JPWO2013151085A1 - High-strength, high-workability steel sheet and manufacturing method - Google Patents

High-strength, high-workability steel sheet and manufacturing method Download PDF

Info

Publication number
JPWO2013151085A1
JPWO2013151085A1 JP2014509184A JP2014509184A JPWO2013151085A1 JP WO2013151085 A1 JPWO2013151085 A1 JP WO2013151085A1 JP 2014509184 A JP2014509184 A JP 2014509184A JP 2014509184 A JP2014509184 A JP 2014509184A JP WO2013151085 A1 JPWO2013151085 A1 JP WO2013151085A1
Authority
JP
Japan
Prior art keywords
less
steel sheet
strength
workability
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014509184A
Other languages
Japanese (ja)
Other versions
JP5804195B2 (en
Inventor
田中 匠
田中  匠
克己 小島
克己 小島
飛山 洋一
洋一 飛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014509184A priority Critical patent/JP5804195B2/en
Application granted granted Critical
Publication of JP5804195B2 publication Critical patent/JP5804195B2/en
Publication of JPWO2013151085A1 publication Critical patent/JPWO2013151085A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2701/00Coatings being able to withstand changes in the shape of the substrate or to withstand welding
    • B05D2701/10Coatings being able to withstand changes in the shape of the substrate or to withstand welding withstanding draw and redraw process, punching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Laminated Bodies (AREA)

Abstract

高強度高加工性鋼板は、鋼板質量%で、C:0.020%超え0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超え0.0170%以下を含有し、残部はFe及び不可避的不純物からなり、圧延方向の引張強度が520MPa以上であり、エリクセン値が5.0mm以上であり、少なくとも缶内面となる側に樹脂フィルム層を有する。The high-strength, high-workability steel sheet is steel sheet mass%, C: more than 0.020% and less than 0.040%, Si: 0.003% to 0.100%, Mn: 0.10% to 0.60% P: 0.001% or more and 0.100% or less, S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: more than 0.0130% 0170% or less, the balance is made of Fe and inevitable impurities, the tensile strength in the rolling direction is 520 MPa or more, the Erichsen value is 5.0 mm or more, and has a resin film layer at least on the side that becomes the inner surface of the can .

Description

本発明は、イージーオープンエンド用鋼板に適用して好適な高強度高加工性鋼板及びその製造方法に関する。   The present invention relates to a high-strength, high-workability steel sheet suitable for application to an easy open end steel sheet and a method for producing the same.

飲料缶や食缶に用いられる鋼板のうち、蓋や底、3ピース缶の胴、絞り缶等には、DR(Double Reduce)材と呼ばれる鋼板が用いられる場合がある。焼鈍の後に再度冷間圧延を行うDR法によって製造されるDR材は、圧延率が小さい調質圧延のみによって製造されるSR(Single Reduce)材に比べて板厚を薄くすることが容易である。このため、DR材を用いることにより、製缶コストを低減することができる。一方、DR法によれば、焼鈍の後に再度冷間圧延を行うことによって加工硬化が生じるため、薄くて硬い鋼板を製造できるが、その反面、R材に比べて加工性に劣る。   Among steel plates used for beverage cans and food cans, steel plates called DR (Double Reduce) materials are sometimes used for lids, bottoms, three-piece can bodies, drawn cans, and the like. The DR material manufactured by the DR method in which cold rolling is performed again after annealing is easier to reduce the plate thickness than the SR (Single Reduce) material manufactured only by temper rolling with a small rolling rate. . For this reason, can-making cost can be reduced by using DR material. On the other hand, according to the DR method, work hardening occurs by performing cold rolling again after annealing, so that a thin and hard steel plate can be manufactured, but on the other hand, it is inferior in workability as compared with the R material.

飲料缶や食缶の蓋としては、開缶の容易なEOE(Easy Open End:イージーオープンエンド)が広く使用されている。EOEを製造するに際しては、指を掛けるタブを取り付けるためのリベットを張り出し加工によって成形する必要がある。一方、製缶素材としての鋼板は板厚に応じた強度が必要とされ、DR材の場合、薄くすることによる経済効果を確保するために約520MPa以上の引張強度が必要とされる。従来のDR材では、上記のような加工性と強度とを両立することが困難であるために、EOEにはSR材が用いられてきた。しかしながら、現在、コスト低減の観点からEOEに対してもDR材を適用する要求が高まっている。   As a lid for beverage cans and food cans, EOE (Easy Open End), which can be easily opened, is widely used. When manufacturing the EOE, it is necessary to form a rivet for attaching a tab to hang a finger by an overhanging process. On the other hand, a steel plate as a can-making material is required to have a strength corresponding to the plate thickness. In the case of a DR material, a tensile strength of about 520 MPa or more is required in order to ensure an economic effect by making it thin. Since it is difficult for the conventional DR material to achieve both the workability and strength as described above, the SR material has been used for EOE. However, at present, there is an increasing demand for applying DR material to EOE from the viewpoint of cost reduction.

このような背景から、特許文献1には、炭素の含有量が0.02%以下、ホウ素の含有量が0.010乃至0.020%の範囲内にあることを特徴とするリベット成形性に優れたイージーオープン缶蓋用鋼板と、圧下率30%以下で二次冷間圧延を行うことを特徴とするその製造方法が開示されている。また、特許文献2には、時効処理後の平均ランクフォード値が1.0以下であることを特徴とするDR材が開示されており、このDR材がEOEのリベット成形性に優れていることが述べられている。   Against this background, Patent Document 1 discloses a rivet formability characterized in that the carbon content is 0.02% or less and the boron content is in the range of 0.010 to 0.020%. An excellent easy open can lid steel sheet and a method for producing the steel sheet characterized by performing secondary cold rolling at a rolling reduction of 30% or less are disclosed. Patent Document 2 discloses a DR material characterized in that the average rankford value after aging treatment is 1.0 or less, and this DR material is excellent in rivet formability of EOE. Is stated.

特許第3740779号公報Japanese Patent No. 3740779 国際公開第2008/018531号International Publication No. 2008/018531

しかしながら、上記従来技術は、いずれも問題点を抱えている。すなわち、適用する缶蓋の径が大きくなるほど鋼板にも大きな強度が必要となるが、特許文献1に記載の鋼板は、炭素の含有量が小さいため、大きな強度を得ようとすると窒素の含有量を大きくする必要がある。しかしながら、この鋼板はホウ素を一定量以上含むため、窒素の含有量が大きくなると高温延性が低下し、連続鋳造時にスラブ割れが生じる。このため、特許文献1記載の鋼板は大径のEOEには適用できない。   However, all of the above conventional techniques have problems. That is, the greater the diameter of the can lid to be applied, the greater the strength required for the steel sheet. However, since the steel sheet described in Patent Document 1 has a low carbon content, the nitrogen content is intended to obtain a large strength. Need to be larger. However, since this steel sheet contains a certain amount or more of boron, when the nitrogen content increases, the high temperature ductility decreases and slab cracking occurs during continuous casting. For this reason, the steel sheet described in Patent Document 1 cannot be applied to a large-diameter EOE.

一方、特許文献2に記載の鋼板は平均ランクフォード値を小さくすることで良好なリベット成形性を実現している。しかしながら、この方法が効果を発揮するのは円柱状に近い張り出し加工によってリベットが成形される場合のみであり、球状に近い張り出し加工によりリベットが成形される場合にはリベット成形性が不十分となる。このため、引張強度が520MPa以上、且つ、エリクセン値が5.0mm以上の高強度高加工性鋼板の提供が期待されていた。   On the other hand, the steel sheet described in Patent Document 2 achieves good rivet formability by reducing the average Rankford value. However, this method is effective only when a rivet is formed by a nearly cylindrical projecting process, and when the rivet is formed by a nearly spherical projecting process, the rivet formability becomes insufficient. . Therefore, it has been expected to provide a high-strength and high-workability steel sheet having a tensile strength of 520 MPa or more and an Erichsen value of 5.0 mm or more.

本発明は、上記課題に鑑みてなされたものであって、その目的は、引張強度が520MPa以上、且つ、エリクセン値が5.0mm以上の高強度高加工性鋼板を得ることが可能な高強度高加工性鋼板及びその製造方法を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to provide a high strength and high workability steel sheet having a tensile strength of 520 MPa or more and an Erichsen value of 5.0 mm or more. It is providing the high workability steel plate and its manufacturing method.

本発明の発明者らは、鋭意研究を重ねてきた結果、鋼板の加工性と強度とを両立するためには、炭素の含有量を適切な範囲に制限して加工性の低下を防ぎつつ、窒素の含有量を多くすることで強度を確保し、さらに焼鈍後の二次冷間圧延率を適切な範囲に制限することが有効であることを知見した。また、本発明の発明者らは、熱間圧延後の巻き取り温度が高いと、析出するセメンタイトが粗大となり、局部伸びが低下するため、巻き取り温度も適切な温度範囲に制限する必要があることを知見した。さらに、本発明の発明者らは、適正な厚さの樹脂フィルム層を缶内面となる側に設けることにより、張り出し加工によるリベット成形性が格段に向上することを知見した。   Inventors of the present invention, as a result of earnest research, in order to achieve both the workability and strength of the steel sheet, while limiting the carbon content to an appropriate range, while preventing deterioration of workability, It has been found that it is effective to secure the strength by increasing the nitrogen content and to limit the secondary cold rolling rate after annealing to an appropriate range. In addition, the inventors of the present invention need to limit the coiling temperature to an appropriate temperature range because the cementite deposited becomes coarse and the local elongation decreases when the coiling temperature after hot rolling is high. I found out. Furthermore, the inventors of the present invention have found that providing a resin film layer having an appropriate thickness on the side that becomes the inner surface of the can significantly improves the rivet formability by overhanging.

本発明に係る高強度高加工性鋼板は、質量%で、C:0.020%超え0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超え0.0170%以下を含有し、残部はFe及び不可避的不純物からなり、少なくとも缶内面となる側に樹脂フィルム層を有し、圧延方向の引張強度が520MPa以上であり、エリクセン値が5.0mm以上であることを特徴とする。   The high-strength, high-workability steel sheet according to the present invention is, in mass%, C: more than 0.020% and less than 0.040%, Si: 0.003% to 0.100%, Mn: 0.10% to 0 .60% or less, P: 0.001% to 0.100%, S: 0.001% to 0.020%, Al: 0.005% to 0.100%, N: 0.0130% More than 0.0170% is contained, the remainder is made of Fe and inevitable impurities, has a resin film layer on at least the inner surface of the can, has a tensile strength in the rolling direction of 520 MPa or more, and an Erichsen value of 5. It is 0 mm or more.

樹脂フィルム層の厚さは5乃至100μmの範囲内にあることが望ましい。   The thickness of the resin film layer is desirably in the range of 5 to 100 μm.

本発明に係る高強度高加工性鋼板の製造方法は、質量%で、C:0.020%超え0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超え0.0170%以下を含有し、残部はFe及び不可避的不純物からなる鋼を連続鋳造によりスラブとし、スラブ再加熱温度を1150℃以上として熱間圧延を行い、600℃以下の温度で巻き取り、次いで一次冷間圧延を行い、引き続き均熱温度600乃至700℃、均熱時間10乃至50秒で連続焼鈍を行い、次いで8.0乃至15.0%の圧延率で二次冷間圧延を行い、電解法により表面処理皮膜を形成した後に少なくとも缶内面となる側に樹脂フィルムを貼り付け、圧延方向の引張強度が520MPa以上であり、エリクセン値が5.0mm以上である鋼板を製造することを特徴とする。   The manufacturing method of the high-strength, high-workability steel sheet according to the present invention is, in mass%, C: more than 0.020% and less than 0.040%, Si: 0.003% to 0.100%, Mn: 0.10 %: 0.61% or less, P: 0.001% or more and 0.100% or less, S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: 0 .0130% and 0.0170% or less, the balance being Fe and inevitable impurities made into steel as a slab by continuous casting, slab reheating temperature is 1150 ° C or higher and hot rolling is performed at a temperature of 600 ° C or lower , Followed by primary cold rolling, followed by continuous annealing at a soaking temperature of 600 to 700 ° C. and a soaking time of 10 to 50 seconds, and then secondary cooling at a rolling rate of 8.0 to 15.0%. Hot-rolled and surface-treated film by electrolytic method Paste the resin film on the side where the at least can inner After forming, the tensile strength in the rolling direction is not less than 520 MPa, characterized in that to produce a steel sheet Erichsen value is 5.0mm or more.

本発明に係る高強度高加工性鋼板及びその製造方法によれば、引張強度が520MPa以上、且つ、エリクセン値が5.0mm以上の高強度高加工性鋼板を得ることができる。また、この結果、EOEのリベット成形時に割れが生じず、板厚が薄いDR材による製蓋が可能となり、EOE用鋼板の大幅な薄肉化を実現できる。   According to the high-strength and highly workable steel sheet and the manufacturing method thereof according to the present invention, a high-strength and highly workable steel sheet having a tensile strength of 520 MPa or more and an Erichsen value of 5.0 mm or more can be obtained. As a result, cracks do not occur during rivet molding of EOE, and it is possible to make a lid made of a DR material having a thin plate thickness, thereby realizing a significant reduction in the thickness of the EOE steel plate.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る高強度高加工性鋼板は、引張強度が520MPa以上、且つ、エリクセン値が5.0mm以上のイージーオープンエンド用鋼板に適用することができる。このような鋼板は、0.040%未満の炭素を含有する鋼を用いて、熱間圧延後の巻き取り温度及び二次冷間圧延率を適正な条件に設定し、さらに缶内面となる側に樹脂フィルムを貼り付けることにより、製造することが可能となる。以下、本発明に係る高強度高加工性鋼板の成分組成について説明する。   The high-strength, high-workability steel sheet according to the present invention can be applied to an easy open-end steel sheet having a tensile strength of 520 MPa or more and an Erichsen value of 5.0 mm or more. Such a steel sheet uses steel containing less than 0.040% carbon, sets the coiling temperature after hot rolling and the secondary cold rolling rate to appropriate conditions, and further becomes the inner surface of the can It becomes possible to manufacture by sticking a resin film on the substrate. Hereinafter, the component composition of the high-strength, high-workability steel sheet according to the present invention will be described.

〔高強度高加工性鋼板の成分組成〕
(1)C:0.020%超え0.040%未満
本発明に係る高強度高加工性鋼板では、C(炭素)の含有量を低めに抑えることで高加工性を発揮する。Cの含有量が0.040%以上であると、鋼板が過剰に硬質となり、加工性を確保したまま二次冷間圧延で薄い鋼板を製造することが不可能となる。このため、Cの含有量の上限は0.040%未満とする。一方、Cの含有量が0.020%以下であると、鋼板の薄肉化による顕著な経済効果を得るために必要な引張強度520MPaが得られない。このため、Cの含有量の下限は0.020%超えとする。
[Component composition of high-strength, high-workability steel sheet]
(1) C: More than 0.020% and less than 0.040% In the high-strength, high-workability steel sheet according to the present invention, high workability is exhibited by keeping the C (carbon) content low. If the C content is 0.040% or more, the steel sheet becomes excessively hard, and it becomes impossible to produce a thin steel sheet by secondary cold rolling while ensuring workability. For this reason, the upper limit of the C content is less than 0.040%. On the other hand, if the C content is 0.020% or less, the tensile strength 520 MPa necessary for obtaining a remarkable economic effect due to the thinning of the steel sheet cannot be obtained. For this reason, the lower limit of the C content is over 0.020%.

(2)Si:0.003%以上0.100%以下
Si(ケイ素)の含有量が0.100%を超えると、表面処理性の低下、耐食性の劣化等の問題を引き起こす。このため、Siの含有量の上限は0.100%とする。一方、Siの含有量を0.003%未満とするには精錬コストが過大となる。このため、Siの含有量の下限は0.003%とする。好ましいSiの含有量は、0.003%以上0.035%以下の範囲内である。
(2) Si: 0.003% or more and 0.100% or less When the content of Si (silicon) exceeds 0.100%, problems such as deterioration of surface treatment property and deterioration of corrosion resistance are caused. For this reason, the upper limit of the Si content is set to 0.100%. On the other hand, the refining cost becomes excessive to make the Si content less than 0.003%. For this reason, the lower limit of the Si content is set to 0.003%. A preferable Si content is in the range of 0.003% to 0.035%.

(3)Mn:0.10%以上0.60%以下
Mn(マンガン)は、S(硫黄)による熱延中の赤熱脆性を防止し、結晶粒を微細化する作用を有し、望ましい材質を確保する上で必要な元素である。これらの効果を発揮するためには、少なくとも0.10%以上のMnの添加が必要である。一方、Mnを多量に添加し過ぎると、耐食性が劣化し、また鋼板が過剰に硬質化する。このため、Mnの含有量の上限は0.60%とする。好ましいMnの含有量は、0.19%以上0.60%以下の範囲内である。
(3) Mn: 0.10% or more and 0.60% or less Mn (manganese) has a function of preventing red heat embrittlement during hot rolling due to S (sulfur) and refining crystal grains. It is an element necessary for securing. In order to exert these effects, it is necessary to add at least 0.10% of Mn. On the other hand, when Mn is added in a large amount, the corrosion resistance is deteriorated and the steel sheet is excessively hardened. For this reason, the upper limit of the Mn content is set to 0.60%. The preferred Mn content is in the range of 0.19% to 0.60%.

(4)P:0.001%以上0.100%以下
P(リン)は、鋼を硬質化させ、加工性を悪化させると同時に、耐食性をも悪化させる有害な元素である。このため、Pの含有量の上限は0.100%とする。一方、Pの含有量を0.001%未満とするには脱リンコストが過大となる。このため、Pの含有量の下限は0.001%とする。好ましいPの含有量は、0.001%以上0.015%以下の範囲内である。
(4) P: 0.001% or more and 0.100% or less P (phosphorus) is a harmful element that hardens steel and deteriorates workability and at the same time deteriorates corrosion resistance. For this reason, the upper limit of the content of P is set to 0.100%. On the other hand, dephosphorization cost becomes excessive to make the P content less than 0.001%. For this reason, the lower limit of the P content is 0.001%. A preferable P content is in the range of 0.001% to 0.015%.

(5)S:0.001%以上0.020%以下
Sは、鋼中で介在物として存在し、加工性の低下、耐食性の劣化をもたらす有害な元素である。このため、Sの含有量の上限は0.020%とする。一方、Sの含有量を0.001%未満とするには脱硫コストが過大となる。このため、Sの含有量の下限は0.001%とする。好ましいPの含有量は、0.007%以上0.014%以下の範囲内である。
(5) S: 0.001% or more and 0.020% or less S is a harmful element that exists as an inclusion in steel and causes deterioration of workability and corrosion resistance. For this reason, the upper limit of the S content is 0.020%. On the other hand, desulfurization cost becomes excessive to make the S content less than 0.001%. For this reason, the lower limit of the S content is 0.001%. A preferable P content is in the range of 0.007% to 0.014%.

(6)Al:0.005%以上0.100%以下
Al(アルミニウム)は、製鋼時の脱酸材として必要な元素である。Alの含有量が少ないと、脱酸が不十分となり、介在物が増加し、加工性が劣化する。Alの含有量が0.005%以上であれば十分に脱酸が行われているとみなすことができる。一方、Alの含有量が0.100%を超えると、アルミナクラスター等に起因する表面欠陥の発生頻度が増加する。このため、Alの含有量は0.005%以上0.100%以下とする。
(6) Al: 0.005% or more and 0.100% or less Al (aluminum) is an element necessary as a deoxidizer during steelmaking. When the content of Al is small, deoxidation becomes insufficient, inclusions increase, and workability deteriorates. If the Al content is 0.005% or more, it can be considered that deoxidation is sufficiently performed. On the other hand, when the Al content exceeds 0.100%, the frequency of occurrence of surface defects due to alumina clusters or the like increases. For this reason, content of Al shall be 0.005% or more and 0.100% or less.

(7)N:0.0130%超え0.0170%以下
本発明に係る高強度高加工性鋼板においては、Cの含有量を低めとする代わりにN(窒素)の含有量を高めとし、強度を確保する。Nによる強化は張り出し加工性に及ぼす影響が小さいため、エリクセン値を損なわずに鋼板の高強度化が可能である。Nの含有量が0.0130%以下であると、缶蓋に必要となる強度が得られない。一方、Nは多量に添加すると、熱間延性が劣化し、連続鋳造においてスラブの割れが発生する。このため、Nの含有量の上限は0.0170%とする。
(7) N: 0.0130% to 0.0170% or less In the high-strength and high-workability steel sheet according to the present invention, instead of lowering the C content, the N (nitrogen) content is increased and the strength is increased. Secure. Since strengthening with N has little influence on the stretchability, the strength of the steel sheet can be increased without impairing the Erichsen value. If the N content is 0.0130% or less, the strength required for the can lid cannot be obtained. On the other hand, when N is added in a large amount, the hot ductility deteriorates, and slab cracking occurs in continuous casting. For this reason, the upper limit of the content of N is set to 0.0170%.

(8)その他の成分
上記成分以外の残部はFe(鉄)及び不可避的不純物とするが、公知の溶接缶用鋼板中に一般的に含有される成分元素を含有していても良い。例えば、Cr(クロム):0.10%以下、Cu(銅):0.20%以下、Ni(ニッケル):0.15%以下、Mo(モリブデン):0.05%以下、Ti(チタン):0.3%以下、Nb(ニオブ):0.3%以下、Zr(ジルコニウム):0.3%以下、V(バナジウム):0.3%以下、Ca(カルシウム):0.01%以下等の成分元素を目的に応じて含有させることができる。
(8) Other components The balance other than the above components is Fe (iron) and inevitable impurities, but may contain component elements generally contained in known steel sheets for welding cans. For example, Cr (chromium): 0.10% or less, Cu (copper): 0.20% or less, Ni (nickel): 0.15% or less, Mo (molybdenum): 0.05% or less, Ti (titanium) : 0.3% or less, Nb (niobium): 0.3% or less, Zr (zirconium): 0.3% or less, V (vanadium): 0.3% or less, Ca (calcium): 0.01% or less Etc. can be contained according to the purpose.

〔高強度高加工性鋼板の特性〕
次に、本発明に係る高強度高加工性鋼板の機械的性質について説明する。
[Characteristics of high strength and high workability steel sheet]
Next, the mechanical properties of the high strength and high workability steel sheet according to the present invention will be described.

本発明に係る高強度高加工性鋼板の引張強度は520MPa以上とする。引張強度が520MPa未満であると、製蓋素材としての鋼板の強度を確保するために、顕著な経済効果が得られるほど鋼板を薄くすることができない。よって、引張強度は520MPa以上とする。なお、上記引張強度は文献「JIS Z 2241」に示される金属材料引張試験方法により測定できる。   The tensile strength of the high strength and high workability steel sheet according to the present invention is set to 520 MPa or more. If the tensile strength is less than 520 MPa, the steel plate cannot be made thin enough to obtain a remarkable economic effect in order to secure the strength of the steel plate as the lid-making material. Therefore, the tensile strength is set to 520 MPa or more. The tensile strength can be measured by a metal material tensile test method described in the document “JIS Z 2241”.

本発明に係る高強度高加工性鋼板のエリクセン値は5.0mm以上とする。エリクセン値が5.0mm未満であると、リベット成形の際に割れを生じる。従って、エリクセン値は5.0mm以上とする。なお、エリクセン値は文献「JIS Z 2247」に示されるエリクセン試験方法により測定できる。リベット成形の際、鋼板に加えられる加工の様式は張り出し加工であり、板面に平行な全方向への引張変形と考えることができる。このような加工に対する鋼板の変形能を評価するためには、同様な張り出し加工による試験が必要であり、単純な一軸引張試験による全伸び値やランクフォード値では評価できない。   The Erichsen value of the high strength and high workability steel sheet according to the present invention is 5.0 mm or more. If the Eriksen value is less than 5.0 mm, cracking occurs during rivet forming. Therefore, the Erichsen value is 5.0 mm or more. The Erichsen value can be measured by the Eriksen test method shown in the document “JIS Z 2247”. During rivet forming, the processing mode applied to the steel sheet is an overhanging process, which can be considered as tensile deformation in all directions parallel to the plate surface. In order to evaluate the deformability of the steel sheet with respect to such processing, a test by the same overhanging process is necessary, and it cannot be evaluated by the total elongation value or the Rankford value by a simple uniaxial tensile test.

〔高強度高加工性鋼板の表面被覆〕
次に、本発明に係る高強度高加工性鋼板の表面被覆について説明する。
[Surface coating of high-strength, high-workability steel sheet]
Next, the surface coating of the high strength and high workability steel sheet according to the present invention will be described.

リベット成形は張り出し加工により行われ、缶外面となる側に張り出す加工が施される。このため、加工に際しては、工具が缶内面となる側に接触して鋼板を変形させる。この工具と鋼板との間に樹脂フィルムを挟んで接触させることにより、工具と鋼板の間の潤滑性が向上する。これにより、張り出し加工の均一性が向上し、割れの発生を効果的に抑制できる。なお、樹脂フィルムを単に工具と鋼板との間に挟むだけでなく、鋼板表面に樹脂フィルムを被覆すれば、耐食性にも寄与することになり、より好適である。   Rivet forming is performed by an overhanging process, and an overhanging process is performed on the outer surface of the can. For this reason, at the time of a process, a tool contacts the side used as a can inner surface, and deforms a steel plate. The lubricity between the tool and the steel sheet is improved by sandwiching and contacting the resin film between the tool and the steel sheet. Thereby, the uniformity of the overhang process is improved and the occurrence of cracks can be effectively suppressed. In addition, it is more preferable that the resin film is not only sandwiched between the tool and the steel plate but also covered with the resin film, which contributes to corrosion resistance.

樹脂フィルムとしては、特に限定されることはなく、各種熱可塑性樹脂や熱硬化性樹脂を用いることができる。例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリルエステル共重合体、アイオノマー等のオレフィン系樹脂フィルム、又は、ポリブチレンテレフタラート等のポリエステルフィルム、若しくはナイロン6、ナイロン66、ナイロン11、ナイロン12等のポリアミドフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム等の熱可塑性樹脂フィルムの未延伸又は二軸延伸したものであってもよい。   The resin film is not particularly limited, and various thermoplastic resins and thermosetting resins can be used. For example, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic ester copolymer, olefin resin film such as ionomer, or polyester film such as polybutylene terephthalate, or nylon 6, a non-stretched or biaxially stretched thermoplastic resin film such as a polyamide film such as nylon 66, nylon 11 or nylon 12, a polyvinyl chloride film or a polyvinylidene chloride film.

鋼板に樹脂フィルムを貼り付ける際に接着剤を用いる場合、ウレタン系接着剤、エポキシ系接着剤、酸変性オレフィン樹脂系接着剤、コポリアミド系接着剤、コポリエステル系接着剤(厚さ:0.1乃至5.0μm)等が好ましく用いられる。さらに、厚さ0.05乃至2.0μmの範囲で鋼板側又は樹脂フィルム側に熱硬化性塗料を塗布し、これを接着剤としてもよい。さらに、フェノールエポキシ、アミノ−エポキシ等の変性エポキシ塗料、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル共重合体けん化物、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、エポキシ変性−、エポキシアミノ変性−、エポキシフェノール変性−ビニル塗料又は変性ビニル塗料、アクリル塗料、スチレン−ブタジエン系共重合体等の合成ゴム系塗料等の熱可塑性又は熱硬化性塗料の単独又は2種以上の組み合わせであってもよい。   When an adhesive is used when a resin film is attached to a steel sheet, a urethane adhesive, an epoxy adhesive, an acid-modified olefin resin adhesive, a copolyamide adhesive, a copolyester adhesive (thickness: 0. 1 to 5.0 μm) is preferably used. Further, a thermosetting paint may be applied to the steel plate side or the resin film side in a thickness range of 0.05 to 2.0 μm, and this may be used as an adhesive. Furthermore, modified epoxy paints such as phenol epoxy and amino-epoxy, vinyl chloride-vinyl acetate copolymer, saponified vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, epoxy-modified- Epoxyamino-modified, epoxyphenol-modified-vinyl paint or modified vinyl paint, acrylic paint, thermoplastic rubber or other thermosetting paint such as styrene-butadiene copolymer, or a combination of two or more of them It may be.

樹脂フィルムの厚さは5乃至100μmの範囲内にすることが望ましい。樹脂フィルムの厚さが5μm未満であると、張り出し加工の際に破断し、十分に効果が発揮されない可能性が高くなる。また、樹脂フィルムの厚さが100μmを超えると鋼板の変形量を増大させる効果が大きくなり、鋼板の割れが生じやすくなる。   The thickness of the resin film is preferably in the range of 5 to 100 μm. When the thickness of the resin film is less than 5 μm, the resin film breaks during the overhanging process, and there is a high possibility that the effect is not sufficiently exhibited. On the other hand, when the thickness of the resin film exceeds 100 μm, the effect of increasing the deformation amount of the steel sheet is increased, and the steel sheet is easily cracked.

〔高強度高加工性鋼板の製造方法〕
次に、本発明に係る高強度高加工性鋼板の製造方法について説明する。
[Method for producing high-strength, high-workability steel sheet]
Next, the manufacturing method of the high intensity | strength high workability steel plate which concerns on this invention is demonstrated.

本発明に係る高強度高加工性鋼板は、連続鋳造によって製造された上記組成からなる鋼スラブを用い、スラブ再加熱温度を1150℃以上として熱間圧延を行った後に600℃以下の温度で巻き取り、次いで一次冷間圧延を行い、引き続き均熱温度600乃至700℃、均熱時間10乃至50秒で連続焼鈍を行い、次いで、8.0乃至15.0%の圧延率で二次冷間圧延を行い、電解法により表面処理皮膜を形成した後に、少なくとも缶内面となる側に樹脂フィルムを貼り付けることで製造される。   The high-strength, high-workability steel sheet according to the present invention uses a steel slab having the above composition produced by continuous casting, and after hot rolling with a slab reheating temperature of 1150 ° C. or higher, winding at a temperature of 600 ° C. or lower. And then primary cold rolling, followed by continuous annealing at a soaking temperature of 600 to 700 ° C. and a soaking time of 10 to 50 seconds, and then secondary cold at a rolling rate of 8.0 to 15.0%. After rolling and forming a surface treatment film by an electrolytic method, it is manufactured by sticking a resin film on at least the side that becomes the inner surface of the can.

通常は1回の冷間圧延のみでは顕著な経済効果が得られるような薄い板厚とすることは困難である。すなわち、1回の冷間圧延で薄い板厚を得るには圧延機への負荷が過大であり、設備能力によっては不可能である。例えば、最終板厚を0.15mmとする場合には、熱間圧延後の板厚を2.0mmとすると、92.5%と大きな一次冷間圧延率が必要となる。また、冷間圧延後の板厚を小さくするために熱間圧延の段階で通常よりも薄く圧延することも考えられるが、熱間圧延の圧延率を大きくすると、圧延中の鋼板の温度低下が大きくなり、所定の仕上げ圧延温度が得られなくなる。さらに、焼鈍前の板厚を小さくすると、連続焼鈍を施す場合は、焼鈍中に鋼板の破断や変形等のトラブルが生じる可能性が大きくなる。これらの理由により、本発明においては焼鈍後に2回目の冷間圧延(二次冷間圧延)を施し、極薄の鋼板を得ることが好ましい。   Normally, it is difficult to achieve a thin plate thickness that provides a remarkable economic effect by only one cold rolling. That is, in order to obtain a thin plate thickness by one cold rolling, the load on the rolling mill is excessive, and it is impossible depending on the equipment capacity. For example, when the final plate thickness is 0.15 mm, the primary cold rolling rate as large as 92.5% is required when the plate thickness after hot rolling is 2.0 mm. In order to reduce the sheet thickness after cold rolling, it is conceivable that rolling is performed thinner than usual in the hot rolling stage, but if the rolling rate of hot rolling is increased, the temperature of the steel sheet during rolling is decreased. A predetermined finish rolling temperature cannot be obtained. Furthermore, if the plate thickness before annealing is reduced, when continuous annealing is performed, the possibility of troubles such as breakage and deformation of the steel plate during annealing increases. For these reasons, in the present invention, it is preferable to perform the second cold rolling (secondary cold rolling) after annealing to obtain an ultrathin steel plate.

熱間圧延後の巻き取り温度が600℃超えであると、形成されるパーライト組織が粗大となり、これが脆性破壊の起点となるために局部伸びが低下して5.0mm以上のエリクセン値が得られにくい。よって、好ましくは熱間圧延後の巻き取り温度は600℃以下、より好ましくは550乃至600℃の範囲内とする。   When the coiling temperature after hot rolling is over 600 ° C., the formed pearlite structure becomes coarse, and this becomes the starting point of brittle fracture, so the local elongation is reduced and an Erichsen value of 5.0 mm or more is obtained. Hateful. Therefore, the coiling temperature after hot rolling is preferably 600 ° C. or lower, more preferably 550 to 600 ° C.

連続焼鈍の均熱温度が600℃未満又は均熱時間が10秒未満であると、再結晶が不十分となり、5.0mm以上のエリクセン値が得られにくい。一方、均熱温度が700℃超え又は均熱時間が50秒超えであると、再結晶による粒成長が過大となり、引張強度520MPaが得られにくい。従って、連続焼鈍は均熱温度600乃至700℃、均熱時間10乃至50秒の条件により行うことが望ましい。   When the soaking temperature of continuous annealing is less than 600 ° C. or the soaking time is less than 10 seconds, recrystallization becomes insufficient and it is difficult to obtain an Erichsen value of 5.0 mm or more. On the other hand, if the soaking temperature exceeds 700 ° C. or the soaking time exceeds 50 seconds, grain growth due to recrystallization becomes excessive, and it is difficult to obtain a tensile strength of 520 MPa. Therefore, it is desirable to perform the continuous annealing under conditions of a soaking temperature of 600 to 700 ° C. and a soaking time of 10 to 50 seconds.

二次冷間圧延率を15.0%超えとすると、二次冷間圧延による加工硬化が過大となり、5.0mm以上のエリクセン値が得られにくくなる。従って、二次冷間圧延率は15.0%以下が好ましい。一方、二次冷間圧延率が8.0%未満であると缶蓋に必要となる強度が得られにくい。従って、二次冷間圧延率の下限は8.0%が好ましい。   When the secondary cold rolling rate exceeds 15.0%, work hardening by secondary cold rolling becomes excessive, and it becomes difficult to obtain an Erichsen value of 5.0 mm or more. Therefore, the secondary cold rolling rate is preferably 15.0% or less. On the other hand, if the secondary cold rolling rate is less than 8.0%, it is difficult to obtain the strength required for the can lid. Therefore, the lower limit of the secondary cold rolling rate is preferably 8.0%.

二次冷間圧延の後、電解法により表面処理皮膜を形成する。皮膜としては、ぶりきやティンフリースチールとして広く缶蓋に用いられているSn電解めっき皮膜や、電解Cr酸処理皮膜等を適用することができる。これらの皮膜を設けることにより、樹脂フィルムと鋼板の密着性を高めることが可能となる。   After the secondary cold rolling, a surface treatment film is formed by an electrolytic method. As the film, Sn electroplating film widely used for tin cans and tin-free steel, and electrolytic Cr acid-treated film can be applied. By providing these films, it becomes possible to improve the adhesion between the resin film and the steel sheet.

表面処理皮膜を形成した後、少なくとも缶内面となる側に樹脂フィルムを貼り付ける。貼り付ける方法としては、鋼板を加熱して樹脂フィルムを熱融着させる方法や、接着剤を用いて貼付する方法などが可能である。   After forming the surface treatment film, a resin film is pasted on at least the side that becomes the inner surface of the can. As a method of attaching, a method of heating a steel plate and thermally fusing a resin film, a method of attaching using an adhesive, and the like are possible.

〔実施例〕
表1に示す成分組成を含有し、残部がFe及び不可避的不純物からなる鋼を実機転炉で溶製し、連続鋳造法により鋼スラブを得た。得られた鋼スラブを再加熱した後、表2に示す条件で熱間圧延を施した。熱間圧延の仕上げ圧延温度は880℃とし、圧延後には酸洗を施した。次に、圧延率90%で一次冷間圧延を行った後、表2に示す条件で連続焼鈍及び二次冷間圧延を施した。以上により得られた鋼板に電解Cr酸処理を両面に連続的に施して、片面Cr付着量100mg/mのティンフリースチールを得た。そして、さらに共重合比12mol%のイソフタル酸共重合ポリエチレンテレフタラートフィルムを両面にラミネートして、樹脂被覆鋼板を得た。ラミネートは、245℃に加熱した鋼板とフィルムとを一対のゴムロールで挟んでフィルムを金属板に融着させ、ゴムロール通過後1秒以内に水冷して行った。このとき、鋼板の送り速度は40m/min、ゴムロールのニップ長は17mmであった。ニップ長とは、ゴムロールと鋼板とが接する部分の搬送方向の長さのことである。フィルム層の厚さを表1に示す。
〔Example〕
Steel containing the component composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in an actual converter, and a steel slab was obtained by a continuous casting method. After the obtained steel slab was reheated, it was hot-rolled under the conditions shown in Table 2. The finish rolling temperature of hot rolling was 880 ° C., and pickling was performed after rolling. Next, after performing primary cold rolling at a rolling rate of 90%, continuous annealing and secondary cold rolling were performed under the conditions shown in Table 2. The steel plate obtained as described above was subjected to electrolytic Cr acid treatment continuously on both sides to obtain tin-free steel with a single-sided Cr deposit of 100 mg / m 2 . Further, an isophthalic acid copolymerized polyethylene terephthalate film having a copolymerization ratio of 12 mol% was laminated on both sides to obtain a resin-coated steel sheet. Lamination was performed by sandwiching a steel plate and a film heated to 245 ° C. between a pair of rubber rolls, fusing the film to a metal plate, and cooling with water within 1 second after passing through the rubber roll. At this time, the feeding speed of the steel plate was 40 m / min, and the nip length of the rubber roll was 17 mm. The nip length is the length in the conveyance direction of the portion where the rubber roll and the steel plate are in contact. Table 1 shows the thickness of the film layer.

Figure 2013151085
Figure 2013151085
Figure 2013151085
Figure 2013151085

以上により得られた樹脂被覆鋼板に対して、引張試験を行った。引張試験は、文献「JIS Z 2241」に示される金属材料引張試験方法に従い、JIS5号サイズの引張試験片を用いて、引張強度(引張強さ)を測定した。また、得られた樹脂被覆鋼板に対して、エリクセン試験を行った。エリクセン試験は、文献「JIS Z 2247」に示されるエリクセン試験方法に従い、90mm×90mmの試験片を用いてエリクセン値(貫通割れが発生する張り出し高さ)を測定した。また、得られた樹脂被覆鋼板を用いてEOEタブ取り付け用リベットを成形し、リベット成形性を評価した。リベット成形は3段階のプレス加工により行い、張り出し加工の後に縮径加工を行って直径4.0mm、高さ2.5mmの球頭状リベットを成形した。リベット部で割れが発生した場合を×、割れに至る前段階の厚さ方向くびれが発生した場合を○、割れや厚さ方向くびれが発生しない場合を◎と評価した。得られた結果を表3に示す。   A tensile test was performed on the resin-coated steel sheet obtained as described above. In the tensile test, tensile strength (tensile strength) was measured using a tensile test piece of JIS No. 5 size in accordance with a metal material tensile test method shown in the document “JIS Z 2241”. Moreover, the Erichsen test was done with respect to the obtained resin-coated steel plate. In the Erichsen test, the Erichsen value (the overhang height at which a through crack occurs) was measured using a 90 mm × 90 mm test piece in accordance with the Eriksen test method shown in the document “JIS Z 2247”. Moreover, the rivet for EOE tab attachment was shape | molded using the obtained resin-coated steel plate, and rivet moldability was evaluated. Rivet forming was performed by three-stage press work, and after the overhanging process, a diameter reduction process was performed to form a spherical head rivet having a diameter of 4.0 mm and a height of 2.5 mm. The case where cracks occurred at the rivet part was evaluated as x, the case where necking in the thickness direction before cracking occurred was evaluated as ◯, and the case where cracking or necking in the thickness direction did not occur was evaluated as ◎. The obtained results are shown in Table 3.

Figure 2013151085
Figure 2013151085

表3に示すように、発明例のNo.1乃至6の鋼板は強度に優れており、極薄の缶用鋼板として必要な引張強度520MPa以上を達成している。また、加工性にも優れており、EOEの加工に必要な5.0mm以上のエリクセン値を有している。また、リベット成形を行っても割れや厚さ方向くびれは生じていない。これに対して、比較例のNo.7,9の鋼板はそれぞれ、C及びNの含有量が少なすぎるため、引張強度が不足している。比較例8の鋼板は、Cの含有量が多すぎるため、二次冷間圧延により加工性が損なわれ、エリクセン値が不足し、リベット成形で割れが生じている。   As shown in Table 3, No. of the invention example. The steel plates 1 to 6 are excellent in strength, and have achieved a tensile strength of 520 MPa or more necessary as an ultrathin steel plate for cans. Moreover, it is excellent in workability and has an Erichsen value of 5.0 mm or more necessary for EOE processing. Further, even when rivet forming is performed, neither cracking nor thickness constriction occurs. In contrast, No. of the comparative example. Each of the steel sheets Nos. 7 and 9 has insufficient tensile strength because the contents of C and N are too small. Since the steel sheet of Comparative Example 8 has too much C, the workability is impaired by secondary cold rolling, the Erichsen value is insufficient, and cracking occurs in rivet forming.

また、比較例のNo.10の鋼板はNの含有量が多すぎるため、連続鋳造においてスラブ割れを生じている。また、比較例のNo.11の鋼板は、熱延後の巻き取り温度が高すぎるため、局部伸びが低下することでエリクセン値が不足し、リベット成形で割れが生じている。また、比較例のNo.12の鋼板は、連続焼鈍における均熱温度が低すぎるため再結晶が不十分であり、エリクセン値が不足し、リベット成形で割れが生じている。また、比較例のNo.13の鋼板は、連続焼鈍における均熱温度が高すぎるため粒成長が過大となり、引張強度が不足している。比較例のNo.14の鋼板は、連続焼鈍における均熱時間が短すぎるため再結晶が不十分であり、エリクセン値が不足し、リベット成形で割れが生じている。   Moreover, No. of the comparative example. Since the steel plate No. 10 has too much N content, slab cracking occurs in continuous casting. Moreover, No. of the comparative example. Steel sheet No. 11 has a coiling temperature after hot rolling that is too high, resulting in a decrease in local elongation, resulting in a lack of Erichsen value and cracking in rivet forming. Moreover, No. of the comparative example. The steel plate No. 12 has a low soaking temperature in continuous annealing, so that recrystallization is insufficient, the Eriksen value is insufficient, and cracking occurs in rivet forming. Moreover, No. of the comparative example. In No. 13, the soaking temperature in continuous annealing is too high, resulting in excessive grain growth and insufficient tensile strength. Comparative Example No. No. 14 steel plate has insufficient recrystallization because the soaking time in continuous annealing is too short, the Eriksen value is insufficient, and cracking occurs in rivet forming.

また、比較例のNo.15の鋼板は、連続焼鈍における均熱時間が長すぎるため粒成長が過大となり、引張強度が不足している。比較例のNo.16の鋼板は、2次冷間圧延率が小さすぎるため、引張強度が不足している。比較例のNo.17の鋼板は、2次冷間圧延率が大きすぎるため、加工硬化が過大となり、エリクセン値が不足し、リベット成形で割れが生じている。請求項1,3の発明例で請求項2の比較例のNo.18の鋼板は、鋼板表面に被覆した樹脂フィルムの厚さが薄すぎるため、リベット成形においてその効果が十分に発揮されず、割れに至る前段階の厚さ方向くびれ割れを生じている。請求項1,3の発明例で請求項2の比較例のNo.19の鋼板は、鋼板表面に被覆した樹脂フィルムの厚さが厚すぎるため、リベット成形において鋼板の変形量が増大し、割れに至る前段階の厚さ方向くびれ割れを生じている。   Moreover, No. of the comparative example. In No. 15, the soaking time in continuous annealing is too long, resulting in excessive grain growth and insufficient tensile strength. Comparative Example No. No. 16 steel plate has insufficient tensile strength because the secondary cold rolling rate is too small. Comparative Example No. Since the steel plate No. 17 has a secondary cold rolling rate that is too large, the work hardening is excessive, the Erichsen value is insufficient, and cracking occurs in rivet forming. In the inventive examples of claims 1 and 3, the comparative example No. In No. 18, the thickness of the resin film coated on the surface of the steel plate is too thin, so that the effect is not sufficiently exhibited in the rivet forming, and a constriction crack in the thickness direction before cracking occurs. In the inventive examples of claims 1 and 3, the comparative example No. In No. 19, the thickness of the resin film coated on the surface of the steel plate is too thick, so that the deformation amount of the steel plate is increased in rivet forming, and a constriction crack in the thickness direction before cracking occurs.

以上のことから、発明例の鋼板によれば、引っ張り強度が520MPa以上、且つ、エリクセン値が5.0mm以上の高強度高加工性鋼板を得られることが確認された。   From the above, according to the steel sheet of the invention example, it was confirmed that a high strength and high workability steel sheet having a tensile strength of 520 MPa or more and an Erichsen value of 5.0 mm or more can be obtained.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例、および運用技術などは全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

本発明によれば、引張強度が520MPa以上、且つ、エリクセン値が5.0mm以上の高強度高加工性鋼板を提供することができる。   According to the present invention, it is possible to provide a high-strength and high-workability steel sheet having a tensile strength of 520 MPa or more and an Erichsen value of 5.0 mm or more.

Claims (3)

質量%で、C:0.020%超え0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超え0.0170%以下を含有し、残部はFe及び不可避的不純物からなり、少なくとも缶内面となる側に樹脂フィルム層を有し、圧延方向の引張強度が520MPa以上であり、エリクセン値が5.0mm以上であることを特徴とする高強度高加工性鋼板。   C: 0.020% to less than 0.040%, Si: 0.003% to 0.100%, Mn: 0.10% to 0.60%, P: 0.001% or more 0.100% or less, S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: 0.0130% or more and 0.0170% or less, the balance being Fe and inevitable impurities, having a resin film layer on at least the inner surface of the can, having a tensile strength in the rolling direction of 520 MPa or more, and an Erichsen value of 5.0 mm or more. Workable steel sheet. 樹脂フィルム層の厚さが5乃至100μmの範囲内にあることを特徴とする請求項1に記載の高強度高加工性鋼板。   The high-strength and high-workability steel sheet according to claim 1, wherein the thickness of the resin film layer is in the range of 5 to 100 µm. C:0.020%超え0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超え0.0170%以下を含有し、残部はFe及び不可避的不純物からなる鋼を連続鋳造によりスラブとし、スラブ再加熱温度を1150℃以上として熱間圧延を行い、600℃以下の温度で巻き取り、次いで一次冷間圧延を行い、引き続き均熱温度600乃至700℃、均熱時間10乃至50秒で連続焼鈍を行い、次いで8.0乃至15.0%の圧延率で二次冷間圧延を行い、電解法により表面処理皮膜を形成した後に少なくとも缶内面となる側に樹脂フィルムを貼り付け、圧延方向の引張強度が520MPa以上であり、エリクセン値が5.0mm以上である鋼板を製造することを特徴とする高強度高加工性鋼板の製造方法。   C: 0.020% to less than 0.040%, Si: 0.003% to 0.100%, Mn: 0.10% to 0.60%, P: 0.001% to 0.100% Hereinafter, S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: 0.0130% to 0.0170% or less, the balance being Fe and inevitable Steel made of impurities is made into a slab by continuous casting, slab reheating temperature is set to 1150 ° C. or higher, hot rolling is performed, winding is performed at a temperature of 600 ° C. or lower, primary cold rolling is performed, and soaking temperature is 600 to 700. C. and a soaking time of 10 to 50 seconds, followed by secondary cold rolling at a rolling rate of 8.0 to 15.0%, and after forming a surface treatment film by electrolytic method, at least the inner surface of the can A resin film on the side Ri attached, and a tensile strength in the rolling direction is 520MPa or more, the method of producing a high strength and high formability steel sheet characterized by producing steel sheet Erichsen value is 5.0mm or more.
JP2014509184A 2012-04-06 2013-04-03 High-strength, high-workability steel sheet and manufacturing method Active JP5804195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014509184A JP5804195B2 (en) 2012-04-06 2013-04-03 High-strength, high-workability steel sheet and manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012087940 2012-04-06
JP2012087940 2012-04-06
JP2014509184A JP5804195B2 (en) 2012-04-06 2013-04-03 High-strength, high-workability steel sheet and manufacturing method
PCT/JP2013/060175 WO2013151085A1 (en) 2012-04-06 2013-04-03 High-strength, highly workable steel sheet, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP5804195B2 JP5804195B2 (en) 2015-11-04
JPWO2013151085A1 true JPWO2013151085A1 (en) 2015-12-17

Family

ID=49300566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014509184A Active JP5804195B2 (en) 2012-04-06 2013-04-03 High-strength, high-workability steel sheet and manufacturing method

Country Status (9)

Country Link
US (1) US20150064448A1 (en)
EP (1) EP2835438B1 (en)
JP (1) JP5804195B2 (en)
KR (1) KR20140117602A (en)
CN (1) CN104245985B (en)
CO (1) CO7061066A2 (en)
MY (1) MY185149A (en)
TW (1) TWI473889B (en)
WO (1) WO2013151085A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3138936B1 (en) * 2014-04-30 2020-01-01 JFE Steel Corporation High-strength steel sheet and production method therefor
CN107429360B (en) * 2015-03-31 2019-06-25 杰富意钢铁株式会社 The manufacturing method of steel plate for tanks and steel plate for tanks
US20180112295A1 (en) * 2015-03-31 2018-04-26 Jfe Steel Corporation Steel sheet for can lid and method for producing the same (as amended)
JP6421772B2 (en) * 2016-02-29 2018-11-14 Jfeスチール株式会社 Manufacturing method of steel sheet for cans
DE102020106164A1 (en) 2020-03-06 2021-09-09 Thyssenkrupp Rasselstein Gmbh Cold rolled flat steel product for packaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533188A (en) * 1991-07-30 1993-02-09 Nippon Steel Corp Surface treated steel for vessel excellent in rust resistance and external appearance characteristic
JP2004218061A (en) * 2002-11-21 2004-08-05 Nippon Steel Corp Container use steel sheet remarkably satisfactory in deformation resistance, and its production method
WO2008018531A1 (en) * 2006-08-11 2008-02-14 Nippon Steel Corporation Dr steel sheet and process for manufacturing the same
WO2009123356A1 (en) * 2008-04-03 2009-10-08 Jfeスチール株式会社 High-strength steel plate for a can and method for manufacturing said high-strength steel plate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3740779B2 (en) 1997-03-12 2006-02-01 Jfeスチール株式会社 Steel plate for easy open can lid excellent in openability and rivet formability, manufacturing method thereof, and easy open can lid
JP3840004B2 (en) * 1999-08-17 2006-11-01 新日本製鐵株式会社 Ultra-thin soft steel plate for containers with excellent can strength and can moldability and method for producing the same
TW558569B (en) * 2000-02-23 2003-10-21 Kawasaki Steel Co High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
US20030015263A1 (en) * 2000-05-26 2003-01-23 Chikara Kami Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
JP4665302B2 (en) * 2000-11-02 2011-04-06 Jfeスチール株式会社 High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JP4519373B2 (en) * 2000-10-27 2010-08-04 Jfeスチール株式会社 High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
US7666487B2 (en) * 2003-05-22 2010-02-23 Jfe Steel Corporation Easy-open end and laminated steel sheet
JP5453884B2 (en) * 2008-04-03 2014-03-26 Jfeスチール株式会社 Steel plate for high-strength container and manufacturing method thereof
CN102286688A (en) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 Steel for high-hardness tin plating primitive plate and manufacture method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533188A (en) * 1991-07-30 1993-02-09 Nippon Steel Corp Surface treated steel for vessel excellent in rust resistance and external appearance characteristic
JP2004218061A (en) * 2002-11-21 2004-08-05 Nippon Steel Corp Container use steel sheet remarkably satisfactory in deformation resistance, and its production method
WO2008018531A1 (en) * 2006-08-11 2008-02-14 Nippon Steel Corporation Dr steel sheet and process for manufacturing the same
WO2009123356A1 (en) * 2008-04-03 2009-10-08 Jfeスチール株式会社 High-strength steel plate for a can and method for manufacturing said high-strength steel plate

Also Published As

Publication number Publication date
CO7061066A2 (en) 2014-09-19
US20150064448A1 (en) 2015-03-05
KR20140117602A (en) 2014-10-07
CN104245985B (en) 2017-08-11
EP2835438B1 (en) 2019-06-26
EP2835438A4 (en) 2015-12-23
MY185149A (en) 2021-04-30
TWI473889B (en) 2015-02-21
CN104245985A (en) 2014-12-24
TW201410879A (en) 2014-03-16
EP2835438A1 (en) 2015-02-11
JP5804195B2 (en) 2015-11-04
WO2013151085A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5794004B2 (en) Steel sheet for high strength can excellent in flange workability and manufacturing method thereof
JP5810714B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP5804195B2 (en) High-strength, high-workability steel sheet and manufacturing method
WO2010113333A1 (en) Steel sheet for high‑strength container and manufacturing method thereof
WO2016067514A1 (en) Steel sheet for two-piece can and manufacturing method therefor
JP5018843B2 (en) Steel plate for high workability 3-piece welded can and manufacturing method thereof
WO1999063124A1 (en) Resin-coated steel sheet suitable for use in thin-walled deep-drawn ironed can and steel sheet therefor
JP5854134B2 (en) 3-piece can body and manufacturing method thereof
JP5672907B2 (en) Steel sheet for high strength and high workability can and method for producing
JP6198011B2 (en) Manufacturing method of steel plate for hard container
WO2020129482A1 (en) Steel plate for can and method for producing same
JP6019719B2 (en) Manufacturing method of high strength and high ductility steel sheet
JP2534589B2 (en) Polyester resin coated steel plate and original plate for thinned deep drawn can
JP2015151620A (en) Steel sheet for can and production method of steel sheet for can
JP5540580B2 (en) Steel sheet for high strength and high workability can and method for producing
WO2018180403A1 (en) Steel sheet for two-piece can and production method therefor
JPH05247669A (en) Manufacture of high strength steel sheet for thinned and deep-drawn can
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP2002317248A (en) Thinned steel sheet for deep drawn and ironed can having excellent workability
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
AU2018309964B2 (en) Steel sheet for crown cap, crown cap and method for producing steel sheet for crown cap
JP2013100598A (en) Steel sheet for high-strength can excellent in flange processibility, and method for production thereof
JP6822617B1 (en) Steel sheet for cans and its manufacturing method
JP3577413B2 (en) Steel sheet for cans having few defects and excellent seizure hardenability and method for producing the same
JP2013119655A (en) High-strength high-workability steel sheet for can and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5804195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250