JP2014082152A - Voltage detection device - Google Patents

Voltage detection device Download PDF

Info

Publication number
JP2014082152A
JP2014082152A JP2012230606A JP2012230606A JP2014082152A JP 2014082152 A JP2014082152 A JP 2014082152A JP 2012230606 A JP2012230606 A JP 2012230606A JP 2012230606 A JP2012230606 A JP 2012230606A JP 2014082152 A JP2014082152 A JP 2014082152A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
battery monitoring
voltage
2n
voltage detecting
main microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2012230606A
Other languages
Japanese (ja)
Inventor
Hironao FUJII
宏尚 藤井
Original Assignee
Yazaki Corp
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Apparatus for testing electrical condition of accumulators or electric batteries, e.g. capacity or charge condition
    • G01R31/3644Various constructional arrangements
    • G01R31/3658Various constructional arrangements for testing or monitoring individual cells or groups of cells in a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Apparatus for testing electrical condition of accumulators or electric batteries, e.g. capacity or charge condition
    • G01R31/3606Monitoring, i.e. measuring or determining some variables continuously or repeatedly over time, e.g. current, voltage, temperature, state-of-charge [SoC] or state-of-health [SoH]
    • G01R31/362Monitoring, i.e. measuring or determining some variables continuously or repeatedly over time, e.g. current, voltage, temperature, state-of-charge [SoC] or state-of-health [SoH] based on measuring voltage only
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating condition, e.g. level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating condition, e.g. level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging several batteries simultaneously or sequentially
    • H02J7/0021Monitoring or indicating circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7038Energy storage management
    • Y02T10/7055Controlling vehicles with more than one battery or more than one capacitor

Abstract

PROBLEM TO BE SOLVED: To provide a voltage detection device capable of preventing variation in a unit cell by making current consumption of each voltage detection means constant.SOLUTION: Battery monitoring ICs 21-2n operate by respectively receiving power supplied from corresponding blocks CB-CB, and respectively detect both-end voltages of unit cells C-Cconfiguring the corresponding blocks CB-CB. A main microcomputer 3 receives detection results of the battery monitoring ICs 21-2n. The plurality of battery monitoring ICs 21-2n are communicably connected in series, and one battery monitoring IC 2n and the main microcomputer 3 are communicably connected via an insulation I/F 4. There are provided pull-down resistors R-Rapplied with currents from the blocks CB-CBcorresponding to the battery monitoring ICs 21-2(n-1) other than the battery monitoring IC 2n communicably connected with the main microcomputer 3 via the insulation I/F 4, and thereby, making currents consumed at the battery monitoring ICs 21-2n uniform.

Description

本発明は、電圧検出装置に係り、特に、互いに直列接続された複数の単位電池の両端電圧を検出する電圧検出装置に関するものである。 The present invention relates to a voltage detecting apparatus, and particularly relates to a voltage detecting device for detecting a voltage across the plurality of unit cells connected in series with each other.

例えば、ハイブリッド自動車や電気自動車に搭載される組電池は、互いに直列接続された複数の単位電池から構成され、その両端に例えば200V等の高電圧を発生させ、この電力を用いて駆動用モータを駆動させる。 For example, the battery pack included in the hybrid vehicles and electric vehicles includes a plurality of unit cells connected in series to each other, to generate a high voltage of, for example, 200V, etc. at both ends, the driving motor by using the power It is driven. このような組電池においては、過放電状態や過充電状態とならないように、各単位電池の両端電圧を検出して監視する必要がある。 In such a battery pack, so as not to be over-discharged or over-charged state, it is necessary to detect and monitor the voltage across each unit cell.

上述した各単位電池の両端電圧を検出する電圧検出装置として、図4に示すようなものが提案されている(特許文献1、2)。 As a voltage detector for detecting a voltage across each unit cell described above, it has been proposed as shown in FIG. 4 (Patent Documents 1 and 2). 同図に示すように、電圧検出装置100は、組電池BHを構成する互いに直列接続された複数の単位電池C 11 〜C mn (m、nは任意の整数)の両端電圧を検出する装置である。 As shown in the figure, the voltage detection device 100, the battery pack a plurality of units connected in series to each other constitute a BH cell C 11 ~C mn (m, n is an arbitrary integer) in the apparatus for detecting a voltage across is there.

上記電圧検出装置100は、単位電池C 11 〜C mnの両端電圧をそれぞれ検出する複数の電池監視IC201〜20nと、各電池監視IC201〜20nに対して検出命令を出力したり、各電池監視IC201〜20nによる検出電圧を受け取るメインマイコン300と、を備えている。 The voltage detecting device 100 includes a plurality of battery monitoring IC201~20n for detecting a voltage across the unit cell C 11 -C mn respectively, and outputs a detection command for each battery monitoring IC201~20n, the battery monitoring IC201 a main microcomputer 300 which receives the voltage detected by ~20N, and a. 上記電池監視IC201〜20nは、それぞれの耐圧を下げるため、単位電池C 11 〜C mnを複数に分割したブロックCB 1 〜CB n毎に設けられ、各ブロックCB 1 〜CB nから電源供給を受けて動作している。 It said battery monitoring IC201~20n is to lower the respective breakdown voltage, provided the unit cells C 11 -C mn for each block CB 1 to CB n divided into a plurality of receiving a power supply from each block CB 1 to CB n running Te. また、上記メインマイコン300は、組電池BHとは異なる低圧バッテリからの電源供給を受けて動作する。 Further, the main microcomputer 300 operates by receiving power supply from a different low-voltage battery from the battery pack BH.

上述したような低圧バッテリから電源供給を受けるメインマイコン300と高圧の組電池BHから電源供給を受ける電池監視IC201〜20nとの間の通信は、絶縁を図った状態で行う必要があり、絶縁インタフェース(I/F)400を用いて行う必要がある。 Communication between the main microcomputer 300 and the battery monitoring IC201~20n supplied with power from the high pressure of the battery BH supplied with power from the low-voltage battery as described above, must be done in a state which attained insulation, insulation interface it is necessary to perform with the (I / F) 400. このため、1つの絶縁インタフェース400で通信ができ、しかも、電池監視IC201〜20nの増減等に容易に対応でき拡張性が高いデイジーチェーン方式が使用される。 Therefore, it is able to communicate with one insulating interface 400, moreover, easily handled can be highly scalable daisy chain manner to increase or decrease the battery monitoring IC201~20n is used.

デイジーチェーン方式によれば、図4に示すように、電池監視IC201〜20nは、互いに直列接続され、複数の電池監視IC201〜20nの1つである最高電位の電池監視IC20nのみがメインマイコン300と絶縁I/F400を介して通信可能に接続されている。 According to daisy chain fashion, as shown in FIG. 4, the battery monitoring IC201~20n are connected in series to each other, only the battery monitoring IC20n the highest potential is one of a plurality of battery monitoring IC201~20n is the main microcomputer 300 It is communicably connected via the insulating I / F400. 以上の構成によれば、電池監視IC20nは絶縁I/F400を介してメインマイコン300と直接通信し、電池監視IC201〜20(n−1)は、自身よりも高電位側の電池監視IC202〜20n及び絶縁I/F400を介してメインマイコン300と通信を行う。 According to the above configuration, battery monitoring IC20n communicates directly with the main microcomputer 300 via an insulating I / F400, battery monitoring IC201~20 (n-1) is a high potential side of the battery monitoring IC202~20n than itself and it communicates with the main microcomputer 300 via an insulating I / F400.

しかしながら、上述したデイジーチェーン方式によれば、メインマイコン300と通信する電池監視IC20nと、電池監視IC間通信のみでメインマイコン300と直接通信しない電池監視IC201〜20(n−1)と、が存在する。 However, according to the daisy chain method described above, the battery monitoring IC20n communicating with the main microcomputer 300, a battery monitoring IC201~20 not communicate directly with the main microcomputer 300 in communication only between battery monitor IC (n-1), is present to. メインマイコン300と直接通信する電池監視IC20nについては、メインマイコン300との通信のための絶縁I/F400への電源供給があり、消費電流が増加する。 The battery monitoring IC20n communicate directly with the main microcomputer 300 has the power supply to the insulation I / F400 for communication with the main microcomputer 300, current consumption increases. また、電池監視IC201は、高電位側の電池監視IC202と通信するのみで低電位側の電池監視ICとの通信がない分だけ消費電流が減少する。 The battery monitoring IC201, the supply current amount corresponding no communication between the battery monitoring IC of low potential side only communicate with battery monitoring IC202 high potential side is reduced. さらに、電池監視IC201〜20nの消費電流の個体のばらつきにより、各電池監視IC201〜20nに電源供給するブロックCB 1 〜CB n毎に消費電流のばらつきが発生する。 Furthermore, due to variations in individual current consumption of the battery monitoring IC201~20n, variations in the current consumption generated in the power supply for supplying each block CB 1 to CB n each battery monitoring IC201~20n.

この消費電流のばらつきにより、単位電池C 11 〜C mnの両端電圧のばらつきが発生すると、通常充放電に使用する電池容量の使用範囲が狭められ、電池容量を有効に使用できなくなり無駄が発生する、という問題が生じていた。 By variation of the current consumption, the variation of the voltage across the unit cell C 11 -C mn is generated, typically narrows the range of use of the battery capacity to be used to charge and discharge, waste can no longer be effectively used battery capacity is generated , a problem that has occurred. また、単位電池C 11 〜C mnの両端電圧のばらつきを調整するための均等化放電が必要となっていた。 Further, equalization discharge for adjusting the variation in the voltage across the unit cell C 11 -C mn is necessary.

特開2011−134577号公報 JP 2011-134577 JP 特開2011−50176号公報 JP 2011-50176 JP

そこで、本発明は、各電圧検出手段の消費電流を一定にすることにより、単位電池のばらつきを防止する電圧検出装置を提供することを課題とする。 The present invention, by the current consumption of each voltage detecting means constant, and to provide a voltage detecting device for preventing variations in the unit cell.

上述した課題を解決するための請求項1記載の発明は、互いに直列接続された複数の単位電池を複数に分割したブロック毎に対応して設けられると共に前記対応するブロックからの電源供給を受けて動作し、当該対応するブロックを構成する前記単位電池の両端電圧を検出する電圧検出手段と、前記電圧検出手段からの検出結果を受け取る制御手段と、を備え、前記複数の電圧検出手段が通信可能に直列に接続され、前記複数の電圧検出手段の1つと前記制御手段とが絶縁インタフェースを介して通信可能に接続される電圧検出装置において、前記制御手段と絶縁インタフェースを介して通信可能に接続された電圧検出手段を除いた電圧検出手段に前記対応するブロックからの電流を流して、前記電圧検出手段で消費する電流を均一にする電 The invention of claim 1, wherein for solving the above problems, by receiving power supply from the corresponding block with provided corresponding to each block divided into a plurality of multiple unit cells connected in series with each other work, the a corresponding voltage detecting means for detecting the voltage across the unit cell constituting the block, and a control means for receiving a detection result from the voltage detecting means, said plurality of voltage detecting means can communicate to be connected in series, and one said control means of said plurality of voltage detecting means in the voltage detection device which is communicably connected through the insulating interface is communicatively connected via the control means and the insulating interface and by flowing a current from the corresponding block to the voltage detecting unit, excluding the voltage detecting means, electrodeposition to equalize the current consumed by said voltage detecting means 消費体を設けたことを特徴とする電圧検出装置に存する。 Lies in the voltage detection device, characterized in that a consumption body.

請求項2に記載の発明は、前記直列に接続された複数の電圧検出手段のうち一端側の1つと前記制御手段とが絶縁インタフェースを介して通信可能に接続されていることを特徴とする請求項1に記載の電圧検出装置に存する。 The invention according to claim 2, wherein, characterized in that the one said control means at one end of the plurality of voltage detecting means connected to said series are communicatively connected to each other through the insulating interface It lies in the voltage detection apparatus according to claim 1.

請求項3に記載の発明は、前記直列に接続された複数の電圧検出手段のうち他端側の1つに設けた前記電流消費体が、他の前記電流消費体よりも大きな電流が流れるように設けられていることを特徴とする請求項2に記載の電圧検出装置に存する。 The invention according to claim 3, wherein the current consumption body provided on one end side of the plurality of voltage detecting means connected to said series, so that a large current flows than other of the current consumption thereof it is provided in lies in the voltage detection apparatus according to claim 2, wherein.

以上説明したように請求項1記載の発明によれば、電流消費体を設けて各電圧検出手段の消費電流を一定にすることにより、単位電池のばらつきを防止できる。 According to the invention of claim 1, wherein As described above, by the current consumption of each voltage detecting means provided current consumption bodies constant, thereby preventing the variation of the unit cells.

請求項2記載の発明によれば、直列に接続された複数の電圧検出手段のうち一端側の1つと制御手段とが絶縁インタフェースを介して通信可能に接続されているので、全ての電圧検出手段を同じ構成にすることができる。 According to the second aspect of the present invention, since the one control means at one end of the plurality of voltage detecting means connected in series are communicatively connected to each other via a dielectric interface, all of the voltage detection means it can be in the same configuration.

請求項3記載の発明によれば、直列に接続された複数の電圧検出手段のうち他端側の1つに設けた電流消費体が、他の電流消費体よりも大きな電流が流れるように設けられているので、より確実に各電圧検出手段の消費電流を一定にすることができる。 According to the third aspect of the present invention, provided such that the current consumption body provided on one end side of the plurality of voltage detecting means connected in series, a large current flows than other current consumption body since being, it can be more reliably constant current consumption of each voltage detector.

本発明の電圧検出装置の一実施形態を示すブロック図である。 It is a block diagram illustrating one embodiment of a voltage detecting device of the present invention. 図1に示す電圧検出装置を構成する電池監視ICの詳細を示す図である。 Is a diagram showing details of the battery monitoring IC constituting the voltage detecting device shown in FIG. 図1に示すメインマイコンの処理手順を示すフローチャートである。 It is a flowchart illustrating a processing procedure of the main microcomputer shown in FIG. 従来の電圧検出装置の一例を示すブロック図である。 Is a block diagram showing an example of a conventional voltage detecting device.

以下、本発明の電圧検出装置について図1を参照して説明する。 Hereinafter will be described with reference to FIG. 1, the voltage detecting device of the present invention. 同図に示すように、電圧検出装置1は、組電池BHを構成する互いに直列接続された複数の単位電池C 11 〜C mnの両端電圧をそれぞれ検出する装置である。 As shown in the drawing, the voltage detecting device 1 is a device for detecting each voltage across the plurality of unit batteries C 11 -C mn connected in series with each other to form the assembled battery BH. 上記単位電池C 11 〜C mn (m、nは任意の整数)は、本実施形態では1つの二次電池から構成されているが、複数の二次電池から構成されていてもよい。 The unit cell C 11 ~C mn (m, n are arbitrary integers), which in this embodiment is composed of one secondary battery, it may be composed of a plurality of secondary batteries.

上記組電池BHは、例えば、エンジンと電動モータ(何れも図示せず)を走行駆動源として併用するハイブリッド電気自動車において前記電動モータの電源として用いられ、その両端には、上記電動モータが必要に応じて負荷として接続されると共に、オルタネータ等(図示せず)が必要に応じて充電器として接続される。 The assembled battery BH, for example, (both not shown) engine and an electric motor used as a power source for the electric motor in a hybrid electric vehicle used in combination as a running drive source, the both ends, the electric motor needs It is connected as a load in response, an alternator or the like (not shown) is connected as a charger as needed. また、上記単位電池C 11 〜C mnは、n個のブロックCB 1 〜CB nに分けられている。 Further, the unit cell C 11 -C mn is divided into n blocks CB 1 to CB n. 各ブロックCB 1 〜CB nは各々、m個の単位電池で構成されている。 Each block CB 1 to CB n are each, is composed of m pieces of unit cells.

上記電圧検出装置1は、図1に示すように、各単位電池C 11 〜C mnの両端電圧をそれぞれ検出するn個の電圧検出手段としての電池監視IC21〜2nと、各電池監視IC21〜2nに対して電圧検出命令を出力したり、各電池監視IC21〜2nによる検出電圧を受け取る制御手段としてのメインマイコン3と、を備えている。 It said voltage detection device 1, as shown in FIG. 1, a battery monitoring IC21~2n as n voltage detecting means for detecting a voltage across the unit cell C 11 -C mn respectively, each battery monitoring IC21~2n It includes and outputs a voltage detection command, the main microcomputer 3 as a control means for receiving a voltage detected by the battery monitoring IC21~2n, against. 上記電池監視IC21〜2nは、各ブロックCB 1 〜CB n毎に設けられ、各ブロックCB 1 〜CB nから電源供給を受けて動作している。 It said battery monitoring IC21~2n is provided for each block CB 1 to CB n, operating by receiving power supply from the blocks CB 1 to CB n. また、上記電池監視IC21〜2nは、対応するブロックCB 1 〜CB nを構成する単位電池C 11 〜C mnの両端電圧をそれぞれ検出する。 Also, the battery monitoring IC21~2n is the voltage across the corresponding unit cells C 11 constituting the block CB 1 to CB n to -C mn respectively detect. メインマイコン3は、組電池BHとは電気的に絶縁された低圧バッテリ(図示せず)からの電源供給を受けて動作している。 The main microcomputer 3, the assembled battery BH operates by receiving power supply from an electrically insulated low-voltage battery (not shown).

上記電圧検出装置1は所謂デイジーチェーン方式の装置であり、各電池監視IC21〜2nは、通信ライン5を介して通信可能に互いに直列接続されている。 The voltage detecting device 1 is a device so-called daisy chain manner, the battery monitoring IC21~2n is communicatively connected to each other in series via the communication line 5. 通信ライン5は、各電池監視IC21〜2n間に接続され、各電池監視IC22〜2nから低電位側に隣接する電池監視IC21〜2(n−1)にデータを送信するための送信ライン51と、各電池監視IC21〜2(n−1)から高電位側に隣接する電池監視IC22〜2nにデータを送信するための受信ライン52と、から構成されている。 Communication line 5 is connected between the battery monitoring IC21~2n, a transmission line 51 for transmitting data to the battery monitoring IC21~2 (n-1) adjacent to the low potential side of the battery monitoring IC22~2n , and a receive line 52 for transmitting data to the battery monitoring IC22~2n adjacent to the high potential side from the battery monitoring IC21~2 (n-1),. 以上の構成により、各電池監視IC21〜2nは、隣接する電池監視IC21〜2nと双方向通信可能に設けられている。 With the above configuration, the battery monitoring IC21~2n is provided so as to be battery monitoring IC21~2n bidirectional communication adjacent.

また、直列に接続された複数の電池監視IC21〜2nのうち最高電位側(一端側)の電池監視IC2nのみ通信ライン6を介してメインマイコン3に通信可能に接続されている。 Also, it is communicatively connected to the main microcomputer 3 via a battery monitoring IC2n only communication line 6 of the highest potential side (one end side) of the plurality of battery monitoring IC21~2n connected in series. 通信ライン6には、絶縁I/F4が設けられていて、電池監視IC2nとメインマイコン3との通信を電気的に絶縁した状態で行うことができる。 The communication line 6, can be performed with the insulating I / F4 are provided to electrically isolate the communication with the battery monitoring IC2n the main microcomputer 3. 絶縁I/F4としては、例えば発光素子及び受光素子からなるフォトカプラといった光を媒体にしたものや、磁気カプラといった磁気を媒体にしたものが公知である。 The insulating I / F4, for example, light such as a photocoupler consisting of a light emitting element and a light receiving element and those in the medium, those magnetic such as a magnetic coupler in the medium are known. 通信ライン6は、電池監視IC2nにデータを送信するための送信ライン61と、電池監視IC2nからのデータを受信するための受信ライン62と、から構成され、メインマイコン3は、電池監視IC2nと双方向通信可能に設けられている。 Both communication line 6, a transmission line 61 for transmitting data to the battery monitoring IC2n, the receiving line 62 for receiving data from the battery monitoring IC2n, consists, the main microcomputer 3, battery monitoring IC2n and It is provided to be oriented communication.

次に、上記電池監視IC21〜2nの構成の詳細について図2を参照して説明する。 It will now be described with reference to FIG. 2 for details of the configuration of the battery monitoring IC21~2n. なお、電池監視IC21〜2nは、互いに同等の構成であるため、ここでは任意の電池監視IC2pを代表して説明する(pは1以上n以下の任意の整数)。 The battery monitoring IC21~2n are the same configuration with each other, will be described here as a representative of any battery monitoring IC2p (p is 1 to n an arbitrary integer). 図2に示すように、電池監視IC2pは、対応するブロックCB pを構成する各単位電池C 1p 〜C mpの+側が接続される端子V 1 〜V mと、単位電池C 1pの−側が接続される端子V SS1と、を備えている。 As shown in FIG. 2, the battery monitoring IC2p includes a terminal V 1 ~V m to + side of the unit cell C 1p -C mp constituting the corresponding block CB p are connected, the unit cells C 1p - side is connected It includes a terminal V SS1 is, the.

また、電池監視IC2pは、端子V 1 〜V mの1つを後述するA/D変換器8の入力に接続する切替スイッチ7と、入力されたアナログの電圧をデジタルに変換するA/D変換器8と、切替スイッチ7を制御する制御ロジック回路9と、A/D変換器8や制御ロジック回路9を制御するコントロール部10と、これらA/D変換器8、制御ロジック回路9及びコントロール部10に供給する電源電圧を生成する電源回路11と、遮断スイッチSと、電源端子V DDと、を備えている。 The battery monitoring IC2p includes a changeover switch 7 to connect one of terminals V 1 ~V m to the input of the A / D converter 8 to be described later, A / D converter for converting an input analog voltage to a digital a vessel 8, the control logic circuit 9 for controlling the changeover switch 7, a control unit 10 for controlling the a / D converter 8 and the control logic circuit 9, these a / D converter 8, the control logic circuit 9 and the control unit a power supply circuit 11 for generating a power supply voltage supplied to 10, includes a cut-off switch S, the power supply terminal V DD, the.

上記電源回路11は、対応するブロックCB pの両端電圧から所定電圧の電源電圧を生成し、生成した電源電圧をA/D変換器8、制御ロジック回路9やコントロール部10に供給する。 The power supply circuit 11 generates a power supply voltage of a predetermined voltage from the voltage across the corresponding block CB p, and supplies the generated power supply voltage A / D converter 8, the control logic circuit 9 and the control unit 10. 遮断スイッチSは、ブロックCB pの+側と電源回路11との間に設けられている。 Shutdown switch S is provided between the + side and the power supply circuit 11 of the block CB p. 遮断スイッチSは、電源回路11に対するブロックCB pの両端電圧の供給をオンオフして、電池監視IC2pに対する電源供給をオンオフするスイッチである。 Shutdown switch S is turned on and off the supply of voltage across the block CB p with respect to the power supply circuit 11 is a switch for turning on and off the power supply to the battery monitoring IC2p. また、電源端子V DDからは、電源回路11が生成した電源電圧の+側が出力される。 Further, the power supply terminal V DD, + side of a power supply voltage supply circuit 11 has generated is output.

また、上述した電圧検出装置1は、図1に示すように、電源ライン12と、絶縁I/F13と、n個のレベルシフト回路14と、を備えていて、これらによりメインマイコン3からの電源信号の出力に応じて遮断スイッチSを一斉にオンオフできるようになっている。 The voltage detecting device 1 described above, as shown in FIG. 1, a power supply line 12, and the insulating I / F13, and n-number of the level shift circuit 14, provided with a power supply from the main microcomputer 3 by these simultaneously and to be able to turn on and off the shut-off switch S in response to the output signal. 電源ライン12は、一端がメインマイコン3に接続され、他端が複数に分岐されて各電池監視IC21〜2nの遮断スイッチSを構成するトランジスタのベースに接続されている。 Power line 12 has one end connected to the main microcomputer 3, the other end is connected is branched into a plurality of the base of the transistor constituting the shutdown switch S of each of the battery monitoring IC21~2n. 絶縁I/F13は、電源ライン12の分岐前の一端に設けられていて、遮断スイッチSとメインマイコン3とを電気的に絶縁した状態で結合するものである。 Insulation I / F13 is provided on the one end of the front branch of the power supply line 12, and a cut-off switch S and the main microcomputer 3 is to bind in an electrically insulated state. n個のレベルシフト回路14は、電源ライン12の分岐した各部に設けられていて、メインマイコン3から送信された電源信号を、遮断スイッチSをオンオフするために適切な信号レベルに変換する。 n-number of the level shift circuit 14 is provided on the branched respective portions of the power supply line 12, it converts the power signal transmitted from the main microcomputer 3, the appropriate signal level for turning on and off the shut-off switch S.

上記電池監視IC2nの電源端子V DDとブロックCB nの−側との間には、絶縁I/F4、13の高圧側が接続され、絶縁I/F4、13の高圧側は、ブロックCB nからの電源供給を受けて動作している。 The battery monitoring IC2n power supply terminal V DD and the block CB n - between the side pressure of the insulating I / F4,13 is connected, the high pressure side of the insulating I / F4,13 is from the block CB n and it operates by receiving the power supply. 絶縁I/F4、13の低圧側は、低圧バッテリ(図示せず)からの電源供給を受けて動作している。 The low pressure side of the insulating I / F4,13 is operating by receiving power supply from the low voltage battery (not shown). また、上記電池監視IC2nを除いた電池監視IC21〜2(n−1)の電源端子V DDと各電池監視IC21〜2(n−1)に対応するブロックCB 1 〜CB n-1の−側との間には、電流消費体としてのプルダウン抵抗R 1 〜R n-1がそれぞれ接続されている。 Also, the battery monitoring IC2n excluding battery monitoring IC21~2 (n-1) of the power supply terminal V DD and the battery monitoring IC21~2 (n-1) to block CB 1 ~CB n-1 corresponding - side between the pull-down resistor R 1 ~R n-1 as a current consumption bodies are connected. このプルダウン抵抗R 1 〜R n-1は各々、各電池監視IC21〜2(n−1)に対応するブロックCB 1 〜CB n-1からの電流を流して、各電池監視IC21〜2nで消費する電流を均一にするための抵抗である。 The pull-down resistor R 1 ~R n-1 are each, by flowing a current from the block CB 1 ~CB n-1 corresponding to the battery monitoring IC21~2 (n-1), consumption at each battery monitoring IC21~2n a resistor for equalizing the current.

上述した背景技術でも説明したように、デイジーチェーン方式の電圧検出装置1では、メインマイコン3に接続される電池監視IC2nの消費電流が最も多くなる。 As described in the above-described background art, in the voltage detecting device 1 of the daisy chain manner, the current consumption of the battery monitoring IC2n connected to the main microcomputer 3 becomes most. また、直列接続された複数の電池監視IC21〜2nのうち最低電位側(他端側)の電池監視IC21での消費電流が最も少なくなる。 Further, the current consumption in the battery monitoring IC21 of lowest potential side among the plurality of battery monitoring IC21~2n connected in series (the other end) becomes smallest. 上述したようにプルダウン抵抗R 1 〜R n-1を追加することによって、このプルダウン抵抗R 1 〜R n-1に流れる消費電流によって各電池監視IC21〜2nの消費電流のばらつきに対して、最大の消費電流となる電池監視IC2nの消費電流に合わせるように、その他の電池監視IC21〜2(n−1)の消費電流を増加させ、消費電流のばらつきがなく均一と成るように調整する。 By adding a pull-down resistor R 1 ~R n-1 as described above, with respect to variations in the current consumption of the battery monitoring IC21~2n by consumption current flowing through the pull-down resistor R 1 ~R n-1, the maximum current consumption becomes to match the current consumption of the battery monitoring IC2n of, increasing the current consumption of the other battery monitoring IC21~2 (n-1), the variation of the current consumption is not adjusted to be uniform.

なお、各電池監視IC21〜2nの消費電流のばらつきの原因としては以下の要因が考えられる。 As the causes of variations in the current consumption of the battery monitoring IC21~2n considered the following factors.
(1)メインマイコン3と通信する電池監視IC2nについて、メインマイコン3と通信のための絶縁I/F4、13への電源供給のための消費電流増加分に起因するばらつき(2)電池監視IC21の低電位側の電池監視ICとの通信がないことに起因するばらつき(3)電池監視IC21〜2nごとの消費電流の個体ばらつき (1) for battery monitoring IC2n communicating with the main microcomputer 3, the variation caused by the current consumption increase for power supply to the insulation I / F4,13 for communication with the main microcomputer 3 (2) of the battery monitoring IC21 individual variation in the current consumption of each variation (3) battery monitoring IC21~2n due to the lack of communication with the battery monitoring IC on the low potential side

そして、これらの原因を考慮して電池監視IC21〜2nの消費電流が均一になるようにプルダウン抵抗R 1 〜R n-1の抵抗値を定める。 Then, determine the resistance value of the pull-down resistor R 1 ~R n-1 as in consideration of these causes is the current consumption of the battery monitoring IC21~2n uniform. 詳しく説明すると、上述したように電池監視IC21の消費電流が最も少ないので、この電池監視IC21に設けられるプルダウン抵抗R 1に流れる電流が、他のプルダウン抵抗R 2 〜R n-1に流れる電流よりも大きな電流が流れるような抵抗値に設けられている。 In detail, since the least current consumption of the battery monitoring IC21 as described above, the current flowing through the pull-down resistor R 1 provided in this battery monitoring IC21 is than the current flowing through the other of the pull-down resistor R 2 ~R n-1 It is also provided on the resistance value, such as a large current flows.

次に、上述した構成の電圧検出装置1の動作について図3を参照して説明する。 It will now be described with reference to FIG. 3, the operation of the voltage detection device 1 having the above-described structure. メインマイコン3は、イグニッションスイッチのオン又はオフなどのトリガに応じて電圧検出処理を開始する。 The main microcomputer 3 starts voltage detection process in response to a trigger such as an ignition switch on or off. まず、メインマイコン3は、電源ライン12に電源信号を送信する(ステップS1)。 First, the main microcomputer 3 transmits a power signal to the power supply line 12 (Step S1). この電源信号の送信によって全ての電池監視IC21〜2nの遮断スイッチSがオンされて、各電池監視IC21〜2nの各部に電源回路11からの電源電圧が供給されて、電池監視IC21〜2nが動作を開始する。 Shutdown switch S of all the battery monitoring IC21~2n by the transmission of the power signal is turned on, it is supplied with power supply voltage from the power supply circuit 11 to each unit of each battery monitoring IC21~2n, battery monitoring IC21~2n operation the start. また、遮断スイッチSのオンに応じて電源端子V DDからも電源電圧が出力され、プルダウン抵抗R 1 〜R n-1に電流が流れ始める。 Further, a power supply voltage is output from the power supply terminal V DD according to the on the shutdown switch S, a current begins to flow to the pull-down resistor R 1 ~R n-1.

その後、メインマイコン3は、各電池監視IC21〜2n宛に順次、電圧検出命令を出力して、電池監視IC21〜2nに単位電池C 11 〜C mnの+側電圧を検出させる(ステップS2)。 Thereafter, the main microcomputer 3 sequentially addressed each battery monitoring IC21~2n, and outputs a voltage detection command, to detect the positive side voltage of the unit cell C 11 -C mn in battery monitoring IC21~2n (step S2). 各電池監視IC21〜2nのコントロール部10は、電圧検出命令を受け取るとその宛先が自身宛か否かを判定する。 Control unit 10 of the battery monitoring IC21~2n receives a voltage detection command when determining whether the destination is itself addressed or. 自身宛ではない電圧検出命令を受信すると、低電位側に隣接する電池監視IC21〜2(n−1)にその電圧検出命令を転送する。 Upon receiving a voltage detection command is not addressed to itself, and transfers the voltage detecting instruction to the battery monitoring IC21~2 adjacent to the low potential side (n-1). 一方、自身宛の電圧検出命令を受信すると、制御ロジック回路9を制御して切替スイッチ7により端子V 1 〜V mを順次A/D変換器8の入力に接続する。 On the other hand, when receiving a voltage detection command addressed to itself, connected by the changeover switch 7 controls the control logic circuit 9 to the input terminal V 1 ~V m sequentially A / D converter 8. これにより、A/D変換器8は、端子V 1 〜V mに入力された電圧を順次A/D変換し、これをコントロール部10が検出電圧として順次メインマイコン3に向けて送信する。 Accordingly, A / D converter 8, the terminal V 1 sequentially A / D-converts the ~V m voltage input to which the control unit 10 is transmitted to the sequential main microcomputer 3 as a detection voltage. 電池監視IC2nから送信された検出電圧は、直接メインマイコン3に送信される。 Detected voltage sent from the battery monitoring IC2n are sent directly to the main microcomputer 3. 電池監視IC21〜2(n−1)から送信された検出電圧は、自身よりも高電位側の電池監視IC22〜2nを経由してメインマイコン3に送信される。 Detected voltage sent from the battery monitoring IC21~2 (n-1) is transmitted via a battery monitoring IC22~2n the higher potential side than itself to the main microcomputer 3. これにより、単位電池C 11 〜C mnの+側電圧が順次メインマイコン3に送信される。 Thus, the positive side voltage of the unit cell C 11 -C mn are transmitted sequentially to the main microcomputer 3.

マインマイコン3は、全ての単位電池C 11 〜C mnの両端電圧の検出が終了すると、電源信号の送信を停止する(ステップS3)。 Main microcomputer 3, the detection of the voltage across the all unit cells C 11 -C mn When finished, stops the transmission of the power signal (step S3). これにより、全ての電池監視IC21〜2nの遮断スイッチSがオフされて、電源回路11からの電源電圧の供給が遮断されて、電池監視IC21〜2nが動作を停止する。 Thus, the cut-off switch S of all the battery monitoring IC21~2n is turned off, is supplied with interruption of the power supply voltage from the power supply circuit 11, battery monitoring IC21~2n stops operating. また、遮断スイッチSのオフに応じて電源端子V DDからの電源電圧の出力が遮断され、プルダウン抵抗R 1 〜R n-1に流れる電流も遮断される。 Further, the output of the power supply voltage from power supply terminal V DD according to clear the shutdown switch S is turned off, also cut off the current flowing through the pull-down resistor R 1 ~R n-1.

上述した実施形態によれば、プルダウン抵抗R 1 〜R n-1を設けて各電池監視IC21〜2nの消費電流を一定にすることにより、単位電池C 11 〜C mnのばらつきを防止できる。 According to the embodiment described above, by the constant current consumption of each battery monitoring IC21~2n provided a pull-down resistor R 1 ~R n-1, thereby preventing the variation of the unit cells C 11 -C mn. よって、メインマイコン3と通信のための絶縁I/F4への電源供給のための消費電流増加分による消費電流のばらつきが解消される。 Therefore, variations in the current consumed by the consumption current increase for power supply to the insulation I / F4 for communicating with the main microcomputer 3 is eliminated. また、電圧検出装置1のデイジー通信による多段接続構成における低電位側への通信接続有無による消費電流のばらつきが解消される(電池監視IC21の低電位側ICとの通信がないことによる消費電流ばらつきが解消される)。 Further, the current consumption variations due to the absence of communication with the low-potential side IC of the variation in current consumption by the communication connection whether to the low potential side of the multi-stage connection configuration by daisy communication of the voltage detection apparatus 1 is eliminated (battery monitoring IC21 There is eliminated). 電池監視IC21〜2n毎の消費電流の個体ばらつきが解消される。 Individual variation of the current consumption of each battery monitoring IC21~2n is eliminated. 結果、各ブロックCB 1 〜CB n毎の両端電圧のばらつきを防止することができ、通常充放電に使用する電池容量の使用範囲が狭められず、電池容量を有効に使用できるようになり、無駄がなくなり、車両燃費向上につながる。 A result, the variation of the voltage across each of the blocks CB 1 to CB n can be prevented, usually not be narrowed range of use of the battery capacity to be used for charging and discharging, can now effectively use the battery capacity, wasted It is eliminated, leading to vehicle fuel efficiency. また、単位電池C 11 〜C mnのばらつき調整のための均等化放電が不要又は低頻度ですむようになり、抵抗消費式放電の場合、電池容量を無駄に消費することがなくなる。 Further, it becomes equalized discharge for dispersion adjustment unit cells C 11 -C mn requires only unnecessary or low frequency, if the resistance consumption type discharge eliminates be wasted battery capacity.

また、上述した実施形態によれば、直列に接続された複数の電池監視IC21〜2nのうち一端側の1つである電池監視IC2nとメインマイコン3とが絶縁I/F4を介して通信可能に接続されているので、全ての電池監視IC21〜2nを同じ構成にすることができる。 Further, according to the embodiment described above, the battery monitoring IC2n main microcomputer 3, one end side of the plurality of battery monitoring IC21~2n connected in series can communicate via an insulating I / F4 because it is connected, it is possible to all the battery monitoring IC21~2n the same configuration. (例えば電池監視IC22をメインマイコン3と接続するためには、電池監視IC23、21に加えてメインマイコン3と接続するための端子を設ける必要があり、電池監視IC22だけ端子数が多いものを用いる必要がある。) (E.g., battery monitoring IC22 for connection with the main microcomputer 3, it is necessary to provide a terminal for connection to the main microcomputer 3 in addition to the battery monitoring IC23,21, used as many number of terminals only battery monitoring IC22 There is a need.)

また、上述した実施形態によれば、直列接続された複数の電池監視IC21〜2nのうち他端側の1つである電池監視IC21に設けたプルダウン抵抗R 1が、他のプルダウン抵抗R 2 〜R n-1よりも大きな電流が流れるように設けられているので、より確実に電池監視IC21〜2nの消費電流を一定にすることができる。 Further, according to the embodiment described above, the pull-down resistor R 1 provided in the battery monitoring IC21 which is one of the other ends of the plurality of battery monitoring IC21~2n in series connected, the other pull-down resistor R 2 ~ since is provided to flow a larger current than the R n-1, it is possible to secure a constant current consumption of the battery monitoring IC21~2n.

なお、上述した実施形態では、最高電位側の電池監視IC2nが絶縁I/F4を介して直接メインマイコン3に接続されていたが、本発明はこれに限ったものではない。 In the embodiment described above, the battery monitoring IC2n the highest potential side was connected to the main microcomputer 3 directly through the insulating I / F4, the present invention is not limited thereto. 複数の電池監視IC21〜2nの1つがメインマイコン3に通信可能に接続されていればよく、例えば最低電位側の電池監視IC21が絶縁I/F4を介してメインマイコン3に接続されていてもよい。 One of the plurality of battery monitoring IC21~2n need only be communicatively connected to the main microcomputer 3, for example, battery monitoring IC21 of lowest potential side may be connected to the main microcomputer 3 via an insulating I / F4 .

また、上述した実施形態では、各ブロックCB 1 〜CB nを構成する単位電池数は各々m個で同一となっているが、各ブロックCB 1 〜CB n毎に異なる単位電池数となっていてもよい。 Further, in the above embodiment, the number of units cells constituting the respective blocks CB 1 to CB n are each but are the same in the m, have a different number of units cells each block CB 1 to CB n it may be.

また、上述した実施形態では、電池監視IC21〜2nで消費する電流を均一にするためにプルダウン抵抗R 1 〜R n-1を設けているが、消費電流均一化の機能を果たすことができる定電流回路や電気素子であれば抵抗でなくともよい。 Further, in the embodiment described above, is provided with the pull-down resistor R 1 ~R n-1 in order to equalize the current consumed by the battery monitoring IC21~2n, can function in the current consumption uniform constant may not be resistive if current circuit or an electric device.

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。 Further, the above-described embodiments are only representative embodiments of the present invention, the present invention is not limited to the embodiments. 即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。 That can be implemented in various modifications without departing from the scope of the present invention.

1 電圧検出装置 3 メインマイコン(制御手段) 1 voltage detecting device 3 main microcomputer (control means)
4 絶縁I/F(絶縁インタフェース) 4 insulation I / F (an insulating interface)
21〜2n 電池監視IC(電圧検出手段) 21~2n battery monitor IC (voltage detection means)
11 〜C mn単位電池 CB 1 〜CB nブロック R 1 〜R n-1プルダウン抵抗(電流消費体) C 11 -C mn unit cells CB 1 to CB n blocks R 1 ~R n-1 pull-down resistor (current consumption body)

Claims (3)

  1. 互いに直列接続された複数の単位電池を複数に分割したブロック毎に対応して設けられると共に前記対応するブロックからの電源供給を受けて動作し、当該対応するブロックを構成する前記単位電池の両端電圧を検出する電圧検出手段と、前記電圧検出手段からの検出結果を受け取る制御手段と、を備え、前記複数の電圧検出手段が通信可能に直列に接続され、前記複数の電圧検出手段の1つと前記制御手段とが絶縁インタフェースを介して通信可能に接続される電圧検出装置において、 It operates by receiving power supply from the corresponding block with provided corresponding to each block divided into a plurality of multiple unit cells connected in series, the voltage across the unit cells constituting the corresponding block voltage detecting means for detecting, and a control means for receiving a detection result from the voltage detecting means, said plurality of voltage detecting means is connected in series to be able to communicate, one said of said plurality of voltage detecting means in the voltage detecting device and the control unit are communicatively connected to each other through the insulating interface,
    前記制御手段と絶縁インタフェースを介して通信可能に接続された電圧検出手段を除いた電圧検出手段に前記対応するブロックからの電流を流して、前記電圧検出手段で消費する電流を均一にする電流消費体を設けた ことを特徴とする電圧検出装置。 By flowing a current from the corresponding block to the voltage detecting unit, excluding the voltage detecting means which is communicably connected via the control means and the insulating interface, current consumption to equalize the current consumed by said voltage detecting means voltage detecting apparatus is characterized by providing the body.
  2. 前記直列に接続された複数の電圧検出手段のうち一端側の1つと前記制御手段とが絶縁インタフェースを介して通信可能に接続されている ことを特徴とする請求項1に記載の電圧検出装置。 Voltage detecting device according to claim 1, characterized in that the one said control means at one end of the plurality of voltage detecting means connected to said series are communicatively connected to each other through the insulating interface.
  3. 前記直列に接続された複数の電圧検出手段のうち他端側の1つに設けた前記電流消費体が、他の前記電流消費体よりも大きな電流が流れるように設けられている ことを特徴とする請求項2に記載の電圧検出装置。 And wherein said current consumption body provided on one end side of the attached plurality of voltage detection means in series is provided to flow a larger current than the other of the current consumption thereof voltage detecting device according to claim 2.
JP2012230606A 2012-10-18 2012-10-18 Voltage detection device Abandoned JP2014082152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230606A JP2014082152A (en) 2012-10-18 2012-10-18 Voltage detection device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012230606A JP2014082152A (en) 2012-10-18 2012-10-18 Voltage detection device
PCT/JP2013/076144 WO2014061422A1 (en) 2012-10-18 2013-09-26 Voltage detection device
DE201311005063 DE112013005063T5 (en) 2012-10-18 2013-09-26 Voltage detection device
US14435353 US9519030B2 (en) 2012-10-18 2013-09-26 Voltage detection device
CN 201380054541 CN104737360A (en) 2012-10-18 2013-09-26 Voltage detection device

Publications (1)

Publication Number Publication Date
JP2014082152A true true JP2014082152A (en) 2014-05-08

Family

ID=50487995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230606A Abandoned JP2014082152A (en) 2012-10-18 2012-10-18 Voltage detection device

Country Status (5)

Country Link
US (1) US9519030B2 (en)
JP (1) JP2014082152A (en)
CN (1) CN104737360A (en)
DE (1) DE112013005063T5 (en)
WO (1) WO2014061422A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055631A (en) * 2015-09-11 2017-03-16 株式会社デンソー Battery pack control device
US9887569B2 (en) 2014-10-23 2018-02-06 Lapis Semiconductor Co., Ltd. Semiconductor device and battery monitoring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170331897A1 (en) * 2016-05-10 2017-11-16 Texas Instruments Incorporated Contactless communication for battery information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017134A (en) * 2001-06-27 2003-01-17 Osaka Gas Co Ltd Accumulator management system
JP2010081692A (en) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd Power supply device for vehicle
JP2011182550A (en) * 2010-03-01 2011-09-15 Denso Corp Battery voltage monitoring device
WO2011135868A1 (en) * 2010-04-28 2011-11-03 三洋電機株式会社 Battery module, mobile body provided with same, power storage device, power supply device, and electric apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202918B2 (en) * 2007-10-03 2013-06-05 矢崎総業株式会社 Battery voltage regulator
JP5503924B2 (en) 2009-08-27 2014-05-28 矢崎総業株式会社 State monitoring unit of the plurality of assembled battery
JP4935893B2 (en) 2009-12-24 2012-05-23 株式会社デンソー Battery abnormality determining apparatus
JP5670693B2 (en) * 2010-10-14 2015-02-18 矢崎総業株式会社 The voltage monitoring apparatus of the battery pack
JP5789846B2 (en) * 2011-09-05 2015-10-07 三洋電機株式会社 Vehicle equipped with a power supply and the power supply device for a vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017134A (en) * 2001-06-27 2003-01-17 Osaka Gas Co Ltd Accumulator management system
JP2010081692A (en) * 2008-09-24 2010-04-08 Sanyo Electric Co Ltd Power supply device for vehicle
JP2011182550A (en) * 2010-03-01 2011-09-15 Denso Corp Battery voltage monitoring device
WO2011135868A1 (en) * 2010-04-28 2011-11-03 三洋電機株式会社 Battery module, mobile body provided with same, power storage device, power supply device, and electric apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887569B2 (en) 2014-10-23 2018-02-06 Lapis Semiconductor Co., Ltd. Semiconductor device and battery monitoring system
JP2017055631A (en) * 2015-09-11 2017-03-16 株式会社デンソー Battery pack control device

Also Published As

Publication number Publication date Type
CN104737360A (en) 2015-06-24 application
WO2014061422A1 (en) 2014-04-24 application
US20150293178A1 (en) 2015-10-15 application
US9519030B2 (en) 2016-12-13 grant
DE112013005063T5 (en) 2015-07-02 application

Similar Documents

Publication Publication Date Title
US20100019724A1 (en) Battery system using secondary battery
US5705914A (en) Overvoltage detecting apparatus for combination battery
US20120013180A1 (en) Battery control apparatus, battery control method, and vehicle
US20080143298A1 (en) Abnormality diagnostic device
US20030062874A1 (en) Circuit for adjusting charging rate of cells in combination
US20080084179A1 (en) Power Control Unit
JP2006507790A (en) Battery cell balancing system for equalizing the state of charge among series connected electrical energy storage units
JP2005168259A (en) Battery protection system
US7573234B1 (en) System having electronics for dropping current of battery pack
US20110127963A1 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
US20100225275A1 (en) Cell balancing systems employing transformers
CN101043143A (en) Electric power supply control apparatus
JP2007300701A (en) Power supply device for vehicle
US20060097700A1 (en) Method and system for cell equalization with charging sources and shunt regulators
US20120313439A1 (en) Power source apparatus
JP2004266992A (en) Discharger of battery pack
US20110076525A1 (en) Battery management system with energy balance among multiple battery cells
JP2008175804A (en) Abnormality diagnostic device
US20120091963A1 (en) Battery fault tolerant architecture for cell failure modes parallel bypass circuit
KR20080032454A (en) Car battery management system
US6329795B1 (en) Charging and discharging control circuit and charging type power supply device
US20060097696A1 (en) Method and system for cell equalization with isolated charging sources
JP2010081692A (en) Power supply device for vehicle
JP2009038857A (en) Voltage regulator
JP2011072153A (en) Vehicular power supply device, vehicle equipped with the same, and method for equalizing capacity of power vehicular supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20161028