JP2017129450A - Battery voltage detection device - Google Patents

Battery voltage detection device Download PDF

Info

Publication number
JP2017129450A
JP2017129450A JP2016008905A JP2016008905A JP2017129450A JP 2017129450 A JP2017129450 A JP 2017129450A JP 2016008905 A JP2016008905 A JP 2016008905A JP 2016008905 A JP2016008905 A JP 2016008905A JP 2017129450 A JP2017129450 A JP 2017129450A
Authority
JP
Japan
Prior art keywords
voltage
time constant
voltage detection
power supply
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016008905A
Other languages
Japanese (ja)
Other versions
JP6569180B2 (en
Inventor
真吾 槌矢
Shingo Tsuchiya
真吾 槌矢
鎌田 誠二
Seiji Kamata
誠二 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2016008905A priority Critical patent/JP6569180B2/en
Publication of JP2017129450A publication Critical patent/JP2017129450A/en
Application granted granted Critical
Publication of JP6569180B2 publication Critical patent/JP6569180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery voltage detection device capable of keeping voltage supplied to a power supply terminal higher than that supplied to a cell voltage detection terminal and improving detection accuracy of a cell voltage.SOLUTION: A battery voltage detection device includes: a voltage detection circuit having a cell voltage detection terminal for detecting the voltage of each battery cell included in a battery cell group and a power supply terminal connected to the battery cell at the top level of the battery cell group; and a time constant circuit which is provided in a path between the battery cell at the top level and the power supply terminal, and whose time constant is switched between the discharge direction and the charge direction.SELECTED DRAWING: Figure 1

Description

本発明は、電池電圧検出装置に関する。   The present invention relates to a battery voltage detection device.

電気自動車やハイブリッド自動車などの車両には、動力源となるモータに電力を供給する高電圧・大容量のバッテリが搭載されている。このモータ駆動用バッテリは、直列接続された複数のリチウムイオン電池あるいは水素ニッケル電池等の電池セルから構成されている。特許文献1に示されているように、直列接続された各電池セルには電圧検出回路が設けられ、各電池セルの電圧が監視されている。   Vehicles such as electric vehicles and hybrid vehicles are equipped with a high-voltage, large-capacity battery that supplies electric power to a motor serving as a power source. The motor driving battery is composed of a plurality of battery cells such as lithium ion batteries or hydrogen nickel batteries connected in series. As shown in Patent Document 1, each battery cell connected in series is provided with a voltage detection circuit, and the voltage of each battery cell is monitored.

特開2008−220074号公報Japanese Patent Laid-Open No. 2008-220074

このような従来の電池電圧検出装置では、最上位の電池セルから電源端子に電源が供給され、この電源端子からの電源を基に、内部の回路の電源が生成される。したがって、電源端子の電圧は、最上位の電池セルの検出電圧より高い電圧に維持する必要がある。   In such a conventional battery voltage detection device, power is supplied from the uppermost battery cell to the power supply terminal, and the power supply for the internal circuit is generated based on the power supply from the power supply terminal. Therefore, the voltage of the power supply terminal needs to be maintained at a voltage higher than the detection voltage of the uppermost battery cell.

また、各電池セルの両端とセル電圧検出端子とを接続する経路中には、ノイズ除去等用の時定数を有する回路(以下、時定数回路という)が設けられる。このため、電池セルの電圧変動が生じた時には、セル電圧検出端子の検出電圧は、この時定数回路の時定数に従って変化する。また、電源端子の電圧も、最上位の電池セルと電源端子とを接続する経路中の時定数回路の時定数に従って変化する。このため、電池セルの大きな電圧変動が生じた場合に、電源端子の電圧を最上位の電池セルの検出電圧より高い電圧に維持できなくなる可能性がある。   A circuit having a time constant for noise removal (hereinafter referred to as a time constant circuit) is provided in a path connecting both ends of each battery cell and the cell voltage detection terminal. For this reason, when the voltage fluctuation of a battery cell arises, the detection voltage of a cell voltage detection terminal changes according to the time constant of this time constant circuit. The voltage at the power supply terminal also changes according to the time constant of the time constant circuit in the path connecting the uppermost battery cell and the power supply terminal. For this reason, when a large voltage fluctuation of the battery cell occurs, there is a possibility that the voltage of the power supply terminal cannot be maintained at a voltage higher than the detection voltage of the uppermost battery cell.

例えば、電池セルに大きな電圧上昇が生じた場合、セル電圧検出端子に供給される電圧は、その経路中の時定数回路の時定数に従って上昇し、電源端子に供給される電圧は、その経路中の時定数回路の時定数に従って上昇する。ここで、電池セルとセル電圧検出端子との間の経路中の時定数回路の時定数が電池セルと電源端子との間の経路中の時定数回路の時定数より短ければ、セル電圧検出端子に供給される電圧は、電源端子に供給される電圧より速く上昇することになり、セル電圧検出端子に供給される電圧が電源端子に供給される電圧より高くなる可能性がある。また、例えば、電池セルに大きな電圧降下が生じた場合、セル電圧検出端子に供給される電圧は、その経路中の時定数回路の時定数に従って下降し、電源端子に供給される電圧は、その経路中の時定数回路の時定数に従って下降する。ここで、電池セルと電源端子との間の経路中の時定数回路の時定数が電池セルとセル電圧検出端子との間の経路中の時定数回路の時定数より短ければ、電源端子に供給される電圧は、セル電圧検出端子に供給される電圧より速く下降することになり、セル電圧検出端子に供給される電圧が電源端子に供給される電圧より高くなる可能性がある。   For example, when a large voltage rise occurs in a battery cell, the voltage supplied to the cell voltage detection terminal rises according to the time constant of the time constant circuit in the path, and the voltage supplied to the power supply terminal It rises according to the time constant of the time constant circuit. Here, if the time constant of the time constant circuit in the path between the battery cell and the cell voltage detection terminal is shorter than the time constant of the time constant circuit in the path between the battery cell and the power supply terminal, the cell voltage detection terminal The voltage supplied to the voltage rises faster than the voltage supplied to the power supply terminal, and the voltage supplied to the cell voltage detection terminal may be higher than the voltage supplied to the power supply terminal. For example, when a large voltage drop occurs in the battery cell, the voltage supplied to the cell voltage detection terminal decreases according to the time constant of the time constant circuit in the path, and the voltage supplied to the power supply terminal It descends according to the time constant of the time constant circuit in the path. Here, if the time constant of the time constant circuit in the path between the battery cell and the power supply terminal is shorter than the time constant of the time constant circuit in the path between the battery cell and the cell voltage detection terminal, the power supply terminal is supplied. The voltage to be supplied drops faster than the voltage supplied to the cell voltage detection terminal, and the voltage supplied to the cell voltage detection terminal may be higher than the voltage supplied to the power supply terminal.

本発明は上記の点に鑑みてなされたものであり、電源端子に供給される電圧をセル電圧検出端子に供給される電圧より高く維持することができ、セル電圧の検出精度を向上できる電池電圧検出装置を提供することを目的とする。   The present invention has been made in view of the above points, and can maintain the voltage supplied to the power supply terminal higher than the voltage supplied to the cell voltage detection terminal, and can improve the detection accuracy of the cell voltage. An object is to provide a detection device.

上述の課題を解決するために、本発明の一態様に係る電池電圧検出装置は、電池セル群に含まれる各電池セルの電圧を検出するセル電圧検出端子と、前記電池セル群の最上位の電池セルに接続される電源端子とを有する電圧検出回路と、前記最上位の電池セルと前記電源端子との経路中に設けられ、その時定数が放電方向と充電方向とで切り換えられる時定数回路と、を備える。   In order to solve the above-described problem, a battery voltage detection device according to an aspect of the present invention includes a cell voltage detection terminal that detects a voltage of each battery cell included in the battery cell group, and a top-level battery cell group. A voltage detection circuit having a power supply terminal connected to the battery cell, and a time constant circuit provided in a path between the uppermost battery cell and the power supply terminal, the time constant of which is switched between a discharge direction and a charge direction; .

また、本発明の一態様に係る電池電圧検出装置において、前記時定数回路は、前記最上位の電池セルと前記電源端子との経路中に直列に接続された複数の抵抗と、前記複数の抵抗の中の少なくとも一つの抵抗と並列に接続された切換手段とを含むようにしてもよい。   Further, in the battery voltage detection device according to one aspect of the present invention, the time constant circuit includes a plurality of resistors connected in series in a path between the uppermost battery cell and the power supply terminal, and the plurality of resistors. And switching means connected in parallel with at least one of the resistors.

また、本発明の一態様に係る電池電圧検出装置において、前記切換手段は、そのアノードが電池セル側に接続され、そのカソードが電源端子側に接続されるダイオードであるようにしてもよい。   In the battery voltage detection device according to one aspect of the present invention, the switching unit may be a diode having an anode connected to the battery cell side and a cathode connected to the power supply terminal side.

また、本発明の一態様に係る電池電圧検出装置において、前記切換手段は、スイッチ素子であるようにしてもよい。   In the battery voltage detection device according to one aspect of the present invention, the switching unit may be a switch element.

本発明によれば、最上位の電池セルと電源端子との経路中に、その時定数が放電方向と充電方向とで切り換えられる時定数回路を設けているので、電源端子に供給される電圧をセル電圧検出端子に供給される電圧より高く維持することができ、セル電圧の検出精度を向上できる。   According to the present invention, a time constant circuit is provided in the path between the uppermost battery cell and the power supply terminal so that the time constant can be switched between the discharge direction and the charge direction. It can be maintained higher than the voltage supplied to the voltage detection terminal, and the detection accuracy of the cell voltage can be improved.

本実施形態における電池電圧検出装置の構成概略図である。It is a structure schematic diagram of the battery voltage detection apparatus in this embodiment. セル電圧の変動が生じた時の電源端子の電圧の変化とセル電圧検出端子の電圧の変化の関係を示す波形図である。It is a wave form diagram which shows the relationship between the change of the voltage of a power supply terminal when the fluctuation | variation of cell voltage arises, and the change of the voltage of a cell voltage detection terminal. 本実施形態の変形例における電池電圧検出装置の構成概略図である。It is a structure schematic of the battery voltage detection apparatus in the modification of this embodiment.

以下、本発明の実施の形態について図面を参照しながら説明する。図1は、本実施形態に係る電池電圧検出装置1の構成概略図である。図1において、n個(nは1以上の整数)の電池セル10−1〜10−nは直列接続され、電池セル群11を構成している。電池セル10−1〜10−nの数は、例えば12個(n=12)である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a battery voltage detection device 1 according to the present embodiment. In FIG. 1, n (n is an integer of 1 or more) battery cells 10-1 to 10-n are connected in series to constitute a battery cell group 11. The number of battery cells 10-1 to 10-n is, for example, 12 (n = 12).

電圧検出回路20は、電池セル群11を構成する各電池セル10−1〜10−nのセル電圧を検出する。電圧検出回路20は、セル電圧検出端子C0〜Cnと、電源端子Vccと、接地端子AGNDとを有している。   The voltage detection circuit 20 detects the cell voltages of the battery cells 10-1 to 10-n constituting the battery cell group 11. The voltage detection circuit 20 has cell voltage detection terminals C0 to Cn, a power supply terminal Vcc, and a ground terminal AGND.

各電池セル10−1〜10−nそれぞれの両端は、電圧検出回路20の各セル電圧検出端子C0〜Cnに接続される。例えば、電池セル10−2は、負極側がセル電圧検出端子C2に接続され、正極側がセル電圧検出端子C1に接続される。各電池セル10−1〜10−nの両端とセル電圧検出端子C0〜Cnとを接続する経路中には、ノイズ除去用の時定数を有する時定数回路13−0〜13−nが設けられる。各時定数回路13−0〜13−nは、抵抗14−0〜14−nと、コンデンサ15−0〜15−nとから構成されている。例えば、時定数回路13−nは、抵抗14−nと、コンデンサ15−nとから構成されている。   Both ends of each of the battery cells 10-1 to 10-n are connected to the cell voltage detection terminals C0 to Cn of the voltage detection circuit 20. For example, the battery cell 10-2 has a negative electrode side connected to the cell voltage detection terminal C2 and a positive electrode side connected to the cell voltage detection terminal C1. A time constant circuit 13-0 to 13-n having a time constant for noise removal is provided in a path connecting both ends of the battery cells 10-1 to 10-n and the cell voltage detection terminals C0 to Cn. . Each time constant circuit 13-0 to 13-n includes resistors 14-0 to 14-n and capacitors 15-0 to 15-n. For example, the time constant circuit 13-n includes a resistor 14-n and a capacitor 15-n.

電池セル群11の中で最上位の電池セル10−1の正極は、電圧検出回路20の電源端子Vccに接続される。電池セル10−1の正極と電源端子Vccとを接続する経路中には、ノイズ除去用の時定数回路18が設けられる。時定数回路18は、抵抗21と、抵抗22と、コンデンサ23と、ダイオード24とから構成されている。なお、電池セル群11の中で最上位の電池セルとは、図1に示すように、複数の電池セルが直列に接続されている場合に、電圧検出回路20のセル電圧検出端子C0とC1に接続され、接地端子AGNDに対して直列接続において最も電圧が高い電池セルである。   The positive electrode of the uppermost battery cell 10-1 in the battery cell group 11 is connected to the power supply terminal Vcc of the voltage detection circuit 20. A time constant circuit 18 for removing noise is provided in a path connecting the positive electrode of the battery cell 10-1 and the power supply terminal Vcc. The time constant circuit 18 includes a resistor 21, a resistor 22, a capacitor 23, and a diode 24. Note that the uppermost battery cell in the battery cell group 11 is a cell voltage detection terminal C0 and C1 of the voltage detection circuit 20 when a plurality of battery cells are connected in series as shown in FIG. And the battery cell having the highest voltage in series connection with respect to the ground terminal AGND.

電池セル群11の中で最下位の電池セル10−nの負極は、電圧検出回路20の接地端子AGNDに接続されている。   The negative electrode of the lowest battery cell 10-n in the battery cell group 11 is connected to the ground terminal AGND of the voltage detection circuit 20.

電池セル群11の各電池セル10−1〜10−nの両端のセル電圧は、電圧検出回路20のセル電圧検出端子C0〜Cnに供給される。電圧検出回路20は、セル電圧検出端子C0〜Cnに入力される電圧から、各電池セル10−1〜10−nのセル電圧を計測する。   The cell voltages at both ends of each of the battery cells 10-1 to 10-n in the battery cell group 11 are supplied to the cell voltage detection terminals C0 to Cn of the voltage detection circuit 20. The voltage detection circuit 20 measures the cell voltage of each battery cell 10-1 to 10-n from the voltage input to the cell voltage detection terminals C0 to Cn.

電池セル群11の中で最上位の電池セル10−1の正極は、電圧検出回路20の電源端子Vccに供給される。電圧検出回路20は、この電源端子Vccから供給される電圧を使って、内部の電源を生成する。   The positive electrode of the uppermost battery cell 10-1 in the battery cell group 11 is supplied to the power supply terminal Vcc of the voltage detection circuit 20. The voltage detection circuit 20 generates an internal power supply using the voltage supplied from the power supply terminal Vcc.

次に、本実施形態における時定数回路18について説明する。図1に示すように、電池セル10−1の正極と電源端子Vccとを接続する経路中には、抵抗21と、抵抗22と、コンデンサ23と、ダイオード24とからなる時定数回路18が設けられる。この時定数回路18は、電池セル10−1の正極と電源端子Vccとの間に、抵抗21と抵抗22とが直列に接続され、抵抗22と電源端子Vccとの接続点にコンデンサ23の一端が接続され、コンデンサ23の他端が接地端子AGNDに接続され、抵抗22と並列に、ダイオード24が接続されて構成される。ダイオード24の向きは、そのアノードが電池セル10−1側となり、そのカソードが電源端子Vcc側となるように接続される。この時定数回路18の時定数は、電池セル10−1の正極と電源端子Vccとを接続する経路の中の電流の方向に応じて異なる値となる。   Next, the time constant circuit 18 in this embodiment will be described. As shown in FIG. 1, a time constant circuit 18 including a resistor 21, a resistor 22, a capacitor 23, and a diode 24 is provided in a path connecting the positive electrode of the battery cell 10-1 and the power supply terminal Vcc. It is done. In the time constant circuit 18, a resistor 21 and a resistor 22 are connected in series between the positive electrode of the battery cell 10-1 and the power supply terminal Vcc, and one end of the capacitor 23 is connected to a connection point between the resistor 22 and the power supply terminal Vcc. , The other end of the capacitor 23 is connected to the ground terminal AGND, and a diode 24 is connected in parallel with the resistor 22. The diode 24 is connected such that its anode is on the battery cell 10-1 side and its cathode is on the power supply terminal Vcc side. The time constant of the time constant circuit 18 varies depending on the direction of the current in the path connecting the positive electrode of the battery cell 10-1 and the power supply terminal Vcc.

すなわち、電池セル10−1の正極の電圧が電源端子Vccの電圧より高い場合には、電池セル10−1の正極と電源端子Vccとを接続する経路中には、矢印A1方向(放電方向)に電流が流れる。矢印A1方向に電流が流れるときには、ダイオード24はオン状態となり、抵抗22の両端は短絡されることになる。したがって、時定数回路18の時定数Taは、抵抗21の抵抗値と、コンデンサ23の静電容量とから決まる値となる。   That is, when the voltage of the positive electrode of the battery cell 10-1 is higher than the voltage of the power supply terminal Vcc, in the path connecting the positive electrode of the battery cell 10-1 and the power supply terminal Vcc, the direction of the arrow A1 (discharge direction) Current flows through When current flows in the direction of the arrow A1, the diode 24 is turned on, and both ends of the resistor 22 are short-circuited. Therefore, the time constant Ta of the time constant circuit 18 is a value determined from the resistance value of the resistor 21 and the capacitance of the capacitor 23.

これに対して、電池セル10−1の正極の電圧が電源端子Vccの電圧より低い場合には、電池セル10−1の正極と電源端子Vccとを接続する経路中には、矢印A2方向(充電方向)に電流が流れる。矢印A2方向に電流が流れるときには、ダイオード24はオフ状態となる。このため、時定数回路18の時定数Tbは、抵抗21と抵抗22との直列接続の抵抗値と、コンデンサ23の静電容量とから決まる値となり、矢印A1方向に電流が流れるときに比べて、時定数が長くなる。   On the other hand, when the voltage of the positive electrode of the battery cell 10-1 is lower than the voltage of the power supply terminal Vcc, in the path connecting the positive electrode of the battery cell 10-1 and the power supply terminal Vcc, the direction of the arrow A2 ( Current flows in the charging direction). When current flows in the direction of the arrow A2, the diode 24 is turned off. For this reason, the time constant Tb of the time constant circuit 18 is a value determined by the resistance value of the series connection of the resistor 21 and the resistor 22 and the capacitance of the capacitor 23, compared to when current flows in the direction of the arrow A1. , The time constant becomes longer.

このように、時定数回路18は、矢印A1方向に電流が流れるときと、矢印A2方向に電流が流れるときとで、2つの時定数Ta及びTbに、時定数を切り換えることができる。   As described above, the time constant circuit 18 can switch the time constant between the two time constants Ta and Tb when the current flows in the arrow A1 direction and when the current flows in the arrow A2 direction.

ここで、最上位の電池セル10−1の正極とセル電圧検出端子C0との経路中の時定数回路13−0の時定数をTvとする。この時定数回路13−0の時定数Tvを、時定数回路18の2つの時定数Ta及びTbの間となるように設定する。すなわち、時定数回路18の時定数Ta及びTbと、時定数回路13−0の時定数Tvとの関係を、(Tb>Tv>Ta)となるように設定する。このように設定すると、電源端子Vccに供給される電圧を、最上位のセル電圧検出端子C0に供給される電圧より常に高く保つことができる。このことについて、図2を用いて説明する。   Here, the time constant of the time constant circuit 13-0 in the path between the positive electrode of the uppermost battery cell 10-1 and the cell voltage detection terminal C0 is Tv. The time constant Tv of the time constant circuit 13-0 is set to be between the two time constants Ta and Tb of the time constant circuit 18. That is, the relationship between the time constants Ta and Tb of the time constant circuit 18 and the time constant Tv of the time constant circuit 13-0 is set to satisfy (Tb> Tv> Ta). With this setting, the voltage supplied to the power supply terminal Vcc can always be kept higher than the voltage supplied to the highest cell voltage detection terminal C0. This will be described with reference to FIG.

図2は、セル電圧の変動が生じた時の電源端子Vccの電圧の変化とセル電圧検出端子C0の電圧の変化の関係を示す波形図である。図2において、横軸は時刻を表し、縦軸は各信号のレベルを表す。   FIG. 2 is a waveform diagram showing the relationship between the change in the voltage at the power supply terminal Vcc and the change in the voltage at the cell voltage detection terminal C0 when the cell voltage fluctuates. In FIG. 2, the horizontal axis represents time, and the vertical axis represents the level of each signal.

例えば、図2における時刻t1で、図2(A)に示すように、セル電圧に大きな電圧上昇の変化が生じたとする。このような電圧上昇があると、これに伴って、図2(B)に示すように電源端子Vccの電圧が上昇すると共に、図2(C)に示すようにセル電圧検出端子C0の電圧が上昇する。このとき、電池セル10−1の正極の電圧は、電源端子Vccの電圧より高くなる。このため、電池セル10−1の正極と電源端子Vccとを接続する経路中には、矢印A1方向に電流が流れ、時定数回路18の時定数は、短い時定数Taとなる。よって、図2(B)に示すように、放電方向の電源端子Vccの電圧は、時定数Taに従って、充電方向(図2(C))と比べて、速く上昇していく。これに対して、時定数回路13−0の時定数はTvであり、(Tv>Ta)の関係となっている。このため、図2(C)に示すように、セル電圧検出端子C0の電圧は、時定数Tvに従って、電源端子Vccの電圧に比べて、緩やかに上昇していく。これにより、電源端子Vccの電圧を、セル電圧検出端子C0の電圧より高く保つことができる。   For example, it is assumed that a large voltage increase change occurs in the cell voltage as shown in FIG. 2A at time t1 in FIG. When this voltage rises, the voltage at the power supply terminal Vcc rises as shown in FIG. 2B, and the voltage at the cell voltage detection terminal C0 rises as shown in FIG. 2C. To rise. At this time, the voltage of the positive electrode of the battery cell 10-1 becomes higher than the voltage of the power supply terminal Vcc. For this reason, a current flows in the direction of the arrow A1 in the path connecting the positive electrode of the battery cell 10-1 and the power supply terminal Vcc, and the time constant of the time constant circuit 18 becomes a short time constant Ta. Therefore, as shown in FIG. 2B, the voltage of the power supply terminal Vcc in the discharging direction rises faster than the charging direction (FIG. 2C) according to the time constant Ta. On the other hand, the time constant of the time constant circuit 13-0 is Tv and has a relationship of (Tv> Ta). For this reason, as shown in FIG. 2C, the voltage at the cell voltage detection terminal C0 rises more slowly than the voltage at the power supply terminal Vcc according to the time constant Tv. Thereby, the voltage of the power supply terminal Vcc can be kept higher than the voltage of the cell voltage detection terminal C0.

また、図2における時刻t2で、図2(A)に示すように、セル電圧に大きな電圧降下が生じたとする。このような電圧降下があると、これに伴って、図2(B)に示すように電源端子Vccの電圧が下降すると共に、図2(C)に示すようにセル電圧検出端子C0の電圧が下降する。このとき、電池セル10−1の正極の電圧が電源端子Vccの電圧より低くなる。このため、電池セル10−1の正極と電源端子Vccとを接続する経路中には、矢印A2方向に電流が流れ、時定数回路18の時定数は、大きな時定数Tbとなる。よって、図2(B)に示すように、電源端子Vccの電圧は、時定数Tbに従って、充電方向(図2(C))と比べて、緩やかに下降していく。これに対して、時定数回路13−0の時定数はTvであり、(Tb>Tv)の関係となっている。このため、図2(C)に示すように、セル電圧検出端子C0の電圧は、時定数Tvに従って、電源端子Vccの電圧に比べて、速く下降していく。これにより、電源端子Vccの電圧を、セル電圧検出端子C0の電圧より高く保つことができる。   Further, it is assumed that a large voltage drop occurs in the cell voltage as shown in FIG. 2A at time t2 in FIG. When there is such a voltage drop, the voltage at the power supply terminal Vcc drops as shown in FIG. 2 (B), and the voltage at the cell voltage detection terminal C0 as shown in FIG. 2 (C). Descend. At this time, the voltage of the positive electrode of the battery cell 10-1 becomes lower than the voltage of the power supply terminal Vcc. For this reason, a current flows in the direction of the arrow A2 in the path connecting the positive electrode of the battery cell 10-1 and the power supply terminal Vcc, and the time constant of the time constant circuit 18 becomes a large time constant Tb. Therefore, as shown in FIG. 2 (B), the voltage of the power supply terminal Vcc gradually falls in comparison with the charging direction (FIG. 2 (C)) according to the time constant Tb. On the other hand, the time constant of the time constant circuit 13-0 is Tv and has a relationship of (Tb> Tv). For this reason, as shown in FIG. 2C, the voltage of the cell voltage detection terminal C0 decreases more rapidly than the voltage of the power supply terminal Vcc according to the time constant Tv. Thereby, the voltage of the power supply terminal Vcc can be kept higher than the voltage of the cell voltage detection terminal C0.

以上説明したように、本実施形態では、電池セル10−1の正極と電源端子Vccとを接続する経路中に、抵抗21と、抵抗22と、コンデンサ23と、ダイオード24とからなる時定数回路18が設けられる。このような時定数回路18では、セル電圧が上昇したときには、短い時定数となり、セル電圧が下降したときには、長い時定数となる。これにより、セル電圧が上昇したときには、電源端子Vccの電圧はセル電圧検出端子C0の電圧より速く上昇し、セル電圧が下降したときには、電源端子Vccの電圧はセル電圧検出端子C0の電圧より緩やかに下降することになり、電源端子Vccの電圧を、セル電圧検出端子C0の電圧より高く保つことができる。電源端子Vccの電圧がセル電圧検出端子C0の電圧より高く維持されるので、電圧検出回路20では、最上位のセル電圧検出端子C0のセル電圧を正しく検出することができる。   As described above, in the present embodiment, the time constant circuit including the resistor 21, the resistor 22, the capacitor 23, and the diode 24 in the path connecting the positive electrode of the battery cell 10-1 and the power supply terminal Vcc. 18 is provided. In such a time constant circuit 18, when the cell voltage increases, the time constant becomes short, and when the cell voltage decreases, the time constant becomes long. Thus, when the cell voltage rises, the voltage at the power supply terminal Vcc rises faster than the voltage at the cell voltage detection terminal C0, and when the cell voltage falls, the voltage at the power supply terminal Vcc is slower than the voltage at the cell voltage detection terminal C0. The voltage at the power supply terminal Vcc can be kept higher than the voltage at the cell voltage detection terminal C0. Since the voltage at the power supply terminal Vcc is maintained higher than the voltage at the cell voltage detection terminal C0, the voltage detection circuit 20 can correctly detect the cell voltage at the highest cell voltage detection terminal C0.

なお、上述の例では、電池セル10−1の正極と電源端子Vccとを接続する経路中の時定数回路18を、抵抗21と、抵抗22と、コンデンサ23と、ダイオード24とで構成し、ダイオード24を切換手段として用いたが、図3に示すように、ダイオード24の代わりに、スイッチ素子34を切替手段として用いても良い。スイッチ素子34(SW)としては、例えばFET(Field Effect Transistor)を用いることができる。   In the above-described example, the time constant circuit 18 in the path connecting the positive electrode of the battery cell 10-1 and the power supply terminal Vcc is composed of the resistor 21, the resistor 22, the capacitor 23, and the diode 24. Although the diode 24 is used as the switching means, as shown in FIG. 3, a switch element 34 may be used as the switching means instead of the diode 24. As the switch element 34 (SW), for example, a field effect transistor (FET) can be used.

以上、本発明の一実施形態について説明したが、この実施形態はあくまで一例であって本発明の趣旨を逸脱しない範囲において実施形態の細部を種々変更可能であることは勿論である。   Although one embodiment of the present invention has been described above, this embodiment is merely an example, and it is needless to say that various details of the embodiment can be changed without departing from the spirit of the present invention.

1…電池電圧検出装置、10−1〜10−n…電池セル、11…電池セル群、18…時定数回路、20…電圧検出回路、21,22…抵抗、23…コンデンサ、24…ダイオード、34…スイッチ素子 DESCRIPTION OF SYMBOLS 1 ... Battery voltage detection apparatus, 10-1-10-n ... Battery cell, 11 ... Battery cell group, 18 ... Time constant circuit, 20 ... Voltage detection circuit, 21,22 ... Resistance, 23 ... Capacitor, 24 ... Diode, 34 ... Switch element

Claims (4)

電池セル群に含まれる各電池セルの電圧を検出するセル電圧検出端子と、
前記電池セル群の最上位の電池セルに接続される電源端子とを有する電圧検出回路と、
前記最上位の電池セルと前記電源端子との経路中に設けられ、その時定数が放電方向と充電方向とで切り換えられる時定数回路と、
を備える電池電圧検出装置。
A cell voltage detection terminal for detecting the voltage of each battery cell included in the battery cell group;
A voltage detection circuit having a power supply terminal connected to the uppermost battery cell of the battery cell group;
A time constant circuit provided in a path between the uppermost battery cell and the power supply terminal, the time constant of which is switched between a discharging direction and a charging direction;
A battery voltage detection device comprising:
前記時定数回路は、
前記最上位の電池セルと前記電源端子との経路中に直列に接続された複数の抵抗と、
前記複数の抵抗の中の少なくとも一つの抵抗と並列に接続された切換手段とを含む、請求項1に記載の電池電圧検出装置。
The time constant circuit is
A plurality of resistors connected in series in a path between the uppermost battery cell and the power supply terminal;
The battery voltage detection device according to claim 1, further comprising switching means connected in parallel with at least one of the plurality of resistors.
前記切換手段は、そのアノードが電池セル側に接続され、そのカソードが電源端子側に接続されるダイオードである、請求項2に記載の電池電圧検出装置。   The battery voltage detection device according to claim 2, wherein the switching means is a diode having an anode connected to the battery cell side and a cathode connected to the power supply terminal side. 前記切換手段は、スイッチ素子である、請求項2または請求項3に記載の電池電圧検出装置。   The battery voltage detection device according to claim 2, wherein the switching unit is a switch element.
JP2016008905A 2016-01-20 2016-01-20 Battery voltage detector Expired - Fee Related JP6569180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016008905A JP6569180B2 (en) 2016-01-20 2016-01-20 Battery voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008905A JP6569180B2 (en) 2016-01-20 2016-01-20 Battery voltage detector

Publications (2)

Publication Number Publication Date
JP2017129450A true JP2017129450A (en) 2017-07-27
JP6569180B2 JP6569180B2 (en) 2019-09-04

Family

ID=59394706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008905A Expired - Fee Related JP6569180B2 (en) 2016-01-20 2016-01-20 Battery voltage detector

Country Status (1)

Country Link
JP (1) JP6569180B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219215A (en) * 2008-03-07 2009-09-24 Toshiba Corp Battery system
US20120025835A1 (en) * 2010-07-27 2012-02-02 Gm Global Technology Operations, Inc. Sensor Arrangement for an Energy Storage Device and a Method of Using the Same
JP2014023283A (en) * 2012-07-18 2014-02-03 Lapis Semiconductor Co Ltd Battery monitoring system and semiconductor device
JP2014082152A (en) * 2012-10-18 2014-05-08 Yazaki Corp Voltage detection device
US20160109530A1 (en) * 2014-10-21 2016-04-21 Analog Devices Technology Combination of a battery stack and a battery monitor, and a method of connecting a battery monitor to a stack of batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219215A (en) * 2008-03-07 2009-09-24 Toshiba Corp Battery system
US20120025835A1 (en) * 2010-07-27 2012-02-02 Gm Global Technology Operations, Inc. Sensor Arrangement for an Energy Storage Device and a Method of Using the Same
JP2014023283A (en) * 2012-07-18 2014-02-03 Lapis Semiconductor Co Ltd Battery monitoring system and semiconductor device
JP2014082152A (en) * 2012-10-18 2014-05-08 Yazaki Corp Voltage detection device
US20160109530A1 (en) * 2014-10-21 2016-04-21 Analog Devices Technology Combination of a battery stack and a battery monitor, and a method of connecting a battery monitor to a stack of batteries

Also Published As

Publication number Publication date
JP6569180B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
KR102347943B1 (en) Apparatus for battery balancing and battery pack including the same
JP6206317B2 (en) Power storage system
WO2019235027A1 (en) Battery pack monitoring system
JP2008295299A5 (en)
JP2014093924A (en) Voltage equalization device
JP4270154B2 (en) Battery voltage detection controller
JP6376722B2 (en) Battery voltage detection circuit
JP5811108B2 (en) Electronic equipment
JP2017146260A (en) Voltage detector
CN108450041B (en) Battery pack monitoring system
JP2015186331A (en) balance correction circuit, power storage module and balance correction method
US9397284B2 (en) Piezoelectric circuit, piezoelectric driving circuit for the piezoelectric circuit, and piezoelectric driving method
US8441234B2 (en) Detecting module for a battery equalizer and method for detecting a battery equalizer
JP2017229152A (en) Battery pack
EP2763275B1 (en) Monitor and control module and method
JP5312491B2 (en) Voltage display method, voltage display device, and battery pack
JP2015159051A5 (en)
JP6569180B2 (en) Battery voltage detector
JP6137470B2 (en) Power control device
US20180131198A1 (en) Control device and control method for equally charging and discharging battery units
JP6742191B2 (en) Sticking detection device and battery system
JPWO2012001810A1 (en) Thin film capacitor charger
JP2012080456A (en) Protection circuit
KR101381847B1 (en) Battery pack for electric bicycle
JP5352328B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180704

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190719

R150 Certificate of patent or registration of utility model

Ref document number: 6569180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees