858A (en) * 2014-12-25 2016-07-07 株式会社デンソー Refrigeration cycle device
WO2017022378A1 (en) * 2015-08-03 2017-02-09 株式会社デンソー Integrated valve
US20170151857A1 (en) * 2011-12-09 2017-06-01 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9683671B2 (en) 2014-04-10 2017-06-20 Hanon Systems Valve block assembly for several valves
JP2017227367A (en) * 2016-06-21 2017-12-28 株式会社デンソー Refrigeration cycle device
JP2017227364A (en) * 2016-06-21 2017-12-28 株式会社デンソー Integrated valve
JPWO2017022487A1 (en) * 2015-08-03 2018-02-01 株式会社デンソー Refrigeration cycle equipment
JP2018063071A (en) * 2016-10-12 2018-04-19 株式会社デンソー Expansion valve
WO2019026487A1 (en) * 2017-07-31 2019-02-07 株式会社デンソー Integrated valve device
WO2019026486A1 (en) * 2017-07-31 2019-02-07 株式会社デンソー Heat pump cycle device and valve device
CN110217072A (en) * 2019-06-19 2019-09-10 奇瑞汽车股份有限公司 Vehicle and its air-conditioning
CN111823823A (en) * 2019-04-15 2020-10-27 华为技术有限公司 Air conditioning system and vehicle
KR20210004565A (en) * 2019-07-05 2021-01-13 한온시스템 주식회사 Heat pump system for vehicle
WO2022253123A1 (en) * 2021-05-31 2022-12-08 比亚迪股份有限公司 Valve group integration module, thermal management system, and vehicle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944135B2 (en) 2011-10-17 2016-07-05 サンデンホールディングス株式会社 Air conditioner for vehicles
DE102012108886B4 (en) 2012-09-20 2019-02-14 Hanon Systems Heat exchanger arrangement and air conditioning system of a motor vehicle
DE102017109313B4 (en) * 2017-05-02 2021-09-16 Hanon Systems Device for heat transfer for a refrigerant circuit of an air conditioning system of a motor vehicle and air conditioning system with the device
JP6852642B2 (en) 2017-10-16 2021-03-31 株式会社デンソー Heat pump cycle
FR3076766B1 (en) * 2018-01-12 2019-12-13 Valeo Systemes Thermiques FIVE-WAY VALVE AIR CONDITIONING SYSTEM, MODULE AND CORRESPONDING METHOD
KR102575170B1 (en) 2018-06-15 2023-09-05 현대자동차 주식회사 Heat pump system for vehicle
KR20200045727A (en) 2018-10-23 2020-05-06 현대자동차주식회사 Heat pump system for vehicle
FR3135226B1 (en) * 2022-05-05 2024-05-10 Valeo Systemes Thermiques Hydraulic block for refrigerant fluid of a thermal management circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722469A (en) * 1980-06-04 1982-02-05 Toshiba Corp Three-way valve
JPH08108739A (en) * 1994-10-07 1996-04-30 Nippondenso Co Ltd Air conditioner for vehicle
JPH1089521A (en) * 1996-09-13 1998-04-10 Fuji Koki:Kk Electric flow control valve
JP2000264044A (en) * 1999-01-14 2000-09-26 Denso Corp Freezing cycle device for vehicle
JP2003120849A (en) * 2001-10-16 2003-04-23 Tgk Co Ltd Collecting valve
JP3538845B2 (en) * 1991-04-26 2004-06-14 株式会社デンソー Automotive air conditioners
JP2007261321A (en) * 2006-03-27 2007-10-11 Denso Corp Vehicular air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264449A (en) 1996-03-28 1997-10-07 Denso Corp Two-stage pilot type solenoid valve
JP2003254467A (en) 2002-02-28 2003-09-10 Denso Corp Pilot type solenoid valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722469A (en) * 1980-06-04 1982-02-05 Toshiba Corp Three-way valve
JP3538845B2 (en) * 1991-04-26 2004-06-14 株式会社デンソー Automotive air conditioners
JPH08108739A (en) * 1994-10-07 1996-04-30 Nippondenso Co Ltd Air conditioner for vehicle
JPH1089521A (en) * 1996-09-13 1998-04-10 Fuji Koki:Kk Electric flow control valve
JP2000264044A (en) * 1999-01-14 2000-09-26 Denso Corp Freezing cycle device for vehicle
JP2003120849A (en) * 2001-10-16 2003-04-23 Tgk Co Ltd Collecting valve
JP2007261321A (en) * 2006-03-27 2007-10-11 Denso Corp Vehicular air conditioner

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137180A (en) * 2011-11-29 2013-07-11 Tgk Co Ltd Expansion valve
US20170151857A1 (en) * 2011-12-09 2017-06-01 Sanden Holdings Corporation Vehicle air conditioning apparatus
KR20140024810A (en) * 2012-08-20 2014-03-03 한라비스테온공조 주식회사 Heat pump system for vehicle
KR101637968B1 (en) 2012-08-20 2016-07-21 한온시스템 주식회사 Heat pump system for vehicle
WO2014054218A1 (en) * 2012-10-03 2014-04-10 株式会社デンソー Refrigeration cycle device and pilot-operated on-off valve
JP2014074516A (en) * 2012-10-03 2014-04-24 Denso Corp Refrigeration cycle device and pilot type opening/closing valve
CN104704306A (en) * 2012-10-03 2015-06-10 株式会社电装 Refrigeration cycle device and pilot-operated on-off valve
US20150260439A1 (en) * 2012-10-03 2015-09-17 Denso Corporation Refrigeration cycle device and pilot on-off valve
US10240835B2 (en) * 2012-10-03 2019-03-26 Denso Corportion Refrigeration cycle device and pilot on-off valve
CN104704306B (en) * 2012-10-03 2017-10-10 株式会社电装 Refrigerating circulatory device
JP2014149123A (en) * 2013-02-01 2014-08-21 Denso Corp Refrigeration cycle device
US9683671B2 (en) 2014-04-10 2017-06-20 Hanon Systems Valve block assembly for several valves
CN107110580A (en) * 2014-12-25 2017-08-29 株式会社电装 Refrigerating circulatory device
US10451317B2 (en) 2014-12-25 2019-10-22 Denso Corporation Refrigeration cycle device
CN107110580B (en) * 2014-12-25 2019-08-13 株式会社电装 Refrigerating circulatory device
JP2016121858A (en) * 2014-12-25 2016-07-07 株式会社デンソー Refrigeration cycle device
JPWO2017022487A1 (en) * 2015-08-03 2018-02-01 株式会社デンソー Refrigeration cycle equipment
JPWO2017022378A1 (en) * 2015-08-03 2018-01-11 株式会社デンソー Integrated valve
WO2017022378A1 (en) * 2015-08-03 2017-02-09 株式会社デンソー Integrated valve
US10391839B2 (en) 2015-08-03 2019-08-27 Denso Corporation Refrigeration cycle device
CN109328288A (en) * 2016-06-21 2019-02-12 株式会社电装 Refrigerating circulatory device
WO2017221602A1 (en) * 2016-06-21 2017-12-28 株式会社デンソー Refrigeration cycle device
US10899196B2 (en) 2016-06-21 2021-01-26 Denso Corporation Refrigeration cycle device
JP2017227367A (en) * 2016-06-21 2017-12-28 株式会社デンソー Refrigeration cycle device
JP2017227364A (en) * 2016-06-21 2017-12-28 株式会社デンソー Integrated valve
JP2018063071A (en) * 2016-10-12 2018-04-19 株式会社デンソー Expansion valve
WO2019026487A1 (en) * 2017-07-31 2019-02-07 株式会社デンソー Integrated valve device
JP2019027526A (en) * 2017-07-31 2019-02-21 株式会社デンソー Integrated valve gear
CN111051751B (en) * 2017-07-31 2022-07-19 株式会社电装 Integrated valve device
WO2019026486A1 (en) * 2017-07-31 2019-02-07 株式会社デンソー Heat pump cycle device and valve device
CN111051751A (en) * 2017-07-31 2020-04-21 株式会社电装 Integrated valve device
JP2019026118A (en) * 2017-07-31 2019-02-21 株式会社デンソー Heat pump cycle device and valve gear
US11225125B2 (en) * 2017-07-31 2022-01-18 Denso Corporation Integrated valve device
CN111823823A (en) * 2019-04-15 2020-10-27 华为技术有限公司 Air conditioning system and vehicle
CN110217072A (en) * 2019-06-19 2019-09-10 奇瑞汽车股份有限公司 Vehicle and its air-conditioning
KR20210004565A (en) * 2019-07-05 2021-01-13 한온시스템 주식회사 Heat pump system for vehicle
KR102657255B1 (en) 2019-07-05 2024-04-16 한온시스템 주식회사 Heat pump system for vehicle
WO2022253123A1 (en) * 2021-05-31 2022-12-08 比亚迪股份有限公司 Valve group integration module, thermal management system, and vehicle
EP4289644A4 (en) * 2021-05-31 2024-08-21 Byd Co Ltd Valve group integration module, thermal management system, and vehicle

Also Published As

Publication number Publication date
DE102011100301A1 (en) 2011-11-10
JP5488185B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5488185B2 (en) Air conditioner for vehicles
KR101637968B1 (en) Heat pump system for vehicle
WO2017022487A1 (en) Refrigeration cycle device
WO2014054218A1 (en) Refrigeration cycle device and pilot-operated on-off valve
US20200158382A1 (en) Heat pump cycle device and valve device
US11225125B2 (en) Integrated valve device
WO2013088946A1 (en) Channel switching valve and vehicle air conditioning device provided with channel switching valve
WO2009087733A1 (en) Refrigeration cycle device and four-way valve
CN107351624B (en) Heat pump air conditioning system and electric automobile
EP2925546B1 (en) Refrigerant circuit for a vehicle air-conditioning system and method of air-conditioning a vehicle interior
JP2013257130A (en) Flow rate regulation valve for refrigeration cycle
JP2009092249A (en) Refrigerant cycle device with ejector
JP5846094B2 (en) Refrigeration cycle equipment
EP2572910A1 (en) Vehicle heating and cooling device
JP5544469B2 (en) Combined valve and vehicle air conditioner
US11235262B2 (en) Gas-liquid separator
JP4831030B2 (en) Refrigeration cycle equipment
JP5988646B2 (en) Three-way valve and air conditioner equipped with the three-way valve
JP5604626B2 (en) Expansion valve
WO2019065548A1 (en) Vehicular air-conditioning device
JP2001322421A (en) Refrigerating cycle device
JP2017074832A (en) Air conditioner for vehicle
JP6183223B2 (en) Heat pump cycle
US12049123B2 (en) Climate control system with a controlled ejector
KR100484635B1 (en) Expansion Valve of Heat Pump System for Automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R151 Written notification of patent or utility model registration

Ref document number: 5488185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees