JP2014082152A - Voltage detection device - Google Patents

Voltage detection device Download PDF

Info

Publication number
JP2014082152A
JP2014082152A JP2012230606A JP2012230606A JP2014082152A JP 2014082152 A JP2014082152 A JP 2014082152A JP 2012230606 A JP2012230606 A JP 2012230606A JP 2012230606 A JP2012230606 A JP 2012230606A JP 2014082152 A JP2014082152 A JP 2014082152A
Authority
JP
Japan
Prior art keywords
battery monitoring
voltage detection
voltage
main microcomputer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2012230606A
Other languages
Japanese (ja)
Inventor
Hironao FUJII
宏尚 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2012230606A priority Critical patent/JP2014082152A/en
Priority to CN201380054541.6A priority patent/CN104737360A/en
Priority to PCT/JP2013/076144 priority patent/WO2014061422A1/en
Priority to DE112013005063.3T priority patent/DE112013005063T5/en
Priority to US14/435,353 priority patent/US9519030B2/en
Publication of JP2014082152A publication Critical patent/JP2014082152A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • H02J7/0021
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a voltage detection device capable of preventing variation in a unit cell by making current consumption of each voltage detection means constant.SOLUTION: Battery monitoring ICs 21-2n operate by respectively receiving power supplied from corresponding blocks CB-CB, and respectively detect both-end voltages of unit cells C-Cconfiguring the corresponding blocks CB-CB. A main microcomputer 3 receives detection results of the battery monitoring ICs 21-2n. The plurality of battery monitoring ICs 21-2n are communicably connected in series, and one battery monitoring IC 2n and the main microcomputer 3 are communicably connected via an insulation I/F 4. There are provided pull-down resistors R-Rapplied with currents from the blocks CB-CBcorresponding to the battery monitoring ICs 21-2(n-1) other than the battery monitoring IC 2n communicably connected with the main microcomputer 3 via the insulation I/F 4, and thereby, making currents consumed at the battery monitoring ICs 21-2n uniform.

Description

本発明は、電圧検出装置に係り、特に、互いに直列接続された複数の単位電池の両端電圧を検出する電圧検出装置に関するものである。   The present invention relates to a voltage detection device, and more particularly to a voltage detection device that detects voltages across a plurality of unit cells connected in series with each other.

例えば、ハイブリッド自動車や電気自動車に搭載される組電池は、互いに直列接続された複数の単位電池から構成され、その両端に例えば200V等の高電圧を発生させ、この電力を用いて駆動用モータを駆動させる。このような組電池においては、過放電状態や過充電状態とならないように、各単位電池の両端電圧を検出して監視する必要がある。   For example, an assembled battery mounted on a hybrid vehicle or an electric vehicle is composed of a plurality of unit batteries connected in series with each other. A high voltage such as 200 V is generated at both ends, and a drive motor is used by using this power. Drive. In such an assembled battery, it is necessary to detect and monitor the voltage across each unit battery so as not to be overdischarged or overcharged.

上述した各単位電池の両端電圧を検出する電圧検出装置として、図4に示すようなものが提案されている(特許文献1、2)。同図に示すように、電圧検出装置100は、組電池BHを構成する互いに直列接続された複数の単位電池C11〜Cmn(m、nは任意の整数)の両端電圧を検出する装置である。 As a voltage detection device for detecting the voltage across each unit battery described above, a device as shown in FIG. 4 has been proposed (Patent Documents 1 and 2). As shown in the figure, the voltage detection device 100 is a device that detects the voltage across a plurality of unit batteries C 11 to C mn (m and n are arbitrary integers) that are connected in series to constitute the assembled battery BH. is there.

上記電圧検出装置100は、単位電池C11〜Cmnの両端電圧をそれぞれ検出する複数の電池監視IC201〜20nと、各電池監視IC201〜20nに対して検出命令を出力したり、各電池監視IC201〜20nによる検出電圧を受け取るメインマイコン300と、を備えている。上記電池監視IC201〜20nは、それぞれの耐圧を下げるため、単位電池C11〜Cmnを複数に分割したブロックCB1〜CBn毎に設けられ、各ブロックCB1〜CBnから電源供給を受けて動作している。また、上記メインマイコン300は、組電池BHとは異なる低圧バッテリからの電源供給を受けて動作する。 The voltage detecting device 100 includes a plurality of battery monitoring IC201~20n for detecting a voltage across the unit cell C 11 -C mn respectively, and outputs a detection command for each battery monitoring IC201~20n, the battery monitoring IC201 Main microcomputer 300 that receives the detection voltage of ˜20n. It said battery monitoring IC201~20n is to lower the respective breakdown voltage, provided the unit cells C 11 -C mn for each block CB 1 to CB n divided into a plurality of receiving a power supply from each block CB 1 to CB n Is working. The main microcomputer 300 operates by receiving power supply from a low voltage battery different from the assembled battery BH.

上述したような低圧バッテリから電源供給を受けるメインマイコン300と高圧の組電池BHから電源供給を受ける電池監視IC201〜20nとの間の通信は、絶縁を図った状態で行う必要があり、絶縁インタフェース(I/F)400を用いて行う必要がある。このため、1つの絶縁インタフェース400で通信ができ、しかも、電池監視IC201〜20nの増減等に容易に対応でき拡張性が高いデイジーチェーン方式が使用される。   Communication between the main microcomputer 300 that receives power from the low-voltage battery as described above and the battery monitoring ICs 201 to 20n that receives power from the high-voltage assembled battery BH must be performed in an insulated state. (I / F) 400 must be used. For this reason, a daisy chain method is used in which communication can be performed with one insulating interface 400, and the battery monitoring ICs 201 to 20n can be easily accommodated to increase and decrease, etc. and has high expandability.

デイジーチェーン方式によれば、図4に示すように、電池監視IC201〜20nは、互いに直列接続され、複数の電池監視IC201〜20nの1つである最高電位の電池監視IC20nのみがメインマイコン300と絶縁I/F400を介して通信可能に接続されている。以上の構成によれば、電池監視IC20nは絶縁I/F400を介してメインマイコン300と直接通信し、電池監視IC201〜20(n−1)は、自身よりも高電位側の電池監視IC202〜20n及び絶縁I/F400を介してメインマイコン300と通信を行う。   According to the daisy chain method, as shown in FIG. 4, the battery monitoring ICs 201 to 20n are connected in series, and only the highest potential battery monitoring IC 20n, which is one of the plurality of battery monitoring ICs 201 to 20n, is connected to the main microcomputer 300. Communication is established via the insulating I / F 400. According to the above configuration, the battery monitoring IC 20n communicates directly with the main microcomputer 300 via the insulation I / F 400, and the battery monitoring ICs 201 to 20 (n-1) are battery monitoring ICs 202 to 20n on the higher potential side than themselves. In addition, communication with the main microcomputer 300 is performed via the insulation I / F 400.

しかしながら、上述したデイジーチェーン方式によれば、メインマイコン300と通信する電池監視IC20nと、電池監視IC間通信のみでメインマイコン300と直接通信しない電池監視IC201〜20(n−1)と、が存在する。メインマイコン300と直接通信する電池監視IC20nについては、メインマイコン300との通信のための絶縁I/F400への電源供給があり、消費電流が増加する。また、電池監視IC201は、高電位側の電池監視IC202と通信するのみで低電位側の電池監視ICとの通信がない分だけ消費電流が減少する。さらに、電池監視IC201〜20nの消費電流の個体のばらつきにより、各電池監視IC201〜20nに電源供給するブロックCB1〜CBn毎に消費電流のばらつきが発生する。 However, according to the daisy chain method described above, there are the battery monitoring IC 20n that communicates with the main microcomputer 300, and the battery monitoring ICs 201 to 20 (n-1) that do not communicate directly with the main microcomputer 300 only by communication between the battery monitoring ICs. To do. For the battery monitoring IC 20n that communicates directly with the main microcomputer 300, power is supplied to the insulation I / F 400 for communication with the main microcomputer 300, and current consumption increases. Further, the battery monitoring IC 201 only communicates with the battery monitoring IC 202 on the high potential side, and the current consumption is reduced by the amount of no communication with the battery monitoring IC on the low potential side. Further, due to individual variations in current consumption of the battery monitoring ICs 201 to 20n, variations in current consumption occur for each of the blocks CB 1 to CB n that supply power to the battery monitoring ICs 201 to 20n.

この消費電流のばらつきにより、単位電池C11〜Cmnの両端電圧のばらつきが発生すると、通常充放電に使用する電池容量の使用範囲が狭められ、電池容量を有効に使用できなくなり無駄が発生する、という問題が生じていた。また、単位電池C11〜Cmnの両端電圧のばらつきを調整するための均等化放電が必要となっていた。 If variation in the voltage across the unit batteries C 11 to C mn occurs due to this variation in current consumption, the range of battery capacity normally used for charging and discharging is narrowed, and the battery capacity cannot be used effectively, resulting in waste. There was a problem. In addition, equalizing discharge is required to adjust the variation in the voltage across the unit cells C 11 to C mn .

特開2011−134577号公報JP 2011-134777 A 特開2011−50176号公報JP 2011-50176 A

そこで、本発明は、各電圧検出手段の消費電流を一定にすることにより、単位電池のばらつきを防止する電圧検出装置を提供することを課題とする。   Therefore, an object of the present invention is to provide a voltage detection device that prevents variations in unit cells by making the current consumption of each voltage detection means constant.

上述した課題を解決するための請求項1記載の発明は、互いに直列接続された複数の単位電池を複数に分割したブロック毎に対応して設けられると共に前記対応するブロックからの電源供給を受けて動作し、当該対応するブロックを構成する前記単位電池の両端電圧を検出する電圧検出手段と、前記電圧検出手段からの検出結果を受け取る制御手段と、を備え、前記複数の電圧検出手段が通信可能に直列に接続され、前記複数の電圧検出手段の1つと前記制御手段とが絶縁インタフェースを介して通信可能に接続される電圧検出装置において、前記制御手段と絶縁インタフェースを介して通信可能に接続された電圧検出手段を除いた電圧検出手段に前記対応するブロックからの電流を流して、前記電圧検出手段で消費する電流を均一にする電流消費体を設けたことを特徴とする電圧検出装置に存する。   The invention according to claim 1 for solving the above-described problem is provided corresponding to each block obtained by dividing a plurality of unit cells connected in series with each other and receiving power supply from the corresponding block. A voltage detecting unit that operates and detects a voltage across the unit battery constituting the corresponding block; and a control unit that receives a detection result from the voltage detecting unit, and the plurality of voltage detecting units can communicate with each other. Connected in series, and one of the plurality of voltage detection means and the control means are connected to be able to communicate with each other via an insulation interface, and are connected to be able to communicate with the control means via an insulation interface. The current from the corresponding block is supplied to the voltage detection means excluding the detected voltage detection means, and the current consumed by the voltage detection means is made uniform. Lies in the voltage detection device, characterized in that a consumption body.

請求項2に記載の発明は、前記直列に接続された複数の電圧検出手段のうち一端側の1つと前記制御手段とが絶縁インタフェースを介して通信可能に接続されていることを特徴とする請求項1に記載の電圧検出装置に存する。   The invention according to claim 2 is characterized in that one of one end side of the plurality of voltage detection means connected in series and the control means are communicably connected via an insulating interface. It exists in the voltage detection apparatus of claim | item 1.

請求項3に記載の発明は、前記直列に接続された複数の電圧検出手段のうち他端側の1つに設けた前記電流消費体が、他の前記電流消費体よりも大きな電流が流れるように設けられていることを特徴とする請求項2に記載の電圧検出装置に存する。   According to a third aspect of the present invention, the current consumer provided at one of the other end sides of the plurality of voltage detection means connected in series is configured such that a larger current flows than the other current consumer. The voltage detection device according to claim 2, wherein the voltage detection device is provided in the voltage detection device.

以上説明したように請求項1記載の発明によれば、電流消費体を設けて各電圧検出手段の消費電流を一定にすることにより、単位電池のばらつきを防止できる。   As described above, according to the first aspect of the present invention, it is possible to prevent variations in unit cells by providing a current consumer and making the current consumption of each voltage detection means constant.

請求項2記載の発明によれば、直列に接続された複数の電圧検出手段のうち一端側の1つと制御手段とが絶縁インタフェースを介して通信可能に接続されているので、全ての電圧検出手段を同じ構成にすることができる。   According to the second aspect of the present invention, since one of the one end side of the plurality of voltage detecting means connected in series and the control means are communicably connected via the insulating interface, all the voltage detecting means Can have the same configuration.

請求項3記載の発明によれば、直列に接続された複数の電圧検出手段のうち他端側の1つに設けた電流消費体が、他の電流消費体よりも大きな電流が流れるように設けられているので、より確実に各電圧検出手段の消費電流を一定にすることができる。   According to the third aspect of the present invention, the current consumer provided at one of the other ends of the plurality of voltage detection means connected in series is provided so that a larger current flows than the other current consumer. Therefore, the current consumption of each voltage detection means can be made constant with more certainty.

本発明の電圧検出装置の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of the voltage detection apparatus of this invention. 図1に示す電圧検出装置を構成する電池監視ICの詳細を示す図である。It is a figure which shows the detail of the battery monitoring IC which comprises the voltage detection apparatus shown in FIG. 図1に示すメインマイコンの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the main microcomputer shown in FIG. 従来の電圧検出装置の一例を示すブロック図である。It is a block diagram which shows an example of the conventional voltage detection apparatus.

以下、本発明の電圧検出装置について図1を参照して説明する。同図に示すように、電圧検出装置1は、組電池BHを構成する互いに直列接続された複数の単位電池C11〜Cmnの両端電圧をそれぞれ検出する装置である。上記単位電池C11〜Cmn(m、nは任意の整数)は、本実施形態では1つの二次電池から構成されているが、複数の二次電池から構成されていてもよい。 The voltage detection device of the present invention will be described below with reference to FIG. As shown in FIG. 1, the voltage detection device 1 is a device that detects the voltages at both ends of a plurality of unit cells C 11 to C mn that are connected in series to each other that constitute the assembled battery BH. The unit batteries C 11 to C mn (m and n are arbitrary integers) are configured from one secondary battery in the present embodiment, but may be configured from a plurality of secondary batteries.

上記組電池BHは、例えば、エンジンと電動モータ(何れも図示せず)を走行駆動源として併用するハイブリッド電気自動車において前記電動モータの電源として用いられ、その両端には、上記電動モータが必要に応じて負荷として接続されると共に、オルタネータ等(図示せず)が必要に応じて充電器として接続される。また、上記単位電池C11〜Cmnは、n個のブロックCB1〜CBnに分けられている。各ブロックCB1〜CBnは各々、m個の単位電池で構成されている。 The assembled battery BH is used, for example, as a power source of the electric motor in a hybrid electric vehicle using an engine and an electric motor (both not shown) as a driving source, and the electric motor is required at both ends thereof. Depending on necessity, an alternator or the like (not shown) is connected as a charger. The unit cells C 11 to C mn are divided into n blocks CB 1 to CB n . Each of the blocks CB 1 to CB n is composed of m unit batteries.

上記電圧検出装置1は、図1に示すように、各単位電池C11〜Cmnの両端電圧をそれぞれ検出するn個の電圧検出手段としての電池監視IC21〜2nと、各電池監視IC21〜2nに対して電圧検出命令を出力したり、各電池監視IC21〜2nによる検出電圧を受け取る制御手段としてのメインマイコン3と、を備えている。上記電池監視IC21〜2nは、各ブロックCB1〜CBn毎に設けられ、各ブロックCB1〜CBnから電源供給を受けて動作している。また、上記電池監視IC21〜2nは、対応するブロックCB1〜CBnを構成する単位電池C11〜Cmnの両端電圧をそれぞれ検出する。メインマイコン3は、組電池BHとは電気的に絶縁された低圧バッテリ(図示せず)からの電源供給を受けて動作している。 As shown in FIG. 1, the voltage detection device 1 includes battery monitoring ICs 21 to 2n as n voltage detection means for detecting voltages across the unit batteries C 11 to C mn , and battery monitoring ICs 21 to 2n. And a main microcomputer 3 as a control means for receiving a detection voltage from each of the battery monitoring ICs 21 to 2n. It said battery monitoring IC21~2n is provided for each block CB 1 to CB n, operating by receiving power supply from the blocks CB 1 to CB n. Also, the battery monitoring IC21~2n is the voltage across the corresponding unit cells C 11 constituting the block CB 1 to CB n to -C mn respectively detect. The main microcomputer 3 operates by receiving power supply from a low voltage battery (not shown) that is electrically insulated from the assembled battery BH.

上記電圧検出装置1は所謂デイジーチェーン方式の装置であり、各電池監視IC21〜2nは、通信ライン5を介して通信可能に互いに直列接続されている。通信ライン5は、各電池監視IC21〜2n間に接続され、各電池監視IC22〜2nから低電位側に隣接する電池監視IC21〜2(n−1)にデータを送信するための送信ライン51と、各電池監視IC21〜2(n−1)から高電位側に隣接する電池監視IC22〜2nにデータを送信するための受信ライン52と、から構成されている。以上の構成により、各電池監視IC21〜2nは、隣接する電池監視IC21〜2nと双方向通信可能に設けられている。   The voltage detection device 1 is a so-called daisy chain type device, and the battery monitoring ICs 21 to 2n are connected in series to each other via a communication line 5 so as to communicate with each other. The communication line 5 is connected between the battery monitoring ICs 21 to 2n, and a transmission line 51 for transmitting data from the battery monitoring ICs 22 to 2n to the battery monitoring ICs 21 to 2 (n-1) adjacent to the low potential side. The battery monitoring ICs 21 to 2 (n−1) are configured to include reception lines 52 for transmitting data to the battery monitoring ICs 22 to 2 n adjacent to the high potential side. With the above configuration, each of the battery monitoring ICs 21 to 2n is provided so as to be capable of bidirectional communication with the adjacent battery monitoring ICs 21 to 2n.

また、直列に接続された複数の電池監視IC21〜2nのうち最高電位側(一端側)の電池監視IC2nのみ通信ライン6を介してメインマイコン3に通信可能に接続されている。通信ライン6には、絶縁I/F4が設けられていて、電池監視IC2nとメインマイコン3との通信を電気的に絶縁した状態で行うことができる。絶縁I/F4としては、例えば発光素子及び受光素子からなるフォトカプラといった光を媒体にしたものや、磁気カプラといった磁気を媒体にしたものが公知である。通信ライン6は、電池監視IC2nにデータを送信するための送信ライン61と、電池監視IC2nからのデータを受信するための受信ライン62と、から構成され、メインマイコン3は、電池監視IC2nと双方向通信可能に設けられている。   Further, only the battery monitoring IC 2n on the highest potential side (one end side) among the plurality of battery monitoring ICs 21 to 2n connected in series is connected to the main microcomputer 3 via the communication line 6. The communication line 6 is provided with an insulation I / F 4, and communication between the battery monitoring IC 2 n and the main microcomputer 3 can be performed in an electrically insulated state. As the insulating I / F 4, for example, a light medium such as a photocoupler including a light emitting element and a light receiving element, and a magnetic medium such as a magnetic coupler are known. The communication line 6 includes a transmission line 61 for transmitting data to the battery monitoring IC 2n and a receiving line 62 for receiving data from the battery monitoring IC 2n. It is provided so that communication can be performed.

次に、上記電池監視IC21〜2nの構成の詳細について図2を参照して説明する。なお、電池監視IC21〜2nは、互いに同等の構成であるため、ここでは任意の電池監視IC2pを代表して説明する(pは1以上n以下の任意の整数)。図2に示すように、電池監視IC2pは、対応するブロックCBpを構成する各単位電池C1p〜Cmpの+側が接続される端子V1〜Vmと、単位電池C1pの−側が接続される端子VSS1と、を備えている。 Next, details of the configuration of the battery monitoring ICs 21 to 2n will be described with reference to FIG. Since the battery monitoring ICs 21 to 2n have the same configuration, the arbitrary battery monitoring IC 2p will be described here as a representative (p is an arbitrary integer between 1 and n). As shown in FIG. 2, in the battery monitoring IC 2p, the terminals V 1 to V m to which the + side of each unit battery C 1p to C mp constituting the corresponding block CB p is connected and the − side of the unit battery C 1p are connected. And a terminal V SS1 to be operated .

また、電池監視IC2pは、端子V1〜Vmの1つを後述するA/D変換器8の入力に接続する切替スイッチ7と、入力されたアナログの電圧をデジタルに変換するA/D変換器8と、切替スイッチ7を制御する制御ロジック回路9と、A/D変換器8や制御ロジック回路9を制御するコントロール部10と、これらA/D変換器8、制御ロジック回路9及びコントロール部10に供給する電源電圧を生成する電源回路11と、遮断スイッチSと、電源端子VDDと、を備えている。 The battery monitoring IC2p includes a changeover switch 7 to connect one of terminals V 1 ~V m to the input of the A / D converter 8 to be described later, A / D converter for converting an input analog voltage to a digital 8, a control logic circuit 9 for controlling the changeover switch 7, a control unit 10 for controlling the A / D converter 8 and the control logic circuit 9, the A / D converter 8, the control logic circuit 9 and the control unit. 10 includes a power supply circuit 11 for generating a power supply voltage to be supplied to 10, a cutoff switch S, and a power supply terminal V DD .

上記電源回路11は、対応するブロックCBpの両端電圧から所定電圧の電源電圧を生成し、生成した電源電圧をA/D変換器8、制御ロジック回路9やコントロール部10に供給する。遮断スイッチSは、ブロックCBpの+側と電源回路11との間に設けられている。遮断スイッチSは、電源回路11に対するブロックCBpの両端電圧の供給をオンオフして、電池監視IC2pに対する電源供給をオンオフするスイッチである。また、電源端子VDDからは、電源回路11が生成した電源電圧の+側が出力される。 The power supply circuit 11 generates a power supply voltage of a predetermined voltage from the voltage across the corresponding block CB p, and supplies the generated power supply voltage A / D converter 8, the control logic circuit 9 and the control unit 10. The cutoff switch S is provided between the positive side of the block CB p and the power supply circuit 11. Shutdown switch S is turned on and off the supply of voltage across the block CB p with respect to the power supply circuit 11 is a switch for turning on and off the power supply to the battery monitoring IC2p. Further, the positive side of the power supply voltage generated by the power supply circuit 11 is output from the power supply terminal V DD .

また、上述した電圧検出装置1は、図1に示すように、電源ライン12と、絶縁I/F13と、n個のレベルシフト回路14と、を備えていて、これらによりメインマイコン3からの電源信号の出力に応じて遮断スイッチSを一斉にオンオフできるようになっている。電源ライン12は、一端がメインマイコン3に接続され、他端が複数に分岐されて各電池監視IC21〜2nの遮断スイッチSを構成するトランジスタのベースに接続されている。絶縁I/F13は、電源ライン12の分岐前の一端に設けられていて、遮断スイッチSとメインマイコン3とを電気的に絶縁した状態で結合するものである。n個のレベルシフト回路14は、電源ライン12の分岐した各部に設けられていて、メインマイコン3から送信された電源信号を、遮断スイッチSをオンオフするために適切な信号レベルに変換する。   Further, as shown in FIG. 1, the voltage detection device 1 described above includes a power supply line 12, an insulation I / F 13, and n number of level shift circuits 14, and these provide power supply from the main microcomputer 3. The cutoff switches S can be turned on and off all at once according to the output of the signal. One end of the power supply line 12 is connected to the main microcomputer 3, and the other end is branched into a plurality of branches, and is connected to the bases of the transistors constituting the cutoff switches S of the battery monitoring ICs 21 to 2n. The insulation I / F 13 is provided at one end of the power supply line 12 before branching, and couples the cutoff switch S and the main microcomputer 3 in an electrically insulated state. The n level shift circuits 14 are provided in each branched part of the power supply line 12 and convert the power signal transmitted from the main microcomputer 3 into an appropriate signal level for turning on / off the cutoff switch S.

上記電池監視IC2nの電源端子VDDとブロックCBnの−側との間には、絶縁I/F4、13の高圧側が接続され、絶縁I/F4、13の高圧側は、ブロックCBnからの電源供給を受けて動作している。絶縁I/F4、13の低圧側は、低圧バッテリ(図示せず)からの電源供給を受けて動作している。また、上記電池監視IC2nを除いた電池監視IC21〜2(n−1)の電源端子VDDと各電池監視IC21〜2(n−1)に対応するブロックCB1〜CBn-1の−側との間には、電流消費体としてのプルダウン抵抗R1〜Rn-1がそれぞれ接続されている。このプルダウン抵抗R1〜Rn-1は各々、各電池監視IC21〜2(n−1)に対応するブロックCB1〜CBn-1からの電流を流して、各電池監視IC21〜2nで消費する電流を均一にするための抵抗である。 The battery monitoring IC2n power supply terminal V DD and the block CB n - between the side pressure of the insulating I / F4,13 is connected, the high pressure side of the insulating I / F4,13 is from the block CB n Operating with power supply. The low voltage side of the insulation I / Fs 4 and 13 is operated by receiving power from a low voltage battery (not shown). Further, the power supply terminals V DD of the battery monitoring ICs 21 to 2 (n−1) excluding the battery monitoring IC 2n and the negative side of the blocks CB 1 to CB n−1 corresponding to the battery monitoring ICs 21 to 2 (n−1). Are connected to pull-down resistors R 1 to R n-1 as current consumers. The pull-down resistors R 1 to R n-1 respectively pass currents from the blocks CB 1 to CB n-1 corresponding to the battery monitoring ICs 21 to 2 (n−1) and are consumed by the battery monitoring ICs 21 to 2n. It is a resistor for making the current to be made uniform.

上述した背景技術でも説明したように、デイジーチェーン方式の電圧検出装置1では、メインマイコン3に接続される電池監視IC2nの消費電流が最も多くなる。また、直列接続された複数の電池監視IC21〜2nのうち最低電位側(他端側)の電池監視IC21での消費電流が最も少なくなる。上述したようにプルダウン抵抗R1〜Rn-1を追加することによって、このプルダウン抵抗R1〜Rn-1に流れる消費電流によって各電池監視IC21〜2nの消費電流のばらつきに対して、最大の消費電流となる電池監視IC2nの消費電流に合わせるように、その他の電池監視IC21〜2(n−1)の消費電流を増加させ、消費電流のばらつきがなく均一と成るように調整する。 As described in the background art described above, in the daisy chain voltage detection device 1, the current consumption of the battery monitoring IC 2n connected to the main microcomputer 3 is the largest. Moreover, the current consumption in the battery monitoring IC 21 on the lowest potential side (the other end side) among the plurality of battery monitoring ICs 21 to 2n connected in series is the smallest. As described above, by adding the pull-down resistors R 1 to R n-1 , it is possible to maximize the variation in the consumption current of each of the battery monitoring ICs 21 to 2n due to the consumption current flowing through the pull-down resistors R 1 to R n-1. The current consumption of the other battery monitoring ICs 21 to 2 (n-1) is increased so as to match the current consumption of the battery monitoring IC 2n, which is the current consumption, and the current consumption is adjusted so as to be uniform without variation.

なお、各電池監視IC21〜2nの消費電流のばらつきの原因としては以下の要因が考えられる。
(1)メインマイコン3と通信する電池監視IC2nについて、メインマイコン3と通信のための絶縁I/F4、13への電源供給のための消費電流増加分に起因するばらつき
(2)電池監視IC21の低電位側の電池監視ICとの通信がないことに起因するばらつき
(3)電池監視IC21〜2nごとの消費電流の個体ばらつき
In addition, the following factors can be considered as a cause of the variation in the consumption current of each of the battery monitoring ICs 21 to 2n.
(1) Variations in battery monitoring IC 2n communicating with main microcomputer 3 due to an increase in current consumption for power supply to insulation I / Fs 4 and 13 for communication with main microcomputer 3 (2) Battery monitoring IC 21 Variation due to lack of communication with battery monitoring IC on low potential side (3) Individual variation in current consumption for each of battery monitoring ICs 21-2n

そして、これらの原因を考慮して電池監視IC21〜2nの消費電流が均一になるようにプルダウン抵抗R1〜Rn-1の抵抗値を定める。詳しく説明すると、上述したように電池監視IC21の消費電流が最も少ないので、この電池監視IC21に設けられるプルダウン抵抗R1に流れる電流が、他のプルダウン抵抗R2〜Rn-1に流れる電流よりも大きな電流が流れるような抵抗値に設けられている。 Then, considering these causes, the resistance values of the pull-down resistors R 1 to R n-1 are determined so that the current consumption of the battery monitoring ICs 21 to 2n becomes uniform. More specifically, since the current consumption of the battery monitoring IC 21 is the smallest as described above, the current flowing through the pull-down resistor R 1 provided in the battery monitoring IC 21 is greater than the current flowing through the other pull-down resistors R 2 to R n−1. The resistance value is such that a large current flows.

次に、上述した構成の電圧検出装置1の動作について図3を参照して説明する。メインマイコン3は、イグニッションスイッチのオン又はオフなどのトリガに応じて電圧検出処理を開始する。まず、メインマイコン3は、電源ライン12に電源信号を送信する(ステップS1)。この電源信号の送信によって全ての電池監視IC21〜2nの遮断スイッチSがオンされて、各電池監視IC21〜2nの各部に電源回路11からの電源電圧が供給されて、電池監視IC21〜2nが動作を開始する。また、遮断スイッチSのオンに応じて電源端子VDDからも電源電圧が出力され、プルダウン抵抗R1〜Rn-1に電流が流れ始める。 Next, the operation of the voltage detection apparatus 1 having the above-described configuration will be described with reference to FIG. The main microcomputer 3 starts voltage detection processing in response to a trigger such as turning on or off the ignition switch. First, the main microcomputer 3 transmits a power signal to the power line 12 (step S1). By the transmission of the power signal, the cutoff switches S of all the battery monitoring ICs 21 to 2n are turned on, the power supply voltage from the power supply circuit 11 is supplied to each part of each battery monitoring IC 21 to 2n, and the battery monitoring ICs 21 to 2n are operated. To start. Further, when the cutoff switch S is turned on, a power supply voltage is also output from the power supply terminal V DD, and current starts to flow through the pull-down resistors R 1 to R n−1 .

その後、メインマイコン3は、各電池監視IC21〜2n宛に順次、電圧検出命令を出力して、電池監視IC21〜2nに単位電池C11〜Cmnの+側電圧を検出させる(ステップS2)。各電池監視IC21〜2nのコントロール部10は、電圧検出命令を受け取るとその宛先が自身宛か否かを判定する。自身宛ではない電圧検出命令を受信すると、低電位側に隣接する電池監視IC21〜2(n−1)にその電圧検出命令を転送する。一方、自身宛の電圧検出命令を受信すると、制御ロジック回路9を制御して切替スイッチ7により端子V1〜Vmを順次A/D変換器8の入力に接続する。これにより、A/D変換器8は、端子V1〜Vmに入力された電圧を順次A/D変換し、これをコントロール部10が検出電圧として順次メインマイコン3に向けて送信する。電池監視IC2nから送信された検出電圧は、直接メインマイコン3に送信される。電池監視IC21〜2(n−1)から送信された検出電圧は、自身よりも高電位側の電池監視IC22〜2nを経由してメインマイコン3に送信される。これにより、単位電池C11〜Cmnの+側電圧が順次メインマイコン3に送信される。 Thereafter, the main microcomputer 3 sequentially addressed each battery monitoring IC21~2n, and outputs a voltage detection command, to detect the positive side voltage of the unit cell C 11 -C mn in battery monitoring IC21~2n (step S2). When receiving the voltage detection command, the control unit 10 of each of the battery monitoring ICs 21 to 2n determines whether or not the destination is addressed to itself. When a voltage detection command not addressed to itself is received, the voltage detection command is transferred to the battery monitoring ICs 21 to 2 (n−1) adjacent to the low potential side. On the other hand, when the voltage detection command addressed to itself is received, the control logic circuit 9 is controlled, and the terminals V 1 to V m are sequentially connected to the input of the A / D converter 8 by the changeover switch 7. As a result, the A / D converter 8 sequentially A / D-converts the voltages input to the terminals V 1 to V m , and the control unit 10 sequentially transmits the detected voltages to the main microcomputer 3. The detection voltage transmitted from the battery monitoring IC 2n is directly transmitted to the main microcomputer 3. The detection voltage transmitted from the battery monitoring ICs 21 to 2 (n−1) is transmitted to the main microcomputer 3 via the battery monitoring ICs 22 to 2n on the higher potential side than itself. Thereby, the + side voltages of the unit batteries C 11 to C mn are sequentially transmitted to the main microcomputer 3.

マインマイコン3は、全ての単位電池C11〜Cmnの両端電圧の検出が終了すると、電源信号の送信を停止する(ステップS3)。これにより、全ての電池監視IC21〜2nの遮断スイッチSがオフされて、電源回路11からの電源電圧の供給が遮断されて、電池監視IC21〜2nが動作を停止する。また、遮断スイッチSのオフに応じて電源端子VDDからの電源電圧の出力が遮断され、プルダウン抵抗R1〜Rn-1に流れる電流も遮断される。 When the main microcomputer 3 finishes detecting the voltages across all the unit batteries C 11 to C mn , the main microcomputer 3 stops the transmission of the power signal (step S 3). Thereby, the cut-off switches S of all the battery monitoring ICs 21 to 2n are turned off, the supply of the power supply voltage from the power supply circuit 11 is cut off, and the battery monitoring ICs 21 to 2n stop operating. Further, the output of the power supply voltage from the power supply terminal V DD is cut off in response to turning off of the cut-off switch S, and the current flowing through the pull-down resistors R 1 to R n-1 is also cut off.

上述した実施形態によれば、プルダウン抵抗R1〜Rn-1を設けて各電池監視IC21〜2nの消費電流を一定にすることにより、単位電池C11〜Cmnのばらつきを防止できる。よって、メインマイコン3と通信のための絶縁I/F4への電源供給のための消費電流増加分による消費電流のばらつきが解消される。また、電圧検出装置1のデイジー通信による多段接続構成における低電位側への通信接続有無による消費電流のばらつきが解消される(電池監視IC21の低電位側ICとの通信がないことによる消費電流ばらつきが解消される)。電池監視IC21〜2n毎の消費電流の個体ばらつきが解消される。結果、各ブロックCB1〜CBn毎の両端電圧のばらつきを防止することができ、通常充放電に使用する電池容量の使用範囲が狭められず、電池容量を有効に使用できるようになり、無駄がなくなり、車両燃費向上につながる。また、単位電池C11〜Cmnのばらつき調整のための均等化放電が不要又は低頻度ですむようになり、抵抗消費式放電の場合、電池容量を無駄に消費することがなくなる。 According to the embodiment described above, by providing the pull-down resistors R 1 to R n-1 and making the current consumption of each of the battery monitoring ICs 21 to 2n constant, it is possible to prevent variations in the unit cells C 11 to C mn . Therefore, the variation in consumption current due to the increase in consumption current for power supply to the insulation I / F 4 for communication with the main microcomputer 3 is eliminated. Further, the variation in current consumption due to the presence or absence of communication connection to the low potential side in the multistage connection configuration by the daisy communication of the voltage detection device 1 is eliminated (the current consumption variation due to the absence of communication of the battery monitoring IC 21 with the low potential side IC). Is resolved). Individual variation in current consumption for each of the battery monitoring ICs 21 to 2n is eliminated. As a result, it is possible to prevent variations in both-end voltages for each of the blocks CB 1 to CB n, and the use range of the battery capacity normally used for charging / discharging is not narrowed, and the battery capacity can be used effectively, which is wasteful. This will improve vehicle fuel efficiency. Further, the equalizing discharge for adjusting the variation of the unit batteries C 11 to C mn is unnecessary or less frequently, and in the case of the resistance consumption type discharging, the battery capacity is not wasted.

また、上述した実施形態によれば、直列に接続された複数の電池監視IC21〜2nのうち一端側の1つである電池監視IC2nとメインマイコン3とが絶縁I/F4を介して通信可能に接続されているので、全ての電池監視IC21〜2nを同じ構成にすることができる。(例えば電池監視IC22をメインマイコン3と接続するためには、電池監視IC23、21に加えてメインマイコン3と接続するための端子を設ける必要があり、電池監視IC22だけ端子数が多いものを用いる必要がある。)   Further, according to the embodiment described above, the battery monitoring IC 2n that is one of the battery monitoring ICs 21 to 2n connected in series and the main microcomputer 3 can communicate with each other via the insulation I / F 4. Since they are connected, all the battery monitoring ICs 21 to 2n can have the same configuration. (For example, in order to connect the battery monitoring IC 22 to the main microcomputer 3, it is necessary to provide a terminal for connecting to the main microcomputer 3 in addition to the battery monitoring ICs 23 and 21, and the battery monitoring IC 22 having a large number of terminals is used. There is a need.)

また、上述した実施形態によれば、直列接続された複数の電池監視IC21〜2nのうち他端側の1つである電池監視IC21に設けたプルダウン抵抗R1が、他のプルダウン抵抗R2〜Rn-1よりも大きな電流が流れるように設けられているので、より確実に電池監視IC21〜2nの消費電流を一定にすることができる。 Further, according to the above-described embodiment, the pull-down resistor R 1 provided in the battery monitoring IC 21 that is one of the other ends of the plurality of battery monitoring ICs 21 to 2n connected in series is replaced with the other pull-down resistors R 2 to R 2 . Since it is provided such that a current larger than R n-1 flows, the current consumption of the battery monitoring ICs 21 to 2n can be made more reliable.

なお、上述した実施形態では、最高電位側の電池監視IC2nが絶縁I/F4を介して直接メインマイコン3に接続されていたが、本発明はこれに限ったものではない。複数の電池監視IC21〜2nの1つがメインマイコン3に通信可能に接続されていればよく、例えば最低電位側の電池監視IC21が絶縁I/F4を介してメインマイコン3に接続されていてもよい。   In the embodiment described above, the battery monitoring IC 2n on the highest potential side is directly connected to the main microcomputer 3 via the insulation I / F 4. However, the present invention is not limited to this. Any one of the plurality of battery monitoring ICs 21 to 2n may be connected to the main microcomputer 3 so as to be communicable. For example, the battery monitoring IC 21 on the lowest potential side may be connected to the main microcomputer 3 via the insulation I / F 4. .

また、上述した実施形態では、各ブロックCB1〜CBnを構成する単位電池数は各々m個で同一となっているが、各ブロックCB1〜CBn毎に異なる単位電池数となっていてもよい。 In the above-described embodiment, the number of unit batteries constituting each of the blocks CB 1 to CB n is the same for each m, but the number of unit batteries is different for each of the blocks CB 1 to CB n. Also good.

また、上述した実施形態では、電池監視IC21〜2nで消費する電流を均一にするためにプルダウン抵抗R1〜Rn-1を設けているが、消費電流均一化の機能を果たすことができる定電流回路や電気素子であれば抵抗でなくともよい。 In the above-described embodiment, the pull-down resistors R 1 to R n-1 are provided in order to make the current consumed by the battery monitoring ICs 21 to 2n uniform. If it is a current circuit or an electric element, it may not be a resistor.

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

1 電圧検出装置
3 メインマイコン(制御手段)
4 絶縁I/F(絶縁インタフェース)
21〜2n 電池監視IC(電圧検出手段)
11〜Cmn 単位電池
CB1〜CBn ブロック
1〜Rn-1 プルダウン抵抗(電流消費体)
1 Voltage detector 3 Main microcomputer (control means)
4 Insulation interface (insulation interface)
21-2n Battery monitoring IC (voltage detection means)
C 11 -C mn unit cells CB 1 to CB n blocks R 1 ~R n-1 pull-down resistor (current consumption body)

Claims (3)

互いに直列接続された複数の単位電池を複数に分割したブロック毎に対応して設けられると共に前記対応するブロックからの電源供給を受けて動作し、当該対応するブロックを構成する前記単位電池の両端電圧を検出する電圧検出手段と、前記電圧検出手段からの検出結果を受け取る制御手段と、を備え、前記複数の電圧検出手段が通信可能に直列に接続され、前記複数の電圧検出手段の1つと前記制御手段とが絶縁インタフェースを介して通信可能に接続される電圧検出装置において、
前記制御手段と絶縁インタフェースを介して通信可能に接続された電圧検出手段を除いた電圧検出手段に前記対応するブロックからの電流を流して、前記電圧検出手段で消費する電流を均一にする電流消費体を設けた
ことを特徴とする電圧検出装置。
A plurality of unit cells connected in series with each other are provided corresponding to each of the divided blocks, and are operated by receiving power supply from the corresponding block, and the voltage across the unit battery constituting the corresponding block is operated. A voltage detection means for detecting the detection result, and a control means for receiving a detection result from the voltage detection means, wherein the plurality of voltage detection means are communicably connected in series, and one of the plurality of voltage detection means and the In the voltage detection apparatus connected to the control means via the insulation interface so as to be communicable,
Current consumption that causes the current from the corresponding block to flow through the voltage detection means excluding the voltage detection means that is communicably connected to the control means via an insulation interface, and makes the current consumed by the voltage detection means uniform. A voltage detection device characterized by comprising a body.
前記直列に接続された複数の電圧検出手段のうち一端側の1つと前記制御手段とが絶縁インタフェースを介して通信可能に接続されている
ことを特徴とする請求項1に記載の電圧検出装置。
2. The voltage detection device according to claim 1, wherein one of one end side of the plurality of voltage detection units connected in series and the control unit are communicably connected via an insulating interface.
前記直列に接続された複数の電圧検出手段のうち他端側の1つに設けた前記電流消費体が、他の前記電流消費体よりも大きな電流が流れるように設けられている
ことを特徴とする請求項2に記載の電圧検出装置。
The current consumer provided on one of the other end sides of the plurality of voltage detection means connected in series is provided such that a larger current flows than the other current consumer. The voltage detection device according to claim 2.
JP2012230606A 2012-10-18 2012-10-18 Voltage detection device Abandoned JP2014082152A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012230606A JP2014082152A (en) 2012-10-18 2012-10-18 Voltage detection device
CN201380054541.6A CN104737360A (en) 2012-10-18 2013-09-26 Voltage detection device
PCT/JP2013/076144 WO2014061422A1 (en) 2012-10-18 2013-09-26 Voltage detection device
DE112013005063.3T DE112013005063T5 (en) 2012-10-18 2013-09-26 Voltage detection device
US14/435,353 US9519030B2 (en) 2012-10-18 2013-09-26 Voltage detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230606A JP2014082152A (en) 2012-10-18 2012-10-18 Voltage detection device

Publications (1)

Publication Number Publication Date
JP2014082152A true JP2014082152A (en) 2014-05-08

Family

ID=50487995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230606A Abandoned JP2014082152A (en) 2012-10-18 2012-10-18 Voltage detection device

Country Status (5)

Country Link
US (1) US9519030B2 (en)
JP (1) JP2014082152A (en)
CN (1) CN104737360A (en)
DE (1) DE112013005063T5 (en)
WO (1) WO2014061422A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055631A (en) * 2015-09-11 2017-03-16 株式会社デンソー Battery pack control device
JP2017120221A (en) * 2015-12-28 2017-07-06 ラピスセミコンダクタ株式会社 Semiconductor device, battery monitoring system, and semiconductor device diagnosis method
JP2017129450A (en) * 2016-01-20 2017-07-27 株式会社ケーヒン Battery voltage detection device
US9887569B2 (en) 2014-10-23 2018-02-06 Lapis Semiconductor Co., Ltd. Semiconductor device and battery monitoring system
US10613152B2 (en) 2017-11-24 2020-04-07 Toyota Jidosha Kabushiki Kaisha Battery monitoring device and power state monitoring method
US11204390B2 (en) 2018-10-19 2021-12-21 Keihin Corporation Battery monitoring circuit board and battery monitoring device
US11280838B2 (en) 2018-10-22 2022-03-22 Hitachi Astemo, Ltd. Integrated circuit and battery monitoring device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10182116B2 (en) * 2016-05-10 2019-01-15 Texas Instruments Incorporated Contactless communication for battery information
KR102166013B1 (en) * 2017-04-06 2020-10-15 주식회사 엘지화학 System and method for diagnosing low-side battery
EP3757591B1 (en) * 2018-02-23 2023-12-13 Nuvoton Technology Corporation Japan Voltage measurement device and voltage detection method
CN110962680B (en) 2019-01-21 2021-03-23 宁德时代新能源科技股份有限公司 Storage battery monitoring system, battery pack and electric automobile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017134A (en) * 2001-06-27 2003-01-17 Osaka Gas Co Ltd Accumulator management system
JP2010081692A (en) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd Power supply device for vehicle
JP2011182550A (en) * 2010-03-01 2011-09-15 Denso Corp Battery voltage monitoring device
WO2011135868A1 (en) * 2010-04-28 2011-11-03 三洋電機株式会社 Battery module, mobile body provided with same, power storage device, power supply device, and electric apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202918B2 (en) * 2007-10-03 2013-06-05 矢崎総業株式会社 Battery voltage regulator
JP5503924B2 (en) 2009-08-27 2014-05-28 矢崎総業株式会社 Multi-battery battery status monitoring unit
JP4935893B2 (en) 2009-12-24 2012-05-23 株式会社デンソー Battery abnormality determination device
JP5670693B2 (en) * 2010-10-14 2015-02-18 矢崎総業株式会社 Battery voltage monitoring device
JP5789846B2 (en) * 2011-09-05 2015-10-07 三洋電機株式会社 Power supply device for vehicle and vehicle equipped with this power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017134A (en) * 2001-06-27 2003-01-17 Osaka Gas Co Ltd Accumulator management system
JP2010081692A (en) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd Power supply device for vehicle
JP2011182550A (en) * 2010-03-01 2011-09-15 Denso Corp Battery voltage monitoring device
WO2011135868A1 (en) * 2010-04-28 2011-11-03 三洋電機株式会社 Battery module, mobile body provided with same, power storage device, power supply device, and electric apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887569B2 (en) 2014-10-23 2018-02-06 Lapis Semiconductor Co., Ltd. Semiconductor device and battery monitoring system
JP2017055631A (en) * 2015-09-11 2017-03-16 株式会社デンソー Battery pack control device
JP2017120221A (en) * 2015-12-28 2017-07-06 ラピスセミコンダクタ株式会社 Semiconductor device, battery monitoring system, and semiconductor device diagnosis method
JP2017129450A (en) * 2016-01-20 2017-07-27 株式会社ケーヒン Battery voltage detection device
US10613152B2 (en) 2017-11-24 2020-04-07 Toyota Jidosha Kabushiki Kaisha Battery monitoring device and power state monitoring method
US11204390B2 (en) 2018-10-19 2021-12-21 Keihin Corporation Battery monitoring circuit board and battery monitoring device
US11280838B2 (en) 2018-10-22 2022-03-22 Hitachi Astemo, Ltd. Integrated circuit and battery monitoring device

Also Published As

Publication number Publication date
US20150293178A1 (en) 2015-10-15
DE112013005063T5 (en) 2015-07-02
US9519030B2 (en) 2016-12-13
CN104737360A (en) 2015-06-24
WO2014061422A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP2014082152A (en) Voltage detection device
US9748786B2 (en) Battery stack with leapfrogging protocol
JP5177196B2 (en) Integrated circuit for battery cell monitoring
JP5911673B2 (en) Power supply
JP4656151B2 (en) Integrated circuit for battery system and battery cell monitoring
JP6200139B2 (en) Equalization equipment
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
JP5032169B2 (en) COMMUNICATION BATTERY COMMUNICATION CONTROL SYSTEM, BATTERY PACK, AND ITS COMMUNICATION CONTROL METHOD
US10056653B2 (en) Battery management device and power supply device
US20060097700A1 (en) Method and system for cell equalization with charging sources and shunt regulators
JP2010127722A (en) Battery system
JP2010063353A (en) Cell balancing system using transformer
US9472976B2 (en) Storage battery device and charging control method
JP2008108591A (en) Malfunction detecting apparatus
KR20090092890A (en) Battery Equalizing-charge Device of Battery System
JP2009032690A (en) Fuel cell device provided with series-parallel circuit
JP4724726B2 (en) DC power supply system and charging method thereof
KR20210047750A (en) Battery management system and balancing method
JP5481367B2 (en) Battery module and vehicle
JP5609842B2 (en) Battery monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20161028