JPWO2014014059A1 - Honeycomb filter - Google Patents

Honeycomb filter Download PDF

Info

Publication number
JPWO2014014059A1
JPWO2014014059A1 JP2014525864A JP2014525864A JPWO2014014059A1 JP WO2014014059 A1 JPWO2014014059 A1 JP WO2014014059A1 JP 2014525864 A JP2014525864 A JP 2014525864A JP 2014525864 A JP2014525864 A JP 2014525864A JP WO2014014059 A1 JPWO2014014059 A1 JP WO2014014059A1
Authority
JP
Japan
Prior art keywords
flow path
honeycomb filter
honeycomb
powder
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014525864A
Other languages
Japanese (ja)
Inventor
康輔 魚江
康輔 魚江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JPWO2014014059A1 publication Critical patent/JPWO2014014059A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/723CHA-type, e.g. Chabazite, LZ-218
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/34Honeycomb supports characterised by their structural details with flow channels of polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

本発明は、障壁を構成するセラミックスの熱分解を抑制でき、SCRの機能とディーゼルパティキュレートフィルタの機能を両方備えたハニカムフィルタの提供を目的・課題とする。そして、本発明は、複数の流路を形成する隔壁を備え、第1の端面と第2の端面とを有するハニカムフィルタであって、複数の流路は第2の端面側の端部が封口された複数の第1の流路と第1の端面側の端部が封口された複数の第2の流路とを有し、ハニカムフィルタが第1の流路内の隔壁表面、第2の流路内の隔壁表面、及び、隔壁細孔内のうち1箇所以上に形成されたTi,V,Cr,Mn,Fe,Co,Ni,Cu,Rh,Pd,Ag,Ptから選択される一種以上の金属元素とゼオライトとを含む触媒層を備え、隔壁がMg,Ca,Sr,Y,Ba,ランタノイド,Biから選択される一種以上の元素を含有するチタン酸アルミニウム系セラミックスを含む。An object of the present invention is to provide a honeycomb filter that can suppress thermal decomposition of ceramics constituting a barrier and has both an SCR function and a diesel particulate filter function. And this invention is a honey-comb filter which is provided with the partition which forms a some flow path, and has a 1st end surface and a 2nd end surface, Comprising: The edge part by the side of a 2nd end surface is a plurality of flow paths. A plurality of first flow paths and a plurality of second flow paths whose ends on the first end face side are sealed, and the honeycomb filter has a partition wall surface in the first flow path, a second flow path A type selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rh, Pd, Ag, and Pt formed in one or more locations in the partition wall surface and in the partition pores. A catalyst layer containing the above metal element and zeolite is provided, and the partition includes an aluminum titanate ceramic containing one or more elements selected from Mg, Ca, Sr, Y, Ba, lanthanoid, and Bi.

Description

本発明は、ハニカムフィルタに関する。   The present invention relates to a honeycomb filter.

ハニカムフィルタは、被捕集物を含む流体から当該被捕集物を除去するために用いられ、例えば、ディーゼルエンジンなどの内燃機関から排出される排ガスに含まれるカーボン粒子等の微細粒子を捕集するためのセラミックスフィルタ(ディーゼルパティキュレートフィルタ:Diesel Particulate Filter)として用いられている。ハニカムフィルタは、隔壁に仕切られた互いに平行な複数の流路を有しており、複数の流路のうちの一部の一端及び複数の流路のうちの残部の他端が封口されている。このようなハニカムフィルタを構成するハニカム構造体としては、例えば、下記特許文献1,2に記載の構造体が知られている。   The honeycomb filter is used to remove the collected matter from the fluid containing the collected matter. For example, the honeycomb filter collects fine particles such as carbon particles contained in exhaust gas discharged from an internal combustion engine such as a diesel engine. Is used as a ceramic filter (diesel particulate filter). The honeycomb filter has a plurality of parallel flow paths partitioned by partition walls, and one end of a part of the plurality of flow paths and the other end of the remaining part of the plurality of flow paths are sealed. . As a honeycomb structure constituting such a honeycomb filter, for example, structures described in Patent Documents 1 and 2 below are known.

また、排ガスに含まれるNOを分解する方法として、アンモニアにより下記式(2)〜(4)のような反応によりNOを分解する方法が知られている。この方法は、アンモニアによりNOを選択的に還元することから、SCR(Selective Catalytic Reduction:選択的触媒還元)と呼ばれている。アンモニアは、下記式(1)に示すように、尿素水を高温で加水分解することにより生成することができる。尿素から生成するアンモニアを用いて排ガス中のNOを分解する方式は、尿素SCRと呼ばれている。
CO(NH+HO→2NH+CO (1)
4NH+4NO+O→4N+6HO (2)
2NH+NO+NO→2N+3HO (3)
8NH+6NO→7N+12HO (4)
Further, as a method of decomposing the NO X contained in the exhaust gas, the method of decomposing the NO X by reaction such as the following formulas (2) to (4) are known from the ammonia. This method is called SCR (Selective Catalytic Reduction) because NO x is selectively reduced by ammonia. As shown in the following formula (1), ammonia can be generated by hydrolyzing urea water at a high temperature. A method of decomposing NO X in exhaust gas using ammonia generated from urea is called urea SCR.
CO (NH 2 ) 2 + H 2 O → 2NH 3 + CO 2 (1)
4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O (2)
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O (3)
8NH 3 + 6NO 2 → 7N 2 + 12H 2 O (4)

ディーゼル車においては、SCRによるNOの還元を効率的に行うために、例えば、アンモニアを吸着しやすいゼオライトを担持させたハニカム構造体が用いられている。また、ゼオライトとしては、NO還元性の向上のために、銅イオンなどの金属イオンとイオン交換した金属イオン交換ゼオライトが用いられている。このSCR用ハニカム構造体と、ディーゼルパティキュレートフィルタとは、直列的に配置されて排ガス浄化システムを構築する。一方、省スペース化及び低コスト化の観点から、ディーゼルパティキュレートフィルタの隔壁表面に金属イオン交換ゼオライトを担持させ、SCRの機能とディーゼルパティキュレートフィルタの機能を両方備えたハニカムフィルタも提案されている(例えば、特許文献3参照)。In diesel vehicles, in order to perform the reduction of the NO X by the SCR efficiently, for example, a honeycomb structure was supported adsorbed easily zeolite ammonia is used. Further, as the zeolite, a metal ion exchanged zeolite ion-exchanged with a metal ion such as a copper ion is used in order to improve NO X reduction. The honeycomb structure for SCR and the diesel particulate filter are arranged in series to construct an exhaust gas purification system. On the other hand, from the viewpoint of space saving and cost reduction, a honeycomb filter having both a SCR function and a diesel particulate filter function by supporting a metal ion exchange zeolite on the partition wall surface of the diesel particulate filter has also been proposed. (For example, refer to Patent Document 3).

特開2006−239603号公報JP 2006-239603 A 特開2001−46886号公報Japanese Patent Laid-Open No. 2001-46886 特開2010−227767号公報JP 2010-227767 A

しかしながら、SCRの機能とディーゼルパティキュレートフィルタの機能を両方備えたハニカムフィルタは、高温に曝された場合に、金属イオン交換ゼオライトがハニカムフィルタの隔壁を構成するセラミックスを熱分解してしまうという問題がある。   However, the honeycomb filter having both the SCR function and the diesel particulate filter function has a problem that, when exposed to a high temperature, the metal ion exchange zeolite thermally decomposes the ceramics constituting the partition walls of the honeycomb filter. is there.

本発明は、隔壁を構成するセラミックスの熱分解を抑制できる、SCRの機能とディーゼルパティキュレートフィルタの機能を両方備えたハニカムフィルタを提供することを目的とする。   An object of the present invention is to provide a honeycomb filter having both an SCR function and a diesel particulate filter function that can suppress thermal decomposition of ceramics constituting the partition wall.

上記目的を達成するために、本発明は、互いに平行な複数の流路を形成する隔壁を備えるハニカムフィルタであって、上記ハニカムフィルタが、第1の端面と、当該第1の端面の反対側に位置する第2の端面と、を有し、上記複数の流路が、上記第2の端面側の端部が封口された複数の第1の流路と、上記第1の端面側の端部が封口された複数の第2の流路と、を有し、上記ハニカムフィルタが、上記第1の流路内の隔壁表面、上記第2の流路内の隔壁表面、及び、隔壁細孔内のうちの少なくとも1箇所に形成された触媒層を備え、上記触媒層が、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ロジウム、パラジウム、銀及び白金からなる群より選択される少なくとも一種の金属元素と、ゼオライトと、を含み、上記隔壁が、マグネシウム、カルシウム、ストロンチウム、イットリウム、バリウム、ランタノイド及びビスマスからなる群より選択される少なくとも一種の元素を含有するチタン酸アルミニウム系セラミックスを含む、ハニカムフィルタを提供する。   In order to achieve the above object, the present invention provides a honeycomb filter including partition walls that form a plurality of flow paths parallel to each other, wherein the honeycomb filter includes a first end surface and a side opposite to the first end surface. A plurality of first flow paths whose end portions on the second end face side are sealed, and ends on the first end face side. A plurality of second flow paths whose parts are sealed, wherein the honeycomb filter has a partition wall surface in the first flow path, a partition wall surface in the second flow path, and partition pores A catalyst layer formed in at least one of the layers, wherein the catalyst layer is selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, rhodium, palladium, silver, and platinum. Including at least one metal element and zeolite. Partition walls, magnesium, calcium, strontium, yttrium, barium, aluminum titanate-based ceramics containing at least one element selected from the group consisting of lanthanoid, and bismuth, provides a honeycomb filter.

上記ハニカムフィルタは、隔壁が、マグネシウム、カルシウム、ストロンチウム、イットリウム、バリウム、ランタノイド及びビスマスからなる群より選択される少なくとも一種の元素を含有するチタン酸アルミニウム系セラミックスで構成されていることにより、チタン酸アルミニウム系セラミックスの熱分解を抑制することができる。   In the honeycomb filter, the partition wall is made of an aluminum titanate-based ceramic containing at least one element selected from the group consisting of magnesium, calcium, strontium, yttrium, barium, lanthanoid and bismuth. Thermal decomposition of the aluminum-based ceramics can be suppressed.

また、上記ハニカムフィルタは、互いに反対側の端面が封口された第1及び第2の流路を備え、且つ、第1の流路内の隔壁表面、第2の流路内の隔壁表面、及び、隔壁細孔内のうちの少なくとも1箇所に触媒層(SCR触媒層)が形成されているため、ディーゼルパティキュレートフィルタの機能及びSCRの機能の両方を備える。   The honeycomb filter includes first and second flow paths whose opposite end faces are sealed, and a partition wall surface in the first flow path, a partition wall surface in the second flow path, and Since the catalyst layer (SCR catalyst layer) is formed in at least one of the pores in the partition wall, both the diesel particulate filter function and the SCR function are provided.

上記ハニカムフィルタにおいて、上記隔壁は、更に二酸化ケイ素を含有することが好ましい。例えば、隔壁の原料に二酸化ケイ素を含有させることにより、ハニカムフィルタの隔壁に二酸化ケイ素を含有させることができる。このとき、隔壁の原料が二酸化ケイ素を含有することで、二酸化ケイ素がハニカムフィルタの焼成時に焼結助剤として作用し、チタン酸アルミニウム系結晶同士の界面に存在して、焼成後、ハニカムフィルタ全体の機械的強度を高めることができると共に、隔壁内にガラス相が形成される。このガラス相は、結晶と結晶を結合して隔壁の強度を増すだけでなく、隔壁と接触する触媒層中の金属元素、及び、すす燃焼後に残存する灰に含まれる金属元素が、チタン酸アルミニウム系結晶内に移動することを抑制する効果を持つ。   In the honeycomb filter, the partition wall preferably further contains silicon dioxide. For example, by containing silicon dioxide in the partition wall material, the partition walls of the honeycomb filter can contain silicon dioxide. At this time, since the partition wall material contains silicon dioxide, the silicon dioxide acts as a sintering aid when the honeycomb filter is fired, and is present at the interface between the aluminum titanate-based crystals. The mechanical strength of the glass can be increased, and a glass phase is formed in the partition walls. This glass phase not only increases the strength of the partition walls by bonding the crystals, but also the metal element in the catalyst layer that comes into contact with the partition walls and the metal element contained in the ash remaining after the soot combustion is aluminum titanate. It has the effect of suppressing movement into the system crystal.

本発明によれば、隔壁を構成するセラミックスの熱分解を抑制できる、SCRの機能とディーゼルパティキュレートフィルタの機能を両方備えたハニカムフィルタを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the honeycomb filter provided with both the function of SCR and the function of a diesel particulate filter which can suppress the thermal decomposition of the ceramics which comprise a partition can be provided.

本発明の第1実施形態に係るハニカムフィルタを模式的に示す図である。It is a figure showing typically a honeycomb filter concerning a 1st embodiment of the present invention. 図2(a)は、図1に示したハニカムフィルタにおける図1(b)の反対側の端面の拡大図であり、図2(b)は、隔壁断面の拡大図である。Fig. 2 (a) is an enlarged view of the end face on the opposite side of Fig. 1 (b) in the honeycomb filter shown in Fig. 1, and Fig. 2 (b) is an enlarged view of a partition wall cross section. 図1(a)のIII−III矢視図である。It is the III-III arrow line view of Fig.1 (a). 本発明の第2実施形態に係るハニカムフィルタを模式的に示す図である。It is a figure which shows typically the honey-comb filter which concerns on 2nd Embodiment of this invention. 図5(a)は、図4に示したハニカムフィルタにおける図4(b)の反対側の端面の拡大図であり、図5(b)は、隔壁断面の拡大図である。Fig.5 (a) is an enlarged view of the end surface on the opposite side to FIG.4 (b) in the honey-comb filter shown in FIG. 4, FIG.5 (b) is an enlarged view of a partition cross section. 図4(a)のVI−VI矢視図である。It is VI-VI arrow line view of Fig.4 (a). 本発明のハニカムフィルタを備えた排ガス浄化システムの概略図である。It is the schematic of the exhaust gas purification system provided with the honey-comb filter of this invention. 図8(a)は実験例1で得られたハニカム焼成体の加熱処理後の隔壁断面の走査型電子顕微鏡(SEM)写真であり、図8(b)は図8(a)の領域R3の拡大写真であり、図8(c)は図8(b)の領域R4の拡大写真である。FIG. 8A is a scanning electron microscope (SEM) photograph of the partition wall cross section after the heat treatment of the honeycomb fired body obtained in Experimental Example 1, and FIG. 8B is a region R3 in FIG. 8A. FIG. 8C is an enlarged photograph, and FIG. 8C is an enlarged photograph of the region R4 in FIG. 8B. 図9(a)は領域R4におけるAlのEDX元素マッピング像であり、図9(b)は領域R4におけるTiのEDX元素マッピング像である。FIG. 9A is an EDX element mapping image of Al in the region R4, and FIG. 9B is an EDX element mapping image of Ti in the region R4. 図10(a)は実験例2で得られたハニカム焼成体の加熱処理後の隔壁断面の走査型電子顕微鏡(SEM)写真であり、図10(b)は図10(a)の領域R5の拡大写真である。FIG. 10 (a) is a scanning electron microscope (SEM) photograph of the cross section of the partition wall after the heat treatment of the honeycomb fired body obtained in Experimental Example 2, and FIG. 10 (b) is a region R5 in FIG. 10 (a). It is an enlarged photo. 図11(a)は領域R5におけるAlのEDX元素マッピング像であり、図11(b)は領域R5におけるTiのEDX元素マッピング像である。FIG. 11A is an EDX element mapping image of Al in the region R5, and FIG. 11B is an EDX element mapping image of Ti in the region R5. 図12(a)は実施例1で得られた触媒層担持ハニカムフィルタAの隔壁断面の走査型電子顕微鏡(SEM)写真であり、図12(b)は図12(a)の領域R6の拡大写真である。FIG. 12A is a scanning electron microscope (SEM) photograph of a cross section of the partition wall of the catalyst layer-supporting honeycomb filter A obtained in Example 1, and FIG. 12B is an enlarged view of a region R6 in FIG. It is a photograph. 実施例1で得られた触媒層担持ハニカムフィルタBの隔壁断面の走査型電子顕微鏡(SEM)写真である。2 is a scanning electron microscope (SEM) photograph of a partition wall cross section of a catalyst layer-supporting honeycomb filter B obtained in Example 1. FIG.

以下、場合により図面を参照しつつ本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as the case may be. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

<ハニカムフィルタ>
図1は、第1実施形態に係るハニカムフィルタを模式的に示す図であり、図1(a)はハニカムフィルタの斜視図及び端面の拡大図であり、図1(b)は、図1(a)における領域R1の拡大図である。図2(a)は、図1に示したハニカムフィルタにおける図1(b)の反対側の端面の拡大図であり、図2(b)は、隔壁断面の拡大図である。図3は、図1(a)のIII−III矢視図である。ハニカムフィルタ100は、一方の端面(第1の端面)100aと、端面100aの反対側に位置する他方の端面(第2の端面)100bと、を有している。
<Honeycomb filter>
Fig. 1 is a diagram schematically showing a honeycomb filter according to the first embodiment. Fig. 1 (a) is a perspective view and an enlarged view of an end face of the honeycomb filter, and Fig. 1 (b) is a diagram of Fig. 1 (b). It is an enlarged view of area | region R1 in a). Fig. 2 (a) is an enlarged view of the end face on the opposite side of Fig. 1 (b) in the honeycomb filter shown in Fig. 1, and Fig. 2 (b) is an enlarged view of a partition wall cross section. FIG. 3 is a view taken along arrow III-III in FIG. The honeycomb filter 100 has one end face (first end face) 100a and the other end face (second end face) 100b located on the opposite side of the end face 100a.

ハニカムフィルタ100は、互いに平行に伸びる複数の流路110を有する円柱体である。複数の流路110は、ハニカムフィルタ100の中心軸に平行に伸びる隔壁120により仕切られている。複数の流路110は、複数の流路(第1の流路)110aと、流路110aに隣接する複数の流路(第2の流路)110bとを有している。流路110a及び流路110bは、端面100a,100bに対して垂直に、端面100aから端面100bまで伸びている。   The honeycomb filter 100 is a cylindrical body having a plurality of flow paths 110 extending in parallel to each other. The plurality of flow paths 110 are partitioned by partition walls 120 extending in parallel to the central axis of the honeycomb filter 100. The plurality of channels 110 have a plurality of channels (first channels) 110a and a plurality of channels (second channels) 110b adjacent to the channels 110a. The flow path 110a and the flow path 110b extend from the end face 100a to the end face 100b perpendicular to the end faces 100a and 100b.

流路110のうちの一部を構成する流路110aの一端は、端面100aにおいて開口しており、流路110aの他端は、端面100bにおいて封口部130により封口されている。複数の流路110のうちの残部を構成する流路110bの一端は、端面100aにおいて封口部130により封口されており、流路110bの他端は、端面100bにおいて開口している。ハニカムフィルタ100において、例えば、流路110aにおける端面100a側の端部はガス流入口として開口しており、流路110bにおける端面100b側の端部はガス流出口として開口している。   One end of the flow path 110a constituting a part of the flow path 110 is open at the end face 100a, and the other end of the flow path 110a is sealed by the sealing portion 130 at the end face 100b. One end of the flow path 110b constituting the remaining part of the plurality of flow paths 110 is sealed by the sealing portion 130 at the end face 100a, and the other end of the flow path 110b is opened at the end face 100b. In the honeycomb filter 100, for example, an end portion on the end surface 100a side of the flow path 110a is opened as a gas inlet, and an end portion on the end face 100b side of the flow path 110b is opened as a gas outlet.

流路110a及び流路110bにおける当該流路の軸方向に垂直な断面は、六角形状である。流路110bの断面は、例えば、当該断面を形成する辺140の長さが互いに略等しい正六角形状であるが、扁平六角形状であってもよい。流路110aの断面は、例えば扁平六角形状であるが、正六角形状であってもよい。流路110aの断面において互いに対向する辺の長さは、互いに略等しい。流路110aの断面は、当該断面を形成する辺150として、互いに長さの略等しい二つ(一対)の長辺150aと、互いに長さの略等しい四つ(二対)の短辺150bと、を有している。短辺150bは、長辺150aの両側にそれぞれ配置されている。長辺150a同士は、互いに平行に対向しており、短辺150b同士は、互いに平行に対向している。   Cross sections perpendicular to the axial direction of the flow paths 110a and 110b are hexagonal. The cross section of the flow path 110b is, for example, a regular hexagonal shape in which the lengths of the sides 140 forming the cross section are substantially equal to each other, but may be a flat hexagonal shape. The cross section of the flow path 110a has, for example, a flat hexagonal shape, but may have a regular hexagonal shape. The lengths of the sides facing each other in the cross section of the channel 110a are substantially equal to each other. The cross section of the flow path 110a includes two long sides 150a having substantially the same length as the sides 150 forming the cross section, and four (two pairs) short sides 150b having substantially the same length. ,have. The short side 150b is disposed on each side of the long side 150a. The long sides 150a face each other in parallel, and the short sides 150b face each other in parallel.

隔壁120は、流路110a及び流路110bを仕切る部分として隔壁120aを有している。すなわち、流路110a及び流路110bは、隔壁120aを介して互いに隣接している。隣接する流路110b同士の間に一つの流路110aが配置されることにより、流路110bは、流路110bの配列方向(辺140に略直交する方向)において流路110aと交互に配置されている。   The partition 120 has the partition 120a as a part which partitions off the flow path 110a and the flow path 110b. That is, the channel 110a and the channel 110b are adjacent to each other through the partition wall 120a. By arranging one channel 110a between adjacent channels 110b, the channels 110b are alternately arranged with the channels 110a in the arrangement direction of the channels 110b (a direction substantially orthogonal to the side 140). ing.

流路110bの辺140のそれぞれは、複数の流路110aのいずれか一つの流路の長辺150aと平行に対向している。すなわち、流路110bを形成する壁面のそれぞれは、流路110a及び流路110bの間に位置する隔壁120aにおいて、流路110aを形成する一壁面と平行に対向している。また、流路110は、1つの流路110bと、当該流路110bを囲む6つの流路110aとを含む構成単位を有しており、当該構成単位において、流路110bの辺140の全てが流路110aの長辺150aと対向している。ハニカムフィルタ100では、流路110bの辺140の少なくとも一つの長さが、対向する長辺150aの長さと略等しくてもよく、辺140のそれぞれの長さが、対向する長辺150aの長さと略等しくてもよい。   Each of the sides 140 of the channel 110b is opposed to the long side 150a of any one of the plurality of channels 110a in parallel. That is, each of the wall surfaces forming the flow channel 110b faces the one wall surface forming the flow channel 110a in parallel in the partition wall 120a located between the flow channel 110a and the flow channel 110b. Further, the flow path 110 has a structural unit including one flow path 110b and six flow paths 110a surrounding the flow path 110b. In the structural unit, all the sides 140 of the flow path 110b are included. Opposite the long side 150a of the channel 110a. In the honeycomb filter 100, at least one length of the side 140 of the flow path 110b may be substantially equal to the length of the opposed long side 150a, and each length of the side 140 is equal to the length of the opposed long side 150a. It may be substantially equal.

隔壁120は、互いに隣接する流路110a同士を仕切る部分として隔壁120bを有している。すなわち、流路110bを囲む流路110a同士は、隔壁120bを介して互いに隣接している。   The partition 120 has the partition 120b as a part which partitions the mutually adjacent flow paths 110a. That is, the flow paths 110a surrounding the flow path 110b are adjacent to each other via the partition wall 120b.

流路110aの短辺150bのそれぞれは、隣接する流路110aの短辺150bと平行に対向している。すなわち、流路110aを形成する壁面は、隣接する流路110a同士の間に位置する隔壁120bにおいて互いに平行に対向している。ハニカムフィルタ100では、隣接する流路110a同士の間において、流路110aの短辺150bの少なくとも一つの長さが、対向する短辺150bの長さと略等しくてもよく、短辺150bのそれぞれの長さが、対向する短辺150bの長さと略等しくてもよい。   Each of the short sides 150b of the channel 110a is opposed to the short side 150b of the adjacent channel 110a in parallel. That is, the wall surfaces forming the flow paths 110a face each other in parallel in the partition wall 120b located between the adjacent flow paths 110a. In the honeycomb filter 100, at least one length of the short side 150b of the flow path 110a between the adjacent flow paths 110a may be substantially equal to the length of the opposing short side 150b. The length may be substantially equal to the length of the opposing short side 150b.

流路110a内の隔壁120a,120b表面、流路110b内の隔壁120a,120b表面、及び、隔壁120a,120bの細孔内部(連通孔内部)には、触媒層160が形成されている。なお、触媒層160は、上述した流路110a内の隔壁120a,120b表面、流路110b内の隔壁120a,120b表面、及び、隔壁120a,120bの細孔内部のうちの少なくとも1箇所に形成されていればよいが、優れたSCRの機能を得る観点からは、図1〜3に示すように、上述した箇所の全部に形成されていることが好ましい。   A catalyst layer 160 is formed on the surfaces of the partition walls 120a and 120b in the channel 110a, the surfaces of the partition walls 120a and 120b in the channel 110b, and the pores (inside the communication holes) of the partition walls 120a and 120b. The catalyst layer 160 is formed on at least one of the surfaces of the partition walls 120a and 120b in the channel 110a, the surfaces of the partition walls 120a and 120b in the channel 110b, and the pores of the partition walls 120a and 120b. However, from the viewpoint of obtaining an excellent SCR function, as shown in FIGS.

図4は、第2実施形態に係るハニカムフィルタを模式的に示す図であり、図4(a)はハニカムフィルタの斜視図及び端面の拡大図であり、図4(b)は、図4(a)における領域R2の拡大図である。図5(a)は、図4に示したハニカムフィルタにおける図4(b)の反対側の端面の拡大図であり、図5(b)は、隔壁断面の拡大図である。図6は、図4(a)のVI−VI矢視図である。ハニカムフィルタ200は、一方の端面(第1の端面)200aと、端面200aの反対側に位置する他方の端面(第2の端面)200bと、を有している。   Fig. 4 is a diagram schematically showing the honeycomb filter according to the second embodiment. Fig. 4 (a) is a perspective view and an enlarged view of the end face of the honeycomb filter, and Fig. 4 (b) is a diagram of Fig. 4 (b). It is an enlarged view of area | region R2 in a). Fig.5 (a) is an enlarged view of the end surface on the opposite side to FIG.4 (b) in the honey-comb filter shown in FIG. 4, FIG.5 (b) is an enlarged view of a partition cross section. FIG. 6 is a view taken along arrow VI-VI in FIG. The honeycomb filter 200 has one end face (first end face) 200a and the other end face (second end face) 200b located on the opposite side of the end face 200a.

ハニカムフィルタ200は、互いに平行に伸びる複数の流路210を有する円柱体である。複数の流路210は、ハニカムフィルタ200の中心軸に平行に伸びる隔壁220により仕切られている。複数の流路210は、複数の流路(第1の流路)210aと、流路210aに隣接する複数の流路(第2の流路)210bとを有している。流路210a及び流路210bは、端面200a,200bに対して垂直に、端面200aから端面200bまで伸びている。   The honeycomb filter 200 is a cylindrical body having a plurality of flow paths 210 extending in parallel to each other. The plurality of flow paths 210 are partitioned by partition walls 220 extending in parallel with the central axis of the honeycomb filter 200. The plurality of flow paths 210 include a plurality of flow paths (first flow paths) 210a and a plurality of flow paths (second flow paths) 210b adjacent to the flow paths 210a. The channel 210a and the channel 210b extend from the end surface 200a to the end surface 200b perpendicular to the end surfaces 200a and 200b.

流路210のうちの一部を形成する流路210aの一端は、端面200aにおいて開口しており、流路210aの他端は、端面200bにおいて封口部230により封口されている。複数の流路210のうちの残部を形成する流路210bの一端は、端面200aにおいて封口部230により封口されており、流路210bの他端は、端面200bにおいて開口している。ハニカムフィルタ200において、例えば、流路210aにおける端面200a側の端部はガス流入口として開口しており、流路210bにおける端面200b側の端部はガス流出口として開口している。   One end of the flow path 210a forming a part of the flow path 210 is open at the end face 200a, and the other end of the flow path 210a is sealed by the sealing portion 230 at the end face 200b. One end of the flow path 210b forming the remaining part of the plurality of flow paths 210 is sealed by the sealing portion 230 at the end face 200a, and the other end of the flow path 210b is opened at the end face 200b. In the honeycomb filter 200, for example, an end portion on the end surface 200a side of the flow path 210a is opened as a gas inlet, and an end portion of the flow path 210b on the end surface 200b side is opened as a gas outlet.

流路210a及び流路210bにおける当該流路の軸方向に垂直な断面は、六角形状である。流路210bの断面は、例えば、当該断面を形成する辺240の長さが互いに略等しい正六角形状であるが、扁平六角形状であってもよい。流路210aの断面は、例えば扁平六角形状であるが、正六角形状であってもよい。流路210aの断面において互いに対向する辺の長さは、互いに異なっている。流路210aの断面は、当該断面を形成する辺250として、互いに長さの略等しい三つの長辺250aと、互いに長さの略等しい三つの短辺250bと、を有している。長辺250a及び短辺250bは、互いに平行に対向しており、短辺250bは、長辺250aの両側にそれぞれ配置されている。   Cross sections perpendicular to the axial direction of the flow paths 210a and 210b are hexagonal. The cross section of the flow path 210b is, for example, a regular hexagonal shape in which the lengths of the sides 240 forming the cross section are substantially equal to each other, but may be a flat hexagonal shape. The cross section of the flow path 210a is, for example, a flat hexagonal shape, but may be a regular hexagonal shape. The lengths of the sides facing each other in the cross section of the flow path 210a are different from each other. The cross section of the channel 210a has three long sides 250a having substantially the same length and three short sides 250b having substantially the same length as the sides 250 forming the cross section. The long side 250a and the short side 250b face each other in parallel, and the short side 250b is disposed on each side of the long side 250a.

隔壁220は、流路210a及び流路210bを仕切る部分として隔壁220aを有している。すなわち、流路210a及び流路210bは、隔壁220aを介して互いに隣接している。隣接する流路210b同士の間には、当該流路210bの配列方向に略直交する方向に隣接する二つの流路210aが配置されており、当該隣接する二つの流路210aは、隣接する流路210b同士の断面の中心同士を結ぶ線を挟んで対称に配置されている。   The partition 220 has the partition 220a as a part which partitions off the flow path 210a and the flow path 210b. That is, the flow path 210a and the flow path 210b are adjacent to each other through the partition wall 220a. Between the adjacent flow paths 210b, two flow paths 210a adjacent to each other in a direction substantially orthogonal to the arrangement direction of the flow paths 210b are arranged, and the two adjacent flow paths 210a are adjacent to each other. They are arranged symmetrically across a line connecting the centers of the cross sections of the paths 210b.

流路210bの辺240のそれぞれは、複数の流路210aのいずれか一つの流路の長辺250aと平行に対向している。すなわち、流路210bを形成する壁面のそれぞれは、流路210a及び流路210bの間に位置する隔壁220aにおいて、流路210aを形成する一壁面と平行に対向している。また、流路210は、1つの流路210bと、当該流路210bを囲む6つの流路210aとを含む構成単位を有しており、当該構成単位において、流路210bの辺240の全てが流路210aの長辺250aと対向している。流路210bの断面の各頂点は、隣接する流路210bの頂点と流路210bの配列方向に対向している。ハニカムフィルタ200では、流路210bの辺240の少なくとも一つの長さが、対向する長辺250aの長さと略等しくてもよく、辺240のそれぞれの長さが、対向する長辺250aの長さと略等しくてもよい。   Each of the sides 240 of the flow path 210b faces the long side 250a of any one of the plurality of flow paths 210a in parallel. That is, each of the wall surfaces forming the flow path 210b faces the one wall surface forming the flow path 210a in parallel in the partition wall 220a positioned between the flow path 210a and the flow path 210b. The flow path 210 includes a structural unit including one flow path 210b and six flow paths 210a surrounding the flow path 210b. In the structural unit, all the sides 240 of the flow path 210b are included. It faces the long side 250a of the flow path 210a. Each vertex of the cross section of the flow path 210b is opposed to the apex of the adjacent flow path 210b in the arrangement direction of the flow paths 210b. In the honeycomb filter 200, at least one length of the side 240 of the flow path 210b may be substantially equal to the length of the opposed long side 250a, and each length of the side 240 is equal to the length of the opposed long side 250a. It may be substantially equal.

隔壁220は、互いに隣接する流路210a同士を仕切る部分として隔壁220bを有している。すなわち、流路210bを囲む流路210a同士は、隔壁220bを介して互いに隣接している。   The partition 220 has the partition 220b as a part which partitions off the mutually adjacent flow paths 210a. That is, the flow paths 210a surrounding the flow path 210b are adjacent to each other through the partition 220b.

流路210aの短辺250bのそれぞれは、隣接する流路210aの短辺250bと平行に対向している。すなわち、流路210aを形成する壁面は、隣接する流路210a同士の間に位置する隔壁220bにおいて互いに平行に対向している。また、1つの流路210aは、3つの流路210bに囲まれている。ハニカムフィルタ200では、隣接する流路210a同士の間において、流路210aの短辺250bの少なくとも一つの長さが、対向する短辺250bの長さと略等しくてもよく、短辺250bのそれぞれの長さが、対向する短辺250bの長さと略等しくてもよい。   Each of the short sides 250b of the flow path 210a faces the short side 250b of the adjacent flow path 210a in parallel. In other words, the wall surfaces forming the flow path 210a face each other in parallel in the partition 220b located between the adjacent flow paths 210a. One flow path 210a is surrounded by three flow paths 210b. In the honeycomb filter 200, between adjacent flow paths 210a, at least one length of the short side 250b of the flow path 210a may be substantially equal to the length of the opposing short side 250b. The length may be substantially equal to the length of the opposing short side 250b.

流路210a内の隔壁220a,220b表面、流路210b内の隔壁220a,220b表面、及び、隔壁220a,220bの細孔内部(連通孔内部)には、触媒層260が形成されている。なお、触媒層260は、上述した流路210a内の隔壁220a,220b表面、流路210b内の隔壁220a,220b表面、及び、隔壁220a,220bの細孔内部のうちの少なくとも1箇所に形成されていればよいが、優れたSCRの機能を得る観点からは、図4〜6に示すように、上述した箇所の全部に形成されていることが好ましい。   A catalyst layer 260 is formed on the surfaces of the partition walls 220a and 220b in the flow path 210a, the surfaces of the partition walls 220a and 220b in the flow path 210b, and inside the pores (inside the communication holes) of the partition walls 220a and 220b. The catalyst layer 260 is formed on at least one of the surfaces of the partition walls 220a and 220b in the channel 210a, the surfaces of the partition walls 220a and 220b in the channel 210b, and the pores of the partition walls 220a and 220b. However, from the viewpoint of obtaining an excellent SCR function, as shown in FIGS.

流路の軸方向におけるハニカムフィルタ100,200の長さは、例えば50〜300mmである。ハニカムフィルタ100,200の外径は、例えば50〜250mmである。ハニカムフィルタ100において、辺140の長さは、例えば0.4〜2.0mmである。長辺150aの長さは、例えば0.4〜2.0mmであり、短辺150bの長さは、例えば0.3〜2.0mmである。ハニカムフィルタ200において、辺240の長さは、例えば0.4〜2.0mmである。長辺250aの長さは、例えば0.4〜2.0mmであり、短辺250bの長さは、例えば0.3〜2.0mmである。隔壁120,220の厚み(セル壁厚)は、例えば0.1〜0.8mmである。ハニカムフィルタ100,200におけるセル密度(例えば、ハニカムフィルタ100において、端面100aにおける流路110a及び流路110bの密度の合計)は、50〜600cpsi(cells per square inch)が好ましく、100〜500cpsiがより好ましい。   The lengths of the honeycomb filters 100 and 200 in the axial direction of the flow path are, for example, 50 to 300 mm. The outer diameter of the honeycomb filters 100 and 200 is, for example, 50 to 250 mm. In the honeycomb filter 100, the length of the side 140 is, for example, 0.4 to 2.0 mm. The length of the long side 150a is, for example, 0.4 to 2.0 mm, and the length of the short side 150b is, for example, 0.3 to 2.0 mm. In the honeycomb filter 200, the length of the side 240 is, for example, 0.4 to 2.0 mm. The length of the long side 250a is, for example, 0.4 to 2.0 mm, and the length of the short side 250b is, for example, 0.3 to 2.0 mm. The thickness (cell wall thickness) of the partition walls 120 and 220 is, for example, 0.1 to 0.8 mm. The cell density in the honeycomb filters 100 and 200 (for example, in the honeycomb filter 100, the sum of the densities of the flow paths 110a and 110b in the end face 100a) is preferably 50 to 600 cpsi (cells per square inch), and more preferably 100 to 500 cpsi. preferable.

ハニカムフィルタ100,200の単位体積当たりの触媒層160,260の担持量は、ディーゼルパティキュレートフィルタとしての機能を損なうことなく十分なNO分解能を得る観点から、20〜300mg/cmであることが好ましく、50〜200mg/cmであることがより好ましい。The supported amount of the catalyst layers 160 and 260 per unit volume of the honeycomb filters 100 and 200 is 20 to 300 mg / cm 3 from the viewpoint of obtaining sufficient NO X resolution without impairing the function as a diesel particulate filter. Is preferable, and it is more preferable that it is 50-200 mg / cm < 3 >.

ハニカムフィルタ100において、端面100aにおける複数の流路110aの開口面積の合計は、端面100bにおける流路110bの開口面積の合計よりも大きいことが好ましい。ハニカムフィルタ200において、端面200aにおける複数の流路210aの開口面積の合計は、端面200bにおける流路210bの開口面積の合計よりも大きいことが好ましい。   In the honey-comb filter 100, it is preferable that the sum total of the opening area of the some flow path 110a in the end surface 100a is larger than the sum of the opening area of the flow path 110b in the end surface 100b. In the honeycomb filter 200, the total opening area of the plurality of flow paths 210a on the end face 200a is preferably larger than the total opening area of the flow paths 210b on the end face 200b.

端面100a,200aにおける流路110a,210aの水力直径は、ハニカムフィルタの機械的強度を維持する観点から、1.4mm以下であることが好ましい。流路110a,210aの水力直径は、流路内における端面側の領域に被捕集物が堆積することを更に抑制する観点から、0.5mm以上が好ましく、0.7mm以上がより好ましい。   The hydraulic diameter of the flow paths 110a and 210a on the end faces 100a and 200a is preferably 1.4 mm or less from the viewpoint of maintaining the mechanical strength of the honeycomb filter. The hydraulic diameters of the flow paths 110a and 210a are preferably 0.5 mm or more, and more preferably 0.7 mm or more, from the viewpoint of further suppressing accumulation of collected substances in the region on the end face side in the flow path.

端面100b,200bにおける流路110b,210bの水力直径は、端面100a,200aにおける流路110a,210aの水力直径よりも大きいことが好ましい。端面100b,200bにおける流路110b,210bの水力直径は、ハニカムフィルタの機械的強度を維持する観点から、1.7mm以下が好ましく、1.6mm以下がより好ましい。流路110b,210bの水力直径は、排気ガス通気の圧力損失を低減する観点から、0.5mm以上が好ましく、0.7mm以上がより好ましい。   The hydraulic diameter of the flow paths 110b and 210b at the end faces 100b and 200b is preferably larger than the hydraulic diameter of the flow paths 110a and 210a at the end faces 100a and 200a. From the viewpoint of maintaining the mechanical strength of the honeycomb filter, the hydraulic diameter of the flow paths 110b and 210b at the end faces 100b and 200b is preferably 1.7 mm or less, and more preferably 1.6 mm or less. The hydraulic diameter of the channels 110b and 210b is preferably 0.5 mm or more, and more preferably 0.7 mm or more, from the viewpoint of reducing the pressure loss of exhaust gas ventilation.

なお、ハニカムフィルタの形状は、上記のハニカムフィルタ100,200のように、第1の流路(流路110a,210a)の軸方向に垂直な第1の流路の断面が、第1の辺(長辺150a,250a)と、当該第1の辺の両側にそれぞれ配置された第2の辺(短辺150b,250b)とを有しており、第2の流路(流路110b,210b)の軸方向に垂直な第2の流路の断面を形成する辺(辺140,240)のそれぞれが、第1の流路の第1の辺と対向しており、第1の流路の第2の辺のそれぞれが、隣接する第1の流路の第2の辺と対向している形態であってもよいが、必ずしも上述した形状に限定されるものではない。   The shape of the honeycomb filter is such that the cross section of the first channel perpendicular to the axial direction of the first channel (channels 110a and 210a) is the first side as in the honeycomb filters 100 and 200 described above. (Long sides 150a, 250a) and second sides (short sides 150b, 250b) respectively disposed on both sides of the first side, and a second channel (channels 110b, 210b). ) Each of the sides (sides 140 and 240) forming a cross section of the second flow path perpendicular to the axial direction of the first flow path are opposed to the first side of the first flow path. Each of the second sides may be in a form facing the second side of the adjacent first flow path, but is not necessarily limited to the shape described above.

また、ハニカムフィルタにおける流路の軸方向に垂直な当該流路の断面は、六角形状であることに限定されず、三角形状、矩形状、八角形状、円形状、楕円形状等であってもよい。また、流路には、径の異なるものが混在していてもよく、断面形状の異なるものが混在していてもよい。また、流路の配置は特に限定されるものではなく、流路の中心軸の配置は、正三角形の頂点に配置される正三角形配置、千鳥配置等であってもよい。さらに、ハニカムフィルタは円柱体であることに限られず、楕円柱、三角柱、四角柱、六角柱、八角柱等であってもよい。   Further, the cross section of the channel perpendicular to the axial direction of the channel in the honeycomb filter is not limited to the hexagonal shape, and may be a triangular shape, a rectangular shape, an octagonal shape, a circular shape, an elliptical shape, or the like. . Moreover, in the flow path, those having different diameters may be mixed, or those having different cross-sectional shapes may be mixed. In addition, the arrangement of the flow paths is not particularly limited, and the arrangement of the central axes of the flow paths may be an equilateral triangle arrangement, a staggered arrangement, or the like arranged at the apex of the equilateral triangle. Furthermore, the honeycomb filter is not limited to a cylindrical body, and may be an elliptical column, a triangular column, a quadrangular column, a hexagonal column, an octagonal column, or the like.

上記ハニカムフィルタ100,200において隔壁は、多孔質であり、例えば多孔質セラミックス焼結体を含んでいる。隔壁は、流体が透過できるような構造を有している。具体的には、流体が通過し得る多数の連通孔(流通経路)が隔壁内に形成されている。   In the honeycomb filters 100 and 200, the partition walls are porous, and include, for example, a porous ceramic sintered body. The partition has a structure that allows fluid to pass therethrough. Specifically, a large number of communication holes (flow channels) through which fluid can pass are formed in the partition wall.

隔壁の気孔率は、ハニカムフィルタの捕集効率を向上させ、且つ、より低い圧力損失を実現させる観点から、20体積%以上が好ましく、30体積%以上がより好ましい。隔壁の気孔率は、70体積%以下が好ましく、60体積%以下がより好ましい。隔壁の平均気孔径は、ハニカムフィルタの捕集効率を向上させ、且つ、より低い圧力損失を実現させる観点から、5μm以上が好ましく、10μm以上がより好ましい。隔壁の平均気孔径は、35μm以下が好ましく、30μm以下がより好ましい。隔壁の気孔率及び平均気孔径は、原料の粒子径、造孔剤の添加量、造孔剤の種類、焼成条件により調整可能であり、水銀圧入法により測定することができる。   The porosity of the partition walls is preferably 20% by volume or more and more preferably 30% by volume or more from the viewpoint of improving the collection efficiency of the honeycomb filter and realizing lower pressure loss. The porosity of the partition walls is preferably 70% by volume or less, and more preferably 60% by volume or less. The average pore diameter of the partition walls is preferably 5 μm or more, more preferably 10 μm or more, from the viewpoint of improving the collection efficiency of the honeycomb filter and realizing a lower pressure loss. The average pore diameter of the partition walls is preferably 35 μm or less, and more preferably 30 μm or less. The porosity and average pore diameter of the partition walls can be adjusted by the particle diameter of the raw material, the amount of pore former added, the kind of pore former, and the firing conditions, and can be measured by mercury porosimetry.

隔壁は、マグネシウム、カルシウム、ストロンチウム、イットリウム、バリウム、ランタノイド及びビスマスからなる群より選択される少なくとも一種の元素を含有するチタン酸アルミニウム系セラミックスを含む。当該チタン酸アルミニウム系セラミックスは、金属イオン交換ゼオライトによる熱分解をより十分に抑制する観点から、マグネシウム、カルシウム、ストロンチウム、バリウム及びランタンからなる群より選択される少なくとも一種の元素を含有することが好ましく、マグネシウムを含有することが特に好ましい。金属イオン交換ゼオライトを担持した隔壁が高温に曝された場合、ゼオライト中の金属がチタン酸アルミニウム系セラミックス中のアルミニウム原子及びチタニウム原子の移動を促進して熱分解を引き起こすが、例えばチタン酸アルミニウムマグネシウムでは、マグネシアが結晶構造の格子位置に存在するため、アルミニウム原子及びチタニウム原子の移動を阻害し、熱分解を抑制することができる。マグネシウム以外の上述した特定の元素を含む場合にも、同様にアルミニウム原子及びチタニウム原子の移動を阻害して、熱分解を抑制することができる。   The partition includes aluminum titanate-based ceramics containing at least one element selected from the group consisting of magnesium, calcium, strontium, yttrium, barium, lanthanoid, and bismuth. The aluminum titanate-based ceramics preferably contains at least one element selected from the group consisting of magnesium, calcium, strontium, barium and lanthanum from the viewpoint of sufficiently suppressing thermal decomposition by metal ion exchange zeolite. It is particularly preferable to contain magnesium. When the partition wall supporting the metal ion exchanged zeolite is exposed to high temperature, the metal in the zeolite promotes the movement of aluminum atoms and titanium atoms in the aluminum titanate ceramics and causes thermal decomposition. For example, magnesium magnesium titanate Then, since magnesia exists in the lattice position of the crystal structure, the movement of aluminum atoms and titanium atoms can be inhibited, and thermal decomposition can be suppressed. Similarly, when the specific element other than magnesium is included, the movement of aluminum atoms and titanium atoms can be similarly inhibited to suppress thermal decomposition.

隔壁中のマグネシウム、カルシウム、ストロンチウム、イットリウム、バリウム、ランタノイド及びビスマスからなる群より選択される少なくとも一種の元素の酸化物換算での含有量は、アルミニウム及びチタンを酸化物に換算したAl及びTiOの総量100質量部に対して、0.1〜20質量部であることが好ましく、1.0〜15質量部であることがより好ましく、4.0〜10質量部であることが特に好ましい。上記特定の元素の含有量が上記下限値以上であることにより、チタン酸アルミニウム系セラミックスの熱分解をより十分に抑制できる傾向があり、上記上限値以下であることにより、機械的強度を十分に保つことができる傾向がある。The oxide content of at least one element selected from the group consisting of magnesium, calcium, strontium, yttrium, barium, lanthanoid and bismuth in the partition wall is Al 2 O 3 in which aluminum and titanium are converted into oxides. and the total amount 100 parts by weight of TiO 2, preferably 0.1 to 20 mass parts, more preferably from 1.0 to 15 parts by weight, it is 4.0 to 10 parts by weight Particularly preferred. When the content of the specific element is equal to or higher than the lower limit, the thermal decomposition of the aluminum titanate-based ceramics tends to be more sufficiently suppressed, and when the content is lower than the upper limit, the mechanical strength is sufficiently increased. There is a tendency to be able to keep.

チタン酸アルミニウム系セラミックスにおいて、Alに換算したアルミニウムと、TiOに換算したチタンとのモル比(アルミニウム:チタン)は、35:65〜45:55が好ましく、40:60〜45:55がより好ましい。隔壁がチタン酸アルミニウムマグネシウムを含有する場合、チタン酸アルミニウムマグネシウムの組成式は、例えばAl2(1−x)MgTi(1+x)であり、xの値は、0.03以上が好ましく、0.03〜0.20がより好ましく、0.03〜0.18が更に好ましい。In the aluminum titanate-based ceramics, the molar ratio (aluminum: titanium) of aluminum converted to Al 2 O 3 and titanium converted to TiO 2 is preferably 35:65 to 45:55, and 40:60 to 45: 55 is more preferred. When the partition contains aluminum magnesium titanate, the composition formula of aluminum magnesium titanate is, for example, Al 2 (1-x) Mg x Ti (1 + x) O 5 , and the value of x is preferably 0.03 or more. 0.03-0.20 is more preferable, and 0.03-0.18 is still more preferable.

チタン酸アルミニウム系セラミックスを含有する隔壁は、例えば、主にチタン酸アルミニウム系結晶からなる多孔性セラミックスから形成されている。「主にチタン酸アルミニウム系結晶からなる」とは、セラミックス焼成体を構成する主結晶相がチタン酸アルミニウム系結晶相であることを意味する。なお、チタン酸アルミニウム系結晶相は、マグネシウム、カルシウム、ストロンチウム、イットリウム、バリウム、ランタノイド及びビスマスからなる群より選択される少なくとも一種の元素を含有する。   The partition containing the aluminum titanate-based ceramics is formed of, for example, porous ceramics mainly made of aluminum titanate-based crystals. “Mainly composed of an aluminum titanate crystal” means that the main crystal phase constituting the ceramic fired body is an aluminum titanate crystal phase. The aluminum titanate-based crystal phase contains at least one element selected from the group consisting of magnesium, calcium, strontium, yttrium, barium, lanthanoid and bismuth.

チタン酸アルミニウム系セラミックスを含有する隔壁は、ケイ素源粉末由来のガラス相を含んでいてもよい。ガラス相は、SiO(二酸化ケイ素)が主要成分である非晶質相を指す。また、チタン酸アルミニウム系セラミックスを含有する隔壁は、チタン酸アルミニウム系結晶相及びガラス相以外の結晶相を含んでいてもよい。このような結晶相としては、セラミックス焼成体の作製に用いる原料由来の相等を挙げることができる。原料由来の相は、例えば、ハニカムフィルタの製造に際してチタン酸アルミニウム系結晶相を形成することなく残存したアルミニウム源粉末、チタン源粉末、マグネシウム源粉末等に由来する相であり、アルミナ、チタニア、マグネシア等の相が挙げられる。隔壁を形成する結晶相は、X線回折スペクトルにより確認することができる。The partition containing the aluminum titanate ceramic may contain a glass phase derived from silicon source powder. The glass phase refers to an amorphous phase in which SiO 2 (silicon dioxide) is a main component. Moreover, the partition containing an aluminum titanate ceramic may contain crystal phases other than an aluminum titanate crystal phase and a glass phase. Examples of such a crystal phase include a phase derived from a raw material used for producing a ceramic fired body. The phase derived from the raw material is, for example, a phase derived from an aluminum source powder, a titanium source powder, a magnesium source powder, or the like remaining without forming an aluminum titanate-based crystal phase during the manufacture of the honeycomb filter, such as alumina, titania, magnesia. And the like. The crystal phase forming the partition can be confirmed by an X-ray diffraction spectrum.

隔壁がSiOを含有する場合、その含有量は、隔壁全量を基準として0.5〜30質量%であることが好ましく、1.0〜25質量%であることがより好ましく、2.0〜20質量%であることが特に好ましい。SiOの含有量を上記下限値以上とすることで、上記下限値未満である場合と比較して、焼結後の機械的強度を高めることができ、焼結ハニカムが崩れ難くなる傾向があり、上記上限値以下とすることで、上記上限値を超える場合と比較して、焼結ハニカムの熱膨張係数が小さくなる傾向がある。If the partition wall contains SiO 2, the content thereof is preferably from 0.5 to 30 wt% of the partition wall based on the total, more preferably from 1.0 to 25 wt%, 2.0 It is especially preferable that it is 20 mass%. The content of SiO 2 by the above-described lower limit, compared to the case is less than the above lower limit, the mechanical strength after sintering can be increased, there is a tendency for sintering the honeycomb hardly broken When the upper limit value is not exceeded, the thermal expansion coefficient of the sintered honeycomb tends to be smaller than when the upper limit value is exceeded.

触媒層は、多孔質のゼオライトを主成分とする層であり、更に、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ロジウム、パラジウム、銀及び白金からなる群より選択される少なくとも一種の金属元素を含有する層である。ゼオライトは、上記金属元素のイオンとイオン交換された金属イオン交換ゼオライトであることにより、NO還元性が向上する。金属イオン交換ゼオライトは、ゼオライトが含んでいるナトリウムイオン等の陽イオンが他の金属イオンに置き換わったものである。NO還元性の向上効果が大きいことから、上記金属元素は、銅、鉄、バナジウム、コバルト、ニッケル及び銀からなる群より選択される少なくとも一種であることが好ましく、銅であることが特に好ましい。ゼオライトの種類としては、ZSM−5、βゼオライト、モルデナイト、フェリエライト、チャバサイト、A型ゼオライト、X型ゼオライト、Y型ゼオライト、MCM−22を例示することができる。これらの中でも、ゼオライトは、NO還元性に優れることからZSM−5又はチャバサイトを含むものが好ましい。The catalyst layer is a layer mainly composed of porous zeolite, and is further selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, rhodium, palladium, silver and platinum. It is a layer containing a kind of metal element. Since the zeolite is a metal ion-exchanged zeolite ion-exchanged with the ions of the above metal elements, the NO X reducing property is improved. In the metal ion exchanged zeolite, cations such as sodium ions contained in the zeolite are replaced with other metal ions. Since the effect of improving NO X reduction is great, the metal element is preferably at least one selected from the group consisting of copper, iron, vanadium, cobalt, nickel and silver, and particularly preferably copper. . Examples of the zeolite include ZSM-5, β zeolite, mordenite, ferrierite, chabazite, A-type zeolite, X-type zeolite, Y-type zeolite, and MCM-22. Among these, zeolite is preferably one containing a ZSM-5 or chabazite since it is excellent in the NO X reducing.

触媒層は、流体が透過できるような構造を有している。具体的には、流体が通過し得る多数の連通孔(流通経路)が触媒層内に形成されている。触媒層は、流体が触媒層及び隔壁の双方を通過できるように、隔壁の連通孔(流通経路)を塞がないように設けられている。   The catalyst layer has a structure that allows fluid to permeate. Specifically, a large number of communication holes (flow paths) through which fluid can pass are formed in the catalyst layer. The catalyst layer is provided so as not to block the communication hole (flow path) of the partition wall so that the fluid can pass through both the catalyst layer and the partition wall.

触媒層の気孔率は、ハニカムフィルタのディーゼルパティキュレートフィルタとしての機能を損なわない観点から、20体積%以上が好ましく、30体積%以上がより好ましい。触媒層の気孔率は、優れたアンモニア吸着量及びNO還元能を得る観点から、70体積%以下が好ましく、60体積%以下がより好ましい。触媒層の平均気孔径は、ハニカムフィルタのディーゼルパティキュレートフィルタとしての機能を損なわない観点から、5μm以上が好ましく、8μm以上がより好ましい。触媒層の平均気孔径は、優れたNO還元能を得る観点から、30μm以下が好ましく、25μm以下がより好ましい。触媒層の気孔率及び平均気孔径は、使用するゼオライトの種類、ゼオライト粉末の造粒により調整可能であり、水銀圧入法により測定することができる。From the viewpoint of not impairing the function of the honeycomb filter as a diesel particulate filter, the porosity of the catalyst layer is preferably 20% by volume or more, and more preferably 30% by volume or more. The porosity of the catalyst layer is preferably 70% by volume or less, and more preferably 60% by volume or less, from the viewpoint of obtaining an excellent ammonia adsorption amount and NO X reduction ability. The average pore diameter of the catalyst layer is preferably 5 μm or more, and more preferably 8 μm or more from the viewpoint of not impairing the function of the honeycomb filter as a diesel particulate filter. The average pore diameter of the catalyst layer is preferably 30 μm or less, and more preferably 25 μm or less, from the viewpoint of obtaining excellent NO X reducing ability. The porosity and average pore diameter of the catalyst layer can be adjusted by the type of zeolite used and the granulation of the zeolite powder, and can be measured by mercury porosimetry.

触媒層中のチタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ロジウム、パラジウム、銀及び白金からなる群より選択される少なくとも一種の金属元素の含有量は、チタン酸アルミニウム系セラミックスの熱分解を抑制しつつ、優れたNO還元能を得る観点から、触媒層全量を基準として0.01〜1.0質量%であることが好ましく、0.05〜0.5質量%であることがより好ましい。The content of at least one metal element selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, rhodium, palladium, silver, and platinum in the catalyst layer is the aluminum titanate ceramics. while suppressing the thermal decomposition, from the viewpoint of obtaining excellent NO X reducing ability is preferably 0.01 to 1.0 wt% of the catalyst layer based on the total from 0.05 to 0.5 wt% It is more preferable.

触媒層中のゼオライトのシリカ(SiO)とアルミナ(Al)とのモル比(シリカ/アルミナ)は、チタン酸アルミニウム系セラミックスの熱分解を抑制しつつ、優れたNO還元能を得る観点から、10〜10000であることが好ましく、20〜5000であることがより好ましい。The molar ratio of silica (SiO 2 ) and alumina (Al 2 O 3 ) of zeolite in the catalyst layer (silica / alumina) has excellent NO X reduction ability while suppressing thermal decomposition of the aluminum titanate ceramics. From the viewpoint of obtaining, it is preferably 10 to 10000, more preferably 20 to 5000.

ハニカムフィルタ100,200は、例えば、ディーゼルエンジン、ガソリンエンジン等の内燃機関からの排ガス中に含まれるすす等の被捕集物を捕集するとともに、排ガス中のNOを浄化する、排ガス浄化フィルタとして適する。例えば、ハニカムフィルタ100では、図3に示すように、端面100aから流路110aに供給されたガスGが、触媒層160及び隔壁120内の連通孔を通過して隣の流路110bに到達し、端面100bから排出される。このとき、ガスG中のNOが触媒層160により還元されてN及びHOに分解されるとともに、被捕集物が隔壁120の表面及び/又は連通孔内に捕集されてガスGから除去されることにより、ハニカムフィルタ100は排ガス浄化フィルタとして機能する。ハニカムフィルタ200についても、同様に排ガス浄化フィルタとして機能する。The honeycomb filter 100, 200, for example, a diesel engine, as well as collecting the trapped material such as soot contained in exhaust gas from an internal combustion engine such as a gasoline engine, for purifying NO X in the exhaust gas, the exhaust gas purification filter Suitable as For example, in the honeycomb filter 100, as shown in FIG. 3, the gas G supplied from the end face 100a to the flow path 110a passes through the communication holes in the catalyst layer 160 and the partition wall 120 and reaches the adjacent flow path 110b. And is discharged from the end face 100b. At this time, NO X in the gas G is reduced by the catalyst layer 160 and decomposed into N 2 and H 2 O, and the trapped material is collected on the surface of the partition wall 120 and / or in the communication hole. By being removed from G, the honeycomb filter 100 functions as an exhaust gas purification filter. Similarly, the honeycomb filter 200 functions as an exhaust gas purification filter.

図7は、排ガス浄化システムの一実施形態を示す概略図である。本実施形態の排ガス浄化システムは、上述したハニカムフィルタ100を備える。排ガス浄化システムは、ハニカムフィルタ100に代えて、ハニカムフィルタ200を備えてもよい。   FIG. 7 is a schematic view showing an embodiment of the exhaust gas purification system. The exhaust gas purification system of the present embodiment includes the honeycomb filter 100 described above. The exhaust gas purification system may include a honeycomb filter 200 instead of the honeycomb filter 100.

図7に示した排ガス浄化システムにおいて、ディーゼルエンジン、ガソリンエンジン等の内燃機関500から排出されたガスGは、先ず酸化触媒(DOC:Diesel Oxidation Catalyst)510に供給される。酸化触媒510には、例えば、白金、パラジウム等の貴金属触媒が用いられる。これら貴金属触媒は、例えばハニカム構造体に担持させて用いられる。酸化触媒510により、ガスGに含まれる炭化水素、一酸化炭素等が除去される。また、酸化触媒510により、NOのNOへの変換も生じる。NOは強い酸化剤として機能するため、後段のハニカムフィルタ100に溜まったすすを燃焼する際には、NOの存在により、すすの酸化(燃焼)を効率的に行うことが可能となる。In the exhaust gas purification system shown in FIG. 7, the gas G discharged from the internal combustion engine 500 such as a diesel engine or a gasoline engine is first supplied to an oxidation catalyst (DOC: Diesel Oxidation Catalyst) 510. For the oxidation catalyst 510, for example, a noble metal catalyst such as platinum or palladium is used. These noble metal catalysts are used, for example, supported on a honeycomb structure. The oxidation catalyst 510 removes hydrocarbons, carbon monoxide and the like contained in the gas G. Further, the oxidation catalyst 510, also occurs conversion to NO 2 in the NO. Since NO 2 functions as a strong oxidant, soot can be oxidized (combusted) efficiently due to the presence of NO 2 when soot accumulated in the subsequent honeycomb filter 100 is combusted.

次いで、ガスGは、ハニカムフィルタ100に供給され、すす等の被捕集物の除去と、NOの浄化とが行われる。NOを浄化するための還元剤であるアンモニアは、尿素水供給装置520から尿素水UをガスG中に噴射することで生成される。これにより、上記式(1)〜(4)に示したように、ガスG中のNOはNとHOに分解される。Next, the gas G is supplied to the honeycomb filter 100, and removal of trapped substances such as soot and NO X purification are performed. Ammonia as a reducing agent for purifying NO X is produced by ejecting from the urea water supply device 520 urea water U in the gas G. Thereby, as shown in the above formulas (1) to (4), NO X in the gas G is decomposed into N 2 and H 2 O.

排ガス浄化システムは、ハニカムフィルタ100の後段に、さらに酸化触媒(DOC)を備えていてもよい。ハニカムフィルタ100の後段に設けられる酸化触媒は、残存するアンモニアの除去に有効である。   The exhaust gas purification system may further include an oxidation catalyst (DOC) at the subsequent stage of the honeycomb filter 100. The oxidation catalyst provided in the subsequent stage of the honeycomb filter 100 is effective for removing the remaining ammonia.

<ハニカムフィルタの製造方法>
次に、ハニカムフィルタの製造方法について説明する。ハニカムフィルタの製造方法は、例えば、無機化合物粉末及び添加剤を含む原料混合物を調製する原料調製工程と、原料混合物を成形して、流路を有する成形体を得る成形工程と、成形体を焼成する焼成工程と、を備え、成形工程と焼成工程の間、又は、焼成工程の後に、各流路の一端を封口する封口工程と、焼成工程及び封口工程後に、触媒層を形成する工程と、を更に備える。以下、各工程について説明する。
<Honeycomb filter manufacturing method>
Next, a method for manufacturing a honeycomb filter will be described. A method for manufacturing a honeycomb filter includes, for example, a raw material preparation step for preparing a raw material mixture containing an inorganic compound powder and an additive, a forming step for forming a raw material mixture to obtain a formed body having a flow path, and firing the formed body. A firing step, and a sealing step of sealing one end of each flow path between the molding step and the firing step, or after the firing step, and a step of forming a catalyst layer after the firing step and the sealing step, Is further provided. Hereinafter, each step will be described.

[原料調製工程]
原料調製工程では、無機化合物粉末と添加剤とを混合した後に混練して原料混合物を調製する。無機化合物粉末は、例えば、α−アルミナ粉末等のアルミニウム源粉末、アナターゼ型又はルチル型のチタニア粉末等のチタン源粉末(チタニウム源粉末)、並びに、マグネシウム、カルシウム、ストロンチウム、イットリウム、バリウム、ランタノイド及びビスマスからなる群より選択される少なくとも一種の元素の原料粉末を含み、必要に応じて、酸化ケイ素粉末及びガラスフリット等のケイ素源粉末を更に含むことができる。マグネシウム源粉末としては、例えば、マグネシア粉末及びマグネシアスピネル粉末等が挙げられる。カルシウム源粉末としては、例えば、カルシア粉末及び炭酸カルシウム粉末、灰長石等が挙げられる。ストロンチウム源粉末としては、例えば、酸化ストロンチウム粉末、炭酸ストロンチウム粉末等が挙げられる。イットリウム源粉末としては、例えば、酸化イットリウム粉末等が挙げられる。バリウム源粉末としては、例えば、酸化バリウム粉末、炭酸バリウム粉末、長石等が挙げられる。ビスマス源粉末としては、例えば、酸化ビスマス粉末等が挙げられる。各原料粉末は、1種又は2種以上のいずれでもよい。各原料粉末は、その原料由来又は製造工程において不可避的に含まれる微量成分を含有し得る。
[Raw material preparation process]
In the raw material preparation step, the inorganic compound powder and the additive are mixed and then kneaded to prepare a raw material mixture. Examples of the inorganic compound powder include aluminum source powder such as α-alumina powder, titanium source powder such as anatase type or rutile type titania powder (titanium source powder), and magnesium, calcium, strontium, yttrium, barium, lanthanoid and A raw material powder of at least one element selected from the group consisting of bismuth is included, and a silicon source powder such as silicon oxide powder and glass frit can be further included as necessary. Examples of the magnesium source powder include magnesia powder and magnesia spinel powder. Examples of the calcium source powder include calcia powder, calcium carbonate powder, anorthite, and the like. Examples of the strontium source powder include strontium oxide powder and strontium carbonate powder. Examples of the yttrium source powder include yttrium oxide powder. Examples of the barium source powder include barium oxide powder, barium carbonate powder, and feldspar. Examples of the bismuth source powder include bismuth oxide powder. Each raw material powder may be one type or two or more types. Each raw material powder may contain a trace component derived from the raw material or inevitably contained in the production process.

各原料粉末について、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(中心粒径、D50)は下記の範囲が好ましい。アルミニウム源粉末のD50は、例えば20〜60μmである。チタン源粉末のD50は、例えば0.1〜25μmである。マグネシウム源粉末のD50は、例えば0.5〜30μmである。ケイ素源粉末のD50は、例えば0.5〜30μmである。   For each raw material powder, the volume-based cumulative particle size equivalent to 50% (center particle size, D50) measured by a laser diffraction method is preferably in the following range. D50 of the aluminum source powder is, for example, 20 to 60 μm. D50 of the titanium source powder is, for example, 0.1 to 25 μm. D50 of the magnesium source powder is, for example, 0.5 to 30 μm. D50 of the silicon source powder is, for example, 0.5 to 30 μm.

原料混合物には、チタン酸アルミニウム及び/又はチタン酸アルミニウムマグネシウムが含まれていてもよい。例えば、原料混合物の構成成分としてチタン酸アルミニウムマグネシウムを使用する場合、チタン酸アルミニウムマグネシウムは、アルミニウム源、チタン源及びマグネシウム源を兼ね備えた原料混合物に相当する。   The raw material mixture may contain aluminum titanate and / or aluminum magnesium titanate. For example, when aluminum magnesium titanate is used as a constituent of the raw material mixture, the aluminum magnesium titanate corresponds to a raw material mixture having an aluminum source, a titanium source, and a magnesium source.

添加剤としては、例えば、造孔剤(孔形成剤)、バインダ、可塑剤、分散剤、溶媒が挙げられる。   Examples of the additive include a pore-forming agent (pore-forming agent), a binder, a plasticizer, a dispersant, and a solvent.

造孔剤としては、焼成工程において成形体を脱脂又は焼成する温度以下で消失する素材によって形成されたものを使用することができる。脱脂又は焼成において、造孔剤を含有する成形体が加熱されると、造孔剤は燃焼等によって消滅する。これにより、造孔剤が存在していた箇所に空間ができると共に、この空間同士の間に位置する無機化合物粉末が焼成の際に収縮することにより、流体を流すことができる連通孔を隔壁内に形成することができる。   As the pore-forming agent, one formed by a material that disappears at a temperature lower than the temperature at which the molded body is degreased or fired in the firing step can be used. In degreasing or firing, when a molded body containing a pore forming agent is heated, the pore forming agent disappears due to combustion or the like. As a result, a space is created at the location where the pore-forming agent was present, and the communication hole through which the fluid can flow is formed in the partition wall by shrinking the inorganic compound powder located between the spaces during firing. Can be formed.

造孔剤は、例えば、トウモロコシ澱粉、大麦澱粉、小麦澱粉、タピオカ澱粉、豆澱粉、米澱粉、エンドウ澱粉、サンゴヤシ澱粉、カンナ澱粉、ポテト澱粉(馬鈴薯デンプン)である。造孔剤において、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(D50)は、例えば5〜50μmである。原料混合物が造孔剤を含有する場合、造孔剤の含有量は、例えば、無機化合物粉末100質量部に対して1〜25質量部である。   Examples of the pore-forming agent include corn starch, barley starch, wheat starch, tapioca starch, bean starch, rice starch, pea starch, coral starch, canna starch, and potato starch (potato starch). In the pore-forming agent, the volume-based cumulative particle size (D50) corresponding to a volume-based cumulative percentage measured by a laser diffraction method (D50) is, for example, 5 to 50 μm. When the raw material mixture contains a pore-forming agent, the content of the pore-forming agent is, for example, 1 to 25 parts by mass with respect to 100 parts by mass of the inorganic compound powder.

バインダは、例えば、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシルメチルセルロース、ナトリウムカルボキシルメチルセルロース等のセルロース類;ポリビニルアルコール等のアルコール類;リグニンスルホン酸塩等の塩;パラフィンワックス、マイクロクリスタリンワックス等のワックスである。原料混合物におけるバインダの含有量は、例えば、無機化合物粉末100質量部に対して20質量部以下である。   The binder is, for example, celluloses such as methyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate; waxes such as paraffin wax and microcrystalline wax. Content of the binder in a raw material mixture is 20 mass parts or less with respect to 100 mass parts of inorganic compound powder, for example.

可塑剤は、例えば、グリセリン等のアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラギン酸、オレイン酸、ステアリン酸等の高級脂肪酸;ステアリン酸Al等のステアリン酸金属塩、ポリオキシアルキレンアルキルエーテル(例えばポリオキシエチレンポリオキシプロピレンブチルエーテル)である。原料混合物における可塑剤の含有量は、例えば、無機化合物粉末100質量部に対して10質量部以下である。   Examples of the plasticizer include alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid and stearic acid; stearic acid metal salts such as Al stearate, polyoxyalkylene alkyl ether ( For example, polyoxyethylene polyoxypropylene butyl ether). Content of the plasticizer in a raw material mixture is 10 mass parts or less with respect to 100 mass parts of inorganic compound powder, for example.

分散剤は、例えば、硝酸、塩酸、硫酸等の無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸等の有機酸;メタノール、エタノール、プロパノール等のアルコール類;ポリカルボン酸アンモニウムである。原料混合物における分散剤の含有量は、例えば、無機化合物粉末100質量部に対して20質量部以下である。   Examples of the dispersant include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid; alcohols such as methanol, ethanol, and propanol; and ammonium polycarboxylate. Content of the dispersing agent in a raw material mixture is 20 mass parts or less with respect to 100 mass parts of inorganic compound powder, for example.

溶媒は、例えば水であり、不純物が少ない点で、イオン交換水が好ましい。原料混合物が溶媒を含有する場合、溶媒の含有量は、例えば、無機化合物粉末100質量部に対して10〜100質量部である。   The solvent is, for example, water, and ion-exchanged water is preferable in terms of few impurities. When a raw material mixture contains a solvent, content of a solvent is 10-100 mass parts with respect to 100 mass parts of inorganic compound powder, for example.

[成形工程]
成形工程では、ハニカム構造を有するグリーンハニカム成形体を得る。成形工程では、例えば、一軸押出機により原料混合物を混練しながらダイから押出す、いわゆる押出成形法を採用することができる。
[Molding process]
In the forming step, a green honeycomb formed body having a honeycomb structure is obtained. In the molding step, for example, a so-called extrusion molding method in which the raw material mixture is extruded from a die while being kneaded by a single screw extruder can be employed.

[焼成工程]
焼成工程では、成形工程において得られたハニカム構造のグリーンハニカム成形体を焼成してハニカム焼成体を得る。焼成工程では、成形体の焼成前に、成形体中(原料混合物中)に含まれるバインダ等を除去するための仮焼(脱脂)が行われてもよい。成形体の焼成において、焼成温度は、通常1300℃以上であり、好ましくは1400℃以上である。また、焼成温度は、通常1650℃以下であり、好ましくは1550℃以下である。昇温速度は特に限定されるものではないが、通常1〜500℃/時間である。焼成時間は、無機化合物粉末がチタン酸アルミニウム系結晶に遷移するのに充分な時間であればよく、原料の量、焼成炉の形式、焼成温度、焼成雰囲気等により異なるが、通常は10分〜24時間である。
[Baking process]
In the firing step, the honeycomb structured green honeycomb formed body obtained in the forming step is fired to obtain a honeycomb fired body. In the firing step, calcination (degreasing) for removing a binder or the like contained in the molded body (in the raw material mixture) may be performed before the molded body is fired. In the firing of the molded body, the firing temperature is usually 1300 ° C. or higher, preferably 1400 ° C. or higher. Moreover, a calcination temperature is 1650 degrees C or less normally, Preferably it is 1550 degrees C or less. The temperature raising rate is not particularly limited, but is usually 1 to 500 ° C./hour. The firing time may be a time sufficient for the inorganic compound powder to transition to the aluminum titanate-based crystal, and varies depending on the amount of raw material, type of firing furnace, firing temperature, firing atmosphere, etc., but usually 10 minutes to 24 hours.

[封口工程]
封口工程は、成形工程と焼成工程の間、又は、焼成工程の後に行われる。成形工程と焼成工程の間に封口工程を行う場合、成形工程において得られた未焼成のグリーンハニカム成形体の各流路の一方の端部を封口材で封口した後、焼成工程においてグリーンハニカム成形体と共に封口材を焼成することにより、流路の一方の端部を封口する封口部を備えるハニカム構造体が得られる。焼成工程の後に封口工程を行う場合、焼成工程において得られたハニカム焼成体の各流路の一方の端部を封口材で封口した後、ハニカム焼成体と共に封口材を焼成することにより、流路の一方の端部を封口する封口部を備えるハニカム構造体が得られる。封口材としては、上記グリーンハニカム成形体を得るための原料混合物と同様の混合物を用いることができる。
[Sealing process]
The sealing step is performed between the molding step and the firing step or after the firing step. When a sealing step is performed between the forming step and the firing step, one end of each flow path of the green honeycomb molded body obtained in the forming step is sealed with a sealing material, and then green honeycomb forming is performed in the firing step. By firing the sealing material together with the body, a honeycomb structure including a sealing portion that seals one end of the flow path is obtained. When performing the sealing step after the firing step, after sealing one end of each flow path of the honeycomb fired body obtained in the firing step with the sealing material, the flow path is obtained by firing the sealing material together with the honeycomb fired body. A honeycomb structure provided with a sealing portion that seals one end of the above is obtained. As the sealing material, a mixture similar to the raw material mixture for obtaining the green honeycomb molded body can be used.

[触媒層形成工程]
触媒層形成工程は、焼成工程及び封口工程の後に行われる。まず、ゼオライトと、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ロジウム、パラジウム、銀及び白金からなる群より選択される少なくとも一種の金属元素とを湿式混合し、乾燥及び粉砕を行った後、これを必要に応じシリカゾル及び/又はアルミナゾル、並びに水と混ぜ合わせてスラリーを作製する。例えば、上記金属元素のうち、銅は酢酸銅、鉄はアンミン錯体にすることでゼオライトの細孔中にイオン交換することができる。次に、作製したスラリーを、ハニカム構造体のガス流入口側が開口している流路(第1の流路)の内部、及び、ガス流出口側が開口している流路(第2の流路)の内部に吸引させて、隔壁表面に塗布する。塗布後、500℃〜700℃で約1時間乾燥させ、水分を取り除く。このようにして、ゼオライト及び上記特定の金属元素を含む触媒層を作製する。触媒層は、隔壁の細孔内部(連通孔内部)にも入り込み、流路内の隔壁表面のみならず、隔壁の細孔内部の表面にも形成されている。以上のようにして、第1及び第2の流路内の隔壁表面及び隔壁細孔内に触媒層を備えたハニカムフィルタを得ることができる。
[Catalyst layer forming step]
The catalyst layer forming step is performed after the firing step and the sealing step. First, zeolite is wet-mixed with at least one metal element selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, rhodium, palladium, silver and platinum, and dried and crushed. Then, if necessary, this is mixed with silica sol and / or alumina sol and water to prepare a slurry. For example, among the above metal elements, copper can be exchanged into the pores of the zeolite by using copper acetate and iron as an ammine complex. Next, the produced slurry is subjected to the inside of the channel (first channel) in which the gas inlet side of the honeycomb structure is open and the channel (second channel) in which the gas outlet side is open. ) And apply to the partition wall surface. After application, the film is dried at 500 to 700 ° C. for about 1 hour to remove moisture. In this way, a catalyst layer containing zeolite and the specific metal element is produced. The catalyst layer also enters inside the pores of the partition walls (inside the communication holes), and is formed not only on the surface of the partition walls in the flow path but also on the surfaces inside the pores of the partition walls. As described above, a honeycomb filter provided with a catalyst layer in the partition wall surfaces and partition pores in the first and second flow paths can be obtained.

以下、本発明を実験例及び実施例により更に詳細に説明するが、本発明はこれらの実験例及び実施例に限定されるものではない。   EXAMPLES Hereinafter, although an experiment example and an Example demonstrate this invention further in detail, this invention is not limited to these experiment examples and Examples.

(実験例1)
下記のアルミニウム源粉末、チタン源粉末、マグネシウム源粉末、ケイ素源粉末、チタン酸アルミニウムマグネシウム粉末及び造孔剤を混合して混合粉末を得た。なお、体積基準の累積百分率50%相当粒子径(D50)は、レーザ回折式粒度分布測定装置(日機装社製「Microtrac HRA(X−100)」)を用いて測定した。
[混合粉末の成分]
(1)アルミニウム源粉末:37.5質量部
中心粒径(D50)が29μmの酸化アルミニウム粉末(α−アルミナ粉末)
(2)チタン源粉末:36.8質量部
D50が0.6μmの酸化チタン粉末(ルチル型結晶)
(3)マグネシウム源粉末:1.96質量部
D50が3.4μmの酸化マグネシウム粉末
(4)ケイ素源粉末:3.18質量部
D50が8.5μmのガラスフリット(屈伏点:642℃)
(5)造孔剤:11.7質量部
D50が31μmの馬鈴薯澱粉粉末
(6)チタン酸アルミニウムマグネシウム粉末:8.83質量部
チタン酸アルミニウムマグネシウム粉末としては、チタン酸アルミニウムマグネシウムの焼成体を粉砕して得られた粉末を使用した。
(Experimental example 1)
The following aluminum source powder, titanium source powder, magnesium source powder, silicon source powder, aluminum magnesium titanate powder and pore former were mixed to obtain a mixed powder. The volume-based cumulative particle size equivalent to 50% (D50) was measured using a laser diffraction particle size distribution measuring device (“Microtrac HRA (X-100)” manufactured by Nikkiso Co., Ltd.).
[Components of mixed powder]
(1) Aluminum source powder: 37.5 parts by mass Aluminum oxide powder (α-alumina powder) having a center particle size (D50) of 29 μm
(2) Titanium source powder: 36.8 parts by mass Titanium oxide powder having a D50 of 0.6 μm (rutile crystal)
(3) Magnesium source powder: 1.96 mass parts Magnesium oxide powder with D50 of 3.4 μm (4) Silicon source powder: 3.18 mass parts Glass frit with D50 of 8.5 μm (deflection point: 642 ° C.)
(5) Pore forming agent: 11.7 parts by weight Potato starch powder having a D50 of 31 μm (6) Aluminum magnesium titanate powder: 8.83 parts by weight As the aluminum magnesium titanate powder, a sintered body of aluminum magnesium titanate is pulverized. The powder obtained was used.

混合粉末における各成分の仕込み組成は、アルミナ[Al]、チタニア[TiO]、マグネシア[MgO]及びシリカ[SiO]換算のモル比で、[Al]/[TiO]/[MgO]/[SiO]=35.1%/51.3%/9.6%/4.0%であった。また、アルミニウム源粉末、チタン源粉末、マグネシウム源粉末、ケイ素源粉末及びチタン酸アルミニウムマグネシウム粉末の合計量に対するケイ素源粉末の含有量は3.6質量%であった。The charged composition of each component in the mixed powder was [Al 2 O 3 ] / [TiO 2 in a molar ratio in terms of alumina [Al 2 O 3 ], titania [TiO 2 ], magnesia [MgO] and silica [SiO 2 ]. ] / [MgO] / [SiO 2 ] = 35.1% / 51.3% / 9.6% / 4.0%. Moreover, content of the silicon source powder with respect to the total amount of aluminum source powder, titanium source powder, magnesium source powder, silicon source powder, and aluminum magnesium titanate powder was 3.6 mass%.

上記混合粉末100質量部に対して、メチルセルロース5.49質量部、ヒドロキシプロピルメチルセルロース2.35質量部、グリセリン0.40質量部及びポリオキシエチレンポリオキシプロピレンブチルエーテル4.64質量部を加えた。さらに、水28.44質量部を加えた後、混練押出機を用いて混合物を押出成形し、マイクロ波乾燥にて乾燥させ、長手方向に多数の貫通孔を有する乾燥ハニカム構造体を得た。この乾燥ハニカム構造体について、大気雰囲気下で、有機バインダを除去する仮焼(脱脂)工程を含む焼成を行った。焼成時の最高温度は、1500℃とし、最高温度での保持時間は5時間とした。これにより、図4〜6に示したハニカム構造(但し、触媒層及び封口部は未形成)を有するハニカム焼成体(焼成体の形状:円柱状、貫通孔の断面形状:正六角形状及び扁平六角形状、焼成体の直径:25mm、焼成体の高さ:50mm、セル密度:300cpsi、セル壁厚:0.3mm)を得た。   5.49 parts by mass of methylcellulose, 2.35 parts by mass of hydroxypropylmethylcellulose, 0.40 parts by mass of glycerin and 4.64 parts by mass of polyoxyethylene polyoxypropylene butyl ether were added to 100 parts by mass of the mixed powder. Furthermore, after adding 28.44 parts by mass of water, the mixture was extruded using a kneading extruder and dried by microwave drying to obtain a dried honeycomb structure having a number of through holes in the longitudinal direction. The dried honeycomb structure was fired in an air atmosphere including a calcination (degreasing) step of removing the organic binder. The maximum temperature during firing was 1500 ° C., and the holding time at the maximum temperature was 5 hours. Thereby, a honeycomb fired body having the honeycomb structure shown in FIGS. 4 to 6 (however, the catalyst layer and the sealing portion are not formed) (the shape of the fired body: a columnar shape, the cross-sectional shape of the through hole: a regular hexagonal shape and a flat hexagonal shape) Shape, diameter of fired body: 25 mm, height of fired body: 50 mm, cell density: 300 cpsi, cell wall thickness: 0.3 mm).

(実験例2)
セラミックス粉末として、ストロンチウムを構成元素として含むチタン酸アルミニウム系セラミックスを乳鉢によって粉砕させて得られた粉末を用意した。このセラミックス粉末の化学組成をXRF(蛍光X線分析)により分析したところ、セラミックス粉末は、Al換算でAlを38.4質量%、TiO換算でTiを35.4質量%、SiO換算でSiを16.3質量%、SrO換算でSrを8.29質量%含有していることが確認された。
(Experimental example 2)
As a ceramic powder, a powder obtained by pulverizing an aluminum titanate-based ceramic containing strontium as a constituent element with a mortar was prepared. When the chemical composition of this ceramic powder was analyzed by XRF (fluorescence X-ray analysis), the ceramic powder was found to be 38.4% by mass of Al in terms of Al 2 O 3 , 35.4% by mass of Ti in terms of TiO 2 , SiO 2 It was confirmed that 16.3% by mass of Si in terms of 2 and 8.29% by mass of Sr in terms of SrO were confirmed.

上記のセラミックス粉末88.3質量部と造孔剤(D50が31μmの馬鈴薯澱粉粉末)11.7質量部とを混合して混合粉末を得た。上記混合粉末100質量部に対して、メチルセルロース5.49質量部、ヒドロキシプロピルメチルセルロース2.35質量部、グリセリン0.40質量部及びポリオキシエチレンポリオキシプロピレンブチルエーテル4.64質量部を加えた。さらに、水28.44質量部を加えた後、混練押出機を用いて混合物を押出成形し、マイクロ波乾燥にて乾燥させ、長手方向に多数の貫通孔を有する乾燥ハニカム構造体を得た。この乾燥ハニカム構造体について、大気雰囲気下で、有機バインダを除去する仮焼(脱脂)工程を含む焼成を行った。焼成時の最高温度は、1500℃とし、最高温度での保持時間は5時間とした。これにより、図4〜6に示したハニカム構造(但し、触媒層及び封口部は未形成)を有するハニカム焼成体(焼成体の形状:円柱状、貫通孔の断面形状:正六角形状及び扁平六角形状、焼成体の直径:25mm、焼成体の高さ:50mm、セル密度:300cpsi、セル壁厚:0.3mm)を得た。   88.3 parts by mass of the above ceramic powder and 11.7 parts by mass of a pore former (potato starch powder having a D50 of 31 μm) were mixed to obtain a mixed powder. 5.49 parts by mass of methylcellulose, 2.35 parts by mass of hydroxypropylmethylcellulose, 0.40 parts by mass of glycerin and 4.64 parts by mass of polyoxyethylene polyoxypropylene butyl ether were added to 100 parts by mass of the mixed powder. Furthermore, after adding 28.44 parts by mass of water, the mixture was extruded using a kneading extruder and dried by microwave drying to obtain a dried honeycomb structure having a number of through holes in the longitudinal direction. The dried honeycomb structure was fired in an air atmosphere including a calcination (degreasing) step of removing the organic binder. The maximum temperature during firing was 1500 ° C., and the holding time at the maximum temperature was 5 hours. Thereby, a honeycomb fired body having the honeycomb structure shown in FIGS. 4 to 6 (however, the catalyst layer and the sealing portion are not formed) (the shape of the fired body: a columnar shape, the cross-sectional shape of the through hole: a regular hexagonal shape and a flat hexagonal shape) Shape, diameter of fired body: 25 mm, height of fired body: 50 mm, cell density: 300 cpsi, cell wall thickness: 0.3 mm).

(比較実験例1)
下記のアルミニウム源粉末、チタン源粉末、ケイ素源粉末及び造孔剤を混合して混合粉末を得た。なお、体積基準の累積百分率50%相当粒子径(D50)は、レーザ回折式粒度分布測定装置(日機装社製「Microtrac HRA(X−100)」)を用いて測定した。
[混合粉末の成分]
(1)アルミニウム源粉末:46.9質量部
中心粒径(D50)が29μmの酸化アルミニウム粉末(α−アルミナ粉末)
(2)チタン源粉末:37.6質量部
D50が0.6μmの酸化チタン粉末(ルチル型結晶)
(3)ケイ素源粉末:3.5質量部
D50が3.5μmの軽質無水ケイ酸(屈伏点:642℃)
(4)造孔剤:12質量部
D50が31μmの馬鈴薯澱粉粉末
(Comparative Experimental Example 1)
The following aluminum source powder, titanium source powder, silicon source powder and pore former were mixed to obtain a mixed powder. The volume-based cumulative particle size equivalent to 50% (D50) was measured using a laser diffraction particle size distribution measuring device (“Microtrac HRA (X-100)” manufactured by Nikkiso Co., Ltd.).
[Components of mixed powder]
(1) Aluminum source powder: 46.9 parts by mass Aluminum oxide powder (α-alumina powder) having a center particle size (D50) of 29 μm
(2) Titanium source powder: 37.6 parts by mass Titanium oxide powder having a D50 of 0.6 μm (rutile crystal)
(3) Silicon source powder: 3.5 parts by weight Light anhydrous silicic acid having a D50 of 3.5 μm (bending point: 642 ° C.)
(4) Pore forming agent: 12 parts by mass Potato starch powder having a D50 of 31 μm

混合粉末における各成分の仕込み組成は、アルミナ[Al]、チタニア[TiO]及びシリカ[SiO]換算のモル比で、[Al]/[TiO]/[SiO]=47.0%/47.0%/6.0%であった。また、アルミニウム源粉末、チタン源粉末及びケイ素源粉末の合計量に対するケイ素源粉末の含有量は4.0質量%であった。The charged composition of each component in the mixed powder is [Al 2 O 3 ] / [TiO 2 ] / [SiO 2 in terms of a molar ratio in terms of alumina [Al 2 O 3 ], titania [TiO 2 ] and silica [SiO 2 ]. ] = 47.0% / 47.0% / 6.0%. Moreover, content of the silicon source powder with respect to the total amount of aluminum source powder, titanium source powder, and silicon source powder was 4.0 mass%.

上記混合粉末100質量部に対して、ヒドロキシプロピルメチルセルロース6.82質量部、グリセリン0.45質量部及びポリオキシエチレンポリオキシプロピレンブチルエーテル5.11質量部を加えた。さらに、水27.84質量部を加えた後、混練押出機を用いて混合物を押出成形し、マイクロ波乾燥にて乾燥させ、長手方向に多数の貫通孔を有する乾燥ハニカム構造体を得た。この乾燥ハニカム構造体について、大気雰囲気下で、有機バインダを除去する仮焼(脱脂)工程を含む焼成を行った。焼成時の最高温度は、1500℃とし、最高温度での保持時間は5時間とした。これにより、図4〜6に示したハニカム構造(但し、触媒層及び封口部は未形成)を有するハニカム焼成体(焼成体の形状:円柱状、貫通孔の断面形状:正六角形状及び扁平六角形状、焼成体の直径:25mm、焼成体の高さ:50mm、セル密度:300cpsi、セル壁厚:0.3mm)を得た。   Hydroxypropyl methylcellulose 6.82 parts by mass, glycerin 0.45 parts by mass and polyoxyethylene polyoxypropylene butyl ether 5.11 parts by mass were added to 100 parts by mass of the mixed powder. Furthermore, after adding 27.84 parts by mass of water, the mixture was extruded using a kneading extruder and dried by microwave drying to obtain a dried honeycomb structure having a number of through holes in the longitudinal direction. The dried honeycomb structure was fired in an air atmosphere including a calcination (degreasing) step of removing the organic binder. The maximum temperature during firing was 1500 ° C., and the holding time at the maximum temperature was 5 hours. Thereby, a honeycomb fired body having the honeycomb structure shown in FIGS. 4 to 6 (however, the catalyst layer and the sealing portion are not formed) (the shape of the fired body: a columnar shape, the cross-sectional shape of the through hole: a regular hexagonal shape and a flat hexagonal shape) Shape, diameter of fired body: 25 mm, height of fired body: 50 mm, cell density: 300 cpsi, cell wall thickness: 0.3 mm).

<耐熱分解性の評価1>
実験例1〜2及び比較実験例1で得られたハニカム焼成体を、所定濃度のCu(NO水溶液に室温で1分間浸漬した後、室温で1時間乾燥させて水分を除去し、銅担持ハニカム焼成体を得た。得られた銅担持ハニカム焼成体を所定の温度及び時間で加熱処理し、加熱処理後の隔壁の状態を評価することで耐熱分解性を評価した。ここで、Cu(NO水溶液の濃度は、0ppm(対照実験)、6000ppm、又は、30000ppmとした。加熱条件は、850℃で5時間、900℃で5時間、950℃で5時間、1000℃で5時間、1000℃で1時間、又は、1100℃で0.5時間とした。加熱処理後のハニカム焼成体の隔壁の評価として、隔壁の粉末X線回折(XRD)測定、隔壁断面の走査型電子顕微鏡(SEM)観察、及び、エネルギー分散型X線分析(EDX)による隔壁断面の元素マッピングを行った。
<Evaluation of heat-resistant decomposition 1>
The honeycomb fired bodies obtained in Experimental Examples 1 and 2 and Comparative Experimental Example 1 were immersed in a Cu (NO 3 ) 2 aqueous solution having a predetermined concentration for 1 minute at room temperature, and then dried at room temperature for 1 hour to remove moisture. A copper-supported honeycomb fired body was obtained. The obtained copper-supported honeycomb fired body was heat-treated at a predetermined temperature and time, and the thermal decomposition resistance was evaluated by evaluating the state of the partition walls after the heat treatment. Here, Cu (NO 3) 2 aqueous solution concentration, 0 ppm (control experiment), 6000 ppm, or was set to 30000 ppm. The heating conditions were 850 ° C. for 5 hours, 900 ° C. for 5 hours, 950 ° C. for 5 hours, 1000 ° C. for 5 hours, 1000 ° C. for 1 hour, or 1100 ° C. for 0.5 hour. For evaluation of the partition walls of the honeycomb fired body after the heat treatment, partition X-ray diffraction (XRD) measurement of the partition walls, scanning electron microscope (SEM) observation of the partition wall sections, and partition wall cross sections by energy dispersive X-ray analysis (EDX) Elemental mapping was performed.

粉末X線回折装置(Rigaku社製、商品名「RINT−2200HL」)を用いて隔壁の粉末X線回折測定を行った。粉末X線回折測定により、チタン酸アルミニウム、チタニア及びアルミナに帰属されるピークを検出し、それらのピーク面積から、チタン酸アルミニウム、チタニア及びアルミナの総ピーク面積に占めるチタン酸アルミニウムのピーク面積の割合(%)を求めた。実験例1の測定結果を表1に、実験例2の測定結果を表2に、比較実験例1の測定結果を表3に、それぞれ示す。この測定結果において、対照実験結果からの減少量が小さいほど、熱分解が抑制されていることとなる。なお、以下の結果から、銅が存在しない場合(対照実験)はチタン酸アルミニウムの熱分解は起こらず、銅の濃度が高くなるほど熱分解が生じることが分かる。また、加熱条件を高温及び長時間とするほど、熱分解が生じることが分かる。しかし、実験例1のハニカム焼成体では、いずれの条件でもチタン酸アルミニウムの割合の減少がほとんどなく、耐熱分解性が極めて高いことが確認された。   Using a powder X-ray diffractometer (trade name “RINT-2200HL”, manufactured by Rigaku), powder X-ray diffraction measurement of the partition walls was performed. Peaks attributed to aluminum titanate, titania and alumina are detected by powder X-ray diffraction measurement, and the ratio of the peak area of aluminum titanate to the total peak area of aluminum titanate, titania and alumina from those peak areas (%) Was calculated. The measurement results of Experimental Example 1 are shown in Table 1, the measurement results of Experimental Example 2 are shown in Table 2, and the measurement results of Comparative Experimental Example 1 are shown in Table 3, respectively. In this measurement result, the smaller the decrease from the control experiment result, the more the thermal decomposition is suppressed. From the following results, it can be seen that when copper is not present (control experiment), thermal decomposition of aluminum titanate does not occur, and thermal decomposition occurs as the concentration of copper increases. Moreover, it turns out that thermal decomposition arises, so that heating conditions are made high temperature and a long time. However, in the honeycomb fired body of Experimental Example 1, it was confirmed that there was almost no decrease in the proportion of aluminum titanate under any condition, and the thermal decomposition resistance was extremely high.

走査型分析電子顕微鏡(SEM−EDX、SEM:日立ハイテクノロジーズ社製、商品名「S−4800」、EDX:堀場製作所社製、商品名「ENERGY EX−350」)により、隔壁断面の観察及びEDX元素マッピングを行った。実験例1のCu(NO水溶液の濃度が30000ppm、加熱条件が1000℃で5時間である場合のハニカム焼成体の隔壁断面のSEM写真を図8(a)〜(c)に、EDX元素マッピング像を図9(a)〜(b)にそれぞれ示す。図8(b)は図8(a)の領域R3の拡大写真であり、図8(c)は図8(b)の領域R4の拡大写真である。図9(a)は領域R4におけるAlの元素マッピング像であり、図9(b)は領域R4におけるTiの元素マッピング像である。また、実験例2のCu(NO水溶液の濃度が30000ppm、加熱条件が900℃で5時間である場合のハニカム焼成体の隔壁断面のSEM写真を図10(a)〜(b)に、EDX元素マッピング像を図11(a)〜(b)に示す。図10(b)は図10(a)の領域R5の拡大写真である。図11(a)は領域R5におけるAlの元素マッピング像であり、図11(b)は領域R5におけるTiの元素マッピング像である。図9及び図11に示した元素マッピング像において、白い(明るい)部分ほど、測定対象元素の濃度が高いことを意味する。Scanning analytical electron microscope (SEM-EDX, SEM: manufactured by Hitachi High-Technologies Corporation, trade name “S-4800”, EDX: manufactured by HORIBA, Ltd., trade name “ENERGY EX-350”) was used to observe the section of the partition wall and EDX Elemental mapping was performed. 8A to 8C are SEM photographs of the cross section of the partition walls of the honeycomb fired body when the concentration of the aqueous Cu (NO 3 ) 2 solution in Experimental Example 1 is 30000 ppm and the heating condition is 1000 ° C. for 5 hours. Element mapping images are shown in FIGS. FIG. 8B is an enlarged photograph of the region R3 in FIG. 8A, and FIG. 8C is an enlarged photograph of the region R4 in FIG. 8B. FIG. 9A is an element mapping image of Al in the region R4, and FIG. 9B is an element mapping image of Ti in the region R4. Further, SEM photographs of the cross section of the partition wall of the honeycomb fired body when the concentration of the Cu (NO 3 ) 2 aqueous solution in Experimental Example 2 is 30000 ppm and the heating condition is 900 ° C. for 5 hours are shown in FIGS. , EDX element mapping images are shown in FIGS. FIG. 10B is an enlarged photograph of the region R5 in FIG. 11A is an element mapping image of Al in the region R5, and FIG. 11B is an element mapping image of Ti in the region R5. In the element mapping images shown in FIGS. 9 and 11, the whiter (brighter) portion means that the concentration of the element to be measured is higher.

図9及び図11に示したAl及びTiの分析結果から、チタン酸アルミニウムの熱分解の程度を把握することができる。すなわち、Alの元素マッピング像及びTiの元素マッピング像の両方で確認できる部分(図中のAT)は、チタン酸アルミニウムが熱分解されずに維持されている部分であり、Alの元素マッピング像でしか確認できない部分(図中のAl)はAlであり、Tiの元素マッピング像でしか確認できない部分(図中のTi)はTiOである。ATの部分が多く、Al及びTiの部分が少ないほど、チタン酸アルミニウムの熱分解が抑制されていると言える。なお、SEM写真では像が写っていながら、元素マッピング像では確認できない部分(図中のSi)は、ガラス相の部分である。From the analysis results of Al and Ti shown in FIGS. 9 and 11, the degree of thermal decomposition of aluminum titanate can be grasped. That is, the portion (AT in the figure) that can be confirmed by both the Al element mapping image and the Ti element mapping image is a portion where the aluminum titanate is maintained without being thermally decomposed. The part that can be confirmed only (Al in the figure) is Al 2 O 3 , and the part that can be confirmed only by the element mapping image of Ti (Ti in the figure) is TiO 2 . It can be said that the thermal decomposition of aluminum titanate is suppressed as there are more AT parts and fewer Al and Ti parts. In addition, the part (Si in the figure) that cannot be confirmed in the element mapping image while the image is shown in the SEM photograph is the glass phase part.

図9に示した実験例1の結果では、大部分がATの部分であり、高濃度のCu(NO水溶液に浸漬し、且つ、高温で長時間の加熱処理を行った場合でも、チタン酸アルミニウムがほとんど熱分解されずに維持されていることが確認された。図11に示した実験例2の結果でも、ATの部分が確認でき、高濃度のCu(NO水溶液に浸漬し、且つ、高温で長時間の加熱処理を行った場合でも、チタン酸アルミニウムが熱分解されずに維持されている部分があることが確認された。In the result of Experimental Example 1 shown in FIG. 9, most of them are AT parts, and even when immersed in a high concentration Cu (NO 3 ) 2 aqueous solution and subjected to heat treatment at a high temperature for a long time, It was confirmed that the aluminum titanate was maintained without being thermally decomposed. Even in the result of Experimental Example 2 shown in FIG. 11, the AT portion can be confirmed, and even when immersed in a high concentration Cu (NO 3 ) 2 aqueous solution and subjected to heat treatment at a high temperature for a long time, titanic acid is used. It was confirmed that there was a portion where aluminum was maintained without being thermally decomposed.

(実施例1)
実験例1と同様にして、触媒層及び封口部が未形成の乾燥ハニカム構造体を作製した。この乾燥ハニカム構造体に対し、以下の手順で封口を行った。封口材として、チタン酸アルミニウムの粉末(上記実験例1で得られたハニカム焼成体を粉砕した粉末)、有機バインダ(ヒドロキシプロピルメチルセルロース)、潤滑剤(グリセリン)及び水(溶媒)の混合物を用いた。それらの質量割合は、チタン酸アルミニウムの粉末/有機バインダ/潤滑剤/水=66質量%/1質量%/4質量%/29質量%であった。上記乾燥ハニカム構造体のガス流出入り口の両端面にあらかじめフィルムを貼り、各流路の一方の端部に、はんだこてにてフィルムを溶融及び穿孔した開口部を通して封口材を導入し、温風乾燥した。封口材を導入した乾燥ハニカム構造体について、大気雰囲気下で、有機バインダを除去する仮焼(脱脂)工程を含む焼成を行った。焼成時の最高温度は、1500℃とし、最高温度での保持時間は5時間とした。これにより、第1の流路と第2の流路を備えたハニカム焼成体(焼成体の形状:円柱状、貫通孔の断面形状:正六角形状及び扁平六角形状、焼成体の直径:25mm、焼成体の高さ:50mm、セル密度:300cpsi、セル壁厚:0.3mm)を得た。このハニカム焼成体は2つ作製した。
Example 1
In the same manner as in Experimental Example 1, a dried honeycomb structure in which the catalyst layer and the sealing portion were not formed was produced. The dry honeycomb structure was sealed in the following procedure. As the sealing material, a mixture of aluminum titanate powder (powder obtained by pulverizing the honeycomb fired body obtained in Experimental Example 1), an organic binder (hydroxypropylmethylcellulose), a lubricant (glycerin), and water (solvent) was used. . The mass ratio thereof was aluminum titanate powder / organic binder / lubricant / water = 66 mass% / 1 mass% / 4 mass% / 29 mass%. A film is previously applied to both end faces of the gas outlet of the dried honeycomb structure, and a sealing material is introduced into one end of each flow path through an opening in which the film is melted and perforated with a soldering iron. Dried. The dried honeycomb structure into which the sealing material was introduced was fired in an air atmosphere including a calcination (degreasing) step of removing the organic binder. The maximum temperature during firing was 1500 ° C., and the holding time at the maximum temperature was 5 hours. Thereby, a honeycomb fired body having a first flow path and a second flow path (the shape of the fired body: a columnar shape, a cross-sectional shape of a through hole: a regular hexagonal shape and a flat hexagonal shape, a diameter of the fired body: 25 mm, The height of the fired body: 50 mm, cell density: 300 cpsi, cell wall thickness: 0.3 mm) was obtained. Two honeycomb fired bodies were produced.

塩化銅(II)二水和物68.21質量部を純水8000質量部に溶解させ、この溶液をゼオライト(SiO/Al比=18のアンモニウム型ZSM−5)31.28質量部に加え、室温で6時間攪拌した。分散液をろ過し、ろ布上のウェットケーキを純水2000質量部に拡散させ、10分間の攪拌の後、再度ろ過した。その後ろ過によって得られたウェットケーキを80℃で12時間乾燥させた。これらの操作を計3回繰り返し、得られた乾燥体を500℃で6時間空気焼成を行い、銅イオンを担持したゼオライト触媒を得た。Copper (II) chloride dihydrate 68.21 parts by mass was dissolved in 8000 parts by mass of pure water, and this solution was dissolved in zeolite (SiO 2 / Al 2 O 3 ratio = 18 ammonium-type ZSM-5) 31.28 parts by mass. The mixture was stirred at room temperature for 6 hours. The dispersion was filtered, the wet cake on the filter cloth was diffused in 2000 parts by mass of pure water, and after 10 minutes of stirring, filtered again. Thereafter, the wet cake obtained by filtration was dried at 80 ° C. for 12 hours. These operations were repeated a total of 3 times, and the obtained dried product was air calcined at 500 ° C. for 6 hours to obtain a zeolite catalyst supporting copper ions.

触媒層の形成を、下記2つの方法により、別々のハニカム焼成体に対してそれぞれ行った。   Formation of the catalyst layer was performed for each of the honeycomb fired bodies by the following two methods.

第1の方法は以下の通りである。100mLのポリビーカーに、純水70質量部と、上記銅イオンを担持したゼオライト触媒30質量部とを添加し、30分間攪拌した。更に分散剤(日本油脂製、商品名「マリアリム」)を6質量部加えて1時間攪拌を行った。この懸濁溶液に、ハニカム焼成体のガス流入口側を下にして、ガス流出口側の端面がぎりぎり浸漬しないところまで、速やかに浸漬した後、引き上げた。ガス流入口側から送風を行い、第1の流路と第2の流路を閉塞した余分な懸濁溶液をハニカム焼成体の外部へ排出した。このハニカム焼成体を500℃にて約1時間乾燥し、触媒層坦持ハニカムフィルタAを得た。触媒層の評価として、隔壁断面の走査型電子顕微鏡(SEM)観察を行った。図12(a)は触媒層担持ハニカムフィルタAの隔壁断面の走査型電子顕微鏡(SEM)写真であり、図12(b)は図12(a)の領域R6の拡大写真である。触媒層は、図12(a)及び(b)に示すように、隔壁の多孔質構造の細孔内に充填されていることが確認された。図中のATは隔壁を構成するチタン酸アルミニウムであり、CLは触媒層である。   The first method is as follows. To a 100 mL poly beaker, 70 parts by mass of pure water and 30 parts by mass of the zeolite catalyst supporting the copper ions were added and stirred for 30 minutes. Furthermore, 6 parts by mass of a dispersant (made by NOF Corporation, trade name “Marialim”) was added and stirred for 1 hour. The honeycomb fired body was immediately dipped in this suspension solution until the gas inlet side of the honeycomb fired body was on the bottom, and the end surface on the gas outlet side was not soaked. Air was blown from the gas inlet side, and the excess suspension solution that blocked the first channel and the second channel was discharged to the outside of the honeycomb fired body. This honeycomb fired body was dried at 500 ° C. for about 1 hour to obtain a catalyst layer-supporting honeycomb filter A. As an evaluation of the catalyst layer, a scanning electron microscope (SEM) observation of the partition wall cross section was performed. FIG. 12A is a scanning electron microscope (SEM) photograph of the partition wall cross section of the catalyst layer-supporting honeycomb filter A, and FIG. 12B is an enlarged photograph of the region R6 in FIG. As shown in FIGS. 12A and 12B, it was confirmed that the catalyst layer was filled in the pores of the porous structure of the partition walls. In the figure, AT is aluminum titanate constituting the partition, and CL is a catalyst layer.

第2の方法は以下の通りである。100mLのポリビーカーに、純水70質量部と、上記銅イオンを担持したゼオライト触媒30質量部とを添加し、30分間攪拌した。更に粘度調整剤(アッシュランド製、エチルセルロース)を2.85質量部加えて1時間攪拌を行った。ハニカム焼成体のガス流出口側を負圧にし、ガス流入口側からこの懸濁溶液8質量部を吸引させた。500℃にて約1時間にて乾燥し、触媒層坦持ハニカムフィルタBを得た。触媒層の評価として、隔壁断面の走査型電子顕微鏡(SEM)観察を行った。図13は、触媒層担持ハニカムフィルタBの隔壁断面の走査型電子顕微鏡(SEM)写真である。触媒層は、図13に示すように、隔壁の表面及び多孔質構造の細孔内に充填されていることが確認された。   The second method is as follows. To a 100 mL poly beaker, 70 parts by mass of pure water and 30 parts by mass of the zeolite catalyst supporting the copper ions were added and stirred for 30 minutes. Furthermore, 2.85 parts by mass of a viscosity modifier (manufactured by Ashland, ethyl cellulose) was added and stirred for 1 hour. A negative pressure was applied to the gas outlet side of the honeycomb fired body, and 8 parts by mass of this suspension solution was sucked from the gas inlet side. It dried at 500 degreeC for about 1 hour, and the catalyst layer carrying honeycomb filter B was obtained. As an evaluation of the catalyst layer, a scanning electron microscope (SEM) observation of the partition wall cross section was performed. FIG. 13 is a scanning electron microscope (SEM) photograph of the partition wall cross section of the catalyst layer-supporting honeycomb filter B. As shown in FIG. 13, it was confirmed that the catalyst layer was filled in the surfaces of the partition walls and the pores of the porous structure.

(実施例2)
実験例2と同様にして、触媒層及び封口部が未形成の乾燥ハニカム構造体を作製した。この乾燥ハニカム構造体に対し、以下の手順で封口を行った。封口材として、チタン酸アルミニウムの粉末(上記実験例2で用いたセラミックス粉末)、有機バインダ(ヒドロキシプロピルメチルセルロース)、潤滑剤(グリセリン)及び水(溶媒)の混合物を用いた。それらの質量割合は、チタン酸アルミニウムの粉末/有機バインダ/潤滑剤/水=66質量%/1質量%/4質量%/29質量%であった。上記乾燥ハニカム構造体のガス流出入り口の両端面にあらかじめフィルムを貼り、各流路の一方の端部に、はんだこてにてフィルムを溶融及び穿孔した開口部を通して封口材を導入し、温風乾燥した。封口材を導入した乾燥ハニカム構造体について、大気雰囲気下で、有機バインダを除去する仮焼(脱脂)工程を含む焼成を行った。焼成時の最高温度は、1500℃とし、最高温度での保持時間は5時間とした。これにより、第1の流路と第2の流路を備えたハニカム焼成体(焼成体の形状:円柱状、貫通孔の断面形状:正六角形状及び扁平六角形状、焼成体の直径:25mm、焼成体の高さ:50mm、セル密度:300cpsi、セル壁厚:0.3mm)を得た。
(Example 2)
In the same manner as in Experimental Example 2, a dried honeycomb structure in which the catalyst layer and the sealing portion were not formed was produced. The dry honeycomb structure was sealed in the following procedure. As the sealing material, a mixture of aluminum titanate powder (ceramic powder used in Experimental Example 2), organic binder (hydroxypropylmethylcellulose), lubricant (glycerin), and water (solvent) was used. The mass ratio thereof was aluminum titanate powder / organic binder / lubricant / water = 66 mass% / 1 mass% / 4 mass% / 29 mass%. A film is previously applied to both end faces of the gas outlet of the dried honeycomb structure, and a sealing material is introduced into one end of each flow path through an opening in which the film is melted and perforated with a soldering iron. Dried. The dried honeycomb structure into which the sealing material was introduced was fired in an air atmosphere including a calcination (degreasing) step of removing the organic binder. The maximum temperature during firing was 1500 ° C., and the holding time at the maximum temperature was 5 hours. Thereby, a honeycomb fired body having a first flow path and a second flow path (the shape of the fired body: a columnar shape, a cross-sectional shape of a through hole: a regular hexagonal shape and a flat hexagonal shape, a diameter of the fired body: 25 mm, The height of the fired body: 50 mm, cell density: 300 cpsi, cell wall thickness: 0.3 mm) was obtained.

100mLのポリビーカーに、純水70質量部と、実施例1で用意した上記銅イオンを担持したゼオライト触媒30質量部とを添加し、30分間攪拌した。更に粘度調整剤(アッシュランド製、エチルセルロース)を2.85質量部加えて1時間攪拌を行った。ハニカム焼成体のガス流出口側を負圧にし、ガス流入口側からこの懸濁溶液8質量部を吸引させた。500℃にて約1時間にて乾燥し、触媒層坦持ハニカムフィルタCを得た。触媒層の評価として、隔壁断面の走査型電子顕微鏡(SEM)観察を行った。触媒層は、隔壁の表面及び多孔質構造の細孔内に充填されていることが確認された。   To a 100 mL poly beaker, 70 parts by mass of pure water and 30 parts by mass of the zeolite catalyst supporting the copper ion prepared in Example 1 were added and stirred for 30 minutes. Furthermore, 2.85 parts by mass of a viscosity modifier (manufactured by Ashland, ethyl cellulose) was added and stirred for 1 hour. A negative pressure was applied to the gas outlet side of the honeycomb fired body, and 8 parts by mass of this suspension solution was sucked from the gas inlet side. It dried at 500 degreeC for about 1 hour, and the catalyst layer carrying honeycomb filter C was obtained. As an evaluation of the catalyst layer, a scanning electron microscope (SEM) observation of the partition wall cross section was performed. It was confirmed that the catalyst layer was filled in the surfaces of the partition walls and the pores of the porous structure.

(比較例1)
比較実験例1と同様にして、触媒層及び封口部が未形成の乾燥ハニカム構造体を作製した。この乾燥ハニカム構造体に対し、以下の手順で封口を行った。封口材として、チタン酸アルミニウムの粉末(上記比較実験例1で得られたハニカム焼成体を粉砕した粉末)、有機バインダ(ヒドロキシプロピルメチルセルロース)、潤滑剤(グリセリン)及び水(溶媒)の混合物を用いた。それらの質量割合は、チタン酸アルミニウムの粉末/有機バインダ/潤滑剤/水=66質量%/1質量%/4質量%/29質量%であった。上記乾燥ハニカム構造体のガス流出入り口の両端面にあらかじめフィルムを貼り、各流路の一方の端部に、はんだこてにてフィルムを溶融及び穿孔した開口部を通して封口材を導入し、温風乾燥した。封口材を導入した乾燥ハニカム構造体について、大気雰囲気下で、有機バインダを除去する仮焼(脱脂)工程を含む焼成を行った。焼成時の最高温度は、1500℃とし、最高温度での保持時間は5時間とした。これにより、第1の流路と第2の流路を備えたハニカム焼成体(焼成体の形状:円柱状、貫通孔の断面形状:正六角形状及び扁平六角形状、焼成体の直径:25mm、焼成体の高さ:50mm、セル密度:300cpsi、セル壁厚:0.3mm)を得た。
(Comparative Example 1)
In the same manner as in Comparative Experimental Example 1, a dried honeycomb structure in which the catalyst layer and the sealing portion were not formed was produced. The dry honeycomb structure was sealed in the following procedure. As the sealing material, a mixture of aluminum titanate powder (powder obtained by pulverizing the honeycomb fired body obtained in Comparative Experimental Example 1), organic binder (hydroxypropylmethylcellulose), lubricant (glycerin) and water (solvent) is used. It was. The mass ratio thereof was aluminum titanate powder / organic binder / lubricant / water = 66 mass% / 1 mass% / 4 mass% / 29 mass%. A film is previously applied to both end faces of the gas outlet of the dried honeycomb structure, and a sealing material is introduced into one end of each flow path through an opening in which the film is melted and perforated with a soldering iron. Dried. The dried honeycomb structure into which the sealing material was introduced was fired in an air atmosphere including a calcination (degreasing) step of removing the organic binder. The maximum temperature during firing was 1500 ° C., and the holding time at the maximum temperature was 5 hours. Thereby, a honeycomb fired body having a first flow path and a second flow path (the shape of the fired body: a columnar shape, a cross-sectional shape of a through hole: a regular hexagonal shape and a flat hexagonal shape, a diameter of the fired body: 25 mm, The height of the fired body: 50 mm, cell density: 300 cpsi, cell wall thickness: 0.3 mm) was obtained.

100mLのポリビーカーに、純水70質量部と、実施例1で用意した上記銅イオンを担持したゼオライト触媒30質量部とを添加し、30分間攪拌した。更に粘度調整剤(アッシュランド製、エチルセルロース)を2.85質量部加えて1時間攪拌を行った。ハニカム焼成体のガス流出口側を負圧にし、ガス流入口側からこの懸濁溶液8質量部を吸引させた。500℃にて約1時間にて乾燥し、触媒層坦持ハニカムフィルタDを得た。触媒層の評価として、隔壁断面の走査型電子顕微鏡(SEM)観察を行った。触媒層は、隔壁の表面及び多孔質構造の細孔内に充填されていることが確認された。   To a 100 mL poly beaker, 70 parts by mass of pure water and 30 parts by mass of the zeolite catalyst supporting the copper ion prepared in Example 1 were added and stirred for 30 minutes. Furthermore, 2.85 parts by mass of a viscosity modifier (manufactured by Ashland, ethyl cellulose) was added and stirred for 1 hour. A negative pressure was applied to the gas outlet side of the honeycomb fired body, and 8 parts by mass of this suspension solution was sucked from the gas inlet side. It dried at 500 degreeC in about 1 hour, and the catalyst layer carrying honeycomb filter D was obtained. As an evaluation of the catalyst layer, a scanning electron microscope (SEM) observation of the partition wall cross section was performed. It was confirmed that the catalyst layer was filled in the surfaces of the partition walls and the pores of the porous structure.

<耐熱分解性の評価2>
実施例1〜2及び比較例1で得られた触媒層坦持ハニカムフィルタB〜Dを所定の温度及び時間で加熱処理し、加熱処理後の隔壁の状態を評価することで耐熱分解性を評価した。加熱条件は、850℃で5時間、900℃で5時間、950℃で5時間、1000℃で5時間、1000℃で1時間、又は、1100℃で0.5時間とした。加熱処理後のハニカムフィルタB〜Dの隔壁の評価として、粉末X線回折装置(Rigaku社製、商品名「RINT−2200HL」)を用いて隔壁の粉末X線回折測定を行った。粉末X線回折測定により、チタン酸アルミニウム、チタニア及びアルミナに帰属されるピークを検出し、それらのピーク面積から、チタン酸アルミニウム、チタニア及びアルミナの総ピーク面積に占めるチタン酸アルミニウムのピーク面積の割合(%)を求めた。結果を表4に示す。実施例1の触媒層坦持ハニカムフィルタBでは、いずれの条件でもチタン酸アルミニウムの割合の減少がほとんどなく、耐熱分解性が極めて高いことが確認された。
<Evaluation 2 of thermal decomposition resistance>
The catalyst layer-supporting honeycomb filters B to D obtained in Examples 1 and 2 and Comparative Example 1 are heat-treated at a predetermined temperature and time, and the thermal decomposition resistance is evaluated by evaluating the state of the partition walls after the heat treatment. did. The heating conditions were 850 ° C. for 5 hours, 900 ° C. for 5 hours, 950 ° C. for 5 hours, 1000 ° C. for 5 hours, 1000 ° C. for 1 hour, or 1100 ° C. for 0.5 hour. As evaluation of the partition walls of the honeycomb filters B to D after the heat treatment, powder X-ray diffraction measurement of the partition walls was performed using a powder X-ray diffractometer (trade name “RINT-2200HL” manufactured by Rigaku). Peaks attributed to aluminum titanate, titania and alumina are detected by powder X-ray diffraction measurement, and the ratio of the peak area of aluminum titanate to the total peak area of aluminum titanate, titania and alumina from those peak areas (%) Was calculated. The results are shown in Table 4. In the catalyst layer-carrying honeycomb filter B of Example 1, it was confirmed that there was almost no decrease in the proportion of aluminum titanate under any condition, and the thermal decomposition resistance was extremely high.

以上説明した通り、本発明によれば、隔壁を構成するセラミックスの熱分解を抑制できる、SCRの機能とディーゼルパティキュレートフィルタの機能を両方備えたハニカムフィルタを提供することができる。   As described above, according to the present invention, it is possible to provide a honeycomb filter having both an SCR function and a diesel particulate filter function that can suppress thermal decomposition of ceramics constituting the partition wall.

100,200…ハニカムフィルタ、100a,200a…一方の端面(第1の端面)、100b,200b…他方の端面(第2の端面)、110,210…流路、110a,210a…流路(第1の流路)、110b,210b…流路(第2の流路)、120,220…隔壁、160,260…触媒層。   DESCRIPTION OF SYMBOLS 100,200 ... Honeycomb filter, 100a, 200a ... One end surface (1st end surface), 100b, 200b ... The other end surface (2nd end surface), 110, 210 ... Channel, 110a, 210a ... Channel (first) 1 channel), 110b, 210b ... channel (second channel), 120, 220 ... partition wall, 160, 260 ... catalyst layer.

Claims (2)

互いに平行な複数の流路を形成する隔壁を備えるハニカムフィルタであって、
前記ハニカムフィルタが、第1の端面と、当該第1の端面の反対側に位置する第2の端面と、を有し、
前記複数の流路が、前記第2の端面側の端部が封口された複数の第1の流路と、前記第1の端面側の端部が封口された複数の第2の流路と、を有し、
前記ハニカムフィルタが、前記第1の流路内の隔壁表面、前記第2の流路内の隔壁表面、及び、隔壁細孔内のうちの少なくとも1箇所に形成された触媒層を備え、
前記触媒層が、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ロジウム、パラジウム、銀及び白金からなる群より選択される少なくとも一種の金属元素と、ゼオライトと、を含み、
前記隔壁が、マグネシウム、カルシウム、ストロンチウム、イットリウム、バリウム、ランタノイド及びビスマスからなる群より選択される少なくとも一種の元素を含有するチタン酸アルミニウム系セラミックスを含む、ハニカムフィルタ。
A honeycomb filter including partition walls that form a plurality of parallel flow paths,
The honeycomb filter has a first end face and a second end face located on the opposite side of the first end face;
The plurality of flow paths include a plurality of first flow paths whose end portions on the second end face side are sealed, and a plurality of second flow paths whose end portions on the first end face side are sealed. Have
The honeycomb filter includes a catalyst layer formed in at least one of the partition wall surface in the first channel, the partition wall surface in the second channel, and the partition pores,
The catalyst layer comprises at least one metal element selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, rhodium, palladium, silver and platinum, and zeolite;
A honeycomb filter, wherein the partition wall includes an aluminum titanate ceramic containing at least one element selected from the group consisting of magnesium, calcium, strontium, yttrium, barium, lanthanoid and bismuth.
前記隔壁が、更に二酸化ケイ素を含有する、請求項1記載のハニカムフィルタ。   The honeycomb filter according to claim 1, wherein the partition wall further contains silicon dioxide.
JP2014525864A 2012-07-20 2013-07-18 Honeycomb filter Pending JPWO2014014059A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012161795 2012-07-20
JP2012161795 2012-07-20
PCT/JP2013/069530 WO2014014059A1 (en) 2012-07-20 2013-07-18 Honeycomb filter

Publications (1)

Publication Number Publication Date
JPWO2014014059A1 true JPWO2014014059A1 (en) 2016-07-07

Family

ID=49948882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014525864A Pending JPWO2014014059A1 (en) 2012-07-20 2013-07-18 Honeycomb filter

Country Status (2)

Country Link
JP (1) JPWO2014014059A1 (en)
WO (1) WO2014014059A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2016147953A (en) * 2014-05-09 2018-06-13 Джонсон Мэтти Паблик Лимитед Компани CATALYST FOR REDUCING AMMONIA PREPARATION CONTAINING A PLATIN IMPRESSING HIGH POROUS SUBSTRATES
DE102014215112A1 (en) * 2014-07-31 2016-02-04 Johnson Matthey Public Limited Company Process for preparing a catalyst and catalyst articles
JP6756530B2 (en) * 2016-07-05 2020-09-16 イビデン株式会社 Honeycomb structure and manufacturing method of honeycomb structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229597B2 (en) * 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
JPWO2009122537A1 (en) * 2008-03-31 2011-07-28 イビデン株式会社 Manufacturing method of honeycomb structure
EP2296789A1 (en) * 2008-05-29 2011-03-23 Saint-Gobain Centre de Recherches et d'Etudes Européen Cellular structure containing aluminium titanate
JP2010227767A (en) * 2009-03-26 2010-10-14 Ngk Insulators Ltd Honeycomb filter
JP5365794B2 (en) * 2009-06-19 2013-12-11 大塚化学株式会社 Ceramic filter for supporting catalyst and method for manufacturing the same
JP6023395B2 (en) * 2009-10-06 2016-11-09 日本碍子株式会社 Catalyst support filter
JP2012024698A (en) * 2010-07-23 2012-02-09 Sumitomo Chemical Co Ltd Honeycomb filter
WO2012070386A1 (en) * 2010-11-24 2012-05-31 住友化学株式会社 Honeycomb filter

Also Published As

Publication number Publication date
WO2014014059A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP6041902B2 (en) Honeycomb filter and manufacturing method thereof
EP1707251B1 (en) Filter and filter aggregate
CN107107043A (en) Molecular sieve catalyst for handling waste gas
JP5601957B2 (en) Aluminum titanate honeycomb structure
JPWO2007000826A1 (en) Honeycomb structure
EP2626132A1 (en) Exhaust gas purification filter, and method for producing same
EP3040122A1 (en) Exhaust gas purification filter and exhaust gas purification apparatus
WO2014014059A1 (en) Honeycomb filter
WO2012070386A1 (en) Honeycomb filter
JP5856793B2 (en) Aluminum titanate honeycomb structure
JP5707203B2 (en) Honeycomb structure
JP2012110849A (en) Honeycomb filter
WO2012014684A1 (en) Green compact
JP2021535068A (en) Cordierite-Indialite-Pseudobrookite Ceramic Structures, Batch Composition Mixtures, and Methods for Producing Ceramics from These.
JP5879046B2 (en) Aluminum titanate honeycomb structure
JP5791391B2 (en) Honeycomb structure and gas processing apparatus using the same
JP2012024698A (en) Honeycomb filter
JP7100478B2 (en) Porous ceramics, their manufacturing method, and dust collecting filter
WO2018198999A1 (en) Honeycomb structure and exhaust gas purification device
JP2012055802A (en) Honeycomb filter
JP2014018768A (en) Exhaust gas purifying system
JP5860633B2 (en) Manufacturing method of honeycomb structure
JP2011245430A (en) Honeycomb structure
JP5773716B2 (en) Method for firing honeycomb structure
JP7145618B2 (en) Exhaust gas filter manufacturing method