JPWO2013151094A1 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JPWO2013151094A1
JPWO2013151094A1 JP2014509188A JP2014509188A JPWO2013151094A1 JP WO2013151094 A1 JPWO2013151094 A1 JP WO2013151094A1 JP 2014509188 A JP2014509188 A JP 2014509188A JP 2014509188 A JP2014509188 A JP 2014509188A JP WO2013151094 A1 JPWO2013151094 A1 JP WO2013151094A1
Authority
JP
Japan
Prior art keywords
battery
flame retardant
lithium ion
shaft core
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014509188A
Other languages
Japanese (ja)
Inventor
奥村 壮文
壮文 奥村
隆之 木村
隆之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2014509188A priority Critical patent/JPWO2013151094A1/en
Publication of JPWO2013151094A1 publication Critical patent/JPWO2013151094A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

容量特性及び寿命特性を低下させることなく安全性が向上されたリチウムイオン電池を提供する。正極活物質を含有する正極板1と負極活物質を含有する負極板3とをセパレータ5を介して配置された電極群7を構成する。電極群7は、軸芯9を中心に捲回された状態で電池缶11に収納されている。軸芯9および電池缶11のいずれか一方または両方に、難燃化剤を含有または塗布する。Provided is a lithium ion battery having improved safety without deteriorating capacity characteristics and life characteristics. A positive electrode plate 1 containing a positive electrode active material and a negative electrode plate 3 containing a negative electrode active material constitute an electrode group 7 arranged via a separator 5. The electrode group 7 is housed in the battery can 11 in a state of being wound around the shaft core 9. A flame retardant is contained or applied to one or both of the shaft core 9 and the battery can 11.

Description

本発明は、正極板と負極版とがセパレータを介して配置されてなる電極群が捲回されて構成されたリチウムイオン電池に関するものである。   The present invention relates to a lithium ion battery configured by winding an electrode group in which a positive electrode plate and a negative electrode plate are arranged via a separator.

リチウムイオン電池では、エネルギー密度を高くするため、可燃性の非水電解液が用いられる。そのため、リチウムイオン電池が高温環境に置かれた場合または熱暴走によって異常発熱した場合に、電池が発火または発煙したり、電池内圧の上昇によって電池が膨張または破裂する問題がある。これらの問題に対応して、従来からリチウムイオン電池を難燃化することにより電池の安全性向上が図られている。例えば、特開2006−286571号公報(特許文献1)には、非水電解液に難燃化剤を添加する技術が開示されている。また、特開平5−151971号公報(特許文献2)には、正極合剤に難燃化剤を添加してリチウムイオン電池の正極板を構成する技術が開示されている。特開2000−173619号公報(特許文献3)には、難燃化剤を含む多孔質フィルムを用いてリチウムイオン電池のセパレータを構成する技術が開示されている。   In the lithium ion battery, a flammable non-aqueous electrolyte is used to increase the energy density. Therefore, when a lithium ion battery is placed in a high temperature environment or abnormally generates heat due to thermal runaway, there is a problem that the battery ignites or smokes, or the battery expands or ruptures due to an increase in battery internal pressure. In response to these problems, the safety of batteries has conventionally been improved by making lithium ion batteries flame-retardant. For example, Japanese Patent Laying-Open No. 2006-286571 (Patent Document 1) discloses a technique for adding a flame retardant to a nonaqueous electrolytic solution. Japanese Patent Laid-Open No. 5-151971 (Patent Document 2) discloses a technique for forming a positive electrode plate of a lithium ion battery by adding a flame retardant to a positive electrode mixture. Japanese Patent Laid-Open No. 2000-173619 (Patent Document 3) discloses a technique for forming a separator of a lithium ion battery using a porous film containing a flame retardant.

特開2006−286571号公報JP 2006-286571 A 特開平5−151971号公報JP-A-5-151971 特開2000−173619号公報JP 2000-173619 A

しかしながら、特許文献1の技術では、非水電解液に難燃化剤が添加されているため、充放電反応の際に副反応を誘発して、電池寿命が低下するおそれがある。また、特許文献2及び3の技術では、電極板やセパレータに含まれる難燃化剤がイオン透過性を阻害して、電池の充放電容量が低下するおそれがある。   However, in the technique of Patent Document 1, since a flame retardant is added to the nonaqueous electrolytic solution, a side reaction may be induced during the charge / discharge reaction, which may reduce the battery life. Further, in the techniques of Patent Documents 2 and 3, the flame retardant contained in the electrode plate or the separator may inhibit the ion permeability and the charge / discharge capacity of the battery may be reduced.

本発明の目的は、容量特性及び寿命特性を低下させることなく安全性を確保することができるリチウムイオン電池を提供することにある。   An object of the present invention is to provide a lithium ion battery capable of ensuring safety without deteriorating capacity characteristics and life characteristics.

本発明が改良の対象とするリチウムイオン電池は、電極群、軸芯、及び電池缶を備えている。電極群は、正極活物質を含有する正極板と負極活物質を含有する負極板とがセパレータを介して配置されて構成されている。軸芯には、電極群が捲回されている。電池缶には、軸芯に捲回された状態で電極群が収納されている。本発明のリチウムイオン電池では、軸芯および電池缶のいずれか一方または両方に、難燃化剤が含有または塗布されている。すなわち、難燃化剤が含有または塗布される対象は、軸芯のみでも、電池缶のみでも、軸芯と電池缶の両方でもよい。軸芯または電池缶のいずれかに難燃化剤を配置する構成では、難燃化剤が非水電解液に添加されていないため、難燃化による副反応を防ぐことができ、電池寿命の低下を防ぐことができる。また、軸芯や電池缶に配置された難燃化剤は、正極板、負極板およびセパレータのいずれとも隔離された状態で電池内に存在するため、充放電時のイオン透過性を阻害することがなく、充放電特性の低下を防ぐことができる。さらに、軸芯と電池缶の両方に難燃化剤を配置すれば、電池内に配置する難燃化剤の量を増加することができるので、軸芯または電池缶のいずれかに難燃化剤を配置する場合に比べて、寿命特性および充放電特性の低下を確実に防ぐことができる。   The lithium ion battery to be improved by the present invention includes an electrode group, a shaft core, and a battery can. The electrode group is configured by arranging a positive electrode plate containing a positive electrode active material and a negative electrode plate containing a negative electrode active material via a separator. An electrode group is wound around the shaft core. The battery can accommodates an electrode group wound around the shaft core. In the lithium ion battery of the present invention, a flame retardant is contained or applied to one or both of the shaft core and the battery can. That is, the target containing or applying the flame retardant may be only the shaft core, only the battery can, or both the shaft core and the battery can. In the configuration in which the flame retardant is disposed on either the shaft core or the battery can, since the flame retardant is not added to the non-aqueous electrolyte, side reactions due to flame retardant can be prevented, and the battery life can be reduced. Decline can be prevented. In addition, the flame retardant placed in the shaft core and battery can is present in the battery in a state isolated from any of the positive electrode plate, the negative electrode plate, and the separator, and therefore impedes ion permeability during charging and discharging. Therefore, the charge / discharge characteristics can be prevented from deteriorating. Furthermore, if a flame retardant is placed on both the shaft core and the battery can, the amount of the flame retardant placed in the battery can be increased. Compared with the case where an agent is arranged, it is possible to reliably prevent the deterioration of the life characteristics and charge / discharge characteristics.

なお、リチウムイオン電池内では、電池の外縁部に位置する電池缶よりも、電池の中心部に位置する軸芯の方が高温になるため、難燃化剤は軸芯に配置するのが好ましい。特に、軸芯を形成する材料中に難燃化剤を含有すれば、異常発熱時に難燃化剤が電池内で効率的に溶解して難燃化機能を発揮することができる。   In addition, in a lithium ion battery, since the axial center located in the center part of a battery becomes higher temperature than the battery can located in the outer edge part of a battery, it is preferable to arrange | position a flame retardant to an axial center. . In particular, if a flame retardant is contained in the material forming the shaft core, the flame retardant can be efficiently dissolved in the battery during abnormal heat generation to exhibit a flame retardant function.

また、難燃化剤を軸芯に配置する場合は、軸芯の表面に難燃化剤を塗布してもよい。軸芯の表面に塗布された難燃化剤は、異常発熱時に非水電解液に溶解し易いため、電池に高い難燃性を付与することができる。また、軸芯の表面に難燃化剤を塗布するだけなので、難燃化の作業が容易である。   Moreover, when arrange | positioning a flame retardant to a shaft core, you may apply | coat a flame retardant to the surface of a shaft core. Since the flame retardant applied on the surface of the shaft core is easily dissolved in the non-aqueous electrolyte during abnormal heat generation, it can impart high flame retardancy to the battery. In addition, since the flame retardant is simply applied to the surface of the shaft core, the work of making the flame retardant is easy.

難燃化剤を電池缶に配置する場合は、電池缶の内側表面に難燃化剤を塗布してもよい。難燃化剤を電池缶の内側表面に塗布することにより、軸芯の表面に難燃化剤を塗布した場合と同様に、電池に高い難燃性を付与することができ、難燃化の作業が容易である。   When arrange | positioning a flame retardant in a battery can, you may apply | coat a flame retardant to the inner surface of a battery can. By applying the flame retardant to the inner surface of the battery can, as with the case where the flame retardant is applied to the surface of the shaft core, high flame retardancy can be imparted to the battery, Work is easy.

難燃化剤としては、常温で固体であり、かつ融点が90℃以上の難燃化剤を用いるのが好ましい。このような性状の難燃化剤は、定常時には電池内に溶解せず、異常発熱時になると溶解し始めるため、定常時の副反応を防止し、異常発熱時にのみ難燃化機能を発揮することができる。このような難燃化剤としては、ホスファゼン系化合物、燐酸エステル系化合物、フッ化アルキル系化合物から選択された少なくとも1種またはこれらの混合物を用いることができる。   As the flame retardant, it is preferable to use a flame retardant that is solid at room temperature and has a melting point of 90 ° C. or higher. A flame retardant with such properties does not dissolve in the battery in the normal state, but starts to dissolve in the event of abnormal heat generation, thus preventing side reactions in the normal state and exhibiting a flame retardant function only during abnormal heat generation. Can do. As such a flame retardant, at least one selected from phosphazene compounds, phosphate ester compounds, and fluorinated alkyl compounds, or a mixture thereof can be used.

本発明の実施の形態であるリチウムイオン電池を構成する電極群及び軸芯の拡大斜視図である。1 is an enlarged perspective view of an electrode group and an axial core constituting a lithium ion battery according to an embodiment of the present invention. 本発明の実施の形態であるリチウムイオン電池の主要部の断面図である。It is sectional drawing of the principal part of the lithium ion battery which is embodiment of this invention.

以下、図面を参照して、本発明に係るリチウムイオン電池の実施の形態について、詳しく説明する。   Hereinafter, embodiments of a lithium ion battery according to the present invention will be described in detail with reference to the drawings.

<正極板の作製>
正極活物質としてリチウムマンガン複酸化物と、導電材として鱗片状黒鉛と、結着剤としてポリフッ化ビニリデン(PVDF)とを重量比85:10:5で混合した。これに分散溶媒のN−メチルピロリドン(NMP)を添加して混練したスラリを、厚さ20μmのアルミニウム箔の両面に塗布した。その後、乾燥、プレス、裁断することにより、厚さ170μmの正極板1を得た。なお、アルミニウム箔の長手方向一側を矩形状に切り欠き、切り欠き残部を正極リード片2とした。
<Preparation of positive electrode plate>
Lithium manganese complex oxide as a positive electrode active material, scaly graphite as a conductive material, and polyvinylidene fluoride (PVDF) as a binder were mixed at a weight ratio of 85: 10: 5. A slurry kneaded with N-methylpyrrolidone (NMP) as a dispersion solvent was applied to both sides of an aluminum foil having a thickness of 20 μm. Then, the positive electrode plate 1 with a thickness of 170 μm was obtained by drying, pressing, and cutting. Note that one side in the longitudinal direction of the aluminum foil was cut out in a rectangular shape, and the remainder of the cutout was used as the positive electrode lead piece 2.

なお、本実施の形態では正極活物質としてリチウムマンガン複酸化物を例示しているが、その他に、組成式LiαMnxM1yM2z2(式中、M1は、Co,Niから選ばれる少なくとも1種、M2は、Co,Ni,Al,B,Fe,Mg,Crから選ばれる少なくとも1種であり、x+y+z=1,0<α<1.2,0.2≦x≦0.6,0.2≦y≦0.4,0.05≦z≦0.4)で表されるリチウム複合酸化物を用いても良い。また、その中でも、M1がNiまたはCoであって、M2がCoまたはNiであることがより好ましい。LiMn1/3Ni1/3Co1/32であればさらに好ましい。組成中のNiを多くすると容量を大きくすることができる。また、Coを多くすると低温での出力を向上させることができる。さらに、Mnを多くすると材料コストを抑制できる。また、添加する元素は、サイクル特性を安定させるのに効果がある。その他にも、一般式LiMxPO4(M:FeまたはMn、0.01≦X≦0.4)やLiMn1-xxPO4(M:Mn以外の2価のカチオン、0.01≦X≦0.4)である空間群Pmnbの対称性を有する斜方晶のリン酸化合物を用いても良い。In the present embodiment, lithium manganese double oxide is exemplified as the positive electrode active material, but in addition, the composition formula LiαMn x M1 y M2 z O 2 (wherein M1 is at least selected from Co and Ni) One type, M2, is at least one type selected from Co, Ni, Al, B, Fe, Mg, Cr, and x + y + z = 1, 0 <α <1.2, 0.2 ≦ x ≦ 0.6, 0.2 ≦ y ≦ 0.4, 0.05 ≦ z ≦ 0.4) may be used. Among them, it is more preferable that M1 is Ni or Co and M2 is Co or Ni. LiMn 1/3 Ni 1/3 Co 1/3 O 2 is more preferable. When Ni in the composition is increased, the capacity can be increased. Further, when Co is increased, the output at low temperature can be improved. Furthermore, material cost can be suppressed when Mn is increased. The element to be added is effective in stabilizing the cycle characteristics. In addition, the general formula LiM x PO 4 (M: Fe or Mn, 0.01 ≦ X ≦ 0.4) or LiMn 1-x M x PO 4 (M: a divalent cation other than Mn, 0.01 It is also possible to use an orthorhombic phosphoric acid compound having the symmetry of the space group Pmnb where ≦ X ≦ 0.4).

<負極板の作製>
負極活物質として非晶質炭素の粉末90質量部に対し、結着剤としてPVDFを10質量部添加した。これに分散溶媒のNMPを添加して混練したスラリを、厚さ10μmの電解銅箔の両面に塗布した。その後、乾燥プレスと裁断を行うことにより、厚さ130μmの負極板3を得た。なお、電解銅箔の長手方向一側を矩形状に切り欠き、切り欠き残部を負極リード片4とした。
<Preparation of negative electrode plate>
10 parts by mass of PVDF as a binder was added to 90 parts by mass of amorphous carbon powder as the negative electrode active material. A slurry kneaded with NMP as a dispersion solvent was applied to both sides of an electrolytic copper foil having a thickness of 10 μm. Then, the negative electrode plate 3 with a thickness of 130 μm was obtained by performing dry pressing and cutting. Note that one side in the longitudinal direction of the electrolytic copper foil was cut out in a rectangular shape, and the remainder of the cutout was used as the negative electrode lead piece 4.

なお、本実施の形態では負極活物質として非晶質炭素を例示したが、その他にも、天然黒鉛、天然黒鉛に乾式のCVD(Chemical Vapor Deposition)法や湿式のスプレイ法で形成される被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂原料若しくは石油や石炭から得られるピッチ系材料を原料として焼成して造られる人造黒鉛、非晶質炭素材料などの炭素質材料、または、リチウムと化合物を形成することでリチウムを吸蔵放出できるリチウム金属、リチウムと化合物を形成し、結晶間隙に挿入されることでリチウムを吸蔵放出できる珪素、ゲルマニウム、錫など14族元素の酸化物若しくは窒化物を用いることができる。特に、炭素質材料は、導電性が高く、低温特性、サイクル安定性の面から優れた材料である。炭素質材料の中では、炭素網面層間(d002)の広い材料が急速充放電や低温特性に優れ、好適である。しかし、d002が広い材料は、充電の初期での容量低下や充放電効率が低いことがあるので、d002は0.39nm以下が好ましく、このような炭素質材料を、擬似異方性炭素と称する場合がある。さらに、電極を構成するには黒鉛質、非晶質、活性炭などの導電性の高い炭素質材料を混合しても良い。または、黒鉛質材料として、以下(1)〜(3)に示す特徴を有する材料を用いても良い。In this embodiment, amorphous carbon is exemplified as the negative electrode active material, but other than that, natural graphite, a film formed on natural graphite by a dry CVD (Chemical Vapor Deposition) method or a wet spray method is used. Composite carbonaceous material formed, carbonaceous material such as artificial graphite, amorphous carbon material, etc. produced by firing from resin raw materials such as epoxy and phenol, or pitch-based materials obtained from petroleum and coal, or lithium Lithium metal that can occlude and release lithium by forming a compound, an oxide or nitride of a group 14 element such as silicon, germanium, and tin that can form and compound lithium with lithium and occlude and release lithium by being inserted into the crystal gap Can be used. In particular, the carbonaceous material is a material having high conductivity, and excellent in terms of low temperature characteristics and cycle stability. Among the carbonaceous materials, a material having a wide carbon network surface layer (d 002 ) is excellent in rapid charge / discharge and low temperature characteristics, and is suitable. However, since a material with a wide d 002 may have a reduced capacity and low charge and discharge efficiency at the initial stage of charging, d 002 is preferably 0.39 nm or less. May be called. Further, a carbonaceous material having high conductivity such as graphite, amorphous, activated carbon or the like may be mixed in order to constitute the electrode. Alternatively, a material having the characteristics shown in (1) to (3) below may be used as the graphite material.

(1)ラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピーク強度(ID)とラマン分光スペクトルで測定される1580〜1620cm-1の範囲にあるピーク強度(IG)との強度比であるR値(ID/IG)が、0.2以上0.4以下である。(1) peak in the range of 1300~1400Cm -1 measured by Raman spectrum intensity (I D) and the peak intensity in the range of 1580~1620Cm -1 as measured by Raman spectroscopy spectra (I G) and the The R value (I D / I G ), which is an intensity ratio, is 0.2 or more and 0.4 or less.

(2)ラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピークの半値幅Δ値が、40cm-1以上100cm-1以下である。(2) half-value width Δ value of the peak in the range of 1300~1400Cm -1 as measured by Raman spectroscopy spectra is 40 cm -1 or more 100 cm -1 or less.

(3)X線回折における(110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/I(004))が0.1以上0.45以下である。(3) peak intensity of the X-ray diffraction (110) plane (I (110)) and (004) plane peak intensity (I (004)) the intensity ratio X value of (I (110) / I (004) ) Is 0.1 or more and 0.45 or less.

<電池の作製>
図1に示すように、作製した正極板1及び負極板3を、これら両極板が直接接触しないように、厚さ40μmのポリエチレン製の微多孔性のセパレータ5を間に挟んで配置したものを、捲回して電極群7(図2参照)を作製した。捲回の中心には、ポリプロピレン製の中空円筒状の軸芯9を用いた。軸芯9の表面には、結着剤を用いて固体の難燃化剤を塗布した。本実施の形態では、難燃化剤として、常温で固体で融点が90℃以上であるホスファゼン系化合物を用いた。なお、難燃化剤の塗布量は、後述の実施例に示す。なお、本実施の形態では、難燃化剤にホスファゼン系化合物を例示したが、一般的な固体の難燃化剤を用いるようにしてもよく、本発明に用いられる固体難燃化剤は特に制限されない。例えば、燐酸エステル系、フッ化アルキル基を含む化合物などの難燃化剤または、これらを2種類以上混合したものを使用してもよく、混合配合比についても限定されるものではない。また、本実施の形態では、難燃化剤用の結着剤としてPVDFを例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体などを使用するようにしてもよい。
<Production of battery>
As shown in FIG. 1, the produced positive electrode plate 1 and negative electrode plate 3 are arranged with a microporous separator 5 made of polyethylene having a thickness of 40 μm sandwiched therebetween so that the both electrode plates do not directly contact each other. The electrode group 7 (see FIG. 2) was produced by winding. A hollow cylindrical shaft core 9 made of polypropylene was used at the center of winding. A solid flame retardant was applied to the surface of the shaft core 9 using a binder. In this embodiment, a phosphazene compound that is solid at room temperature and has a melting point of 90 ° C. or higher is used as the flame retardant. In addition, the application quantity of a flame retardant is shown in the below-mentioned Example. In this embodiment, the phosphazene compound is exemplified as the flame retardant, but a general solid flame retardant may be used, and the solid flame retardant used in the present invention is particularly Not limited. For example, a flame retardant such as a phosphate ester-based compound or a compound containing a fluorinated alkyl group, or a mixture of two or more of these may be used, and the mixing ratio is not limited. In this embodiment, PVDF is exemplified as the binder for the flame retardant, but polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide Polymers such as rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof may be used.

図2に示すように、作製した電極群7を、ニッケルメッキが施されたスチール製の円筒状の電池容器(電池缶11)内に挿入した。なお、本実施の形態では、円筒状のリチウムイオン電池を例示したが、円筒状に限定されるものではなく、例えば、角型電池に適用してもよい。   As shown in FIG. 2, the produced electrode group 7 was inserted into a nickel-plated steel cylindrical battery container (battery can 11). In the present embodiment, a cylindrical lithium ion battery is exemplified, but the present invention is not limited to a cylindrical shape, and may be applied to, for example, a square battery.

電池缶11の表面(電極群との接触面)にも、結着剤を用いて固体の難燃化剤を塗布した。なお、難燃化剤の塗布量は、後述の実施例で示す。その後、正極リード片2と負極リード片4とを超音波溶接して極柱13に接続した。さらに、正極リード片2を折りたたむようにして電池蓋15で蓋をして、EPDM樹脂製のガスケット及び電流遮断弁17を介して電池蓋15を電池缶11にカシメ固定した。その後、電極群7全体が浸潤可能な所定量の非水電解液を電解液注液口19から電池缶11内に注入し、電解液注液口19を封印することで、図2に示すリチウムイオン電池(円筒状のリチウムイオン二次電池)を完成させた。なお、非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)とを体積比1:1:1の割合で混合した混合溶液中に6フッ化リン酸リチウム(LiPF6)を1モル/リットル溶解し、さらに添加剤としてビニレンカーボネート(VC)を混合したものを用いた。A solid flame retardant was also applied to the surface of the battery can 11 (contact surface with the electrode group) using a binder. In addition, the application quantity of a flame retardant is shown in the below-mentioned Example. Thereafter, the positive electrode lead piece 2 and the negative electrode lead piece 4 were ultrasonically welded and connected to the pole column 13. Further, the positive electrode lead piece 2 was folded and covered with the battery lid 15, and the battery lid 15 was caulked and fixed to the battery can 11 via the EPDM resin gasket and the current cutoff valve 17. Thereafter, a predetermined amount of a non-aqueous electrolyte solution that can infiltrate the entire electrode group 7 is injected into the battery can 11 from the electrolyte solution injection port 19, and the electrolyte solution injection port 19 is sealed. An ion battery (cylindrical lithium ion secondary battery) was completed. The nonaqueous electrolyte includes lithium hexafluorophosphate in a mixed solution in which ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1: 1. A solution in which (LiPF 6 ) was dissolved at 1 mol / liter and vinylene carbonate (VC) was mixed as an additive was used.

なお、本実施の形態では、添加剤としてVCを含むEC、DEC、DMCの混合溶液中に、リチウム塩としてLiPF6を溶解した非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いるようにしてもよい。本発明は、用いられる有機溶媒やリチウム塩及び添加剤には特に制限されない。例えば、有機溶媒としては、エチレンカーボネート(EC)、トリフロロプロピレンカーボネート(TFPC)、クロロエチレンカーボネート(ClEC)、トリフロロエチレンカーボネート(TFEC)、ジフロロエチレンカーボネート(DFEC)、ビニルエチレンカーボネート(VEC)等を用いることができる。特に、負極電極上の被膜形成の観点からECを用いることが好ましい。また、少量(2vol%以下)のClECやTFECやVECの添加も、電極被膜形成に関与し、良好なサイクル特性を提供する。さらに、TFPCやDFECは、正極板上の被膜形成の観点から、少量(2vol%以下)添加して用いてもよい。さらに溶媒としては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、トリフロロメチルエチルカーボネート(TFMEC)、1,1,1−トリフロロエチルメチルカーボネート(TFEMC)等を用いることができる。これら2種類以上の混合溶媒を用いるようにしてもよく、混合配合比についても限定されるものではない。DMCは、相溶性の高い溶媒であり、EC等と混合して用いるのに好適である。DECは、DMCよりも融点が低く、低温(−30℃)特性には好適である。EMCは、分子構造が非対称であり、融点も低いので低温特性には好適である。EPC,TFMECは、プロピレン側鎖を有し、非対称な分子構造であるので、低温特性の調整溶媒として好適である。TFEMCは、分子の一部をフッ素化し、双極子モーメントが大きくなっており、低温でのリチウム塩の解離性を維持するに好適であり、低温特性に好適がある。また、リチウム塩としては、例えば無機リチウム塩では、LiPF6、LiBF4、LiClO4、LiI、LiCl、LiBr等、また、有機リチウム塩では、LiB[OCOCF34、LiB[OCOCF2CF34、LiPF4(CF32、LiN(SO2CF32、LiN(SO2CF2CF32等を用いることができる。これら2種類以上の混合リチウム塩を用いるようにしてもよく、混合配合比についても限定されるものではない。民生用電池で多く用いられているLiPF6は、品質の安定性から好適な材料である。また、LiB[OCOCF34は、解離性、溶解性が良好で、低い濃度で高い導電率を示すので有効な材料である。また、添加剤としては、ビニレンカーボネート(VC)、メチルビニレンカーボネート(MVC)、ジメチルビニレンカーボネート(DMVC)、エチルビニレンカーボネート(EVC)、ジエチルビニレンカーボネート(DEVC)、ジメタリルカーボネート(DMAC)等を用いることができる。これら2種類以上の混合添加剤を用いるようにしてもよく、混合配合比についても限定されるものではない。VCは、分子量が小さく、緻密な電極被膜を形成すると考えられる。VCにアルキル基を置換したMVC、DMVC、EVC、DEVC等は、アルキル鎖の大きさに従い、密度の低い電極被膜を形成すると考えられ、低温特性向上には有効に作用するものと考えられる。In the present embodiment, a nonaqueous electrolytic solution in which LiPF 6 is dissolved as a lithium salt in a mixed solution of EC, DEC, and DMC containing VC as an additive is illustrated, but a general lithium salt is used as an electrolyte. A nonaqueous electrolytic solution in which this is dissolved in an organic solvent may be used. The present invention is not particularly limited to the organic solvent, lithium salt and additive used. For example, as an organic solvent, ethylene carbonate (EC), trifluoropropylene carbonate (TFPC), chloroethylene carbonate (ClEC), trifluoroethylene carbonate (TFEC), difluoroethylene carbonate (DFEC), vinylethylene carbonate (VEC) Etc. can be used. In particular, it is preferable to use EC from the viewpoint of film formation on the negative electrode. In addition, addition of a small amount (2 vol% or less) of ClEC, TFEC, or VEC also contributes to the formation of the electrode film and provides good cycle characteristics. Furthermore, TFPC and DFEC may be used by adding a small amount (2 vol% or less) from the viewpoint of film formation on the positive electrode plate. Furthermore, as a solvent, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), trifluoromethyl ethyl carbonate (TFMEC), 1,1 1, 1-trifluoroethyl methyl carbonate (TFEMC) or the like can be used. These two or more kinds of mixed solvents may be used, and the mixing ratio is not limited. DMC is a highly compatible solvent and is suitable for use in a mixture with EC or the like. DEC has a lower melting point than DMC and is suitable for low temperature (−30 ° C.) characteristics. EMC is suitable for low temperature characteristics because of its asymmetric molecular structure and low melting point. Since EPC and TFMEC have propylene side chains and an asymmetric molecular structure, they are suitable as adjusting solvents for low temperature characteristics. TFEMC fluorinates part of the molecule and has a large dipole moment, which is suitable for maintaining the dissociation property of the lithium salt at a low temperature, and is suitable for low temperature characteristics. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiI, LiCl, LiBr and the like for inorganic lithium salts, and LiB [OCOCF 3 ] 4 and LiB [OCOCF 2 CF 3 ] for organic lithium salts. 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 or the like can be used. Two or more kinds of mixed lithium salts may be used, and the mixing ratio is not limited. LiPF 6 frequently used in consumer batteries is a suitable material because of its quality stability. LiB [OCOCF 3 ] 4 is an effective material because it has good dissociation and solubility and exhibits high conductivity at a low concentration. As the additive, vinylene carbonate (VC), methyl vinylene carbonate (MVC), dimethyl vinylene carbonate (DMVC), ethyl vinylene carbonate (EVC), diethyl vinylene carbonate (DEVC), dimethallyl carbonate (DMAC), or the like is used. be able to. These two or more kinds of mixed additives may be used, and the mixing ratio is not limited. VC has a low molecular weight and is considered to form a dense electrode film. MVC, DMVC, EVC, DEVC, and the like in which an alkyl group is substituted for VC are considered to form an electrode film having a low density in accordance with the size of the alkyl chain, and are considered to act effectively to improve low-temperature characteristics.

また、本実施の形態では、軸芯9と電池缶11の両方に固体の難燃化剤を具備したが、軸芯のみ、または電池缶のみに難燃化剤を具備することができるのは勿論である。さらに、本実施の形態では、軸芯の表面及び/または電池缶の内側表面に難燃化剤を塗布したが、難燃化剤が非水電解液に含有されておらず、また正極板、負極板およびセパレータのいずれとも隔離された状態であれば、添加難燃化剤は軸芯を形成する材料中に含有しても良い。   In this embodiment, both the shaft core 9 and the battery can 11 are provided with a solid flame retardant, but only the shaft core or only the battery can can be provided with a flame retardant. Of course. Furthermore, in the present embodiment, a flame retardant is applied to the surface of the shaft core and / or the inner surface of the battery can, but the flame retardant is not contained in the non-aqueous electrolyte, and the positive electrode plate, As long as both the negative electrode plate and the separator are isolated, the added flame retardant may be contained in the material forming the shaft core.

<電池の評価>
(寿命評価)
後述の実施例および比較例に示すリチウムイオン電池について、容量維持率を測定した。容量維持率の測定では、各リチウムイオン電池を、4.2Vまで定電流、定電圧充電を行い満充電状態とし、放電させることで初期放電容量を測定する。そして、再度、同じ条件で満充電状態とした後、40℃の環境下で放置する。この状況下で、1ヶ月ごとに放電容量を測定し、初期放電容量に対する比率を容量維持率として算出する。
<Battery evaluation>
(Life evaluation)
About the lithium ion battery shown in the below-mentioned Example and comparative example, the capacity | capacitance maintenance factor was measured. In the capacity maintenance rate measurement, each lithium ion battery is charged at a constant current and a constant voltage up to 4.2 V to be in a fully charged state, and discharged to measure the initial discharge capacity. And after making it a full charge state on the same conditions again, it is left to stand in a 40 degreeC environment. Under this condition, the discharge capacity is measured every month, and the ratio to the initial discharge capacity is calculated as the capacity maintenance rate.

(安全性評価)
後述の実施例および比較例に示すリチウムイオン電池について、過充電試験を行った。過充電試験では、電池に1Cの電流値で充電し続けたときの電池の挙動として、発火の有無を観察した。
(Safety evaluation)
The overcharge test was done about the lithium ion battery shown in the below-mentioned Example and comparative example. In the overcharge test, the presence or absence of ignition was observed as the behavior of the battery when it was continuously charged at a current value of 1C.

<異常状態における電池の挙動および難燃化機構>
ここで、本実施の形態のリチウムイオン電池が電池異常の状態に陥ったときの挙動(動作)および難燃化の機構について簡単に説明する。リチウムイオン電池が過充電等の電池異常状態に陥ると、発熱を伴って非水電解液が分解し、電池内にガスが加速度的に発生する。このガスにより電池内圧は上昇するが、電流遮断弁17の形状・寸法・材質等で定まる所定圧(遮断圧、例えば、0.5〜2.5MPa)まで、電流遮断弁17は導通を維持する。電池内圧が遮断圧を超えると、瞬時に電流遮断弁17は電流を遮断する。
<Battery behavior and flame retardant mechanism in abnormal conditions>
Here, the behavior (operation) when the lithium ion battery of the present embodiment falls into a battery abnormal state and the flame-retardant mechanism will be briefly described. When the lithium ion battery falls into an abnormal battery state such as overcharging, the nonaqueous electrolyte solution decomposes with heat generation, and gas is generated in the battery at an accelerated rate. Although the internal pressure of the battery rises due to this gas, the current cutoff valve 17 maintains continuity up to a predetermined pressure (shutoff pressure, for example, 0.5 to 2.5 MPa) determined by the shape, dimensions, material, etc. of the current cutoff valve 17. . When the battery internal pressure exceeds the cutoff pressure, the current cutoff valve 17 instantaneously cuts off the current.

また、電池が高温になると、軸芯9や電池缶11に保持された固体の難燃化剤が非水電解液に溶出し、非水電解液が難燃化され、内部短絡による爆発的な燃焼を抑制することが可能になる。電池内圧がさらに上昇すると、電池容器内のガスは外部に放出されるが、放出ガスは、難燃化されているので外部火点などにより燃焼には至らない。従って、本実施の形態のリチウムイオン電池によれば、電池異常時に、安全・確実に電池を使用不能の状態に誘導することができる。   Further, when the battery becomes high temperature, the solid flame retardant held in the shaft core 9 and the battery can 11 elutes into the non-aqueous electrolyte, and the non-aqueous electrolyte becomes flame-retardant and explosive due to an internal short circuit. Combustion can be suppressed. When the battery internal pressure further rises, the gas in the battery container is released to the outside, but since the released gas is flame-retardant, it does not cause combustion due to an external fire point or the like. Therefore, according to the lithium ion battery of the present embodiment, the battery can be safely and reliably guided to an unusable state when the battery is abnormal.

上述のように作製したリチウムイオン電池の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。表1は、実施例及び比較例の構成及び評価結果を示す。   Examples of the lithium ion battery produced as described above will be described. In addition, it describes together about the battery of the comparative example produced for the comparison. Table 1 shows configurations and evaluation results of Examples and Comparative Examples.

<実施例1>
正極活物質としてマンガン酸リチウムを用い、負極活物質として非晶質炭素を用い、ビニレンカーボネート(VC)の添加量を1wt%とし、固体の難燃化剤としてホスファゼン系化合物を用い、難燃化剤用の結着剤としてPVDFを用いた電池を作製した。軸芯の表面に塗布する難燃化剤の量は2gとし、電池缶の内側表面に塗布する難燃化剤の量は1gとした。
<Example 1>
Using lithium manganate as the positive electrode active material, using amorphous carbon as the negative electrode active material, adding 1% by weight of vinylene carbonate (VC), and using a phosphazene compound as a solid flame retardant, flame retardant A battery using PVDF as a binder was prepared. The amount of the flame retardant applied to the surface of the shaft core was 2 g, and the amount of the flame retardant applied to the inner surface of the battery can was 1 g.

<実施例2>
軸芯の表面に塗布する難燃化剤の量は1.5gとし、電池缶の内側表面に塗布する難燃化剤の量は1.5gとした以外は、実施例1と同様に、電池を作製した。
<Example 2>
The battery is the same as in Example 1 except that the amount of the flame retardant applied to the surface of the shaft core is 1.5 g and the amount of the flame retardant applied to the inner surface of the battery can is 1.5 g. Was made.

<実施例3>
軸芯の表面に塗布する難燃化剤の量は1gとし、電池缶の内側表面に塗布する難燃化剤の量は2gとした以外は、実施例1と同様に、電池を作製した。
<Example 3>
A battery was fabricated in the same manner as in Example 1 except that the amount of the flame retardant applied to the surface of the shaft core was 1 g and the amount of the flame retardant applied to the inner surface of the battery can was 2 g.

<実施例4>
正極活物質としてニッケル・コバルト・マンガン酸リチウムを用い、負極活物質として非晶質炭素用い、ビニレンカーボネート(VC)の添加量を1wt%とし、固体の難燃化剤としてホスファゼン系化合物を用い、難燃化剤用の結着剤としてPVDFを用いた電池を作製した。軸芯の表面に塗布する難燃化剤の量は2gとし、電池缶の内側表面に塗布する難燃化剤の量は1gとした。
<Example 4>
Using nickel, cobalt, and lithium manganate as the positive electrode active material, using amorphous carbon as the negative electrode active material, adding 1% by weight of vinylene carbonate (VC), and using a phosphazene compound as a solid flame retardant, A battery using PVDF as a binder for the flame retardant was prepared. The amount of the flame retardant applied to the surface of the shaft core was 2 g, and the amount of the flame retardant applied to the inner surface of the battery can was 1 g.

<実施例5>
軸芯の表面に塗布する難燃化剤の量は1.5gとし、電池缶の内側表面に塗布する難燃化剤の量は1.5gとした以外は、実施例4と同様に、電池を作製した。
<Example 5>
The battery is the same as in Example 4 except that the amount of the flame retardant applied to the surface of the shaft core is 1.5 g and the amount of the flame retardant applied to the inner surface of the battery can is 1.5 g. Was made.

<実施例6>
軸芯の表面に塗布する難燃化剤の量は1gとし、電池缶の内側表面に塗布する難燃化剤の量は2gとした以外は、実施例4と同様に、電池を作製した。
<Example 6>
A battery was fabricated in the same manner as in Example 4 except that the amount of the flame retardant applied to the surface of the shaft core was 1 g and the amount of the flame retardant applied to the inner surface of the battery can was 2 g.

<実施例7>
正極活物質としてマンガン酸リチウムとニッケル・コバルト・マンガン酸リチウムの等量混合材を用い、負極活物質として非晶質炭素を用い、ビニレンカーボネート(VC)の添加量を1wt%とし、固体の難燃化剤としてホスファゼン系化合物を用い、難燃化剤用の結着剤としてPVDFを用いた電池を作製した。軸芯の表面に塗布する難燃化剤の量は2gとし、電池缶の内側表面に塗布する難燃化剤の量は1gとした。
<Example 7>
Using a mixture of equal amounts of lithium manganate and nickel / cobalt / lithium manganate as the positive electrode active material, using amorphous carbon as the negative electrode active material, and adding 1 wt% of vinylene carbonate (VC) A battery using a phosphazene compound as a flame retardant and PVDF as a binder for the flame retardant was prepared. The amount of the flame retardant applied to the surface of the shaft core was 2 g, and the amount of the flame retardant applied to the inner surface of the battery can was 1 g.

<実施例8>
軸芯の表面に塗布する難燃化剤の量は1.5gとし、電池缶の内側表面に塗布する難燃化剤の量は1.5gとした以外は、実施例7と同様に、電池を作製した。
<Example 8>
The battery is the same as in Example 7, except that the amount of the flame retardant applied to the surface of the shaft core is 1.5 g and the amount of the flame retardant applied to the inner surface of the battery can is 1.5 g. Was made.

<実施例9>
軸芯の表面に塗布する難燃化剤の量は1gとし、電池缶の内側表面に塗布する難燃化剤の量は2gとした以外は、実施例7と同様に、電池を作製した。
<Example 9>
A battery was fabricated in the same manner as in Example 7, except that the amount of the flame retardant applied to the surface of the shaft core was 1 g and the amount of the flame retardant applied to the inner surface of the battery can was 2 g.

<実施例10>
正極活物質としてマンガン酸リチウムとニッケル・コバルト・マンガン酸リチウムの等量混合材を用い、負極活物質として黒鉛を用い、ビニレンカーボネート(VC)の添加量を1wt%とし、固体の難燃化剤としてホスファゼン系化合物を用い、難燃化剤用の結着剤としてPVDFを用いた電池を作製した。軸芯の表面に塗布する難燃化剤の量は2gとし、電池缶の内側表面に塗布する難燃化剤の量は1gとした。
<Example 10>
A solid flame retardant using a mixture of equal amounts of lithium manganate and nickel / cobalt / lithium manganate as the positive electrode active material, graphite as the negative electrode active material, and 1 wt% of vinylene carbonate (VC). A battery using a phosphazene compound as a binder and PVDF as a binder for a flame retardant was prepared. The amount of the flame retardant applied to the surface of the shaft core was 2 g, and the amount of the flame retardant applied to the inner surface of the battery can was 1 g.

<実施例11>
軸芯の表面に塗布する難燃化剤の量は1.5gとし、電池缶の内側表面に塗布する難燃化剤の量は1.5gとした以外は、実施例10と同様に、電池を作製した。
<Example 11>
The battery was the same as in Example 10, except that the amount of the flame retardant applied to the surface of the shaft core was 1.5 g and the amount of the flame retardant applied to the inner surface of the battery can was 1.5 g. Was made.

<実施例12>
軸芯の表面に塗布する難燃化剤の量は1gとし、電池缶の内側表面に塗布する難燃化剤の量は2gとした以外は、実施例10と同様に、電池を作製した。
<Example 12>
A battery was fabricated in the same manner as in Example 10, except that the amount of the flame retardant applied to the surface of the shaft core was 1 g and the amount of the flame retardant applied to the inner surface of the battery can was 2 g.

<実施例13>
VCの添加量を2wt%とした以外は、実施例10と同様に、電池を作製した。
<Example 13>
A battery was fabricated in the same manner as in Example 10 except that the addition amount of VC was 2 wt%.

<実施例14>
VCの添加量を2wt%とした以外は、実施例11と同様に、電池を作製した。
<Example 14>
A battery was fabricated in the same manner as in Example 11 except that the addition amount of VC was 2 wt%.

<実施例15>
VCの添加量を2wt%とした以外は、実施例12と同様に、電池を作製した。
<Example 15>
A battery was fabricated in the same manner as in Example 12 except that the addition amount of VC was 2 wt%.

<比較例1>
難燃化剤を非水電解液に添加した従来のリチウムイオン電池を作製した。非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)とを体積比1:1:1の割合で混合した混合溶液を用いた。この混合溶液に6フッ化リン酸リチウム(LiPF6)を1モル/リットル溶解し、さらにビニレンカーボネート(VC)を1wt%溶解したものに、難燃化剤としてホスファゼン系化合物を電池缶内に3g含有するよう調整した。また、正極活物質としてマンガン酸リチウムを用い、負極活物質として非晶質炭素を用いた。
<Comparative Example 1>
A conventional lithium ion battery was prepared in which a flame retardant was added to the non-aqueous electrolyte. As the non-aqueous electrolyte, a mixed solution in which ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1: 1 was used. In this mixed solution, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) and 1 wt% of vinylene carbonate (VC) are dissolved, and 3 g of a phosphazene compound as a flame retardant is contained in the battery can. It adjusted so that it might contain. Further, lithium manganate was used as the positive electrode active material, and amorphous carbon was used as the negative electrode active material.

<比較例2>
正極活物質としてニッケル・コバルト・マンガン酸リチウムを用いた以外は、比較例1と同様に、リチウムイオン電池を作製した。
<Comparative Example 2>
A lithium ion battery was produced in the same manner as in Comparative Example 1 except that nickel, cobalt, and lithium manganate were used as the positive electrode active material.

<比較例3>
正極活物質としてマンガン酸リチウムとニッケル・コバルト・マンガン酸リチウムの等量混合材を用いた以外は、比較例1と同様に、リチウムイオン電池を作製した。
<Comparative Example 3>
A lithium ion battery was produced in the same manner as in Comparative Example 1 except that an equivalent mixture of lithium manganate and nickel / cobalt / lithium manganate was used as the positive electrode active material.

<比較例4>
負極活物質として黒鉛を用いた以外は、比較例3と同様に、リチウムイオン電池を作製した。
<Comparative Example 4>
A lithium ion battery was produced in the same manner as in Comparative Example 3 except that graphite was used as the negative electrode active material.

<比較例5>
ビニレンカーボネート(VC)の濃度を2wt%とした以外は、比較例4と同様に、リチウムイオン電池を作製した。

Figure 2013151094
<Comparative Example 5>
A lithium ion battery was produced in the same manner as in Comparative Example 4 except that the concentration of vinylene carbonate (VC) was 2 wt%.
Figure 2013151094

表1に示すように、正極活物質及び負極活物質が同一でVCの添加量も同一の比較例1と実施例1とを比較すると、いずれも電池の発火は確認できず、安全性の評価に差は認められなかった。しかしながら、非水電解液内に固体の難燃化剤を含有するリチウムイオン電池(比較例1)よりも、軸芯9の表面や電池缶11の内側表面に固体の難燃化剤を配置したリチウムイオン電池(実施例1)の方が容量維持率が高いことが判った。この傾向は、他の正極活物質及び負極活物質を用いた場合でも見られた。すなわち、比較例2と実施例4、比較例3と実施例7、比較例4と実施例10、及び比較例5と実施例13をそれぞれ比較した場合も、軸芯9や電池缶11に難燃化剤を配置したときの方が、非水電解液に難燃化剤を添加したときよりも容量維持率が高くなった。これらの結果から、本実施の形態のように軸芯9及び電池缶11の両方に固体の難燃化剤を配置すると、電池寿命の低下を抑制しながら、電池を難燃化できることが判った。このように電池寿命の低下を防ぐことができたのは、本実施の形態では非水電解液に難燃化剤が含有されていないため、電池内で副反応が起こりにくい環境が得られたことに起因するものと考えられる。   As shown in Table 1, when Comparative Example 1 and Example 1 in which the positive electrode active material and the negative electrode active material are the same and the amount of VC added is the same, no ignition of the battery can be confirmed, and safety evaluation There was no difference. However, the solid flame retardant is disposed on the surface of the shaft core 9 and the inner surface of the battery can 11 rather than the lithium ion battery (Comparative Example 1) containing the solid flame retardant in the non-aqueous electrolyte. It was found that the capacity retention rate of the lithium ion battery (Example 1) was higher. This tendency was observed even when other positive electrode active materials and negative electrode active materials were used. That is, when the comparative example 2 and the example 4, the comparative example 3 and the example 7, the comparative example 4 and the example 10, and the comparative example 5 and the example 13 are respectively compared, the shaft core 9 and the battery can 11 are difficult. When the flame retardant was arranged, the capacity retention rate was higher than when the flame retardant was added to the non-aqueous electrolyte. From these results, it was found that when a solid flame retardant is disposed on both the shaft core 9 and the battery can 11 as in the present embodiment, the battery can be made flame retardant while suppressing a decrease in battery life. . In this way, the decrease in battery life could be prevented because the non-aqueous electrolyte contained no flame retardant in this embodiment, and an environment in which side reactions were unlikely to occur in the battery was obtained. This is thought to be caused by this.

また、本例のように、軸芯や電池缶に配置された難燃化剤は、正極板1、負極板3およびセパレータ5のいずれとも隔離された状態で電池内に存在することができる。その結果、充放電時のイオン透過性を阻害し難くなるため、表1のように、充放電特性の低下を防ぐことができたものと考えられる。   Further, as in this example, the flame retardant disposed in the shaft core or the battery can can be present in the battery in a state of being isolated from any of the positive electrode plate 1, the negative electrode plate 3, and the separator 5. As a result, since it becomes difficult to inhibit the ion permeability at the time of charging / discharging, it is thought that the deterioration of charging / discharging characteristics could be prevented as shown in Table 1.

以上、本発明の実施の形態および実施例について具体的に説明したが、本発明はこれらの実施の形態および実施例に限定されるものではなく、本発明の技術的思想に基づく変更が可能であるのは勿論である。   Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to these embodiments and examples, and modifications based on the technical idea of the present invention are possible. Of course there is.

本発明によれば、軸芯および電池缶のいずれか一方または両方に、難燃化剤が含有または塗布されているため、難燃化剤が非水電解液に添加する必要がないので、難燃化による副反応を防ぐことができる。また、軸芯や電池缶に配置された難燃化剤は、正極板、負極板およびセパレータのいずれとも隔離された状態で電池内に存在するため、充放電時のイオン透過性を阻害することがない。そのため、容量特性及び寿命特性を低下させることなく、リチウムイオン電池の安全性を向上させることができる。   According to the present invention, since the flame retardant is contained or applied to one or both of the shaft core and the battery can, it is not necessary to add the flame retardant to the non-aqueous electrolyte. Side reactions due to combustion can be prevented. In addition, the flame retardant placed in the shaft core and battery can is present in the battery in a state isolated from any of the positive electrode plate, the negative electrode plate, and the separator, and therefore impedes ion permeability during charging and discharging. There is no. Therefore, the safety of the lithium ion battery can be improved without deteriorating capacity characteristics and life characteristics.

1 正極板
2 正極リード片
3 負極板
4 負極リード片
5 セパレータ
7 電極群
9 軸芯
11 電池缶
13 極柱
15 電池蓋
17 電流遮断弁
19 電解液注液口
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Positive electrode lead piece 3 Negative electrode plate 4 Negative electrode lead piece 5 Separator 7 Electrode group 9 Shaft core 11 Battery can 13 Electrode column 15 Battery cover 17 Current cutoff valve 19 Electrolyte injection port

Claims (7)

正極活物質を含有する正極板と負極活物質を含有する負極板とがセパレータを介して配置されて構成された電極群と、
前記電極群を捲回する軸芯と、
前記軸芯に捲回された状態で前記電極群を収納する電池缶とを備えるリチウムイオン電池において、
前記軸芯の表面には難燃化剤が塗布されており、
前記電池缶の内側表面にも難燃化剤が塗布されていることを特徴とするリチウムイオン電池。
An electrode group configured by arranging a positive electrode plate containing a positive electrode active material and a negative electrode plate containing a negative electrode active material via a separator;
An axis for winding the electrode group;
In a lithium ion battery comprising a battery can that houses the electrode group wound around the shaft core,
A flame retardant is applied to the surface of the shaft core,
A lithium ion battery, wherein a flame retardant is applied to an inner surface of the battery can.
正極活物質を含有する正極板と負極活物質を含有する負極板とがセパレータを介して配置されて構成された電極群と、
前記電極群を捲回する軸芯と、
前記軸芯に捲回された状態で前記電極群を収納する電池缶とを備えるリチウムイオン電池において、
前記軸芯および前記電池缶のいずれか一方または両方に、難燃化剤が含有または塗布されていることを特徴とするリチウムイオン電池。
An electrode group configured by arranging a positive electrode plate containing a positive electrode active material and a negative electrode plate containing a negative electrode active material via a separator;
An axis for winding the electrode group;
In a lithium ion battery comprising a battery can that houses the electrode group wound around the shaft core,
A flame retardant is contained in or applied to one or both of the shaft core and the battery can.
前記難燃化剤は、前記軸芯を形成する材料中に含有されている請求項2に記載のリチウムイオン電池。   The lithium ion battery according to claim 2, wherein the flame retardant is contained in a material forming the shaft core. 前記難燃化剤は、前記軸芯の表面に塗布されている請求項2に記載のリチウムイオン電池。   The lithium ion battery according to claim 2, wherein the flame retardant is applied to a surface of the shaft core. 前記難燃化剤は、前記電池缶の内側表面に塗布されている請求項2に記載のリチウムイオン電池。   The lithium ion battery according to claim 2, wherein the flame retardant is applied to an inner surface of the battery can. 前記難燃化剤は、常温で固体であり、かつ融点が90℃以上である請求項1乃至5のいずれか1項に記載のリチウムイオン電池。   The lithium ion battery according to any one of claims 1 to 5, wherein the flame retardant is solid at normal temperature and has a melting point of 90 ° C or higher. 前記難燃化剤は、常温で固体であり、かつ融点が90℃以上であり、
前記難燃化剤はホスファゼン系化合物、燐酸エステル系化合物、フッ化アルキル系化合物から選択された少なくとも1種またはこれらの混合物である請求項1乃至5のいずれか1項に記載のリチウムイオン電池。
The flame retardant is solid at normal temperature and has a melting point of 90 ° C. or higher,
The lithium ion battery according to any one of claims 1 to 5, wherein the flame retardant is at least one selected from a phosphazene compound, a phosphate ester compound, and an alkyl fluoride compound, or a mixture thereof.
JP2014509188A 2012-04-04 2013-04-03 Lithium ion battery Pending JPWO2013151094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014509188A JPWO2013151094A1 (en) 2012-04-04 2013-04-03 Lithium ion battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012085181 2012-04-04
JP2012085181 2012-04-04
JP2014509188A JPWO2013151094A1 (en) 2012-04-04 2013-04-03 Lithium ion battery

Publications (1)

Publication Number Publication Date
JPWO2013151094A1 true JPWO2013151094A1 (en) 2015-12-17

Family

ID=49300575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014509188A Pending JPWO2013151094A1 (en) 2012-04-04 2013-04-03 Lithium ion battery

Country Status (2)

Country Link
JP (1) JPWO2013151094A1 (en)
WO (1) WO2013151094A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230268557A1 (en) * 2020-07-30 2023-08-24 Sanyo Electric Co., Ltd. Non-aqueous electrolytic solution secondary battery and method for producing non- aqueous electrolytic solution secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189051A (en) * 1996-12-26 1998-07-21 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic battery
JP4499680B2 (en) * 2005-03-30 2010-07-07 三星エスディアイ株式会社 Cylindrical lithium ion secondary battery
KR101050007B1 (en) * 2008-11-03 2011-07-19 율촌화학 주식회사 Cell packaging material and manufacturing method
JP5656521B2 (en) * 2010-09-06 2015-01-21 株式会社Nttファシリティーズ Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
WO2013151094A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP4521525B2 (en) Non-flammable non-aqueous electrolyte and lithium ion battery using the same
JP5506682B2 (en) Solvent for dissolving electrolyte salt of lithium secondary battery
JP5623198B2 (en) Non-aqueous electrolyte battery
WO2006038614A1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
WO2008007734A1 (en) Electrochemical device
JP2009016106A (en) Lithium ion secondary battery
JP2007200688A (en) Nonaqueous electrolyte secondary battery, nonaqueous electrolyte and its charging method
WO2012120846A1 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
WO2010101177A1 (en) Nonaqueous electrolyte cell
JP2010232117A (en) Lithium secondary battery
JP7234529B2 (en) Non-aqueous electrolyte and storage element
KR20150036216A (en) Non-aqueous electrolyte secondary battery
JP2007173014A (en) Nonaqueous electrolyte secondary battery
US20170317383A1 (en) Lithium-ion secondary battery
JPWO2019093411A1 (en) Fire extinguishing electrolyte and secondary battery containing the electrolyte
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP4765629B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4701599B2 (en) Nonaqueous electrolyte secondary battery
JP5093992B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP4424895B2 (en) Lithium secondary battery
JP5398302B2 (en) Lithium ion secondary battery
JP5809889B2 (en) Method for producing non-aqueous electrolyte battery
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
KR101310730B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same