JPWO2014030533A1 - Method for producing circularly polarizing body and circularly polarizing body - Google Patents

Method for producing circularly polarizing body and circularly polarizing body Download PDF

Info

Publication number
JPWO2014030533A1
JPWO2014030533A1 JP2014531573A JP2014531573A JPWO2014030533A1 JP WO2014030533 A1 JPWO2014030533 A1 JP WO2014030533A1 JP 2014531573 A JP2014531573 A JP 2014531573A JP 2014531573 A JP2014531573 A JP 2014531573A JP WO2014030533 A1 JPWO2014030533 A1 JP WO2014030533A1
Authority
JP
Japan
Prior art keywords
film
light
substance
circularly polarizing
polarizing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014531573A
Other languages
Japanese (ja)
Inventor
祐香 小坂
祐香 小坂
知志 冨田
知志 冨田
久雄 柳
久雄 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Original Assignee
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC filed Critical Nara Institute of Science and Technology NUC
Publication of JPWO2014030533A1 publication Critical patent/JPWO2014030533A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties

Abstract

本発明は、任意の波長で円偏光二色性を示し、且つ、光の入射方向により異なる極性の円偏光二色性を示す円偏光体の製造方法及び円偏光体を提供することを課題とする。本発明は、カイラル物質を含有する第1膜を形成し、該第1膜の上に光吸収性物質を含有する第2膜を形成することにより円偏光体を製造する方法である。又、本発明の円偏光体は、カイラル物質を含有する第1膜と、該第1膜の上に配置された光吸収性物質を含有する第2膜とからなることを特徴とする。カイラル物質として糖類、酒石酸、ビタミン類、ペプチド類、タンパク質から選ばれる生体分子を用いるとよい。また、光吸収性物質としては、ローダミン6Gやナイルブルーといった低分子の光吸収性物質を用いることができる。It is an object of the present invention to provide a method for producing a circularly polarizing body and a circularly polarizing body that exhibit circular dichroism at an arbitrary wavelength and exhibit circular dichroism having different polarities depending on the incident direction of light. To do. The present invention is a method for producing a circularly polarizing body by forming a first film containing a chiral substance and forming a second film containing a light-absorbing substance on the first film. The circularly polarizing body of the present invention is characterized by comprising a first film containing a chiral substance and a second film containing a light-absorbing substance disposed on the first film. A biomolecule selected from saccharides, tartaric acid, vitamins, peptides, and proteins may be used as the chiral substance. As the light absorbing substance, a low molecular weight light absorbing substance such as rhodamine 6G or Nile blue can be used.

Description

本発明は、光アイソレータや光ファイバー、液晶ディスプレイ等に用いられる光学素子に適用可能な円偏光体の製造方法及び円偏光体に関する。   The present invention relates to a method of manufacturing a circularly polarizing body and a circularly polarizing body applicable to optical elements used in optical isolators, optical fibers, liquid crystal displays, and the like.

ある物質の実像と鏡像を重ね合わすことができないとき、その物質はキラルであるといい、そのような性質をキラリティという。キラリティを有する物質は、左回りの円偏光と右回りの円偏光の吸光度に差があるという円偏光二色性(CD(circular dichroism))を示す。このような円偏光二色性の現象は、その物質に特有の波長において生じるため、特定の波長の円偏光のみを透過させ、逆方向の円偏光を遮る機能を有する偏光依存型の光アイソレータのような光デバイスや、光ファイバや液晶ディスプレイ等に用いられる光学素子に適用することができる。また、特定の波長の円偏光を分子に照射して該分子の立体構造を解析する円二色性測定装置にも用いることができる。   When a real image and a mirror image of a substance cannot be superimposed, the substance is said to be chiral, and this property is called chirality. A substance having chirality exhibits circular dichroism (CD) in which there is a difference in absorbance between counterclockwise circularly polarized light and clockwise circularly polarized light. Since such a circular dichroism phenomenon occurs at a wavelength peculiar to the material, a polarization-dependent optical isolator having a function of transmitting only a circularly polarized light having a specific wavelength and blocking a circularly polarized light in the reverse direction. The present invention can be applied to such optical devices and optical elements used in optical fibers, liquid crystal displays, and the like. It can also be used in a circular dichroism measuring apparatus that irradiates molecules with circularly polarized light of a specific wavelength and analyzes the three-dimensional structure of the molecules.

タンパク質やアミノ酸、糖類に代表される生体分子の多くはキラリティを有することが知られている。これら生体分子の多くは紫外領域の光に対して円偏光二色性を示すものの、可視領域の光に対しては円偏光二色性を示さない。そこで、このような生体分子において、生体分子が円偏光二色性を示す波長とは異なる可視領域の波長で円偏光二色性を発現させる研究がなされている。   Many biomolecules typified by proteins, amino acids, and saccharides are known to have chirality. Many of these biomolecules exhibit circular dichroism with respect to light in the ultraviolet region, but do not exhibit circular dichroism with respect to light in the visible region. Therefore, in such biomolecules, studies have been made to develop circular dichroism at a wavelength in the visible region different from the wavelength at which the biomolecule exhibits circular dichroism.

例えば非特許文献1には、キラリティを有する生体分子であるリボフラビンと金微粒子を混ぜ合わせることにより、金微粒子の局在表面プラズモンによる吸収波長である可視領域において円偏光二色性が現れることが報告されている。非特許文献1では、塩化金酸(III)イオンを、キラリティを有する生体分子であるリボフラビンと共に紫外線硬化性樹脂に混ぜたものに紫外線を照射して金微粒子とリボフラビンの混合膜を形成している。この混合膜に紫外可視領域の円偏光を照射して円偏光二色性(CD)スペクトルを測定したところ、金微粒子の吸収波長である550nm付近にCDピークが観察された(図3参照)。   For example, Non-Patent Document 1 reports that circular dichroism appears in the visible region, which is the absorption wavelength of localized surface plasmons of gold fine particles, by mixing riboflavin, which is a biomolecule having chirality, with gold fine particles. Has been. In Non-Patent Document 1, a mixture of gold microparticles and riboflavin is formed by irradiating ultraviolet curable resin with chloroauric acid (III) ions mixed with UV-curable resin together with riboflavin, which is a biomolecule having chirality. . When the circular dichroism (CD) spectrum was measured by irradiating this mixed film with circularly polarized light in the ultraviolet-visible region, a CD peak was observed in the vicinity of 550 nm which is the absorption wavelength of the gold fine particles (see FIG. 3).

小坂祐香、江上一位、冨田知志、柳久雄「金微粒子とリボフラビンによるプラズモニック円偏光二色性」2012春季応用物理学会予稿集, 2012年3月17日, 17a-B11-9Yuka Kosaka, Kazue Egami, Tomoshi Hamada, Hisao Yanagi “Plasmonic Circular Dichroism with Gold Fine Particles and Riboflavin” 2012 Proceedings of the Japan Society of Applied Physics, March 17, 2012, 17a-B11-9

上記したリボフラビンと金微粒子の混合膜では、円偏光の入射方向に関係なく同じ極性のCDピークがみられる。例えば、光アイソレータは一方向からの光のみを透過させ、逆方向の光を遮る機能を有する光学デバイスであるが、このような光学デバイスにおいては、上記したような混合膜は用いることができない。   In the above-mentioned mixed film of riboflavin and gold fine particles, a CD peak having the same polarity is seen regardless of the incident direction of circularly polarized light. For example, the optical isolator is an optical device having a function of transmitting only light from one direction and blocking light in the opposite direction. However, in such an optical device, the above-described mixed film cannot be used.

本発明が解決しようとする課題は、任意の波長で円偏光二色性を示し、且つ、光の入射方向により異なる極性の円偏光二色性を示す円偏光体の製造方法及び円偏光体を提供することである。   The problem to be solved by the present invention is to provide a method for producing a circularly polarizing body and a circularly polarizing body that exhibit circular dichroism at an arbitrary wavelength and exhibit circular dichroism having different polarities depending on the incident direction of light. Is to provide.

本発明に係る円偏光体の製造方法は、カイラル物質を含有する第1膜を形成し、該第1膜の上に光吸収性物質を含有する第2膜を形成することを特徴とする。   The method for producing a circularly polarizing body according to the present invention is characterized in that a first film containing a chiral substance is formed, and a second film containing a light absorbing substance is formed on the first film.

また、本発明に係る円偏光体は、カイラル物質を含有する第1膜と、該第1膜の上に配置された光吸収性物質を含有する第2膜とからなることを特徴とする。   In addition, the circularly polarizing body according to the present invention includes a first film containing a chiral substance and a second film containing a light-absorbing substance disposed on the first film.

ここで、カイラル物質とは、それ自身がカイラル媒質としての性質を有しているもの、別の物質と混合することにより該混合物がカイラル媒質としての性質を有するものをいう。つまり、カイラル物質を含有することにより第1膜はカイラル媒質としての性質を有する。このようなカイラル物質には種々のものがあるが、例えば糖類、酒石酸、ビタミン類、ペプチド類、タンパク質等の生体分子を用いることができる。
同様に、光吸収性物質とは、それ自身が光吸収媒質としての性質を有しているものの他、別の物質と混合することにより該混合物が光吸収媒質としての性質を有するものをいう。つまり、光吸収性物質を含有することにより第2膜は光吸収媒質としての性質を有する。このような光吸収性物質には種々のものがあるが、例えばローダミン6Gやナイルブルー等の低分子の物質を用いると良い。
Here, the chiral substance means a substance having a property as a chiral medium itself, or a substance having a property as a chiral medium when mixed with another substance. That is, the first film has a property as a chiral medium by containing a chiral substance. There are various kinds of such chiral substances. For example, biomolecules such as sugars, tartaric acid, vitamins, peptides, and proteins can be used.
Similarly, the light-absorbing substance refers to a substance having a property as a light-absorbing medium by mixing with another substance in addition to a substance having a property as a light-absorbing medium itself. That is, the second film has a property as a light absorbing medium by containing the light absorbing substance. There are various kinds of such light-absorbing substances. For example, low-molecular substances such as rhodamine 6G and Nile Blue may be used.

本発明は、カイラル物質が円偏光二色性(CD(circular dichroism))を示す波長とは異なる波長において吸収を示す光吸収性物質を組み合わせると、該光吸収性物質の吸収波長でも円偏光二色性を示すことを見いだし、さらに、カイラル物質を含有する第1膜と光吸収性物質を含有する第2膜を積層してカイラル媒質と光吸収媒質の界面を形成することにより、カイラル物質と光吸収性物質の混合膜ではみられなかった、反対称な円偏光二色性を示すことを見いだした結果、なされたものである。ここで、反対称な円偏光二色性とは、第1膜及び第2膜のうちの一方側から円偏光を入射させたときと他方側から円偏光を入射させたときとでCDピークの極性が反転することをいう。   In the present invention, when a light-absorbing substance that absorbs at a wavelength different from the wavelength at which the chiral substance exhibits circular dichroism (CD) is combined, the circularly-polarized light can be obtained even at the absorption wavelength of the light-absorbing substance. It has been found that it exhibits chromaticity, and further, a first film containing a chiral substance and a second film containing a light-absorbing substance are laminated to form an interface between the chiral medium and the light-absorbing medium. It was made as a result of finding that it showed antisymmetric circular dichroism which was not seen in the mixed film of the light-absorbing substance. Here, the antisymmetric circular dichroism is the CD peak between when the circularly polarized light is incident from one side of the first film and the second film and when the circularly polarized light is incident from the other side. It means that the polarity is reversed.

前記第1膜は、カイラル物質を含有する透光性ポリマーから構成すると良く、同様に、前記第2膜は、光吸収性物質を含有する透光性ポリマーから構成すると良い。透光性ポリマーには、光硬化性樹脂を用いることが好ましい。   The first film may be composed of a light-transmitting polymer containing a chiral substance. Similarly, the second film may be composed of a light-transmitting polymer containing a light-absorbing substance. It is preferable to use a photocurable resin for the light-transmitting polymer.

上記第2膜は、吸収波長が異なる複数種の光吸収性物質を含有していても良い。また、上記第2膜を、光吸収性物質を含有する複数の膜を積層して成る積層膜から構成し、該積層膜の各膜が含有する光吸収性物質の吸収波長が互いに異なるように構成しても良い。さらに、前記第1膜が、前記第2膜が含有する光吸収性物質とは吸収波長が異なる光吸収性物質を含有するようにしても良い。このような構成によれば、複数の波長において円偏光二色性を示す円偏光体を得ることができる。   The second film may contain a plurality of types of light-absorbing substances having different absorption wavelengths. Further, the second film is composed of a laminated film formed by laminating a plurality of films containing a light-absorbing substance, and the absorption wavelength of the light-absorbing substance contained in each film of the laminated film is different from each other. It may be configured. Furthermore, the first film may contain a light-absorbing substance having an absorption wavelength different from that of the light-absorbing substance contained in the second film. According to such a configuration, it is possible to obtain a circularly polarizing body that exhibits circular dichroism at a plurality of wavelengths.

本発明によれば、適宜の吸収波長を有する光吸収性物質を用いて第2膜を形成することにより、目的とする波長において円偏光二色性を示す円偏光体を得ることができる。また、本発明に係る円偏光体は、第1膜側から光を入射させたときと、第2膜側から光を入射させたときとではCD応答極性が反転する。従って、光アイソレータといった光の入射方向により極性が異なる円偏光制御素子として用いることができる。   According to the present invention, by forming the second film using a light-absorbing substance having an appropriate absorption wavelength, a circularly polarizing body that exhibits circular dichroism at a target wavelength can be obtained. Further, in the circular polarizer according to the present invention, the CD response polarity is inverted when light is incident from the first film side and when light is incident from the second film side. Therefore, it can be used as a circularly polarized light control element having a different polarity depending on the incident direction of light, such as an optical isolator.

本発明の円偏光体の製造方法を概略的に示す図。The figure which shows schematically the manufacturing method of the circularly-polarizing body of this invention. 円偏光二色性の説明図。Explanatory drawing of circular dichroism. リボフラビンのみを含有する膜(比較例1)と、リボフラビン及び金微粒子の混合膜円偏光体(参考例1)の吸収スペクトル(a)及びCDスペクトル(b)。Absorption spectrum (a) and CD spectrum (b) of a film containing only riboflavin (Comparative Example 1) and a mixed film circular polarizer of Reference Example 1 of riboflavin and gold fine particles. ローダミン6Gのみを含有する膜(比較例2)と、ローダミン6G及びDグルコースの混合膜円偏光体(参考例2)のCDスペクトル(a)及び吸収スペクトル(b)。CD spectrum (a) and absorption spectrum (b) of a film containing only rhodamine 6G (Comparative Example 2) and a mixed film circular polarizer of Rhodamine 6G and D glucose (Reference Example 2). ローダミン6Gのみを含有する膜(比較例2)と、ローダミン6G及びLグルコースの混合膜円偏光体(参考例2)のCDスペクトル(a)及び吸収スペクトル(b)。CD spectrum (a) and absorption spectrum (b) of a film containing only rhodamine 6G (Comparative Example 2) and a mixed film circular polarizer of Rhodamine 6G and L glucose (Reference Example 2). D/Lグルコースとローダミン6Gを用いた混合膜円偏光体(参考例2)に対して一方向及び他方向から光を入射させたときのCDスペクトル(a)及び吸収スペクトル(b)。CD spectrum (a) and absorption spectrum (b) when light is incident from one direction and the other direction on a mixed film circularly polarizing body (Reference Example 2) using D / L glucose and rhodamine 6G. D/L酒石酸とローダミン6Gを用いた混合膜円偏光体(参考例3)に対して一方向及び他方向から光を入射させたときのCDスペクトル(a)及び吸収スペクトル(b)。CD spectrum (a) and absorption spectrum (b) when light is incident from one direction and the other direction on a mixed film circularly polarizing body (Reference Example 3) using D / L tartaric acid and rhodamine 6G. Dグルコースとローダミン6Gを用いた混合膜円偏光体(参考例2)のCDスペクトル及び吸収スペクトル(a)と、Dグルコースとナイルブルーを用いた混合膜円偏光体(参考例4)のCDスペクトル及び吸収スペクトル(b)。CD spectrum and absorption spectrum (a) of a mixed film circular polarizer (Reference Example 2) using D glucose and rhodamine 6G, and CD spectrum of a mixed film circular polarizer (Reference Example 4) using D glucose and Nile blue And absorption spectrum (b). 本発明に係る多層膜円偏光体の概略的な構成を示す図。The figure which shows schematic structure of the multilayer film circularly-polarizing body which concerns on this invention. 本発明の実施例1に係る、D/Lグルコースとローダミン6Gを用いた多層膜円偏光体に一方向及び他方向から光を入射させたときのCDスペクトル(a)及び吸収スペクトル(b)。The CD spectrum (a) and absorption spectrum (b) when light is incident on the multilayer circularly polarizing body using D / L glucose and rhodamine 6G according to Example 1 of the present invention from one direction and the other direction. 本発明の実施例2に係る、Dグルコースとローダミン6Gを用いた多層膜円偏光体に一方向及び他方向から光を入射させたときのCDスペクトル(a)及び吸収スペクトル(b)。The CD spectrum (a) and absorption spectrum (b) when light is incident on the multilayered circular polarizer using D glucose and rhodamine 6G according to Example 2 of the present invention from one direction and the other direction. 本発明の実施例2に係るLグルコースとローダミン6Gを用いた多層膜円偏光体に一方向及び他方向から光を入射させたときのCDスペクトル(a)及び吸収スペクトル(b)。The CD spectrum (a) and absorption spectrum (b) when light is incident on the multilayer circularly polarizing body using L glucose and Rhodamine 6G according to Example 2 of the present invention from one direction and the other direction.

上述したように本発明は、カイラル物質と光吸収性物質の混合膜において、該光吸収性物質の吸収波長で円偏光二色性を示す現象を見出したことを契機になされたものである。そこで、以下では、まず、参考例としてカイラル物質と光吸収性物質の両方を含有する混合膜から成る円偏光体(以下、「混合膜円偏光体」という。)について説明し、次に、カイラル物質を含有する第1膜と、光吸収性物質を含有する第2膜を積層して成る円偏光体(以下、「多層膜円偏光体」という。)の実施例を説明する。   As described above, the present invention is triggered by the discovery of a phenomenon that exhibits circular dichroism at the absorption wavelength of the light-absorbing substance in the mixed film of the chiral substance and the light-absorbing substance. Therefore, in the following, as a reference example, a circularly polarizing body composed of a mixed film containing both a chiral substance and a light-absorbing substance (hereinafter referred to as “mixed-film circularly polarizing body”) will be described first, and then a chiral substance will be described. An example of a circularly polarizing body (hereinafter referred to as “multilayered circularly polarizing body”) formed by laminating a first film containing a substance and a second film containing a light-absorbing substance will be described.

図1は、混合膜円偏光体の製造方法を示している。まず、光吸収性物質とカイラル物質を無色透明な紫外線硬化性樹脂(PAK−01、東洋合成工業株式会社製)に混ぜ、この混合物を透光性基板である石英基板に塗布する。なお、本実施例では透光性ポリマーとして紫外線硬化性樹脂を用いたが、熱硬化性樹脂でも良い。次に述べる円偏光二色性の測定に支障がなければ、樹脂の種類は問わない。   FIG. 1 shows a method for producing a mixed film circular polarizer. First, a light-absorbing substance and a chiral substance are mixed with a colorless and transparent ultraviolet curable resin (PAK-01, manufactured by Toyo Gosei Co., Ltd.), and this mixture is applied to a quartz substrate which is a light-transmitting substrate. In this embodiment, an ultraviolet curable resin is used as the translucent polymer, but a thermosetting resin may be used. The type of resin is not particularly limited as long as it does not hinder the measurement of circular dichroism described below.

次に、石英基板上の混合物の上に別の石英基板を押し付け、紫外光を照射して混合物を硬化させる。これにより、2枚の石英基板の間に光吸収性物質とカイラル物質の混合膜を挟んだ構成の混合膜円偏光体が形成される。   Next, another quartz substrate is pressed onto the mixture on the quartz substrate, and the mixture is cured by irradiation with ultraviolet light. As a result, a mixed film circular polarizer having a structure in which a mixed film of a light absorbing material and a chiral material is sandwiched between two quartz substrates is formed.

続いて、混合膜円偏光体の円偏光二色性を評価するために、混合膜円偏光体の一方の石英基板側から右回り及び左回りの円偏光を入射させ(図2)、吸収スペクトル及び円偏光二色性(CD)スペクトルを測定した。   Subsequently, in order to evaluate the circular dichroism of the mixed film circular polarizer, clockwise and counterclockwise circularly polarized light is incident from one quartz substrate side of the mixed film circular polarizer (FIG. 2), and an absorption spectrum is obtained. And circular dichroism (CD) spectra were measured.

<参考例1>
カイラル物質であるリボフラビンのみを紫外線硬化性樹脂(PAK−01)に配合してなる塗布膜を2枚の石英基板の間に挟んだ比較例1と、光吸収性物質としての塩化金酸(III)イオンと、カイラル物質としてのリボフラビンを用いた混合膜円偏光体(参考例1)を作製し、これらの吸収スペクトル(UV-visスペクトル)とCDスペクトルを測定した。
比較例1は、紫外線硬化性樹脂1000mgに対してリボフラビン 2.0mgを配合した。
参考例1は、紫外線硬化性樹脂1000mgに対してリボフラビン 2.0mg、塩化金酸(III)を22.5mg配合した。
紫外線硬化性樹脂の硬化及び塩化金酸(III)の還元のための紫外線照射時間は40分とした。
図3(a)に吸収スペクトルの測定結果を、図3(b)のCDスペクトルの測定結果を示す。
図3から明らかなように、参考例1では波長550nm付近に光の吸収がみられ、同様に、波長550nm付近にCDピークがみられた。一方、比較例1では、吸収スペクトル、CDスペクトル共にピークが観察されなかった。
<Reference Example 1>
Comparative Example 1 in which a coating film formed by blending only a riboflavin, which is a chiral substance, with an ultraviolet curable resin (PAK-01) is sandwiched between two quartz substrates, and chloroauric acid (III ) Mixed film circular polarizers (Reference Example 1) using ions and riboflavin as a chiral substance were prepared, and their absorption spectrum (UV-vis spectrum) and CD spectrum were measured.
In Comparative Example 1, 2.0 mg of riboflavin was added to 1000 mg of the ultraviolet curable resin.
In Reference Example 1, 2.0 mg of riboflavin and 22.5 mg of chloroauric acid (III) were blended with respect to 1000 mg of the ultraviolet curable resin.
The ultraviolet irradiation time for curing the ultraviolet curable resin and reducing chloroauric acid (III) was 40 minutes.
FIG. 3A shows the measurement result of the absorption spectrum, and FIG. 3B shows the measurement result of the CD spectrum.
As is apparent from FIG. 3, in Reference Example 1, light absorption was observed near the wavelength of 550 nm, and similarly, a CD peak was observed near the wavelength of 550 nm. On the other hand, in Comparative Example 1, neither an absorption spectrum nor a CD spectrum was observed.

<参考例2>
光吸収性物質であるローダミン6Gのみを紫外線硬化性樹脂(PAK−01)に配合してなる塗布膜を2枚の石英基板の間に挟んだ比較例2と、カイラル物質であるD/Lグルコースと前記ローダミン6Gの混合膜円偏光体(参考例2)を作製し、これらの吸収スペクトル(UV-visスペクトル)とCDスペクトルを測定した。ローダミン6Gは、波長540nm付近に吸収ピークを有する有機蛍光色素である。
比較例2は、紫外線硬化性樹脂200mgに対してローダミン6Gを3.2mg配合した。
参考例2は、紫外線硬化性樹脂200mgに対して、D/Lグルコース20.0mgを蒸留水40.0μLに加えた溶液、及びローダミン6Gを3.2mg配合した。
紫外線硬化性樹脂の硬化のための紫外線照射時間は5分とした。
図4(a)及び(b)にDグルコースを用いたときの吸収スペクトル、CDスペクトルの測定結果を示し、図5(a)及び(b)にLグルコースを用いたときの吸収スペクトル、CDスペクトルの測定結果を示す。
<Reference Example 2>
Comparative Example 2 in which a coating film formed by mixing only rhodamine 6G, which is a light-absorbing substance, with UV curable resin (PAK-01) is sandwiched between two quartz substrates, and D / L glucose, which is a chiral substance. And a rhodamine 6G mixed film circular polarizer (Reference Example 2), and their absorption spectrum (UV-vis spectrum) and CD spectrum were measured. Rhodamine 6G is an organic fluorescent dye having an absorption peak near a wavelength of 540 nm.
In Comparative Example 2, 3.2 mg of rhodamine 6G was added to 200 mg of the ultraviolet curable resin.
In Reference Example 2, 3.2 mg of rhodamine 6G and a solution obtained by adding 20.0 mg of D / L glucose to 40.0 μL of distilled water were mixed with 200 mg of the ultraviolet curable resin.
The ultraviolet irradiation time for curing the ultraviolet curable resin was 5 minutes.
FIGS. 4A and 4B show the measurement results of the absorption spectrum and CD spectrum when D glucose is used, and FIGS. 5A and 5B show the absorption spectrum and CD spectrum when L glucose is used. The measurement results are shown.

図4及び図5から分かるように、ローダミン6Gのみを含む比較例2では、吸収スペクトルにピークがみられたが、CDスペクトルにはピークがみられなかった。一方、ローダミン6GとD/Lグルコースを含む混合膜円偏光体の参考例2では、吸収スペクトルとCDスペクトルの両方にピークが観察され、且つ、両ピーク波長はほぼ同じであった。また、DグルコースとLグルコースとで、CDピークの極性が反転していた。   As can be seen from FIGS. 4 and 5, in Comparative Example 2 containing only rhodamine 6G, a peak was observed in the absorption spectrum, but no peak was observed in the CD spectrum. On the other hand, in Reference Example 2 of the mixed film circular polarizer containing rhodamine 6G and D / L glucose, peaks were observed in both the absorption spectrum and the CD spectrum, and both peak wavelengths were substantially the same. Moreover, the polarity of the CD peak was inverted between D glucose and L glucose.

参考例1で用いた金微粒子は局在プラズモンモードの光吸収を示す物質であり、参考例2で用いたローダミン6Gは蛍光発光をもたらす光吸収を示す物質である。従って、両者は光吸収のメカニズムが異なるが、いずれにおいてもカイラル物質と混合することによりCDピークを発現させることが分かった。   The gold fine particles used in Reference Example 1 are substances that exhibit localized plasmon mode light absorption, and Rhodamine 6G used in Reference Example 2 is a substance that exhibits light absorption that causes fluorescence emission. Therefore, although both have different light absorption mechanisms, it has been found that in any case, a CD peak is expressed by mixing with a chiral substance.

次に、ローダミン6GとD/Lグルコースを含む混合膜円偏光体(参考例2)に、一方の石英基板側から光を入射させたときと、他方の石英基板側から光を入射させたときの吸収スペクトルとCDスペクトルを測定した。図6にその結果を示す。図6の(a)、(b)から分かるように、Dグルコース及びLグルコースのいずれを用いた場合においても、光の入射方向に関係なく同じ極性のCDピークがみられた。   Next, when light is incident from one quartz substrate side and light is incident from the other quartz substrate side to the mixed-film circular polarizer (Reference Example 2) containing rhodamine 6G and D / L glucose The absorption spectrum and CD spectrum were measured. The result is shown in FIG. As can be seen from FIGS. 6 (a) and 6 (b), the CD peak having the same polarity was observed regardless of the incident direction of light when either D glucose or L glucose was used.

<参考例3>
カイラル物質の違いによるCDピークの変化を調べるため、参考例2のD/Lグルコースに代えてD/L酒石酸を用いたときの混合膜円偏光体(参考例3)を作製し、この参考例3に対して一方の石英基板側から光を入射させたときと、他方の石英基板側から光を入射させたときの吸収スペクトルとCDスペクトルを測定した。光吸収性物質は参考例2と同じローダミン6Gを用いた。また、参考例3に用いた紫外線硬化性樹脂、ローダミン6Gの量は、参考例2と同じにした。さらに、参考例3に用いたD/L酒石酸の量は、参考例2に用いたD/Lグルコースの量と同じにした。
図7にその結果を示す。図6と図7の比較から分かるように、いずれの混合膜円偏光体においても、ローダミン6Gの吸収波長である540nmにCDピークが見られた。このことから、カイラル物質の種類が異なっても、光吸収性物質を混合すると、該光吸収性物質の吸収波長においてCDピークが見られること、つまり、カイラル物質自身のCDピーク波長が、光吸収性物質を混合することにより新たに発現するCDピーク波長に及ぼす影響は小さいことが分かった。
<Reference Example 3>
In order to investigate the change in the CD peak due to the difference in the chiral substance, a mixed film circular polarizer (Reference Example 3) using D / L tartaric acid instead of D / L glucose of Reference Example 2 was prepared. The absorption spectrum and CD spectrum were measured when light was incident on 3 from one quartz substrate side and when light was incident from the other quartz substrate side. The same rhodamine 6G as in Reference Example 2 was used as the light absorbing material. The amount of the UV curable resin, rhodamine 6G used in Reference Example 3 was the same as in Reference Example 2. Furthermore, the amount of D / L tartaric acid used in Reference Example 3 was the same as the amount of D / L glucose used in Reference Example 2.
FIG. 7 shows the result. As can be seen from the comparison between FIG. 6 and FIG. 7, in any mixed film circular polarizer, a CD peak was observed at 540 nm, which is the absorption wavelength of rhodamine 6G. From this, even if the kind of chiral substance is different, when a light absorbing substance is mixed, a CD peak is observed at the absorption wavelength of the light absorbing substance, that is, the CD peak wavelength of the chiral substance itself is absorbed by light. It was found that the influence on the newly developed CD peak wavelength was small by mixing the active substance.

<参考例4>
次に、光吸収性物質の違いによるCDピークの変化を調べるため、光吸収性物質としてのナイルブルーを、カイラル物質であるDグルコースと共に紫外線硬化性樹脂に配合した混合膜円偏光体の参考例4を作製し、この参考例4の吸収スペクトルとCDスペクトルを、上記した参考例2(ローダミン6GとDグルコースを配合した混合膜円偏光体)と比較した。
参考例4は、ローダミン6Gに代えてナイルブルーを用いた以外は、参考例2と同じ方法で作成した。
その結果を図8示す。図8(a)はローダミン6Gを、図8(b)はナイルブルーを用いた結果であるが、両者ではCDピーク波長が異なっていた。以上の結果から、カイラル物質に混合する光吸収性物質の吸収波長によって、混合膜円偏光体のCDピーク波長が変化することが分かった。
<Reference Example 4>
Next, in order to investigate the change in CD peak due to the difference in the light-absorbing substance, a reference example of a mixed film circular polarizer in which Nile blue as a light-absorbing substance is blended with an ultraviolet curable resin together with D-glucose as a chiral substance 4 was prepared, and the absorption spectrum and CD spectrum of Reference Example 4 were compared with Reference Example 2 described above (a mixed film circular polarizer containing rhodamine 6G and D glucose).
Reference Example 4 was prepared in the same manner as Reference Example 2 except that Nile Blue was used instead of Rhodamine 6G.
The result is shown in FIG. FIG. 8A shows the result of using rhodamine 6G, and FIG. 8B shows the result of using Nile blue, but the CD peak wavelength was different between the two. From the above results, it was found that the CD peak wavelength of the mixed film circular polarizer changes depending on the absorption wavelength of the light-absorbing substance mixed with the chiral substance.

以上の混合膜円偏光体の結果に基づき、多層膜円偏光体を作製し、その性質を調べた。以下に詳しく説明する。以下の実施例で説明する多層膜円偏光体は、図9に示すように、一対の石英基板の間にカイラル媒質である第1膜と光吸収媒質である第2膜の積層体が挟持された構成を有している。
<実施例1>
カイラル物質であるD/Lグルコースを紫外線硬化性樹脂(PAK−01)に混ぜて石英基板に塗布して第1塗布層を形成し、この第1塗布層に紫外線を照射して硬化させて第1膜を形成した。その後、第1膜の上に、光吸収性物質であるローダミン6Gを紫外線硬化性樹脂に混ぜたものを塗布して第2塗布層を形成し、その上に別の石英基板を押し付け、紫外線を照射して第2塗布層を硬化させて第2膜を形成した。これにより、2枚の石英基板の間に第1膜と第2膜から成る積層構造を有する多層膜円偏光体が得られた。
実施例1に係る多層膜円偏光体の第1膜は、紫外線硬化性樹脂200mgに対してローダミン6G3.2mgを配合した。第2膜は、紫外線硬化性樹脂200mgに対して、D−グルコース20.0mgに蒸留水40.0μLを加えた溶液を配合した。
いずれも、紫外線を5分間照射して紫外線硬化性樹脂を硬化させた。
Based on the results of the mixed film circular polarizer, a multilayer circular polarizer was prepared and the properties thereof were investigated. This will be described in detail below. As shown in FIG. 9, in the multilayered circular polarizer described in the following examples, a laminate of a first film that is a chiral medium and a second film that is a light absorbing medium is sandwiched between a pair of quartz substrates. It has a configuration.
<Example 1>
D / L glucose, which is a chiral substance, is mixed with an ultraviolet curable resin (PAK-01) and applied to a quartz substrate to form a first coating layer. The first coating layer is cured by irradiation with ultraviolet rays. One film was formed. Thereafter, a second coating layer is formed on the first film by applying a mixture of rhodamine 6G, which is a light-absorbing substance, to an ultraviolet curable resin, and another quartz substrate is pressed thereon to emit ultraviolet light. The second coating layer was cured by irradiation to form a second film. As a result, a multilayered circular polarizer having a laminated structure composed of the first film and the second film was obtained between the two quartz substrates.
In the first film of the multilayer circularly polarizing body according to Example 1, rhodamine 6G3.2 mg was blended with 200 mg of the ultraviolet curable resin. The 2nd film | membrane mix | blended the solution which added 40.0 microliters of distilled water to 20.0 mg of D-glucose with respect to 200 mg of ultraviolet curable resins.
In either case, the ultraviolet curable resin was cured by irradiation with ultraviolet rays for 5 minutes.

このようにして作製した多層膜円偏光体に、第1膜側、第2膜側からそれぞれ光を入射させて吸収スペクトルとCDスペクトルを測定した。その結果を図10に示す。図10の上段(a)はCDスペクトルを、下段(b)は吸収スペクトルを示している。図10(b)から分かるように、多層膜円偏光体の吸収ピークは、ローダミン6Gの吸収ピークである波長540nm付近にみられた。また、多層膜円偏光体のCDピークも、ローダミン6Gの吸収ピークである波長540nm付近にみられた。さらに、第1膜に含有するカイラル物質としてLグルコースを用いた多層膜円偏光体とDグルコースを用いた多層膜円偏光体とでは、CDピークの極性が逆であり、しかも、第1膜側(図10において「GtoR」で示す)から入射させたときと、第2膜側(図10において「RtoG」で示す)から入射させたときとでは、それぞれCDピークの極性が反転していた。   Light was incident on the multilayer circular polarizer thus produced from the first film side and the second film side, and the absorption spectrum and CD spectrum were measured. The result is shown in FIG. The upper part (a) of FIG. 10 shows the CD spectrum, and the lower part (b) shows the absorption spectrum. As can be seen from FIG. 10 (b), the absorption peak of the multilayered circular polarizer was observed in the vicinity of the wavelength of 540 nm, which is the absorption peak of rhodamine 6G. In addition, the CD peak of the multilayer circular polarizer was also observed in the vicinity of the wavelength of 540 nm, which is the absorption peak of rhodamine 6G. Further, in the multilayer circular polarizer using L glucose as the chiral substance contained in the first film and the multilayer circular polarizer using D glucose, the CD peak polarity is reversed, and the first film side The polarity of the CD peak was inverted when the light was incident from (shown as “GtoR” in FIG. 10) and when it was incident from the second film side (shown as “RtoG” in FIG. 10).

以上より、多層膜円偏光体においては、適宜の吸収波長の光吸収性物質を用いることによりCDピーク波長を調整することができ、且つ、カイラル物質の光旋回性(キラリティ)或いは光の入射方向によって多層膜円偏光体のCDピークの極性を調整できることがわかった。   As described above, in the multilayered circular polarizer, the CD peak wavelength can be adjusted by using a light-absorbing substance having an appropriate absorption wavelength, and the optical turning property (chirality) of the chiral substance or the incident direction of light Thus, it was found that the polarity of the CD peak of the multilayered circular polarizer can be adjusted.

<実施例2>
カイラル物質であるD/Lグルコースをエタノールに溶解し、石英基板に塗布し乾燥させて第1膜とした後、第1膜の上にローダミン6Gを紫外線硬化性樹脂(PAK−01)に混ぜたものを塗布して第2塗布層を形成した。そして、第2塗布層の上に別の石英基板を押し付け、紫外線を照射して第2塗布層を硬化させることにより第2膜とし、2枚の石英基板の間に第1膜と第2膜から成る積層構造を有する多層膜円偏光体を作製した。
実施例2に係る多層膜円偏光体の第1膜は、D/Lグルコース100mgにエタノール1mLを加えた飽和溶液から成る。第2膜は、紫外線硬化性樹脂200mgに対してローダミン6Gを3.2mg配合した。第2膜の紫外線硬化性樹脂の硬化のための紫外線照射時間は5分とした。
<Example 2>
D / L glucose, which is a chiral substance, was dissolved in ethanol, applied to a quartz substrate and dried to form a first film, and then rhodamine 6G was mixed with UV curable resin (PAK-01) on the first film. The thing was apply | coated and the 2nd application layer was formed. Then, another quartz substrate is pressed onto the second coating layer, and the second coating layer is cured by irradiating ultraviolet rays to form a second film, and the first film and the second film are formed between the two quartz substrates. A multilayered circular polarizer having a laminated structure consisting of
The first film of the multilayered circular polarizer according to Example 2 is made of a saturated solution obtained by adding 1 mL of ethanol to 100 mg of D / L glucose. In the second film, 3.2 mg of rhodamine 6G was blended with 200 mg of the ultraviolet curable resin. The ultraviolet irradiation time for curing the ultraviolet curable resin of the second film was 5 minutes.

このようにして作製した多層膜円偏光体に、第1膜側、第2膜側からそれぞれ光を入射させて吸収スペクトルとCDスペクトルを測定した。その結果を図11及び図12に示す。図11及び図12の上段(a)はCDスペクトルを、下段(b)は吸収スペクトルを示している。実施例1と同様に実施例2においても、多層膜円偏光体の吸収ピーク及びCDピークは、ローダミン6Gの吸収ピークである波長540nm付近にみられた。また、第1膜側(図11及び図12において「GtoR」で示す)から入射させたときと、第2膜側(図11及び図12において「RtoG」で示す)から入射させたときとでは、それぞれCDピークの極性が反転していた。   Light was incident on the multilayer circular polarizer thus produced from the first film side and the second film side, and the absorption spectrum and CD spectrum were measured. The results are shown in FIGS. 11 and 12, the upper part (a) shows the CD spectrum, and the lower part (b) shows the absorption spectrum. Similar to Example 1, also in Example 2, the absorption peak and CD peak of the multilayered circular polarizer were found near the wavelength of 540 nm, which is the absorption peak of rhodamine 6G. Further, when the light is incident from the first film side (indicated by “GtoR” in FIGS. 11 and 12) and when the light is incident from the second film side (indicated by “RtoG” in FIGS. 11 and 12). In each case, the polarity of the CD peak was reversed.

なお、本発明は上記した実施例に限定されるものではなく、例えば次のような変形が可能である。
上記実施例では一対の石英基板で第1膜及び第2膜を挟持したが、光を透過する材質であればガラス基板、樹脂基板等でも良い。また、第1膜及び第2膜だけで多層膜円偏光体を構成しても良い。
第2膜に、吸収波長が異なる複数種の光吸収性物質を含有させても良い。また、第1膜にカイラル物質と光吸収性物質の両方を含有させても良い。この場合、第1膜には、第2膜が含有する光吸収性物質と光吸収波長が異なる光吸収性物質を含有させると良い。
In addition, this invention is not limited to an above-described Example, For example, the following modifications are possible.
In the above embodiment, the first film and the second film are sandwiched between a pair of quartz substrates. However, a glass substrate, a resin substrate, or the like may be used as long as the material transmits light. Moreover, you may comprise a multilayer-film circularly-polarizing body only with a 1st film | membrane and a 2nd film | membrane.
The second film may contain a plurality of types of light-absorbing substances having different absorption wavelengths. Further, the first film may contain both a chiral substance and a light absorbing substance. In this case, the first film may contain a light-absorbing substance having a light absorption wavelength different from that of the light-absorbing substance contained in the second film.

Claims (17)

カイラル物質を含有する第1膜を形成し、該第1膜の上に光吸収性物質を含有する第2膜を形成することにより円偏光体を製造する方法。   A method of manufacturing a circularly polarizing body by forming a first film containing a chiral substance and forming a second film containing a light-absorbing substance on the first film. 前記第1膜が、カイラル物質を含有する透光性ポリマーから構成されていることを特徴とする請求項1に記載の円偏光体の製造方法。   The method for producing a circularly polarizing body according to claim 1, wherein the first film is made of a translucent polymer containing a chiral substance. 前記第2膜が、光吸収性物質を含有する透光性ポリマーから構成されていることを特徴とする請求項1又は2に記載の円偏光体の製造方法。   The method for producing a circularly polarizing body according to claim 1, wherein the second film is made of a light-transmitting polymer containing a light-absorbing substance. 前記透光性ポリマーが光硬化性樹脂であることを特徴とする請求項2又は3に記載の円偏光体の製造方法。   The method for producing a circularly polarizing body according to claim 2, wherein the translucent polymer is a photocurable resin. 前記第2膜が、吸収波長が異なる複数種の光吸収性物質を含有することを特徴とする請求項1〜4のいずれかに記載の円偏光体の製造方法。   The said 2nd film | membrane contains the multiple types of light absorptive substance from which absorption wavelength differs, The manufacturing method of the circularly-polarizing body in any one of Claims 1-4 characterized by the above-mentioned. 前記第2膜が、光吸収性物質を含有する複数の膜を前記第1膜の上に積層した積層膜から形成されており、
前記積層膜の各膜に含有される光吸収性物質の吸収波長が互いに異なることを特徴とする請求項1〜4のいずれかに記載の円偏光体の製造方法。
The second film is formed of a laminated film in which a plurality of films containing a light-absorbing substance are laminated on the first film;
The method for producing a circularly polarizing body according to any one of claims 1 to 4, wherein the absorption wavelengths of the light-absorbing substances contained in each of the laminated films are different from each other.
前記第1膜が、前記第2膜が含有する光吸収性物質とは吸収波長が異なる別の光吸収性物質をさらに含有することを特徴とする請求項1〜4のいずれかに記載の円偏光体の製造方法。   The circle according to any one of claims 1 to 4, wherein the first film further contains another light-absorbing substance having an absorption wavelength different from that of the light-absorbing substance contained in the second film. A method for producing a polarizer. カイラル物質を含有する第1膜と、該第1膜の上に配置された光吸収性物質を含有する第2膜とからなる円偏光体。   A circularly polarizing body comprising a first film containing a chiral substance and a second film containing a light absorbing substance disposed on the first film. 前記第1膜及び前記第2膜が、一対の透光性基板の間に配置されていることを特徴とする請求項8に記載の円偏光体。   The circularly polarized light body according to claim 8, wherein the first film and the second film are disposed between a pair of translucent substrates. 前記第1膜が、カイラル物質を含有する透光性ポリマーから構成されていることを特徴とする請求項8又は9に記載の円偏光体。   10. The circularly polarized light body according to claim 8, wherein the first film is made of a translucent polymer containing a chiral substance. 前記第2膜が、光吸収性物質を含有する透光性ポリマーから構成されていることを特徴とする請求項8〜10のいずれかに記載の円偏光体。   The circularly polarizing body according to any one of claims 8 to 10, wherein the second film is made of a light-transmitting polymer containing a light-absorbing substance. 前記透光性ポリマーが光硬化性樹脂であることを特徴とする請求項10又は11に記載の円偏光体。   The circularly polarizing body according to claim 10 or 11, wherein the translucent polymer is a photocurable resin. 前記第2膜が、吸収波長が異なる複数種の光吸収性物質を含有することを特徴とする請求項8〜12のいずれかに記載の円偏光体。   The circularly polarizing body according to any one of claims 8 to 12, wherein the second film contains a plurality of kinds of light-absorbing substances having different absorption wavelengths. 前記第2膜が、光吸収性物質を含有する複数の膜を前記第1膜の上に積層した積層膜から形成されており、
前記積層膜の各膜に含有される光吸収性物質の吸収波長が互いに異なることを特徴とする請求項8〜12のいずれかに記載の円偏光体。
The second film is formed of a laminated film in which a plurality of films containing a light-absorbing substance are laminated on the first film;
The circularly polarized light body according to any one of claims 8 to 12, wherein the absorption wavelengths of the light-absorbing substances contained in each of the laminated films are different from each other.
前記第1膜が、前記第2膜が含有する光吸収性物質とは吸収波長が異なる別の光吸収性物質をさらに含有することを特徴とする請求項8〜12のいずれかに記載の円偏光体。   The circle according to any one of claims 8 to 12, wherein the first film further contains another light-absorbing substance having an absorption wavelength different from that of the light-absorbing substance contained in the second film. Polarizer. 前記カイラル物質が、糖類、酒石酸、ビタミン類、ペプチド類、タンパク質から選ばれる生体分子であることを特徴とする請求項8〜15のいずれかに記載の円偏光体。   The circularly polarized light body according to any one of claims 8 to 15, wherein the chiral substance is a biomolecule selected from sugars, tartaric acid, vitamins, peptides, and proteins. 前記光吸収性物質が、ローダミン6G又はナイルブルーであることを特徴とする請求項8〜16のいずれかに記載の円偏光体。   The circularly polarizing body according to any one of claims 8 to 16, wherein the light absorbing substance is rhodamine 6G or Nile blue.
JP2014531573A 2012-08-24 2013-08-06 Method for producing circularly polarizing body and circularly polarizing body Pending JPWO2014030533A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012185918 2012-08-24
JP2012185918 2012-08-24
PCT/JP2013/071247 WO2014030533A1 (en) 2012-08-24 2013-08-06 Circular polarizer producing method and circular polarizer

Publications (1)

Publication Number Publication Date
JPWO2014030533A1 true JPWO2014030533A1 (en) 2016-07-28

Family

ID=50149843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014531573A Pending JPWO2014030533A1 (en) 2012-08-24 2013-08-06 Method for producing circularly polarizing body and circularly polarizing body

Country Status (2)

Country Link
JP (1) JPWO2014030533A1 (en)
WO (1) WO2014030533A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954826B (en) * 2016-06-25 2018-07-20 苏州大学 All dielectric ultra-thin two-dimension circular polarization dichroics and preparation method thereof
US20210048559A1 (en) * 2018-02-09 2021-02-18 Essilor International Nanoparticles of Encapsulated Light-Absorbing Agent, Preparation Thereof and Ophthalmic Lens Comprising Said Nanoparticles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2282145A (en) * 1993-09-22 1995-03-29 Central Research Lab Ltd Coloured material comprising aligned liquid crystal laminae
JPH08254668A (en) * 1995-03-17 1996-10-01 Fujitsu Ltd Laser diode module and depolarizer
JPH11271517A (en) * 1998-03-23 1999-10-08 Mitsubishi Chemical Corp Photosensitive resin composition for color filter and color filter
JP4419130B2 (en) * 2003-04-01 2010-02-24 富士電機ホールディングス株式会社 Manufacturing method of color conversion filter and color filter with color conversion function
JP2005029946A (en) * 2003-07-11 2005-02-03 Nhk Spring Co Ltd Optically functional fiber, article, textile fabric, nonwoven fabric, method for producing optically functional fiber and method for discrimination
JP4984776B2 (en) * 2006-09-15 2012-07-25 凸版印刷株式会社 Anti-counterfeit medium, anti-counterfeit label, printed matter, transfer foil, and discrimination method

Also Published As

Publication number Publication date
WO2014030533A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
Lee et al. Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals
JP4191724B2 (en) Retardation film and method for producing the same, optical functional film, polarizing film, and display device
CN106662526A (en) Detection system and detection method
WO2015025909A1 (en) Circular polarizing filter and application thereof
WO2017221993A1 (en) Light guide member and liquid crystal display device
JP5163802B2 (en) Retardation film, optical functional film, polarizing film, and display device
JP2017021097A (en) Dimming film
US10416492B2 (en) Polarizer
TWI580995B (en) Anti-ambient-light-reflection film
JP2016061833A (en) Luminescent screen and display device
JP4191711B2 (en) Retardation film and method for producing the same, optical functional film, polarizing film, and display device
JP6502282B2 (en) Detection method and detection system
WO2014030533A1 (en) Circular polarizer producing method and circular polarizer
JP2016008998A (en) Liquid crystal display, and light source set and wavelength cut element used in the liquid crystal display
JP4994451B2 (en) Liquid crystal display
JP7297870B2 (en) Optical member, illumination device, and screen
WO2011078261A1 (en) Electromagnetic wave reflective member production method
JP2016004485A (en) Optical member and display having the optical member
JP2004109171A (en) Optical film, its manufacturing method and liquid crystal display device
WO2018038260A1 (en) Dimming device and dimming member
WO2016171218A1 (en) Detection method and detection system
CN111176033A (en) Substrate with transparent electrode layer, light-adjusting film and liquid crystal display device
JPH09113881A (en) Liquid crystal display device and its manufacture
JP2016004213A (en) Optical member and display having the optical member
JPH11326911A (en) Reflection type liquid crystal display element and its production