JPWO2014021118A1 - Automatic transmission for vehicles - Google Patents

Automatic transmission for vehicles Download PDF

Info

Publication number
JPWO2014021118A1
JPWO2014021118A1 JP2014528074A JP2014528074A JPWO2014021118A1 JP WO2014021118 A1 JPWO2014021118 A1 JP WO2014021118A1 JP 2014528074 A JP2014528074 A JP 2014528074A JP 2014528074 A JP2014528074 A JP 2014528074A JP WO2014021118 A1 JPWO2014021118 A1 JP WO2014021118A1
Authority
JP
Japan
Prior art keywords
coast stop
shift
speed
drive source
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014528074A
Other languages
Japanese (ja)
Other versions
JP5860150B2 (en
Inventor
若山 英史
英史 若山
公祐 和久
公祐 和久
訓卓 青山
訓卓 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JATCO Ltd
Original Assignee
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JATCO Ltd filed Critical JATCO Ltd
Priority to JP2014528074A priority Critical patent/JP5860150B2/en
Application granted granted Critical
Publication of JP5860150B2 publication Critical patent/JP5860150B2/en
Publication of JPWO2014021118A1 publication Critical patent/JPWO2014021118A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18018Start-stop drive, e.g. in a traffic jam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/14Going to, or coming from standby operation, e.g. for engine start-stop operation at traffic lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Abstract

エンジン1の回転駆動力を、複数の摩擦締結要素の締結状態、解放状態の組合せに応じて決まる変速比で駆動輪7に伝達する変速機4の副変速機構30と、エンジン1により駆動されるメカオイルポンプ10mと、車両が減速している途中で、コーストストップ条件が成立すると、エンジン1を停止させるコントローラ12と、を備え、コントローラ12は、コーストストップ条件が成立した場合であっても、副変速機構30で、複数の摩擦締結要素の締結状態、解放状態の組合せを変更する変速が行われているときには、エンジン1を停止させるコーストストップを実行しない構成とし、副変速機構30での変速が終了したのちに、コーストストップを実行する構成とした。The engine 1 is driven by the subtransmission mechanism 30 of the transmission 4 that transmits the rotational driving force of the engine 1 to the drive wheels 7 at a speed ratio determined according to the combination of the engagement state and the release state of the plurality of friction engagement elements. When the coast stop condition is satisfied while the vehicle is decelerating, the mechanical oil pump 10m and the controller 12 that stops the engine 1 are provided. Even if the coast stop condition is satisfied, the controller 12 When the subtransmission mechanism 30 is performing a shift that changes the combination of the engagement state and the release state of the plurality of frictional engagement elements, a coast stop that stops the engine 1 is not executed. After the completion, the coast stop is executed.

Description

本発明は、コーストストップ機能を備える車両用の自動変速機に関する。   The present invention relates to an automatic transmission for a vehicle having a coast stop function.

燃費の向上などを目的として、車両の停車時にエンジン(駆動源)を自動的に停止させる機能(いわゆる、アイドリングストップ機能)を備える車両が知られている。
近年、さらなる燃費の向上を目的として、車両が走行中であっても、車両が停車する可能性のある低速でのコースト走行時にエンジンを停止させる機能(いわゆる、コーストストップ機能)を備える車両が提案されており、例えば、特許文献1には、車速がコーストストップの許可車速(コーストストップ許可車速)以下になった場合に、コーストストップを開始する技術が開示されている。
2. Description of the Related Art For the purpose of improving fuel consumption, vehicles equipped with a function (so-called idling stop function) that automatically stops an engine (drive source) when the vehicle stops are known.
In recent years, for the purpose of further improving the fuel efficiency, a vehicle having a function of stopping the engine at the time of coasting at a low speed (so-called coast stop function) where the vehicle may stop even if the vehicle is traveling has been proposed. For example, Patent Document 1 discloses a technique for starting a coast stop when the vehicle speed is equal to or lower than a coast stop permission vehicle speed (coast stop permission vehicle speed).

この特許文献1の自動変速機では、変速が行われることのない低車速域側にコーストストップ許可車速が設定されており、変速が生じない極低車速領域でのみ、コーストストップ機能が作動するようになっている。
ここで、昨今の燃費向上の要求の高まりに応じて、コーストストップ許可車速をより高車速域側に設定すると、変速が行われ得る領域でもコーストストップ機能が作動するようになる。
そうすると、変速過渡中にコーストストップ機能が作動して変速に支障が生じてしまい、この変速の支障に起因する変速の間延びや変速ショックの発生などが、運転者に違和感を与えることがある。
In the automatic transmission of this Patent Document 1, the coast stop permission vehicle speed is set on the low vehicle speed range where no shift is performed, and the coast stop function operates only in an extremely low vehicle speed region where no shift occurs. It has become.
Here, if the coast stop permission vehicle speed is set to a higher vehicle speed range in response to the recent increase in demand for fuel efficiency, the coast stop function is activated even in a region where a shift can be performed.
As a result, the coast stop function is activated during the shift transition and the shift is disturbed, and the extension of the shift or the occurrence of a shift shock resulting from the shift may cause the driver to feel uncomfortable.

すなわち、コーストストップ許可車速を高車速化した場合、このコーストストップ許可車速とオートダウンシフト線とが近接することになることから、
(1)減速中にシフトレバーが操作(エンジンブレーキ要求など)されたのちに、コーストストップ許可車速に達したとき、
(2)オートダウンシフト線に基づいて変速を行っている途中で、車両の減速度が増大して、コーストストップ許可車速に達したとき、などに、変速の過渡中でコーストストップ機能が作動することがある。
That is, when the coast stop permission vehicle speed is increased, the coast stop permission vehicle speed and the auto downshift line are close to each other.
(1) After reaching the coast stop permission vehicle speed after the shift lever is operated (engine brake request, etc.) during deceleration,
(2) The coast stop function is activated during a shift transition, such as when the vehicle deceleration increases and the coast stop permission vehicle speed is reached during shifting based on the auto downshift line. Sometimes.

そして、このような変速の過渡中でコーストストップが実行されると、コーストストップ中には、エンジン駆動される機械式のオイルポンプが停止してしまうため、十分な油圧を確保することができず、変速の進行がそれまでの変速比の変化方向と逆転したり、変速が停滞するなど、変速が間延びしたり、変速ショックが生じるという問題があった。
なお、コーストストップ中に電動オイルポンプを駆動するようにしても、電動オイルポンプの容量は、機械式オイルポンプの容量よりも小さいことが一般的であり、機械式オイルポンプからの油圧のように、摩擦締結要素を締結状態にするための油圧を十分な速度で上昇させることができないので、変速が間延びするという課題は解決できない。
If coast stop is executed during such shift transition, the mechanical oil pump driven by the engine stops during coast stop, so that sufficient hydraulic pressure cannot be secured. There is a problem that the shift is delayed or the shift shock occurs, for example, the progress of the shift is reversed from the direction in which the gear ratio has changed or the shift is stagnant.
Even when the electric oil pump is driven during the coast stop, the capacity of the electric oil pump is generally smaller than the capacity of the mechanical oil pump, such as the hydraulic pressure from the mechanical oil pump. Since the hydraulic pressure for bringing the frictional engagement element into the engaged state cannot be increased at a sufficient speed, the problem that the speed change is delayed cannot be solved.

そこで、本発明は、上記課題を解決することを目的とする。   Therefore, an object of the present invention is to solve the above problems.

特開2010−164143号公報JP 2010-164143 A

本発明は、
駆動源の回転駆動力を、複数の摩擦締結要素の締結状態、解放状態の組合せに応じて決まる変速比で駆動輪に伝達する動力伝達部と、
前記駆動源により駆動される油圧源と、
車両が減速している途中で、所定の停止条件が成立すると、前記駆動源を停止させる駆動源制御手段と、を備え、
前記駆動源制御手段は、前記停止条件が成立した場合であっても、前記動力伝達部が変速中であるときには、前記駆動源の停止を実行しない構成の車両用の自動変速機とした。
The present invention
A power transmission unit that transmits the rotational driving force of the drive source to the drive wheels at a gear ratio determined according to the combination of the engagement state and the release state of the plurality of friction engagement elements;
A hydraulic source driven by the drive source;
Drive source control means for stopping the drive source when a predetermined stop condition is satisfied while the vehicle is decelerating, and
The drive source control means is an automatic transmission for a vehicle having a configuration in which the drive source is not stopped when the power transmission unit is shifting even when the stop condition is satisfied.

本発明によれば、所定の停止条件が成立した場合であっても、動力伝達部が変速中であるときには、駆動源の停止が実行されない。
よって、駆動源の停止を、変速が行われ得る高車速域側で行うようにしても、変速の途中で駆動源から供給される油圧が低下して変速に支障を生じさせることがない。
これにより、変速の支障に起因する問題、変速の途中で変速比の変化方向が逆転してショックが発生するという問題や、変速の途中で変速速度が変化して変速が間延びするという問題などの発生を好適に防止できるので、運転者が変速挙動などに違和感を覚えることを防止できる。また、駆動源の停止を高車速域側でも行えるようになるので、駆動源を停止させる機会を増やすことができ、これにより燃費向上の効果が期待できる。
According to the present invention, even when a predetermined stop condition is satisfied, the drive source is not stopped when the power transmission unit is shifting.
Therefore, even if the drive source is stopped on the high vehicle speed range side where the shift can be performed, the hydraulic pressure supplied from the drive source does not decrease during the shift and does not cause the shift.
As a result, problems such as problems caused by gear shifting problems, problems that the change direction of the gear ratio is reversed in the middle of gear shifting, and a shock occurs, problems that the gear shifting speed changes during gear shifting, and the gear shifting is prolonged, etc. Since generation | occurrence | production can be prevented suitably, it can prevent a driver | operator feeling uncomfortable about a shift behavior. In addition, since the drive source can be stopped even on the high vehicle speed range side, the opportunity to stop the drive source can be increased, and thereby an effect of improving fuel consumption can be expected.

実施の形態にかかる無段変速機を搭載した車両の概略構成図である。1 is a schematic configuration diagram of a vehicle equipped with a continuously variable transmission according to an embodiment. 実施の形態にかかる無段変速機のコントローラの構成を説明する図である。It is a figure explaining the structure of the controller of the continuously variable transmission concerning embodiment. 実施の形態にかかる無段変速機の変速マップの一例を示す説明図である。It is explanatory drawing which shows an example of the shift map of the continuously variable transmission concerning embodiment. 実施の形態にかかる無段変速機の油圧制御回路の説明図である。It is explanatory drawing of the hydraulic control circuit of the continuously variable transmission concerning embodiment. 第1の実施形態の場合のコーストストップの実行判定のフローチャートである。It is a flowchart of execution determination of the coast stop in the case of 1st Embodiment. 変速機の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of a transmission. 第2の実施形態の場合のコーストストップの実行判定のフローチャートである。It is a flowchart of execution determination of the coast stop in the case of 2nd Embodiment. 変速機の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of a transmission. 変速機の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of a transmission. 変形例にかかるコーストストップの実行判定のフローチャートである。It is a flowchart of execution determination of the coast stop concerning a modification. 従来例にかかる変速マップを説明する図である。It is a figure explaining the shift map concerning a prior art example.

[第1の実施形態]
以下、添付図面を参照しながら本発明の第1の実施形態について説明する。なお、以下の説明において、ある変速機構の「変速比」は、当該変速機構の入力回転速度を当該変速機構の出力回転速度で割って得られる値である。また、「最Low変速比」は当該変速機構の最大変速比、「最High変速比」は当該変速機構の最小変速比である。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings. In the following description, the “transmission ratio” of a transmission mechanism is a value obtained by dividing the input rotational speed of the transmission mechanism by the output rotational speed of the transmission mechanism. The “lowest speed ratio” is the maximum speed ratio of the transmission mechanism, and the “highest speed ratio” is the minimum speed ratio of the transmission mechanism.

図1は、本発明の実施形態にかかるコーストストップ車両の概略構成図である。この車両は、駆動源としてエンジン1を備え、エンジン1の出力回転は、ロックアップクラッチ付きトルクコンバータ2、第1ギヤ列3、無段変速機(以下、単に「変速機4」という。)、第2ギヤ列5、終減速装置6を介して駆動輪7へと伝達される。第2ギヤ列5には駐車時に変速機4の出力軸を機械的に回転不能にロックするパーキング機構8が設けられている。   FIG. 1 is a schematic configuration diagram of a coast stop vehicle according to an embodiment of the present invention. This vehicle includes an engine 1 as a drive source, and the output rotation of the engine 1 is a torque converter 2 with a lock-up clutch, a first gear train 3, a continuously variable transmission (hereinafter simply referred to as “transmission 4”), This is transmitted to the drive wheels 7 via the second gear train 5 and the final reduction gear 6. The second gear train 5 is provided with a parking mechanism 8 that mechanically locks the output shaft of the transmission 4 at the time of parking.

変速機4には、エンジン1の回転が入力されエンジン1の動力の一部を利用して駆動されるメカオイルポンプ10mと、バッテリ13から電力供給を受けて駆動される電動オイルポンプ10eとが設けられている。電動オイルポンプ10eは、オイルポンプ本体と、これを回転駆動する電気モータ及びモータドライバとで構成され、運転負荷を任意の負荷に、あるいは、多段階に制御することができる。また、変速機4には、メカオイルポンプ10mあるいは電動オイルポンプ10eからの油圧(以下、「ライン圧PL」という。)を調圧して変速機4の各部位に供給する油圧制御回路11が設けられている。   The transmission 4 includes a mechanical oil pump 10 m that receives rotation of the engine 1 and is driven by using a part of the power of the engine 1, and an electric oil pump 10 e that is driven by receiving power supply from the battery 13. Is provided. The electric oil pump 10e includes an oil pump main body, an electric motor and a motor driver that rotationally drive the oil pump main body, and can control the operation load to an arbitrary load or in multiple stages. Further, the transmission 4 is provided with a hydraulic control circuit 11 that regulates the hydraulic pressure (hereinafter referred to as “line pressure PL”) from the mechanical oil pump 10 m or the electric oil pump 10 e and supplies it to each part of the transmission 4. It has been.

変速機4は、ベルト式無段変速機構(以下、「バリエータ20」という。)と、バリエータ20に直列に設けられる副変速機構30とを備える。「直列に設けられる」とはエンジン1から駆動輪7に至るまでの動力伝達経路においてバリエータ20と副変速機構30が直列に設けられるという意味である。副変速機構30は、この例のようにバリエータ20の出力軸に直接接続されていてもよいし、その他の変速ないし動力伝達機構(例えば、ギヤ列)を介して接続されていてもよい。あるいは、副変速機構30はバリエータ20の前段(入力軸側)に接続されていてもよい。   The transmission 4 includes a belt-type continuously variable transmission mechanism (hereinafter referred to as “variator 20”) and an auxiliary transmission mechanism 30 provided in series with the variator 20. “Provided in series” means that the variator 20 and the auxiliary transmission mechanism 30 are provided in series in the power transmission path from the engine 1 to the drive wheels 7. The auxiliary transmission mechanism 30 may be directly connected to the output shaft of the variator 20 as in this example, or may be connected via another transmission or power transmission mechanism (for example, a gear train). Alternatively, the auxiliary transmission mechanism 30 may be connected to the front stage (input shaft side) of the variator 20.

バリエータ20は、プライマリプーリ21と、セカンダリプーリ22と、これらの間に掛け回されるVベルト23とを備える。プライマリプーリ21とセカンダリプーリ22は、それぞれ固定円錐板と、この固定円錐板に対してシーブ面を対向させた状態で配置され固定円錐板との間にV溝を形成する可動円錐板と、この可動円錐板の背面に設けられて可動円錐板を軸方向に変位させる油圧シリンダ23a、23bとを備える。油圧シリンダ23a、23bに供給される油圧を調整すると、V溝の幅が変化してVベルト23と各プーリ21、22との接触半径が変化し、バリエータ20の変速比が無段階に変化する。   The variator 20 includes a primary pulley 21, a secondary pulley 22, and a V-belt 23 that is wound around these. The primary pulley 21 and the secondary pulley 22 are each a fixed conical plate, a movable conical plate that is arranged with a sheave surface facing the fixed conical plate, and forms a V-groove between the fixed conical plate, Hydraulic cylinders 23a and 23b are provided on the back surface of the movable conical plate to displace the movable conical plate in the axial direction. When the hydraulic pressure supplied to the hydraulic cylinders 23a and 23b is adjusted, the width of the V groove changes, the contact radius between the V belt 23 and each pulley 21 and 22 changes, and the transmission ratio of the variator 20 changes steplessly. .

副変速機構30は前進2段・後進1段の変速機構である。副変速機構30は、2つの遊星歯車のキャリアを連結したラビニョウ型遊星歯車機構31と、ラビニョウ型遊星歯車機構31を構成する複数の回転要素に接続され、それらの連係状態を変更する複数の摩擦締結要素(Lowブレーキ32、Highクラッチ33、Revブレーキ34)とを備える。各摩擦締結要素32〜34への供給油圧を調整し、各摩擦締結要素32〜34の締結・解放状態を変更すると、副変速機構30の変速段が変更される。   The subtransmission mechanism 30 is a transmission mechanism having two forward speeds and one reverse speed. The sub-transmission mechanism 30 is connected to a Ravigneaux type planetary gear mechanism 31 in which two planetary gear carriers are connected, and a plurality of friction elements connected to a plurality of rotating elements constituting the Ravigneaux type planetary gear mechanism 31 to change their linkage state. Fastening elements (Low brake 32, High clutch 33, Rev brake 34) are provided. When the hydraulic pressure supplied to each of the frictional engagement elements 32 to 34 is adjusted and the engagement / release state of each of the frictional engagement elements 32 to 34 is changed, the gear position of the auxiliary transmission mechanism 30 is changed.

例えば、Lowブレーキ32を締結し、Highクラッチ33とRevブレーキ34を解放すれば副変速機構30の変速段は1速となる。Highクラッチ33を締結し、Lowブレーキ32とRevブレーキ34を解放すれば副変速機構30の変速段は1速よりも変速比が小さな2速となる。また、Revブレーキ34を締結し、Lowブレーキ32とHighクラッチ33を解放すれば副変速機構30の変速段は後進となる。以下の説明では、副変速機構30の変速段が1速である場合に「変速機4が低速モードである」と表現し、2速である場合に「変速機4が高速モードである」と表現する。   For example, if the Low brake 32 is engaged and the High clutch 33 and the Rev brake 34 are released, the gear position of the subtransmission mechanism 30 is the first speed. If the high clutch 33 is engaged and the low brake 32 and the rev brake 34 are released, the speed stage of the subtransmission mechanism 30 becomes the second speed having a smaller speed ratio than the first speed. Further, if the Rev brake 34 is engaged and the Low brake 32 and the High clutch 33 are released, the shift speed of the subtransmission mechanism 30 is reverse. In the following description, the transmission 4 is expressed as “the transmission 4 is in the low speed mode” when the shift speed of the auxiliary transmission mechanism 30 is the first speed, and “the transmission 4 is in the high speed mode” when it is the second speed. Express.

各摩擦締結要素は、動力伝達経路上、バリエータ20の前段又は後段に設けられ、いずれも締結されると変速機4の動力伝達を可能にし、解放されると変速機4の動力伝達を不能にする。   Each frictional engagement element is provided on the power transmission path at the front stage or the rear stage of the variator 20, and enables transmission of power to the transmission 4 when both are engaged, and disables transmission of power to the transmission 4 when released. To do.

コントローラ12は、エンジン1及び変速機4を統合的に制御するコントローラであり、図2に示すように、CPU121と、RAM・ROMからなる記憶装置122と、入力インターフェース123と、出力インターフェース124と、これらを相互に接続するバス125とから構成される。   The controller 12 is a controller that controls the engine 1 and the transmission 4 in an integrated manner. As shown in FIG. 2, the CPU 12, a storage device 122 including a RAM / ROM, an input interface 123, an output interface 124, The bus 125 interconnects these components.

入力インターフェース123には、アクセルペダルの操作量であるアクセル開度APOを検出するアクセル開度センサ41の出力信号、変速機4の入力回転速度(=プライマリプーリ21の回転速度、以下、「プライマリ回転速度Npri」という。)を検出する回転速度センサ42の出力信号、車速VSPを検出する車速センサ43の出力信号、ライン圧PLを検出するライン圧センサ44の出力信号、シフトレバーの位置を検出するインヒビタスイッチ45の出力信号、ブレーキ液圧を検出するブレーキ液圧センサ46の出力信号、トルクコンバータ2の出力軸の回転速度を検出するタービン回転数センサ47の出力信号等が入力される。   The input interface 123 includes an output signal of an accelerator opening sensor 41 that detects an accelerator opening APO that is an operation amount of an accelerator pedal, an input rotation speed of the transmission 4 (= rotation speed of the primary pulley 21, hereinafter, “primary rotation”). The output signal of the rotational speed sensor 42 for detecting the speed Npri, the output signal of the vehicle speed sensor 43 for detecting the vehicle speed VSP, the output signal of the line pressure sensor 44 for detecting the line pressure PL, and the position of the shift lever. The output signal of the inhibitor switch 45, the output signal of the brake hydraulic pressure sensor 46 for detecting the brake hydraulic pressure, the output signal of the turbine rotational speed sensor 47 for detecting the rotational speed of the output shaft of the torque converter 2, and the like are input.

記憶装置122には、エンジン1の制御プログラム、変速機4の変速制御プログラム、これらプログラムで用いられる各種マップ・テーブルが格納されている。CPU121は、記憶装置122に格納されているプログラムを読み出して実行し、入力インターフェース123を介して入力される各種信号に対して各種演算処理を施して、燃料噴射量信号、点火時期信号、スロットル開度信号、変速制御信号、電動オイルポンプ10eの駆動信号を生成し、生成した信号を、出力インターフェース124を介してエンジン1、油圧制御回路11、電動オイルポンプ10eのモータドライバに出力する。CPU121が演算処理で使用する各種値、その演算結果は、記憶装置122に適宜格納される。   The storage device 122 stores a control program for the engine 1, a shift control program for the transmission 4, and various map tables used in these programs. The CPU 121 reads and executes a program stored in the storage device 122, performs various arithmetic processes on various signals input via the input interface 123, and performs fuel injection amount signal, ignition timing signal, throttle opening. A degree signal, a shift control signal, and a drive signal of the electric oil pump 10e are generated, and the generated signals are output to the engine 1, the hydraulic control circuit 11, and the motor driver of the electric oil pump 10e via the output interface 124. Various values used in the arithmetic processing by the CPU 121 and the arithmetic results are appropriately stored in the storage device 122.

油圧制御回路11は複数の流路、複数の油圧制御弁で構成される。油圧制御回路11は、コントローラ12からの変速制御信号に基づき、複数の油圧制御弁を制御して油圧の供給経路を切り換えるとともにメカオイルポンプ10m又は電動オイルポンプ10eで発生した油圧から必要な油圧を調製し、これを変速機4の各部位に供給する。これにより、バリエータ20の変速比、副変速機構30の変速段が変更され、変速機4の変速が行われる。   The hydraulic control circuit 11 includes a plurality of flow paths and a plurality of hydraulic control valves. The hydraulic control circuit 11 controls a plurality of hydraulic control valves on the basis of the shift control signal from the controller 12 to switch the hydraulic pressure supply path, and at the same time, obtains the necessary hydraulic pressure from the hydraulic pressure generated by the mechanical oil pump 10m or the electric oil pump 10e. It is prepared and supplied to each part of the transmission 4. As a result, the gear ratio of the variator 20 and the gear position of the subtransmission mechanism 30 are changed, and the transmission 4 is shifted.

図3は記憶装置122に格納される変速マップの一例を示している。コントローラ12は、この変速マップに基づき、車両の運転状態(この実施形態では車速VSP、プライマリ回転速度Npri、アクセル開度APO)に応じて、バリエータ20、副変速機構30を制御する。   FIG. 3 shows an example of the shift map stored in the storage device 122. Based on this shift map, the controller 12 controls the variator 20 and the subtransmission mechanism 30 according to the driving state of the vehicle (in this embodiment, the vehicle speed VSP, the primary rotational speed Npri, and the accelerator opening APO).

この変速マップでは、変速機4の動作点が車速VSPとプライマリ回転速度Npriとにより定義される。変速機4の動作点と変速マップ左下隅の零点を結ぶ線の傾きが変速機4の変速比(バリエータ20の変速比に副変速機構30の変速比を掛けて得られる全体の変速比、以下、「スルー変速比」という。)に対応する。この変速マップには、従来のベルト式無段変速機の変速マップと同様に、アクセル開度APO毎に変速線が設定されており、変速機4の変速はアクセル開度APOに応じて選択される変速線に従って行われる。なお、図3には簡単のため、全負荷線(アクセル開度APO=8/8の場合の変速線)、パーシャル線(アクセル開度APO=4/8の場合の変速線)、コースト線(アクセル開度APO=0/8の場合の変速線)のみが示されている。   In this shift map, the operating point of the transmission 4 is defined by the vehicle speed VSP and the primary rotational speed Npri. The slope of the line connecting the operating point of the transmission 4 and the zero point of the lower left corner of the transmission map is the transmission ratio of the transmission 4 (the overall transmission ratio obtained by multiplying the transmission ratio of the variator 20 by the transmission ratio of the subtransmission mechanism 30; , Referred to as “through gear ratio”). Similar to the shift map of the conventional belt type continuously variable transmission, a shift line is set for each accelerator opening APO, and the shift of the transmission 4 is selected according to the accelerator opening APO. According to the shift line. For simplicity, FIG. 3 shows a full load line (shift line when accelerator opening APO = 8/8), partial line (shift line when accelerator opening APO = 4/8), coast line ( Only the shift line when the accelerator opening APO = 0/8 is shown.

変速機4が低速モードの場合は、変速機4はバリエータ20の変速比を最Low変速比にして得られる低速モード最Low線とバリエータ20の変速比を最High変速比にして得られる低速モード最High線の間で変速することができる。この場合、変速機4の動作点はA領域とB領域内を移動する。一方、変速機4が高速モードの場合は、変速機4はバリエータ20の変速比を最Low変速比にして得られる高速モード最Low線とバリエータ20の変速比を最High変速比にして得られる高速モード最High線の間で変速することができる。この場合、変速機4の動作点はB領域とC領域内を移動する。   When the transmission 4 is in the low speed mode, the transmission 4 can be obtained by setting the low speed mode Low line obtained by setting the transmission ratio of the variator 20 to the lowest transmission ratio, and the low speed mode obtained by setting the transmission ratio of the variator 20 to the highest transmission ratio. The speed can be changed between the highest lines. In this case, the operating point of the transmission 4 moves in the A region and the B region. On the other hand, when the transmission 4 is in the high speed mode, the transmission 4 can be obtained by setting the maximum speed line of the high speed mode obtained by setting the transmission ratio of the variator 20 as the lowest transmission ratio and the transmission ratio of the variator 20 as the highest transmission ratio. It is possible to shift between the high-speed mode highest line. In this case, the operating point of the transmission 4 moves in the B region and the C region.

副変速機構30の各変速段の変速比は、低速モード最High線に対応する変速比(低速モード最High変速比)が、高速モード最Low線に対応する変速比(高速モード最Low変速比)よりも小さくなるように設定される。これにより、低速モードでとりうる変速機4のスルー変速比の範囲(図中、「低速モードレシオ範囲」)と高速モードでとりうる変速機4のスルー変速比の範囲(図中、「高速モードレシオ範囲」)とが部分的に重複し、変速機4の動作点が高速モード最Low線と低速モード最High線で挟まれるB領域にある場合は、変速機4は低速モード、高速モードの何れのモードも選択可能になっている。   The gear ratio of each gear stage of the subtransmission mechanism 30 is such that the gear ratio corresponding to the low speed mode highest line (low speed mode maximum high gear ratio) corresponds to the gear ratio corresponding to the high speed mode lowest line (high speed mode lowest gear ratio). ) Is set to be smaller than. Accordingly, the range of the through speed ratio of the transmission 4 that can be achieved in the low speed mode (“low speed mode ratio range” in the figure) and the range of the through speed ratio of the transmission 4 that can be taken in the high speed mode (“high speed mode” in the figure). Ratio range ”) partially overlaps and the operating point of the transmission 4 is in the B region sandwiched between the high-speed mode lowest line and the low-speed mode highest line, the transmission 4 is in the low-speed mode and the high-speed mode. Either mode can be selected.

また、この変速マップ上には副変速機構30の変速を行うモード切換変速線が低速モード最High線上に重なるように設定されている。モード切換変速線に対応するスルー変速比(以下、「モード切換変速比mRatio」という。)は低速モード最High変速比と等しい値に設定される。モード切換変速線をこのように設定するのは、バリエータ20の変速比が小さいほど副変速機構30への入力トルクが小さくなり、副変速機構30を変速させる際の変速ショックを抑えられるからである。   Further, on this shift map, a mode switching shift line for shifting the subtransmission mechanism 30 is set so as to overlap the low speed mode highest line. The through speed change ratio (hereinafter referred to as “mode change speed change ratio mRatio”) corresponding to the mode change speed change line is set to a value equal to the low speed mode highest speed change ratio. The reason why the mode switching shift line is set in this way is that the smaller the gear ratio of the variator 20 is, the smaller the input torque to the subtransmission mechanism 30 is, so that a shift shock when shifting the subtransmission mechanism 30 can be suppressed. .

そして、変速機4の動作点がモード切換変速線を横切った場合、すなわち、スルー変速比の実際値(以下、「実スルー変速比Ratio」という。)がモード切換変速比mRatioを跨いで変化した場合は、コントローラ12は以下に説明する協調変速を行い、高速モード−低速モード間の切換えを行う。   When the operating point of the transmission 4 crosses the mode switching speed line, that is, the actual value of the through speed ratio (hereinafter referred to as “actual through speed ratio Ratio”) changes across the mode switching speed ratio mRatio. In this case, the controller 12 performs the coordinated shift described below and switches between the high speed mode and the low speed mode.

協調変速では、コントローラ12は、副変速機構30の変速を行うとともに、バリエータ20の変速比を副変速機構30の変速比が変化する方向と逆の方向に変更する。この時、副変速機構30の変速比が実際に変化するイナーシャフェーズとバリエータ20の変速比が変化する期間を同期させる。バリエータ20の変速比を副変速機構30の変速比変化と逆の方向に変化させるのは、実スルー変速比Ratioに段差が生じることによる入力回転の変化が運転者に違和感を与えないようにするためである。   In the coordinated shift, the controller 12 shifts the auxiliary transmission mechanism 30 and changes the transmission ratio of the variator 20 in a direction opposite to the direction in which the transmission ratio of the auxiliary transmission mechanism 30 changes. At this time, the inertia phase in which the gear ratio of the auxiliary transmission mechanism 30 actually changes and the period in which the gear ratio of the variator 20 changes are synchronized. The reason why the speed ratio of the variator 20 is changed in the direction opposite to the speed ratio change of the auxiliary speed change mechanism 30 is to prevent the change in the input rotation caused by the step in the actual through speed ratio Ratio from giving the driver a sense of incongruity. Because.

具体的には、変速機4の実スルー変速比Ratioがモード切換変速比mRatioをLow側からHigh側に跨いで変化した場合は、コントローラ12は、副変速機構30の変速段を1速から2速に変更(1−2変速)するとともに、バリエータ20の変速比をLow側に変更する。   Specifically, when the actual through speed ratio Ratio of the transmission 4 changes over the mode switching speed ratio mRatio from the Low side to the High side, the controller 12 changes the speed stage of the subtransmission mechanism 30 from the first speed to the second speed. The speed is changed (1-2 shift), and the speed ratio of the variator 20 is changed to Low.

逆に、変速機4の実スルー変速比Ratioがモード切換変速比mRatioをHigh側からLow側に跨いで変化した場合は、コントローラ12は、副変速機構30の変速段を2速から1速に変更(2−1変速)するとともに、バリエータ20の変速比をHigh側に変更する。
なお、本実施の形態にかかる変速機4では、コーストストップが実行されている場合、車両が停止するまで、副変速機構30の変速段が、1速または2速で保持されるようになっている。そのため、コーストストップが実行されている場合であって、副変速機構30の変速段が2速で保持されているときには、変速機4の実スルー変速比Ratioがモード切換変速比mRatioをHigh側からLow側に跨いで変化した場合であっても、2速から1速への変速が行われないようになっている。
Conversely, when the actual through speed ratio Ratio of the transmission 4 changes from the High side to the Low side, the controller 12 changes the speed stage of the subtransmission mechanism 30 from the second speed to the first speed. While changing (2-1 shift), the gear ratio of the variator 20 is changed to the High side.
In the transmission 4 according to the present embodiment, when the coast stop is being executed, the shift speed of the auxiliary transmission mechanism 30 is maintained at the first speed or the second speed until the vehicle stops. Yes. Therefore, when the coast stop is being executed and the shift speed of the auxiliary transmission mechanism 30 is maintained at the second speed, the actual through speed ratio Ratio of the transmission 4 is set to the mode switching speed ratio mRatio from the High side. Even if it changes across the Low side, the shift from the second speed to the first speed is not performed.

また、コントローラ12は、燃料消費量を抑制するために、以下に説明するコーストストップ制御を行う。   Further, the controller 12 performs coast stop control described below in order to suppress fuel consumption.

コーストストップ制御は、低車速域で車両が走行している間、エンジン1を自動的に停止(コーストストップ)させて燃料消費量を抑制する制御である。アクセルオフ時に実行される燃料カット制御とはエンジン1への燃料供給が停止される点で共通するが、ロックアップクラッチを解放して、エンジン1と変速機4との間の動力伝達経路を絶ち、エンジン1の回転を完全に停止させる点において相違する。
なお、この場合において、実施の形態にかかる変速機4では、コーストストップが実行されると、車両が停止するまでの間、摩擦締結要素(例えばHighクラッチ33)を締結状態で保持するようになっている。
The coast stop control is a control that suppresses fuel consumption by automatically stopping the engine 1 (coast stop) while the vehicle is traveling in a low vehicle speed range. The fuel cut control executed when the accelerator is off is common in that the fuel supply to the engine 1 is stopped, but the lockup clutch is released and the power transmission path between the engine 1 and the transmission 4 is disconnected. The difference is that the rotation of the engine 1 is completely stopped.
In this case, in the transmission 4 according to the embodiment, when the coast stop is executed, the frictional engagement element (for example, the High clutch 33) is held in the engaged state until the vehicle stops. ing.

コーストストップを実行するにあたっては、コントローラ12は、まず、例えば以下に示す条件a〜dを判断する。   In executing the coast stop, the controller 12 first determines the following conditions a to d, for example.

a:アクセルペダルから足が離されている(アクセル開度APO=0)
b:ブレーキペダルが踏み込まれている(ブレーキ液圧が所定値以上)
c:車速が所定の低車速(コーストストップ許可車速:例えば、16km/h)以下
d:副変速機構30が変速中でない(摩擦締結要素の締結状態、解放状態の組合せの変更途中でない)
ここで、条件a〜cは、運転者に停車意図があるかを判断するための条件である。
a: The foot is released from the accelerator pedal (accelerator opening APO = 0)
b: The brake pedal is depressed (brake hydraulic pressure is greater than or equal to a predetermined value)
c: Vehicle speed is a predetermined low vehicle speed (coast stop permission vehicle speed: for example, 16 km / h) or less d: Sub-transmission mechanism 30 is not shifting (not in the middle of changing the combination of the engagement state and the release state of the friction engagement element)
Here, the conditions a to c are conditions for determining whether the driver intends to stop.

コントローラ12は、条件a〜cが全て成立した場合にエンジン1の停止条件(コーストストップ条件)が成立したと判断し、条件a〜cに加えて条件dも成立した場合に、エンジン1の停止を実行する(コーストストップを開始する)。   The controller 12 determines that the stop condition (coast stop condition) of the engine 1 is satisfied when all the conditions a to c are satisfied, and stops the engine 1 when the condition d is satisfied in addition to the conditions a to c. (Start coast stop).

コーストストップでは、エンジン1への燃料供給を停止し、エンジン1を自動的に停止させる。エンジン1が停止すると、エンジン1の動力によって駆動されるメカオイルポンプ10mも停止するため、メカオイルポンプ10mの吐出圧が減少して、最終的にゼロになる。   In the coast stop, the fuel supply to the engine 1 is stopped and the engine 1 is automatically stopped. When the engine 1 is stopped, the mechanical oil pump 10m driven by the power of the engine 1 is also stopped, so that the discharge pressure of the mechanical oil pump 10m decreases and finally becomes zero.

また、コーストストップが開始された時点で、電動オイルポンプ10eの駆動が開始され、電動オイルポンプ10eで発生させた油圧がメカオイルポンプ10mで発生させた油圧よりも大きくなると、電動オイルポンプ10eで発生させた油圧が、油圧シリンダ23a、23bと副変速機構30とに供給される。油圧シリンダ23a、23bに供給された油圧は、車両が減速して停車するまでの間、バリエータ20をその時点の車速に応じた変速比に変化させる。   Further, when the coast stop is started, the driving of the electric oil pump 10e is started. When the hydraulic pressure generated by the electric oil pump 10e becomes larger than the hydraulic pressure generated by the mechanical oil pump 10m, the electric oil pump 10e The generated hydraulic pressure is supplied to the hydraulic cylinders 23 a and 23 b and the auxiliary transmission mechanism 30. The hydraulic pressure supplied to the hydraulic cylinders 23a and 23b changes the variator 20 to a gear ratio according to the vehicle speed at that time until the vehicle decelerates and stops.

また、コントローラ12は、コーストストップが開始されると、以降、車両が停止するまでの間、副変速機構30の摩擦締結要素(Highクラッチ33またはLowブレーキ32)の締結状態を維持する。そして、コントローラ12は、Highクラッチ33の締結状態を維持したままで車両が停止すると、Highクラッチ33を解放させたのち、車両の発進に備えてLowブレーキ32を締結させる。
よって、副変速機構30の変速段は、コーストストップの開始から車両が停止するまで2速で保持されたのち、車両が停止すると1速に変更される。
なお、Lowブレーキ32の締結状態を維持したままで車両が停止した場合には、車両の発進に備えてLowブレーキ32の締結状態は、引き続き維持される。
Further, when the coast stop is started, the controller 12 thereafter maintains the engagement state of the friction engagement element (the high clutch 33 or the low brake 32) of the auxiliary transmission mechanism 30 until the vehicle stops. Then, when the vehicle stops while maintaining the engaged state of the high clutch 33, the controller 12 releases the high clutch 33 and then engages the low brake 32 in preparation for the start of the vehicle.
Therefore, the gear position of the auxiliary transmission mechanism 30 is held at the second speed from the start of the coast stop until the vehicle stops, and then changed to the first speed when the vehicle stops.
Note that when the vehicle stops while the engaged state of the Low brake 32 is maintained, the engaged state of the Low brake 32 is continuously maintained in preparation for the start of the vehicle.

なお、上記a〜cの条件はコーストストップ中も成立しているかの判断が継続される。そして、何れか一つでも不成立になるとコーストストップ条件が不成立になり、コントローラ12は、エンジン1への燃料供給を再開してエンジン1を再始動すると共に、メカオイルポンプ10mが十分な油圧を発生するようになった時点で電動オイルポンプ10eを停止させる。   Note that the determination of whether the conditions a to c are satisfied even during the coast stop is continued. If any one of them is not satisfied, the coast stop condition is not satisfied, and the controller 12 restarts the fuel supply to the engine 1 to restart the engine 1 and the mechanical oil pump 10m generates sufficient hydraulic pressure. When this happens, the electric oil pump 10e is stopped.

図4は、本実施形態の油圧制御回路11の構成を示す説明図である。   FIG. 4 is an explanatory diagram showing the configuration of the hydraulic control circuit 11 of the present embodiment.

油圧制御回路11は、エンジン1の駆動力によって駆動されるメカオイルポンプ10mを備える。メカオイルポンプ10mが発生する油圧はプレッシャーレギュレータ弁51によって所定のライン圧に調圧されて、油路50を介してバリエータ20及び副変速機構30の各部に分配される。   The hydraulic control circuit 11 includes a mechanical oil pump 10 m that is driven by the driving force of the engine 1. The hydraulic pressure generated by the mechanical oil pump 10 m is adjusted to a predetermined line pressure by the pressure regulator valve 51 and is distributed to each part of the variator 20 and the subtransmission mechanism 30 via the oil passage 50.

また、メカオイルポンプ10mが発生する油圧はプレッシャーレギュレータ弁51を介してトルクコンバータ2に供給される。この油圧はトルクコンバータ2のトルク伝達及びロックアップクラッチの締結・解放に用いられる。   The hydraulic pressure generated by the mechanical oil pump 10 m is supplied to the torque converter 2 via the pressure regulator valve 51. This hydraulic pressure is used for torque transmission of the torque converter 2 and for engagement / release of the lock-up clutch.

油路50のライン圧は、セカンダリプーリ22の油圧シリンダ23bの油室に供給される。また、油路50のライン圧は、減圧弁52によって減圧されて、プライマリプーリ21の油圧シリンダ23aの油室に供給される。減圧弁52によって油圧シリンダ23aの油室に供給される油圧を調整することによって、油圧シリンダ23bの油室に供給されるライン圧との差圧によりそれぞれのV溝の幅が変化してVベルト23とプーリとの接触半径が変化し、バリエータ20の変速比が無段階に変化する。   The line pressure of the oil passage 50 is supplied to the oil chamber of the hydraulic cylinder 23 b of the secondary pulley 22. The line pressure in the oil passage 50 is reduced by the pressure reducing valve 52 and supplied to the oil chamber of the hydraulic cylinder 23 a of the primary pulley 21. By adjusting the hydraulic pressure supplied to the oil chamber of the hydraulic cylinder 23a by the pressure reducing valve 52, the width of each V groove changes due to the differential pressure from the line pressure supplied to the oil chamber of the hydraulic cylinder 23b. The contact radius between the pulley 23 and the pulley changes, and the gear ratio of the variator 20 changes steplessly.

また、油路50のライン圧は、副変速機構30において、減圧弁53を介してLowブレーキ32に、減圧弁54を介してHighクラッチ33に、それぞれ供給される。減圧弁53は、Lowブレーキ32に供給する油圧を調整してLowブレーキ32の締結力を制御する。減圧弁54は、Highクラッチ33に供給する油圧を調整してHighクラッチ33の締結力を制御する。   Further, the line pressure in the oil passage 50 is supplied to the low brake 32 via the pressure reducing valve 53 and to the high clutch 33 via the pressure reducing valve 54 in the auxiliary transmission mechanism 30. The pressure reducing valve 53 controls the engagement force of the Low brake 32 by adjusting the hydraulic pressure supplied to the Low brake 32. The pressure reducing valve 54 controls the fastening force of the high clutch 33 by adjusting the hydraulic pressure supplied to the high clutch 33.

減圧弁53とLowブレーキ32との間の油路56には、アキュームレータ60が接続されている。アキュームレータ60は、内部に作動油を貯留して、この作動油によって油路56の油圧の変化を緩和する。   An accumulator 60 is connected to the oil passage 56 between the pressure reducing valve 53 and the Low brake 32. The accumulator 60 stores hydraulic oil therein and relieves changes in the hydraulic pressure in the oil passage 56 with the hydraulic oil.

具体的には、油圧が所定圧力以上である場合には、アキュームレータ60の内部に作動油が貯留される。油圧が所定圧力よりも低下した場合は、アキュームレータ60に貯留された作動油が油路56に供給されて油路56の油圧の低下の応答を遅らせる。
また、油路56の油圧が低い状態から上昇した場合は作動油がアキュームレータ60内に貯留され油路56の油圧の上昇の応答を遅らせる。これにより、油路56の油圧の応答性を遅らせ、油圧が急激に上昇、下降することを抑制するので、Lowブレーキ32の締結、解放時のショックを抑えることができる。
Specifically, when the hydraulic pressure is equal to or higher than a predetermined pressure, the hydraulic oil is stored in the accumulator 60. When the hydraulic pressure falls below a predetermined pressure, the hydraulic oil stored in the accumulator 60 is supplied to the oil passage 56 to delay the response of the oil pressure reduction in the oil passage 56.
Further, when the oil pressure in the oil passage 56 rises from a low state, the hydraulic oil is stored in the accumulator 60 and delays the response of the oil pressure in the oil passage 56 to rise. As a result, the response of the oil pressure in the oil passage 56 is delayed and the oil pressure is prevented from rising and falling rapidly, so that a shock at the time of engaging and releasing the Low brake 32 can be suppressed.

例えば、シフトレバーの選択レンジが、N位置からD位置に切り替えられたときには、Lowブレーキ32の摩擦締結要素を締結させるために、Lowブレーキ32に接続された油路56に作動油が供給される。この際、Lowブレーキ32の摩擦締結要素が急激に締結されるとショックが発生してしまうので、油路56に設けたアキュームレータ60により、Lowブレーキ32の摩擦締結要素が急激に締結されることを防止している。   For example, when the shift lever selection range is switched from the N position to the D position, hydraulic oil is supplied to the oil passage 56 connected to the Low brake 32 in order to fasten the friction engagement element of the Low brake 32. . At this time, if the frictional engagement element of the Low brake 32 is abruptly engaged, a shock is generated, so that the frictional engagement element of the Low brake 32 is abruptly engaged by the accumulator 60 provided in the oil passage 56. It is preventing.

コントローラ12は、プレッシャーレギュレータ弁51を制御してライン圧を調整する。また、減圧弁52を制御してプライマリプーリ21の油圧シリンダ23aへの油圧を調整して、バリエータ20の変速比を制御する。また、減圧弁53を制御してLowブレーキ32の締結状態を制御する。また、減圧弁54を制御してHighクラッチ33の締結状態を制御する。   The controller 12 controls the pressure regulator valve 51 to adjust the line pressure. Further, the pressure reducing valve 52 is controlled to adjust the hydraulic pressure of the primary pulley 21 to the hydraulic cylinder 23a, thereby controlling the transmission ratio of the variator 20. In addition, the pressure reducing valve 53 is controlled to control the engaged state of the Low brake 32. Further, the engagement state of the high clutch 33 is controlled by controlling the pressure reducing valve 54.

メカオイルポンプ10mは、エンジン1の回転により駆動される。エンジン1が回転している間は常にメカオイルポンプ10mが回転し、変速機4の動作に必要な油圧を発生する。変速機4は車両停止状態でも車両の発進に備えて油圧が必要となるので、車両停止時にエンジン1が回転している状態は、メカオイルポンプ10mの駆動によりライン圧が発生される。   The mechanical oil pump 10 m is driven by the rotation of the engine 1. While the engine 1 is rotating, the mechanical oil pump 10 m always rotates and generates hydraulic pressure necessary for the operation of the transmission 4. Since the transmission 4 requires hydraulic pressure in preparation for the start of the vehicle even when the vehicle is stopped, the line pressure is generated by driving the mechanical oil pump 10m when the engine 1 is rotating when the vehicle is stopped.

一方で、コーストストップ等によりエンジン1の回転を停止した場合には、メカオイルポンプ10mの駆動が停止し、油圧が低下する。これに備えて、油路50に電動オイルポンプ10eが備えられている。   On the other hand, when the rotation of the engine 1 is stopped by a coast stop or the like, the driving of the mechanical oil pump 10m is stopped and the hydraulic pressure is reduced. In preparation for this, the oil passage 50 is provided with an electric oil pump 10e.

電動オイルポンプ10eは、エンジン1の回転が停止してメカオイルポンプ10mが作動していないときに変速機4への油圧の供給するために、コントローラ12の制御によって、バッテリ13からの電力の供給によって駆動して、油圧を発生する。   The electric oil pump 10e supplies electric power from the battery 13 under the control of the controller 12 in order to supply hydraulic pressure to the transmission 4 when the rotation of the engine 1 is stopped and the mechanical oil pump 10m is not operating. To generate hydraulic pressure.

なお、電動オイルポンプ10eは、アイドルストップ又はコーストストップ等の比較的低負荷時に作動するものである。従って、このような運転状況における必要油圧を満足できる程度の容量を持ち、かつ、車両の重量の増加及びコストの上昇とならない程度の容量であることが望ましい。   The electric oil pump 10e operates at a relatively low load such as an idle stop or a coast stop. Therefore, it is desirable to have a capacity that can satisfy the required hydraulic pressure in such an operating situation, and a capacity that does not increase the weight and cost of the vehicle.

図5は、本実施形態のコントローラ12によるコーストストップの実行判定のフローチャートである。なお、本フローチャートの処理はコントローラ12において所定間隔(例えば10ms)で実行される。   FIG. 5 is a flowchart of coast stop execution determination by the controller 12 of the present embodiment. Note that the processing of this flowchart is executed by the controller 12 at a predetermined interval (for example, 10 ms).

コントローラ12によるコーストストップの実行判定の処理を説明する。
コントローラ12には、図2に示す各種センサから信号が入力されるようになっており、各種センサから信号が入力されると(ステップ101)、入力された信号から特定される現在の運転状態に基づいて、コーストストップ条件(エンジン1の停止条件)が成立したか否かを判定する(ステップ102)。
The coast stop execution determination process by the controller 12 will be described.
Signals are input from the various sensors shown in FIG. 2 to the controller 12, and when signals are input from the various sensors (step 101), the current operating state specified from the input signals is obtained. Based on this, it is determined whether or not a coast stop condition (stop condition for the engine 1) is satisfied (step 102).

ここで、コーストストップ条件は、運転者に停車意図があるかを判断するための条件であり、以下のa〜cである。
a:アクセルペダルから足が離されている(アクセル開度APO=0)
b:ブレーキペダルが踏み込まれている(ブレーキ液圧が所定値以上)
c:車速がコーストストップ許可車速VSP2以下
Here, the coast stop condition is a condition for determining whether or not the driver intends to stop, and is the following a to c.
a: The foot is released from the accelerator pedal (accelerator opening APO = 0)
b: The brake pedal is depressed (brake hydraulic pressure is greater than or equal to a predetermined value)
c: Vehicle speed is less than coast stop permission vehicle speed VSP2

よって、ステップ102において、コーストストップ条件が成立していないと判定された場合には、ステップ105の処理に移行して、コーストストップが禁止(エンジン1の停止が禁止)されることになる。   Therefore, when it is determined in step 102 that the coast stop condition is not satisfied, the process proceeds to step 105 and the coast stop is prohibited (stop of the engine 1 is prohibited).

一方、コーストストップ条件が成立したと判定された場合には(ステップ102、Yes)、コントローラ12は、副変速機構30が変速中であるか否かを判定する(ステップ103)。
具体的には、コントローラ12は、副変速機構30の入力側と出力側の回転速度に基づいて、変速中であるか否かを判定する。
On the other hand, when it is determined that the coast stop condition is satisfied (step 102, Yes), the controller 12 determines whether or not the auxiliary transmission mechanism 30 is shifting (step 103).
Specifically, the controller 12 determines whether or not a shift is being performed based on the rotational speeds on the input side and the output side of the auxiliary transmission mechanism 30.

ステップ103において、副変速機構30が変速中であると判定されると、ステップ105においてコーストストップが禁止(エンジン1の停止が禁止)されることになる。よって、コーストストップ条件が成立している場合であっても、変速中であるときには、コーストストップが実行されないことになる。   If it is determined in step 103 that the subtransmission mechanism 30 is shifting, coast stop is prohibited (stop of the engine 1 is prohibited) in step 105. Therefore, even when the coast stop condition is satisfied, the coast stop is not executed when the gear is being changed.

一方、ステップ103において変速中でないと判定された場合には、ステップ104においてコーストストップが許可(エンジン1の停止が許可)されることになる。よって、コーストストップ条件が成立している場合であって副変速機構30が変速中でないときに、コーストストップが実行されることになる。   On the other hand, if it is determined in step 103 that the gear is not being shifted, coast stop is permitted (stop of the engine 1 is permitted) in step 104. Therefore, the coast stop is executed when the coast stop condition is satisfied and the auxiliary transmission mechanism 30 is not shifting.

ここで、用語「変速中」は、副変速機構30において締結側の摩擦要素の締結と解放側の摩擦要素の解放が進行している途上、すなわち副変速機構30の変速比が実際に変化している場合のみを意味するのではなく、副変速機構30の変速比が実際に変化しているときと、その前後が含まれている。
具体的には、変速における「準備フェーズ(摩擦締結要素の締結のために、締結側の摩擦締結要素にプリチャージを行うフェーズ)」、「トルクフェーズ(締結側の摩擦締結要素と、解放側の摩擦締結要素との間でトルクの架け替えを行うフェーズ)、「イナーシャフェーズ(副変速機構30の変速を行うフェーズ)」、「完了フェーズ(油圧を増圧して締結側の摩擦締結要素を完全に締結させるフェーズ)」の総てが含まれるものとする。
Here, the term “during shifting” means that the engagement of the engagement-side friction element and the release of the release-side friction element are in progress in the auxiliary transmission mechanism 30, that is, the transmission ratio of the auxiliary transmission mechanism 30 actually changes. This does not mean only the case where the speed change is performed, but includes the time when the gear ratio of the subtransmission mechanism 30 is actually changing and the time before and after.
Specifically, the “preparation phase (phase in which pre-charging is applied to the friction engagement element on the engagement side for the engagement of the friction engagement element)” and “torque phase (the friction engagement element on the engagement side and the release side) "Phase for switching torque with the friction engagement element)," Inertia phase (phase for shifting the sub-transmission mechanism 30) "," Completion phase "(completely tightening the friction engagement element on the engagement side by increasing the hydraulic pressure) All the phases to be concluded) ”are included.

以下、車両の走行状態に当てはめて、実施の形態にかかる変速機4の動作例を説明する。
図6は、変速機の動作を説明するタイミングチャートであって、(a)は、コーストストップの開始の判断に、副変速機構30が変速中であるか否かを考慮する実施の形態の場合を、(b)は、変速中であるか否かを考慮しない従来例の場合を、それぞれ示す図である。
Hereinafter, an operation example of the transmission 4 according to the embodiment will be described by applying to the traveling state of the vehicle.
FIG. 6 is a timing chart for explaining the operation of the transmission. FIG. 6A is a case in which the subtransmission mechanism 30 considers whether or not the sub-transmission mechanism 30 is shifting when determining the start of the coast stop. (B) is a figure which respectively shows the case of the prior art example which does not consider whether it is during shifting.

[動作例1]
以下、車両がコーストストップ許可車速VSP2よりも高い車速で車両が走行しているときに、アクセル:オフ、ブレーキ:オンにより車速が低下した場合であって、車速が低下して、コーストストップ許可車速VSP2に達する直前に、変速指令(1速→2速)があった場合について説明をする。
なお、実施の形態にかかる変速機4では、コーストストップ許可車速VSP2が、従来例の場合のコーストストップ許可車速VSP1(図6の(a)参照)よりも高車速域側であって、変速が実行され得る領域に設定されているものとする。
[Operation Example 1]
Hereinafter, when the vehicle is traveling at a vehicle speed higher than the coast stop permission vehicle speed VSP2, the vehicle speed is decreased due to acceleration: off, brake: on, and the vehicle speed is decreased, and the coast stop permission vehicle speed. A case will be described where there is a shift command (first speed → second speed) immediately before reaching VSP2.
In the transmission 4 according to the embodiment, the coast stop permission vehicle speed VSP2 is higher than the coast stop permission vehicle speed VSP1 (see FIG. 6A) in the case of the conventional example, and the speed change is performed. It is assumed that an area that can be executed is set.

車速が低下を続けてコーストストップ許可車速VSP2以下になると、その時点t3においてコーストストップ条件a〜cが成立する(図6の(a):車速参照、図5:ステップ102、Yes)。
そうすると、この時点t3において、副変速機構30が変速中であるか否かが判定される(図5:ステップ103)。
図6の(a)の場合、車速がコーストストップ許可車速VSP2に達する直前で、パドルスイッチが操作されてアップシフトの指令が入力されている(図6の(a):パドルSW参照)。
そのため、副変速機構30では、パドルスイッチが操作された時点t2で、1速から2速への変速が開始されており、時刻t2以降、1速の摩擦締結要素を締結させる油圧(1速クラッチ圧)の低下と、2速の摩擦締結要素を締結させる油圧(2速クラッチ圧)の上昇が始まっている(図6の(a):目標Gr比、1速クラッチ圧、2速クラッチ圧、実Gr比参照)。
When the vehicle speed continues to decrease and becomes equal to or less than the coast stop permission vehicle speed VSP2, the coast stop conditions ac are satisfied at the time point t3 ((a) in FIG. 6: vehicle speed reference, FIG. 5: step 102, Yes).
Then, at this time t3, it is determined whether or not the subtransmission mechanism 30 is shifting (FIG. 5: step 103).
In the case of FIG. 6A, the paddle switch is operated and an upshift command is input immediately before the vehicle speed reaches the coast stop permission vehicle speed VSP2 (see FIG. 6A: paddle SW).
Therefore, in the subtransmission mechanism 30, the shift from the first speed to the second speed is started at the time t <b> 2 when the paddle switch is operated, and the hydraulic pressure (first speed clutch) for engaging the first speed friction engagement element after the time t <b> 2. Pressure) and hydraulic pressure (second speed clutch pressure) for engaging the second speed friction engagement element has started ((a) in FIG. 6: target Gr ratio, first speed clutch pressure, second speed clutch pressure, See actual Gr ratio).

よって、車速がコーストストップ許可車速VSP2以下になった時点t3において、副変速機構30の変速が実行中であると判定されて(図5:ステップ103、Yes)、続くステップ105において、コーストストップが禁止される(エンジン1の停止が禁止される)ことになる。
そのため、コーストストップ条件が成立した時点t3では、コーストストップは開始(実行)されないことになる(図6の(a):コーストストップ参照)。
Therefore, at time t3 when the vehicle speed becomes equal to or less than the coast stop permission vehicle speed VSP2, it is determined that the shift of the auxiliary transmission mechanism 30 is being executed (FIG. 5: Step 103, Yes). In the subsequent Step 105, the coast stop is performed. It is prohibited (stop of the engine 1 is prohibited).
Therefore, the coast stop is not started (executed) at the time point t3 when the coast stop condition is satisfied (see (a): coast stop in FIG. 6).

ここで、図5のフローチャートの処理は、所定時間毎(例えば10ms毎)に繰り返し実行される。そのため、副変速機構30における変速が終了するまでの間は、ステップ103の判定が肯定されて、コーストストップは開始されないことになる。
そして、変速が終了すると、その時点t4において、ステップ103の判定が否定されて、コーストストップが許可(エンジン1の停止が許可)されるので、コーストストップが開始されることになる(図6の(a)、実Gr比、コーストストップ参照)。
Here, the process of the flowchart of FIG. 5 is repeatedly executed at predetermined time intervals (for example, every 10 ms). Therefore, until the shift in the subtransmission mechanism 30 is completed, the determination in step 103 is affirmed and the coast stop is not started.
When the shift is completed, the determination in step 103 is denied at the time t4 and the coast stop is permitted (stop of the engine 1 is permitted), so the coast stop is started (FIG. 6). (See (a), actual Gr ratio, coast stop).

そうすると、エンジン1により駆動されるメカオイルポンプ10mが停止し、電動オイルポンプ10eが駆動されることになる。ここで、電動オイルポンプ10eからの油圧は、摩擦締結要素を締結状態で保持するのに十分な圧力を持っているので、エンジン1が完全に停止したのちも、2速の摩擦締結要素の締結状態が、電動オイルポンプ10eからの油圧で保持されることになる(図6の(a):エンジン回転数Ne、電動オイルポンプ、2速クラッチ圧参照)。   Then, the mechanical oil pump 10m driven by the engine 1 is stopped, and the electric oil pump 10e is driven. Here, since the hydraulic pressure from the electric oil pump 10e has sufficient pressure to hold the frictional engagement element in the engaged state, the second-speed frictional engagement element is engaged even after the engine 1 is completely stopped. The state is held by the hydraulic pressure from the electric oil pump 10e (see (a) in FIG. 6: engine rotational speed Ne, electric oil pump, second speed clutch pressure).

[動作比較例1]
以下、コーストストップの開始の判断に、変速中であるか否かを考慮しない従来例の場合を例に挙げて、車両がコーストストップ許可車速VSP2よりも高い車速で車両が走行しているときに、アクセル:オフ、ブレーキ:オンにより車速が低下した場合であって、車速が低下して、コーストストップ許可車速VSP2に達する直前に、変速指令(1速→2速)があった場合について説明をする。
ここで、この動作比較例1では、前記した動作例1との比較のために、コーストストップ許可車速VSP2が、変速が行われない車速域に設定された従来のコーストストップ許可車速VSP1よりも高車速側であって、変速が行われ得る車速域に設定されているものとして、説明をする。
[Operation Comparison Example 1]
Hereinafter, when the vehicle is traveling at a vehicle speed higher than the coast stop permission vehicle speed VSP2, taking as an example the case of the conventional example that does not consider whether or not the gear shift is being performed in the determination of the start of the coast stop. , Accelerator: Off, Brake: When the vehicle speed decreases due to ON, and the vehicle speed decreases and immediately before reaching the coast stop permission vehicle speed VSP2, there is a shift command (1st speed → 2nd speed). To do.
Here, in this operation comparison example 1, for comparison with the operation example 1 described above, the coast stop permission vehicle speed VSP2 is higher than the conventional coast stop permission vehicle speed VSP1 set in a vehicle speed range where no shift is performed. The description will be made on the assumption that the vehicle speed side is set to a vehicle speed range in which shifting can be performed.

車速が低下を続けてコーストストップ許可車速VSP2以下になると、従来例の場合には変速中であるか否かが考慮されないので、その時点t3においてコーストストップが許可されることになる(図6の(b):車速、コーストストップ参照)。
そうすると、その時点t3でエンジン1への燃料噴射が停止されるので、エンジン1は、時刻t3以降、回転数を落としながら停止することになる(図6の(b):エンジン回転数Ne参照)。
これにより、エンジン1により駆動されるメカオイルポンプ10mからの油圧が、時刻t3以降減少して最終的にゼロになるので、電動オイルポンプ10eが時刻t3から新たに駆動されることになる(図6の(b):電動オイルポンプ参照)。
If the vehicle speed continues to decrease and becomes the coast stop permission vehicle speed VSP2 or less, in the case of the conventional example, it is not considered whether or not the gear is being shifted, so the coast stop is permitted at the time t3 (FIG. 6). (B): See vehicle speed, coast stop).
Then, since the fuel injection to the engine 1 is stopped at the time t3, the engine 1 is stopped while decreasing the rotational speed after the time t3 (see (b) of FIG. 6: engine rotational speed Ne). .
As a result, the hydraulic pressure from the mechanical oil pump 10m driven by the engine 1 decreases after time t3 and finally becomes zero, so that the electric oil pump 10e is newly driven from time t3 (FIG. 6 (b): see electric oil pump).

図6の(b)の場合、車速がコーストストップ許可車速VSP2に達する直前で、パドルスイッチが操作されてアップシフトの指令が入力されている(図6の(b):パドルSW参照)。
そのため、パドルスイッチが操作された時点t2で、1速から2速への変速が開始されて、時刻t2以降、1速の摩擦締結要素を締結させる油圧(1速クラッチ圧)の低下と、2速の摩擦締結要素を締結させる油圧(2速クラッチ圧)の上昇が始まっている(図6の(b):目標Gr比、1速クラッチ圧、2速クラッチ圧、実Gr比参照)。
In the case of FIG. 6B, the paddle switch is operated and an upshift command is input immediately before the vehicle speed reaches the coast stop permission vehicle speed VSP2 (see FIG. 6B: paddle SW).
Therefore, at time t2 when the paddle switch is operated, a shift from the first speed to the second speed is started, and after time t2, a decrease in hydraulic pressure (first speed clutch pressure) for engaging the first speed friction engagement element, 2 The hydraulic pressure (second speed clutch pressure) for engaging the high-speed frictional engagement element has started to rise (see (b) in FIG. 6: target Gr ratio, first speed clutch pressure, second speed clutch pressure, actual Gr ratio).

よって、2速の摩擦締結要素を締結させている途中で、エンジン1が停止して、メカオイルポンプ10mからの油圧が減少することになる。
ここで、電動オイルポンプ10eは、メカオイルポンプ10mよりも容量が小さいため、電動オイルポンプ10eからの油圧は、摩擦締結要素を締結させる力(締結速度)が、メカオイルポンプ10mよりも弱くなっている。
そのため、2速クラッチ圧は、メカオイルポンプ10mが駆動されている場合(図中、鎖線参照)よりもゆっくりと上昇することになる(図中、実線参照)。ここで、1速クラッチ圧は、アキュームレータからの油圧によりゆっくりと下降するが、この下降速度よりも2速クラッチ圧の上昇速度が遅いために、1速から2速への変速が遅くなって(変速が間延びして)、運転者が変速挙動に違和感を持つ虞がある(図6の(b):2速クラッチ圧:実線、実Gr比参照)。
Therefore, the engine 1 stops while the second-speed frictional engagement element is being fastened, and the hydraulic pressure from the mechanical oil pump 10m is reduced.
Here, since the capacity of the electric oil pump 10e is smaller than that of the mechanical oil pump 10m, the hydraulic pressure from the electric oil pump 10e is weaker than the mechanical oil pump 10m in the force (fastening speed) for fastening the frictional engagement element. ing.
For this reason, the second speed clutch pressure rises more slowly than when the mechanical oil pump 10m is driven (see the chain line in the figure) (see the solid line in the figure). Here, the first-speed clutch pressure slowly decreases due to the hydraulic pressure from the accumulator, but since the increase speed of the second-speed clutch pressure is slower than this lowering speed, the shift from the first speed to the second speed becomes slower ( There is a possibility that the driver may feel uncomfortable in the shift behavior (see (b): second speed clutch pressure: solid line, actual Gr ratio).

ここで、変速機4が電動オイルポンプ10eを備えていない場合には、車速がコーストストップ許可車速VSP2以下となった時点t3から、2速クラッチ圧が低下して、1速から2速に変速している途中で、1速から中間の変速比を経て再び1速に戻るという挙動となる(図6の(b):2速クラッチ圧:一点鎖線、実Gr比参照)。かかる場合、変速比の変化方向が途中で逆転することに起因するG変化でショックが生じてしまい、このG変化に運転者が違和感を持つ虞がある。   Here, when the transmission 4 does not include the electric oil pump 10e, the second speed clutch pressure is decreased and the speed is changed from the first speed to the second speed from the time t3 when the vehicle speed becomes equal to or less than the coast stop permission vehicle speed VSP2. In the middle of the operation, the vehicle returns to the first speed from the first speed through the intermediate gear ratio (see FIG. 6B: second speed clutch pressure: one-dot chain line, actual Gr ratio). In such a case, a shock may occur due to a G change resulting from the reverse direction of the change in the gear ratio, and the driver may feel uncomfortable with this G change.

このように、コーストストップの開始の判断に、変速中であるか否かを考慮しない従来例の場合には、変速機4が電動オイルポンプ10eを備えている場合といない場合の何れにおいても、変速挙動に支障が生じて、運転者が違和感を持つ虞がある。
これに対して実施の形態にかかる変速機4のように、コーストストップの開始の判断に、変速中であるか否かを考慮して、コーストストップ条件が成立しても副変速機構30が変速中である場合にはコーストストップを行わないようにすることで、進行中の変速がメカオイルポンプ10mからの油圧で行われるので、変速の途中でコーストストップが開始される場合のように、変速に支障が生ずることが好適に防止されるようになっている。
Thus, in the case of the conventional example that does not consider whether or not the gear shift is being performed in the determination of the start of the coast stop, whether the transmission 4 includes the electric oil pump 10e or not, There is a possibility that the driver may feel uncomfortable due to an obstacle to the shift behavior.
On the other hand, as in the transmission 4 according to the embodiment, the sub-transmission mechanism 30 shifts even if the coast stop condition is satisfied in consideration of whether or not the shift is being performed in determining whether to start the coast stop. By avoiding the coast stop when the vehicle is in the middle, the ongoing shift is performed by the hydraulic pressure from the mechanical oil pump 10m, so that the coast stop is started in the middle of the shift. It is suitably prevented that troubles occur.

以上の通り、第1の実施形態では、
エンジン1(駆動源)の回転駆動力を、複数の摩擦締結要素の締結状態、解放状態の組合せに応じて決まる変速比で駆動輪7に伝達する変速機4の副変速機構30(動力伝達部)と、
エンジン1により駆動されるメカオイルポンプ10m(油圧源)と、
車両が減速している途中で、コーストストップ条件が成立すると、エンジン1を停止させるコントローラ12(駆動源制御手段)と、を備え、
コントローラ12は、コーストストップ条件が成立した場合であっても、副変速機構30で、複数の摩擦締結要素の締結状態、解放状態の組合せを変更する変速が行われているときには、エンジン1を停止させるコーストストップを実行しない構成とし、副変速機構30での変速が終了したのちに、コーストストップを実行する構成とした。
ここで、コーストストップ条件は、運転者に停車意図があるかを判断するための条件であり、以下のa〜cである。
a:アクセルペダルから足が離されている(アクセル開度APO=0)
b:ブレーキペダルが踏み込まれている(ブレーキ液圧が所定値以上)
c:車速がコーストストップ許可車速VSP2以下
As described above, in the first embodiment,
A sub-transmission mechanism 30 (power transmission unit) of the transmission 4 that transmits the rotational driving force of the engine 1 (drive source) to the drive wheels 7 at a speed ratio determined according to the combination of the engagement state and the release state of the plurality of friction engagement elements. )When,
A mechanical oil pump 10m (hydraulic power source) driven by the engine 1,
A controller 12 (drive source control means) that stops the engine 1 when the coast stop condition is satisfied while the vehicle is decelerating,
Even if the coast stop condition is satisfied, the controller 12 stops the engine 1 when the sub-transmission mechanism 30 is performing a shift that changes the combination of the engagement state and the release state of the plurality of friction engagement elements. The configuration is such that the coast stop to be executed is not executed, and the coast stop is executed after the shift in the auxiliary transmission mechanism 30 is completed.
Here, the coast stop condition is a condition for determining whether or not the driver intends to stop, and is the following a to c.
a: The foot is released from the accelerator pedal (accelerator opening APO = 0)
b: The brake pedal is depressed (brake hydraulic pressure is greater than or equal to a predetermined value)
c: Vehicle speed is less than coast stop permission vehicle speed VSP2

このように構成すると、コーストストップ条件が成立した場合であっても、副変速機構30で変速が行われているときには、エンジン1の停止が実行されない。
よって、エンジン1の停止を、変速が行われ得る高車速域側で行うようにしても、変速の途中でエンジン1から供給される油圧が低下して変速に支障を生じさせることがない。
これにより、変速の支障に起因する問題、変速の途中で変速比の変化方向が逆転してショックが発生するという問題や、変速の途中で変速速度が変化する(変速が間延びする)という問題の発生を好適に防止できるので、運転者が変速挙動などに違和感を覚えることを防止できる。また、エンジン1の停止を高車速域側でも行えるようになるので、エンジン1を停止させる機会を増やすことができ、これにより燃費向上の効果が期待できる。
With this configuration, even when the coast stop condition is satisfied, the engine 1 is not stopped when the subtransmission mechanism 30 is shifting.
Therefore, even if the engine 1 is stopped on the high vehicle speed range side where the gear shift can be performed, the hydraulic pressure supplied from the engine 1 does not decrease during the gear shift and the gear shift is not hindered.
As a result, there are problems caused by a shift problem, a problem that the change direction of the gear ratio is reversed in the middle of the shift and a shock is generated, and a problem that the shift speed is changed during the shift (the shift is extended). Since generation | occurrence | production can be prevented suitably, it can prevent a driver | operator feeling uncomfortable about a shift behavior. In addition, since the engine 1 can be stopped even on the high vehicle speed side, the opportunity to stop the engine 1 can be increased, and thereby an effect of improving fuel consumption can be expected.

ここで、コーストストップ許可車速VSP2は、車速にのみ基づいてコーストストップを実行するか否かを判定する構成の従来の変速機におけるコーストストップ許可車速(車速に対して取り得るタービン回転速度Ntが1つのみとなって変速が行われない低車速域に設定されたコーストストップ許可車速VSP1(図6参照))よりも高車速側の変速が行われ得る車速域に設定されている構成とした。
これにより、変速が行われ得る車速域側で、コーストストップによるエンジン1の停止が行われることになるが、変速が行われている場合には、変速が終了するまでコーストストップによるエンジン1の停止が実行されないので、前記した変速の支障に起因する問題の発生が好適に防止される。さらに、エンジン1を停止させる機会を増やすことができるので、燃費向上の効果が期待できる。
Here, the coast stop permission vehicle speed VSP2 is a coast stop permission vehicle speed (a turbine rotation speed Nt that can be taken with respect to the vehicle speed is 1) in a conventional transmission configured to determine whether or not to perform a coast stop based only on the vehicle speed. The vehicle is set in a vehicle speed range in which a shift on the higher vehicle speed side can be performed than the coast stop permission vehicle speed VSP1 (see FIG. 6) set in a low vehicle speed range where only one gear is not shifted.
As a result, the engine 1 is stopped by the coast stop on the vehicle speed range side where the shift can be performed. However, when the shift is being performed, the engine 1 is stopped by the coast stop until the shift is completed. Is not executed, the occurrence of the problem due to the above-described trouble of shifting is preferably prevented. Furthermore, since the opportunity to stop the engine 1 can be increased, the effect of improving fuel consumption can be expected.

さらに、エンジン1を停止させているときにバッテリ13により駆動される電動オイルポンプ10e(他の油圧源)を、さらに備え、
副変速機構30における変速は、当該副変速機構30の第1摩擦締結要素(Lowブレーキ32)と第2摩擦締結要素(Highクラッチ33)のうちの一方を、締結状態から解放状態に変化させ、他方を解放状態から締結状態に変化させることで実行され、
エンジン1を停止させている間の変速は、メカオイルポンプ10mからの油圧に代えて、電動オイルポンプ10eからの油圧で実行される構成とした。
Furthermore, an electric oil pump 10e (other hydraulic source) driven by the battery 13 when the engine 1 is stopped is further provided,
Shifting in the auxiliary transmission mechanism 30 changes one of the first friction engagement element (Low brake 32) and the second friction engagement element (High clutch 33) of the auxiliary transmission mechanism 30 from the engaged state to the released state, It is executed by changing the other from the released state to the fastened state,
The speed change while the engine 1 is stopped is configured to be executed by the hydraulic pressure from the electric oil pump 10e instead of the hydraulic pressure from the mechanical oil pump 10m.

変速中にエンジン1を停止させるコーストストップを実行すると、エンジン1により駆動されるメカオイルポンプ10mからの油圧の代わりに、電動オイルポンプ10eからの油圧で変速が行われることになる。
そうすると、締結状態から解放状態に変化するほうの摩擦締結要素では、摩擦締結要素を締結状態にしていた油圧をドレーンするだけなので、速やかに解放状態への変化が完了するのに対し、解放状態から締結状態に変化するほうの摩擦締結要素では、電動オイルポンプ10eへの切換えに起因して、遅れをもって締結状態への変化が完了することになる。
When coast stop for stopping the engine 1 during the shift is executed, the shift is performed by the hydraulic pressure from the electric oil pump 10e instead of the hydraulic pressure from the mechanical oil pump 10m driven by the engine 1.
Then, in the friction engagement element that changes from the engagement state to the release state, only the hydraulic pressure that has been in the engagement state is drained. In the frictional engagement element that changes to the engaged state, the change to the engaged state is completed with a delay due to switching to the electric oil pump 10e.

上記のように構成して、副変速機構30で変速が行われているときにはコーストストップが実行されないようにすることで、コーストストップ条件が成立したときに実行されている変速が、摩擦締結要素を締結させる力(締結速度)がメカオイルポンプ10mよりも弱い電動オイルポンプ10eからの油圧ではなく、メカオイルポンプ10mからの油圧で行われることになる。これにより、変速により締結状態に変化するほうの摩擦締結要素は、遅れることなく締結状態とされるので、変速の途中で変速速度が変化するという問題の発生を防止して、運転者が変速挙動などに違和感を覚えることを防ぐことができる。
さらに、変速により締結状態に変化するほうの摩擦締結要素が、変速の途中で解放状態になることがないので、変速の途中で変速比の変化方向が逆転してショックが発生するという問題の発生を防止できる。よって、このことによっても、運転者が変速挙動などに違和感を覚えることを防止できる。
With the configuration as described above, the coast stop is not executed when the sub-transmission mechanism 30 is shifting, so that the shift that is performed when the coast stop condition is satisfied causes the friction engagement element to The fastening force (fastening speed) is not hydraulic pressure from the electric oil pump 10e, which is weaker than the mechanical oil pump 10m, but hydraulic pressure from the mechanical oil pump 10m. As a result, the frictional engagement element that changes to the engaged state due to the shift is brought into the engaged state without delay, so that the problem that the shift speed changes during the shift can be prevented and the driver can change the shift behavior. It is possible to prevent the user from feeling uncomfortable.
Furthermore, since the frictional engagement element that changes to the engaged state due to the shift does not become a released state in the middle of the shift, there is a problem that the change direction of the gear ratio reverses in the middle of the shift and a shock occurs. Can be prevented. Therefore, this also prevents the driver from feeling uncomfortable with the shift behavior.

また、電動オイルポンプ10eからの油圧は、摩擦締結要素を締結状態で保持するのに十分な圧力を持っているので、コーストストップによりエンジン1が完全に停止したのちも、摩擦締結要素の締結状態が、電動オイルポンプ10eからの油圧で保持されることになる。
よって、エンジン1を停止させているときに、運転者から加速要求があっても、その後エンジン1を駆動させたときに、変速機4における上流側(エンジン1側)から下流側(駆動輪7側)に、速やかに駆動力を伝達することができるので、加速要求に対する応答性が低下することを抑制できる。
Further, since the hydraulic pressure from the electric oil pump 10e has sufficient pressure to hold the frictional engagement element in the engaged state, the engagement state of the frictional engagement element is maintained after the engine 1 is completely stopped by the coast stop. Is held by the hydraulic pressure from the electric oil pump 10e.
Therefore, even if the driver requests acceleration when the engine 1 is stopped, when the engine 1 is subsequently driven, the upstream side (engine 1 side) in the transmission 4 (the drive wheels 7). Side), the driving force can be quickly transmitted, so that the responsiveness to the acceleration request can be suppressed from decreasing.

[第2の実施形態]
以下、添付図面を参照しながら本発明の第2の実施形態について説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to the accompanying drawings.

図7は、第2の実施形態にかかるコントローラ12によるコーストストップの実行判定のフローチャートである。なお、本フローチャートの処理もまた、コントローラ12において所定間隔(例えば10ms)で実行される。   FIG. 7 is a flowchart of coast stop execution determination by the controller 12 according to the second embodiment. Note that the processing of this flowchart is also executed by the controller 12 at a predetermined interval (for example, 10 ms).

コントローラ12によるコーストストップの実行判定の処理を説明する。
コントローラ12には、図2に示す各種センサから信号が入力されるようになっており、各種センサから信号が入力されると(ステップ201)、入力された信号から特定される現在の運転状態に基づいて、コーストストップ条件(エンジン1の停止条件)が成立したか否かが判定される(ステップ202)。
The coast stop execution determination process by the controller 12 will be described.
Signals are input from the various sensors shown in FIG. 2 to the controller 12, and when signals are input from the various sensors (step 201), the current operating state specified from the input signals is obtained. Based on this, it is determined whether or not a coast stop condition (stop condition for the engine 1) is satisfied (step 202).

ここで、コーストストップの許可条件は、運転者に停車意図があるかを判断するための条件であり、以下のa〜cである。
a:アクセルペダルから足が離されている(アクセル開度APO=0)
b:ブレーキペダルが踏み込まれている(ブレーキ液圧が所定値以上)
c:車速がコーストストップ許可車速VSP2以下
Here, the coast stop permission condition is a condition for determining whether or not the driver intends to stop, and is the following a to c.
a: The foot is released from the accelerator pedal (accelerator opening APO = 0)
b: The brake pedal is depressed (brake hydraulic pressure is greater than or equal to a predetermined value)
c: Vehicle speed is less than coast stop permission vehicle speed VSP2

よって、ステップ202において、コーストストップ条件が成立していないと判定された場合には、ステップ206の処理に移行して、コーストストップが禁止(エンジン1の停止が禁止)されることになる。   Therefore, if it is determined in step 202 that the coast stop condition is not satisfied, the process proceeds to step 206, where the coast stop is prohibited (stop of the engine 1 is prohibited).

一方、コーストストップ条件が成立したと判定された場合には(ステップ202、Yes)、コントローラ12は、副変速機構30が変速中であるか否かを判定する(ステップ203)。
具体的には、コントローラ12は、副変速機構30の入力側と出力側の回転速度に基づいて、変速中であるか否かを判定する。
On the other hand, when it is determined that the coast stop condition is satisfied (step 202, Yes), the controller 12 determines whether or not the auxiliary transmission mechanism 30 is shifting (step 203).
Specifically, the controller 12 determines whether or not a shift is being performed based on the rotational speeds on the input side and the output side of the auxiliary transmission mechanism 30.

ステップ203において、副変速機構30が変速中でないと判定された場合には、ステップ205の処理に移行して、コーストストップが許可(エンジン1の停止が許可)される。よって、かかる場合にはコーストストップが実行されることになる。   If it is determined in step 203 that the subtransmission mechanism 30 is not shifting, the process proceeds to step 205, where coast stop is permitted (stop of the engine 1 is permitted). Therefore, in such a case, a coast stop is executed.

一方、ステップ203において、変速中であると判定されると、ステップ204において、かかる変速が、シフトレバーの走行レンジから非走行レンジへの切換操作によるものであるか否かを判定する。
かかる判定は、シフトレバーの選択レンジを検知するインヒビタスイッチ45(図2参照)の出力信号に基づいて行われる。
On the other hand, if it is determined in step 203 that a shift is being performed, it is determined in step 204 whether or not the shift is due to a switching operation from the travel range of the shift lever to the non-travel range.
This determination is made based on the output signal of the inhibitor switch 45 (see FIG. 2) that detects the shift lever selection range.

ステップ204において、変速がシフトレバーの走行レンジから非走行レンジへの切換操作によるものであると判定されると、ステップ205の処理に移行して、コーストストップが許可(エンジン1の停止が許可)される。よって、かかる場合には、コーストストップが実行されることになる。   If it is determined in step 204 that the shift is due to a shift operation from the travel range of the shift lever to the non-travel range, the process proceeds to step 205 where coast stop is permitted (stop of engine 1 is permitted). Is done. Therefore, in such a case, a coast stop is executed.

シフトレバーの選択レンジが、走行レンジから非走行レンジに切換えられた場合には、総ての摩擦締結要素が解放されて、摩擦締結要素の締結が実行されないことになる。
かかる場合、変速の際の変速比の変化方向は一方向のみとなり、コーストストップを実行しても変速の途中で変化方向が逆転することがないので、ショックなどを生じて運転者に違和感を与える心配もない。
よって、この場合には、副変速機構30が変速中であっても、コーストストップを許可(エンジン1の停止を許可)することで、エンジン1を停止させる時間を稼ぐことができるので、燃費の向上が期待できる。
When the selected range of the shift lever is switched from the travel range to the non-travel range, all the frictional engagement elements are released and the engagement of the frictional engagement elements is not executed.
In such a case, the change ratio of the gear ratio at the time of shifting is only one direction, and even if coast stop is executed, the changing direction does not reverse during the shifting, so that a shock or the like is generated and the driver feels uncomfortable. No worries.
Therefore, in this case, even if the subtransmission mechanism 30 is shifting, allowing the coast stop (permitting the stop of the engine 1) can earn time for stopping the engine 1. Improvement can be expected.

一方、ステップ204において、変速がシフトレバーの走行レンジから非走行レンジへの切換操作によるものでないと判定されると、ステップ206の処理に移行して、コーストストップが禁止(エンジン1の停止が禁止)される。
かかる場合にコーストストップが許可されてしまうと、摩擦締結要素の締結の途中でメカオイルポンプ10mが停止して、摩擦締結要素の締結が遅れてしまうので、運転者が変速機の挙動に違和感を持つ虞があるからである。
On the other hand, if it is determined in step 204 that the shift is not due to a shift operation from the travel range of the shift lever to the non-travel range, the process proceeds to step 206 and coast stop is prohibited (stop of engine 1 is prohibited). )
In such a case, if coast stop is permitted, the mechanical oil pump 10m stops during the engagement of the frictional engagement element, and the engagement of the frictional engagement element is delayed, so the driver feels uncomfortable with the behavior of the transmission. Because there is a risk of having.

以下、車両の走行状態に当てはめて、第2の実施形態にかかる変速機4の動作例を説明する。
図8は、変速機の動作を説明するタイミングチャートであって、(a)は、コーストストップの開始の判断に、シフトレバーの操作方向を考慮する実施の形態の場合を、(b)は、シフトレバーの操作方向を考慮しない従来例の場合を、それぞれ示す図である。
Hereinafter, an example of the operation of the transmission 4 according to the second embodiment will be described by applying to the traveling state of the vehicle.
FIG. 8 is a timing chart for explaining the operation of the transmission, in which (a) is a case of an embodiment in which the operation direction of the shift lever is taken into account in determining the start of the coast stop, and (b) It is a figure which shows the case of the prior art example which does not consider the operation direction of a shift lever, respectively.

[動作例2]
以下、車両が、コーストストップ許可車速VSP2よりも高い車速で走行しているときに、アクセル:オフ、ブレーキ:オンにより車速が低下した場合であって、車速が低下して、コーストストップ許可車速VSP2に達する直前に、シフトレバーの操作による変速指令(N位置→D位置)があった場合について説明をする。
なお、実施の形態にかかる変速機4では、コーストストップ許可車速VSP2が、従来の場合のコーストストップ許可車速VSP1(図8の(a)参照)よりも高車速域側であって、変速が実行され得る領域に設定されているものとする。
[Operation example 2]
Hereinafter, when the vehicle is traveling at a vehicle speed higher than the coast stop permitting vehicle speed VSP2, the vehicle speed is decreased due to acceleration: off, brake: on, and the vehicle speed decreases, and the coast stop permitting vehicle speed VSP2 The case where there is a shift command (N position → D position) by operating the shift lever immediately before reaching will be described.
In the transmission 4 according to the embodiment, the coast stop permission vehicle speed VSP2 is higher than the conventional coast stop permission vehicle speed VSP1 (see FIG. 8A), and the shift is executed. It is assumed that the area is set to be able to be performed.

車速が低下を続けてコーストストップ許可車速VSP2以下になると、その時点t3においてコーストストップ条件a〜cが成立する(図8の(a):車速参照、図7:ステップ202、Yes)。
そうすると、この時点t3において、副変速機構30が変速中であるか否かが判定される(図7:ステップ203)。
図8の(a)の場合、車速がコーストストップ許可車速VSP2に達する直前で、シフトレバーが操作されてN位置(非走行レンジ)からD位置(走行レンジ)への切換えが行われている。そのため、シフトレバーが操作された時点t2で変速が開始されており、時刻t3では、発進時に締結される摩擦締結要素(Lowブレーキ32)の解放状態から締結状態への変化が開始されている変速中ということになる(図8の(a):車速、レバー位置、クラッチ圧参照)。
When the vehicle speed continues to decrease and becomes equal to or less than the coast stop permission vehicle speed VSP2, the coast stop conditions ac are satisfied at the time t3 (FIG. 8 (a): vehicle speed reference, FIG. 7: step 202, Yes).
Then, at this time t3, it is determined whether or not the subtransmission mechanism 30 is shifting (FIG. 7: Step 203).
In the case of FIG. 8A, the shift lever is operated to switch from the N position (non-traveling range) to the D position (traveling range) immediately before the vehicle speed reaches the coast stop permission vehicle speed VSP2. Therefore, the shift is started at time t2 when the shift lever is operated, and at time t3, the shift is started from the released state to the engaged state of the friction engagement element (Low brake 32) that is engaged at the start. (Refer to (a) in FIG. 8: vehicle speed, lever position, clutch pressure).

従って、車速がコーストストップ許可車速VSP2以下になった時点t3において、副変速機構30が変速中であると判定されて(図7:ステップ203、Yes)、続くステップ204において、かかる変速が、シフトレバーの走行レンジから非走行レンジへの切換えによるものであるか否かが判定される(図7:ステップ204)。   Therefore, at the time t3 when the vehicle speed becomes equal to or less than the coast stop permission vehicle speed VSP2, it is determined that the subtransmission mechanism 30 is shifting (FIG. 7: Yes at step 203), and in the subsequent step 204, the shift is shifted. It is determined whether or not it is due to switching from the travel range of the lever to the non-travel range (FIG. 7: step 204).

図8の(a)の場合、車速がコーストストップ許可車速VSP2に達する直前で、シフトレバーが操作されてN位置(非走行レンジ)からD位置(走行レンジ)への切換えが行われている。
そのため、このステップ204の判定が否定されることになり、時刻t3の時点では、コーストストップが禁止される(エンジン1の停止が禁止される)ことになる(図8:コーストストップ参照、図7:ステップ204、ステップ206)。
In the case of FIG. 8A, the shift lever is operated to switch from the N position (non-traveling range) to the D position (traveling range) immediately before the vehicle speed reaches the coast stop permission vehicle speed VSP2.
Therefore, the determination in step 204 is negative, and coast stop is prohibited (stop of engine 1 is prohibited) at time t3 (see FIG. 8: coast stop, FIG. 7). : Step 204, Step 206).

ここで、図7のフローチャートの処理は、所定時間毎に繰り返し実行される。そのため、変速が終了するまでの間は、コーストストップが許可されないことになる(図7:ステップ203、204、206)。
そして、締結側の摩擦締結要素(Lowブレーキ32またはHighクラッチ33)に供給されるクラッチ圧が目標の圧に達して変速が終了すると、その時点t4において、ステップ203の判定が否定されて、コーストストップが許可(エンジン1の停止が許可)されることになる(図8の(a):クラッチ圧、コーストストップ、電動オイルポンプ参照、図7:ステップ205)。
Here, the processing of the flowchart of FIG. 7 is repeatedly executed at predetermined time intervals. Therefore, the coast stop is not permitted until the shift is completed (FIG. 7: Steps 203, 204, and 206).
When the clutch pressure supplied to the engagement-side frictional engagement element (Low brake 32 or High clutch 33) reaches the target pressure and the shift is completed, the determination of step 203 is denied at the time t4, and the coast The stop is permitted (stop of the engine 1 is permitted) (see (a) of FIG. 8: clutch pressure, coast stop, electric oil pump, FIG. 7: step 205).

これにより、エンジン1により駆動されるメカオイルポンプ10mが停止し、電動オイルポンプ10eが駆動されることになる((図8の(a):電動オイルポンプ参照)。
そして、電動オイルポンプ10eからの油圧は、摩擦締結要素を締結状態で保持するのに十分な圧力を持っているので、時刻t4以降、走行レンジの摩擦締結要素の締結状態が、電動オイルポンプ10eからの油圧により保持されることになる(図8の(a):クラッチ圧参照)。
As a result, the mechanical oil pump 10m driven by the engine 1 is stopped and the electric oil pump 10e is driven (see (a) of FIG. 8: electric oil pump).
Since the hydraulic pressure from the electric oil pump 10e has sufficient pressure to hold the frictional engagement element in the engaged state, the engagement state of the frictional engagement element in the travel range after time t4 is the electric oil pump 10e. (See (a): clutch pressure in FIG. 8).

ここで、シフトレバーの操作方向が、上記した動作例2とは逆である場合、すなわち、シフトレバーの操作による変速指令が、走行レンジ(D位置)から非走行レンジ(N位置)であった場合について説明をする。   Here, when the operation direction of the shift lever is opposite to the above-described operation example 2, that is, the shift command by the operation of the shift lever is from the travel range (D position) to the non-travel range (N position). The case will be described.

図9は、変速機の動作を説明するタイミングチャートであり、コーストストップの開始の判断にシフトレバーの操作方向を考慮する場合であって、シフトレバーの操作方向が、図8の(a)の場合とは逆(走行レンジ(D位置)→非走行レンジ(N位置))である場合を示す図である。   FIG. 9 is a timing chart for explaining the operation of the transmission, in the case where the operation direction of the shift lever is considered in determining the start of the coast stop. It is a figure which shows the case where it is reverse (travel range (D position)-> non-travel range (N position)).

[動作例3]
以下、車両がコーストストップ許可車速VSP2よりも高い車速で走行しているときに、アクセル:オフ、ブレーキ:オンにより車速が低下した場合であって、車速が低下して、コーストストップの開始条件の車速に達する直前に、シフトレバーの操作による変速指令(D位置→N位置)があった場合について説明をする。
なお、実施の形態にかかる変速機4では、コーストストップ許可車速VSP2が、従来の場合のコーストストップ許可車速VSP1よりも高車速域側であって、変速が実行され得る領域に設定されているものとする。
[Operation Example 3]
Hereinafter, when the vehicle is traveling at a vehicle speed higher than the coast stop permission vehicle speed VSP2, the vehicle speed decreases due to accelerator: off, brake: on, the vehicle speed decreases, and the coast stop start condition The case where there is a shift command (D position → N position) by operating the shift lever immediately before reaching the vehicle speed will be described.
In the transmission 4 according to the embodiment, the coast stop permission vehicle speed VSP2 is set to a region where the coast stop permission vehicle speed VSP1 is higher than the conventional coast stop permission vehicle speed VSP1 and can be shifted. And

車速が低下を続けてコーストストップ許可車速VSP2以下になると、その時点t3においてコーストストップ条件が成立する(図9:車速参照、図7:ステップ202、Yes)。
そうすると、この時点t3において、副変速機構30が変速中であるか否かが判定される(図7:ステップ203)。
図9の場合、車速がコーストストップ許可車速VSP2に達する直前で、シフトレバーが操作されてD位置(走行レンジ)からN位置(非走行レンジ)への切り換えが行われている。そのため、シフトレバーが操作された時点t2で、締結状態であった摩擦締結要素(例えばHighクラッチ33)の解放状態への変化(変速)が開始されており、時刻t3では、副変速機構30が変速中ということになる。
When the vehicle speed continues to decrease and becomes equal to or less than the coast stop permission vehicle speed VSP2, the coast stop condition is satisfied at the time t3 (FIG. 9: Refer to vehicle speed, FIG. 7: Step 202, Yes).
Then, at this time t3, it is determined whether or not the subtransmission mechanism 30 is shifting (FIG. 7: Step 203).
In the case of FIG. 9, immediately before the vehicle speed reaches the coast stop permission vehicle speed VSP2, the shift lever is operated to switch from the D position (traveling range) to the N position (non-traveling range). Therefore, at the time t2 when the shift lever is operated, a change (shift) of the friction engagement element (for example, the High clutch 33) that has been in the engaged state is started (shift), and at time t3, the auxiliary transmission mechanism 30 is turned on. It means that shifting is in progress.

よって、車速がコーストストップ許可車速VSP2以下になった時点t3において、副変速機構30が変速中であると判定されて(図7:ステップ203、Yes)、続くステップ204において、かかる変速が、シフトレバーの走行レンジから非走行レンジへの切換えによるものであるか否かが判定される(図7:ステップ204)。   Therefore, at time t3 when the vehicle speed becomes equal to or lower than the coast stop permission vehicle speed VSP2, it is determined that the subtransmission mechanism 30 is shifting (FIG. 7: Yes at step 203). It is determined whether or not it is due to switching from the travel range of the lever to the non-travel range (FIG. 7: step 204).

図9の場合、車速がコーストストップ許可車速VSP2に達する直前で、シフトレバーが操作されてD位置(走行レンジ)からN位置(非走行レンジ)への切換えが行われているので、このステップ204の判定が肯定されることになる。これにより、時刻t3の時点において、コーストストップが許可される(エンジン1の停止が許可される)ことになる(図7:ステップ204、ステップ205)。   In the case of FIG. 9, immediately before the vehicle speed reaches the coast stop permission vehicle speed VSP2, the shift lever is operated to switch from the D position (travel range) to the N position (non-travel range). Will be affirmed. As a result, coast stop is permitted (stop of engine 1 is permitted) at time t3 (FIG. 7: step 204, step 205).

ここで、シフトレバーの選択レンジが、走行レンジから非走行レンジに切換えられた場合には、総ての摩擦締結要素が解放されて、摩擦締結要素の締結が実行されないことになる。
かかる場合、変速比の変化方向は一方向のみとなり、コーストストップを実行しても変速の途中で変化方向が逆転することがないので、ショックなどを生じて運転者に違和感を与える心配もない。
Here, when the selection range of the shift lever is switched from the travel range to the non-travel range, all the friction engagement elements are released, and the engagement of the friction engagement elements is not executed.
In such a case, the direction of change of the gear ratio is only one direction, and even if coast stop is executed, the direction of change does not reverse in the middle of the gear shift, so there is no fear of causing a sense of incongruity to the driver due to a shock or the like.

よって、シフトレバーの選択レンジが走行レンジから非走行レンジに切換えられたことによる変速中の場合に、エンジン1の停止を行えるようにすることで、エンジン1を停止させる時間を稼ぐことができるので、燃費をより向上させることができるようになる。   Therefore, it is possible to earn time for stopping the engine 1 by allowing the engine 1 to be stopped when the shift lever is being shifted from the traveling range to the non-driving range. , Fuel economy can be further improved.

[動作比較例2]
以下、コーストストップの開始の判断に、変速中であるか否かを考慮しない従来例の場合を例に挙げて、コーストストップ許可車速VSP2よりも高い車速で車両が走行しているときに、アクセル:オフ、ブレーキ:オンにより車速が低下した場合であって、車速が低下して、コーストストップ許可車速VSP2に達する直前に、シフトレバーの操作による変速指令(N位置→D位置)があった場合を、前記した動作例2との比較のために説明をする。
ここで、この動作比較例2では、前記した動作例1との比較のために、コーストストップ許可車速VSP2が、特許文献1の場合と異なり、変速が行われ得る車速域であって、従来の変速が行われない車速域に設定されたコーストストップ許可車速VSP1よりも高車速側に設定されているものとして、説明をする。
[Operation Comparison Example 2]
Hereinafter, taking the case of the conventional example not considering whether or not the gear shift is being performed in the determination of the start of the coast stop as an example, when the vehicle is traveling at a vehicle speed higher than the coast stop permission vehicle speed VSP2, the accelerator is : Off, Brake: When the vehicle speed decreases due to ON, and there is a shift command (N position → D position) by operating the shift lever immediately before the vehicle speed decreases and reaches the coast stop permission vehicle speed VSP2. Will be described for comparison with the second operation example.
Here, in this operation comparative example 2, for comparison with the above-described operation example 1, the coast stop permission vehicle speed VSP2 is a vehicle speed range in which shifting can be performed unlike the case of Patent Document 1, The description will be made on the assumption that the vehicle speed is set to a higher vehicle speed side than the coast stop permission vehicle speed VSP1 set in the vehicle speed range where no speed change is performed.

車速が低下を続けてコーストストップ許可車速VSP2以下になると、その時点t3においてコーストストップが許可されることになる(図8の(b):車速、コーストストップ参照)の開始が判定されることになる。
コーストストップの開始が判定されると、その時点t3でエンジン1への燃料噴射が停止されるので、エンジン1は、時刻t3以降、回転数を落としながら停止することになる’(図8の(b):エンジン回転数Ne参照)。
これにより、エンジン1により駆動されるメカオイルポンプ10mからの油圧が、時刻t3以降減少して最終的にゼロになるので、電動オイルポンプ10eが時刻t3から新たに駆動されることになる(図8の(b):電動オイルポンプ参照)。
When the vehicle speed continues to decrease and becomes equal to or less than the coast stop permission vehicle speed VSP2, it is determined that the coast stop is permitted at the time t3 (see FIG. 8B: vehicle speed, coast stop). Become.
When it is determined that the coast stop is started, the fuel injection to the engine 1 is stopped at the time point t3, so that the engine 1 is stopped while decreasing the rotational speed after the time t3 '((( b): See engine speed Ne).
As a result, the hydraulic pressure from the mechanical oil pump 10m driven by the engine 1 decreases after time t3 and finally becomes zero, so that the electric oil pump 10e is newly driven from time t3 (FIG. 8 (b): see electric oil pump).

図8の(b)の場合、車速がコーストストップ許可車速VSP2に達する直前で、シフトレバーが操作されてN位置(非走行レンジ)からD位置(走行レンジ)への切換えが行われている(図8の(b):レバー位置参照)。
そのため、シフトレバーが操作された時点t2から、D位置で締結される摩擦締結要素に供給される油圧の上昇が開始されている(図8の(b):クラッチ圧参照)。
In the case of FIG. 8B, immediately before the vehicle speed reaches the coast stop permission vehicle speed VSP2, the shift lever is operated to switch from the N position (non-traveling range) to the D position (traveling range) ( FIG. 8B: Refer to lever position.
Therefore, from the time point t2 when the shift lever is operated, an increase in the hydraulic pressure supplied to the frictional engagement element that is engaged at the D position is started (see FIG. 8B: clutch pressure).

よって、摩擦締結要素を締結させている途中で、エンジン1が停止して、メカオイルポンプ10mからの油圧が減少することになる。
ここで、電動オイルポンプ10eは、メカオイルポンプ10mよりも容量が小さいため、電動オイルポンプ10eからの油圧は、摩擦締結要素を締結状態で保持するのに十分な圧力を持つものの、摩擦締結要素を締結させる力(締結速度)が、メカオイルポンプ10mよりも弱くなっている。
そのため、クラッチ圧が、メカオイルポンプ10mの場合(図中、鎖線参照)よりも、ゆっくりと上昇することになるので(図中、実線参照)、摩擦締結要素の締結速度が遅くなってしまう。そのため、摩擦締結要素の締結が遅くなって、運転者が変速挙動に違和感を持つ虞がある(図8の(b):クラッチ圧、参照)。
Therefore, in the middle of fastening the frictional engagement element, the engine 1 stops and the hydraulic pressure from the mechanical oil pump 10m decreases.
Here, since the electric oil pump 10e has a smaller capacity than the mechanical oil pump 10m, the hydraulic pressure from the electric oil pump 10e has a sufficient pressure to hold the frictional engagement element in the engaged state, but the frictional engagement element The fastening force (fastening speed) is weaker than that of the mechanical oil pump 10m.
For this reason, the clutch pressure rises more slowly than in the case of the mechanical oil pump 10m (see the chain line in the figure) (see the solid line in the figure), so that the fastening speed of the frictional engagement element becomes slow. For this reason, the engagement of the frictional engagement element is delayed, and the driver may feel uncomfortable with the shift behavior (see FIG. 8B: clutch pressure).

このように、コーストストップの開始の判断に、変速中であるか否かを考慮しない従来例の場合には、変速挙動に支障が生じて、運転者が違和感を持つ虞がある。
これに対して実施の形態にかかる変速機4のように、コーストストップの開始の判断に、変速中であるか否かを考慮して、コーストストップ条件が成立しても変速中である場合にはコーストストップを行わないようにすることで、変速に支障が生ずることが好適に防止できるようになっている。
さらに、変速中にコーストストップを実行しても、変速に支障がない場合であるか否かを、シフトレバーの操作方向に応じて判断し、支障がない場合に、コーストストップを行うようにすることで、エンジン1を停止させる時間を稼ぐことができるので、燃費の向上が期待できる。
As described above, in the case of the conventional example that does not consider whether or not the gear shift is being performed in the determination of the start of the coast stop, the gear shift behavior is hindered, and the driver may feel uncomfortable.
On the other hand, as in the case of the transmission 4 according to the embodiment, when the coast stop is determined even when the coast stop condition is satisfied, the start of the coast stop is determined in consideration of whether the shift is in progress. By preventing the coast stop from being performed, it is possible to suitably prevent the shift from being hindered.
Furthermore, even if a coast stop is executed during a shift, it is determined whether or not there is no problem with the shift according to the operating direction of the shift lever, and if there is no problem, the coast stop is performed. Thus, since it is possible to earn time for stopping the engine 1, an improvement in fuel consumption can be expected.

以上の通り、第2の実施形態では、
コントローラ12(駆動源制御手段)は、変速機4の副変速機構30(動力伝達部)において、解放状態の摩擦締結要素を締結状態に変化させる変速が実行中であるときには、コーストストップ条件が成立しても、コーストストップによるエンジン1の停止を実行しない構成とした。
As described above, in the second embodiment,
The controller 12 (drive source control means) establishes the coast stop condition when the sub-transmission mechanism 30 (power transmission unit) of the transmission 4 is performing a shift to change the disengaged friction engagement element to the engagement state. Even so, the engine 1 is not stopped by the coast stop.

解放状態の摩擦締結要素を締結状態に変化させる変速が実行中であるときにコーストストップが実行されると、解放状態の摩擦締結要素を締結状態に変化させている途中で油圧が低下して、副変速機構30の変速比の変化方向の逆転や、変速比の変化速度の変化が発生して、運転者が違和感を持つ虞がある。上記のように構成することで、解放状態の摩擦締結要素を締結状態に変化させる変速の途中でコーストストップが実行されることを好適に防止できるので、運転者が変速挙動などに違和感を覚えることを防止できる。また、エンジン1の停止を高車速域側でも行えるようになるので、エンジン1を停止させる機会を増やすことができ、これにより燃費向上の効果が期待できる。   When the coast stop is executed while the shift that changes the released frictional engagement element to the engagement state is being executed, the hydraulic pressure decreases while changing the released frictional engagement element to the engagement state, There is a possibility that the driver may feel uncomfortable due to the reverse of the change direction of the transmission ratio of the auxiliary transmission mechanism 30 and the change of the change speed of the transmission ratio. By configuring as described above, it is possible to suitably prevent a coast stop from being executed in the middle of a shift that changes the disengaged friction engagement element to the engagement state, so that the driver feels uncomfortable with the shift behavior, etc. Can be prevented. In addition, since the engine 1 can be stopped even on the high vehicle speed side, the opportunity to stop the engine 1 can be increased, and thereby an effect of improving fuel consumption can be expected.

コントローラ12(駆動源制御手段)は、変速機4の副変速機構30(動力伝達部)の変速が状態が、シフトレバーの選択レンジが走行レンジ(D位置)から非走行レンジ(N位置)に切換えられたことによるものである場合は、エンジン1を停止させるコーストストップを実行し、非走行レンジ(N位置)から走行レンジ(D位置)に切換えられたことによるものである場合は、コーストストップを実行しない構成とした。   The controller 12 (drive source control means) indicates that the shift state of the sub-transmission mechanism 30 (power transmission unit) of the transmission 4 is changed, and the shift lever selection range is changed from the travel range (D position) to the non-travel range (N position). If it is caused by switching, a coast stop for stopping the engine 1 is executed. If it is caused by switching from the non-traveling range (N position) to the traveling range (D position), the coast stop is performed. It was set as the structure which does not execute.

シフトレバーの選択レンジが、走行レンジ(D位置)から非走行レンジ(N位置)に切換えられた場合には、総ての摩擦締結要素が解放されて、摩擦締結要素の締結が実行されないことになる。かかる場合、変速比の変化方向は一方向のみとなり、コーストストップを実行しても変速の途中で変化方向が逆転することもないので、ショックなどを生じて運転者に違和感を与える心配もない。
よって、シフトレバーの選択レンジが走行レンジ(D位置)から非走行レンジ(N位置)に切換えられたことによる変速中の場合に、コーストストップを実行する構成とすることで、エンジン1を停止させる時間を稼ぐことができるので、燃費の向上が期待できる。
また、シフトレバーの選択レンジが非走行レンジ(N位置)から走行レンジ(D位置)に切換えられたことによる変速中の場合に、コーストストップを実行しない構成とすることで、変速の途中でエンジン1から供給される油圧が低下して変速に支障を生じさせることがない。
これにより、変速の支障に起因する問題、変速の途中で変速比の変化方向が逆転してショックが発生するという問題の発生を好適に防止できるので、運転者が変速挙動などに違和感を覚えることを防止できる。また、エンジン1の停止を高車速域側でも行えるようになるので、エンジン1を停止させる機会を増やすことができ、これにより燃費向上の効果が期待できる。
When the selection range of the shift lever is switched from the travel range (D position) to the non-travel range (N position), all the friction engagement elements are released and the engagement of the friction engagement elements is not executed. Become. In such a case, the direction of change of the gear ratio is only one direction, and even if coast stop is executed, the direction of change does not reverse in the middle of the gear change, so there is no fear of causing a sense of incongruity to the driver due to a shock or the like.
Therefore, the engine 1 is stopped by adopting a configuration in which the coast stop is executed when the shift lever is in the middle of shifting due to the selection range of the shift lever being switched from the travel range (D position) to the non-travel range (N position). Since you can earn time, you can expect improved fuel economy.
In addition, when the gear shift is in progress due to the shift lever selected range being switched from the non-travel range (N position) to the travel range (D position), the coast stop is not executed, so that the engine is shifted during the shift. The hydraulic pressure supplied from 1 does not decrease, causing a problem in shifting.
As a result, it is possible to suitably prevent the occurrence of a problem caused by a shift problem and a problem that a shock occurs due to the reverse direction of the gear ratio changing in the middle of the shift, so that the driver feels strange about the shift behavior. Can be prevented. In addition, since the engine 1 can be stopped even on the high vehicle speed side, the opportunity to stop the engine 1 can be increased, and thereby an effect of improving fuel consumption can be expected.

前記した実施の形態では、最初にコーストストップ条件が成立しているか否を確認し、コーストストップ条件が成立している場合に、変速機4の副変速機構30が変速中であるか否かに基づいて、コーストストップの実行判定(許可/禁止)を行う場合、すなわち、2段階の判定を経て、コーストストップの実行判定を行う場合を例に挙げて説明をした。
しかし、1段階の判定のみで、コーストストップの実行判定を行うようにしても良い。
In the above-described embodiment, it is first checked whether or not the coast stop condition is satisfied. When the coast stop condition is satisfied, it is determined whether or not the auxiliary transmission mechanism 30 of the transmission 4 is shifting. The case where coast stop execution determination (permission / prohibition) is performed, that is, the case where coast stop execution determination is performed through two stages of determination is described as an example.
However, the coast stop execution determination may be performed with only one step determination.

以下、1段階の判断で、コーストストップの実行判定(許可/禁止)を行う場合の、コントローラ12における処理を説明する。
図10は、コーストストップの実行判定の変形例のフローチャートである。なお、本フローチャートの処理もまた、コントローラ12において所定間隔(例えば10ms)で実行される。
Hereinafter, a process in the controller 12 in the case where the coast stop execution determination (permission / prohibition) is performed in one step will be described.
FIG. 10 is a flowchart of a modified example of coast stop execution determination. Note that the processing of this flowchart is also executed by the controller 12 at a predetermined interval (for example, 10 ms).

コントローラ12には、図2に示す各種センサから信号が入力されるようになっており、各種センサから信号が入力されると(ステップ301)、入力された信号から特定される現在の運転状態に基づいて、コーストストップ条件(エンジン1の停止条件)が成立したか否かが判定される(ステップ302)   Signals are input from the various sensors shown in FIG. 2 to the controller 12, and when signals are input from the various sensors (step 301), the current operating state specified from the input signals is obtained. Based on this, it is determined whether or not a coast stop condition (stop condition for the engine 1) is satisfied (step 302).

かかる場合のコーストストップの許可条件は、以下のa〜dである。
a:アクセルペダルから足が離されている(アクセル開度APO=0)
b:ブレーキペダルが踏み込まれている(ブレーキ液圧が所定値以上)
c:車速がコーストストップ許可車速VSP2以下
d:副変速機構30が変速中でない(摩擦締結要素の締結状態、解放状態の組合せの変更途中でない)
The coast stop permission conditions in this case are the following a to d.
a: The foot is released from the accelerator pedal (accelerator opening APO = 0)
b: The brake pedal is depressed (brake hydraulic pressure is greater than or equal to a predetermined value)
c: Vehicle speed is coast stop permission vehicle speed VSP2 or less d: Sub-transmission mechanism 30 is not shifting (not in the middle of changing the combination of the engagement state and the release state of the friction engagement element)

ここで、a〜cは、運転者に停車意図があるかを判断するための条件であり、dは、変速中であるか否かを判定するための条件である。この変形例にかかるコントローラ12での処理では、運転者の停車意図の有無と変速中であるか否かをまとめて判定しているという点において、前記した実施の形態の場合と相違している。   Here, a to c are conditions for determining whether or not the driver intends to stop, and d is a condition for determining whether or not shifting is being performed. The processing in the controller 12 according to this modified example is different from the above-described embodiment in that the presence / absence of the driver's intention to stop and whether or not the shift is in progress are collectively determined. .

よって、ステップ302において、コーストストップ条件が成立していないと判定された場合には、ステップ304の処理に移行して、コーストストップが禁止(エンジン1の停止が禁止)されることになる。   Therefore, if it is determined in step 302 that the coast stop condition is not satisfied, the process proceeds to step 304 and the coast stop is prohibited (stop of the engine 1 is prohibited).

一方、コーストストップ条件が成立したと判定された場合には(ステップ302、Yes)、ステップ303の処理に移行して、コーストストップが許可(エンジン1の停止が許可)される。よって、かかる場合には、コーストストップが実行されることになる。   On the other hand, when it is determined that the coast stop condition is satisfied (step 302, Yes), the process proceeds to step 303, where the coast stop is permitted (stop of the engine 1 is permitted). Therefore, in such a case, a coast stop is executed.

以上の通り、変形例にかかるコーストストップの実行判定では、
エンジン1の駆動力を、複数の摩擦締結要素の締結状態、解放状態の組合せに応じて決まる変速比で駆動輪に伝達する変速機4の副変速機構30と、
エンジン1により駆動されるメカオイルポンプ10mと、
車両が減速している途中で、副変速機構30が変速中でない(摩擦締結要素の締結状態、解放状態の組合せの変更途中でない)ことを含む所定のコーストストップ条件が成立すると、エンジン1を停止させるコントローラ12と、を備える構成の車両用の自動変速機とした。
ここで、コーストストップ条件は、以下のa〜dである。
a:アクセルペダルから足が離されている(アクセル開度APO=0)
b:ブレーキペダルが踏み込まれている(ブレーキ液圧が所定値以上)
c:車速がコーストストップ許可車速VSP2以下
d:副変速機構30が変速中でない(摩擦締結要素の締結状態、解放状態の組合せの変更途中でない)
As described above, in the coast stop execution determination according to the modification,
A sub-transmission mechanism 30 of the transmission 4 that transmits the driving force of the engine 1 to the drive wheels at a gear ratio determined according to the combination of the engagement state and the release state of the plurality of friction engagement elements;
A mechanical oil pump 10m driven by the engine 1,
The engine 1 is stopped when a predetermined coast stop condition is satisfied while the vehicle is decelerating and the auxiliary transmission mechanism 30 is not shifting (not in the middle of changing the combination of the engagement state and the release state of the friction engagement element). And an automatic transmission for a vehicle having a configuration including the controller 12.
Here, the coast stop conditions are the following a to d.
a: The foot is released from the accelerator pedal (accelerator opening APO = 0)
b: The brake pedal is depressed (brake hydraulic pressure is greater than or equal to a predetermined value)
c: Vehicle speed is coast stop permission vehicle speed VSP2 or less d: Sub-transmission mechanism 30 is not shifting (not in the middle of changing the combination of the engagement state and the release state of the friction engagement element)

このように構成すると、エンジン1の停止を、変速が行われ得る高車速域側で行うようにしても、変速の途中でコーストストップが実行されることがないので、変速の途中でエンジン1から供給される油圧が低下して変速に支障を生じさせることがない。
これにより、変速の支障に起因する問題、変速の途中で変速比の変化方向が逆転してショックが発生するという問題の発生を好適に防止できるので、運転者が変速挙動などに違和感を覚えることを防止できる。また、エンジン1の停止を高車速域側でも行えるようになるので、エンジン1を停止させる機会を増やすことができ、これにより燃費向上の効果が期待できる。
With this configuration, even if the engine 1 is stopped on the high vehicle speed range side where the shift can be performed, the coast stop is not executed in the middle of the shift. The supplied hydraulic pressure is not lowered and the shift is not hindered.
As a result, it is possible to suitably prevent the occurrence of a problem caused by a shift problem and a problem that a shock occurs due to the reverse direction of the gear ratio changing in the middle of the shift, so that the driver feels strange about the shift behavior. Can be prevented. In addition, since the engine 1 can be stopped even on the high vehicle speed side, the opportunity to stop the engine 1 can be increased, and thereby an effect of improving fuel consumption can be expected.

前記した実施の形態では、(1)車速が低下して、コーストストップの開始を判定するコーストストップ許可車速に達する直前に、シフトレバーが操作(エンジンブレーキ要求など)された場合を例に挙げて説明をしたが、本願発明は、(2)ダウンシフト線に基づいて変速を行っている途中で、車両の減速度が増大して、コーストストップ許可車速に達した場合や、(3)車両を加速させている途中で、アクセル:オフ、ブレーキ:オンとなった場合にも、好適に適用可能である。   In the above-described embodiment, (1) the case where the shift lever is operated (engine brake request or the like) immediately before reaching the coast stop permission vehicle speed for judging the start of the coast stop is given as an example. As described above, the present invention relates to (2) the case where the vehicle deceleration increases and the coast stop permission vehicle speed is reached during the shift based on the downshift line, or (3) the vehicle is The present invention can also be suitably applied when the accelerator is turned off and the brake is turned on during acceleration.

前記した実施の形態では、本願発明を、バリエータ20の下流側に副変速機構30が設けられたベルト式無段変速機に適用した場合を例に挙げて説明をしたが、バリエータ20の上流側に副変速機構30が設けられたベルト式無段変速機や、複数の締結要素の締結、解放の組み合わせにより所望の変速段を実現する自動変速機などにも適用可能である。   In the above-described embodiment, the present invention has been described by taking as an example the case where the present invention is applied to a belt-type continuously variable transmission in which the auxiliary transmission mechanism 30 is provided on the downstream side of the variator 20. The present invention is also applicable to a belt-type continuously variable transmission provided with a sub-transmission mechanism 30 and an automatic transmission that achieves a desired shift speed by combining a plurality of fastening elements.

ここで、本願発明が対象としている「変速」は、副変速機構30における変速、すなわち、解放状態から締結状態となる摩擦締結要素を含む変速機構における変速であって、バリエータ20における変速は対象外である。
本実施形態のように副変速機構30とバリエータ20とが直列に配される変速機4であっては、両プーリ21、22とVベルト23とのスリップによる損傷を防止すべく、副変速機構30よりバリエータ20に優先して油圧を供給している。従って、コーストストップによりメカオイルポンプ10mが停止してエンジン回転速度と共に油圧が低下する場合、エンジン回転速度低下中のメカオイルポンプ10mからの油圧は優先的にバリエータ20に供給され、また、コーストストップ中に電動オイルポンプ10eが駆動される場合、電動オイルポンプ10eにより発生する油圧も優先的にバリエータ20に供給されてしまい、副変速機構30は十分な油圧が供給されなくなる。
Here, the “shift” targeted by the present invention is a shift in the sub-transmission mechanism 30, that is, a shift in a transmission mechanism including a frictional engagement element that changes from the released state to the engaged state, and does not include the shift in the variator 20. It is.
In the transmission 4 in which the auxiliary transmission mechanism 30 and the variator 20 are arranged in series as in the present embodiment, the auxiliary transmission mechanism is to prevent damage due to slippage between the pulleys 21 and 22 and the V-belt 23. The hydraulic pressure is supplied in preference to the variator 20 from 30. Therefore, when the mechanical oil pump 10m is stopped by the coast stop and the hydraulic pressure is reduced together with the engine rotational speed, the hydraulic pressure from the mechanical oil pump 10m during the engine rotational speed reduction is preferentially supplied to the variator 20, and the coast stop When the electric oil pump 10e is driven, the hydraulic pressure generated by the electric oil pump 10e is also preferentially supplied to the variator 20, and the auxiliary transmission mechanism 30 is not supplied with sufficient hydraulic pressure.

例えば、エンジンが停止している間駆動される電動オイルポンプ10eが設けられていない場合には、変速の途中で変速比の変化方向が逆転してG変化が生じるので、運転者が違和感を持つ虞のあるショックを生じてしまう。また、電動オイルポンプ10eが設けられている場合には、副変速機構30における変速比の変化速度が途中で遅くなって、運転者が違和感を持つ虞のある変速比の変化速度の変化を生じてしまう。   For example, when the electric oil pump 10e that is driven while the engine is stopped is not provided, the change direction of the speed ratio is reversed in the middle of the shift, and the G change occurs, so the driver feels uncomfortable. It will cause a shock. Further, when the electric oil pump 10e is provided, the speed change rate of the auxiliary transmission mechanism 30 is slowed in the middle, resulting in a change in the speed change rate that may cause the driver to feel uncomfortable. End up.

これに対してバリエータ20は、メカオイルポンプ10m、電動オイルポンプ10eの油圧が優先的に供給されるため、変速の途中で生じる変速比の変化が上記副変速機構30における変速比の変化よりも小さく、運転者が違和感を持つ虞のある変速比の変化とならない。よって、バリエータ20における変速は、本願発明が対象としている「変速」の対象外となっている。
また、本実施形態において、副変速機構30とバリエータ20とが直列に配される変速機4について説明したが、これに限られることはなく、バリエータ20を備えない有段変速機構にも適用可能である。即ち、有段変速機構における摩擦締結要素は動力を伝達しない解放状態において油による引きずりを防止すべく、オイル面に浸らないように配置されている。従って、コーストストップによりメカオイルポンプ10mが停止すると、摩擦締結要素内の油は重力により低下しやすく、十分な油圧が確保できなくなる。これにより、運転者が違和感を持つ虞のある変速比の変化となる。一方、副変速機構30を備えない無段変速機構は、一般的にバリエータ20がオイル面に浸っていることから、コーストストップによりメカオイルポンプ10mが停止しても、バリエータ20内の油は低下しにくく、従って、運転者が違和感を持つような変速ショックの発生を抑制できる。
On the other hand, since the variator 20 is preferentially supplied with the hydraulic pressure of the mechanical oil pump 10m and the electric oil pump 10e, the change in the gear ratio occurring during the gear shift is more than the change in the gear ratio in the sub-transmission mechanism 30. It is small and does not result in a change in gear ratio that may cause the driver to feel uncomfortable. Therefore, the speed change in the variator 20 is not subject to the “speed change” that is the subject of the present invention.
Further, in the present embodiment, the transmission 4 in which the auxiliary transmission mechanism 30 and the variator 20 are arranged in series has been described. However, the present invention is not limited to this, and can be applied to a stepped transmission mechanism that does not include the variator 20. It is. That is, the frictional engagement element in the stepped transmission mechanism is disposed so as not to be immersed in the oil surface in order to prevent dragging by oil in a released state where power is not transmitted. Therefore, when the mechanical oil pump 10m is stopped by the coast stop, the oil in the frictional engagement element is likely to drop due to gravity, and a sufficient oil pressure cannot be secured. As a result, a change in the gear ratio that may cause the driver to feel uncomfortable. On the other hand, in a continuously variable transmission mechanism that does not include the auxiliary transmission mechanism 30, since the variator 20 is generally immersed in the oil surface, even if the mechanical oil pump 10m is stopped by a coast stop, the oil in the variator 20 is reduced. Therefore, it is possible to suppress the occurrence of a shift shock that makes the driver feel uncomfortable.

さらに、前記した実施の形態では、「駆動源」がエンジンである場合を例示したが、本発明はこれに限定されるものではなく、例えばモータや、エンジンとモータの両方からトルクが入力される構成のものであっても良い。   Furthermore, in the above-described embodiment, the case where the “drive source” is the engine is exemplified, but the present invention is not limited to this, and for example, torque is input from the motor or from both the engine and the motor. It may be configured.

上記したように、従来では、コーストストップ許可車速VSP1が、変速が行われない車速域(例えば、5〜6km/h未満)に設定されていた。昨今の燃費要求への対応に当たり、コーストストップ許可車速をより高車速域側(例えば、15〜20km/h未満)に拡大させようとしたところ、コーストストップ許可車速VSP1よりも高車速域側は、変速が行われ得る車速域であり、変速の途中でコーストストップによるエンジン1の停止が行われると変速に支障が生ずることを見出して、それを解決したのが本願発明である。
ここで、コーストストップ許可車速VSP2を設定した高車速域側は、2段以上の変速段を有する変速機においては、2速→1速ダウンシフト線よりも高い車速域である。
As described above, conventionally, the coast stop permission vehicle speed VSP1 has been set to a vehicle speed range in which shifting is not performed (for example, less than 5 to 6 km / h). In response to recent fuel efficiency requirements, when attempting to increase the coast stop permitting vehicle speed to a higher vehicle speed range (for example, less than 15 to 20 km / h), the higher vehicle speed range than the coast stop permitting vehicle speed VSP1 is It is the vehicle speed range in which a shift can be performed, and the present invention has solved that by finding that a shift is hindered if the engine 1 is stopped by a coast stop in the middle of a shift.
Here, the high vehicle speed region side where the coast stop permission vehicle speed VSP2 is set is a vehicle speed region higher than the second gear → first gear downshift line in a transmission having two or more gear stages.

前記した実施の形態では、パドルスイッチの操作によるアップシフト/ダウンシフトの場合を例示したが、本願発明は、シフトレバーの操作によるアップシフト/ダウンシフトの場合にも適用可能である。
かかる場合としては、例えば、エンブレ要求によるダウンシフト操作、エンブレ不要によるアップシフト操作、走行レンジから非走行レンジ操作、非走行レンジから走行レンジ操作などが挙げられる。
In the above-described embodiment, the case of upshift / downshift by the operation of the paddle switch is illustrated, but the present invention can also be applied to the case of upshift / downshift by the operation of the shift lever.
Examples of such a case include a downshift operation with an emblem request, an upshift operation without an emblem, a non-travel range operation from a travel range, a travel range operation from a non-travel range, and the like.

さらに、前記した動作例1では、副変速機構30の変速段が1速であるときに、アップシフトの要求があった場合(パドルスイッチからアップシフトの指令が入力された場合)を例に挙げて説明をした。これは、運転者が、減速走行時にエンジンブレーキの効きが大きいと感じた場合などに行われるアップシフトを要求する操作である。
本願発明は、このような場合に限定されるものではなく、例えば、運転者が、減速走行時にエンジンブレーキの効きが弱いと感じた場合などに行われるダウンシフトを要求する操作である場合にも適用可能である。
Furthermore, in the first operation example described above, the case where there is a request for an upshift when the shift stage of the auxiliary transmission mechanism 30 is the first speed (when an upshift command is input from the paddle switch) is taken as an example. Explained. This is an operation for requesting an upshift to be performed when the driver feels that the engine brake is highly effective during deceleration.
The present invention is not limited to such a case. For example, even when the driver requests an operation for downshifting performed when the driver feels that the effectiveness of the engine brake is weak at the time of deceleration traveling. Applicable.

また、前記した実施の形態では、コーストストップによるエンジン1の停止中に、電動オイルポンプ10e(他の油圧源)が駆動される場合を例に挙げて説明をしたが、本願発明は、電動オイルポンプ10eを備えていない自動変速機の場合にも適用可能である。
かかる場合、シフトレバーのN位置(非走行レンジ)からD位置(走行レンジ)への操作に基づく変速中に、車速がコーストストップ許可車速VSP2以下となると、変速により解放状態から締結状態とされる摩擦締結要素が締結状態となった後に、この摩擦締結要素を締結状態に保持していた油圧が低下して、前記した変速比の変化方向の変化が発生することになる
これに対して、従来の車速のみに基づいてコーストストップを実行するか否かを判断する自動変速機の場合には、シフトレバーがD位置(走行レンジ)に切り換えられた直後に、締結させようとしていた摩擦締結要素に供給される油圧が低下して、変速比の変化方向の変化が発生してしまう。
Further, in the above-described embodiment, the case where the electric oil pump 10e (other hydraulic power source) is driven while the engine 1 is stopped by the coast stop has been described as an example. The present invention can also be applied to an automatic transmission that does not include the pump 10e.
In such a case, when the vehicle speed becomes equal to or less than the coast stop permission vehicle speed VSP2 during the shift based on the operation of the shift lever from the N position (non-travel range) to the D position (travel range), the disengaged state is engaged by the gear shift. After the frictional engagement element is in the engaged state, the hydraulic pressure that holds the frictional engagement element in the engaged state is lowered, and the change in the change direction of the transmission ratio is generated. In the case of an automatic transmission that determines whether or not to perform a coast stop based only on the vehicle speed, the frictional engagement element that is to be engaged immediately after the shift lever is switched to the D position (traveling range). The supplied hydraulic pressure decreases, and the change direction of the gear ratio changes.

何れの場合にも、変速比の変化方向の変化が発生して、G変化によるショックが発生するが、本願発明に係るコーストストップは、シフトレバーがD位置(走行レンジ)に切換えられてから解放状態の摩擦締結要素が締結状態となるまでの時間の経過後に変速比の変化が発生する。この締結状態となるまでの時間も車速は低下しているため、摩擦締結要素が締結状態となった時点では、従来に比べて車速が十分に低下した状態となっており、ショックも十分に小さいものとなる。そのため、この車速が十分に低下した状態で変速比の変化方向が変化しても、従来の変速機の場合と比較して、運転者に与える違和感を抑えることができる。   In any case, a change in the change ratio of the gear ratio occurs and a shock due to the G change occurs, but the coast stop according to the present invention is released after the shift lever is switched to the D position (travel range). The speed ratio changes after a lapse of time until the frictional engagement element in the state is in the engaged state. Since the vehicle speed is also reduced until the engaged state, the vehicle speed is sufficiently reduced compared to the conventional case when the friction engagement element is engaged, and the shock is sufficiently small. It will be a thing. Therefore, even if the change direction of the gear ratio changes in a state where the vehicle speed is sufficiently lowered, it is possible to suppress the uncomfortable feeling given to the driver as compared with the case of the conventional transmission.

Claims (5)

駆動源の回転駆動力を、複数の摩擦締結要素の締結状態、解放状態の組合せに応じて決まる変速比で駆動輪に伝達する動力伝達部と、
前記駆動源により駆動される油圧源と、
車両が減速している途中で、所定の停止条件が成立すると、前記駆動源を停止させる駆動源制御手段と、を備え、
前記駆動源制御手段は、前記停止条件が成立した場合であっても、前記動力伝達部が変速中であるときには、前記駆動源の停止を実行しないことを特徴とする車両用の自動変速機。
A power transmission unit that transmits the rotational driving force of the drive source to the drive wheels at a gear ratio determined according to the combination of the engagement state and the release state of the plurality of friction engagement elements;
A hydraulic source driven by the drive source;
Drive source control means for stopping the drive source when a predetermined stop condition is satisfied while the vehicle is decelerating, and
The automatic transmission for a vehicle according to claim 1, wherein the drive source control means does not stop the drive source when the power transmission unit is shifting even when the stop condition is satisfied.
前記駆動源制御手段は、前記動力伝達部が解放状態の摩擦締結要素を締結状態に変化させる変速中であるときに、前記駆動源の停止を実行しないことを特徴とする請求項1に記載の車両用の自動変速機。   2. The drive source control unit according to claim 1, wherein the drive source control unit does not stop the drive source when the power transmission unit is performing a shift to change the disengaged frictional engagement element to the engagement state. Automatic transmission for vehicles. 前記駆動源を停止させている間、前記駆動源と異なる他の駆動源により駆動される他の油圧源を、さらに備え、
前記動力伝達部における変速は、前記複数の摩擦締結要素の第1摩擦締結要素と第2摩擦締結要素のうちの一方を、締結状態から解放状態に変化させ、他方を解放状態から締結状態に変化させることで実行され、
前記駆動源を停止させている間は、前記駆動源からの油圧に代えて、前記前記他の駆動源からの油圧が、前記第1摩擦締結要素、第2摩擦締結要素に供給されることを特徴とする請求項1または請求項2に記載の車両用の自動変速機。
While stopping the drive source, further comprises another hydraulic source driven by another drive source different from the drive source,
The speed change in the power transmission unit changes one of the first friction engagement elements and the second friction engagement elements of the plurality of friction engagement elements from the engagement state to the release state, and changes the other from the release state to the engagement state. It is executed by letting
While the drive source is stopped, the hydraulic pressure from the other drive source is supplied to the first friction engagement element and the second friction engagement element instead of the hydraulic pressure from the drive source. The automatic transmission for a vehicle according to claim 1 or 2, wherein the automatic transmission is for vehicles.
前記駆動源制御手段は、前記動力伝達部の変速比が変化している状態が、シフトレバーの選択レンジが走行レンジから非走行レンジに切換えられたことによるものである場合は、前記駆動源の停止を実行し、
非走行レンジから走行レンジに切換えられたことによるものである場合は、前記駆動源の停止を実行しないことを特徴とする請求項1から請求項3の何れか一項に記載の車両用の自動変速機。
The drive source control means, when the state in which the gear ratio of the power transmission unit is changed is that the shift lever selection range is switched from the travel range to the non-travel range, Perform a stop,
4. The vehicular automatic according to claim 1, wherein the driving source is not stopped when the non-traveling range is switched to the traveling range. 5. transmission.
駆動源の回転駆動力を、複数の摩擦締結要素の締結状態、解放状態の組合せに応じて決まる変速比で駆動輪に伝達する動力伝達部と、
前記駆動源に駆動される油圧源と、
車両が減速している途中で、前記動力伝達部が変速中でないこと、を含む所定の停止条件が成立すると、前記駆動源を停止させる駆動源制御手段と、を備えることを特徴とする車両用の自動変速機。
A power transmission unit that transmits the rotational driving force of the drive source to the drive wheels at a gear ratio determined according to the combination of the engagement state and the release state of the plurality of friction engagement elements;
A hydraulic source driven by the drive source;
Drive source control means for stopping the drive source when a predetermined stop condition is satisfied while the vehicle is decelerating and the power transmission unit is not shifting. Automatic transmission.
JP2014528074A 2012-07-31 2013-07-19 Automatic transmission for vehicles Active JP5860150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528074A JP5860150B2 (en) 2012-07-31 2013-07-19 Automatic transmission for vehicles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012170686 2012-07-31
JP2012170686 2012-07-31
PCT/JP2013/069574 WO2014021118A1 (en) 2012-07-31 2013-07-19 Automatic transmission for vehicle
JP2014528074A JP5860150B2 (en) 2012-07-31 2013-07-19 Automatic transmission for vehicles

Publications (2)

Publication Number Publication Date
JP5860150B2 JP5860150B2 (en) 2016-02-16
JPWO2014021118A1 true JPWO2014021118A1 (en) 2016-07-21

Family

ID=50027800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014528074A Active JP5860150B2 (en) 2012-07-31 2013-07-19 Automatic transmission for vehicles

Country Status (4)

Country Link
JP (1) JP5860150B2 (en)
KR (1) KR101624472B1 (en)
CN (1) CN104508281B (en)
WO (1) WO2014021118A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6584892B2 (en) * 2015-09-24 2019-10-02 ジヤトコ株式会社 Vehicle sailing stop control method and control apparatus
WO2019031277A1 (en) * 2017-08-07 2019-02-14 ジヤトコ株式会社 Vehicle control device and control method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127049B2 (en) * 2002-12-25 2008-07-30 トヨタ自動車株式会社 Control device for hybrid drive
JP4220494B2 (en) * 2005-05-31 2009-02-04 ジヤトコ株式会社 Automatic transmission failure control device
JP4888294B2 (en) * 2007-09-12 2012-02-29 トヨタ自動車株式会社 Vehicle control device
JP4189695B1 (en) * 2007-09-28 2008-12-03 三菱自動車工業株式会社 Vehicle control device
JP4831172B2 (en) 2009-01-16 2011-12-07 株式会社デンソー Automatic stop / start control device for internal combustion engine
JP4992936B2 (en) * 2009-05-21 2012-08-08 株式会社デンソー Automatic stop control device for internal combustion engine
JP5526005B2 (en) * 2010-11-25 2014-06-18 ジヤトコ株式会社 Coast stop vehicle and coast stop vehicle control method

Also Published As

Publication number Publication date
CN104508281B (en) 2017-03-08
KR20150043302A (en) 2015-04-22
WO2014021118A1 (en) 2014-02-06
KR101624472B1 (en) 2016-05-25
JP5860150B2 (en) 2016-02-16
CN104508281A (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5526005B2 (en) Coast stop vehicle and coast stop vehicle control method
KR101322069B1 (en) Control apparatus for vehicle
JP5039819B2 (en) Coast stop vehicle and coast stop method
JP5039815B2 (en) Idle stop vehicle
JP5728422B2 (en) Shift control device for belt type continuously variable transmission
JP5548599B2 (en) Coast stop vehicle and control method thereof
JP5542607B2 (en) Coast stop vehicle and coast stop method
JP5767958B2 (en) Coast stop vehicle and coast stop vehicle control method
JP5646941B2 (en) Coast stop vehicle
JP5736508B2 (en) Continuously variable transmission and control method thereof
JP6053666B2 (en) Control device for continuously variable transmission
JP5717801B2 (en) Coast stop vehicle control device
JPWO2018016391A1 (en) Vehicle control apparatus and vehicle control method
JP6584892B2 (en) Vehicle sailing stop control method and control apparatus
JP5718530B2 (en) Automatic transmission for vehicles
JP5860150B2 (en) Automatic transmission for vehicles
JP6547010B2 (en) Control device of vehicle and control method of vehicle
JP5948623B2 (en) Control device for continuously variable transmission
JP6084155B2 (en) Control device for vehicle transmission
JP6653961B2 (en) Control device for automatic transmission
WO2016152327A1 (en) Control device for continuously variable transmission and control method therefor
JPWO2017043457A1 (en) Control device for vehicle variator
JP6752506B2 (en) Control device for continuously variable transmission for vehicles
JP2015135165A (en) Continuously variable transmission, and control method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151217

R150 Certificate of patent or registration of utility model

Ref document number: 5860150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150