JPWO2013168191A1 - Electrostatic actuators and variable capacitance devices - Google Patents

Electrostatic actuators and variable capacitance devices Download PDF

Info

Publication number
JPWO2013168191A1
JPWO2013168191A1 JP2014514227A JP2014514227A JPWO2013168191A1 JP WO2013168191 A1 JPWO2013168191 A1 JP WO2013168191A1 JP 2014514227 A JP2014514227 A JP 2014514227A JP 2014514227 A JP2014514227 A JP 2014514227A JP WO2013168191 A1 JPWO2013168191 A1 JP WO2013168191A1
Authority
JP
Japan
Prior art keywords
electrode
fixed
separation
movable
movable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014514227A
Other languages
Japanese (ja)
Other versions
JP5774779B2 (en
Inventor
甲二 埴原
甲二 埴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Pioneer Micro Technology Corp
Original Assignee
Pioneer Corp
Pioneer Micro Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp, Pioneer Micro Technology Corp filed Critical Pioneer Corp
Application granted granted Critical
Publication of JP5774779B2 publication Critical patent/JP5774779B2/en
Publication of JPWO2013168191A1 publication Critical patent/JPWO2013168191A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0221Variable capacitors

Abstract

引離し時の静電気力を効果的に発生させることができ、簡単な構成で高い引離し力を得ることができる。シリコン基板2に対し固定的に設けられた固定駆動電極21と、固定駆動電極21に下面で対面し、固定駆動電極21との間の静電気力により、固定駆動電極21に近接する可動駆動電極22と、可動駆動電極22の上面に対面し、可動駆動電極22との間の静電気力により、可動駆動電極22を固定駆動電極21から引き離す引離し電極24と、を備え、引離し電極24は、可動駆動電極22を部分的に固定し、可動駆動電極22および引離し電極24は、相互の固定部分を中心に拡開するように、可動駆動電極22および引離し電極24が変形して、可動駆動電極22の固定駆動電極21に対する離接可動を受容する。The electrostatic force at the time of separation can be generated effectively, and a high separation force can be obtained with a simple configuration. A fixed drive electrode 21 fixed to the silicon substrate 2 and a movable drive electrode 22 that faces the fixed drive electrode 21 on the lower surface and is close to the fixed drive electrode 21 due to electrostatic force between the fixed drive electrode 21 and the silicon substrate 2. And a separation electrode 24 that faces the upper surface of the movable drive electrode 22 and separates the movable drive electrode 22 from the fixed drive electrode 21 by electrostatic force between the movable drive electrode 22 and the separation electrode 24. The movable drive electrode 22 is partially fixed, and the movable drive electrode 22 and the separation electrode 24 are deformed so that the movable drive electrode 22 and the separation electrode 24 are expanded so that the fixed portion is centered. The drive electrode 22 receives the detachable movement with respect to the fixed drive electrode 21.

Description

本発明は、固定電極とこれに対面する可動電極とを有し、静電気力を利用して、固定電極に対し可動電極を離接させる静電アクチュエーターおよび可変容量デバイスに関するものである。   The present invention relates to an electrostatic actuator and a variable capacitance device that have a fixed electrode and a movable electrode facing the fixed electrode, and make use of electrostatic force to separate the movable electrode from the fixed electrode.

従来、可変容量コンデンサー(可変容量デバイス)として、シグナル線とこれに対向する電極とからなる可変容量部と、可変容量部の両側に連なるブリッジ構造の一対のアクチュエーター部と、を備えたものが知られている(特許文献1参照)。各アクチュエーター部は、可動側の上部電極と、これに対向する固定側の下部電極と、上部電極に接続されたばね構造部と、を有している。そして、上部電極および下部電極間に電圧を印加することで、上部電極と下部電極との間に電位差を与える。その結果、上部電極および下部電極との間に静電気力が生じ、上部電極および下部電極を近接させる。   Conventionally, as a variable capacitor (variable capacitor device), a variable capacitor having a signal line and an electrode facing the variable capacitor and a pair of actuators having a bridge structure connected to both sides of the variable capacitor are known. (See Patent Document 1). Each actuator unit has a movable upper electrode, a fixed lower electrode facing the movable upper electrode, and a spring structure connected to the upper electrode. Then, by applying a voltage between the upper electrode and the lower electrode, a potential difference is given between the upper electrode and the lower electrode. As a result, an electrostatic force is generated between the upper electrode and the lower electrode, and the upper electrode and the lower electrode are brought close to each other.

特開2008−278634号公報JP 2008-278634 A

ところで、この種の可変容量コンデンサーでは、ホットスイッチング(可変容量部に電圧を印加した状態でアクチュエーター部を駆動する駆動方法)等により、下部電極から上部電極を引き離すときに、高い引離し力を必要とする場合がある。上記従来の構成では、ばね構造部の復元力により、可動電極を引き離す構成であるため、ばね構造部のバネ定数を高くすることが考えられるが、これでは、可動電極を近接させるのに高い静電気力を必要とするため、近接時に高い電圧を印加するか、両電極の対面面積を広くしなければならないという問題があった。
これに対し、単に、上部電極の上方に第3の電極を追加し、上部電極と当該第3の電極との間に静電気力を生じさせて可動電極を引き離す構成を考えた。しかしながら、この構成では、上部電極の支持部材(梁やアンカー)とは別に、第3の電極の支持部材が必要である上、離間動作の開始時に、効果的に静電気力が発生しないという問題が想定される。すなわち、静電気力が、上部電極および第3電極の離間距離の2乗に反比例するのに対し、離間動作の開始時には、上部電極が下部電極に近接した状態であり、上部電極が第3の電極から最大限離れた状態になっている。そのため、離間動作の開始時に強い静電気力が生じない。これによって、初動が遅く離間動作全体の動作速度が遅くなるので、静電アクチュエーターの動作を安定的に行うことができないという問題が生じる。
By the way, with this type of variable capacitor, a high pulling force is required when the upper electrode is pulled away from the lower electrode by hot switching (driving method in which the actuator is driven with voltage applied to the variable capacitor). It may be. In the above-described conventional configuration, the movable electrode is pulled apart by the restoring force of the spring structure, so it is conceivable to increase the spring constant of the spring structure, but this requires high static electricity to bring the movable electrode close to each other. Since force is required, there has been a problem that a high voltage must be applied in the vicinity or the facing area of both electrodes must be increased.
On the other hand, a configuration was considered in which a third electrode was simply added above the upper electrode, and an electrostatic force was generated between the upper electrode and the third electrode to separate the movable electrode. However, this configuration requires a third electrode support member in addition to the upper electrode support member (beam or anchor), and there is a problem that electrostatic force is not effectively generated at the start of the separation operation. is assumed. That is, the electrostatic force is inversely proportional to the square of the separation distance between the upper electrode and the third electrode, whereas at the start of the separation operation, the upper electrode is close to the lower electrode, and the upper electrode is the third electrode. It is in a state far from the maximum. Therefore, no strong electrostatic force is generated at the start of the separation operation. As a result, the initial movement is slow, and the operation speed of the entire separation operation is slow, so that the electrostatic actuator cannot be stably operated.

本発明は、引離し時の静電気力を効果的に発生させることができ、簡単な構成で高い引離し力を得ることができる静電アクチュエーターおよび可変容量デバイスを提供することを課題としている。   It is an object of the present invention to provide an electrostatic actuator and a variable capacitance device that can effectively generate an electrostatic force at the time of separation and can obtain a high separation force with a simple configuration.

本発明の静電アクチュエーターは、基板に対し固定的に設けられた固定電極と、固定電極に表裏一方の面で対面し、固定電極との間の静電気力により、固定電極に近接する可動電極と、可動電極の表裏他方の面に対面し、可動電極との間の静電気力により、可動電極を固定電極から引き離す引離し電極と、を備え、引離し電極は、可動電極を部分的に固定し、可動電極および引離し電極は、相互の固定部分を中心に拡開するように、可動電極および/または引離し電極が変形して、可動電極の固定電極に対する離接可動を受容することを特徴とする。   The electrostatic actuator of the present invention includes a fixed electrode fixed to the substrate, a movable electrode that faces the fixed electrode on one side of the front and back, and that is close to the fixed electrode by electrostatic force between the fixed electrode and the fixed electrode. A separation electrode that faces the other surface of the movable electrode and separates the movable electrode from the fixed electrode by electrostatic force between the movable electrode, and the separation electrode partially fixes the movable electrode. The movable electrode and the pulling electrode are deformed so that the movable electrode and / or the pulling electrode are spread around the fixed portion of each other, and the movable electrode and the pulling electrode receive the movable movement of the movable electrode with respect to the fixed electrode. And

この構成によれば、第1に、引離し電極が、可動電極を部分的に固定しているので、引離し電極を支持する支持部材を設ければ、可動電極に特段の支持部材を設ける必要がない。第2に、固定部分を中心に拡開するように変形して、可動電極の離接可動を受容するため、固定部分近傍において、常に可動電極および引離し電極が近接した状態となっており、高い静電気力が生じさせることができる。その結果、離間動作の開始時にも引離し時の静電気力を効果的に発生させることができ、簡単な構成で高い引離し力を得ることができる。ゆえに、初動が速く離間動作全体の動作速度が速くなるので、静電アクチュエーターの動作を安定的に行うことができる。なお、当該構成において、可動電極と引離し電極とは非導通になるように構成されている。   According to this configuration, first, since the separation electrode partially fixes the movable electrode, if the support member that supports the separation electrode is provided, it is necessary to provide a special support member for the movable electrode. There is no. Secondly, in order to deform so as to expand around the fixed part and accept the movable movement of the movable electrode, in the vicinity of the fixed part, the movable electrode and the separation electrode are always in close proximity, High electrostatic force can be generated. As a result, the electrostatic force at the time of separation can be effectively generated even at the start of the separation operation, and a high separation force can be obtained with a simple configuration. Therefore, since the initial movement is fast and the operation speed of the entire separation operation is increased, the operation of the electrostatic actuator can be performed stably. In this configuration, the movable electrode and the separation electrode are configured to be non-conductive.

この場合、可動電極および/または引離し電極は、弾性を持って変形すると共に、当該変形の復元力を、可動電極の引離し力として作用させることが好ましい。   In this case, it is preferable that the movable electrode and / or the separation electrode are deformed with elasticity, and the restoring force of the deformation acts as the separation force of the movable electrode.

この構成によれば、弾性変形の復元力と、引離し電極による静電気力とで、可動電極を引き離すため、より高い引離し力を得ることができる。   According to this configuration, since the movable electrode is separated by the restoring force of elastic deformation and the electrostatic force by the separation electrode, a higher separation force can be obtained.

また、固定電極は、近接時の静電気力を生じさせるための所定のプルイン動作電圧を印加する第1の印加電源に接続され、可動電極は、基準電位点に接続され、引離し電極は、引離し時の静電気力を生じさせるための所定のプルアウト動作電圧を印加する第2の印加電源に接続されることが好ましい。   In addition, the fixed electrode is connected to a first applied power source that applies a predetermined pull-in operating voltage for generating an electrostatic force at the time of proximity, the movable electrode is connected to a reference potential point, and the separation electrode is connected to the pulling electrode. It is preferable to be connected to a second applied power source that applies a predetermined pull-out operating voltage for generating an electrostatic force at the time of separation.

近接時に、可動電極と引離し電極との間に電位差が生じていると、その静電気力が近接動作の妨げになる。また、引離し時に、固定電極と可動電極との間に電位差が生じていると、その静電気力が離間動作(引離し)の妨げになる。よって、近接時には、可動電極および引離し電極が同一の電位を有している必要があり、離間時には、固定電極および可動電極が同一の電位を有している必要がある。そのため、例えば、可動電極にプルアウト動作電圧を印加して可動電極の離間動作を行うと、それに合わせて、固定電極および引離し電極にプルアウト動作電圧とGND電圧(基準電圧)を印加する必要があり、電位制御が煩雑になってしまう。
これに対し、上記構成によれば、固定電極にプルイン動作電圧を印加し、引離し電極にプルアウト動作電圧を印加して、可動電極を離接することで、可動電極にプルイン動作電圧やプルアウト動作電圧を印加する必要がなく、電位制御を簡単な構成で行うことができる。なお、「所定のプルイン動作電圧」は、静電気力により可動電極の近接移動(プルイン)が生じる電圧(いわゆるプルイン電圧)以上の電圧である。また、「所定のプルアウト動作電圧」は、静電気力により可動電極の離間移動(プルアウト)が生じる電圧(いわゆるプルアウト電圧)以上の電圧である。
If there is a potential difference between the movable electrode and the separation electrode at the time of proximity, the electrostatic force hinders the proximity operation. Further, if a potential difference is generated between the fixed electrode and the movable electrode at the time of separation, the electrostatic force interferes with the separation operation (separation). Therefore, the movable electrode and the separation electrode need to have the same potential when approaching, and the fixed electrode and the movable electrode need to have the same potential when separated. Therefore, for example, when the pull-out operation voltage is applied to the movable electrode and the movable electrode is separated, it is necessary to apply the pull-out operation voltage and the GND voltage (reference voltage) to the fixed electrode and the separation electrode accordingly. The potential control becomes complicated.
On the other hand, according to the above configuration, the pull-in operating voltage is applied to the movable electrode by applying the pull-in operating voltage to the fixed electrode, applying the pull-out operating voltage to the separating electrode, and connecting and disconnecting the movable electrode. The potential control can be performed with a simple configuration. Note that the “predetermined pull-in operating voltage” is a voltage equal to or higher than a voltage (so-called pull-in voltage) at which the movable electrode is moved close to (pulled in) by electrostatic force. Further, the “predetermined pull-out operating voltage” is a voltage equal to or higher than a voltage (so-called pull-out voltage) at which the movable electrode is moved away (pulled out) by electrostatic force.

さらに、引離し電極から、可動電極の引離し方向に連結したn(n≧1)個の追加引離し電極を、更に備え、連結した引離し電極およびn個の追加引離し電極は、連結した前後の電極が相互に対面し、相互間の静電気力を、引離し電極を介した可動電極の引離し力として作用させると共に、可動電極と合わせて蛇腹状に変形して、可動電極の固定電極に対する離接可動を受容することが好ましい。   Furthermore, n (n ≧ 1) additional separating electrodes connected in the direction of separating the movable electrode from the separating electrode are further provided, and the connected separating electrode and the n additional separating electrodes are connected. The front and back electrodes face each other, and the electrostatic force between them acts as a pulling force of the movable electrode via the pulling electrode, and is deformed into a bellows shape together with the moving electrode, so that the fixed electrode of the movable electrode It is preferable to accept the detachment movement relative to.

この構成によれば、n個の追加引離し電極を設けることで、より高い引き離し力を得ることができる。また、n個の追加引離し電極が、引離し電極に連結されているため、最端の追加引離し電極を支持する支持部材を設ければ、(n−1)個の追加引離し電極、引離し電極および可動電極に特段の支持部材を設ける必要がない。さらに、連結した引離し電極およびn個の追加引離し電極が、蛇腹状(ベローズ状)に変形するため、連結部分を中心に拡開するように変形する構成となる。そのため、可動電極および引離し電極間と同様、連結部分近傍において、常に前後の電極が近接した状態となっており、高い静電気力が生じさせることができる。   According to this configuration, a higher pulling force can be obtained by providing n additional pulling electrodes. Further, since n additional separating electrodes are connected to the separating electrode, if a support member for supporting the outermost additional separating electrode is provided, (n-1) additional separating electrodes, There is no need to provide a special support member for the separation electrode and the movable electrode. Furthermore, since the connected separating electrode and the n additional separating electrodes are deformed into a bellows shape (bellows shape), they are configured to be deformed so as to expand around the coupling portion. Therefore, as in the case of the movable electrode and the separation electrode, the front and rear electrodes are always close to each other in the vicinity of the connecting portion, and a high electrostatic force can be generated.

この場合、連結した引離し電極およびn個の追加引離し電極は、弾性を持って変形すると共に、当該変形の復元力を、可動電極の引離し力として作用させることを特徴とする請求項1に記載の静電アクチュエーター。   In this case, the connected separation electrode and the n additional separation electrodes are deformed with elasticity, and the restoring force of the deformation acts as the separation force of the movable electrode. The electrostatic actuator described in 1.

この構成によれば、連結した引離し電極およびn個の追加引離し電極の弾性変形による復元力を引離し力として作用させるため、より高い引離し力を得ることができる。   According to this configuration, since the restoring force due to the elastic deformation of the connected separating electrode and n additional separating electrodes is caused to act as the separating force, a higher separating force can be obtained.

本発明の可変容量デバイスは、上記の静電アクチュエーターと、静電アクチュエーターを駆動源として駆動する静電容量を可変する可変容量素子と、を備えたことを特徴とする。   A variable capacitance device according to the present invention includes the electrostatic actuator described above and a variable capacitance element that varies the capacitance that is driven using the electrostatic actuator as a drive source.

この構成によれば、動作を安定的に行うことができる静電アクチュエーターを用いることで、安定性の高い可変容量デバイスを提供することができる。なお、ここにいう「可変容量デバイス」は、可変容量コンデンサーおよび可変容量型のスイッチ等を含んでいる。   According to this configuration, it is possible to provide a highly stable variable capacitance device by using an electrostatic actuator that can stably operate. The “variable capacitance device” here includes a variable capacitance capacitor, a variable capacitance type switch, and the like.

この場合、静電アクチュエーターは、可変容量素子に電圧を印加した状態で、可動電極の離接動作を行うことが好ましい。   In this case, it is preferable that the electrostatic actuator perform the moving / separating operation of the movable electrode in a state where a voltage is applied to the variable capacitance element.

可変容量素子に電圧を印加した状態で可動電極の離接動作を行う、いわゆるホットスイッチングを行うと、可変容量素子を構成する一対の電極間で静電気力が生じ、可動電極の引離しを妨げる。
これに対し、上記構成によれば、高い引離し力を得ることができる静電アクチュエーターを用いることで、ホットスイッチングを安定的に行うことができる。
When so-called hot switching is performed in which the movable electrode is separated and connected while a voltage is applied to the variable capacitance element, an electrostatic force is generated between the pair of electrodes constituting the variable capacitance element, thereby preventing the movable electrode from being separated.
On the other hand, according to the said structure, hot switching can be performed stably by using the electrostatic actuator which can obtain a high pulling force.

また、可変容量素子は、直列に接続され、静電容量が可変の2個の可変容量部と、2個の可変容量部の上下流側のそれぞれに直列に接続され、静電容量が固定の2個の固定容量部と、を備え、各可変容量部は、基板に固定的に設けられた固定容量電極と、固定容量電極に対面し、可動電極と一体に変位して固定容量電極に対し離接する可動容量電極と、を有することが好ましい。   The variable capacitance element is connected in series and is connected in series to each of the two variable capacitance portions having variable capacitance and the upstream and downstream sides of the two variable capacitance portions, and the capacitance is fixed. Each of the variable capacitance portions is fixedly provided on the substrate, faces the fixed capacitance electrode, is displaced integrally with the movable electrode, and is displaced relative to the fixed capacitance electrode. It is preferable to have a movable capacitance electrode that is in contact with and away from the substrate.

この構成によれば、2個の可変容量部と2個の固定容量部とを直列に接続することで、RF電圧(Radio Frequency Voltage)のホットスイッチングを行った場合に、RF電圧が分圧される。これによって、可動電極の引離しを妨げる静電気力、すなわち固定容量電極と可動容量電極との間の静電気力を全体として小さくすることができる。また、固定容量電極および可動容量電極を、フローティング状態にすることができる。   According to this configuration, the RF voltage is divided when hot switching of the RF voltage (Radio Frequency Voltage) is performed by connecting two variable capacitor units and two fixed capacitor units in series. The Thereby, the electrostatic force that prevents the movable electrode from being separated, that is, the electrostatic force between the fixed capacitor electrode and the movable capacitor electrode can be reduced as a whole. Further, the fixed capacitor electrode and the movable capacitor electrode can be in a floating state.

本発明の静電アクチュエーターの駆動方法は、基板に対し固定的に設けられた固定電極と、固定電極に表裏一方の面で対面し、固定電極との間の静電気力により、固定電極に近接する可動電極と、可動電極の表裏他方の面に対面し、可動電極との間の静電気力により、可動電極を固定電極から引き離す引離し電極と、を備え、引離し電極は、可動電極を部分的に固定し、可動電極および引離し電極は、相互の固定部分を中心に拡開するように、可動電極および/または引離し電極が変形して、可動電極の固定電極に対する離接可動を受容する静電アクチュエーターの駆動方法であって、固定電極に、近接時の静電気力を生じさせるための所定のプルイン動作電圧を印加し、可動電極に、基準電位点を接続し、引離し電極に、引離し時の静電気力を生じさせるための所定のプルアウト動作電圧を印加することを特徴とする。   The driving method of the electrostatic actuator of the present invention is such that the fixed electrode fixedly provided on the substrate faces the fixed electrode on one side of the front and back, and approaches the fixed electrode by electrostatic force between the fixed electrode and the fixed electrode. A movable electrode, and a separation electrode that faces the other surface of the movable electrode and separates the movable electrode from the fixed electrode by electrostatic force between the movable electrode and the separation electrode. The movable electrode and / or the separation electrode are deformed so that the movable electrode and the separation electrode expand about the mutual fixed portion, and the movable electrode and the separation electrode receive the movable movement of the movable electrode with respect to the stationary electrode. A driving method of an electrostatic actuator, in which a predetermined pull-in operating voltage for generating an electrostatic force in proximity is applied to a fixed electrode, a reference potential point is connected to a movable electrode, and a pulling electrode is connected to a pulling electrode. Static electricity when released And applying a predetermined pull-out operation voltage for generating.

この構成によれば、第1に、引離し電極が、可動電極を部分的に固定しているので、引離し電極を支持する支持部材を設ければ、可動電極に特段の支持部材を設ける必要がない。第2に、固定部分を中心に拡開するように変形して、可動電極の離接可動を受容するため、固定部分近傍において、常に可動電極および引離し電極が近接した状態となっており、高い静電気力が生じさせることができる。その結果、離間動作の開始時にも引離し時の静電気力を効果的に発生させることができ、簡単な構成で高い引離し力を得ることができる。ゆえに、初動が速く離間動作全体の動作速度が速くなるので、静電アクチュエーターの動作を安定的に行うことができる。さらに、固定電極にプルイン動作電圧を印加し、引離し電極にプルアウト動作電圧を印加して、可動電極を離接することで、可動電極にプルイン動作電圧やプルアウト動作電圧を印加する必要がなく、電位制御を簡単な構成で行うことができる。   According to this configuration, first, since the separation electrode partially fixes the movable electrode, if the support member that supports the separation electrode is provided, it is necessary to provide a special support member for the movable electrode. There is no. Secondly, in order to deform so as to expand around the fixed part and accept the movable movement of the movable electrode, in the vicinity of the fixed part, the movable electrode and the separation electrode are always in close proximity, High electrostatic force can be generated. As a result, the electrostatic force at the time of separation can be effectively generated even at the start of the separation operation, and a high separation force can be obtained with a simple configuration. Therefore, since the initial movement is fast and the operation speed of the entire separation operation is increased, the operation of the electrostatic actuator can be performed stably. Furthermore, by applying a pull-in operating voltage to the fixed electrode, applying a pull-out operating voltage to the release electrode, and connecting and disconnecting the movable electrode, there is no need to apply a pull-in operating voltage or a pull-out operating voltage to the movable electrode. Control can be performed with a simple configuration.

本発明の静電アクチュエーターは、基板に対し固定的に設けられた平面状の固定電極と、固定電極に表裏一方の面で対面する平面状の可動電極と、可動電極の表裏他方の面に対面する平面状の対面電極と、基板に立設されると共に、対面電極を支持する電極支持部と、を備え、対面電極は、可動電極を部分的に固定し、可動電極および対面電極は、相互の固定部分を中心として拡開変形自在に構成されていることを特徴とする。   The electrostatic actuator of the present invention includes a planar fixed electrode fixedly provided on a substrate, a planar movable electrode facing the fixed electrode on one surface and the other surface, and facing the other surface of the movable electrode. A planar facing electrode, and an electrode support portion that is erected on the substrate and supports the facing electrode. The facing electrode partially fixes the movable electrode, and the movable electrode and the facing electrode are mutually It is characterized in that it can be expanded and deformed around the fixed part.

この構成によれば、第1に、引離し電極が、可動電極を部分的に固定しているので、可動電極に特段の支持部材を設ける必要がない。第2に、固定部分を中心に拡開するように変形して、可動電極の離接可動を受容するため、固定部分近傍において、常に可動電極および引離し電極が近接した状態となっており、高い静電気力が生じさせることができる。その結果、離間動作の開始時にも引離し時の静電気力を効果的に発生させることができ、簡単な構成で高い引離し力を得ることができる。ゆえに、初動が速く離間動作全体の動作速度が速くなるので、静電アクチュエーターの動作を安定的に行うことができる。   According to this configuration, first, since the separation electrode partially fixes the movable electrode, it is not necessary to provide a special support member for the movable electrode. Secondly, in order to deform so as to expand around the fixed part and accept the movable movement of the movable electrode, in the vicinity of the fixed part, the movable electrode and the separation electrode are always in close proximity, High electrostatic force can be generated. As a result, the electrostatic force at the time of separation can be effectively generated even at the start of the separation operation, and a high separation force can be obtained with a simple configuration. Therefore, since the initial movement is fast and the operation speed of the entire separation operation is increased, the operation of the electrostatic actuator can be performed stably.

実施形態に係る可変容量コンデンサーの断面図である。It is sectional drawing of the variable capacitor which concerns on embodiment. 可変容量コンデンサーの平面図である。It is a top view of a variable capacitor. 可変容量コンデンサーの分解図である。It is an exploded view of a variable capacitor. 静電アクチュエーターの断面図である。It is sectional drawing of an electrostatic actuator. 静電アクチュエーターにおける両駆動電極の近接動作および離間動作を示した説明図である。It is explanatory drawing which showed the proximity | contact operation | movement and separation | spacing operation | movement of both the drive electrodes in an electrostatic actuator. 静電アクチュエーターの第1変形例を示した断面図である。It is sectional drawing which showed the 1st modification of the electrostatic actuator. 可変容量素子の変形例を示した可変容量コンデンサーの断面図である。It is sectional drawing of the variable capacitor which showed the modification of the variable capacitance element. (a)および(b)は、静電アクチュエーターの第2変形例を示した平面図であり、(c)は、静電アクチュエーターのA‐A´線断面図である。(A) And (b) is the top view which showed the 2nd modification of the electrostatic actuator, (c) is the sectional view on the AA 'line of an electrostatic actuator.

以下、添付の図面を参照し、本発明の一実施形態に係る静電アクチュエーターおよび可変容量デバイスについて説明する。本実施形態では、静電アクチュエーターを用いた可変容量コンデンサー(可変容量デバイス)を例示する。この可変容量コンデンサーは、MEMS(Micro Electro Mechanical Systems)デバイスであり、半導体集積回路作製技術を用いて、シリコン基板(半導体基板)上に、電子回路および機械構造を作りこむことで構成されている。なお、本可変容量コンデンサーは、静電気力により可動駆動電極を固定駆動電極から引き離す引離し電極と、可動駆動電極の可動構造とにより、高い引離し力を得る構成を有している。   Hereinafter, an electrostatic actuator and a variable capacitance device according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the present embodiment, a variable capacitor (variable capacitor device) using an electrostatic actuator is illustrated. The variable capacitor is a MEMS (Micro Electro Mechanical Systems) device, and is configured by forming an electronic circuit and a mechanical structure on a silicon substrate (semiconductor substrate) using a semiconductor integrated circuit manufacturing technique. The variable capacitor has a configuration in which a high separation force is obtained by a separation electrode that separates the movable drive electrode from the fixed drive electrode by electrostatic force and a movable structure of the movable drive electrode.

図1および図2に示すように、可変容量コンデンサー1は、シリコン基板(基板)2と、シリコン基板2上に配設された可変容量素子3と、シリコン基板2上に配設され、可変容量素子3の両側に連なる一対の静電アクチュエーター4と、を備えている。すなわち、可変容量コンデンサー1は、一対の静電アクチュエーター4を駆動源として可変容量素子3の静電容量を可変する。また、シリコン基板2の表面には、絶縁層5が形成されており、この絶縁層5上に、可変容量素子3および一対の静電アクチュエーター4が配設されている。なお、本実施形態では、一対の静電アクチュエーター4が可変容量素子3に連なる方向を、X軸方向とし、それに直交する方向を、Y軸方向とする。また、シリコン基板2の厚さ方向を上下方向とする。   As shown in FIGS. 1 and 2, the variable capacitor 1 includes a silicon substrate (substrate) 2, a variable capacitor 3 disposed on the silicon substrate 2, and a variable capacitor disposed on the silicon substrate 2. A pair of electrostatic actuators 4 connected to both sides of the element 3. That is, the variable capacitance capacitor 1 varies the capacitance of the variable capacitance element 3 using the pair of electrostatic actuators 4 as a drive source. An insulating layer 5 is formed on the surface of the silicon substrate 2, and the variable capacitance element 3 and a pair of electrostatic actuators 4 are disposed on the insulating layer 5. In the present embodiment, the direction in which the pair of electrostatic actuators 4 are connected to the variable capacitance element 3 is defined as the X-axis direction, and the direction orthogonal thereto is defined as the Y-axis direction. In addition, the thickness direction of the silicon substrate 2 is the vertical direction.

可変容量素子3は、シリコン基板2上に敷設した固定側の固定容量電極11と、固定容量電極11に上方から対面する可動側の可動容量電極12と、を備えている。また、両容量電極11、12には、可変容量素子3の電気接点(入力端子)をそれぞれ配しており、電圧印加により両容量電極11、12上に電荷が蓄積される。なお、符号14は、可動容量電極12の取出し部である。そして、静電アクチュエーター4によって、固定容量電極11に対し、可動容量電極12を近接・離間させることで、可変容量素子3の静電容量を2段階で可変する。また、固定容量電極11は、絶縁膜13で覆われており、両容量電極11、12の近接状態においては、当該絶縁膜13を介して、固定容量電極11と可動容量電極12とが接触する。なお、本実施形態では、両容量電極11、12の近接状態において、絶縁膜13を介して、固定容量電極11と可動容量電極12とが接触するものを示したが、近接状態において、エアギャップを介して、固定容量電極11と可動容量電極12とが対面する構成であっても良い。   The variable capacitance element 3 includes a fixed-side fixed capacitance electrode 11 laid on the silicon substrate 2 and a movable-side movable capacitance electrode 12 that faces the fixed capacitance electrode 11 from above. In addition, electrical contacts (input terminals) of the variable capacitive element 3 are arranged on the capacitive electrodes 11 and 12, respectively, and charges are accumulated on the capacitive electrodes 11 and 12 by voltage application. Reference numeral 14 denotes an extraction part of the movable capacitance electrode 12. Then, the electrostatic capacitance of the variable capacitance element 3 is varied in two stages by moving the movable capacitance electrode 12 close to and away from the fixed capacitance electrode 11 by the electrostatic actuator 4. Further, the fixed capacitor electrode 11 is covered with an insulating film 13, and the fixed capacitor electrode 11 and the movable capacitor electrode 12 are in contact with each other through the insulating film 13 in the proximity of both the capacitor electrodes 11 and 12. . In the present embodiment, the fixed capacitor electrode 11 and the movable capacitor electrode 12 are in contact with each other via the insulating film 13 in the proximity state of both the capacitance electrodes 11 and 12, but in the proximity state, the air gap The fixed capacitor electrode 11 and the movable capacitor electrode 12 may be configured to face each other through the gap.

図2ないし図4に示すように、各静電アクチュエーター4は、シリコン基板2上に敷設した固定側の固定駆動電極(固定電極)21と、固定駆動電極21に上方から対面する可動側の可動駆動電極(可動電極)22と、可動駆動電極22に上方から対面しつつ、絶縁体の連結部23を介して可動駆動電極22と連結する引離し電極(対面電極)24と、シリコン基板2上に立設され、連結した可動駆動電極22および引離し電極24を支持する電極支持部25と、を備えている。各静電アクチュエーター4は、連結した可動駆動電極22および引離し電極24が拡開様に変形することで、可動駆動電極22が固定駆動電極21に離接する。   As shown in FIGS. 2 to 4, each electrostatic actuator 4 includes a fixed-side fixed drive electrode (fixed electrode) 21 laid on the silicon substrate 2 and a movable-side movable facing the fixed drive electrode 21 from above. A drive electrode (movable electrode) 22, a separation electrode (facing electrode) 24 that faces the movable drive electrode 22 from above and is connected to the movable drive electrode 22 via an insulator connecting portion 23, and the silicon substrate 2. And an electrode support portion 25 that supports the movable drive electrode 22 and the separation electrode 24 that are erected and connected to each other. In each electrostatic actuator 4, the movable drive electrode 22 and the separation electrode 24 that are connected to each other are deformed so as to expand, so that the movable drive electrode 22 is in contact with the fixed drive electrode 21.

固定駆動電極21は、平面状に電極であり、シリコン基板2上に敷設されると共に、可動駆動電極22(後述の扁平部31)に対面している。固定駆動電極21は、所定のプルイン動作電圧(所定の駆動電圧)を印加する第1の印加電源W1に接続されており、当該所定のプルイン動作電圧の印加により、可動駆動電極22との間に静電気力(静電吸引力)を生じさせる。固定駆動電極21は、この静電気力により可動駆動電極22を近接させる。また、固定駆動電極21は、絶縁膜26で覆われており、両駆動電極21、22の近接状態においては、当該絶縁膜26を介して、固定駆動電極21と可動駆動電極22とが接触する。なお、当該所定のプルイン動作電圧は、静電気力により可動駆動電極22の近接移動(プルイン)が生じる電圧(いわゆるプルイン電圧)以上の電圧である。   The fixed drive electrode 21 is a flat electrode, is laid on the silicon substrate 2, and faces the movable drive electrode 22 (flat portion 31 described later). The fixed drive electrode 21 is connected to a first applied power source W1 that applies a predetermined pull-in operation voltage (predetermined drive voltage). The fixed drive electrode 21 is connected to the movable drive electrode 22 by application of the predetermined pull-in operation voltage. Generates electrostatic force (electrostatic attractive force). The fixed drive electrode 21 brings the movable drive electrode 22 close by this electrostatic force. The fixed drive electrode 21 is covered with an insulating film 26, and the fixed drive electrode 21 and the movable drive electrode 22 are in contact with each other through the insulating film 26 in the proximity of the drive electrodes 21 and 22. . Note that the predetermined pull-in operation voltage is a voltage equal to or higher than a voltage (so-called pull-in voltage) at which the movable drive electrode 22 is caused to approach (pull-in) by electrostatic force.

可動駆動電極22は、平面状の電極であり、表裏一方の面(下面)で固定駆動電極21に対面し、表裏他方の面(上面)で引離し電極24に対面している。また、可動駆動電極22は、連結部23を介してX軸方向一端部(可変容量素子3側に対する逆側)が引離し電極24に固定されており、一方、X軸方向他端部(可変容量素子3側)で、絶縁体の接合部27を介して可動容量電極12を接合している(図1参照)。すなわち、可動容量電極12は、一対の静電アクチュエーター4の一対の可動駆動電極22にX軸方向両側で接合されている。これにより、可動容量電極12が、一対の可動駆動電極22と一体に変位して離接する。なお、可動駆動電極22は、グラウンド(基準電位点)Gに接続されており、常に基準電位(ゼロ電位)を有している。符号34は、可動駆動電極22の取出し部である。   The movable drive electrode 22 is a planar electrode, and faces the fixed drive electrode 21 on one surface (lower surface) of the front and back, and faces the separation electrode 24 on the other surface (upper surface). Further, the movable drive electrode 22 has one end portion in the X-axis direction (the opposite side to the variable capacitance element 3 side) fixed to the separation electrode 24 via the connecting portion 23, while the other end portion in the X-axis direction (variable) On the capacitive element 3 side), the movable capacitive electrode 12 is joined via an insulating joint 27 (see FIG. 1). That is, the movable capacitive electrode 12 is joined to the pair of movable drive electrodes 22 of the pair of electrostatic actuators 4 on both sides in the X-axis direction. As a result, the movable capacitive electrode 12 is displaced integrally with the pair of movable drive electrodes 22. The movable drive electrode 22 is connected to a ground (reference potential point) G and always has a reference potential (zero potential). Reference numeral 34 denotes an extraction portion of the movable drive electrode 22.

また、可動駆動電極22は、固定駆動電極21に対面する扁平部31と、基端部が引離し電極24に固定されると共に扁平部31を所定の弾性を持って支持するビーム部32(変形部)とを有し、一体の電極を成している。すなわち、ビーム部32は、引離し電極24に固定された部分を中心に回動するように弾性変形して、扁平部31を上下動する。なお、図示省略するが、厳密には、扁平部31自体も弾性により一部変形する。   The movable drive electrode 22 includes a flat portion 31 facing the fixed drive electrode 21 and a beam portion 32 (deformation) whose base end portion is separated and fixed to the electrode 24 and supports the flat portion 31 with a predetermined elasticity. Part) to form an integral electrode. That is, the beam portion 32 is elastically deformed so as to rotate around a portion fixed to the separation electrode 24 and moves the flat portion 31 up and down. Although not shown, strictly speaking, the flat portion 31 itself is also partially deformed by elasticity.

引離し電極24は、平面状の電極であり、X軸方向一端部(可変容量素子3側に対する逆側)で可動駆動電極22を部分的に固定し、X軸方向他端部(可変容量素子3側)で電極支持部25に支持されている。厳密には、引離し電極24は、X軸方向他端部に形成された左右一対の被支持部24aを有し、当該一対の被支持部24aが電極支持部25に支持されている。また、引離し電極24は、所定の弾性を持って形成されており、電極支持部25に支持された端部を中心に回動するように弾性変形する。その結果、連結した可動駆動電極22および引離し電極24は、相互の固定部分を中心に拡開するように(横「V」字状に)、変形する。これによって、可動駆動電極22および引離し電極24は、扁平部31の上下動を受容して、固定駆動電極21に対する可動駆動電極22の離接可動を受容している。   The separation electrode 24 is a planar electrode, and partially fixes the movable drive electrode 22 at one end portion in the X-axis direction (the opposite side to the variable capacitance element 3 side), and the other end portion in the X-axis direction (variable capacitance element). 3 side) and is supported by the electrode support portion 25. Strictly speaking, the separation electrode 24 has a pair of left and right supported portions 24 a formed at the other end in the X-axis direction, and the pair of supported portions 24 a is supported by the electrode support portion 25. The separating electrode 24 is formed with a predetermined elasticity, and is elastically deformed so as to rotate around an end portion supported by the electrode support portion 25. As a result, the movable drive electrode 22 and the separation electrode 24 connected to each other are deformed so as to expand around the mutual fixed portion (in a horizontal “V” shape). Accordingly, the movable drive electrode 22 and the separation electrode 24 receive the vertical movement of the flat portion 31 and receive the movable movement of the movable drive electrode 22 with respect to the fixed drive electrode 21.

また、引離し電極24は、ビーム部32を含む可動駆動電極22全域に対面している。そして、引離し電極24は、所定のプルアウト動作電圧(所定の駆動電圧:直流電圧)を印加する第2の印加電源W2に接続されており、当該所定のプルアウト動作電圧の印加により、可動駆動電極22との間に静電気力(静電吸引力)を生じさせる。引離し電極24は、上記両電極22、24の弾性変形における復元力に加え、この両電極22、24の静電気力により、可動駆動電極22を固定駆動電極21から引き離し、可動駆動電極22を固定駆動電極21から離間させる。なお、当該所定のプルアウト動作電圧は、静電気力により可動駆動電極22の離間移動(プルアウト)が生じる電圧(いわゆるプルアウト電圧)以上の電圧である。   Further, the separation electrode 24 faces the entire movable drive electrode 22 including the beam portion 32. The separation electrode 24 is connected to a second applied power source W2 that applies a predetermined pull-out operating voltage (predetermined driving voltage: DC voltage), and the movable driving electrode is applied by applying the predetermined pull-out operating voltage. An electrostatic force (electrostatic attraction force) is generated between the two. The separation electrode 24 separates the movable drive electrode 22 from the fixed drive electrode 21 and fixes the movable drive electrode 22 by the electrostatic force of the electrodes 22 and 24 in addition to the restoring force in the elastic deformation of the electrodes 22 and 24. Separated from the drive electrode 21. Note that the predetermined pull-out operating voltage is a voltage equal to or higher than a voltage (so-called pull-out voltage) at which the movable drive electrode 22 is moved away (pulled out) by electrostatic force.

なお、図1ないし図3の例では、一対の静電アクチュエーター4の一対の引離し電極24が、相互の左右一方の被支持部24aで連なり、導通可能に一体形成されている。そのため、一対の引離し電極24は、個々に第2の印加電源W2に接続されている必要はなく、一方の引離し電極24が、第2の印加電源W2に接続されていれば、これに導通した他方の引離し電極24も、第2の印加電圧Wに接続された状態となる。   In the example of FIGS. 1 to 3, the pair of separation electrodes 24 of the pair of electrostatic actuators 4 are connected by the left and right supported portions 24a and are integrally formed so as to be conductive. Therefore, the pair of separating electrodes 24 do not need to be individually connected to the second applied power source W2, and if one separating electrode 24 is connected to the second applied power source W2, The other conducting separation electrode 24 is also connected to the second applied voltage W.

電極支持部25は、引離し電極24の一対の被支持部24aを支持する左右一対の第1アンカー部46および第2アンカー部47を有している。また、一対の静電アクチュエーター4の2個の第1アンカー部46は、一体に形成されており、一対の静電アクチュエーター4の2個の第2アンカー部47は、可動容量電極12の取出し部14を避けるように離間して別体で形成されている。   The electrode support portion 25 has a pair of left and right first anchor portions 46 and second anchor portions 47 that support a pair of supported portions 24 a of the separation electrode 24. Further, the two first anchor portions 46 of the pair of electrostatic actuators 4 are integrally formed, and the two second anchor portions 47 of the pair of electrostatic actuators 4 are the extraction portions of the movable capacitive electrode 12. 14 are formed separately so as to avoid 14.

ここで図5を参照して静電アクチュエーター4における両駆動電極21、22の近接動作および離間動作について説明する。なお、本近接動作および離間動作は、可変容量素子3にRF電圧が印加された状態で行うものとする(いわゆるホットスイッチング)。また、近接動作は、両駆動電極21、22が離間した定常状態から開始し、離間動作は、両駆動電極21、22が近接したプルイン状態から開始するものとする。図5(a)に示すように、定常状態(両駆動電極21、22の離間状態)では、プルイン動作電圧およびプルアウト動作電圧を印加しておらず、固定駆動電極21、可動駆動電極22および引離し電極24は、同一の電位(基準電位)を有している。   Here, with reference to FIG. 5, the proximity | contact operation | movement of both the drive electrodes 21 and 22 and the separation | spacing operation | movement in the electrostatic actuator 4 are demonstrated. The proximity operation and the separation operation are performed in a state where an RF voltage is applied to the variable capacitance element 3 (so-called hot switching). Further, the proximity operation starts from a steady state in which both drive electrodes 21 and 22 are separated from each other, and the separation operation starts from a pull-in state in which both drive electrodes 21 and 22 are in proximity. As shown in FIG. 5 (a), in the steady state (the separated state of the drive electrodes 21 and 22), the pull-in operation voltage and the pull-out operation voltage are not applied, and the fixed drive electrode 21, the movable drive electrode 22 and the pulling operation voltage are not applied. The release electrodes 24 have the same potential (reference potential).

図5(b)に示すように、近接動作では、静電アクチュエーター4は、第1の印加電源W1を制御して固定駆動電極21に所定のプルイン動作電圧を印加する。プルイン動作電圧を印加すると、固定駆動電極21および可動駆動電極22に正負相違の電荷が蓄積し、その電圧差で両駆動電極21、22の間に静電気力が生じる。ここで生じた静電気力により、可動駆動電極22および引離し電極24が、自身の復元力に逆らって開くように変形していく。すなわち、可動駆動電極22および引離し電極24が、電極支持部25に支持された部分を固定として、両電極22、24間の固定部分(連結部23周り)を中心に拡開するように変形する。当該変形によって、可動駆動電極22の扁平部31が下降し、当該扁平部31が固定駆動電極21に対する離間位置から近接位置に移動する。すなわち、可動駆動電極22が、固定駆動電極21に近接する。これにより、静電アクチュエーター4が、定常状態からプルイン状態に移行する。   As shown in FIG. 5B, in the proximity operation, the electrostatic actuator 4 controls the first application power source W1 to apply a predetermined pull-in operation voltage to the fixed drive electrode 21. When a pull-in operation voltage is applied, positive and negative charges are accumulated in the fixed drive electrode 21 and the movable drive electrode 22, and an electrostatic force is generated between the drive electrodes 21 and 22 due to the voltage difference. Due to the electrostatic force generated here, the movable drive electrode 22 and the separation electrode 24 are deformed so as to open against their restoring force. That is, the movable drive electrode 22 and the separation electrode 24 are deformed so that the portion supported by the electrode support portion 25 is fixed and the fixed portion between the electrodes 22 and 24 (around the connecting portion 23) is expanded. To do. Due to the deformation, the flat portion 31 of the movable drive electrode 22 is lowered, and the flat portion 31 is moved from the separated position to the close position with respect to the fixed drive electrode 21. That is, the movable drive electrode 22 is close to the fixed drive electrode 21. Thereby, the electrostatic actuator 4 shifts from the steady state to the pull-in state.

図5(c)に示すように、プルイン状態(両駆動電極21、22の近接状態)では、可動駆動電極22の扁平部31が絶縁膜26を介して、固定駆動電極21に接触する。このとき、可動駆動電極22および引離し電極24は、同一の電位(基準電位)を有し、固定駆動電極21は、所定のプルイン動作電圧が印加され続けているため、プルイン動作電圧に伴う所定の電位を有している。なお、プルイン状態を維持するのに必要なプルイン維持電圧は、扁平部31を近接移動させるのに必要なプルイン電圧よりも低い。そのため、プルイン状態では、プルイン動作電圧よりも低い所定の電圧(ただしプルイン維持電圧以上の電圧)を印加する構成であっても良い。   As shown in FIG. 5C, in the pull-in state (the proximity of both drive electrodes 21 and 22), the flat portion 31 of the movable drive electrode 22 contacts the fixed drive electrode 21 through the insulating film 26. At this time, the movable drive electrode 22 and the separation electrode 24 have the same potential (reference potential), and the fixed drive electrode 21 continues to be applied with a predetermined pull-in operating voltage. Has a potential of. Note that the pull-in maintaining voltage necessary for maintaining the pull-in state is lower than the pull-in voltage necessary for moving the flat portion 31 in proximity. For this reason, in the pull-in state, a predetermined voltage lower than the pull-in operating voltage (however, a voltage equal to or higher than the pull-in maintaining voltage) may be applied.

図5(d)に示すように、離間動作では、静電アクチュエーター4は、第1の印加電源W1を制御してプルイン動作電圧の印加を停止すると共に、第2の印加電源W2を制御して引離し電極24にプルアウト動作電圧を印加する。プルイン動作電圧の印加を停止すると、両駆動電極21、22が同一の電位となり、両駆動電極21、22間の静電気力が解除される。一方、プルアウト動作電圧を印加すると、可動駆動電極22および引離し電極24に正負相違の電荷が蓄積し、その電圧差で両電極22、24の間に静電気力が生じる。特に、相互の固定部分付近は、離間動作の開始時でも近接した状態にあるので強い静電気力が生じる。その結果、可動駆動電極22(ビーム部32)および引離し電極24の復元力と、両電極22、24間の静電気力とにより、可動駆動電極22および引離し電極24が閉じるように変形していく。この変形によって、可動駆動電極22の扁平部31が上昇し、当該扁平部31が固定駆動電極21から引き離される。そして、扁平部31が近接位置から離間位置に移動する。すなわち、可動駆動電極22が、固定駆動電極21から離間する。その後、プルアウト動作電圧の印加を停止する。これにより、静電アクチュエーター4が、プルイン状態から定常状態に移行する。   As shown in FIG. 5D, in the separation operation, the electrostatic actuator 4 controls the first applied power source W1 to stop the application of the pull-in operation voltage, and controls the second applied power source W2. A pull-out operating voltage is applied to the separation electrode 24. When the application of the pull-in operating voltage is stopped, the drive electrodes 21 and 22 are at the same potential, and the electrostatic force between the drive electrodes 21 and 22 is released. On the other hand, when a pull-out operating voltage is applied, positive and negative charges are accumulated in the movable drive electrode 22 and the separation electrode 24, and an electrostatic force is generated between the electrodes 22 and 24 due to the voltage difference. In particular, the vicinity of the mutual fixed portion is in a close state even at the start of the separation operation, so that a strong electrostatic force is generated. As a result, the movable drive electrode 22 and the separation electrode 24 are deformed so as to be closed by the restoring force of the movable drive electrode 22 (beam portion 32) and the separation electrode 24 and the electrostatic force between the electrodes 22 and 24. Go. By this deformation, the flat portion 31 of the movable drive electrode 22 is raised, and the flat portion 31 is separated from the fixed drive electrode 21. Then, the flat part 31 moves from the proximity position to the separation position. That is, the movable drive electrode 22 is separated from the fixed drive electrode 21. Thereafter, the application of the pull-out operating voltage is stopped. Thereby, the electrostatic actuator 4 shifts from the pull-in state to the steady state.

次に図6を参照して、静電アクチュエーター4の変形例について説明する。図6に示すように、変形例の静電アクチュエーター4は、図1に記載の各電極に加え、引離し電極24に上方から対面しつつ、引離し電極24から上方に連結した追加引離し電極51を備えている。追加引離し電極51は、X軸方向一端部(可変容量素子3側)の被支持部51aで電極支持部25に支持され、X軸方向他端部(可変容量素子3側に対する逆側)で絶縁体の連結部52を介して引離し電極24に連結されている。また、追加引離し電極51は、引離し電極24と同様、所定の弾性を持って形成されている。そして、連結された引離し電極24および追加引離し電極51は、可動駆動電極22と合わせて、蛇腹状(ベローズ状)に弾性変形して、可動駆動電極22の離接可動を受容している。さらに、追加引離し電極51は、グラウンドGに接続されている。   Next, a modified example of the electrostatic actuator 4 will be described with reference to FIG. As shown in FIG. 6, in addition to the electrodes shown in FIG. 1, the electrostatic actuator 4 according to the modification includes an additional separating electrode that is connected to the separating electrode 24 from above while facing the separating electrode 24 from above. 51 is provided. The additional separating electrode 51 is supported by the electrode support portion 25 at the supported portion 51a at one end portion in the X axis direction (variable capacitance element 3 side), and at the other end portion in the X axis direction (the opposite side to the variable capacitance element 3 side). It is connected to the separation electrode 24 through a connecting portion 52 of an insulator. Further, the additional separating electrode 51 is formed with a predetermined elasticity like the separating electrode 24. The connected separation electrode 24 and the additional separation electrode 51 are elastically deformed into a bellows shape (bellows shape) together with the movable drive electrode 22 to receive the movable movement of the movable drive electrode 22. . Furthermore, the additional separation electrode 51 is connected to the ground G.

両駆動電極21、22の離間動作時には、引離し電極24にプルアウト動作電圧を印加すると、引離し電極24および追加引離し電極51の間にも、正負相違の電荷が蓄積し、その電位差で静電気力が生じる。この静電気力と、追加引離し電極51における弾性変形の復元力とが可動駆動電極22の引離し力として作用し、可動駆動電極22の引離しに寄与する。   When the pull-out operation voltage is applied to the separation electrode 24 during the separation operation of the drive electrodes 21 and 22, charges different in positive and negative are accumulated between the separation electrode 24 and the additional separation electrode 51. Power is generated. This electrostatic force and the elastic deformation restoring force of the additional separation electrode 51 act as the separation force of the movable drive electrode 22 and contribute to the separation of the movable drive electrode 22.

本変形例によれば、追加引離し電極51を設けることで、より高い引き離し力を得ることができる。また、追加引離し電極51が、引離し電極24に連結されているため、追加引離し電極51を支持する支持部材(電極支持部25)を設ければ、可動駆動電極22および引離し電極24に特段の支持部材を設ける必要がない。さらに、連結した引離し電極24および追加引離し電極51が、蛇腹状(ベローズ状)に変形するため、連結部分を中心に拡開するように変形する構成となる。そのため、可動駆動電極22および引離し電極24間と同様、連結部分近傍において、常に前後の電極が近接した状態となっており、高い静電気力が生じさせることができる。またさらに、追加引離し電極51の弾性変形による復元力を引離し力として作用させることで、より高い引離し力を得ることができる。   According to this modification, by providing the additional separation electrode 51, a higher separation force can be obtained. Further, since the additional separation electrode 51 is connected to the separation electrode 24, the movable drive electrode 22 and the separation electrode 24 can be provided by providing a support member (electrode support portion 25) that supports the additional separation electrode 51. There is no need to provide a special support member. Furthermore, since the connected separation electrode 24 and the additional separation electrode 51 are deformed into a bellows shape (bellows shape), the structure is deformed so as to expand around the connection portion. Therefore, as in the case between the movable drive electrode 22 and the separation electrode 24, the front and rear electrodes are always close to each other in the vicinity of the connection portion, and a high electrostatic force can be generated. Furthermore, a higher separating force can be obtained by applying the restoring force due to the elastic deformation of the additional separating electrode 51 as the separating force.

なお、本変形例では、引離し電極24から上方に1個の追加引離し電極51を連結する構成であったが、n(n≧1)個の追加引離し電極51を連結する構成であれば、複数の追加引離し電極51を連結する構成であっても良い。すなわち、第1の追加引離し電極51は、引離し電極24に上方から対面しつつ、引離し電極24を端部で固定し、それ以降の追加引離し電極51は、連結した一つ前の追加引離し電極51に対面しつつ、当該追加引離し電極51を端部で固定する。すなわち、連結した引離し電極24およびn個の追加引離し電極51は、連結した前後の電極が相互に対面した構成となる。そして、前後の電極間に静電気力を生じさせ、その静電気力を引離し電極24を介した可動駆動電極22の引離し力として作用させる。なお、この場合、前後の電極で電位差が生じるように、連結した順序で、奇数番目の追加引離し電極51は、グラウンドGに接続され、偶数番目の追加引離し電極51は、プルアウト動作電圧を印加する第2の印加電源W2に接続され、離間動作時にプルアウト動作電圧が印加される。また、本構成において、連結部分が、X軸方向一端部と他端部とで交互位置することが好ましい。   In the present modification, one additional separation electrode 51 is connected upward from the separation electrode 24. However, n (n ≧ 1) additional separation electrodes 51 may be connected. For example, the structure which connects the some additional separation electrode 51 may be sufficient. That is, the first additional separation electrode 51 is fixed to the separation electrode 24 at the end while facing the separation electrode 24 from above, and the additional separation electrode 51 thereafter is connected to the previous one. The additional separating electrode 51 is fixed at the end while facing the additional separating electrode 51. That is, the connected separation electrode 24 and the n additional separation electrodes 51 are configured such that the electrodes before and after the connection face each other. Then, an electrostatic force is generated between the front and rear electrodes, and the electrostatic force is separated to act as a separation force of the movable drive electrode 22 via the electrode 24. In this case, the odd-numbered additional pull-out electrodes 51 are connected to the ground G and the even-numbered additional pull-out electrodes 51 have a pull-out operating voltage in order of connection so that a potential difference occurs between the front and rear electrodes. A pull-out operation voltage is applied to the second application power source W2 to be applied and during the separation operation. Moreover, in this structure, it is preferable that a connection part is alternately located by the X-axis direction one end part and other end part.

次に図7を参照して、可変容量素子3の変形例について説明する。なお、本変形例では、シリコン基板2に代えて絶縁性基板6を用いる。図7に示すように、変形例の可変容量素子3は、絶縁性基板6に敷設された一対の固定容量電極11と、一対の固定容量電極11に上方から対面する可動容量電極12と、絶縁性基板6内に埋め込まれ、一対の固定容量電極11の下面に絶縁層5を介して対面する一対の埋込容量電極60と、を備えている。そして、一対の固定容量電極11および可動容量電極12は、静電容量が可変の2個の可変容量部61を構成し、一対の固定容量電極11および一対の埋込容量電極60は、静電容量が固定の2個の固定容量部62を構成している(図7(c)参照)。そして、一対の埋込容量電極60には、可変容量素子3の電気接点(入力端子)をそれぞれ配しており、一対の固定容量電極11、可動容量電極12および一対の埋込容量電極60は、上流側から、一方の固定容量部62、2個の可変容量部61、他方の固定容量部62の順で直列した電気回路を構成している。なお、一対の固定容量電極11および一対の可動容量電極12は、フローティング状態になっている。   Next, a modification of the variable capacitance element 3 will be described with reference to FIG. In this modification, an insulating substrate 6 is used instead of the silicon substrate 2. As shown in FIG. 7, the variable capacitor 3 according to the modification includes a pair of fixed capacitance electrodes 11 laid on an insulating substrate 6, a movable capacitance electrode 12 facing the pair of fixed capacitance electrodes 11 from above, and insulation. And a pair of embedded capacitor electrodes 60 which are embedded in the conductive substrate 6 and face each other through the insulating layer 5 on the lower surfaces of the pair of fixed capacitor electrodes 11. The pair of fixed capacitance electrodes 11 and the movable capacitance electrode 12 constitute two variable capacitance portions 61 whose capacitance is variable, and the pair of fixed capacitance electrodes 11 and the pair of embedded capacitance electrodes 60 are electrostatic capacitances. Two fixed capacity portions 62 having a fixed capacity are configured (see FIG. 7C). The pair of embedded capacitor electrodes 60 are provided with electrical contacts (input terminals) of the variable capacitor 3, respectively. The pair of fixed capacitor electrode 11, the movable capacitor electrode 12, and the pair of embedded capacitor electrodes 60 are From the upstream side, one fixed capacitor 62, two variable capacitors 61, and the other fixed capacitor 62 are configured in series in this order. The pair of fixed capacitor electrodes 11 and the pair of movable capacitor electrodes 12 are in a floating state.

本変形例によれば、2個の可変容量部61と2個の固定容量部62とを直列接続することにより、ホットスイッチング時のRF電圧が分圧されるので、可動駆動電極22の引離しを妨げる静電気力、すなわち固定容量電極11と可動容量電極12との間の静電気力を全体として小さくすることができる。また、一対の固定容量電極11および可動容量電極12を、フローティング状態にすることができる。なお、本変形例では、隣接する一対の埋込容量電極60間が非導通となるように絶縁性基板6を用いたが、絶縁性基板6に代えてシリコン基板2を用いても良い。ただし、隣接する埋込容量電極60間の絶縁性を確保するにはシリコン基板2のPN接合では十分とは言えないので、絶縁性基板6を用いるほうが好ましい。   According to this modification, since the RF voltage at the time of hot switching is divided by connecting two variable capacitor portions 61 and two fixed capacitor portions 62 in series, the movable drive electrode 22 is separated. Can be reduced as a whole, that is, the electrostatic force between the fixed capacitor electrode 11 and the movable capacitor electrode 12 can be reduced. Further, the pair of fixed capacitor electrode 11 and movable capacitor electrode 12 can be in a floating state. In this modification, the insulating substrate 6 is used so that the pair of adjacent embedded capacitance electrodes 60 are not conductive. However, the silicon substrate 2 may be used instead of the insulating substrate 6. However, it is preferable to use the insulating substrate 6 because the PN junction of the silicon substrate 2 is not sufficient to ensure the insulation between the adjacent embedded capacitance electrodes 60.

なお、本変形例では、2個の可変容量部61の可動容量電極12を、一体に形成する構成であったが、2個の可変容量部61の可動容量電極12を、別体で形成する構成であっても良い。   In this modification, the movable capacitance electrodes 12 of the two variable capacitance portions 61 are integrally formed. However, the movable capacitance electrodes 12 of the two variable capacitance portions 61 are formed separately. It may be a configuration.

以上の実施形態によれば、第1に、引離し電極24が、可動駆動電極22を部分的に固定しているので、引離し電極24を支持する支持部材(電極支持部25)を設ければ、可動駆動電極22に特段の支持部材を設ける必要がない。第2に、固定部分を中心に拡開するように変形して、可動駆動電極22の離接可動を受容するため、固定部分近傍において、常に可動駆動電極22および引離し電極24が近接した状態となっており、高い静電気力が生じさせることができる。その結果、離間動作の開始時にも引離し時の静電気力を効果的に発生させることができ、簡単な構成で高い引離し力を得ることができる。ゆえに、初動が速く離間動作全体の動作速度が速くなるので、静電アクチュエーター4の動作を安定的に行うことができる。   According to the above embodiment, first, since the separation electrode 24 partially fixes the movable drive electrode 22, a support member (electrode support portion 25) for supporting the separation electrode 24 can be provided. In this case, it is not necessary to provide a special support member for the movable drive electrode 22. Second, the movable drive electrode 22 and the separation electrode 24 are always close to each other in the vicinity of the fixed portion in order to deform so as to expand around the fixed portion and receive the movable movement of the movable drive electrode 22. Thus, a high electrostatic force can be generated. As a result, the electrostatic force at the time of separation can be effectively generated even at the start of the separation operation, and a high separation force can be obtained with a simple configuration. Therefore, since the initial movement is fast and the operation speed of the entire separation operation is increased, the operation of the electrostatic actuator 4 can be stably performed.

例えば、離間動作の開始時に、プルアウト動作電圧Vを印加する場合の両電極22、24間の静電気力F1を計算すると、以下のようになる。すなわち、可動駆動電極22の幅をW、可動駆動電極22の固定部分から先端部分までの距離をL、固定部分での引離し電極24との離間距離をG0、先端部分での引離し電極24との離間距離をG1とする。そして、固定部分から先端部分まで引離し電極24との離間距離f(x)を、一次線形近似で計算すると、
f(x)=(G1−G0)×x/L+G0
となる。ここで、xは、固定部分をゼロとした位置座標とする。
これを利用して上記静電気力F1を計算すると、
F1=(1/2)×ε0×W×L×V/(G0×G1)
となる。一方、引離し電極24を、可動駆動電極22の上方に且つ平行に対面して配設させた構成では、引離し電極24との離間距離が全域でG1となり、プルアウト動作電圧Vを印加した場合の両電極22、24間の静電気力F0を計算すると、
F0=(1/2)×ε0×W×L×V/(G1)
となる。G1がG0より格段に高い数値であることを考慮すれば、前者の静電気力F1が、後者の静電気力F0より格段に高い数値であることがわかる。
For example, when the electrostatic force F1 between the electrodes 22 and 24 when the pullout operation voltage V is applied at the start of the separation operation is calculated, the following is obtained. That is, the width of the movable drive electrode 22 is W, the distance from the fixed portion to the tip portion of the movable drive electrode 22 is L, the distance from the separation electrode 24 at the fixed portion is G0, and the separation electrode 24 at the tip portion. Let G1 be the separation distance. Then, when the separation distance f (x) from the fixed part to the tip part is calculated by linear approximation,
f (x) = (G1-G0) × x / L + G0
It becomes. Here, x is a position coordinate in which the fixed portion is zero.
When the electrostatic force F1 is calculated using this,
F1 = (1/2) × ε0 × W × L × V 2 / (G0 × G1)
It becomes. On the other hand, in the configuration in which the separation electrode 24 is disposed above and in parallel with the movable drive electrode 22, the separation distance from the separation electrode 24 is G1 in the entire region, and the pull-out operation voltage V is applied. When the electrostatic force F0 between the two electrodes 22 and 24 is calculated,
F0 = (1/2) × ε0 × W × L × V 2 / (G1) 2
It becomes. Considering that G1 is much higher than G0, it can be seen that the former electrostatic force F1 is much higher than the latter electrostatic force F0.

また、可動駆動電極22および引離し電極24が、弾性を持って変形することで、弾性変形の復元力と、引離し電極24による静電気力とで、可動駆動電極22を引き離すため、より高い引離し力を得ることができる。なお、これを考慮しないのであれば、可動駆動電極22および/または引離し電極24が、弾性(バネ性)を持たずに変形する構成であっても良い。すなわち、静電気力のみで可動駆動電極22を引き離す構成であっても良い。   Further, since the movable drive electrode 22 and the separation electrode 24 are deformed with elasticity, the movable drive electrode 22 is separated by the restoring force of the elastic deformation and the electrostatic force by the separation electrode 24, so that a higher pulling force is obtained. Release force can be obtained. If this is not taken into consideration, the movable drive electrode 22 and / or the separation electrode 24 may be deformed without having elasticity (spring property). That is, the movable drive electrode 22 may be separated only by electrostatic force.

さらに、固定駆動電極21にプルイン動作電圧を、引離し電極24にプルアウト動作電圧を印加して、可動駆動電極22を離接することで、可動駆動電極22にプルイン動作電圧やプルアウト動作電圧を印加する必要がなく、電位制御を簡単な構成で行うことができる。   Further, a pull-in operation voltage is applied to the fixed drive electrode 21, a pull-out operation voltage is applied to the separation electrode 24, and the movable drive electrode 22 is separated and applied, thereby applying a pull-in operation voltage and a pull-out operation voltage to the movable drive electrode 22. This is unnecessary, and potential control can be performed with a simple configuration.

なお、本実施形態においては、可動駆動電極22および引離し電極24が共に変形して、可動駆動電極22の離接可動を受容する構成であったが、可動駆動電極22および引離し電極24のいずれか一方のみが変形して、可動駆動電極22の離接可動を受容する構成であっても良い。   In the present embodiment, the movable drive electrode 22 and the separation electrode 24 are both deformed to accept the movable movement of the movable drive electrode 22. Only one of them may be deformed to receive the movable movement of the movable drive electrode 22.

また、本実施形態においては、固定駆動電極21、可動駆動電極22および引離し電極24を、シリコン基板2に対し平行に配設する構成であったが、固定駆動電極21、可動駆動電極22および引離し電極24を、シリコン基板2に対し垂直に配設する構成であっても良い(図8(a)、(b)の平面図および図8(c)のA‐A´線断面図参照)。かかる場合、電極支持部25は、固定駆動電極21、可動駆動電極22および引離し電極24を囲う角筒型(上下面がない箱型)に形成されている。そして、電極支持部25は、シリコン基板2に絶縁部71を介して立設され、引離し電極24のX軸方向一端部および固定駆動電極21を、絶縁部71を介して支持する。   In the present embodiment, the fixed drive electrode 21, the movable drive electrode 22, and the separation electrode 24 are arranged in parallel to the silicon substrate 2. However, the fixed drive electrode 21, the movable drive electrode 22, The separation electrode 24 may be arranged perpendicular to the silicon substrate 2 (see the plan views of FIGS. 8A and 8B and the cross-sectional view taken along the line AA ′ of FIG. 8C). ). In this case, the electrode support portion 25 is formed in a rectangular tube shape (a box shape having no upper and lower surfaces) that surrounds the fixed drive electrode 21, the movable drive electrode 22, and the separation electrode 24. The electrode support portion 25 is erected on the silicon substrate 2 via the insulating portion 71, and supports the one end portion in the X-axis direction of the separation electrode 24 and the fixed drive electrode 21 via the insulating portion 71.

また、本実施形態においては、可変容量デバイスとして、可変容量コンデンサー1に本発明を適用したが、可変容量素子3を用いた可変容量型のスイッチに本発明を適用しても良い。   In the present embodiment, the present invention is applied to the variable capacitor 1 as the variable capacitance device. However, the present invention may be applied to a variable capacitance type switch using the variable capacitance element 3.

なお、本実施形態においては、ホットスイッチング対策として、すなわち、ホットスイッチングを安定させる構成として本発明を適用する構成であったが、高い引離し力を必要とするものであれば、ホットスイッチングを行う場合に限るものではない。例えば、両駆動電極21、22の固着(スティクション)対策として、本発明を適用する構成であっても良いし、近接時の静電気力を低減する方法として、ばね構造部(ビーム部32等)のばね定数を低くしつつ(もしくはゼロにしつつ)、本発明を適用する構成であっても良い。   In the present embodiment, the present invention is applied as a countermeasure against hot switching, that is, as a structure that stabilizes hot switching. However, hot switching is performed if a high separating force is required. It is not limited to cases. For example, as a countermeasure against sticking (stiction) between the drive electrodes 21 and 22, the present invention may be applied, and as a method of reducing the electrostatic force when approaching, a spring structure portion (beam portion 32 or the like). It is also possible to adopt a configuration in which the present invention is applied while lowering (or zeroing) the spring constant.

1:可変容量コンデンサー、 2:シリコン基板、 3:可変容量素子、 4:静電アクチュエーター、 11:固定容量電極、 12:可動容量電極、 21:固定駆動電極、 22:可動駆動電極、 24:引離し電極、 25:電極支持部、 51:追加引離し電極、 61:可変容量部、 62:固定容量部、 G:グラウンド、 W1:第1の印加電源、 W2:第2の印加電源   1: variable capacitance capacitor, 2: silicon substrate, 3: variable capacitance element, 4: electrostatic actuator, 11: fixed capacitance electrode, 12: movable capacitance electrode, 21: fixed drive electrode, 22: movable drive electrode, 24: pull Release electrode, 25: Electrode support part, 51: Additional separation electrode, 61: Variable capacity part, 62: Fixed capacity part, G: Ground, W1: First applied power supply, W2: Second applied power supply

Claims (10)

基板に対し固定的に設けられた固定電極と、
前記固定電極に表裏一方の面で対面し、前記固定電極との間の静電気力により、前記固定電極に近接する可動電極と、
前記可動電極の表裏他方の面に対面し、前記可動電極との間の静電気力により、前記可動電極を前記固定電極から引き離す引離し電極と、を備え、
前記引離し電極は、前記可動電極を部分的に固定し、
前記可動電極および前記引離し電極は、相互の固定部分を中心に拡開するように、前記可動電極および/または前記引離し電極が変形して、前記可動電極の前記固定電極に対する離接可動を受容することを特徴とする静電アクチュエーター。
A fixed electrode fixed to the substrate;
A movable electrode facing the fixed electrode on one side of the front and back, and an electrostatic force between the fixed electrode and the fixed electrode,
A separation electrode that faces the other surface of the movable electrode, and that separates the movable electrode from the fixed electrode by electrostatic force between the movable electrode, and
The separation electrode partially fixes the movable electrode,
The movable electrode and / or the separation electrode are deformed so that the movable electrode and / or the separation electrode are expanded so that the fixed portions of the movable electrode and the separation electrode are spread around each other. An electrostatic actuator characterized by receiving.
前記可動電極および/または前記引離し電極は、弾性を持って変形すると共に、当該変形の復元力を、前記可動電極の引離し力として作用させることを特徴とする請求項1に記載の静電アクチュエーター。   2. The electrostatic according to claim 1, wherein the movable electrode and / or the separation electrode is deformed with elasticity, and a restoring force of the deformation acts as a separation force of the movable electrode. Actuator. 前記固定電極は、近接時の静電気力を生じさせるための所定のプルイン動作電圧を印加する第1の印加電源に接続され、
前記可動電極は、基準電位点に接続され、
前記引離し電極は、引離し時の静電気力を生じさせるための所定のプルアウト動作電圧を印加する第2の印加電源に接続されることを特徴とする請求項1に記載の静電アクチュエーター。
The fixed electrode is connected to a first applied power source that applies a predetermined pull-in operating voltage for generating an electrostatic force in proximity.
The movable electrode is connected to a reference potential point;
The electrostatic actuator according to claim 1, wherein the separation electrode is connected to a second applied power source that applies a predetermined pull-out operating voltage for generating an electrostatic force at the time of separation.
前記引離し電極から、前記可動電極の引離し方向に連結したn(n≧1)個の追加引離し電極を、更に備え、
連結した前記引離し電極および前記n個の追加引離し電極は、連結した前後の電極が相互に対面し、相互間の静電気力を、前記引離し電極を介した前記可動電極の引離し力として作用させると共に、前記可動電極と合わせて蛇腹状に変形して、前記可動電極の前記固定電極に対する離接可動を受容することを特徴とする請求項1に記載の静電アクチュエーター。
N (n ≧ 1) additional separating electrodes connected in the direction of separating the movable electrode from the separating electrode,
The connected separating electrode and the n additional separating electrodes are such that the connected front and back electrodes face each other, and the electrostatic force between them is taken as the separating force of the movable electrode via the separating electrode. 2. The electrostatic actuator according to claim 1, wherein the electrostatic actuator is deformed into a bellows shape together with the movable electrode and receives the movable movement of the movable electrode with respect to the fixed electrode.
連結した前記引離し電極および前記n個の追加引離し電極は、弾性を持って変形すると共に、当該変形の復元力を、前記可動電極の引離し力として作用させることを特徴とする請求項4に記載の静電アクチュエーター。   5. The connected separation electrode and the n additional separation electrodes are deformed with elasticity, and a restoring force of the deformation acts as a separation force of the movable electrode. The electrostatic actuator described in 1. 請求項1に記載の静電アクチュエーターと、
前記静電アクチュエーターを駆動源として駆動する静電容量を可変する可変容量素子と、を備えたことを特徴とする可変容量デバイス。
An electrostatic actuator according to claim 1;
A variable capacitance device comprising: a variable capacitance element that varies a capacitance driven by using the electrostatic actuator as a drive source.
前記静電アクチュエーターは、前記可変容量素子に電圧を印加した状態で、前記可動電極の離接動作を行うことを特徴とする請求項6に記載の可変容量デバイス。   The variable capacitance device according to claim 6, wherein the electrostatic actuator performs a separation / contact operation of the movable electrode in a state where a voltage is applied to the variable capacitance element. 前記可変容量素子は、
直列に接続され、静電容量が可変の2個の可変容量部と、
前記2個の可変容量部の上下流側のそれぞれに直列に接続され、静電容量が固定の2個の固定容量部と、を備え、
前記各可変容量部は、
前記基板に固定的に設けられた固定容量電極と、
前記固定容量電極に対面し、前記可動電極と一体に変位して前記固定容量電極に対し離接する可動容量電極と、を有することを特徴とする請求項6に記載の可変容量デバイス。
The variable capacitance element is
Two variable capacitance units connected in series and having variable capacitance;
Two fixed capacitance portions connected in series to the upstream and downstream sides of the two variable capacitance portions, and having a fixed capacitance,
Each of the variable capacitance units is
A fixed capacitance electrode fixedly provided on the substrate;
The variable capacitance device according to claim 6, further comprising: a movable capacitance electrode that faces the fixed capacitance electrode, is displaced integrally with the movable electrode, and is separated from or in contact with the fixed capacitance electrode.
基板に対し固定的に設けられた固定電極と、
前記固定電極に表裏一方の面で対面し、前記固定電極との間の静電気力により、前記固定電極に近接する可動電極と、
前記可動電極の表裏他方の面に対面し、前記可動電極との間の静電気力により、前記可動電極を前記固定電極から引き離す引離し電極と、を備え、
前記引離し電極は、前記可動電極を部分的に固定し、
前記可動電極および前記引離し電極は、相互の固定部分を中心に拡開するように、前記可動電極および/または前記引離し電極が変形して、前記可動電極の前記固定電極に対する離接可動を受容する静電アクチュエーターの駆動方法であって、
前記固定電極に、近接時の静電気力を生じさせるための所定のプルイン動作電圧を印加し、
前記可動電極に、基準電位点を接続し、
前記引離し電極に、引離し時の静電気力を生じさせるための所定のプルアウト動作電圧を印加することを特徴とする静電アクチュエーターの駆動方法。
A fixed electrode fixed to the substrate;
A movable electrode facing the fixed electrode on one side of the front and back, and an electrostatic force between the fixed electrode and the fixed electrode,
A separation electrode that faces the other surface of the movable electrode, and that separates the movable electrode from the fixed electrode by electrostatic force between the movable electrode, and
The separation electrode partially fixes the movable electrode,
The movable electrode and / or the separation electrode are deformed so that the movable electrode and / or the separation electrode are expanded so that the fixed portions of the movable electrode and the separation electrode are spread around each other. A driving method of an electrostatic actuator to receive,
Applying a predetermined pull-in operating voltage for generating an electrostatic force in proximity to the fixed electrode,
A reference potential point is connected to the movable electrode,
A driving method of an electrostatic actuator, wherein a predetermined pull-out operation voltage for generating an electrostatic force at the time of separation is applied to the separation electrode.
基板に対し固定的に設けられた平面状の固定電極と、
前記固定電極に表裏一方の面で対面する平面状の可動電極と、
前記可動電極の表裏他方の面に対面する平面状の対面電極と、
前記基板に立設されると共に、前記対面電極を支持する電極支持部と、を備え、
前記対面電極は、前記可動電極を部分的に固定し、
前記可動電極および前記対面電極は、相互の固定部分を中心として拡開変形自在に構成されていることを特徴とする静電アクチュエーター。
A planar fixed electrode fixed to the substrate;
A planar movable electrode facing the fixed electrode on one side of the front and back,
A planar facing electrode facing the other surface of the movable electrode; and
An electrode support portion that is erected on the substrate and supports the facing electrode;
The facing electrode partially fixes the movable electrode,
The electrostatic actuator, wherein the movable electrode and the facing electrode are configured to be able to expand and deform around a fixed portion of each other.
JP2014514227A 2012-05-08 2012-05-08 Electrostatic actuators and variable capacitance devices Active JP5774779B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003004 WO2013168191A1 (en) 2012-05-08 2012-05-08 Electrostatic actuator and variable-capacity device

Publications (2)

Publication Number Publication Date
JP5774779B2 JP5774779B2 (en) 2015-09-09
JPWO2013168191A1 true JPWO2013168191A1 (en) 2015-12-24

Family

ID=49550279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014514227A Active JP5774779B2 (en) 2012-05-08 2012-05-08 Electrostatic actuators and variable capacitance devices

Country Status (2)

Country Link
JP (1) JP5774779B2 (en)
WO (1) WO2013168191A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10504656B2 (en) 2015-04-29 2019-12-10 General Electric Company Electrodes for linear switched capacitive devices
US9806639B2 (en) 2015-04-29 2017-10-31 General Electric Company Dielectric fluids for linear switched capacitive devices
US9748867B2 (en) 2015-08-03 2017-08-29 General Electric Company Control system for linear switched capacitive devices
JP6038362B2 (en) * 2016-01-06 2016-12-07 パイオニア株式会社 Electrostatic actuators and variable capacitance devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181038A (en) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd Variable capacitance capacitor
JPH0955337A (en) * 1995-08-11 1997-02-25 Murata Mfg Co Ltd Variable capacitor
JP2008171586A (en) * 2007-01-09 2008-07-24 Matsushita Electric Ind Co Ltd Electrical machine switch, method of manufacturing the same and electric apparatus using the same
JP2009048875A (en) * 2007-08-21 2009-03-05 Nikon Corp Electrostatic drive actuator and its driving method

Also Published As

Publication number Publication date
WO2013168191A1 (en) 2013-11-14
JP5774779B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
EP2524383B1 (en) Mems sprung cantilever tunable capacitors and methods
JP5774779B2 (en) Electrostatic actuators and variable capacitance devices
JP5083977B2 (en) ELECTROMECHANICAL ELEMENT, ITS DRIVING METHOD, AND ELECTRIC DEVICE USING THE SAME
KR20150011334A (en) A mems device
KR101745722B1 (en) Micro-electromechanical system switch
JP5801475B2 (en) Electrostatic actuator, variable capacitor, electric switch, and driving method of electrostatic actuator
KR101766482B1 (en) Switch structures
US7830066B2 (en) Micromechanical device with piezoelectric and electrostatic actuation and method therefor
WO2007145294A1 (en) Electromechanical element and electric apparatus using same
TWI576883B (en) Rf micro-electro-mechanical system (mems) capacitive switch
JP4887465B2 (en) MEMS switch and communication apparatus using the same
JP2013051297A (en) Variable capacitance device
JP6038362B2 (en) Electrostatic actuators and variable capacitance devices
JP5869694B2 (en) Electrostatic actuator, variable capacitance device, and driving method of electrostatic actuator
CN112777561A (en) Micro-electromechanical actuator with multiple freedom of movement
JP5298072B2 (en) MEMS switch
WO2013076755A1 (en) Electrostatic actuator, variable capacitor, and electric switch
JP5483574B2 (en) MEMS switch
JP2011042019A (en) Micro-electro mechanical element
JP5869695B2 (en) Electrostatic actuators and variable capacitance devices
JP5688757B2 (en) Circuit equipment
JP5033032B2 (en) Micro electromechanical switch
CN116893504A (en) Piezoelectrically actuated microelectromechanical mirror device with improved stress resistance
JPWO2009063627A1 (en) Electromechanical element and electrical equipment using the same
JP2007234448A (en) Microrelay switch

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150701

R150 Certificate of patent or registration of utility model

Ref document number: 5774779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250