JPWO2014017332A1 - Optical components - Google Patents

Optical components Download PDF

Info

Publication number
JPWO2014017332A1
JPWO2014017332A1 JP2014526864A JP2014526864A JPWO2014017332A1 JP WO2014017332 A1 JPWO2014017332 A1 JP WO2014017332A1 JP 2014526864 A JP2014526864 A JP 2014526864A JP 2014526864 A JP2014526864 A JP 2014526864A JP WO2014017332 A1 JPWO2014017332 A1 JP WO2014017332A1
Authority
JP
Japan
Prior art keywords
film
multilayer film
refractive index
optical multilayer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014526864A
Other languages
Japanese (ja)
Other versions
JP5770940B2 (en
Inventor
宏寿 高橋
宏寿 高橋
山本 浩二
浩二 山本
健志 小林
健志 小林
幸弘 堀江
幸弘 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Optical Co Ltd
Canon Optron Inc
Original Assignee
Tokai Optical Co Ltd
Canon Optron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Optical Co Ltd, Canon Optron Inc filed Critical Tokai Optical Co Ltd
Priority to JP2014526864A priority Critical patent/JP5770940B2/en
Application granted granted Critical
Publication of JP5770940B2 publication Critical patent/JP5770940B2/en
Publication of JPWO2014017332A1 publication Critical patent/JPWO2014017332A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Eyeglasses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

基体11の表面に光学多層膜13を蒸着加工して成る光学部品において、光学多層膜13のうち高屈折率層の材料をニオブ含有亜酸化チタンにより形成することにより、当該ニオブ含有亜酸化チタンを蒸着して形成される薄膜をアモルファス状態としながらも導電性を向上させることできるようにして、導電性を上げることを目的として結晶性を高めるための再加熱処理を行うことなく、かつ、3種類の材料を扱うために蒸着装置を改造することなく、高い帯電防止性を得ることができるようにする。In the optical component formed by vapor-depositing the optical multilayer film 13 on the surface of the substrate 11, the material of the high refractive index layer of the optical multilayer film 13 is formed of niobium-containing titanium suboxide, whereby the niobium-containing titanium suboxide is obtained. The thin film formed by vapor deposition can be improved in conductivity while being in an amorphous state, and without reheating treatment for improving crystallinity for the purpose of increasing conductivity, and three kinds Therefore, it is possible to obtain high antistatic properties without modifying the vapor deposition apparatus in order to handle these materials.

Description

本発明は光学部品に関し、特に、チタン酸化物を成分として含む蒸着材料を光学多層膜の一部に用いた光学部品に関するものである。   The present invention relates to an optical component, and more particularly to an optical component using a vapor deposition material containing titanium oxide as a component as a part of an optical multilayer film.

一般に、レンズ、プリズム、ミラー、フィルタ等のプラスチック製の光学部品では、静電気が発生しやすく、ゴミや埃などの汚れが光学部品に付着しやすい。汚れが付着した状態で光学部品の拭き上げを行うと、汚れが原因となって部品表面にキズがついてしまう。また、汚れの付着により透過性や反射性が悪くなるなど、光学部品の性能面にも悪影響を及ぼしてしまう。   In general, plastic optical parts such as lenses, prisms, mirrors, and filters tend to generate static electricity, and dirt such as dust and dust tends to adhere to the optical parts. If the optical component is wiped off with the dirt attached, the surface of the component is scratched due to the dirt. Further, the performance and performance of the optical component is adversely affected, for example, the permeability and reflectivity deteriorate due to the adhesion of dirt.

そこで、従来、光学部品に対する汚れの付着を防ぐために、静電気の発生を抑制(帯電を抑制)することを目的として、光学部品の表面に薄くコーティングされる光学多層膜に導電性薄膜を挿入することが行われている。なお、用途によっては高い透光性を確保することも必要である。その場合、光学部品に帯電防止性を持たせるための薄膜形成に用いる材料としては、高い導電性と高い透光性とを両立可能な材料を用いることが必要となる。そのため、導電性薄膜の材料としては、ITO(酸化インジウムスズ)、SnO(酸化スズ)、ZnO(酸化亜鉛)などが用いられていた。   Therefore, conventionally, in order to prevent dirt from adhering to the optical component, a conductive thin film is inserted into the optical multilayer film that is thinly coated on the surface of the optical component in order to suppress the generation of static electricity (suppress charging). Has been done. Depending on the application, it is also necessary to ensure high translucency. In that case, as a material used for forming a thin film for imparting antistatic properties to the optical component, it is necessary to use a material that can achieve both high conductivity and high light transmission. For this reason, ITO (indium tin oxide), SnO (tin oxide), ZnO (zinc oxide), and the like have been used as the material for the conductive thin film.

このような光学薄膜の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、CVD法、ゾルゲル法、PLD法などが挙げられる。中でも真空蒸着法は、膜材料の変更や膜を付ける基材の変更に同じ装置でも容易に対応可能であるほか、成膜速度が速いため処理時間が短く、他の方法に比べて低コストを実現しやすいといった利点を有することから、光学部品を始め多くの産業分野で用いられている。   Examples of the method for forming such an optical thin film include a vacuum deposition method, a sputtering method, an ion plating method, a CVD method, a sol-gel method, and a PLD method. In particular, the vacuum deposition method can easily handle changes in the film material and the base material to which the film is attached, using the same equipment, and the film formation speed is fast, so the processing time is short and the cost is lower than other methods. Since it has the advantage of being easily realized, it is used in many industrial fields including optical components.

チタン酸化物は高屈折率を有する透明薄膜材料の代表的な物質で、レンズのコーティング材料として一般的に蒸着法でも用いられている。なお、アナターゼ型の酸化チタン(TiO)にニオブ(Nb)を少量(0.1mol%〜20mol%)ドープさせると、酸化チタン100%よりも導電性が向上することが知られている(例えば、特許文献1参照)。この特許文献1には、アナターゼ型結晶構造を有するニオブ含有酸化チタン(Nb:TiO)の焼結体を薄膜形成用の材料として用い、これをPLD法でディスプレイパネル等の基材に蒸着させることにより、透明導電膜として利用することが記載されている。Titanium oxide is a representative material of a transparent thin film material having a high refractive index, and is generally used in a vapor deposition method as a lens coating material. In addition, it is known that when anatase-type titanium oxide (TiO 2 ) is doped with niobium (Nb) in a small amount (0.1 mol% to 20 mol%), the conductivity is improved as compared with 100% titanium oxide (for example, , See Patent Document 1). In this patent document 1, a sintered body of niobium-containing titanium oxide (Nb: TiO 2 ) having an anatase type crystal structure is used as a material for forming a thin film, and this is deposited on a substrate such as a display panel by a PLD method. Thus, it is described that it is used as a transparent conductive film.

WO2006/016608公報WO2006 / 016608

アナターゼ型結晶構造を有するニオブ含有酸化チタン(Nb:TiO)の膜を用いる場合、導電性を向上させるために、コーティングした薄膜の結晶性を高めることが必要である。そのため、成膜後に再加熱(アニール)を行うことで結晶性を高めることが行われている。しかしながら、プラスチック製の光学部品の場合、成膜後に再加熱を行うと、プラスチックが溶けてしまうため、再加熱による結晶性を高める手法は適用することができないという問題があった。When a niobium-containing titanium oxide (Nb: TiO 2 ) film having an anatase type crystal structure is used, it is necessary to increase the crystallinity of the coated thin film in order to improve conductivity. Therefore, the crystallinity is improved by performing reheating (annealing) after film formation. However, in the case of an optical component made of plastic, there is a problem that a technique for improving crystallinity by reheating cannot be applied because the plastic melts when reheating is performed after film formation.

一方、上述したように、光学部品の表面にコーティングされる光学多層膜に導電性薄膜(ITO、SnO、ZnOなどを材料とする膜)を挿入する方法もあるが、この方法では、蒸着装置の改造が必要になるという問題があった。すなわち、光学多層膜は、低屈折率層と高屈折率層とを交互に積層させて形成されており、通常は2種類の材料(例えば、SiOとこれより屈折率の高いTiO)から成る2元系の膜構成となっている。これに更にITO膜などを挿入すると、3元系の膜構成となり、3元系を扱うために蒸着装置を改造しなければならなくなる。On the other hand, as described above, there is a method of inserting a conductive thin film (film made of ITO, SnO, ZnO, etc.) into an optical multilayer film coated on the surface of an optical component. There was a problem that remodeling was necessary. That is, the optical multilayer film is formed by alternately laminating a low refractive index layer and a high refractive index layer, and is usually made of two kinds of materials (for example, SiO 2 and TiO 2 having a higher refractive index than this). It has a binary film structure. If an ITO film or the like is further inserted into this, a ternary film structure is formed, and the vapor deposition apparatus must be modified to handle the ternary system.

本発明は、このような問題を解決するために成されたものであり、成膜後に再加熱を行うといった結晶性を高める手法を適用することなく、かつ、3種類の材料を扱うために蒸着装置を改造することなく、帯電防止効果の高い光学部品を得ることができるようにすることを目的とする。   The present invention has been made to solve such a problem, and does not apply a technique for enhancing crystallinity such as reheating after film formation, and is vapor-deposited to handle three kinds of materials. It is an object of the present invention to obtain an optical component having a high antistatic effect without modifying the apparatus.

上記した課題を解決するために、本発明では、基体の表面に光学多層膜を蒸着加工して成る光学部品において、光学多層膜のうち高屈折率層の材料を、チタンとニオブとを成分として含む酸素欠損を有する金属酸化物の溶融体(ニオブ含有亜酸化チタンという)により形成している。すなわち、本発明では、ニオブ含有亜酸化チタンから成る材料を用いて基体の表面に蒸着法で成膜することによって光学部品を構成している。   In order to solve the above problems, in the present invention, in an optical component formed by vapor-depositing an optical multilayer film on the surface of a substrate, the material of the high refractive index layer of the optical multilayer film is composed of titanium and niobium as components. It is formed of a metal oxide melt containing oxygen vacancies (referred to as niobium-containing titanium suboxide). That is, in the present invention, an optical component is configured by forming a film on the surface of a substrate by a vapor deposition method using a material made of niobium-containing titanium suboxide.

上記のように構成した本発明によれば、光学多層膜のうち高屈折率層については、チタンに対してニオブが少量ドープされた金属酸化物が用いられているので、チタン100%の酸化物や他の高屈折率物質を用いる場合よりも導電性が向上し、高い帯電防止性を得ることができる。また、このような性質を有するニオブ含有亜酸化チタンから成る材料を蒸着法で成膜した場合、薄膜は結晶性のないアモルファス状態となるため、結晶性を高めるために成膜後に再加熱処理を行う必要がない。さらに、ITO等の導電性薄膜を挿入する必要がないので、光学多層膜は低屈折率層と高屈折率層とを交互に積層させた2元系の膜構成となる。これにより、基体の表面に成膜を行った後に再加熱処理を行うことなく、かつ、3種類の材料を扱うために蒸着装置を改造することなく、帯電防止効果の高い光学部品を得ることができる。   According to the present invention configured as described above, a metal oxide in which niobium is doped in a small amount with respect to titanium is used for the high refractive index layer in the optical multilayer film. As compared with the case of using other high refractive index substances, the conductivity is improved and high antistatic properties can be obtained. In addition, when a material composed of niobium-containing titanium suboxide having such properties is deposited by vapor deposition, the thin film becomes amorphous without crystallinity. Therefore, in order to improve crystallinity, reheating treatment is performed after deposition. There is no need to do it. Furthermore, since it is not necessary to insert a conductive thin film such as ITO, the optical multilayer film has a binary film structure in which low refractive index layers and high refractive index layers are alternately laminated. As a result, it is possible to obtain an optical component having a high antistatic effect without performing reheating after film formation on the surface of the substrate and without modifying the vapor deposition apparatus to handle three types of materials. it can.

本実施形態による光学部品の構成例を示す図である。It is a figure which shows the structural example of the optical component by this embodiment. 本実施形態のニオブ含有亜酸化チタンに対してX線回折分析を行った実験結果を示す図である。It is a figure which shows the experimental result which performed the X-ray diffraction analysis with respect to the niobium containing titanium suboxide of this embodiment. 眼鏡用レンズに関する実施例1および比較例1−1,1−2に係る光学多層膜の膜構成を示す図である。It is a figure which shows the film | membrane structure of the optical multilayer film which concerns on Example 1 regarding the spectacles lens, and Comparative Examples 1-1 and 1-2. 眼鏡用レンズに関する実施例1および比較例1−1,1−2に係る光学多層膜の帯電防止性に関する実験結果を示す図である。It is a figure which shows the experimental result regarding the antistatic property of the optical multilayer film concerning Example 1 and Comparative Examples 1-1 and 1-2 regarding the lens for spectacles. 眼鏡用レンズに関する実施例1および比較例1−1,1−2に係る光学多層膜の反射率特性に関するシミュレーション結果を示す図である。It is a figure which shows the simulation result regarding the reflectance characteristic of the optical multilayer film which concerns on Example 1 and Comparative Examples 1-1 and 1-2 regarding the lens for spectacles. 眼鏡用レンズに関する実施例2および比較例2−1,2−2に係る光学多層膜の膜構成を示す図である。It is a figure which shows the film | membrane structure of the optical multilayer film which concerns on Example 2 and Comparative Examples 2-1 and 2-2 regarding the lens for spectacles. 眼鏡用レンズに関する実施例2および比較例2−1,2−2に係る光学多層膜の帯電防止性に関する実験結果を示す図である。It is a figure which shows the experimental result regarding the antistatic property of the optical multilayer film which concerns on Example 2 and Comparative Examples 2-1 and 2-2 regarding the lens for spectacles. 眼鏡用レンズに関する実施例2および比較例2−1,2−2に係る光学多層膜の反射率特性に関するシミュレーション結果を示す図である。It is a figure which shows the simulation result regarding the reflectance characteristic of the optical multilayer film which concerns on Example 2 and Comparative Examples 2-1 and 2-2 regarding the lens for spectacles. バンドパスフィルタに関する実施例3に係る光学多層膜の膜構成を示す図である。It is a figure which shows the film | membrane structure of the optical multilayer film concerning Example 3 regarding a band pass filter. バンドパスフィルタに関する比較例3に係る光学多層膜の膜構成を示す図である。It is a figure which shows the film | membrane structure of the optical multilayer film which concerns on the comparative example 3 regarding a band pass filter. バンドパスフィルタに関する実施例3および比較例3に係る光学多層膜の帯電防止性に関する実験結果を示す図である。It is a figure which shows the experimental result regarding the antistatic property of the optical multilayer film which concerns on Example 3 and the comparative example 3 regarding a band pass filter. バンドパスフィルタに関する実施例3および比較例3に係る光学多層膜の反射率特性に関するシミュレーション結果を示す図である。It is a figure which shows the simulation result regarding the reflectance characteristic of the optical multilayer film which concerns on Example 3 and Comparative Example 3 regarding a band pass filter. ハーフミラーに関する実施例4および比較例4に係る光学多層膜の膜構成を示す図である。It is a figure which shows the film | membrane structure of the optical multilayer film which concerns on Example 4 and the comparative example 4 regarding a half mirror. ハーフミラーに関する実施例4および比較例4に係る光学多層膜の帯電防止性に関する実験結果を示す図である。It is a figure which shows the experimental result regarding the antistatic property of the optical multilayer film which concerns on Example 4 and the comparative example 4 regarding a half mirror. ハーフミラーに関する実施例4および比較例4に係る光学多層膜の反射率特性に関するシミュレーション結果を示す図である。It is a figure which shows the simulation result regarding the reflectance characteristic of the optical multilayer film which concerns on Example 4 and the comparative example 4 regarding a half mirror.

以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態による光学部品の構成例を示す図である。図1に示すように、本実施形態の光学部品は、基体11の表面に、ハードコート膜12、光学多層膜13および防汚膜14を、基体11からこの順で形成している。図1は光学部品の構成例を模擬的に表わしたものであり、基体11の実際の厚みおよび各膜12〜14の実際の厚みを正確な比率で表したものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of the optical component according to the present embodiment. As shown in FIG. 1, in the optical component of this embodiment, a hard coat film 12, an optical multilayer film 13, and an antifouling film 14 are formed in this order from the base 11 on the surface of the base 11. FIG. 1 schematically shows a configuration example of an optical component, and does not represent the actual thickness of the substrate 11 and the actual thickness of each of the films 12 to 14 in an accurate ratio.

なお、基体11の表面とハードコート膜12との間にプライマー層を形成したり、基体11の表面とハードコート膜12との間、ハードコート膜12と光学多層膜13の間、あるいは光学多層膜13と防汚膜14との間などに中間層を形成したりするなど、膜構成を他のものに変更してもよい。また、基体11の裏面あるいは表裏両面に、ハードコート膜12や光学多層膜13などを形成しても良い。   A primer layer is formed between the surface of the substrate 11 and the hard coat film 12, or between the surface of the substrate 11 and the hard coat film 12, between the hard coat film 12 and the optical multilayer film 13, or optical multilayer. For example, an intermediate layer may be formed between the film 13 and the antifouling film 14 or the like. Further, the hard coat film 12 or the optical multilayer film 13 may be formed on the back surface or both the front and back surfaces of the substrate 11.

基体11の材料(基材)としては、例えば、ポリウレタン樹脂、エピスルフィド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、アクリル樹脂、ポリエーテルサルホン樹脂、ポリ4−メチルペンテン−1樹脂、ジエチルグリコールビスアリルカーボネート樹脂などが挙げられる。また、屈折率が高く好適なものとして、例えば、ポリイソシアネート化合物とポリチオールおよび/または含硫黄ポリオールとを付加重合して得られるポリウレタン樹脂を挙げることができる。さらに屈折率が高く好適なものとして、エピスルフィド基とポリチオールおよび/または含硫黄ポリオールとを付加重合して得られるエピスルフィド樹脂を挙げることができる。   Examples of the material (base material) of the substrate 11 include polyurethane resin, episulfide resin, polycarbonate resin, polyester resin, acrylic resin, polyether sulfone resin, poly-4-methylpentene-1 resin, diethyl glycol bisallyl carbonate resin, and the like. Is mentioned. Moreover, as a suitable thing with a high refractive index, the polyurethane resin obtained by addition-polymerizing a polyisocyanate compound, a polythiol, and / or a sulfur-containing polyol can be mentioned, for example. Furthermore, as a suitable thing with a high refractive index, the episulfide resin obtained by addition-polymerizing an episulfide group and a polythiol and / or sulfur-containing polyol can be mentioned.

ハードコート膜12は、基体11にハードコート液を、ディッピング法やスピンコート法、スプレー法などの公知の方法により均一に施して形成する。ハードコート膜12の材料としては、例えば、無機酸化物微粒子を含むオルガノシロキサン系樹脂を用いる。この場合のハードコート液は、水あるいはアルコール系の溶媒にオルガノシロキサン系樹脂と無機酸化物微粒子ゾルとを分散(混合)させて生成する。   The hard coat film 12 is formed by uniformly applying a hard coat liquid to the substrate 11 by a known method such as a dipping method, a spin coat method, or a spray method. As a material of the hard coat film 12, for example, an organosiloxane resin containing inorganic oxide fine particles is used. The hard coat liquid in this case is produced by dispersing (mixing) an organosiloxane resin and an inorganic oxide fine particle sol in water or an alcohol solvent.

ここで、オルガノシロキサン系樹脂は、アルコキシシランを加水分解し縮合させることで得られるものが好ましい。アルコキシシランの具体例として、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、メチルトリメトキシシラン、エチルシリケートを挙げることができる。これらアルコキシシランの加水分解縮合物は、当該アルコキシシラン化合物あるいはそれらの組み合わせを、塩酸などの酸性水溶液で加水分解することにより製造される。   Here, the organosiloxane resin is preferably obtained by hydrolyzing and condensing alkoxysilane. Specific examples of the alkoxysilane include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, methyltrimethoxysilane, and ethyl silicate. These alkoxysilane hydrolysis condensates are produced by hydrolyzing the alkoxysilane compound or a combination thereof with an acidic aqueous solution such as hydrochloric acid.

また、無機酸化物微粒子の具体例としては、酸化亜鉛、二酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化スズ、酸化ベリリウム、酸化アンチモン、酸化タングステン、酸化セリウムの各ゾルを単独でまたは2種類以上を混晶化したものを挙げることができる。無機酸化物微粒子の大きさは、ハードコート膜12の透明性確保の観点から、1〜100ナノメートル(nm)であることが好ましく、1〜50nmであることがより好ましい。また、無機酸化物微粒子の配合量は、ハードコート膜12における硬さや強靭性の適切な度合いでの確保という観点から、ハードコート成分中40〜60wt%を占めることが好ましい。   Specific examples of the inorganic oxide fine particles include zinc oxide, silicon dioxide, aluminum oxide, titanium oxide, zirconium oxide, tin oxide, beryllium oxide, antimony oxide, tungsten oxide, and cerium oxide sol alone or in two types. What mixed the above can be mentioned. From the viewpoint of ensuring the transparency of the hard coat film 12, the size of the inorganic oxide fine particles is preferably 1 to 100 nanometers (nm), and more preferably 1 to 50 nm. Moreover, it is preferable that the compounding quantity of inorganic oxide microparticles occupies 40-60 wt% in a hard-coat component from a viewpoint of ensuring the hardness in the hard-coat film | membrane 12 and the appropriate degree of toughness.

なお、ハードコート液には、硬化触媒としてアセチルアセトン金属塩、エチレンジアミン四酢酸金属塩などを添加することができる。さらに必要に応じて、界面活性剤、着色剤、溶媒などを調整のために添加することができる。   In addition, an acetylacetone metal salt, ethylenediaminetetraacetic acid metal salt, etc. can be added to a hard-coat liquid as a curing catalyst. Further, a surfactant, a colorant, a solvent and the like can be added for adjustment as necessary.

ハードコート膜12の膜厚は、0.5〜4.0マイクロメートル(μm)とするのが好ましく、1.0〜3.0μmとするのがより好ましい。この膜厚の下限については、これより薄いと十分な硬度が得られなくなるという限界値から定まる。一方、上限については、これより厚くするとクラックや脆さが発生するなど、物性に関する問題の生ずる可能性が飛躍的に高まるという限界値から定まる。   The thickness of the hard coat film 12 is preferably 0.5 to 4.0 micrometers (μm), and more preferably 1.0 to 3.0 μm. The lower limit of the film thickness is determined from a limit value that a sufficient hardness cannot be obtained if the thickness is smaller than this. On the other hand, the upper limit is determined from a limit value that, if thicker than this, the possibility of occurrence of problems related to physical properties such as occurrence of cracks and brittleness is dramatically increased.

光学多層膜13は、真空蒸着法により、低屈折率層と高屈折率層とを交互に積層させて形成する。低屈折率層を形成する薄膜の材料としては、例えば、SiO(二酸化ケイ素)やMgF(フッ化マグネシウム)などが挙げられる。The optical multilayer film 13 is formed by alternately laminating low refractive index layers and high refractive index layers by vacuum deposition. Examples of the material of the thin film forming the low refractive index layer include SiO 2 (silicon dioxide) and MgF 2 (magnesium fluoride).

一方、高屈折率層を形成する薄膜の材料には、チタンとニオブとを成分として含む酸素欠損を有する金属酸化物(ニオブ含有亜酸化チタン)の溶融体を用いる。溶融体とは、酸素欠損を有する状態でチタンとニオブを溶融した後、それを冷却し、求める粒の大きさ(例えば、3mm以下)に粉砕して篩がけすることによって形成したものである。   On the other hand, a metal oxide (niobium-containing titanium suboxide) melt having oxygen vacancies containing titanium and niobium as components is used as the material for the thin film forming the high refractive index layer. The melt is formed by melting titanium and niobium in a state having oxygen vacancies, cooling it, pulverizing to a desired grain size (for example, 3 mm or less) and sieving.

ニオブ含有亜酸化チタンの金属元素(Ti1−xNb)と酸素元素(O)の比率は、例えば3:5である。以下では、これを(Ti1−xNbと表記する。ニオブ含有亜酸化チタンにおけるニオブのドープ量は、チタンに対して2mol%以上16mol%以下とするのが好ましい。The ratio of the metal element (Ti 1-x Nb x ) and the oxygen element (O) in the niobium-containing titanium suboxide is, for example, 3: 5. Hereinafter, this is expressed as (Ti 1-x Nb x ) 3 O 5 . The doping amount of niobium in the niobium-containing titanium suboxide is preferably 2 mol% or more and 16 mol% or less with respect to titanium.

防汚膜14は、レンズ表面の撥水撥油性の向上や水ヤケ防止するために形成されるものであり、フッ素系化合物から成る。防汚膜14は、ディッピング法、スピン法、スプレー法、蒸着法などの公知の方法で形成することができる。   The antifouling film 14 is formed in order to improve the water and oil repellency of the lens surface and prevent water scuffing, and is made of a fluorine compound. The antifouling film 14 can be formed by a known method such as a dipping method, a spin method, a spray method, or a vapor deposition method.

以下、光学多層膜13において用いるニオブ含有亜酸化チタン(Ti1−xNbの性質について、図面に基づいて説明する。図2は、ニオブ含有亜酸化チタンに対してX線回折分析(XRD:X-Ray Diffraction分析)を行った実験結果を示す図である。この図2に示す実験では、ニオブ含有亜酸化チタンにおけるニオブのドープ量を異ならせて複数種類の溶融体を形成し、それに対してXRD分析を行った。ニオブのドープ量は、2mol%から16mol%まで2mol%刻みで変えてある。Hereinafter, the nature of the niobium-containing titanium suboxide (Ti 1-x Nb x) 3 O 5 used in the optical multilayer film 13 will be described with reference to the drawings. FIG. 2 is a diagram showing experimental results obtained by performing X-ray diffraction analysis (XRD: X-Ray Diffraction analysis) on niobium-containing titanium suboxide. In the experiment shown in FIG. 2, a plurality of types of melts were formed with different amounts of niobium in the niobium-containing titanium suboxide, and XRD analysis was performed on the melts. The doping amount of niobium is changed in increments of 2 mol% from 2 mol% to 16 mol%.

XRD分析は、材料に対するX線の入射角度を変化させながら、材料からの反射波の強度を測定するものである。この測定により、図2に示すように横軸が入射角度で縦軸に強度をとったグラフが得られる。なお、図2では、ニオブのドープ量を変えて行った各測定結果が重なって見にくくならないように、縦軸の基準値(強度ゼロ)を縦方向にずらして示している。   The XRD analysis measures the intensity of a reflected wave from a material while changing the incident angle of X-rays to the material. By this measurement, as shown in FIG. 2, a graph is obtained with the horizontal axis representing the incident angle and the vertical axis representing the intensity. In FIG. 2, the reference value (intensity zero) on the vertical axis is shifted in the vertical direction so that the measurement results obtained by changing the doping amount of niobium are not overlapped and difficult to see.

図2の実験結果から分かるように、どの入射角度のところにも強度のピークが現れていない。これは、ニオブ含有亜酸化チタンを蒸着して生成した薄膜がアモルファス(非晶質)の状態になっていることを示している。   As can be seen from the experimental results in FIG. 2, no intensity peak appears at any incident angle. This indicates that the thin film formed by vapor deposition of niobium-containing titanium suboxide is in an amorphous state.

次に、光学多層膜13の高屈折率層にニオブ含有亜酸化チタンを用いた光学部品の具体的な実施例について説明する。ここでは光学部品の一例として、眼鏡用レンズ、バンドパスフィルタ、ハーフミラーの実施例について説明する。実施例1,2が眼鏡用レンズ、実施例3がバンドパスフィルタ、実施例4がハーフミラーである。   Next, specific examples of optical components using niobium-containing titanium suboxide for the high refractive index layer of the optical multilayer film 13 will be described. Here, examples of spectacle lenses, bandpass filters, and half mirrors will be described as examples of optical components. Examples 1 and 2 are spectacle lenses, Example 3 is a band-pass filter, and Example 4 is a half mirror.

<実施例1>
図3は、実施例1に係る眼鏡用レンズを構成する光学多層膜13の膜構成と、比較例1−1,1−2に係る光学多層膜の膜構成とを示す図である。図3(a)が実施例1、図3(b)が比較例1−1、図3(c)が比較例1−2を示している。なお、図3において、(Ti1−xNbはTNOと略記している。
<Example 1>
FIG. 3 is a diagram illustrating a film configuration of the optical multilayer film 13 constituting the eyeglass lens according to Example 1, and a film configuration of the optical multilayer film according to Comparative Examples 1-1 and 1-2. 3A shows Example 1, FIG. 3B shows Comparative Example 1-1, and FIG. 3C shows Comparative Example 1-2. In FIG. 3, (Ti 1-x Nb x ) 3 O 5 is abbreviated as TNO.

図3(a)に示すように、実施例1では、光学多層膜13の各層を基体11に近い方から順にL1〜L7層とする。実施例1では、奇数層を低屈折率材料の二酸化ケイ素(SiO)で形成するととともに、偶数層を高屈折率材料のニオブ含有亜酸化チタン((Ti1−xNb)で形成した。つまり、実施例1の光学多層膜13は、2元系の膜構成となっている。各層L1〜L7における屈折率、物理膜厚、光学膜厚は、図3(a)に示す通りである。As shown in FIG. 3A, in Example 1, the layers of the optical multilayer film 13 are L1 to L7 layers in order from the side closer to the substrate 11. In Example 1, the odd-numbered layer is formed of silicon dioxide (SiO 2 ) as a low-refractive index material, and the even-numbered layer is niobium-containing titanium suboxide ((Ti 1-x Nb x ) 3 O 5 ) as a high-refractive index material. Formed with. That is, the optical multilayer film 13 of Example 1 has a binary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L7 are as shown in FIG.

また、図3(b)に示すように、比較例1−1では、実施例1と同様に光学多層膜を7つの層L1〜L7で形成し、奇数層を低屈折率材料の二酸化ケイ素(SiO)、偶数層を高屈折率材料の二酸化ジルコニウム(ZrO)とした。比較例1−1の光学多層膜も2元系の膜構成となっている。各層L1〜L7における屈折率、物理膜厚、光学膜厚は、図3(b)に示す通りである。Further, as shown in FIG. 3B, in Comparative Example 1-1, an optical multilayer film is formed of seven layers L1 to L7 as in Example 1, and an odd layer is formed of silicon dioxide (low refractive index material). SiO 2 ), and even layers were made of zirconium dioxide (ZrO 2 ) as a high refractive index material. The optical multilayer film of Comparative Example 1-1 also has a binary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L7 are as shown in FIG.

また、図3(c)に示すように、比較例1−2では、導電性薄膜としてITO膜を更に挿入することにより、光学多層膜を8つの層L1〜L8で形成した。具体的には、L1,L3,L5,L8の各層を低屈折率材料の二酸化ケイ素(SiO)で形成し、L2,L4,L6の各層を高屈折率材料の二酸化ジルコニウム(ZrO)で形成し、L7の1層を酸化インジウムスズ(ITO)で形成した。比較例1−2の光学多層膜は3元系の膜構成となっている。各層L1〜L8における屈折率、物理膜厚、光学膜厚は、図3(c)に示す通りである。Further, as shown in FIG. 3C, in Comparative Example 1-2, an optical multilayer film was formed of eight layers L1 to L8 by further inserting an ITO film as a conductive thin film. Specifically, each layer of L1, L3, L5, and L8 is formed of silicon dioxide (SiO 2 ) as a low refractive index material, and each layer of L2, L4, and L6 is formed of zirconium dioxide (ZrO 2 ) as a high refractive index material. And one layer of L7 was formed of indium tin oxide (ITO). The optical multilayer film of Comparative Example 1-2 has a ternary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L8 are as shown in FIG.

図3のように光学多層膜を形成した実施例1および比較例1−1,1−2について、帯電防止性の有無に関する実験を次のように行った。すなわち、不織布(小津産業株式会社製「Pure Leaf」)を用いてレンズ凸面を1キログラム荷重で10秒間20往復擦った直後の帯電電位(キロボルト:kV)を測定するとともに、スチールウール片のレンズ凸面に対する付着の有無を観測した。帯電電位の測定は、静電気測定器(シムコジャパン株式会社製「FMX-003」)により行った。   With respect to Example 1 and Comparative Examples 1-1 and 1-2 in which an optical multilayer film was formed as shown in FIG. 3, an experiment regarding the presence or absence of antistatic properties was performed as follows. In other words, using a non-woven fabric (“Pure Leaf” manufactured by Ozu Sangyo Co., Ltd.), the charged potential (kilovolt: kV) immediately after rubbing the lens convex surface for 20 seconds with a 1 kilogram load for 20 seconds was measured, and the lens convex surface of the steel wool piece. The presence or absence of adhesion to was observed. The charged potential was measured with a static electricity meter (“FMX-003” manufactured by Simco Japan Co., Ltd.).

図4は、この帯電防止性に関する実験結果を示す図である。図4において、比較例1−1に示されるように、SiOとZrOとから成る2元系の膜構成では、不織布を擦り終わってから3分を経過しても帯電電位の絶対値はゼロに近づかず、スチールウール片はレンズ凸面に付着したままであった。これは、帯電防止性がないことを示している。FIG. 4 is a diagram showing experimental results regarding this antistatic property. In FIG. 4, as shown in Comparative Example 1-1, in the binary film structure composed of SiO 2 and ZrO 2 , the absolute value of the charging potential is 3 minutes after the non-woven fabric is rubbed. The steel wool piece remained attached to the convex surface of the lens without approaching zero. This indicates that there is no antistatic property.

一方、比較例1−2の場合は、不織布を擦り終わった直後から帯電電位の絶対値がゼロとなっており、スチールウール片はレンズ凸面に全く付着しなかった。これは、帯電防止性があることを示している。しかしながら、比較例1−2は、SiOとZrOとITOとから成る3元系の膜構成のため、蒸着装置の改造が必要という問題が生じる。On the other hand, in the case of Comparative Example 1-2, the absolute value of the charging potential was zero immediately after rubbing the nonwoven fabric, and the steel wool piece did not adhere to the convex surface of the lens at all. This indicates that there is antistatic properties. However, since Comparative Example 1-2 has a ternary film structure composed of SiO 2 , ZrO 2, and ITO, there is a problem that the vapor deposition apparatus needs to be modified.

これに対して、実施例1の場合は、SiOと(Ti1−xNbとから成る2元系の膜構成なので、蒸着装置の改造は不要である。しかも、不織布を擦り終わった直後から帯電電位の絶対値はかなり小さくて殆どゼロとなっており、1分を経過した時点で帯電電位はゼロとなっている。そのため、スチールウール片はレンズ凸面に付着しなかった。On the other hand, in the case of Example 1, since it is a binary film structure composed of SiO 2 and (Ti 1-x Nb x ) 3 O 5, it is not necessary to modify the vapor deposition apparatus. Moreover, the absolute value of the charging potential is fairly small and almost zero immediately after the rubbing of the nonwoven fabric, and the charging potential is zero when 1 minute has passed. Therefore, the steel wool piece did not adhere to the lens convex surface.

このように、光学多層膜13の薄膜材料としてニオブ含有亜酸化チタンを用いることにより、蒸着した薄膜はアモルファスであるが導電性が向上し、高い帯電防止性を得ることができることが分かった。また、蒸着した薄膜は結晶性のないアモルファス状態となるため、結晶性を高めるために成膜後に再加熱(アニール)処理を行う必要もない。   Thus, it was found that by using niobium-containing titanium suboxide as the thin film material of the optical multilayer film 13, the deposited thin film is amorphous, but the conductivity is improved and high antistatic properties can be obtained. Further, since the deposited thin film is in an amorphous state having no crystallinity, it is not necessary to perform a reheating (annealing) treatment after the film formation in order to improve crystallinity.

また、図3のように光学多層膜を形成した実施例1および比較例1−1,1−2について、反射率特性に関するシミュレーションを行った。図5は、その反射率特性に関するシミュレーション結果を示す図である。図5に示すように、実施例1および比較例1−1,1−2の何れにおいても、可視域となる波長範囲では反射率が低い値を示している。これにより、実施例1のように高屈折率層に(Ti1−xNbを用いた場合でも、眼鏡用レンズの視認性が低下しないことが分かった。Moreover, the simulation regarding a reflectance characteristic was performed about Example 1 and Comparative Examples 1-1 and 1-2 which formed the optical multilayer film like FIG. FIG. 5 is a diagram showing a simulation result regarding the reflectance characteristic. As shown in FIG. 5, in both Example 1 and Comparative Examples 1-1 and 1-2, the reflectance is low in the visible wavelength range. Thus, even with the (Ti 1-x Nb x) 3 O 5 to the high refractive index layer as in Example 1, the visibility of the ophthalmic lens is found not to decrease.

<実施例2>
図6は、実施例2に係る眼鏡用レンズを構成する光学多層膜13の膜構成と、比較例2−1,2−2に係る光学多層膜の膜構成とを示す図である。図6(a)が実施例2、図6(b)が比較例2−1、図6(c)が比較例2−2を示している。なお、図6においても、(Ti1−xNbはTNOと略記している。
<Example 2>
FIG. 6 is a diagram illustrating a film configuration of the optical multilayer film 13 constituting the eyeglass lens according to Example 2, and a film configuration of the optical multilayer film according to Comparative Examples 2-1 and 2-2. 6A shows Example 2, FIG. 6B shows Comparative Example 2-1, and FIG. 6C shows Comparative Example 2-2. In FIG. 6 as well, (Ti 1-x Nb x ) 3 O 5 is abbreviated as TNO.

図6(a)に示すように、実施例2では、光学多層膜13の各層を基体11に近い方から順にL1〜L5層とする。実施例2では、奇数層を低屈折率材料の二酸化ケイ素(SiO)で形成するととともに、偶数層を高屈折率材料のニオブ含有亜酸化チタン((Ti1−xNb)で形成した。つまり、実施例2の光学多層膜13も、2元系の膜構成となっている。各層L1〜L5における屈折率、物理膜厚、光学膜厚は、図6(a)に示す通りである。As shown in FIG. 6A, in Example 2, the layers of the optical multilayer film 13 are L1 to L5 layers in order from the side closer to the substrate 11. In Example 2, the odd-numbered layer is formed of silicon dioxide (SiO 2 ) as a low refractive index material, and the even-numbered layer is a niobium-containing titanium suboxide ((Ti 1-x Nb x ) 3 O 5 ) as a high refractive index material. Formed with. That is, the optical multilayer film 13 of Example 2 also has a binary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L5 are as shown in FIG.

また、図6(b)に示すように、比較例2−1では、実施例2と同様に光学多層膜を5つの層L1〜L5で形成し、奇数層を低屈折率材料の二酸化ケイ素(SiO)、偶数層を高屈折率材料の二酸化チタン(TiO)とした。比較例2の光学多層膜も2元系の膜構成となっている。各層L1〜L5における屈折率、物理膜厚、光学膜厚は、図6(b)に示す通りである。Further, as shown in FIG. 6B, in Comparative Example 2-1, an optical multilayer film is formed of five layers L1 to L5 as in Example 2, and an odd layer is formed of silicon dioxide (low refractive index material). SiO 2 ), and even layers were made of titanium dioxide (TiO 2 ) as a high refractive index material. The optical multilayer film of Comparative Example 2 also has a binary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L5 are as shown in FIG.

また、図6(c)に示すように、比較例2−2では、実施例2と同様に光学多層膜を5つの層L1〜L5で形成し、奇数層を低屈折率材料の二酸化ケイ素(SiO)、偶数層を高屈折率材料の二酸化ジルコニウム(ZrO)とした。比較例2−2の光学多層膜も2元系の膜構成となっている。各層L1〜L5における屈折率、物理膜厚、光学膜厚は、図6(c)に示す通りである。Further, as shown in FIG. 6C, in Comparative Example 2-2, the optical multilayer film is formed of five layers L1 to L5 as in Example 2, and the odd-numbered layer is formed of silicon dioxide (low refractive index material). SiO 2 ), and even layers were made of zirconium dioxide (ZrO 2 ) as a high refractive index material. The optical multilayer film of Comparative Example 2-2 also has a binary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L5 are as shown in FIG.

図6のように光学多層膜を形成した実施例2および比較例2−1,2−2について、実施例1と同様の方法により帯電防止性の有無に関する実験を行った。図7は、その帯電防止性に関する実験結果を示す図である。図7において、比較例2−1,2−2に示されるように、SiOとTiO、あるいはSiOとZrOから成る2元系の膜構成では、不織布を擦り終わってから3分を経過しても帯電電位の絶対値はゼロに近づかず、スチールウール片はレンズ凸面に付着したままであった。これは、帯電防止性がないことを示している。With respect to Example 2 and Comparative Examples 2-1 and 2-2 in which an optical multilayer film was formed as shown in FIG. 6, an experiment on the presence or absence of antistatic properties was performed by the same method as in Example 1. FIG. 7 is a diagram showing experimental results regarding the antistatic property. In FIG. 7, as shown in Comparative Examples 2-1 and 2-2, in the binary film configuration composed of SiO 2 and TiO 2 , or SiO 2 and ZrO 2 , 3 minutes after the non-woven fabric is rubbed. The absolute value of the charging potential did not approach zero even after the lapse of time, and the steel wool piece remained attached to the convex surface of the lens. This indicates that there is no antistatic property.

これに対して、実施例2の場合は、不織布を擦り終わった直後から帯電電位の絶対値はかなり小さくて殆どゼロとなっており、時間が経過するにつれてゼロに近づいている。そのため、スチールウール片はレンズ凸面に付着しなかった。このように、実施例2でも帯電防止性を呈していることが分かった。   On the other hand, in the case of Example 2, the absolute value of the charging potential is quite small and almost zero immediately after the rubbing of the nonwoven fabric, and approaches zero as time passes. Therefore, the steel wool piece did not adhere to the lens convex surface. Thus, it was found that Example 2 also exhibited antistatic properties.

また、図6のように光学多層膜を形成した実施例2および比較例2−1,2−2について、反射率特性に関するシミュレーションを行った。図8は、その反射率特性に関するシミュレーション結果を示す図である。図8に示すように、実施例2および比較例2−1,2−2の何れにおいても、可視域となる波長範囲では反射率が低い値を示している。これにより、実施例2のように高屈折率層に(Ti1−xNbを用いた場合でも、眼鏡用レンズの視認性が低下しないことが分かった。Further, a simulation regarding reflectance characteristics was performed for Example 2 and Comparative Examples 2-1 and 2-2 in which an optical multilayer film was formed as shown in FIG. FIG. 8 is a diagram showing a simulation result relating to the reflectance characteristic. As shown in FIG. 8, in any of Example 2 and Comparative Examples 2-1 and 2-2, the reflectance is low in the visible wavelength range. Thus, even with the (Ti 1-x Nb x) 3 O 5 to the high refractive index layer as in Example 2, the visibility of the ophthalmic lens is found not to decrease.

<実施例3>
図9は、実施例3に係るバンドパスフィルタを構成する光学多層膜13の膜構成を示す図である。また、図10は、比較例3に係る光学多層膜の膜構成を示す図である。なお、図9および図10においても、(Ti1−xNbはTNOと略記している。
<Example 3>
FIG. 9 is a diagram illustrating a film configuration of the optical multilayer film 13 constituting the bandpass filter according to the third embodiment. FIG. 10 is a diagram showing a film configuration of an optical multilayer film according to Comparative Example 3. 9 and 10, (Ti 1-x Nb x ) 3 O 5 is abbreviated as TNO.

図9に示すように、実施例3では、光学多層膜13の各層を基体11に近い方から順にL1〜L36層とする。実施例3では、奇数層を高屈折率材料のニオブ含有亜酸化チタン((Ti1−xNb)で形成するととともに、偶数層を低屈折率材料の二酸化ケイ素(SiO)で形成した。つまり、実施例3の光学多層膜13は、2元系の膜構成となっている。各層L1〜L36における屈折率、物理膜厚、光学膜厚、中心波長は、図9に示す通りである。As shown in FIG. 9, in Example 3, the layers of the optical multilayer film 13 are L1 to L36 layers in order from the side closer to the substrate 11. In Example 3, the odd layers of high refractive index material niobium-containing titanium suboxides with when formed of ((Ti 1-x Nb x ) 3 O 5), silicon dioxide even layer low refractive index material (SiO 2) Formed with. That is, the optical multilayer film 13 of Example 3 has a binary film configuration. The refractive index, physical film thickness, optical film thickness, and center wavelength in each of the layers L1 to L36 are as shown in FIG.

また、図10に示すように、比較例3では、実施例3と同様に光学多層膜を36個の層L1〜L36で形成し、奇数層を高屈折率材料の二酸化チタン(TiO)、偶数層を低屈折率材料の二酸化ケイ素(SiO)とした。比較例3の光学多層膜も2元系の膜構成となっている。各層L1〜L36における屈折率、物理膜厚、光学膜厚、中心波長は、図10に示す通りである。As shown in FIG. 10, in Comparative Example 3, the optical multilayer film is formed of 36 layers L1 to L36 as in Example 3, and the odd layer is made of titanium dioxide (TiO 2 ) as a high refractive index material, The even layer was made of silicon dioxide (SiO 2 ) as a low refractive index material. The optical multilayer film of Comparative Example 3 also has a binary film configuration. The refractive index, physical film thickness, optical film thickness, and center wavelength in each of the layers L1 to L36 are as shown in FIG.

図9、図10のように光学多層膜を形成した実施例3および比較例3について、帯電防止性の有無に関する実験を次のように行った。すなわち、不織布(小津産業株式会社製「Pure Leaf」)を用いて部品表面を1キログラム荷重で10秒間20往復擦った後、スチールウール片の部品表面に対する付着の有無を観測した。また、高抵抗率計(三菱化学製「Hiresta-UP」)により部品の表面抵抗値を測定した。印加電圧を500[V]、測定保持時間を30秒として表面抵抗値を測定し、これを3回行って平均値を算出した。   With respect to Example 3 and Comparative Example 3 in which an optical multilayer film was formed as shown in FIGS. 9 and 10, an experiment regarding the presence or absence of antistatic properties was performed as follows. That is, the surface of a component was rubbed 20 reciprocations for 10 seconds at a load of 1 kilogram using a nonwoven fabric (“Pure Leaf” manufactured by Ozu Sangyo Co., Ltd.), and the presence or absence of adhesion of a steel wool piece to the component surface was observed. In addition, the surface resistance of the parts was measured with a high resistivity meter (“Hiresta-UP” manufactured by Mitsubishi Chemical). The surface resistance value was measured with an applied voltage of 500 [V] and a measurement holding time of 30 seconds, and this was repeated three times to calculate an average value.

図11は、この帯電防止性に関する実験結果を示す図である。図11において、実施例3に示されるように、表面抵抗の平均値は1.74×1010[Ω/□]であり、不織布を擦り終わった直後からスチールウール片は部品表面に付着しなかった。一般に、膜の抵抗値が小さいほど導電性が高くなって帯電防止性が向上し、抵抗値が1011[Ω/□]以下であればほぼ確実に帯電防止性が得られることが知られている。よって、以上の実験結果は、実施例3が帯電防止性を呈していることを示している。FIG. 11 is a diagram showing experimental results regarding this antistatic property. In FIG. 11, as shown in Example 3, the average value of the surface resistance is 1.74 × 10 10 [Ω / □], and the steel wool piece does not adhere to the surface of the component immediately after the non-woven fabric is rubbed. It was. In general, it is known that the smaller the resistance value of the film, the higher the conductivity and the antistatic property, and the antistatic property can be obtained almost certainly if the resistance value is 10 11 [Ω / □] or less. Yes. Therefore, the above experimental results show that Example 3 exhibits antistatic properties.

これに対して、比較例3に示されるように、TiOとSiOとから成る2元系の膜構成では、スチールウール片は部品表面に付着したままであった。また、表面抵抗の平均値は4.84×1012[Ω/□]であった。このことは、比較例3は帯電防止性がないことを示している。On the other hand, as shown in Comparative Example 3, in the binary film configuration composed of TiO 2 and SiO 2 , the steel wool piece remained attached to the part surface. The average value of the surface resistance was 4.84 × 10 12 [Ω / □]. This indicates that Comparative Example 3 has no antistatic property.

また、実施例3および比較例3について、反射率特性に関するシミュレーションを行った。図12は、その反射率特性に関するシミュレーション結果を示す図である。図12に示すように、実施例3および比較例3の何れにおいても、所望の波長範囲で反射率が低い値を示している。これにより、実施例3および比較例3の何れの場合も、所望のバンドパスフィルタ特性が得られることが分かった。   Moreover, about Example 3 and the comparative example 3, the simulation regarding a reflectance characteristic was performed. FIG. 12 is a diagram illustrating a simulation result regarding the reflectance characteristic. As shown in FIG. 12, in both Example 3 and Comparative Example 3, the reflectance is low in the desired wavelength range. As a result, it was found that the desired bandpass filter characteristics were obtained in both cases of Example 3 and Comparative Example 3.

<実施例4>
図13は、実施例4に係るハーフミラーを構成する光学多層膜13の膜構成と、比較例4に係る光学多層膜の膜構成とを示す図である。図13(a)が実施例4、図13(b)が比較例4を示している。なお、図13においても、(Ti1−xNbはTNOと略記している。
<Example 4>
FIG. 13 is a diagram illustrating a film configuration of the optical multilayer film 13 constituting the half mirror according to Example 4 and a film configuration of the optical multilayer film according to Comparative Example 4. FIG. 13A shows Example 4 and FIG. 13B shows Comparative Example 4. In FIG. 13 as well, (Ti 1-x Nb x ) 3 O 5 is abbreviated as TNO.

図13(a)に示すように、実施例4では、光学多層膜13の各層を基体11に近い方から順にL1〜L12層とする。実施例4では、奇数層を高屈折率材料のニオブ含有亜酸化チタン((Ti1−xNb)で形成するととともに、偶数層を低屈折率材料の二酸化ケイ素(SiO)で形成した。つまり、実施例4の光学多層膜13は、2元系の膜構成となっている。各層L1〜L12における屈折率、物理膜厚、光学膜厚、中心波長は、図13(a)に示す通りである。As shown in FIG. 13A, in Example 4, the layers of the optical multilayer film 13 are L1 to L12 layers in order from the side closer to the substrate 11. In Example 4, the odd layers of high refractive index material niobium-containing titanium suboxides with when formed of ((Ti 1-x Nb x ) 3 O 5), silicon dioxide even layer low refractive index material (SiO 2) Formed with. That is, the optical multilayer film 13 of Example 4 has a binary film configuration. The refractive index, physical film thickness, optical film thickness, and center wavelength in each of the layers L1 to L12 are as shown in FIG.

また、図13(b)に示すように、比較例4では、実施例4と同様に光学多層膜を12個の層L1〜L12で形成し、奇数層を高屈折率材料の二酸化チタン(TiO)、偶数層を低屈折率材料の二酸化ケイ素(SiO)とした。比較例4の光学多層膜も2元系の膜構成となっている。各層L1〜L12における屈折率、物理膜厚、光学膜厚、中心波長は、図13(b)に示す通りである。Further, as shown in FIG. 13B, in Comparative Example 4, the optical multilayer film is formed of 12 layers L1 to L12 as in Example 4, and the odd-numbered layer is made of titanium dioxide (TiO 2) of a high refractive index material. 2 ) The even layer was made of silicon dioxide (SiO 2 ) as a low refractive index material. The optical multilayer film of Comparative Example 4 also has a binary film configuration. The refractive index, physical film thickness, optical film thickness, and center wavelength in each of the layers L1 to L12 are as shown in FIG.

図13のように光学多層膜を形成した実施例4および比較例4について、実施例3と同様の方法により帯電防止性の有無に関する実験を行った。図14は、この帯電防止性に関する実験結果を示す図である。図14において、比較例4に示されるように、TiOとSiOとから成る2元系の膜構成では、スチールウール片は部品表面に付着したままであった。また、表面抵抗値は大き過ぎて測定不能であった。これは、比較例4は帯電防止性がないことを示している。For Example 4 and Comparative Example 4 in which an optical multilayer film was formed as shown in FIG. 13, an experiment was conducted regarding the presence or absence of antistatic properties by the same method as in Example 3. FIG. 14 is a diagram showing experimental results regarding this antistatic property. In FIG. 14, as shown in Comparative Example 4, in the binary film configuration composed of TiO 2 and SiO 2 , the steel wool piece remained attached to the part surface. Further, the surface resistance value was too large to be measured. This indicates that Comparative Example 4 has no antistatic property.

これに対して、実施例4の場合は、表面抵抗の平均値は3.18×1012[Ω/□]であり、不織布を擦り終わった直後からスチールウール片は部品表面に付着しなかった。表面抵抗値が1011[Ω/□]以上となっているが、スチールウール片が部品表面に付着しなかったことから、実施例4は帯電防止性を有していることを示している。On the other hand, in the case of Example 4, the average value of the surface resistance was 3.18 × 10 12 [Ω / □], and the steel wool piece did not adhere to the surface of the component immediately after rubbing the nonwoven fabric. . Although the surface resistance value is 10 11 [Ω / □] or more, since the steel wool piece did not adhere to the surface of the part, Example 4 shows that it has antistatic properties.

また、実施例4および比較例4について、反射率特性に関するシミュレーションを行った。図15は、その反射率特性に関するシミュレーション結果を示す図である。図15に示すように、実施例4および比較例4の何れにおいても、殆どの波長範囲では反射率が高い値を示している。これにより、実施例4および比較例4の何れの場合も、ハーフミラーの特性が得られることが分かった。   Moreover, about Example 4 and the comparative example 4, the simulation regarding a reflectance characteristic was performed. FIG. 15 is a diagram showing a simulation result related to the reflectance characteristic. As shown in FIG. 15, in both Example 4 and Comparative Example 4, the reflectance is high in most wavelength ranges. Thus, it was found that the characteristics of the half mirror can be obtained in both cases of Example 4 and Comparative Example 4.

以上詳しく説明したように、本実施形態では、基体11の表面に光学多層膜13を蒸着加工して成る光学部品において、光学多層膜13のうち高屈折率層の薄膜の材料をニオブ含有亜酸化チタンにより形成した。これにより、ニオブ含有亜酸化チタンを蒸着して形成された薄膜はアモルファス状態となるが高い導電性を有し、高い帯電防止性を得ることができる。また、アモルファスであるため、結晶性を高めるために成膜後に再加熱(アニール)処理を行う必要もない。さらに、ITO等の導電性薄膜を挿入する必要がないので、光学多層膜13は低屈折率層と高屈折率層とを交互に積層させた2元系の膜構成となる。これにより、高熱に弱い基体11の表面に成膜を行った後に再加熱を行うことなく、かつ、3種類の材料を扱うために蒸着装置を改造することなく、帯電防止効果の高い光学部品を得ることができる。   As described above in detail, in this embodiment, in the optical component formed by vapor-depositing the optical multilayer film 13 on the surface of the substrate 11, the thin film material of the high refractive index layer in the optical multilayer film 13 is converted to niobium-containing suboxide. Made of titanium. Thereby, although the thin film formed by vapor-depositing niobium containing titanium suboxide will be in an amorphous state, it has high electroconductivity and can obtain high antistatic property. Further, since it is amorphous, it is not necessary to perform reheating (annealing) after film formation in order to improve crystallinity. Furthermore, since it is not necessary to insert a conductive thin film such as ITO, the optical multilayer film 13 has a binary film configuration in which low refractive index layers and high refractive index layers are alternately laminated. Accordingly, an optical component having a high antistatic effect can be obtained without performing reheating after film formation on the surface of the substrate 11 that is vulnerable to high heat, and without modifying the vapor deposition apparatus to handle three types of materials. Can be obtained.

なお、上記実施形態では、光学部品の例として眼鏡用レンズ、バンドパスフィルタ、ハーフミラーの3つを挙げて説明したが、本発明はこれに限定されない。例えば、眼鏡用以外のレンズ、バンドパスフィルタ以外のフィルタ、ハーフミラー以外のミラー、ビームスプリッタ、プリズム、偏光素子、波長板、遮光板、スリガラスなど、他の光学部品に適用することも可能である。   In the above embodiment, three examples of spectacle lenses, a band-pass filter, and a half mirror have been described as examples of optical components, but the present invention is not limited to this. For example, it can be applied to other optical components such as lenses other than glasses, filters other than bandpass filters, mirrors other than half mirrors, beam splitters, prisms, polarizing elements, wave plates, light shielding plates, and ground glass. .

また、上記実施形態では、光学部品の構成として、図1に示すように基体11、ハードコート膜12、光学多層膜13および防汚膜14を備える例について説明したが、本発明はこれに限定されない。すなわち、基体11と光学多層膜13は必須の構成として、ハードコート膜12および防汚膜14については、上記のような種々の光学部品の用途に合わせて必要なものを用いればよい。   Moreover, although the said embodiment demonstrated the example provided with the base | substrate 11, the hard-coat film | membrane 12, the optical multilayer film 13, and the antifouling film | membrane 14 as a structure of an optical component as shown in FIG. 1, this invention is limited to this. Not. In other words, the base 11 and the optical multilayer film 13 are essential components, and the hard coat film 12 and the antifouling film 14 may be used in accordance with the applications of the various optical parts as described above.

その他、上記実施形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   In addition, the said embodiment is only what showed the example in implementation in implementing this invention, and, as a result, the technical scope of this invention should not be interpreted limitedly. That is, the present invention can be implemented in various forms without departing from the gist or the main features thereof.

11 基体
12 ハードコート膜
13 光学多層膜
14 防汚膜
11 Substrate 12 Hard coat film 13 Optical multilayer film 14 Antifouling film

【0003】
[0010]
上記した課題を解決するために、本発明では、基体の表面に光学多層膜を蒸着加工して成る光学部品において、光学多層膜のうち高屈折率層の材料を、チタンとニオブとを成分として含む酸素欠損を有する金属酸化物の溶融体(ニオブ含有亜酸化チタンという)により形成している。すなわち、本発明では、ニオブ含有亜酸化チタンから成る材料を用いて基体の表面に蒸着法で成膜することによって光学部品を構成している。
[0011]
上記のように構成した本発明によれば、光学多層膜のうち高屈折率層については、チタンに対してニオブが少量ドープされた金属酸化物が用いられているので、チタン100%の酸化物や他の高屈折率物質を用いる場合よりも導電性が向上し、高い帯電防止性を得ることができる。また、このような性質を有するニオブ含有亜酸化チタンから成る材料を蒸着法で成膜した場合、薄膜は結晶性のないアモルファス状態であるが導電性を有しているため、結晶性を高めるために成膜後に再加熱処理を行う必要がない。さらに、ITO等の導電性薄膜を挿入する必要がないので、光学多層膜は低屈折率層と高屈折率層とを交互に積層させた2元系の膜構成となる。これにより、基体の表面に成膜を行った後に再加熱処理を行うことなく、かつ、3種類の材料を扱うために蒸着装置を改造することなく、帯電防止効果の高い光学部品を得ることができる。
図面の簡単な説明
[0012]
[図1]本実施形態による光学部品の構成例を示す図である。
[図2]本実施形態のニオブ含有亜酸化チタンに対してX線回折分析を行った実験結果を示す図である。
[図3]眼鏡用レンズに関する実施例1および比較例1−1,1−2に係る光学多層膜の膜構成を示す図である。
[図4]眼鏡用レンズに関する実施例1および比較例1−1,1−2に係る光学多層膜の帯電防止性に関する実験結果を示す図である。
[図5]眼鏡用レンズに関する実施例1および比較例1−1,1−2に係る光学多層膜の反射率特性に関するシミュレーション結果を示す図である。
[図6]眼鏡用レンズに関する実施例2および比較例2−1,2−2に係る光学
[0003]
[0010]
In order to solve the above problems, in the present invention, in an optical component formed by vapor-depositing an optical multilayer film on the surface of a substrate, the material of the high refractive index layer of the optical multilayer film is composed of titanium and niobium as components. It is formed of a metal oxide melt containing oxygen vacancies (referred to as niobium-containing titanium suboxide). That is, in the present invention, an optical component is configured by forming a film on the surface of a substrate by a vapor deposition method using a material made of niobium-containing titanium suboxide.
[0011]
According to the present invention configured as described above, a metal oxide in which niobium is doped in a small amount with respect to titanium is used for the high refractive index layer in the optical multilayer film. As compared with the case of using other high refractive index substances, the conductivity is improved and high antistatic properties can be obtained. In addition, when a material composed of niobium-containing titanium suboxide having such properties is deposited by a vapor deposition method, the thin film is in an amorphous state without crystallinity but has conductivity, so that the crystallinity is improved. In addition, it is not necessary to perform reheating after film formation. Furthermore, since it is not necessary to insert a conductive thin film such as ITO, the optical multilayer film has a binary film structure in which low refractive index layers and high refractive index layers are alternately laminated. As a result, it is possible to obtain an optical component having a high antistatic effect without performing reheating after film formation on the surface of the substrate and without modifying the vapor deposition apparatus to handle three types of materials. it can.
BRIEF DESCRIPTION OF THE DRAWINGS [0012]
FIG. 1 is a diagram showing a configuration example of an optical component according to the present embodiment.
FIG. 2 is a diagram showing experimental results obtained by performing X-ray diffraction analysis on the niobium-containing titanium suboxide of the present embodiment.
FIG. 3 is a diagram showing a film configuration of an optical multilayer film according to Example 1 and Comparative Examples 1-1 and 1-2 for a spectacle lens.
FIG. 4 is a diagram showing experimental results on antistatic properties of the optical multilayer films according to Example 1 and Comparative Examples 1-1 and 1-2 for eyeglass lenses.
FIG. 5 is a diagram showing simulation results regarding the reflectance characteristics of the optical multilayer film according to Example 1 and Comparative Examples 1-1 and 1-2 regarding a spectacle lens.
[FIG. 6] Optics according to Example 2 and Comparative Examples 2-1 and 2-2 regarding spectacle lenses.

【0009】
ラム荷重で10秒間20往復擦った直後の帯電電位(キロボルト:kV)を測定するとともに、スチールウール片のレンズ凸面に対する付着の有無を観測した。帯電電位の測定は、静電気測定器(シムコジャパン株式会社製「FMX−003」)により行った。
[0034]
図4は、この帯電防止性に関する実験結果を示す図である。図4において、比較例1−1に示されるように、SiOとZrOとから成る2元系の膜構成では、不織布を擦り終わってから3分を経過しても帯電電位の絶対値はゼロに近づかず、スチールウール片はレンズ凸面に付着したままであった。これは、帯電防止性がないことを示している。
[0035]
一方、比較例1−2の場合は、不織布を擦り終わった直後から帯電電位の絶対値がゼロとなっており、スチールウール片はレンズ凸面に全く付着しなかった。これは、帯電防止性があることを示している。しかしながら、比較例1−2は、SiOとZrOとITOとから成る3元系の膜構成のため、蒸着装置の改造が必要という問題が生じる。
[0036]
これに対して、実施例1の場合は、SiOと(Ti1−xNbとから成る2元系の膜構成なので、蒸着装置の改造は不要である。しかも、不織布を擦り終わった直後から帯電電位の絶対値はかなり小さくて殆どゼロとなっており、1分を経過した時点で帯電電位はゼロとなっている。そのため、スチールウール片はレンズ凸面に付着しなかった。
[0037]
このように、光学多層膜13の薄膜材料としてニオブ含有亜酸化チタンを用いることにより、蒸着した薄膜はアモルファスであるが導電性が向上し、高い帯電防止性を得ることができることが分かった。また、蒸着した薄膜は結晶性のないアモルファス状態であるが導電性を有しているため、結晶性を高めるために成膜後に再加熱(アニール)処理を行う必要もない。
[0038]
また、図3のように光学多層膜を形成した実施例1および比較例1−1,1−2について、反射率特性に関するシミュレーションを行った。図5は、その反射率特性に関するシミュレーション結果を示す図である。図5に示すように、実施例1および比較例1−1,1−2の何れにおいても、可視域と
[0009]
The charging potential (kilovolt: kV) immediately after rubbing for 20 seconds with a ram load for 20 seconds was measured, and the presence or absence of adhesion of the steel wool piece to the lens convex surface was observed. The charged potential was measured with a static electricity meter ("FMX-003" manufactured by Simco Japan Co., Ltd.).
[0034]
FIG. 4 is a diagram showing experimental results regarding this antistatic property. In FIG. 4, as shown in Comparative Example 1-1, in the binary film structure composed of SiO 2 and ZrO 2 , the absolute value of the charging potential is 3 minutes after the non-woven fabric is rubbed. The steel wool piece remained attached to the convex surface of the lens without approaching zero. This indicates that there is no antistatic property.
[0035]
On the other hand, in the case of Comparative Example 1-2, the absolute value of the charging potential was zero immediately after rubbing the nonwoven fabric, and the steel wool piece did not adhere to the convex surface of the lens at all. This indicates that there is antistatic properties. However, since Comparative Example 1-2 has a ternary film structure composed of SiO 2 , ZrO 2, and ITO, there is a problem that the vapor deposition apparatus needs to be modified.
[0036]
On the other hand, in the case of Example 1, since it is a binary film structure composed of SiO 2 and (Ti 1-x Nb x ) 3 O 5, it is not necessary to modify the vapor deposition apparatus. Moreover, the absolute value of the charging potential is fairly small and almost zero immediately after the rubbing of the nonwoven fabric, and the charging potential is zero when 1 minute has passed. Therefore, the steel wool piece did not adhere to the lens convex surface.
[0037]
Thus, it was found that by using niobium-containing titanium suboxide as the thin film material of the optical multilayer film 13, the deposited thin film is amorphous, but the conductivity is improved and high antistatic properties can be obtained. In addition, the deposited thin film is in an amorphous state with no crystallinity but has conductivity, so that it is not necessary to perform a reheating (annealing) treatment after the film formation in order to improve crystallinity.
[0038]
Moreover, the simulation regarding a reflectance characteristic was performed about Example 1 and Comparative Examples 1-1 and 1-2 which formed the optical multilayer film like FIG. FIG. 5 is a diagram showing a simulation result regarding the reflectance characteristic. As shown in FIG. 5, in any of Example 1 and Comparative Examples 1-1 and 1-2, the visible region and

本発明は光学部品に関し、特に、チタン酸化物を成分として含む蒸着材料を光学多層膜の一部に用いた光学部品に関するものである。   The present invention relates to an optical component, and more particularly to an optical component using a vapor deposition material containing titanium oxide as a component as a part of an optical multilayer film.

一般に、レンズ、プリズム、ミラー、フィルタ等のプラスチック製の光学部品では、静電気が発生しやすく、ゴミや埃などの汚れが光学部品に付着しやすい。汚れが付着した状態で光学部品の拭き上げを行うと、汚れが原因となって部品表面にキズがついてしまう。また、汚れの付着により透過性や反射性が悪くなるなど、光学部品の性能面にも悪影響を及ぼしてしまう。   In general, plastic optical parts such as lenses, prisms, mirrors, and filters tend to generate static electricity, and dirt such as dust and dust tends to adhere to the optical parts. If the optical component is wiped off with the dirt attached, the surface of the component is scratched due to the dirt. Further, the performance and performance of the optical component is adversely affected, for example, the permeability and reflectivity deteriorate due to the adhesion of dirt.

そこで、従来、光学部品に対する汚れの付着を防ぐために、静電気の発生を抑制(帯電を抑制)することを目的として、光学部品の表面に薄くコーティングされる光学多層膜に導電性薄膜を挿入することが行われている。なお、用途によっては高い透光性を確保することも必要である。その場合、光学部品に帯電防止性を持たせるための薄膜形成に用いる材料としては、高い導電性と高い透光性とを両立可能な材料を用いることが必要となる。そのため、導電性薄膜の材料としては、ITO(酸化インジウムスズ)、SnO(酸化スズ)、ZnO(酸化亜鉛)などが用いられていた。   Therefore, conventionally, in order to prevent dirt from adhering to the optical component, a conductive thin film is inserted into the optical multilayer film that is thinly coated on the surface of the optical component in order to suppress the generation of static electricity (suppress charging). Has been done. Depending on the application, it is also necessary to ensure high translucency. In that case, as a material used for forming a thin film for imparting antistatic properties to the optical component, it is necessary to use a material that can achieve both high conductivity and high light transmission. For this reason, ITO (indium tin oxide), SnO (tin oxide), ZnO (zinc oxide), and the like have been used as the material for the conductive thin film.

このような光学薄膜の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、CVD法、ゾルゲル法、PLD法などが挙げられる。中でも真空蒸着法は、膜材料の変更や膜を付ける基材の変更に同じ装置でも容易に対応可能であるほか、成膜速度が速いため処理時間が短く、他の方法に比べて低コストを実現しやすいといった利点を有することから、光学部品を始め多くの産業分野で用いられている。   Examples of the method for forming such an optical thin film include a vacuum deposition method, a sputtering method, an ion plating method, a CVD method, a sol-gel method, and a PLD method. In particular, the vacuum deposition method can easily handle changes in the film material and the base material to which the film is attached, using the same equipment, and the film formation speed is fast, so the processing time is short and the cost is lower than other methods. Since it has the advantage of being easily realized, it is used in many industrial fields including optical components.

チタン酸化物は高屈折率を有する透明薄膜材料の代表的な物質で、レンズのコーティング材料として一般的に蒸着法でも用いられている。なお、アナターゼ型の酸化チタン(TiO)にニオブ(Nb)を少量(0.1mol%〜20mol%)ドープさせると、酸化チタン100%よりも導電性が向上することが知られている(例えば、特許文献1参照)。この特許文献1には、アナターゼ型結晶構造を有するニオブ含有酸化チタン(Nb:TiO)の焼結体を薄膜形成用の材料として用い、これをPLD法でディスプレイパネル等の基材に蒸着させることにより、透明導電膜として利用することが記載されている。 Titanium oxide is a representative material of a transparent thin film material having a high refractive index, and is generally used in a vapor deposition method as a lens coating material. In addition, it is known that when anatase-type titanium oxide (TiO 2 ) is doped with niobium (Nb) in a small amount (0.1 mol% to 20 mol%), the conductivity is improved as compared with 100% titanium oxide (for example, , See Patent Document 1). In this patent document 1, a sintered body of niobium-containing titanium oxide (Nb: TiO 2 ) having an anatase type crystal structure is used as a material for forming a thin film, and this is deposited on a substrate such as a display panel by a PLD method. Thus, it is described that it is used as a transparent conductive film.

WO2006/016608公報WO2006 / 016608

アナターゼ型結晶構造を有するニオブ含有酸化チタン(Nb:TiO)の膜を用いる場合、導電性を向上させるために、コーティングした薄膜の結晶性を高めることが必要である。そのため、成膜後に再加熱(アニール)を行うことで結晶性を高めることが行われている。しかしながら、プラスチック製の光学部品の場合、成膜後に再加熱を行うと、プラスチックが溶けてしまうため、再加熱による結晶性を高める手法は適用することができないという問題があった。 When a niobium-containing titanium oxide (Nb: TiO 2 ) film having an anatase type crystal structure is used, it is necessary to increase the crystallinity of the coated thin film in order to improve conductivity. Therefore, the crystallinity is improved by performing reheating (annealing) after film formation. However, in the case of an optical component made of plastic, there is a problem that a technique for improving crystallinity by reheating cannot be applied because the plastic melts when reheating is performed after film formation.

一方、上述したように、光学部品の表面にコーティングされる光学多層膜に導電性薄膜(ITO、SnO、ZnOなどを材料とする膜)を挿入する方法もあるが、この方法では、蒸着装置の改造が必要になるという問題があった。すなわち、光学多層膜は、低屈折率層と高屈折率層とを交互に積層させて形成されており、通常は2種類の材料(例えば、SiOとこれより屈折率の高いTiO)から成る2元系の膜構成となっている。これに更にITO膜などを挿入すると、3元系の膜構成となり、3元系を扱うために蒸着装置を改造しなければならなくなる。 On the other hand, as described above, there is a method of inserting a conductive thin film (film made of ITO, SnO, ZnO, etc.) into an optical multilayer film coated on the surface of an optical component. There was a problem that remodeling was necessary. That is, the optical multilayer film is formed by alternately laminating a low refractive index layer and a high refractive index layer, and is usually made of two kinds of materials (for example, SiO 2 and TiO 2 having a higher refractive index than this). It has a binary film structure. If an ITO film or the like is further inserted into this, a ternary film structure is formed, and the vapor deposition apparatus must be modified to handle the ternary system.

本発明は、このような問題を解決するために成されたものであり、成膜後に再加熱を行うといった結晶性を高める手法を適用することなく、かつ、3種類の材料を扱うために蒸着装置を改造することなく、帯電防止効果の高い光学部品を得ることができるようにすることを目的とする。   The present invention has been made to solve such a problem, and does not apply a technique for enhancing crystallinity such as reheating after film formation, and is vapor-deposited to handle three kinds of materials. It is an object of the present invention to obtain an optical component having a high antistatic effect without modifying the apparatus.

上記した課題を解決するために、本発明では、基体の表面に光学多層膜を蒸着加工して成る光学部品において、光学多層膜のうち高屈折率層の材料を、チタンとニオブとを成分として含む酸素欠損を有する金属酸化物の溶融体(ニオブ含有亜酸化チタンという)により形成し、当該材料を蒸着して形成される薄膜を、結晶性がなく、X線の入射角度によらず反射波に強度のピークが現れないアモルファス状態としている。すなわち、本発明では、ニオブ含有亜酸化チタンから成る材料を用いて基体の表面に蒸着法で成膜することによって光学部品を構成している。 In order to solve the above problems, in the present invention, in an optical component formed by vapor-depositing an optical multilayer film on the surface of a substrate, the material of the high refractive index layer of the optical multilayer film is composed of titanium and niobium as components. A thin film formed from a metal oxide melt (referred to as niobium-containing titanium suboxide) containing oxygen vacancies and deposited with the material, has no crystallinity and has a reflected wave regardless of the X-ray incident angle. In the amorphous state, no intensity peak appears . That is, in the present invention, an optical component is configured by forming a film on the surface of a substrate by a vapor deposition method using a material made of niobium-containing titanium suboxide.

上記のように構成した本発明によれば、光学多層膜のうち高屈折率層については、チタンに対してニオブが少量ドープされた金属酸化物が用いられているので、チタン100%の酸化物や他の高屈折率物質を用いる場合よりも導電性が向上し、高い帯電防止性を得ることができる。また、このような性質を有するニオブ含有亜酸化チタンから成る材料を蒸着法で成膜した場合、薄膜は結晶性のないアモルファス状態であるが導電性を有しているため、結晶性を高めるために成膜後に再加熱処理を行う必要がない。さらに、ITO等の導電性薄膜を挿入する必要がないので、光学多層膜は低屈折率層と高屈折率層とを交互に積層させた2元系の膜構成となる。これにより、基体の表面に成膜を行った後に再加熱処理を行うことなく、かつ、3種類の材料を扱うために蒸着装置を改造することなく、帯電防止効果の高い光学部品を得ることができる。   According to the present invention configured as described above, a metal oxide in which niobium is doped in a small amount with respect to titanium is used for the high refractive index layer in the optical multilayer film. As compared with the case of using other high refractive index substances, the conductivity is improved and high antistatic properties can be obtained. In addition, when a material composed of niobium-containing titanium suboxide having such properties is deposited by a vapor deposition method, the thin film is in an amorphous state without crystallinity but has conductivity, so that the crystallinity is improved. In addition, it is not necessary to perform reheating after film formation. Furthermore, since it is not necessary to insert a conductive thin film such as ITO, the optical multilayer film has a binary film structure in which low refractive index layers and high refractive index layers are alternately laminated. As a result, it is possible to obtain an optical component having a high antistatic effect without performing reheating after film formation on the surface of the substrate and without modifying the vapor deposition apparatus to handle three types of materials. it can.

本実施形態による光学部品の構成例を示す図である。It is a figure which shows the structural example of the optical component by this embodiment. 本実施形態のニオブ含有亜酸化チタンに対してX線回折分析を行った実験結果を示す図である。It is a figure which shows the experimental result which performed the X-ray diffraction analysis with respect to the niobium containing titanium suboxide of this embodiment. 眼鏡用レンズに関する実施例1および比較例1−1,1−2に係る光学多層膜の膜構成を示す図である。It is a figure which shows the film | membrane structure of the optical multilayer film which concerns on Example 1 regarding the spectacles lens, and Comparative Examples 1-1 and 1-2. 眼鏡用レンズに関する実施例1および比較例1−1,1−2に係る光学多層膜の帯電防止性に関する実験結果を示す図である。It is a figure which shows the experimental result regarding the antistatic property of the optical multilayer film concerning Example 1 and Comparative Examples 1-1 and 1-2 regarding the lens for spectacles. 眼鏡用レンズに関する実施例1および比較例1−1,1−2に係る光学多層膜の反射率特性に関するシミュレーション結果を示す図である。It is a figure which shows the simulation result regarding the reflectance characteristic of the optical multilayer film which concerns on Example 1 and Comparative Examples 1-1 and 1-2 regarding the lens for spectacles. 眼鏡用レンズに関する実施例2および比較例2−1,2−2に係る光学多層膜の膜構成を示す図である。It is a figure which shows the film | membrane structure of the optical multilayer film which concerns on Example 2 and Comparative Examples 2-1 and 2-2 regarding the lens for spectacles. 眼鏡用レンズに関する実施例2および比較例2−1,2−2に係る光学多層膜の帯電防止性に関する実験結果を示す図である。It is a figure which shows the experimental result regarding the antistatic property of the optical multilayer film which concerns on Example 2 and Comparative Examples 2-1 and 2-2 regarding the lens for spectacles. 眼鏡用レンズに関する実施例2および比較例2−1,2−2に係る光学多層膜の反射率特性に関するシミュレーション結果を示す図である。It is a figure which shows the simulation result regarding the reflectance characteristic of the optical multilayer film which concerns on Example 2 and Comparative Examples 2-1 and 2-2 regarding the lens for spectacles. バンドパスフィルタに関する実施例3に係る光学多層膜の膜構成を示す図である。It is a figure which shows the film | membrane structure of the optical multilayer film concerning Example 3 regarding a band pass filter. バンドパスフィルタに関する比較例3に係る光学多層膜の膜構成を示す図である。It is a figure which shows the film | membrane structure of the optical multilayer film which concerns on the comparative example 3 regarding a band pass filter. バンドパスフィルタに関する実施例3および比較例3に係る光学多層膜の帯電防止性に関する実験結果を示す図である。It is a figure which shows the experimental result regarding the antistatic property of the optical multilayer film which concerns on Example 3 and the comparative example 3 regarding a band pass filter. バンドパスフィルタに関する実施例3および比較例3に係る光学多層膜の反射率特性に関するシミュレーション結果を示す図である。It is a figure which shows the simulation result regarding the reflectance characteristic of the optical multilayer film which concerns on Example 3 and Comparative Example 3 regarding a band pass filter. ハーフミラーに関する実施例4および比較例4に係る光学多層膜の膜構成を示す図である。It is a figure which shows the film | membrane structure of the optical multilayer film which concerns on Example 4 and the comparative example 4 regarding a half mirror. ハーフミラーに関する実施例4および比較例4に係る光学多層膜の帯電防止性に関する実験結果を示す図である。It is a figure which shows the experimental result regarding the antistatic property of the optical multilayer film which concerns on Example 4 and the comparative example 4 regarding a half mirror. ハーフミラーに関する実施例4および比較例4に係る光学多層膜の反射率特性に関するシミュレーション結果を示す図である。It is a figure which shows the simulation result regarding the reflectance characteristic of the optical multilayer film which concerns on Example 4 and the comparative example 4 regarding a half mirror.

以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態による光学部品の構成例を示す図である。図1に示すように、本実施形態の光学部品は、基体11の表面に、ハードコート膜12、光学多層膜13および防汚膜14を、基体11からこの順で形成している。図1は光学部品の構成例を模擬的に表わしたものであり、基体11の実際の厚みおよび各膜12〜14の実際の厚みを正確な比率で表したものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of the optical component according to the present embodiment. As shown in FIG. 1, in the optical component of this embodiment, a hard coat film 12, an optical multilayer film 13, and an antifouling film 14 are formed in this order from the base 11 on the surface of the base 11. FIG. 1 schematically shows a configuration example of an optical component, and does not represent the actual thickness of the substrate 11 and the actual thickness of each of the films 12 to 14 in an accurate ratio.

なお、基体11の表面とハードコート膜12との間にプライマー層を形成したり、基体11の表面とハードコート膜12との間、ハードコート膜12と光学多層膜13の間、あるいは光学多層膜13と防汚膜14との間などに中間層を形成したりするなど、膜構成を他のものに変更してもよい。また、基体11の裏面あるいは表裏両面に、ハードコート膜12や光学多層膜13などを形成しても良い。   A primer layer is formed between the surface of the substrate 11 and the hard coat film 12, or between the surface of the substrate 11 and the hard coat film 12, between the hard coat film 12 and the optical multilayer film 13, or optical multilayer. For example, an intermediate layer may be formed between the film 13 and the antifouling film 14 or the like. Further, the hard coat film 12 or the optical multilayer film 13 may be formed on the back surface or both the front and back surfaces of the substrate 11.

基体11の材料(基材)としては、例えば、ポリウレタン樹脂、エピスルフィド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、アクリル樹脂、ポリエーテルサルホン樹脂、ポリ4−メチルペンテン−1樹脂、ジエチルグリコールビスアリルカーボネート樹脂などが挙げられる。また、屈折率が高く好適なものとして、例えば、ポリイソシアネート化合物とポリチオールおよび/または含硫黄ポリオールとを付加重合して得られるポリウレタン樹脂を挙げることができる。さらに屈折率が高く好適なものとして、エピスルフィド基とポリチオールおよび/または含硫黄ポリオールとを付加重合して得られるエピスルフィド樹脂を挙げることができる。   Examples of the material (base material) of the substrate 11 include polyurethane resin, episulfide resin, polycarbonate resin, polyester resin, acrylic resin, polyether sulfone resin, poly-4-methylpentene-1 resin, diethyl glycol bisallyl carbonate resin, and the like. Is mentioned. Moreover, as a suitable thing with a high refractive index, the polyurethane resin obtained by addition-polymerizing a polyisocyanate compound, a polythiol, and / or a sulfur-containing polyol can be mentioned, for example. Furthermore, as a suitable thing with a high refractive index, the episulfide resin obtained by addition-polymerizing an episulfide group and a polythiol and / or sulfur-containing polyol can be mentioned.

ハードコート膜12は、基体11にハードコート液を、ディッピング法やスピンコート法、スプレー法などの公知の方法により均一に施して形成する。ハードコート膜12の材料としては、例えば、無機酸化物微粒子を含むオルガノシロキサン系樹脂を用いる。この場合のハードコート液は、水あるいはアルコール系の溶媒にオルガノシロキサン系樹脂と無機酸化物微粒子ゾルとを分散(混合)させて生成する。   The hard coat film 12 is formed by uniformly applying a hard coat liquid to the substrate 11 by a known method such as a dipping method, a spin coat method, or a spray method. As a material of the hard coat film 12, for example, an organosiloxane resin containing inorganic oxide fine particles is used. The hard coat liquid in this case is produced by dispersing (mixing) an organosiloxane resin and an inorganic oxide fine particle sol in water or an alcohol solvent.

ここで、オルガノシロキサン系樹脂は、アルコキシシランを加水分解し縮合させることで得られるものが好ましい。アルコキシシランの具体例として、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、メチルトリメトキシシラン、エチルシリケートを挙げることができる。これらアルコキシシランの加水分解縮合物は、当該アルコキシシラン化合物あるいはそれらの組み合わせを、塩酸などの酸性水溶液で加水分解することにより製造される。   Here, the organosiloxane resin is preferably obtained by hydrolyzing and condensing alkoxysilane. Specific examples of the alkoxysilane include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, methyltrimethoxysilane, and ethyl silicate. These alkoxysilane hydrolysis condensates are produced by hydrolyzing the alkoxysilane compound or a combination thereof with an acidic aqueous solution such as hydrochloric acid.

また、無機酸化物微粒子の具体例としては、酸化亜鉛、二酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化スズ、酸化ベリリウム、酸化アンチモン、酸化タングステン、酸化セリウムの各ゾルを単独でまたは2種類以上を混晶化したものを挙げることができる。無機酸化物微粒子の大きさは、ハードコート膜12の透明性確保の観点から、1〜100ナノメートル(nm)であることが好ましく、1〜50nmであることがより好ましい。また、無機酸化物微粒子の配合量は、ハードコート膜12における硬さや強靭性の適切な度合いでの確保という観点から、ハードコート成分中40〜60wt%を占めることが好ましい。   Specific examples of the inorganic oxide fine particles include zinc oxide, silicon dioxide, aluminum oxide, titanium oxide, zirconium oxide, tin oxide, beryllium oxide, antimony oxide, tungsten oxide, and cerium oxide sol alone or in two types. What mixed the above can be mentioned. From the viewpoint of ensuring the transparency of the hard coat film 12, the size of the inorganic oxide fine particles is preferably 1 to 100 nanometers (nm), and more preferably 1 to 50 nm. Moreover, it is preferable that the compounding quantity of inorganic oxide microparticles occupies 40-60 wt% in a hard-coat component from a viewpoint of ensuring the hardness in the hard-coat film | membrane 12 and the appropriate degree of toughness.

なお、ハードコート液には、硬化触媒としてアセチルアセトン金属塩、エチレンジアミン四酢酸金属塩などを添加することができる。さらに必要に応じて、界面活性剤、着色剤、溶媒などを調整のために添加することができる。   In addition, an acetylacetone metal salt, ethylenediaminetetraacetic acid metal salt, etc. can be added to a hard-coat liquid as a curing catalyst. Further, a surfactant, a colorant, a solvent and the like can be added for adjustment as necessary.

ハードコート膜12の膜厚は、0.5〜4.0マイクロメートル(μm)とするのが好ましく、1.0〜3.0μmとするのがより好ましい。この膜厚の下限については、これより薄いと十分な硬度が得られなくなるという限界値から定まる。一方、上限については、これより厚くするとクラックや脆さが発生するなど、物性に関する問題の生ずる可能性が飛躍的に高まるという限界値から定まる。   The thickness of the hard coat film 12 is preferably 0.5 to 4.0 micrometers (μm), and more preferably 1.0 to 3.0 μm. The lower limit of the film thickness is determined from a limit value that a sufficient hardness cannot be obtained if the thickness is smaller than this. On the other hand, the upper limit is determined from a limit value that, if thicker than this, the possibility of occurrence of problems related to physical properties such as occurrence of cracks and brittleness is dramatically increased.

光学多層膜13は、真空蒸着法により、低屈折率層と高屈折率層とを交互に積層させて形成する。低屈折率層を形成する薄膜の材料としては、例えば、SiO(二酸化ケイ素)やMgF(フッ化マグネシウム)などが挙げられる。 The optical multilayer film 13 is formed by alternately laminating low refractive index layers and high refractive index layers by vacuum deposition. Examples of the material of the thin film forming the low refractive index layer include SiO 2 (silicon dioxide) and MgF 2 (magnesium fluoride).

一方、高屈折率層を形成する薄膜の材料には、チタンとニオブとを成分として含む酸素欠損を有する金属酸化物(ニオブ含有亜酸化チタン)の溶融体を用いる。溶融体とは、酸素欠損を有する状態でチタンとニオブを溶融した後、それを冷却し、求める粒の大きさ(例えば、3mm以下)に粉砕して篩がけすることによって形成したものである。   On the other hand, a metal oxide (niobium-containing titanium suboxide) melt having oxygen vacancies containing titanium and niobium as components is used as the material for the thin film forming the high refractive index layer. The melt is formed by melting titanium and niobium in a state having oxygen vacancies, cooling it, pulverizing to a desired grain size (for example, 3 mm or less) and sieving.

ニオブ含有亜酸化チタンの金属元素(Ti1−xNb)と酸素元素(O)の比率は、例えば3:5である。以下では、これを(Ti1−xNbと表記する。ニオブ含有亜酸化チタンにおけるニオブのドープ量は、チタンに対して2mol%以上16mol%以下とするのが好ましい。 The ratio of metal elements of niobium-containing titanium suboxide (Ti 1-x Nb x) and oxygen element (O), for example 3: 5. Hereinafter, this is expressed as (Ti 1-x Nb x ) 3 O 5 . The doping amount of niobium in the niobium-containing titanium suboxide is preferably 2 mol% or more and 16 mol% or less with respect to titanium.

防汚膜14は、レンズ表面の撥水撥油性の向上や水ヤケ防止するために形成されるものであり、フッ素系化合物から成る。防汚膜14は、ディッピング法、スピン法、スプレー法、蒸着法などの公知の方法で形成することができる。   The antifouling film 14 is formed in order to improve the water and oil repellency of the lens surface and prevent water scuffing, and is made of a fluorine compound. The antifouling film 14 can be formed by a known method such as a dipping method, a spin method, a spray method, or a vapor deposition method.

以下、光学多層膜13において用いるニオブ含有亜酸化チタン(Ti1−xNbの性質について、図面に基づいて説明する。図2は、ニオブ含有亜酸化チタンに対してX線回折分析(XRD:X-Ray Diffraction分析)を行った実験結果を示す図である。この図2に示す実験では、ニオブ含有亜酸化チタンにおけるニオブのドープ量を異ならせて複数種類の溶融体を形成し、それに対してXRD分析を行った。ニオブのドープ量は、2mol%から16mol%まで2mol%刻みで変えてある。 Hereinafter, the nature of the niobium-containing titanium suboxide (Ti 1-x Nb x) 3 O 5 used in the optical multilayer film 13 will be described with reference to the drawings. FIG. 2 is a diagram showing experimental results obtained by performing X-ray diffraction analysis (XRD: X-Ray Diffraction analysis) on niobium-containing titanium suboxide. In the experiment shown in FIG. 2, a plurality of types of melts were formed with different amounts of niobium in the niobium-containing titanium suboxide, and XRD analysis was performed on the melts. The doping amount of niobium is changed in increments of 2 mol% from 2 mol% to 16 mol%.

XRD分析は、材料に対するX線の入射角度を変化させながら、材料からの反射波の強度を測定するものである。この測定により、図2に示すように横軸が入射角度で縦軸に強度をとったグラフが得られる。なお、図2では、ニオブのドープ量を変えて行った各測定結果が重なって見にくくならないように、縦軸の基準値(強度ゼロ)を縦方向にずらして示している。   The XRD analysis measures the intensity of a reflected wave from a material while changing the incident angle of X-rays to the material. By this measurement, as shown in FIG. 2, a graph is obtained with the horizontal axis representing the incident angle and the vertical axis representing the intensity. In FIG. 2, the reference value (intensity zero) on the vertical axis is shifted in the vertical direction so that the measurement results obtained by changing the doping amount of niobium are not overlapped and difficult to see.

図2の実験結果から分かるように、どの入射角度のところにも強度のピークが現れていない。これは、ニオブ含有亜酸化チタンを蒸着して生成した薄膜がアモルファス(非晶質)の状態になっていることを示している。   As can be seen from the experimental results in FIG. 2, no intensity peak appears at any incident angle. This indicates that the thin film formed by vapor deposition of niobium-containing titanium suboxide is in an amorphous state.

次に、光学多層膜13の高屈折率層にニオブ含有亜酸化チタンを用いた光学部品の具体的な実施例について説明する。ここでは光学部品の一例として、眼鏡用レンズ、バンドパスフィルタ、ハーフミラーの実施例について説明する。実施例1,2が眼鏡用レンズ、実施例3がバンドパスフィルタ、実施例4がハーフミラーである。   Next, specific examples of optical components using niobium-containing titanium suboxide for the high refractive index layer of the optical multilayer film 13 will be described. Here, examples of spectacle lenses, bandpass filters, and half mirrors will be described as examples of optical components. Examples 1 and 2 are spectacle lenses, Example 3 is a band-pass filter, and Example 4 is a half mirror.

<実施例1>
図3は、実施例1に係る眼鏡用レンズを構成する光学多層膜13の膜構成と、比較例1−1,1−2に係る光学多層膜の膜構成とを示す図である。図3(a)が実施例1、図3(b)が比較例1−1、図3(c)が比較例1−2を示している。なお、図3において、(Ti1−xNbはTNOと略記している。
<Example 1>
FIG. 3 is a diagram illustrating a film configuration of the optical multilayer film 13 constituting the eyeglass lens according to Example 1, and a film configuration of the optical multilayer film according to Comparative Examples 1-1 and 1-2. 3A shows Example 1, FIG. 3B shows Comparative Example 1-1, and FIG. 3C shows Comparative Example 1-2. In FIG. 3, (Ti 1-x Nb x ) 3 O 5 is abbreviated as TNO.

図3(a)に示すように、実施例1では、光学多層膜13の各層を基体11に近い方から順にL1〜L7層とする。実施例1では、奇数層を低屈折率材料の二酸化ケイ素(SiO)で形成するととともに、偶数層を高屈折率材料のニオブ含有亜酸化チタン((Ti1−xNb)で形成した。つまり、実施例1の光学多層膜13は、2元系の膜構成となっている。各層L1〜L7における屈折率、物理膜厚、光学膜厚は、図3(a)に示す通りである。 As shown in FIG. 3A, in Example 1, the layers of the optical multilayer film 13 are L1 to L7 layers in order from the side closer to the substrate 11. In Example 1, the odd-numbered layer is formed of silicon dioxide (SiO 2 ) as a low-refractive index material, and the even-numbered layer is niobium-containing titanium suboxide ((Ti 1-x Nb x ) 3 O 5 ) as a high-refractive index material. Formed with. That is, the optical multilayer film 13 of Example 1 has a binary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L7 are as shown in FIG.

また、図3(b)に示すように、比較例1−1では、実施例1と同様に光学多層膜を7つの層L1〜L7で形成し、奇数層を低屈折率材料の二酸化ケイ素(SiO)、偶数層を高屈折率材料の二酸化ジルコニウム(ZrO)とした。比較例1−1の光学多層膜も2元系の膜構成となっている。各層L1〜L7における屈折率、物理膜厚、光学膜厚は、図3(b)に示す通りである。 Further, as shown in FIG. 3B, in Comparative Example 1-1, an optical multilayer film is formed of seven layers L1 to L7 as in Example 1, and an odd layer is formed of silicon dioxide (low refractive index material). SiO 2 ), and even layers were made of zirconium dioxide (ZrO 2 ) as a high refractive index material. The optical multilayer film of Comparative Example 1-1 also has a binary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L7 are as shown in FIG.

また、図3(c)に示すように、比較例1−2では、導電性薄膜としてITO膜を更に挿入することにより、光学多層膜を8つの層L1〜L8で形成した。具体的には、L1,L3,L5,L8の各層を低屈折率材料の二酸化ケイ素(SiO)で形成し、L2,L4,L6の各層を高屈折率材料の二酸化ジルコニウム(ZrO)で形成し、L7の1層を酸化インジウムスズ(ITO)で形成した。比較例1−2の光学多層膜は3元系の膜構成となっている。各層L1〜L8における屈折率、物理膜厚、光学膜厚は、図3(c)に示す通りである。 Further, as shown in FIG. 3C, in Comparative Example 1-2, an optical multilayer film was formed of eight layers L1 to L8 by further inserting an ITO film as a conductive thin film. Specifically, each layer of L1, L3, L5, and L8 is formed of silicon dioxide (SiO 2 ) as a low refractive index material, and each layer of L2, L4, and L6 is formed of zirconium dioxide (ZrO 2 ) as a high refractive index material. And one layer of L7 was formed of indium tin oxide (ITO). The optical multilayer film of Comparative Example 1-2 has a ternary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L8 are as shown in FIG.

図3のように光学多層膜を形成した実施例1および比較例1−1,1−2について、帯電防止性の有無に関する実験を次のように行った。すなわち、不織布(小津産業株式会社製「Pure Leaf」)を用いてレンズ凸面を1キログラム荷重で10秒間20往復擦った直後の帯電電位(キロボルト:kV)を測定するとともに、スチールウール片のレンズ凸面に対する付着の有無を観測した。帯電電位の測定は、静電気測定器(シムコジャパン株式会社製「FMX-003」)により行った。   With respect to Example 1 and Comparative Examples 1-1 and 1-2 in which an optical multilayer film was formed as shown in FIG. 3, an experiment regarding the presence or absence of antistatic properties was performed as follows. In other words, using a non-woven fabric (“Pure Leaf” manufactured by Ozu Sangyo Co., Ltd.), the charged potential (kilovolt: kV) immediately after rubbing the lens convex surface for 20 seconds with a 1 kilogram load for 20 seconds was measured, and the lens convex surface of the steel wool piece. The presence or absence of adhesion to was observed. The charged potential was measured with a static electricity meter (“FMX-003” manufactured by Simco Japan Co., Ltd.).

図4は、この帯電防止性に関する実験結果を示す図である。図4において、比較例1−1に示されるように、SiOとZrOとから成る2元系の膜構成では、不織布を擦り終わってから3分を経過しても帯電電位の絶対値はゼロに近づかず、スチールウール片はレンズ凸面に付着したままであった。これは、帯電防止性がないことを示している。 FIG. 4 is a diagram showing experimental results regarding this antistatic property. In FIG. 4, as shown in Comparative Example 1-1, in the binary film structure composed of SiO 2 and ZrO 2 , the absolute value of the charging potential is 3 minutes after the non-woven fabric is rubbed. The steel wool piece remained attached to the convex surface of the lens without approaching zero. This indicates that there is no antistatic property.

一方、比較例1−2の場合は、不織布を擦り終わった直後から帯電電位の絶対値がゼロとなっており、スチールウール片はレンズ凸面に全く付着しなかった。これは、帯電防止性があることを示している。しかしながら、比較例1−2は、SiOとZrOとITOとから成る3元系の膜構成のため、蒸着装置の改造が必要という問題が生じる。 On the other hand, in the case of Comparative Example 1-2, the absolute value of the charging potential was zero immediately after rubbing the nonwoven fabric, and the steel wool piece did not adhere to the convex surface of the lens at all. This indicates that there is antistatic properties. However, since Comparative Example 1-2 has a ternary film structure composed of SiO 2 , ZrO 2, and ITO, there is a problem that the vapor deposition apparatus needs to be modified.

これに対して、実施例1の場合は、SiOと(Ti1−xNbとから成る2元系の膜構成なので、蒸着装置の改造は不要である。しかも、不織布を擦り終わった直後から帯電電位の絶対値はかなり小さくて殆どゼロとなっており、1分を経過した時点で帯電電位はゼロとなっている。そのため、スチールウール片はレンズ凸面に付着しなかった。 On the other hand, in the case of Example 1, since it is a binary film structure composed of SiO 2 and (Ti 1-x Nb x ) 3 O 5, it is not necessary to modify the vapor deposition apparatus. Moreover, the absolute value of the charging potential is fairly small and almost zero immediately after the rubbing of the nonwoven fabric, and the charging potential is zero when 1 minute has passed. Therefore, the steel wool piece did not adhere to the lens convex surface.

このように、光学多層膜13の薄膜材料としてニオブ含有亜酸化チタンを用いることにより、蒸着した薄膜はアモルファスであるが導電性が向上し、高い帯電防止性を得ることができることが分かった。また、蒸着した薄膜は結晶性のないアモルファス状態であるが導電性を有しているため、結晶性を高めるために成膜後に再加熱(アニール)処理を行う必要もない。   Thus, it was found that by using niobium-containing titanium suboxide as the thin film material of the optical multilayer film 13, the deposited thin film is amorphous, but the conductivity is improved and high antistatic properties can be obtained. In addition, the deposited thin film is in an amorphous state with no crystallinity but has conductivity, so that it is not necessary to perform a reheating (annealing) treatment after the film formation in order to improve crystallinity.

また、図3のように光学多層膜を形成した実施例1および比較例1−1,1−2について、反射率特性に関するシミュレーションを行った。図5は、その反射率特性に関するシミュレーション結果を示す図である。図5に示すように、実施例1および比較例1−1,1−2の何れにおいても、可視域となる波長範囲では反射率が低い値を示している。これにより、実施例1のように高屈折率層に(Ti1−xNbを用いた場合でも、眼鏡用レンズの視認性が低下しないことが分かった。 Moreover, the simulation regarding a reflectance characteristic was performed about Example 1 and Comparative Examples 1-1 and 1-2 which formed the optical multilayer film like FIG. FIG. 5 is a diagram showing a simulation result regarding the reflectance characteristic. As shown in FIG. 5, in both Example 1 and Comparative Examples 1-1 and 1-2, the reflectance is low in the visible wavelength range. Thus, even with the (Ti 1-x Nb x) 3 O 5 to the high refractive index layer as in Example 1, the visibility of the ophthalmic lens is found not to decrease.

<実施例2>
図6は、実施例2に係る眼鏡用レンズを構成する光学多層膜13の膜構成と、比較例2−1,2−2に係る光学多層膜の膜構成とを示す図である。図6(a)が実施例2、図6(b)が比較例2−1、図6(c)が比較例2−2を示している。なお、図6においても、(Ti1−xNbはTNOと略記している。
<Example 2>
FIG. 6 is a diagram illustrating a film configuration of the optical multilayer film 13 constituting the eyeglass lens according to Example 2, and a film configuration of the optical multilayer film according to Comparative Examples 2-1 and 2-2. 6A shows Example 2, FIG. 6B shows Comparative Example 2-1, and FIG. 6C shows Comparative Example 2-2. In FIG. 6 as well, (Ti 1-x Nb x ) 3 O 5 is abbreviated as TNO.

図6(a)に示すように、実施例2では、光学多層膜13の各層を基体11に近い方から順にL1〜L5層とする。実施例2では、奇数層を低屈折率材料の二酸化ケイ素(SiO)で形成するととともに、偶数層を高屈折率材料のニオブ含有亜酸化チタン((Ti1−xNb)で形成した。つまり、実施例2の光学多層膜13も、2元系の膜構成となっている。各層L1〜L5における屈折率、物理膜厚、光学膜厚は、図6(a)に示す通りである。 As shown in FIG. 6A, in Example 2, the layers of the optical multilayer film 13 are L1 to L5 layers in order from the side closer to the substrate 11. In Example 2, the odd-numbered layer is formed of silicon dioxide (SiO 2 ) as a low refractive index material, and the even-numbered layer is a niobium-containing titanium suboxide ((Ti 1-x Nb x ) 3 O 5 ) as a high refractive index material. Formed with. That is, the optical multilayer film 13 of Example 2 also has a binary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L5 are as shown in FIG.

また、図6(b)に示すように、比較例2−1では、実施例2と同様に光学多層膜を5つの層L1〜L5で形成し、奇数層を低屈折率材料の二酸化ケイ素(SiO)、偶数層を高屈折率材料の二酸化チタン(TiO)とした。比較例2の光学多層膜も2元系の膜構成となっている。各層L1〜L5における屈折率、物理膜厚、光学膜厚は、図6(b)に示す通りである。 Further, as shown in FIG. 6B, in Comparative Example 2-1, an optical multilayer film is formed of five layers L1 to L5 as in Example 2, and an odd layer is formed of silicon dioxide (low refractive index material). SiO 2 ), and even layers were made of titanium dioxide (TiO 2 ) as a high refractive index material. The optical multilayer film of Comparative Example 2 also has a binary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L5 are as shown in FIG.

また、図6(c)に示すように、比較例2−2では、実施例2と同様に光学多層膜を5つの層L1〜L5で形成し、奇数層を低屈折率材料の二酸化ケイ素(SiO)、偶数層を高屈折率材料の二酸化ジルコニウム(ZrO)とした。比較例2−2の光学多層膜も2元系の膜構成となっている。各層L1〜L5における屈折率、物理膜厚、光学膜厚は、図6(c)に示す通りである。 Further, as shown in FIG. 6C, in Comparative Example 2-2, the optical multilayer film is formed of five layers L1 to L5 as in Example 2, and the odd-numbered layer is formed of silicon dioxide (low refractive index material). SiO 2 ), and even layers were made of zirconium dioxide (ZrO 2 ) as a high refractive index material. The optical multilayer film of Comparative Example 2-2 also has a binary film configuration. The refractive index, physical film thickness, and optical film thickness in each of the layers L1 to L5 are as shown in FIG.

図6のように光学多層膜を形成した実施例2および比較例2−1,2−2について、実施例1と同様の方法により帯電防止性の有無に関する実験を行った。図7は、その帯電防止性に関する実験結果を示す図である。図7において、比較例2−1,2−2に示されるように、SiOとTiO、あるいはSiOとZrOから成る2元系の膜構成では、不織布を擦り終わってから3分を経過しても帯電電位の絶対値はゼロに近づかず、スチールウール片はレンズ凸面に付着したままであった。これは、帯電防止性がないことを示している。 With respect to Example 2 and Comparative Examples 2-1 and 2-2 in which an optical multilayer film was formed as shown in FIG. 6, an experiment on the presence or absence of antistatic properties was performed by the same method as in Example 1. FIG. 7 is a diagram showing experimental results regarding the antistatic property. In FIG. 7, as shown in Comparative Examples 2-1 and 2-2, in the binary film configuration composed of SiO 2 and TiO 2 , or SiO 2 and ZrO 2 , 3 minutes after the non-woven fabric is rubbed. The absolute value of the charging potential did not approach zero even after the lapse of time, and the steel wool piece remained attached to the convex surface of the lens. This indicates that there is no antistatic property.

これに対して、実施例2の場合は、不織布を擦り終わった直後から帯電電位の絶対値はかなり小さくて殆どゼロとなっており、時間が経過するにつれてゼロに近づいている。そのため、スチールウール片はレンズ凸面に付着しなかった。このように、実施例2でも帯電防止性を呈していることが分かった。   On the other hand, in the case of Example 2, the absolute value of the charging potential is quite small and almost zero immediately after the rubbing of the nonwoven fabric, and approaches zero as time passes. Therefore, the steel wool piece did not adhere to the lens convex surface. Thus, it was found that Example 2 also exhibited antistatic properties.

また、図6のように光学多層膜を形成した実施例2および比較例2−1,2−2について、反射率特性に関するシミュレーションを行った。図8は、その反射率特性に関するシミュレーション結果を示す図である。図8に示すように、実施例2および比較例2−1,2−2の何れにおいても、可視域となる波長範囲では反射率が低い値を示している。これにより、実施例2のように高屈折率層に(Ti1−xNbを用いた場合でも、眼鏡用レンズの視認性が低下しないことが分かった。 Further, a simulation regarding reflectance characteristics was performed for Example 2 and Comparative Examples 2-1 and 2-2 in which an optical multilayer film was formed as shown in FIG. FIG. 8 is a diagram showing a simulation result relating to the reflectance characteristic. As shown in FIG. 8, in any of Example 2 and Comparative Examples 2-1 and 2-2, the reflectance is low in the visible wavelength range. Thus, even with the (Ti 1-x Nb x) 3 O 5 to the high refractive index layer as in Example 2, the visibility of the ophthalmic lens is found not to decrease.

<実施例3>
図9は、実施例3に係るバンドパスフィルタを構成する光学多層膜13の膜構成を示す図である。また、図10は、比較例3に係る光学多層膜の膜構成を示す図である。なお、図9および図10においても、(Ti1−xNbはTNOと略記している。
<Example 3>
FIG. 9 is a diagram illustrating a film configuration of the optical multilayer film 13 constituting the bandpass filter according to the third embodiment. FIG. 10 is a diagram showing a film configuration of an optical multilayer film according to Comparative Example 3. 9 and 10, (Ti 1-x Nb x ) 3 O 5 is abbreviated as TNO.

図9に示すように、実施例3では、光学多層膜13の各層を基体11に近い方から順にL1〜L36層とする。実施例3では、奇数層を高屈折率材料のニオブ含有亜酸化チタン((Ti1−xNb)で形成するととともに、偶数層を低屈折率材料の二酸化ケイ素(SiO)で形成した。つまり、実施例3の光学多層膜13は、2元系の膜構成となっている。各層L1〜L36における屈折率、物理膜厚、光学膜厚、中心波長は、図9に示す通りである。 As shown in FIG. 9, in Example 3, the layers of the optical multilayer film 13 are L1 to L36 layers in order from the side closer to the substrate 11. In Example 3, the odd layers of high refractive index material niobium-containing titanium suboxides with when formed of ((Ti 1-x Nb x ) 3 O 5), silicon dioxide even layer low refractive index material (SiO 2) Formed with. That is, the optical multilayer film 13 of Example 3 has a binary film configuration. The refractive index, physical film thickness, optical film thickness, and center wavelength in each of the layers L1 to L36 are as shown in FIG.

また、図10に示すように、比較例3では、実施例3と同様に光学多層膜を36個の層L1〜L36で形成し、奇数層を高屈折率材料の二酸化チタン(TiO)、偶数層を低屈折率材料の二酸化ケイ素(SiO)とした。比較例3の光学多層膜も2元系の膜構成となっている。各層L1〜L36における屈折率、物理膜厚、光学膜厚、中心波長は、図10に示す通りである。 As shown in FIG. 10, in Comparative Example 3, the optical multilayer film is formed of 36 layers L1 to L36 as in Example 3, and the odd layer is made of titanium dioxide (TiO 2 ) as a high refractive index material, The even layer was made of silicon dioxide (SiO 2 ) as a low refractive index material. The optical multilayer film of Comparative Example 3 also has a binary film configuration. The refractive index, physical film thickness, optical film thickness, and center wavelength in each of the layers L1 to L36 are as shown in FIG.

図9、図10のように光学多層膜を形成した実施例3および比較例3について、帯電防止性の有無に関する実験を次のように行った。すなわち、不織布(小津産業株式会社製「Pure Leaf」)を用いて部品表面を1キログラム荷重で10秒間20往復擦った後、スチールウール片の部品表面に対する付着の有無を観測した。また、高抵抗率計(三菱化学製「Hiresta-UP」)により部品の表面抵抗値を測定した。印加電圧を500[V]、測定保持時間を30秒として表面抵抗値を測定し、これを3回行って平均値を算出した。   With respect to Example 3 and Comparative Example 3 in which an optical multilayer film was formed as shown in FIGS. 9 and 10, an experiment regarding the presence or absence of antistatic properties was performed as follows. That is, the surface of a component was rubbed 20 reciprocations for 10 seconds at a load of 1 kilogram using a nonwoven fabric (“Pure Leaf” manufactured by Ozu Sangyo Co., Ltd.), and the presence or absence of adhesion of a steel wool piece to the component surface was observed. In addition, the surface resistance of the parts was measured with a high resistivity meter (“Hiresta-UP” manufactured by Mitsubishi Chemical). The surface resistance value was measured with an applied voltage of 500 [V] and a measurement holding time of 30 seconds, and this was repeated three times to calculate an average value.

図11は、この帯電防止性に関する実験結果を示す図である。図11において、実施例3に示されるように、表面抵抗の平均値は1.74×1010[Ω/□]であり、不織布を擦り終わった直後からスチールウール片は部品表面に付着しなかった。一般に、膜の抵抗値が小さいほど導電性が高くなって帯電防止性が向上し、抵抗値が1011[Ω/□]以下であればほぼ確実に帯電防止性が得られることが知られている。よって、以上の実験結果は、実施例3が帯電防止性を呈していることを示している。 FIG. 11 is a diagram showing experimental results regarding this antistatic property. In FIG. 11, as shown in Example 3, the average value of the surface resistance is 1.74 × 10 10 [Ω / □], and the steel wool piece does not adhere to the surface of the component immediately after the non-woven fabric is rubbed. It was. In general, it is known that the smaller the resistance value of the film, the higher the conductivity and the antistatic property, and the antistatic property can be obtained almost certainly if the resistance value is 10 11 [Ω / □] or less. Yes. Therefore, the above experimental results show that Example 3 exhibits antistatic properties.

これに対して、比較例3に示されるように、TiOとSiOとから成る2元系の膜構成では、スチールウール片は部品表面に付着したままであった。また、表面抵抗の平均値は4.84×1012[Ω/□]であった。このことは、比較例3は帯電防止性がないことを示している。 On the other hand, as shown in Comparative Example 3, in the binary film configuration composed of TiO 2 and SiO 2 , the steel wool piece remained attached to the part surface. The average value of the surface resistance was 4.84 × 10 12 [Ω / □]. This indicates that Comparative Example 3 has no antistatic property.

また、実施例3および比較例3について、反射率特性に関するシミュレーションを行った。図12は、その反射率特性に関するシミュレーション結果を示す図である。図12に示すように、実施例3および比較例3の何れにおいても、所望の波長範囲で反射率が低い値を示している。これにより、実施例3および比較例3の何れの場合も、所望のバンドパスフィルタ特性が得られることが分かった。   Moreover, about Example 3 and the comparative example 3, the simulation regarding a reflectance characteristic was performed. FIG. 12 is a diagram illustrating a simulation result regarding the reflectance characteristic. As shown in FIG. 12, in both Example 3 and Comparative Example 3, the reflectance is low in the desired wavelength range. As a result, it was found that the desired bandpass filter characteristics were obtained in both cases of Example 3 and Comparative Example 3.

<実施例4>
図13は、実施例4に係るハーフミラーを構成する光学多層膜13の膜構成と、比較例4に係る光学多層膜の膜構成とを示す図である。図13(a)が実施例4、図13(b)が比較例4を示している。なお、図13においても、(Ti1−xNbはTNOと略記している。
<Example 4>
FIG. 13 is a diagram illustrating a film configuration of the optical multilayer film 13 constituting the half mirror according to Example 4 and a film configuration of the optical multilayer film according to Comparative Example 4. FIG. 13A shows Example 4 and FIG. 13B shows Comparative Example 4. In FIG. 13 as well, (Ti 1-x Nb x ) 3 O 5 is abbreviated as TNO.

図13(a)に示すように、実施例4では、光学多層膜13の各層を基体11に近い方から順にL1〜L12層とする。実施例4では、奇数層を高屈折率材料のニオブ含有亜酸化チタン((Ti1−xNb)で形成するととともに、偶数層を低屈折率材料の二酸化ケイ素(SiO)で形成した。つまり、実施例4の光学多層膜13は、2元系の膜構成となっている。各層L1〜L12における屈折率、物理膜厚、光学膜厚、中心波長は、図13(a)に示す通りである。 As shown in FIG. 13A, in Example 4, the layers of the optical multilayer film 13 are L1 to L12 layers in order from the side closer to the substrate 11. In Example 4, the odd layers of high refractive index material niobium-containing titanium suboxides with when formed of ((Ti 1-x Nb x ) 3 O 5), silicon dioxide even layer low refractive index material (SiO 2) Formed with. That is, the optical multilayer film 13 of Example 4 has a binary film configuration. The refractive index, physical film thickness, optical film thickness, and center wavelength in each of the layers L1 to L12 are as shown in FIG.

また、図13(b)に示すように、比較例4では、実施例4と同様に光学多層膜を12個の層L1〜L12で形成し、奇数層を高屈折率材料の二酸化チタン(TiO)、偶数層を低屈折率材料の二酸化ケイ素(SiO)とした。比較例4の光学多層膜も2元系の膜構成となっている。各層L1〜L12における屈折率、物理膜厚、光学膜厚、中心波長は、図13(b)に示す通りである。 Further, as shown in FIG. 13B, in Comparative Example 4, the optical multilayer film is formed of 12 layers L1 to L12 as in Example 4, and the odd-numbered layer is made of titanium dioxide (TiO 2) of a high refractive index material. 2 ) The even layer was made of silicon dioxide (SiO 2 ) as a low refractive index material. The optical multilayer film of Comparative Example 4 also has a binary film configuration. The refractive index, physical film thickness, optical film thickness, and center wavelength in each of the layers L1 to L12 are as shown in FIG.

図13のように光学多層膜を形成した実施例4および比較例4について、実施例3と同様の方法により帯電防止性の有無に関する実験を行った。図14は、この帯電防止性に関する実験結果を示す図である。図14において、比較例4に示されるように、TiOとSiOとから成る2元系の膜構成では、スチールウール片は部品表面に付着したままであった。また、表面抵抗値は大き過ぎて測定不能であった。これは、比較例4は帯電防止性がないことを示している。 For Example 4 and Comparative Example 4 in which an optical multilayer film was formed as shown in FIG. 13, an experiment was conducted regarding the presence or absence of antistatic properties by the same method as in Example 3. FIG. 14 is a diagram showing experimental results regarding this antistatic property. In FIG. 14, as shown in Comparative Example 4, in the binary film configuration composed of TiO 2 and SiO 2 , the steel wool piece remained attached to the part surface. Further, the surface resistance value was too large to be measured. This indicates that Comparative Example 4 has no antistatic property.

これに対して、実施例4の場合は、表面抵抗の平均値は3.18×1012[Ω/□]であり、不織布を擦り終わった直後からスチールウール片は部品表面に付着しなかった。表面抵抗値が1011[Ω/□]以上となっているが、スチールウール片が部品表面に付着しなかったことから、実施例4は帯電防止性を有していることを示している。 On the other hand, in the case of Example 4, the average value of the surface resistance was 3.18 × 10 12 [Ω / □], and the steel wool piece did not adhere to the surface of the component immediately after rubbing the nonwoven fabric. . Although the surface resistance value is 10 11 [Ω / □] or more, since the steel wool piece did not adhere to the surface of the part, Example 4 shows that it has antistatic properties.

また、実施例4および比較例4について、反射率特性に関するシミュレーションを行った。図15は、その反射率特性に関するシミュレーション結果を示す図である。図15に示すように、実施例4および比較例4の何れにおいても、殆どの波長範囲では反射率が高い値を示している。これにより、実施例4および比較例4の何れの場合も、ハーフミラーの特性が得られることが分かった。   Moreover, about Example 4 and the comparative example 4, the simulation regarding a reflectance characteristic was performed. FIG. 15 is a diagram showing a simulation result related to the reflectance characteristic. As shown in FIG. 15, in both Example 4 and Comparative Example 4, the reflectance is high in most wavelength ranges. Thus, it was found that the characteristics of the half mirror can be obtained in both cases of Example 4 and Comparative Example 4.

以上詳しく説明したように、本実施形態では、基体11の表面に光学多層膜13を蒸着加工して成る光学部品において、光学多層膜13のうち高屈折率層の薄膜の材料をニオブ含有亜酸化チタンにより形成した。これにより、ニオブ含有亜酸化チタンを蒸着して形成された薄膜はアモルファス状態となるが高い導電性を有し、高い帯電防止性を得ることができる。また、アモルファスであるため、結晶性を高めるために成膜後に再加熱(アニール)処理を行う必要もない。さらに、ITO等の導電性薄膜を挿入する必要がないので、光学多層膜13は低屈折率層と高屈折率層とを交互に積層させた2元系の膜構成となる。これにより、高熱に弱い基体11の表面に成膜を行った後に再加熱を行うことなく、かつ、3種類の材料を扱うために蒸着装置を改造することなく、帯電防止効果の高い光学部品を得ることができる。   As described above in detail, in this embodiment, in the optical component formed by vapor-depositing the optical multilayer film 13 on the surface of the substrate 11, the thin film material of the high refractive index layer in the optical multilayer film 13 is converted to niobium-containing suboxide. Made of titanium. Thereby, although the thin film formed by vapor-depositing niobium containing titanium suboxide will be in an amorphous state, it has high electroconductivity and can obtain high antistatic property. Further, since it is amorphous, it is not necessary to perform reheating (annealing) after film formation in order to improve crystallinity. Furthermore, since it is not necessary to insert a conductive thin film such as ITO, the optical multilayer film 13 has a binary film configuration in which low refractive index layers and high refractive index layers are alternately laminated. Accordingly, an optical component having a high antistatic effect can be obtained without performing reheating after film formation on the surface of the substrate 11 that is vulnerable to high heat, and without modifying the vapor deposition apparatus to handle three types of materials. Can be obtained.

なお、上記実施形態では、光学部品の例として眼鏡用レンズ、バンドパスフィルタ、ハーフミラーの3つを挙げて説明したが、本発明はこれに限定されない。例えば、眼鏡用以外のレンズ、バンドパスフィルタ以外のフィルタ、ハーフミラー以外のミラー、ビームスプリッタ、プリズム、偏光素子、波長板、遮光板、スリガラスなど、他の光学部品に適用することも可能である。   In the above embodiment, three examples of spectacle lenses, a band-pass filter, and a half mirror have been described as examples of optical components, but the present invention is not limited to this. For example, it can be applied to other optical components such as lenses other than glasses, filters other than bandpass filters, mirrors other than half mirrors, beam splitters, prisms, polarizing elements, wave plates, light shielding plates, and ground glass. .

また、上記実施形態では、光学部品の構成として、図1に示すように基体11、ハードコート膜12、光学多層膜13および防汚膜14を備える例について説明したが、本発明はこれに限定されない。すなわち、基体11と光学多層膜13は必須の構成として、ハードコート膜12および防汚膜14については、上記のような種々の光学部品の用途に合わせて必要なものを用いればよい。   Moreover, although the said embodiment demonstrated the example provided with the base | substrate 11, the hard-coat film | membrane 12, the optical multilayer film 13, and the antifouling film | membrane 14 as a structure of an optical component as shown in FIG. 1, this invention is limited to this. Not. In other words, the base 11 and the optical multilayer film 13 are essential components, and the hard coat film 12 and the antifouling film 14 may be used in accordance with the applications of the various optical parts as described above.

その他、上記実施形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   In addition, the said embodiment is only what showed the example in implementation in implementing this invention, and, as a result, the technical scope of this invention should not be interpreted limitedly. That is, the present invention can be implemented in various forms without departing from the gist or the main features thereof.

11 基体
12 ハードコート膜
13 光学多層膜
14 防汚膜
11 Substrate 12 Hard coat film 13 Optical multilayer film 14 Antifouling film

上記した課題を解決するために、本発明では、基体の表面に光学多層膜を蒸着加工して成る光学部品において、光学多層膜のうち高屈折率層の材料を、チタンとニオブとを成分として含む酸素欠損を有する金属酸化物の溶融体(ニオブ含有亜酸化チタンという)で、当該ニオブ含有亜酸化チタンにおける金属元素数と酸素元素数の比率が3:5であり、ニオブのドープ量がチタンに対して2mol%以上16mol%以下の溶融体により形成し、当該材料を蒸着して形成される薄膜を、結晶性がなく、X線の入射角度によらず反射波に強度のピークが現れないアモルファス状態としている。すなわち、本発明では、ニオブ含有亜酸化チタンから成る材料を用いて基体の表面に蒸着法で成膜することによって光学部品を構成している。 In order to solve the above problems, in the present invention, in an optical component formed by vapor-depositing an optical multilayer film on the surface of a substrate, the material of the high refractive index layer of the optical multilayer film is composed of titanium and niobium as components. A metal oxide melt containing oxygen vacancies (referred to as niobium-containing titanium suboxide) , wherein the ratio of the number of metal elements to the number of oxygen elements in the niobium-containing titanium suboxide is 3: 5, and the doping amount of niobium is titanium. In contrast, a thin film formed by vapor deposition of the material formed from a melt of 2 mol% or more and 16 mol% or less has no crystallinity, and an intensity peak does not appear in the reflected wave regardless of the incident angle of X-rays. It is in an amorphous state. That is, in the present invention, an optical component is configured by forming a film on the surface of a substrate by a vapor deposition method using a material made of niobium-containing titanium suboxide.

Claims (4)

基体の表面に光学多層膜を蒸着加工して成る光学部品であって、
上記光学多層膜のうち高屈折率層の材料が、チタンとニオブとを成分として含む酸素欠損を有する金属酸化物であるニオブ含有亜酸化チタンの溶融体から成ることを特徴とする光学部品。
An optical component formed by vapor-depositing an optical multilayer film on the surface of a substrate,
An optical component characterized in that the material of the high refractive index layer in the optical multilayer film comprises a melt of niobium-containing titanium suboxide which is a metal oxide having oxygen deficiency containing titanium and niobium as components.
上記ニオブ含有亜酸化チタンにおいて、金属元素数と酸素元素数の比率が3:5であることを特徴とする請求項1に記載の光学部品。 2. The optical component according to claim 1, wherein in the niobium-containing titanium suboxide, the ratio of the number of metal elements to the number of oxygen elements is 3: 5. 上記光学多層膜は奇数数の層から成り、上記基体から数えて奇数層が低屈折率材料、偶数層が高屈折率材料から成り、上記偶数層において上記ニオブ含有亜酸化チタンを用いたことを特徴とする請求項1または2の何れかに記載の光学部品。 The optical multilayer film is composed of an odd number of layers, the odd layer counted from the substrate is composed of a low refractive index material, the even layer is composed of a high refractive index material, and the niobium-containing titanium suboxide is used in the even layer. The optical component according to claim 1, wherein the optical component is characterized by the following. 上記光学多層膜は偶数数の層から成り、上記基体から数えて奇数層が高屈折率材料、偶数層が低屈折率材料から成り、上記奇数層において上記ニオブ含有亜酸化チタンを用いたことを特徴とする請求項1または2の何れかに記載の光学部品。 The optical multilayer film is composed of an even number of layers, the odd layer counted from the substrate is composed of a high refractive index material, the even layer is composed of a low refractive index material, and the niobium-containing titanium suboxide is used in the odd layer. The optical component according to claim 1, wherein the optical component is characterized by the following.
JP2014526864A 2012-07-26 2013-07-16 Optical components Active JP5770940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526864A JP5770940B2 (en) 2012-07-26 2013-07-16 Optical components

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012165295 2012-07-26
JP2012165295 2012-07-26
JP2014526864A JP5770940B2 (en) 2012-07-26 2013-07-16 Optical components
PCT/JP2013/069281 WO2014017332A1 (en) 2012-07-26 2013-07-16 Optical component

Publications (2)

Publication Number Publication Date
JP5770940B2 JP5770940B2 (en) 2015-08-26
JPWO2014017332A1 true JPWO2014017332A1 (en) 2016-07-11

Family

ID=49997146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014526864A Active JP5770940B2 (en) 2012-07-26 2013-07-16 Optical components

Country Status (2)

Country Link
JP (1) JP5770940B2 (en)
WO (1) WO2014017332A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895358B (en) * 2014-05-05 2021-11-09 依视路国际公司 Optical article comprising an antireflection coating having a very low reflection in the visible and ultraviolet range
JP6347205B2 (en) * 2014-11-28 2018-06-27 セイコーエプソン株式会社 Divers watch cover glass and divers watch
US20180061608A1 (en) 2017-09-28 2018-03-01 Oxford Instruments X-ray Technology Inc. Window member for an x-ray device
JP7275787B2 (en) * 2019-04-05 2023-05-18 住友ベークライト株式会社 Method for manufacturing optical laminate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098137B2 (en) * 2005-06-01 2012-12-12 株式会社ブリヂストン Antireflection film
JP2007197637A (en) * 2006-01-30 2007-08-09 Fujifilm Corp Cellulose acylate film, optical compensation film, polarizing plate and liquid crystal display device
JP5588135B2 (en) * 2009-08-10 2014-09-10 ホーヤ レンズ マニュファクチャリング フィリピン インク Method for manufacturing optical article

Also Published As

Publication number Publication date
JP5770940B2 (en) 2015-08-26
WO2014017332A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
EP2589992B1 (en) Optical product and plastic eyeglass lens
US8746880B2 (en) Optical product and eyeglass plastic lens
KR101971651B1 (en) Optical product and method for manufacturing same
WO2020138469A1 (en) Spectacle lens
JP5770940B2 (en) Optical components
JP5266466B2 (en) Optical member, plastic lens for spectacles, and manufacturing method thereof
AU2015227886A1 (en) Mirror-coated lens
CN107077010B (en) Spectacle lens and spectacles
JP5969195B2 (en) Manufacturing method of spectacle lens
JP5565766B2 (en) Eyeglass plastic lens
EP2690470A1 (en) Plastic lens
KR102527161B1 (en) Plastic optics and plastic spectacle lenses and spectacles
JP6016155B2 (en) Optical products and eyeglass plastic lenses
KR20180078328A (en) Spectacle lenses and glasses
WO2017125999A1 (en) Optical component
JP2023182008A (en) Spectacle lens
JP6247349B2 (en) Eyeglass lenses
JP2022157712A (en) Spectacle lens and spectacles
JP2023182010A (en) Spectacle lens
JP2022157713A (en) Method of fabricating spectacle lenses
JP2018077477A (en) Spectacle lens

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150625

R150 Certificate of patent or registration of utility model

Ref document number: 5770940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250