JPWO2014038180A1 - Power supply and management device - Google Patents
Power supply and management device Download PDFInfo
- Publication number
- JPWO2014038180A1 JPWO2014038180A1 JP2014534185A JP2014534185A JPWO2014038180A1 JP WO2014038180 A1 JPWO2014038180 A1 JP WO2014038180A1 JP 2014534185 A JP2014534185 A JP 2014534185A JP 2014534185 A JP2014534185 A JP 2014534185A JP WO2014038180 A1 JPWO2014038180 A1 JP WO2014038180A1
- Authority
- JP
- Japan
- Prior art keywords
- cell management
- battery cells
- battery
- voltage
- asic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 claims abstract description 24
- 238000009413 insulation Methods 0.000 claims description 11
- 230000015556 catabolic process Effects 0.000 abstract description 7
- 238000012423 maintenance Methods 0.000 abstract description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- -1 Nickel metal hydride Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/22—Balancing the charge of battery modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4257—Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/482—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
電源装置の組み立て時およびメンテナンス時の耐圧オーバーを低コストで抑制する。電源装置(500)において、複数の電池セルが直列に接続される。複数のセル管理ICはカスケード接続される。複数の電池セルの各端子と複数のセル管理ICの各端子は、電池側コネクタ及びIC側コネクタを介して接続される。IC側コネクタを共有するセル管理IC間は非絶縁通信される。IC側コネクタを共有しないセル管理IC間は絶縁通信される。Suppresses the breakdown voltage during assembly and maintenance of the power supply at low cost. In the power supply device (500), a plurality of battery cells are connected in series. A plurality of cell management ICs are cascade-connected. The terminals of the plurality of battery cells and the terminals of the plurality of cell management ICs are connected via the battery side connector and the IC side connector. Non-insulated communication is performed between cell management ICs sharing the IC-side connector. The cell management ICs that do not share the IC-side connector are insulated and communicated.
Description
本発明は、複数の電池セルが直列に接続された組電池を搭載した電源装置、およびその複数の電池セルを管理するための管理装置に関する。 The present invention relates to a power supply device equipped with an assembled battery in which a plurality of battery cells are connected in series, and a management device for managing the plurality of battery cells.
近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの車にはキーデバイスとして二次電池が搭載される。車載用二次電池としては主に、ニッケル水素電池およびリチウムイオン電池が普及している。今後、エネルギー密度が高いリチウムイオン電池の普及が加速すると予想される。 In recent years, hybrid vehicles (HV), plug-in hybrid vehicles (PHV), and electric vehicles (EV) have become widespread. These cars are equipped with secondary batteries as key devices. Nickel metal hydride batteries and lithium ion batteries are mainly used as in-vehicle secondary batteries. In the future, the spread of lithium ion batteries with high energy density is expected to accelerate.
リチウムイオン電池は常用領域と使用禁止領域が近接しているため、他の種類の電池より厳格な電圧管理が必要である。複数のリチウムイオン電池セルが直列に接続された組電池を使用する場合、各電池セルの電圧を検出するための電圧検出回路が設けられる。検出される各電池セルの電圧は、充放電制御およびセル電圧の均等化制御などに使用される。 Lithium-ion batteries require close strict voltage management than other types of batteries because the regular use area and the use prohibition area are close to each other. When using an assembled battery in which a plurality of lithium ion battery cells are connected in series, a voltage detection circuit for detecting the voltage of each battery cell is provided. The detected voltage of each battery cell is used for charge / discharge control, cell voltage equalization control, and the like.
車載用の二次電池では高出力電圧が要求されるため、複数の組電池を直列に接続して使用されることが多い。この場合において複数の組電池と並列に、それぞれ電圧検出回路を実装した複数のICチップをカスケード接続して設ける構成が用いられる場合がある。 Since an in-vehicle secondary battery requires a high output voltage, it is often used by connecting a plurality of assembled batteries in series. In this case, there may be used a configuration in which a plurality of IC chips each mounted with a voltage detection circuit are connected in cascade with a plurality of assembled batteries.
複数の組電池と、カスケード接続された複数のICチップを接続して電源装置を組み立てる際、組電池とICチップの接続順番によっては特定のICチップに耐圧オーバーの電圧が印加される可能性がある。この耐圧オーバーは電源装置のメンテナンス時にも発生し得る。この耐圧オーバーはICチップを高耐圧に設計すれば抑制できるが、コスト増を招く。 When a power supply device is assembled by connecting a plurality of assembled batteries and a plurality of cascade-connected IC chips, depending on the connection order of the assembled batteries and the IC chips, a voltage exceeding the withstand voltage may be applied to a specific IC chip. is there. This overvoltage can also occur during maintenance of the power supply device. This overvoltage can be suppressed if the IC chip is designed to have a high withstand voltage, but this leads to an increase in cost.
本発明はこうした状況に鑑みなされたものであり、その目的は、電源装置の組み立て時およびメンテナンス時の耐圧オーバーを低コストで抑制する技術を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique that suppresses overvoltage resistance at the time of assembly and maintenance of a power supply device at low cost.
上記課題を解決するために、本発明のある態様の電源装置は、複数の電池セルが直列に接続された直列電池群と、前記直列電池群に含まれる複数の電池セルを、m(mは2以上の整数)個ごとに管理する複数のセル管理IC(Integrated Circuit)と、前記複数の電池セルのm×n(nは自然数)個ごとに設けられ、m×n個の電池セルのそれぞれの端子を含む電池側コネクタと、前記複数のセル管理ICのn個ごとに設けられ、n個のセル管理ICのそれぞれの端子を含むIC側コネクタと、を備える。前記セル管理ICの電源電圧およびグラウンド電圧は、管理しているm個の電池セルの両端から供給を受け、前記複数のセル管理ICはカスケード接続され、前記IC側コネクタを共有するセル管理IC間は非絶縁通信され、前記IC側コネクタを共有しないセル管理IC間は絶縁通信される。 In order to solve the above-described problem, a power supply device according to an aspect of the present invention includes a series battery group in which a plurality of battery cells are connected in series, and a plurality of battery cells included in the series battery group. A plurality of cell management ICs (Integrated Circuits) for managing each of the plurality of battery cells, and m × n (n is a natural number) of the plurality of battery cells, and each of the m × n battery cells. A battery-side connector including a plurality of terminals, and an IC-side connector provided for each of the n cell management ICs and including the respective terminals of the n cell management ICs. The power supply voltage and the ground voltage of the cell management IC are supplied from both ends of the m battery cells being managed, and the cell management ICs are cascade-connected and share the IC-side connector. Are non-insulated, and the cell management ICs that do not share the IC-side connector are insulated.
本発明の別の態様もまた、電源装置である。この装置は、複数の電池セルが直列に接続された直列電池群と、前記直列電池群に含まれる複数の電池セルを、m(mは2以上の整数)個ごとに管理する複数のセル管理IC(Integrated Circuit)と、前記複数の電池セルのm×n(nは自然数)個ごとに設けられ、m×n個の電池セルのそれぞれの端子を含む電池側コネクタと、前記複数のセル管理ICのn個ごとに設けられ、n個のセル管理ICのそれぞれの端子を含むIC側コネクタと、を備える。前記セル管理ICの電源電圧およびグラウンド電圧は、管理しているm個の電池セルの両端から供給を受け、前記複数のセル管理ICはカスケード接続され、前記IC側コネクタを共有するセル管理IC間は非絶縁通信され、前記IC側コネクタを共有しないセル管理IC間は、絶縁通信される箇所と非絶縁通信される箇所が混在される。 Another embodiment of the present invention is also a power supply device. This apparatus is configured to manage a series battery group in which a plurality of battery cells are connected in series and a plurality of battery cells included in the series battery group for each m (m is an integer of 2 or more). An IC (Integrated Circuit), a battery-side connector provided for each m × n (n is a natural number) of the plurality of battery cells, each including a terminal of the m × n battery cells, and the plurality of cell management IC-side connectors provided for every n ICs and including respective terminals of the n cell management ICs. The power supply voltage and the ground voltage of the cell management IC are supplied from both ends of the m battery cells being managed, and the cell management ICs are cascade-connected and share the IC-side connector. The cell management ICs that are not isolatedly communicated and do not share the IC-side connector include a place where insulation communication is performed and a place where non-insulation communication is performed.
本発明のさらに別の態様は、管理装置である。この装置は、複数の電池セルが直列に接続された直列電池群を管理する管理装置であって、前記直列電池群に含まれる複数の電池セルを、m(mは2以上の整数)個ごとに管理する複数のセル管理IC(Integrated Circuit)と、前記複数の電池セルのm×n(nは自然数)個ごとに設けられ、m×n個の電池セルのそれぞれの端子を含む電池側コネクタと接続されるべきコネクタであって、前記複数のセル管理ICのn個ごとに設けられ、n個のセル管理ICのそれぞれの端子を含むIC側コネクタと、を備える。前記セル管理ICの電源電圧およびグラウンド電圧は、管理しているm個の電池セルの両端から供給を受け、前記複数のセル管理ICはカスケード接続され、前記IC側コネクタを共有するセル管理IC間は非絶縁通信され、前記IC側コネクタを共有しないセル管理IC間は絶縁通信される。 Yet another embodiment of the present invention is a management device. This device is a management device for managing a series battery group in which a plurality of battery cells are connected in series, and each of the plurality of battery cells included in the series battery group (m is an integer of 2 or more). A plurality of cell management ICs (Integrated Circuits) for managing the battery, and a battery-side connector provided for each m × n (n is a natural number) of the plurality of battery cells, and including respective terminals of the m × n battery cells Each of the plurality of cell management ICs, and an IC-side connector including each terminal of the n cell management ICs. The power supply voltage and the ground voltage of the cell management IC are supplied from both ends of the m battery cells being managed, and the cell management ICs are cascade-connected and share the IC-side connector. Are non-insulated, and the cell management ICs that do not share the IC-side connector are insulated.
本発明のさらに別の態様もまた、管理装置である。この装置は、複数の電池セルが直列に接続された直列電池群を管理する管理装置であって、前記直列電池群に含まれる複数の電池セルを、m(mは2以上の整数)個ごとに管理する複数のセル管理IC(Integrated Circuit)と、前記複数の電池セルのm×n(nは自然数)個ごとに設けられ、m×n個の電池セルのそれぞれの端子を含む電池側コネクタと接続されるべきコネクタであって、前記複数のセル管理ICのn個ごとに設けられ、n個のセル管理ICのそれぞれの端子を含むIC側コネクタと、を備える。前記セル管理ICの電源電圧およびグラウンド電圧は、管理しているm個の電池セルの両端から供給を受け、前記複数のセル管理ICはカスケード接続され、前記IC側コネクタを共有するセル管理IC間は非絶縁通信され、前記IC側コネクタを共有しないセル管理IC間は、絶縁通信される箇所と非絶縁通信される箇所が混在される。 Yet another embodiment of the present invention is also a management device. This device is a management device for managing a series battery group in which a plurality of battery cells are connected in series, and each of the plurality of battery cells included in the series battery group (m is an integer of 2 or more). A plurality of cell management ICs (Integrated Circuits) for managing the battery, and a battery-side connector provided for each m × n (n is a natural number) of the plurality of battery cells, and including respective terminals of the m × n battery cells Each of the plurality of cell management ICs, and an IC-side connector including each terminal of the n cell management ICs. The power supply voltage and the ground voltage of the cell management IC are supplied from both ends of the m battery cells being managed, and the cell management ICs are cascade-connected and share the IC-side connector. The cell management ICs that are not isolatedly communicated and do not share the IC-side connector include a place where insulation communication is performed and a place where non-insulation communication is performed.
本発明によれば、電源装置の組み立て時およびメンテナンス時の耐圧オーバーを低コストで抑制できる。 According to the present invention, it is possible to suppress overpressure resistance during assembly and maintenance of the power supply device at low cost.
図1は、比較例に係る電源装置500の構成を示す図である。電源装置500は電池部200および管理部100を備える。電池部200は複数のリチウムイオン電池セル(以下、単に電池セルという)が直列に接続された直列電池群20を備える。直列電池群20は、直列に接続された複数の組電池により形成される。各組電池は、直列に接続された複数の電池セルにより形成される。
FIG. 1 is a diagram illustrating a configuration of a
組電池ごとにハーネスコネクタが設けられる。組電池を形成する複数の電池セルのそれぞれの電極とハーネスコネクタに含まれる複数の端子は配線で接続される。当該ハーネスコネクタに含まれる複数の端子は、組電池を形成する複数の電池セルのそれぞれの出力端子となる。 A harness connector is provided for each assembled battery. The electrodes of the plurality of battery cells forming the assembled battery and the plurality of terminals included in the harness connector are connected by wiring. The plurality of terminals included in the harness connector serve as output terminals of the plurality of battery cells forming the assembled battery.
管理部100は、カスケード接続された複数のASIC(Application Specific Integrated Circuit)を備える。ASICは組電池ごとに少なくとも一つ設けられる。ASICは組電池に含まれる複数の電池セルを管理するための専用のカスタムICである。ASICは、組電池に含まれる複数の電池セルのそれぞれの両端電圧を検出する機能を少なくとも備える。ASICは、複数の電池セルのそれぞれの両端電圧を検出するための複数の入力端子を備える。
The
一つの組電池を管理する少なくとも一つのASICごとに、基板コネクタが設けられる。当該少なくとも一つのASICに設けられる複数の入力端子と、基板コネクタの複数の端子は配線で接続される。当該基板コネクタに含まれる複数の端子は、当該少なくとも一つのASICのそれぞれの入力端子となる。 A board connector is provided for each at least one ASIC that manages one assembled battery. The plurality of input terminals provided in the at least one ASIC and the plurality of terminals of the board connector are connected by wiring. The plurality of terminals included in the board connector are input terminals of the at least one ASIC.
組電池がx(xは2以上の整数)個の電池セルにより形成される場合、一つのハーネスコネクタは、少なくとも(x+1)本の電圧出力端子を備えることになる。一つの組電池をn(nは自然数)個のASICで管理する場合、一つのASICの管理セル数m(mは2以上の整数)は、x/n個となる。一つのハーネスコネクタは、少なくとも(m+1)本の電圧入力端子を備えることになる。 When the assembled battery is formed of x (x is an integer of 2 or more) battery cells, one harness connector includes at least (x + 1) voltage output terminals. When one assembled battery is managed by n (n is a natural number) ASICs, the number m (m is an integer of 2 or more) of management cells of one ASIC is x / n. One harness connector includes at least (m + 1) voltage input terminals.
ASICの電源電圧およびグラウンド電圧は、管理しているm個の電池セルの両端から供給を受ける。即ちASICは、管理しているm個の電池セルにより形成される直列電池群の最上位電圧を電源電圧とし、最下位電圧をグラウンド電圧として動作する。あるASICのグラウンド端子は、隣接するASICの電源端子と接続される。 The power supply voltage and ground voltage of the ASIC are supplied from both ends of the m battery cells being managed. That is, the ASIC operates with the highest voltage of the series battery group formed by the m battery cells being managed as the power supply voltage and the lowest voltage as the ground voltage. The ground terminal of a certain ASIC is connected to the power supply terminal of an adjacent ASIC.
隣接するASIC間は通信線により接続され、相互に通信可能な構成である。また複数のASICの少なくとも一つは制御回路に接続される。当該制御回路は複数のASICから各電池セルの電圧値を取得し、その電圧値を参照してセル電圧の均等化制御などの電池制御を行う。 Adjacent ASICs are connected by a communication line and can communicate with each other. At least one of the plurality of ASICs is connected to the control circuit. The control circuit acquires the voltage value of each battery cell from a plurality of ASICs, and performs battery control such as cell voltage equalization control with reference to the voltage value.
以下、本明細書では各電池セルの電圧が4V、1つの単位組電池を形成する電池セルの数xが12個、全体の直列電池群20を形成する組電池の数が6個、一つの単位組電池を管理するASICの数nが2個、1つのASICが管理するセル数mが6個の例を想定する。即ち、x=12、m=6、n=2の例を想定する。この例では各組電池の電圧が約50V、全体の直列電池群20の電圧が約300Vである。
Hereinafter, in this specification, the voltage of each battery cell is 4V, the number x of battery cells forming one unit assembled battery is 12, the number of assembled batteries forming the whole
図1において第1ASIC(1)および第2ASIC(2)は一つの基板に実装される。この基板は第1基板コネクタ41を備える。第1組電池21および当該基板は一つのセルスタックに搭載される。その際、第1ハーネスコネクタ31と第1基板コネクタ41が接続される。なお第1組電池21は、2個の組電池が直列に接続されて形成されてもよい。上述の例では6個の電池セルにより形成される組電池を2個接続して、12個の電池セルにより形成される新たな単位組電池を形成してもよい。
In FIG. 1, the first ASIC (1) and the second ASIC (2) are mounted on one substrate. This board includes a
図1では組電池からASICへ、ASICの電源電圧およびグラウンド電圧となる電圧を供給する配線のみを描いている。図1では一つの組電池を二つのASICで管理するため、中間電源線は1本である。なお、一つのASICで管理する場合は中間電源線はなくなり、三つのASICで管理する場合は中間電源線が2本となる。 In FIG. 1, only the wiring for supplying the ASIC power supply voltage and ground voltage is drawn from the assembled battery to the ASIC. In FIG. 1, since one assembled battery is managed by two ASICs, there is one intermediate power supply line. When managed by one ASIC, there are no intermediate power lines, and when managed by three ASICs, there are two intermediate power lines.
第1組電池21は複数(上述の例では12個)の電池セル211〜21xを含む。この複数の電池セル211〜21xの最上位電圧が第1ASIC(1)の電源端子に供給され、その中間電圧が第1ASIC(1)のグラウンド端子および第2ASIC(2)の電源端子に供給され、その最下位電圧が第2ASIC(2)のグラウンド端子に供給される。
The first assembled
第1ASIC(1)は原理的には、複数の電池セル211〜21xの両端電圧V1の半分の電圧V1aに対応する耐圧設計であれば足りる。上述の例では約25Vにマージンを加えた耐圧を有すれば足りる。第2ASIC(2)も同様に原理的には、複数の電池セル211〜21xの両端電圧V1の半分の電圧V1bに対応する耐圧設計であれば足りる。
In principle, the first ASIC (1) only needs to have a withstand voltage design corresponding to the voltage V1a that is half the voltage V1 across the plurality of
しかしながら、第1ハーネスコネクタ31と第1基板コネクタ41を接続する際、第1ハーネスコネクタ31の各端子と、第1基板コネクタ41の各端子が理想的に同時に接触するとは限らない。中間電源線の端子接触が、第1ASIC(1)の電源線の端子接触および第2ASIC(2)のグラウンド線の端子接触より遅延した場合、第1ASIC(1)および第2ASIC(2)により形成される直列回路に、複数の電池セル211〜21xの両端電圧V1が印加される状態が瞬間的に発生する。
However, when connecting the
ASICのインピーダンスは半導体ウェハごとに異なり、同一ウェハから生成されたASICであってもプロセスによるばらつきがある。したがって抵抗分圧のように、直列数によりきれいに分圧されるとは限らない。即ち、第1ASIC(1)および第2ASIC(2)のそれぞれに1/2・V1が印加されるとは限らない。例えば、第1ASIC(1)に1/4・V1が印加され、第2ASIC(2)に3/4・V1が印加されることも発生し得る。この場合、第2ASIC(2)は耐圧オーバーとなってしまう。 The impedance of the ASIC varies from one semiconductor wafer to another, and there is variation depending on the process even if the ASIC is generated from the same wafer. Therefore, it is not always the case that the voltage is divided cleanly by the number of series like the resistance voltage division. That is, 1/2 · V1 is not necessarily applied to each of the first ASIC (1) and the second ASIC (2). For example, it may occur that 1/4 · V1 is applied to the first ASIC (1) and 3/4 · V1 is applied to the second ASIC (2). In this case, the second ASIC (2) is over withstand voltage.
この対策として各ASICを、単位組電池に含まれるx(=m×n)個の電池セルの両端電圧に対応する耐圧を有するように設計する。上述の例では約50Vにマージンを加えた耐圧に設計する。第1ASIC(1)および第2ASIC(2)のそれぞれの耐圧を、複数の電池セル211〜21xの両端電圧V1に対応して設計すれば、第1ASIC(1)および第2ASIC(2)の分圧比がどのような値になっても、耐圧オーバーを回避できる。
As a countermeasure, each ASIC is designed to have a withstand voltage corresponding to the voltage across the x (= m × n) battery cells included in the unit assembled battery. In the above-described example, the breakdown voltage is designed so that a margin is added to about 50V. If each withstand voltage of the first ASIC (1) and the second ASIC (2) is designed to correspond to the voltage V1 across the
一方、通常、組電池の組立ては充電率が低い状態で行う。そのため、上述の構成において、組立て時における充電率の値を考慮することもできる。即ち、充電率が低いときは単位組電池の電圧が低いため、組立て時においてASICの耐圧が単位組電池の電圧総和を下回るように構成しても良い。例えば、充電率30%の状態で組電池の組立を行う場合は、充電率30%の状態の単位組電池の電圧総和に対して耐えられるようにASICの耐圧を設定する。このような構成によると、ハーネスの接続が充電率が低い状態で行われることを考慮することで、ASICの耐圧をさらに下げることができ、電源装置の組み立て時およびメンテナンス時の耐圧オーバーを低コストで抑制することができる。 On the other hand, the assembled battery is normally assembled with a low charging rate. Therefore, in the above configuration, the value of the charging rate at the time of assembly can be taken into consideration. That is, since the voltage of the unit assembled battery is low when the charging rate is low, the withstand voltage of the ASIC during assembly may be configured to be lower than the total voltage of the unit assembled battery. For example, when assembling the assembled battery in a state where the charging rate is 30%, the withstand voltage of the ASIC is set so as to withstand the voltage sum of the unit assembled battery in the state where the charging rate is 30%. According to such a configuration, considering that the harness is connected in a state where the charging rate is low, the withstand voltage of the ASIC can be further reduced, and the over-withstand voltage at the time of assembly and maintenance of the power supply device can be reduced. Can be suppressed.
なお、この構成において、組電池が充電されて電池電圧が上昇しても、すべてのハーネスが接続されている状態では、m個のセル電圧合計がASICの耐圧以下で使用されればASICが耐圧オーバーとなることはない。また、例示した充電率30%は、あくまで例示であり、必ずしもこの値とする必要はなく、適宜選択可能である。 In this configuration, even if the assembled battery is charged and the battery voltage rises, if all the harness voltages are used when the total cell voltage is less than or equal to the ASIC breakdown voltage, the ASIC will withstand the breakdown voltage. It will never be over. The illustrated charging rate of 30% is merely an example, and is not necessarily set to this value, and can be selected as appropriate.
このように各ASICを、上述の直列電池群に含まれる複数の電池セルが100%未満、より具体的には50%未満の充電率に充電されている状態において、単位組電池に含まれるx個の電池セルの両端電圧に対応する耐圧を有するように設計することができる。当該充電率は組電池の組立時の設定充電率であってもよい。 Thus, each ASIC is included in the unit assembled battery in a state where the plurality of battery cells included in the series battery group are charged to a charging rate of less than 100%, more specifically, less than 50%. It can be designed to have a withstand voltage corresponding to the voltage across the battery cells. The charging rate may be a set charging rate at the time of assembling the assembled battery.
ASICの耐圧を所与のものとする場合、各ASICが管理する電池セル数mを、ASICの耐圧未満になるよう設計する。即ち、一つのASICにより管理される、直列接続される複数の電池セルの両端電圧が当該ASICの耐圧未満になるよう、電池セル数を決定する。 When the ASIC withstand voltage is given, the number m of battery cells managed by each ASIC is designed to be less than the ASIC withstand voltage. That is, the number of battery cells is determined so that the voltage across the plurality of battery cells connected in series managed by one ASIC is less than the withstand voltage of the ASIC.
図2は、比較例に係る電源装置500の組み立て時の様子を示す図である。図2に示すように第1ハーネスコネクタ31と第1基板コネクタ41が接続された後、第2ハーネスコネクタ32と第2基板コネクタ42が接続されるのではなく、第3ハーネスコネクタ33と第3基板コネクタ43が接続される場合が発生し得る。
FIG. 2 is a diagram illustrating a state when the
第1ハーネスコネクタ31と第1基板コネクタ41が完全に接続された状態において、第2ASIC(2)のグラウンド端子電圧は、第1組電池21の最下位電圧により確定する。したがって第3ASIC(3)の電源端子電圧も確定する。
In a state where the
その後、第3ハーネスコネクタ33と第3基板コネクタ43が接続される。その際、第3ハーネスコネクタ33と第3基板コネクタ43の各端子が理想的に同時に接触するとは限らない。
Thereafter, the
第6ASIC(6)のグラウンド線が一番先に端子接触した場合(第1ケース)、その瞬間、第3ASIC(3)、第4ASIC(4)、第5ASIC(5)および第6ASIC(6)により形成される直列回路の両端に、第2組電池22および第3組電池23により形成される直列電池群の両端電圧(V2+V3)が印加される。
When the ground line of the sixth ASIC (6) comes into contact with the terminal first (first case), at that moment, the third ASIC (3), the fourth ASIC (4), the fifth ASIC (5), and the sixth ASIC (6) The both-ends voltage (V2 + V3) of the series battery group formed by the second assembled
また中間電源線が一番先に端子接触した場合(第2ケース)、その瞬間、第3ASIC(3)、第4ASIC(4)および第5ASIC(5)により形成される直列回路の両端に、第2組電池22および第3組電池23の上半分により形成される直列電池群の両端電圧(V2+(1/2・V3))が印加される。
In addition, when the intermediate power line comes into contact with the terminal first (second case), at that moment, both ends of the series circuit formed by the third ASIC (3), the fourth ASIC (4), and the fifth ASIC (5) A voltage across both ends of the series battery group (V2 + (1/2 · V3)) formed by the upper half of the second assembled
また第5ASIC(5)の電源線が一番先に端子接触した場合(第3ケース)、その瞬間、第3ASIC(3)および第4ASIC(4)により形成される直列回路の両端に、第2組電池22の両端電圧V2が印加される。
Further, when the power supply line of the fifth ASIC (5) comes into contact with the terminal first (third case), at the moment, the second ASIC (3) and the fourth ASIC (4) are connected to both ends of the series circuit formed by the second ASIC (5). A voltage V2 across the assembled
上述したようにASICのインピーダンスには、ばらつきがある。したがって第1ケースでは、第3ASIC(3)、第4ASIC(4)、第5ASIC(5)および第6ASIC(6)のそれぞれに(V2+V3)/4の電圧が印加されるとは限らない。第2ケースでは第3ASIC(3)、第4ASIC(4)および第5ASIC(5)のそれぞれに(V2+(1/2・V3))/3の電圧が印加されるとは限らない。第3ケースでは第3ASIC(3)および第4ASIC(4)のそれぞれにV2/2の電圧が印加されるとは限らない。 As described above, the ASIC impedance varies. Therefore, in the first case, the voltage of (V2 + V3) / 4 is not necessarily applied to each of the third ASIC (3), the fourth ASIC (4), the fifth ASIC (5), and the sixth ASIC (6). In the second case, a voltage of (V2 + (1/2 · V3)) / 3 is not necessarily applied to each of the third ASIC (3), the fourth ASIC (4), and the fifth ASIC (5). In the third case, the voltage V2 / 2 is not necessarily applied to each of the third ASIC (3) and the fourth ASIC (4).
上述の対策により第3ASIC(3)、第4ASIC(4)、第5ASIC(5)および第4ASIC(6)のそれぞれのASICの耐圧が、第2組電池22の両端電圧V2(=第3組電池23の両端電圧V3)より高く設計されていても、第1ケースおよび第2ケースでは、いずれかのASICに耐圧オーバーの電圧が印加される可能性がある。 As a result of the measures described above, the ASIC withstand voltage of each of the third ASIC (3), the fourth ASIC (4), the fifth ASIC (5), and the fourth ASIC (6) is the voltage V2 across the second assembled battery 22 (= the third assembled battery). Even if the voltage is designed to be higher than the voltage V3 between both ends of 23, in the first case and the second case, there is a possibility that a voltage exceeding the withstand voltage is applied to either ASIC.
この耐圧オーバーは、二つ以上のASICにより形成される直列回路の中間電位が不定な状態で、当該直列回路の両端電位が確定したとき発生する。したがって、この耐圧オーバーは、高電位側または低電位側から順番にコネクタを接続していけば発生しない。 This over-voltage occurs when the intermediate potential of a series circuit formed by two or more ASICs is indefinite and the potential at both ends of the series circuit is determined. Therefore, this overvoltage will not occur if the connectors are connected in order from the high potential side or the low potential side.
組み立て工場の作業員のみであれば、このルールを徹底させることも可能であると考えられるが、自動車ディーラーなどを含むメンテナンス作業員やユーザにまで徹底させるのは極めて困難である。したがって複数のハーネスコネクタ31〜36がどのような順番で、基板コネクタ41〜46に接続されても、どのASIC(1)〜(12)にも耐圧オーバーが発生しない仕組みが要求される。
It is thought that this rule can be thoroughly enforced by only the workers in the assembly factory, but it is extremely difficult to make it thoroughly to maintenance workers and users including automobile dealers. Accordingly, no matter what order the ASICs (1) to (12) are connected to the
図3は、本発明の実施の形態1に係る電源装置500の構成を示す図である。図1に示すように比較例に係る電源装置500では、隣接するASIC間の通信路は非絶縁インタフェース51〜61で形成される。非絶縁インタフェース51〜61はそれぞれレベルシフト回路を介した電気配線である。したがって、隣接するASIC間には通信路を介して直接、電流が流れる。
FIG. 3 is a diagram showing a configuration of the
図3に示すように実施の形態1に係る電源装置500では、基板コネクタを共有する隣接するASIC間の通信路は、比較例に係る電源装置500と同様に非絶縁インタフェース51、53、55、57、59、61で形成される。基板コネクタを共有しない隣接するASIC間の通信路は、非絶縁インタフェース52、56、60と絶縁インタフェース54a、58aが混在して形成される。絶縁インタフェース54a、58aで接続されるASIC間は、両ASICに共通な電源線により接続されない。具体的には基板コネクタを共有しない第4ASIC(4)と第5ASIC(5)間は絶縁インタフェース54aで接続され、第4ASIC(4)のグラウンド端子と第5ASIC(5)の電源端子は管理部100では接続されない。第8ASIC(8)と第9ASIC(9)間も同様である。
As shown in FIG. 3, in the
絶縁インタフェース54a、58bは、小型のトランスを含む構成であってもよい。通信信号をパルス変調方式とすることにより、当該トランスの一次側コイルと二次側コイルの間で電気的に絶縁し、レベルシフトできる。また絶縁インタフェース54a、58はフォトカプラを含む構成であってもよい。ASIC間の通信信号を光信号で送受信することにより、ASIC間を複雑な変調方式を採用すること無く容易に電気的に絶縁できる。 The insulation interfaces 54a and 58b may be configured to include a small transformer. By adopting a pulse modulation method for the communication signal, the transformer can be electrically insulated and level-shifted between the primary side coil and the secondary side coil. The insulation interfaces 54a and 58 may include a photocoupler. By transmitting and receiving communication signals between the ASICs as optical signals, the ASICs can be easily electrically insulated without adopting a complicated modulation method.
基板コネクタを共有しないASIC間のうち、絶縁通信される箇所と非絶縁通信される箇所を交互に配置する。上述したようにコネクタの接続順番誤りによるASICの耐圧オーバーは、二つ以上のASICにより形成される直列回路の中間電位が不定な状態で、当該直列回路の両端電位が確定したとき発生する。この状態は、ハーネスコネクタと基板コネクタを、少なくとも一つ飛ばして接続する場合に発生する。 Of the ASICs that do not share the board connector, places that are isolated and non-insulated are alternately arranged. As described above, the overvoltage resistance of the ASIC due to an error in the connector connection order occurs when the potential between both ends of the series circuit is determined while the intermediate potential of the series circuit formed by two or more ASICs is indefinite. This state occurs when at least one of the harness connector and the board connector is skipped and connected.
したがって基板をまたぐASIC間の接続において、少なくとも一つ飛ばして絶縁すれば上記状態の発生を抑制できる。よってコネクタの接続順番誤りによるASICの耐圧オーバーを抑制できる。 Therefore, in the connection between the ASICs straddling the substrate, the occurrence of the above state can be suppressed if at least one of them is insulated. Therefore, it is possible to suppress the ASIC withstand voltage exceeding due to an error in the connector connection order.
図4は、本発明の実施の形態2に係る電源装置500の構成を示す図である。実施の形態2に係る電源装置500でも、基板コネクタを共有する隣接するASIC間の通信路は、実施の形態1に係る電源装置500と同様に非絶縁インタフェース51、53、55、57、59、61で形成される。基板コネクタを共有しない隣接するASIC間の通信路は、実施の形態1に係る電源装置500と異なり全て絶縁インタフェース52a、54a、56a、58a、60aで形成される。
FIG. 4 is a diagram showing a configuration of a
以上説明したように本発明の実施の形態1、2に係る電源装置500では、一つのASICの耐圧が、一つのハーネスコネクタに接続される組電池の両端電圧を超えるように設計する。これにより、一つのハーネスコネクタを一つの基板コネクタに接続する際に発生し得るASICの耐圧オーバーを抑制できる。一つのASICに、一つのハーネスコネクタに接続される組電池の両端電圧以上の電圧は原理的に印加されないためである。
As described above, the
また基板コネクタを共有しないASIC間の接続箇所を、少なくとも一つ飛ばしで絶縁することにより、ハーネスコネクタと基板コネクタをどのような順番で接続してもASICの耐圧オーバーが発生しないようにできる。 Further, by insulating at least one connection portion between the ASICs that do not share the board connector, it is possible to prevent the ASIC from over-breaking pressure regardless of the order in which the harness connector and the board connector are connected.
絶縁インタフェースは非絶縁インタフェースより高価な素子を使用するためコストが高くなる。したがって絶縁インタフェースの使用を少なくするほどコスト増大を抑制できる。実施の形態1はASICの耐圧オーバーを、最低限の絶縁インタフェースで抑制する例である。実施の形態2はASICの耐圧オーバーを、同じ構成の基板で抑制する例である。後者の場合でも同一基板内のASIC間は非絶縁インタフェースで形成される。後者の場合、基板の種類を減らすことができるため、量産化に有利である。 The isolated interface uses a more expensive element than the non-isolated interface, which increases the cost. Therefore, an increase in cost can be suppressed as the use of the insulation interface is reduced. The first embodiment is an example in which the overvoltage resistance of the ASIC is suppressed with a minimum insulation interface. The second embodiment is an example in which the breakdown voltage of the ASIC is suppressed by a substrate having the same configuration. Even in the latter case, ASICs on the same substrate are formed with non-insulated interfaces. In the latter case, the types of substrates can be reduced, which is advantageous for mass production.
以上、本発明を実施の形態をもとに説明した。こられ実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. Those skilled in the art will understand that these embodiments are exemplifications, and that various modifications can be made to the combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. By the way.
500 電源装置、 200 電池部、 21〜26 組電池、 31〜36 ハーネスコネクタ、 100 管理部、 41〜46 基板コネクタ、 1〜12、 ASIC、 51〜61 非絶縁インタフェース、52a、54a、56a、58a、60a 絶縁インタフェース。
500 power supply unit, 200 battery unit, 21-26 battery pack, 31-36 harness connector, 100 management unit, 41-46 board connector, 1-12, ASIC, 51-61 non-insulated interface, 52a, 54a, 56a,
Claims (6)
前記直列電池群に含まれる複数の電池セルを、m(mは2以上の整数)個ごとに管理する複数のセル管理IC(Integrated Circuit)と、
前記複数の電池セルのm×n(nは自然数)個ごとに設けられ、m×n個の電池セルのそれぞれの端子を含む電池側コネクタと、
前記複数のセル管理ICのn個ごとに設けられ、n個のセル管理ICのそれぞれの端子を含むIC側コネクタと、を備え、
前記セル管理ICの電源電圧およびグラウンド電圧は、管理しているm個の電池セルの両端から供給を受け、
前記複数のセル管理ICはカスケード接続され、前記IC側コネクタを共有するセル管理IC間は非絶縁通信され、前記IC側コネクタを共有しないセル管理IC間は絶縁通信されることを特徴とする電源装置。A series battery group in which a plurality of battery cells are connected in series;
A plurality of cell management ICs (Integrated Circuits) for managing a plurality of battery cells included in the series battery group for each m (m is an integer of 2 or more);
A battery-side connector provided for each m × n (n is a natural number) of the plurality of battery cells, each including a terminal of the m × n battery cells;
An IC-side connector that is provided for every n of the plurality of cell management ICs and includes terminals of each of the n cell management ICs,
The power supply voltage and ground voltage of the cell management IC are supplied from both ends of the m battery cells being managed,
The plurality of cell management ICs are cascade-connected, non-isolated communication is performed between cell management ICs sharing the IC-side connector, and isolated communication is performed between cell management ICs not sharing the IC-side connector. apparatus.
前記直列電池群に含まれる複数の電池セルを、m(mは2以上の整数)個ごとに管理する複数のセル管理IC(Integrated Circuit)と、
前記複数の電池セルのm×n(nは自然数)個ごとに設けられ、m×n個の電池セルのそれぞれの端子を含む電池側コネクタと、
前記複数のセル管理ICのn個ごとに設けられ、n個のセル管理ICのそれぞれの端子を含むIC側コネクタと、を備え、
前記セル管理ICの電源電圧およびグラウンド電圧は、管理しているm個の電池セルの両端から供給を受け、
前記複数のセル管理ICはカスケード接続され、前記IC側コネクタを共有するセル管理IC間は非絶縁通信され、前記IC側コネクタを共有しないセル管理IC間は、絶縁通信される箇所と非絶縁通信される箇所が混在されることを特徴とする電源装置。A series battery group in which a plurality of battery cells are connected in series;
A plurality of cell management ICs (Integrated Circuits) for managing a plurality of battery cells included in the series battery group for each m (m is an integer of 2 or more);
A battery-side connector provided for each m × n (n is a natural number) of the plurality of battery cells, each including a terminal of the m × n battery cells;
An IC-side connector that is provided for every n of the plurality of cell management ICs and includes terminals of each of the n cell management ICs,
The power supply voltage and ground voltage of the cell management IC are supplied from both ends of the m battery cells being managed,
The plurality of cell management ICs are cascade-connected, non-isolated communication is performed between cell management ICs sharing the IC-side connector, and non-insulated communication is performed between the cell management ICs not sharing the IC-side connector. The power supply device characterized by being mixed.
前記IC側コネクタを共有しないセル管理IC間のうち、絶縁通信される箇所と非絶縁通信される箇所が交互に配置されることを特徴とする請求項2に記載の電源装置。Each cell management IC has a withstand voltage corresponding to the voltage across the m × n battery cells in a state where the plurality of battery cells are charged to a predetermined charging rate,
The power supply apparatus according to claim 2, wherein a place where insulation communication is performed and a place where non-insulation communication is performed are alternately arranged between cell management ICs which do not share the IC-side connector.
前記直列電池群に含まれる複数の電池セルを、m(mは2以上の整数)個ごとに管理する複数のセル管理IC(Integrated Circuit)と、
前記複数の電池セルのm×n(nは自然数)個ごとに設けられ、m×n個の電池セルのそれぞれの端子を含む電池側コネクタと接続されるべきコネクタであって、前記複数のセル管理ICのn個ごとに設けられ、n個のセル管理ICのそれぞれの端子を含むIC側コネクタと、を備え、
前記セル管理ICの電源電圧およびグラウンド電圧は、管理しているm個の電池セルの両端から供給を受け、
前記複数のセル管理ICはカスケード接続され、前記IC側コネクタを共有するセル管理IC間は非絶縁通信され、前記IC側コネクタを共有しないセル管理IC間は絶縁通信されることを特徴とする管理装置。A management device that manages a series battery group in which a plurality of battery cells are connected in series,
A plurality of cell management ICs (Integrated Circuits) for managing a plurality of battery cells included in the series battery group for each m (m is an integer of 2 or more);
A connector to be connected to a battery-side connector including each terminal of m × n battery cells, provided for each m × n (n is a natural number) of the plurality of battery cells, wherein the plurality of cells An IC-side connector that is provided for every n management ICs and includes terminals of each of the n cell management ICs,
The power supply voltage and ground voltage of the cell management IC are supplied from both ends of the m battery cells being managed,
The plurality of cell management ICs are cascade-connected, non-isolated communication is performed between cell management ICs sharing the IC side connector, and isolated communication is performed between cell management ICs not sharing the IC side connector. apparatus.
前記直列電池群に含まれる複数の電池セルを、m(mは2以上の整数)個ごとに管理する複数のセル管理IC(Integrated Circuit)と、
前記複数の電池セルのm×n(nは自然数)個ごとに設けられ、m×n個の電池セルのそれぞれの端子を含む電池側コネクタと接続されるべきコネクタであって、前記複数のセル管理ICのn個ごとに設けられ、n個のセル管理ICのそれぞれの端子を含むIC側コネクタと、を備え、
前記セル管理ICの電源電圧およびグラウンド電圧は、管理しているm個の電池セルの両端から供給を受け、
前記複数のセル管理ICはカスケード接続され、前記IC側コネクタを共有するセル管理IC間は非絶縁通信され、前記IC側コネクタを共有しないセル管理IC間は、絶縁通信される箇所と非絶縁通信される箇所が混在されることを特徴とする管理装置。A management device that manages a series battery group in which a plurality of battery cells are connected in series,
A plurality of cell management ICs (Integrated Circuits) for managing a plurality of battery cells included in the series battery group for each m (m is an integer of 2 or more);
A connector to be connected to a battery-side connector including each terminal of m × n battery cells, provided for each m × n (n is a natural number) of the plurality of battery cells, wherein the plurality of cells An IC-side connector that is provided for every n management ICs and includes terminals of each of the n cell management ICs,
The power supply voltage and ground voltage of the cell management IC are supplied from both ends of the m battery cells being managed,
The plurality of cell management ICs are cascade-connected, non-isolated communication is performed between cell management ICs sharing the IC-side connector, and non-insulated communication is performed between the cell management ICs not sharing the IC-side connector. A management device characterized in that mixed parts are mixed.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012195488 | 2012-09-05 | ||
JP2012195488 | 2012-09-05 | ||
PCT/JP2013/005192 WO2014038180A1 (en) | 2012-09-05 | 2013-09-03 | Power-supply device and management device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2014038180A1 true JPWO2014038180A1 (en) | 2016-08-08 |
JP6199294B2 JP6199294B2 (en) | 2017-09-20 |
Family
ID=50236809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014534185A Active JP6199294B2 (en) | 2012-09-05 | 2013-09-03 | Power supply and management device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6199294B2 (en) |
WO (1) | WO2014038180A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12088127B2 (en) | 2019-02-19 | 2024-09-10 | Lg Energy Solution, Ltd. | IC chip and circuit system using the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017049199A (en) * | 2015-09-04 | 2017-03-09 | トヨタ自動車株式会社 | Voltage monitor device |
KR20200131621A (en) | 2019-05-14 | 2020-11-24 | 주식회사 엘지화학 | Battery Management System |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010141971A (en) * | 2008-12-09 | 2010-06-24 | Mitsubishi Heavy Ind Ltd | Battery device |
JP2010249793A (en) * | 2009-02-27 | 2010-11-04 | Hitachi Ltd | Battery monitoring system and method of diagnosing the same |
-
2013
- 2013-09-03 WO PCT/JP2013/005192 patent/WO2014038180A1/en active Application Filing
- 2013-09-03 JP JP2014534185A patent/JP6199294B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010141971A (en) * | 2008-12-09 | 2010-06-24 | Mitsubishi Heavy Ind Ltd | Battery device |
JP2010249793A (en) * | 2009-02-27 | 2010-11-04 | Hitachi Ltd | Battery monitoring system and method of diagnosing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12088127B2 (en) | 2019-02-19 | 2024-09-10 | Lg Energy Solution, Ltd. | IC chip and circuit system using the same |
Also Published As
Publication number | Publication date |
---|---|
JP6199294B2 (en) | 2017-09-20 |
WO2014038180A1 (en) | 2014-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9780591B2 (en) | Adaptive battery pack | |
US9030167B2 (en) | Power source apparatus | |
US10326288B2 (en) | Method and device for the voltage-controlled self-deactivation of electronic components or battery cells | |
US9219367B2 (en) | Method and apparatus for controlling a power supply device with aid of full-featured modularized functional blocks | |
US9711977B2 (en) | Battery management system for transmitting secondary protection signal and diagnosis signal using a small number of insulation elements | |
US8912757B2 (en) | Traction battery with increased reliability | |
US10056653B2 (en) | Battery management device and power supply device | |
US20110140662A1 (en) | Balancing system for a battery pack | |
US11552375B2 (en) | Energy storage module, energy storage system, vehicle and method for measuring a cell voltage | |
EP2239810A1 (en) | Battery pack and secondary battery system | |
JP2010146991A (en) | Battery pack system | |
CN108494041B (en) | Balance correction device and power storage system | |
US9368980B2 (en) | Battery control circuit | |
JP2014082152A (en) | Voltage detection device | |
CN109116262B (en) | Battery monitoring system, signal transmission method, and semiconductor device | |
CN105680505A (en) | Vehicle emergency starting device | |
JP6199294B2 (en) | Power supply and management device | |
JP6869966B2 (en) | Management equipment and power supply system | |
JP2010200601A (en) | Voltage-detection components and substrate having the same | |
WO2017110049A1 (en) | Battery management system | |
US20170066343A1 (en) | Voltage monitoring system | |
JP2016165192A (en) | Overvoltage protection circuit | |
JP2014106054A (en) | Battery management device and power supply device | |
US10680292B2 (en) | Battery management system | |
EP3316389B1 (en) | Battery system, communication circuit for a battery system and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6199294 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |