JPWO2013147267A1 - Composition for forming immersion upper layer film - Google Patents

Composition for forming immersion upper layer film Download PDF

Info

Publication number
JPWO2013147267A1
JPWO2013147267A1 JP2014508237A JP2014508237A JPWO2013147267A1 JP WO2013147267 A1 JPWO2013147267 A1 JP WO2013147267A1 JP 2014508237 A JP2014508237 A JP 2014508237A JP 2014508237 A JP2014508237 A JP 2014508237A JP WO2013147267 A1 JPWO2013147267 A1 JP WO2013147267A1
Authority
JP
Japan
Prior art keywords
group
carbon atoms
polymer
structural unit
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014508237A
Other languages
Japanese (ja)
Other versions
JP6070694B2 (en
Inventor
光央 佐藤
光央 佐藤
信也 峯岸
信也 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Publication of JPWO2013147267A1 publication Critical patent/JPWO2013147267A1/en
Application granted granted Critical
Publication of JP6070694B2 publication Critical patent/JP6070694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means

Abstract

本発明は、下記式(1)で表される構造単位を有する重合体(a1)を含む重合体成分、及び溶媒を含有する液浸上層膜形成用組成物である。下記式(1)中、R1は、アルカリ解離性基である。Aは、−CO−O−*、−O−、−NRA−又は−SO2−O−*である。Xは、炭素数1〜20の2価の炭化水素基又は炭素数1〜20の2価のフッ素化炭化水素基である。上記式(1)におけるR1としては、炭素数1〜20のフッ素化アルキル基又は炭素数1〜20のフッ素化アルキルカルボニル基が好ましい。The present invention is a composition for forming an immersion upper layer film comprising a polymer component containing a polymer (a1) having a structural unit represented by the following formula (1), and a solvent. In the following formula (1), R1 is an alkali dissociable group. A is —CO—O— *, —O—, —NRA— or —SO 2 —O— *. X is a C1-C20 bivalent hydrocarbon group or a C1-C20 bivalent fluorinated hydrocarbon group. R1 in the above formula (1) is preferably a fluorinated alkyl group having 1 to 20 carbon atoms or a fluorinated alkylcarbonyl group having 1 to 20 carbon atoms.

Description

本発明は、液浸上層膜形成用組成物に関する。   The present invention relates to a composition for forming a liquid immersion upper layer film.

集積回路素子の製造に代表される微細加工の分野においては、従来、酸解離性基を有する重合体を含むフォトレジスト組成物によって基板上にレジスト膜を形成し、マスクパターンを介するエキシマレーザー光等の短波長の放射線の照射によりレジスト膜を露光し、露光部をアルカリ現像液で除去することにより微細なレジストパターンを形成することが行われている。この際、フォトレジスト組成物中に放射線照射により酸を発生する酸発生剤を含有させ、その酸の作用により感度を向上させた「化学増幅型レジスト」が利用されている。   In the field of microfabrication represented by the manufacture of integrated circuit elements, conventionally, a resist film is formed on a substrate with a photoresist composition containing a polymer having an acid-dissociable group, and an excimer laser beam or the like is passed through a mask pattern. A fine resist pattern is formed by exposing a resist film by irradiation with short-wavelength radiation and removing an exposed portion with an alkaline developer. At this time, a “chemically amplified resist” is used in which an acid generator that generates an acid upon irradiation with radiation is contained in the photoresist composition, and the sensitivity is improved by the action of the acid.

このような化学増幅型レジストにおいて、さらに微細なレジストパターンを形成する方法として液浸露光法の利用が拡大しつつある。この方法では、露光レンズとレジスト膜との間を、空気や不活性ガスに比して屈折率が大きい液浸露光液で満たして露光を行う。この液浸露光法によれば、レンズの開口数を増大させた場合でも、焦点深度が低下し難く、しかも高い解像性が得られるという利点がある。   In such a chemically amplified resist, the use of the immersion exposure method is expanding as a method for forming a finer resist pattern. In this method, exposure is performed by filling the space between the exposure lens and the resist film with an immersion exposure liquid having a higher refractive index than air or an inert gas. According to this immersion exposure method, there is an advantage that even when the numerical aperture of the lens is increased, the depth of focus is hardly lowered and high resolution is obtained.

上記液浸露光法に用いられるフォトレジスト組成物としては、レジスト膜から液浸露光液への酸発生剤等の溶出を防止し、かつレジスト膜表面の水切れを良くし、高速スキャンを可能にすることを目的として、レジスト膜表面の撥水性を高める方法が検討されており、例えば、この表面に撥水性の高い液浸上層膜を設けることやフォトレジスト組成物に撥水性が高いフッ素原子含有重合体を含有することが提案されている(国際公開2007/116664号参照)。   As a photoresist composition used in the above immersion exposure method, elution of an acid generator and the like from the resist film to the immersion exposure liquid is prevented, and water drainage of the resist film surface is improved, enabling high-speed scanning. For this purpose, a method for increasing the water repellency of the resist film surface has been studied. For example, a highly water-repellent upper layer film is provided on this surface, or the fluorine-containing weight having a high water repellency is applied to the photoresist composition. It has been proposed to contain coalesces (see WO 2007/116664).

しかし、レジスト膜表面の撥水性を高めると、現像液やリンス液に対する濡れ性が低下するため、現像時にレジスト膜表面の未露光部に沈着した現像残渣の除去が不十分となり、Blob欠陥等の現像欠陥が発生することがある。このような現像欠陥の発生を抑制することを目的として、液浸露光時には撥水性であるが、アルカリ現像時には撥水性が低下するフッ素原子含有重合体を用いる技術が提案されている(特開2010−032994号公報参照)。この技術によれば、液浸露光時におけるレジスト膜表面の水等の液浸露光液に対する後退接触角を大きくすると共に、現像欠陥の発生を抑制できるとされている。   However, when the water repellency of the resist film surface is increased, the wettability with respect to the developing solution and the rinsing solution is lowered, so that the development residue deposited on the unexposed portion of the resist film surface at the time of development becomes insufficient. Development defects may occur. In order to suppress the occurrence of such development defects, there has been proposed a technique using a fluorine atom-containing polymer that is water-repellent during immersion exposure but decreases in water-repellency during alkali development (JP 2010). No. 032994). According to this technique, it is said that the receding contact angle with respect to the immersion exposure liquid such as water on the resist film surface during the immersion exposure can be increased and development defects can be suppressed.

しかしながら、上記従来の技術を用いたとしても、未だ現像欠陥の発生を十分に抑制することができていない。また、その一方で、液浸露光時の後退接触角をさらに高めてスキャンをさらに高速化し、液浸露光プロセスの生産性を向上させることも要求されている。加えて、液浸上層膜には、レジストパターン形状の改善も求められている。   However, even if the above conventional technique is used, the occurrence of development defects has not been sufficiently suppressed. On the other hand, it is also required to increase the receding contact angle at the time of immersion exposure to further increase the scanning speed and improve the productivity of the immersion exposure process. In addition, the liquid immersion upper layer film is also required to improve the resist pattern shape.

国際公開2007/116664号International Publication No. 2007/116664 特開2010−032994号公報JP 2010-032994 A

本発明は、以上のような事情に基づいてなされたものであり、その目的は、液浸露光プロセスにおいて、液浸上層膜表面の液浸露光時の後退接触角をより大きくすることができ、かつ現像欠陥の発生を抑制することができると共に、さらに良好な形状のレジストパターンを形成可能な液浸上層膜形成用組成物を提供することである。   The present invention has been made based on the circumstances as described above, and its purpose is to increase the receding contact angle at the time of immersion exposure on the surface of the immersion upper layer in the immersion exposure process. In addition, an object of the present invention is to provide a composition for forming a liquid immersion upper layer film that can suppress development defects and can form a resist pattern having a better shape.

上記課題を解決するためになされた発明は、
下記式(1)で表される構造単位(以下、「構造単位(I)」ともいう)を有する重合体(a1)を含む重合体成分(以下、「[A]重合体成分」ともいう)、及び
溶媒(以下、「[B]溶媒」ともいう)
を含有する液浸上層膜形成用組成物である。

Figure 2013147267
(式(1)中、Rは、アルカリ解離性基である。Aは、−CO−O−*、−O−、−NR−又は−SO−O−*である。Rは、水素原子又は炭素数1〜10の1価の炭化水素基である。*は、Rとの結合部位を示す。Xは、炭素数1〜20の2価の炭化水素基又は炭素数1〜20の2価のフッ素化炭化水素基である。Rは、炭素数1〜20の(n+1)価の炭化水素基、炭素数1〜20の(n+1)価のフッ素化炭化水素基、又はこれらの基と−CO−、−COO−、−OCO−、−O−、−NR−、−CS−、−S−、−SO−及び−SO−からなる群より選択される少なくとも1種の基とを組み合わせた基である。但し、nが1の場合、Rは、単結合であってもよい。Rは、水素原子又は炭素数1〜10の1価の炭化水素基である。Rは、炭素数1〜20の1価の炭化水素基、炭素数1〜20の1価のフッ素化炭化水素基、又はこれらの基と−CO−、−COO−、−OCO−、−O−、−NR−、−CS−、−S−、−SO−及び−SO−からなる群より選択される少なくとも1種の基とを組み合わせた基である。Rは、水素原子又は炭素数1〜10の1価の炭化水素基である。nは、1〜3の整数である。nが2以上の場合、複数のR、A及びXは、それぞれ同一でも異なっていてもよい。)The invention made to solve the above problems is
Polymer component (hereinafter also referred to as “[A] polymer component”) including a polymer (a1) having a structural unit represented by the following formula (1) (hereinafter also referred to as “structural unit (I)”) And solvent (hereinafter also referred to as “[B] solvent”)
Is a composition for forming a liquid immersion upper layer film.
Figure 2013147267
(In the formula (1), R 1 is an alkali dissociable group .A is, -CO-O - *, - O -, - NR A - , or .R A is -SO 2 -O- * is , A hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, * represents a bonding site with R 1 , X is a divalent hydrocarbon group having 1 to 20 carbon atoms or 1 carbon atom; A divalent fluorinated hydrocarbon group having ˜20, R 2 is an (n + 1) valent hydrocarbon group having 1 to 20 carbon atoms, an (n + 1) valent fluorinated hydrocarbon group having 1 to 20 carbon atoms, Or at least selected from the group consisting of these groups and —CO—, —COO—, —OCO—, —O—, —NR B —, —CS—, —S—, —SO— and —SO 2 —. is a group which combines with one group. However, when n is 1, R 2 is a single bond which may be a .R B is a hydrogen atom or a carbon number from 1 to 10 The monovalent hydrocarbon is a group .R 3, and a monovalent hydrocarbon group, a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms, or their group having 1 to 20 carbon atoms -CO-, A group in which at least one group selected from the group consisting of —COO—, —OCO—, —O—, —NR C —, —CS—, —S—, —SO— and —SO 2 — is combined. R C is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 3. When n is 2 or more, a plurality of R 1 , A and X may be the same or different.

当該液浸上層膜形成用組成物(以下、「液浸露光用膜形成組成物(TC)」ともいう)は、[A]重合体成分として、重合体(a1)を含有する。当該液浸上層膜形成用組成物を用いてレジスト膜上に液浸上層膜を形成することで、これに含まれる重合体(a1)によって、その高い撥水性により、液浸上層膜表面の液浸露光時の後退接触角をより大きくすることができる。また、重合体(a1)は、アルカリ現像時にはアルカリ解離性基が解離して親水性が高くなる。従って、液浸上層膜表面の現像液やリンス液への親和性又は溶解性が高まり、その結果、現像欠陥の発生を抑制することができる。これは、当該液浸上層膜形成用組成物においては、重合体(a1)の構造単位(I)が、上記特定の部位にアルカリ解離性基を有していることに起因すると考えられる。   The immersion film forming composition (hereinafter also referred to as “immersion exposure film forming composition (TC)”) contains the polymer (a1) as a polymer component [A]. By forming the liquid immersion upper layer film on the resist film using the liquid immersion upper film forming composition, the polymer (a1) contained in the liquid film on the surface of the liquid immersion upper layer film has a high water repellency. The receding contact angle during immersion exposure can be further increased. Further, the polymer (a1) is highly hydrophilic due to dissociation of alkali dissociable groups during alkali development. Accordingly, the affinity or solubility of the surface of the liquid immersion upper layer film to the developer or rinse liquid is increased, and as a result, development defects can be suppressed. This is considered to be due to the fact that the structural unit (I) of the polymer (a1) has an alkali dissociable group at the specific site in the composition for forming a liquid immersion upper layer film.

上記式(1)におけるRは、炭素数1〜20のフッ素化アルキル基又は炭素数1〜20のフッ素化アルキルカルボニル基であることが好ましい。上記Rがフッ素原子を含むことで、当該液浸上層膜形成用組成物は、液浸上層膜表面の液浸露光時の後退接触角をより大きくすることができ、かつ現像欠陥の発生を抑制することができる。R 1 in the above formula (1) is preferably a fluorinated alkyl group having 1 to 20 carbon atoms or a fluorinated alkylcarbonyl group having 1 to 20 carbon atoms. When R 1 contains a fluorine atom, the composition for forming a liquid immersion upper film can increase the receding contact angle at the time of liquid immersion exposure on the surface of the liquid immersion upper film, and can cause development defects. Can be suppressed.

上記式(1)におけるXは、炭素数1〜20の2価のフッ素化炭化水素基であることが好ましい。上記Xがフッ素原子を含むことで、当該液浸上層膜形成用組成物は、液浸上層膜表面の液浸露光時の後退接触角をさらに大きくすることができると共に、アルカリ解離性基の解離性を高めることができ、その結果、現像欠陥の発生をより抑制できる。   X in the above formula (1) is preferably a C1-C20 divalent fluorinated hydrocarbon group. When X contains a fluorine atom, the composition for forming a liquid immersion upper layer film can further increase the receding contact angle at the time of liquid immersion exposure on the surface of the liquid immersion upper layer film and dissociate the alkali-dissociable group. As a result, development defects can be further suppressed.

上記式(1)におけるRは、酸解離性を有することが好ましい。上記Rが酸解離性を有することで、当該液浸上層膜形成用組成物は、露光部における重合体(a1)のアルカリ現像液への溶解性を高めることができ、その結果、現像欠陥の発生をさらに抑制できる。R 3 in the above formula (1) preferably has acid dissociability. Since the R 3 has acid dissociation properties, the composition for forming a liquid immersion upper layer film can improve the solubility of the polymer (a1) in the exposed portion in an alkaline developer, and as a result, development defects. Can be further suppressed.

[A]重合体成分は、重合体(a1)と同一又は異なる重合体中に、フッ素化スルホンアミド基を含む構造単位及びα−トリフルオロメチルアルコール基を含む構造単位からなる群より選択される少なくとも1種の構造単位(以下、「構造単位(III)」ともいう)をさらに有することが好ましい。当該液浸上層膜形成用組成物は、[A]重合体成分が上記特定の構造単位をさらに有することで、液浸上層膜の撥水性及び除去性を向上させることができると共に、現像欠陥の発生を抑制することができる。   [A] The polymer component is selected from the group consisting of a structural unit containing a fluorinated sulfonamide group and a structural unit containing an α-trifluoromethyl alcohol group in the same or different polymer as the polymer (a1). It is preferable to further have at least one structural unit (hereinafter also referred to as “structural unit (III)”). The composition for forming a liquid immersion upper layer film can improve the water repellency and removability of the liquid immersion upper layer film because the polymer component [A] further has the specific structural unit. Occurrence can be suppressed.

[A]重合体成分は、重合体(a1)と同一又は異なる重合体中に、スルホ基を含む構造単位(以下、「構造単位(IV)」ともいう)をさらに有することが好ましい。当該液浸上層膜形成用組成物は、[A]重合体成分が上記特定の構造単位をさらに有することで、液浸上層膜の除去性及び剥がれ耐性をより向上させることができると共に、現像欠陥の発生をより抑制することができる。   [A] The polymer component preferably further has a structural unit containing a sulfo group (hereinafter also referred to as “structural unit (IV)”) in the same or different polymer as the polymer (a1). In the composition for forming a liquid immersion upper layer film, the [A] polymer component further includes the above-mentioned specific structural unit, whereby the removability and peeling resistance of the liquid immersion upper film can be further improved, and development defects Can be further suppressed.

[A]重合体成分は、重合体(a1)と同一又は異なる重合体中に、カルボキシ基を含む構造単位及び下記式(2)で表される基を含む構造単位からなる群より選択される少なくとも1種の構造単位(以下、「構造単位(V)」ともいう)をさらに有することが好ましい。

Figure 2013147267
(式(2)中、Rは、水素原子、ハロゲン原子、ニトロ基、炭素数1〜20のアルキル基、炭素数3〜20の1価の脂環式炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシル基、炭素数7〜20のアラルキル基又は炭素数6〜20のアリール基である。上記アルキル基、脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基及びアリール基が有する水素原子の一部又は全部は、置換されていてもよい。Rは、−C(=O)−R、−S(=O)−R、−R−CN、又は−R−NOである。上記R及びRは、それぞれ独立して、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のフッ素化アルキル基、炭素数3〜20の1価の脂環式炭化水素基、炭素数1〜20のアルコキシ基、シアノ基、シアノメチル基、炭素数7〜20のアラルキル基又は炭素数6〜20のアリール基である。但し、R又はRと、Rとが互いに結合して環構造を形成していてもよい。上記R及びRは、それぞれ独立して、単結合、メチレン基又は炭素数2〜5のアルキレン基である。)[A] The polymer component is selected from the group consisting of a structural unit containing a carboxy group and a structural unit containing a group represented by the following formula (2) in the same or different polymer as the polymer (a1). It is preferable to further have at least one structural unit (hereinafter also referred to as “structural unit (V)”).
Figure 2013147267
(In Formula (2), R 4 is a hydrogen atom, a halogen atom, a nitro group, an alkyl group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or 1 to 20 carbon atoms. An alkoxy group, an acyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, the above-described alkyl group, alicyclic hydrocarbon group, alkoxy group, acyl group, Some or all of the hydrogen atoms of the aralkyl group and aryl group may be substituted, and R 5 represents —C (═O) —R 6 , —S (═O) 2 —R 7 , —R. 8 -CN, or -R 9 -NO 2. The above R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a fluorinated alkyl group having 1 to 20 carbon atoms, C3-C20 monovalent alicyclic hydrocarbon group, C1-C20 alkoxy group Cyano group, a cyanomethyl group, an aralkyl group or an aryl group having 6 to 20 carbon atoms having 7 to 20 carbon atoms. However, the R 6 or R 7, to form a ring structure and R 4 together R 8 and R 9 are each independently a single bond, a methylene group or an alkylene group having 2 to 5 carbon atoms.)

当該液浸上層露膜形成用組成物は、[A]重合体成分が上記特定の構造単位をさらに有することで、液浸上層膜の除去性及び剥がれ耐性をさらに向上させることができると共に、現像欠陥の発生をさらに抑制することができる。   In the composition for forming a liquid immersion upper layer dew film, the [A] polymer component further includes the specific structural unit described above, whereby the removability and peeling resistance of the liquid immersion upper layer film can be further improved, and development The occurrence of defects can be further suppressed.

本発明の液浸上層膜膜形成用組成物によれば、液浸露光プロセスにおいて、液浸露光時には液浸上層膜表面に大きな後退接触角を与え、かつ現像欠陥の発生を抑制できると共に、さらに良好な形状のレジストパターンを形成することができる。従って、当該液浸上層膜形成用組成物は、更なる微細化が進む半導体デバイスにおける製造プロセスに好適に使用することができ、液浸露光プロセスにおける製品の品質及び生産性を向上することができる。   According to the composition for forming a liquid immersion upper film of the present invention, in the liquid immersion exposure process, a large receding contact angle can be given to the surface of the liquid immersion upper film at the time of liquid immersion exposure, and the occurrence of development defects can be suppressed. A resist pattern having a good shape can be formed. Therefore, the liquid immersion upper layer film forming composition can be suitably used for a manufacturing process in a semiconductor device that is further miniaturized, and can improve product quality and productivity in the liquid immersion exposure process. .

<液浸露光用膜形成組成物>
当該液浸露光用膜形成組成物は、[A]重合体成分及び[B]溶媒を含有する。また、当該液浸露光用膜形成組成物は、本発明の効果を損なわない範囲で、任意成分を含有していてもよい。以下、各成分について詳述する。
<Film forming composition for immersion exposure>
The film forming composition for immersion exposure contains a [A] polymer component and a [B] solvent. Moreover, the said film formation composition for immersion exposure may contain arbitrary components in the range which does not impair the effect of this invention. Hereinafter, each component will be described in detail.

<[A]重合体成分>
[A]重合体成分は、重合体(a1)を含んでいる。また、[A]重合体成分は、本発明の効果を損なわない範囲で、後述する重合体(a2)や(a3)等の他の重合体を含んでいてもよい。なお、[A]重合体成分は、上記各重合体を2種以上含んでいてもよい。以下、重合体(a1)について詳述する。
<[A] Polymer component>
[A] The polymer component contains a polymer (a1). Moreover, the [A] polymer component may contain other polymers, such as a polymer (a2) mentioned later and (a3), in the range which does not impair the effect of this invention. In addition, the [A] polymer component may contain 2 or more types of said each polymer. Hereinafter, the polymer (a1) will be described in detail.

<重合体(a1)>
重合体(a1)は、構造単位(I)を有する重合体である。また、重合体(a1)は、構造単位(I)以外の他の構造単位を有していてもよい。なお、重合体(a1)は、各構造単位を2種以上有していてもよい。以下、各構造単位について詳述する。
<Polymer (a1)>
The polymer (a1) is a polymer having the structural unit (I). Moreover, the polymer (a1) may have other structural units other than the structural unit (I). In addition, the polymer (a1) may have 2 or more types of each structural unit. Hereinafter, each structural unit will be described in detail.

[構造単位(I)]
構造単位(I)は、上記式(1)で表される構造単位である。当該液浸露光用膜形成組成物をフォトレジスト組成物等として用いた場合、重合体(a1)は、その高い撥水性により、レジスト膜等表面の液浸露光時の後退接触角をより大きくすることができる。また、重合体(a1)は、アルカリ現像時にはアルカリ解離性基が解離して親水性が高くなる。従って、レジスト膜等表面の現像液やリンス液への親和性又は溶解性が高まり、その結果、現像欠陥の発生を抑制することができる。これは、当該液浸露光用膜形成組成物においては、重合体(a1)の構造単位(I)が、上記特定の部位にアルカリ解離性基を有していることに起因すると考えられる。
[Structural unit (I)]
The structural unit (I) is a structural unit represented by the above formula (1). When the film forming composition for immersion exposure is used as a photoresist composition or the like, the polymer (a1) has a higher receding contact angle during immersion exposure on the surface of the resist film or the like due to its high water repellency. be able to. Further, the polymer (a1) is highly hydrophilic due to dissociation of alkali dissociable groups during alkali development. Accordingly, the affinity or solubility of the surface of the resist film or the like to the developing solution or rinsing solution is increased, and as a result, development defects can be suppressed. This is considered to be due to the fact that the structural unit (I) of the polymer (a1) has an alkali-dissociable group at the specific site in the film forming composition for immersion exposure.

上記式(1)中、Rは、アルカリ解離性基である。Aは、−CO−O−*、−O−、−NR−又は−SO−O−*である。Rは、水素原子又は炭素数1〜10の1価の炭化水素基である。*は、Rとの結合部位を示す。Xは、炭素数1〜20の2価の炭化水素基又は炭素数1〜20の2価のフッ素化炭化水素基である。Rは、炭素数1〜20の(n+1)価の炭化水素基、炭素数1〜20の(n+1)価のフッ素化炭化水素基、又はこれらの基と−CO−、−COO−、−OCO−、−O−、−NR−、−CS−、−S−、−SO−及び−SO−からなる群より選択される少なくとも1種の基とを組み合わせた基である。但し、nが1の場合、Rは、単結合であってもよい。Rは、水素原子又は炭素数1〜10の1価の炭化水素基である。Rは、炭素数1〜20の1価の炭化水素基、炭素数1〜20の1価のフッ素化炭化水素基、又はこれらの基と−CO−、−COO−、−OCO−、−O−、−NR−、−CS−、−S−、−SO−及び−SO−からなる群より選択される少なくとも1種の基とを組み合わせた基である。Rは、水素原子又は炭素数1〜10の1価の炭化水素基である。nは、1〜3の整数である。nが2以上の場合、複数のR、A及びXは、それぞれ同一でも異なっていてもよい。In the above formula (1), R 1 is an alkali dissociable group. A is —CO—O— *, —O—, —NR A — or —SO 2 —O— *. R A is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. * Indicates a binding site with R 1. X is a C1-C20 bivalent hydrocarbon group or a C1-C20 bivalent fluorinated hydrocarbon group. R 2 represents an (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms, an (n + 1) -valent fluorinated hydrocarbon group having 1 to 20 carbon atoms, or these groups and —CO—, —COO—, — OCO -, - O -, - NR B -, - CS -, - S -, - SO- and -SO 2 - is a group formed by combining at least one group selected from the group consisting of. However, when n is 1, R 2 may be a single bond. R B is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. R 3 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms, or these groups and —CO—, —COO—, —OCO—, — The group is a combination of at least one group selected from the group consisting of O-, -NR C- , -CS-, -S-, -SO- and -SO 2- . R C is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. n is an integer of 1 to 3. When n is 2 or more, the plurality of R 1 , A, and X may be the same or different.

ここで、アルカリ解離性基とは、例えば、ヒドロキシ基、スルホ基等の極性官能基中の水素原子を置換する基であって、アルカリの存在下(例えば、23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液中)で解離する基をいう。   Here, the alkali dissociable group is, for example, a group that substitutes a hydrogen atom in a polar functional group such as a hydroxy group or a sulfo group, and is in the presence of an alkali (for example, 2.38% by mass of tetravalent at 23 ° C. A group that dissociates in an aqueous solution of methylammonium hydroxide.

上記アルカリ解離性基としては、例えば、下記式で表される基等が挙げられる。これらの中で、上記式(1)中、Aが−O−又は−NR−の場合は、下記式(R1−1)で表されるものが好ましく、Aが−CO−O−*又は−SO−O−*の場合は、下記式(R1−2)〜(R1−4)のいずれかで表されるものが好ましい。Examples of the alkali dissociable group include groups represented by the following formulas. Among these, in the above formula (1), when A is —O— or —NR A —, those represented by the following formula (R1-1) are preferable, and A is —CO—O— * or In the case of —SO 2 —O— *, those represented by any of the following formulas (R1-2) to (R1-4) are preferable.

Figure 2013147267
Figure 2013147267

上記式(R1−1)中、RK1は、炭素数1〜20の1価のフッ素化アルキル基、又は炭素数3〜20のフッ素化脂環式炭化水素基である。
上記式(R1−2)及び(R1−3)中、RK2は置換基である。RK2が複数の場合、複数のRK2は同一でも異なっていてもよい。m1は、0〜5の整数である。m2は、0〜4の整数である。
上記式(R1−4)中、RK3及びRK4は、それぞれ独立して、水素原子、炭素数1〜20のアルキル基、又は炭素数1〜20のフッ素化アルキル基である。但し、上記RK3及びRK4が互いに結合して、それらが結合している炭素原子と共に2価の脂環式炭化水素基を形成してもよい。
In the above formula (R1-1), R K1 is a monovalent fluorinated alkyl group having 1 to 20 carbon atoms or a fluorinated alicyclic hydrocarbon group having 3 to 20 carbon atoms.
In the above formulas (R1-2) and (R1-3), R K2 is a substituent. If R K2 is plural, the plurality of R K2 may be the same or different. m1 is an integer of 0-5. m2 is an integer of 0-4.
In the above formula (R1-4), R K3 and R K4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a fluorinated alkyl group having 1 to 20 carbon atoms. However, R K3 and R K4 may be bonded to each other to form a divalent alicyclic hydrocarbon group together with the carbon atom to which they are bonded.

上記RK1で表される炭素数1〜20の1価のフッ素化アルキル基としては、例えば、メチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、2−(2−メチルプロピル)基、1−ペンチル基、2−ペンチル基、3−ペンチル基、1−(2−メチルブチル)基、1−(3−メチルブチル)基、2−(2−メチルブチル)基、2−(3−メチルブチル)基、ネオペンチル基、1−ヘキシル基、2−ヘキシル基、3−ヘキシル基、1−(2−メチルペンチル)基、1−(3−メチルペンチル)基、1−(4−メチルペンチル)基、2−(2−メチルペンチル)基、2−(3−メチルペンチル)基、2−(4−メチルペンチル)基、3−(2−メチルペンチル)基、3−(3−メチルペンチル)基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、イコサニル基等の炭素数1〜20のアルキル基が有する水素原子の一部又は全部を、フッ素原子で置換した基等が挙げられる。The monovalent fluorinated alkyl group having 1 to 20 carbon atoms represented by R K1, for example, a methyl group, an ethyl group, 1-propyl, 2-propyl, 1-butyl, 2-butyl 2- (2-methylpropyl) group, 1-pentyl group, 2-pentyl group, 3-pentyl group, 1- (2-methylbutyl) group, 1- (3-methylbutyl) group, 2- (2-methylbutyl) ) Group, 2- (3-methylbutyl) group, neopentyl group, 1-hexyl group, 2-hexyl group, 3-hexyl group, 1- (2-methylpentyl) group, 1- (3-methylpentyl) group, 1- (4-methylpentyl) group, 2- (2-methylpentyl) group, 2- (3-methylpentyl) group, 2- (4-methylpentyl) group, 3- (2-methylpentyl) group, 3- (3-methylpentyl) group, octyl group, Examples include a group in which some or all of the hydrogen atoms of an alkyl group having 1 to 20 carbon atoms such as a nyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, and an icosanyl group are substituted with fluorine atoms.

上記RK1で表される炭素数3〜20のフッ素化脂環式炭化水素基としては、例えば、シクロペンチル基、シクロペンチルメチル基、1−(1−シクロペンチルエチル)基、1−(2−シクロペンチルエチル)基、シクロヘキシル基、シクロヘキシルメチル基、1−(1−シクロヘキシルエチル)基、1−(2−シクロヘキシルエチル基)、シクロヘプチル基、シクロヘプチルメチル基、1−(1−シクロヘプチルエチル)基、1−(2−シクロヘプチルエチル)基、2−ノルボルニル基、1−アダマンチル基、2−アダマンチル基等が有する水素原子の一部又は全部を、フッ素原子で置換した基等が挙げられる。Examples of the fluorinated alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R K1 include a cyclopentyl group, a cyclopentylmethyl group, a 1- (1-cyclopentylethyl) group, and 1- (2-cyclopentylethyl). ) Group, cyclohexyl group, cyclohexylmethyl group, 1- (1-cyclohexylethyl) group, 1- (2-cyclohexylethyl group), cycloheptyl group, cycloheptylmethyl group, 1- (1-cycloheptylethyl) group, Examples include a group in which part or all of the hydrogen atoms of the 1- (2-cycloheptylethyl) group, 2-norbornyl group, 1-adamantyl group, 2-adamantyl group and the like are substituted with fluorine atoms.

上記RK2で表される置換基は、−RP1、−RP2−O−RP1、−RP2−CO−RP1、−RP2−CO−ORP1、−RP2−O−CO−RP1、−RP2−OH、−RP2−CN、又は−RP2−COOHである。RP1は炭素数1〜10の1価の鎖状飽和炭化水素基、炭素数3〜20の1価の脂肪族環状飽和炭化水素基、又は炭素数6〜30の1価の芳香族炭化水素基である。このRP1が有する水素原子の一部又は全部は、フッ素原子で置換されていてもよい。RP2は、単結合、炭素数1〜10の2価の鎖状飽和炭化水素基、炭素数3〜20の2価の脂環式炭化水素基、又は炭素数6〜30の2価の芳香族炭化水素基である。このRP2が有する水素原子の一部若しくは全部は、フッ素原子で置換されていてもよい。Substituents represented by R K2 is, -R P1, -R P2 -O- R P1, -R P2 -CO-R P1, -R P2 -CO-OR P1, -R P2 -O-CO- R P1, a -R P2 -OH, -R P2 -CN, or -R P2 -COOH. R P1 represents a monovalent chain saturated hydrocarbon group having 1 to 10 carbon atoms, a monovalent aliphatic cyclic saturated hydrocarbon group having 3 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms. It is a group. A part or all of the hydrogen atoms possessed by R P1 may be substituted with fluorine atoms. R P2 is a single bond, a divalent chain saturated hydrocarbon group having 1 to 10 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or a divalent aroma having 6 to 30 carbon atoms. Group hydrocarbon group. Some or all of the hydrogen atoms which the R P2 has may be substituted by a fluorine atom.

上記RK3及びRK4が互いに結合して、それらが結合している炭素原子と共に形成してもよい2価の脂環式炭化水素基としては、例えば、1,1−シクロペンタンジイル基、1,1−シクロヘキサンジイル基等が挙げられる。Examples of the divalent alicyclic hydrocarbon group which may be formed together with the carbon atom to which R K3 and R K4 are bonded to each other include a 1,1-cyclopentanediyl group, 1 , 1-cyclohexanediyl group and the like.

上記式(R1−4)で表される基としては、例えば、メチル基、エチル基、1−プロピル基、2−プロピル基、1−ブチル基、2−ブチル基、1−ペンチル基、2−ペンチル基、3−ペンチル基、1−(2−メチルブチル)基、1−(3−メチルブチル)基、2−(3−メチルブチル)基、ネオペンチル基、1−ヘキシル基、2−ヘキシル基、3−ヘキシル基、1−(2−メチルペンチル)基、1−(3−メチルペンチル)基、1−(4−メチルペンチル)基、2−(3−メチルペンチル)基、2−(4−メチルペンチル)基、3−(2−メチルペンチル)基、及びこれらの基が有する水素原子の一部又は全部がフッ素原子で置換された基等が挙げられる。   Examples of the group represented by the formula (R1-4) include a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group, a 1-butyl group, a 2-butyl group, a 1-pentyl group, and 2- Pentyl group, 3-pentyl group, 1- (2-methylbutyl) group, 1- (3-methylbutyl) group, 2- (3-methylbutyl) group, neopentyl group, 1-hexyl group, 2-hexyl group, 3- Hexyl group, 1- (2-methylpentyl) group, 1- (3-methylpentyl) group, 1- (4-methylpentyl) group, 2- (3-methylpentyl) group, 2- (4-methylpentyl) ) Group, 3- (2-methylpentyl) group, and a group in which some or all of hydrogen atoms of these groups are substituted with fluorine atoms.

上記Rで表されるアルカリ解離性基としては、炭素数1〜20のフッ素化アルキル基又は炭素数1〜20のフッ素化アルキルカルボニル基であることが好ましい。すなわち、上記式(R1−1)におけるRK1が炭素数1〜20のフッ素化アルキル基であるか、又は上記式(R1−4)におけるRK3及びRK4が水素原子、炭素数1〜20のアルキル基、若しくは炭素数1〜20のフッ素化アルキル基(但し、RK3及びRK4のうち、少なくともいずれかはフッ素原子を含む)であることが好ましい。上記Rがフッ素原子を含むことで、当該液浸露光用膜形成組成物は、レジスト膜等表面の液浸露光時の後退接触角をより大きくすることができ、かつ現像欠陥の発生を抑制することができる。The alkali dissociable group represented by R 1 is preferably a fluorinated alkyl group having 1 to 20 carbon atoms or a fluorinated alkylcarbonyl group having 1 to 20 carbon atoms. That is, R K1 in the above formula (R1-1) is a fluorinated alkyl group having 1 to 20 carbon atoms, or R K3 and R K4 in the above formula (R1-4) are hydrogen atoms and 1 to 20 carbon atoms. Or an alkyl group having 1 to 20 carbon atoms (provided that at least one of R K3 and R K4 contains a fluorine atom). When R 1 contains a fluorine atom, the film-forming composition for immersion exposure can further increase the receding contact angle during immersion exposure on the surface of a resist film or the like, and suppress the occurrence of development defects. can do.

上記Rで表される炭素数1〜20のフッ素化アルキル基としては、例えば、上記式(R1−4)で表される基として例示した基と同様の基等が挙げられる。Examples of the fluorinated alkyl group having 1 to 20 carbon atoms represented by R 1 include the same groups as those exemplified as the group represented by the formula (R1-4).

上記Rで表される炭素数1〜20のフッ素化アルキルカルボニル基としては、例えば、メチルカルボニル基、エチルカルボニル基、プロピルカルボニル基、ブチルカルボニル基等の炭素数1〜20のアルキルカルボニル基が有する水素原子の一部又は全部が、フッ素原子で置換された基等が挙げられる。これらの中で、炭素数1〜5のフッ素化アルキルカルボニル基が好ましく、フッ素化メチルカルボニル基がより好ましく、トリフルオロメチルカルボニル基がさらに好ましい。Examples of the fluorinated alkylcarbonyl group having 1 to 20 carbon atoms represented by R 1 include alkylcarbonyl groups having 1 to 20 carbon atoms such as a methylcarbonyl group, an ethylcarbonyl group, a propylcarbonyl group, and a butylcarbonyl group. Examples include a group in which part or all of the hydrogen atoms are substituted with fluorine atoms. Among these, a fluorinated alkylcarbonyl group having 1 to 5 carbon atoms is preferable, a fluorinated methylcarbonyl group is more preferable, and a trifluoromethylcarbonyl group is more preferable.

上記R、R及びRで表される炭素数1〜10の1価の炭化水素基としては、例えば、炭素数1〜10のアルキル基、炭素数3〜10の1価の脂環式炭化水素基等が挙げられる。Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R A , R B and RC include, for example, an alkyl group having 1 to 10 carbon atoms and a monovalent alicyclic ring having 3 to 10 carbon atoms. A formula hydrocarbon group and the like.

上記炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基等の直鎖状のアルキル基;i−プロピル基、i−ブチル基、sec−ブチル基、t−ブチル基等の分岐状のアルキル基等が挙げられる。   Examples of the alkyl group having 1 to 10 carbon atoms include linear alkyl groups such as methyl group, ethyl group, n-propyl group, and n-butyl group; i-propyl group, i-butyl group, sec- Examples thereof include branched alkyl groups such as a butyl group and a t-butyl group.

上記炭素数3〜10の1価の脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、ノルボルニル基、アダマンチル基、シクロブチルメチル基、シクロヘキシルエチル基等が挙げられる。   Examples of the monovalent alicyclic hydrocarbon group having 3 to 10 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a norbornyl group, an adamantyl group, and cyclobutyl. A methyl group, a cyclohexylethyl group, etc. are mentioned.

上記Xで表される炭素数1〜20の2価の炭化水素基としては、例えば、炭素数1〜20のアルカンジイル基、炭素数3〜20の2価の脂環式炭化水素基、炭素数6〜20の2価の芳香族炭化水素基又はこれらの基を2種以上組み合わせた2価の基等が挙げられる。   Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms represented by X include, for example, an alkanediyl group having 1 to 20 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and carbon. The bivalent aromatic hydrocarbon group of several 6-20, or the bivalent group which combined 2 or more types of these groups etc. are mentioned.

上記炭素数1〜20のアルカンジイル基としては、例えば、メタンジイル基、エタンジイル基、プロパンジイル基、ブタンジイル基、ペンタンジイル基等が挙げられる。   As said C1-C20 alkanediyl group, a methanediyl group, an ethanediyl group, a propanediyl group, a butanediyl group, a pentanediyl group etc. are mentioned, for example.

上記炭素数3〜20の2価の脂環式炭化水素基としては、例えば、シクロプロパンジイル基、シクロブタンジイル基、シクロペンタンジイル基、シクロブテンジイル基、シクロペンテンジイル基、ノルボルニレン基、アダマンチレン基等が挙げられる。   Examples of the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include a cyclopropanediyl group, a cyclobutanediyl group, a cyclopentanediyl group, a cyclobutenediyl group, a cyclopentenediyl group, a norbornylene group, and an adamantylene group. Etc.

上記炭素数6〜20の2価の芳香族炭化水素基としては、例えば、フェニレン基、ビフェニレン基、ターフェニレン基、ベンジレン基、フェニレンエチレン基、フェニレンシクロへキシレン基、ナフチレン基等が挙げられる。   Examples of the divalent aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenylene group, a biphenylene group, a terphenylene group, a benzylene group, a phenyleneethylene group, a phenylenecyclohexylene group, and a naphthylene group.

上記Xで表される炭素数1〜20の2価のフッ素化炭化水素基は、炭素数1〜20の2価の炭化水素基が有する水素原子の一部又は全部が、フッ素原子で置換されている基である。上記炭素数1〜20の2価の炭化水素基としては、例えば、上記Xで表される炭素数1〜20の2価の炭化水素基として例示した基と同様の基等が挙げられる。   In the divalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by X, a part or all of the hydrogen atoms of the divalent hydrocarbon group having 1 to 20 carbon atoms is substituted with a fluorine atom. It is a group. As said C1-C20 bivalent hydrocarbon group, the group similar to the group illustrated as a C1-C20 bivalent hydrocarbon group represented by said X, etc. are mentioned, for example.

上記Xとしては、炭素数1〜20の2価のフッ素化炭化水素基であることが好ましい。上記Xがフッ素原子を含むことで、当該液浸露光用膜形成組成物は、レジスト膜等表面の液浸露光時の後退接触角をさらに大きくすることができると共に、アルカリ解離性基の解離性を高めることができ、その結果、現像欠陥の発生をより抑制できる。   X is preferably a divalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. When the X contains a fluorine atom, the film forming composition for immersion exposure can further increase the receding contact angle at the time of immersion exposure on the surface of a resist film or the like, and the dissociation property of the alkali dissociable group. As a result, development defects can be further suppressed.

上記Rで表される炭素数1〜20の(n+1)価の炭化水素基としては、例えば、炭素数1〜20の炭化水素から(n+1)個の水素原子を除いた基等が挙げられる。上記炭素数1〜20の炭化水素としては、例えば、メタン、エタン、プロパン、ブタン、プロペン、1−ブテン、2−メチルプロペン等が挙げられる。Examples of the (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms represented by R 2 include a group in which (n + 1) hydrogen atoms are removed from a hydrocarbon having 1 to 20 carbon atoms. . Examples of the hydrocarbon having 1 to 20 carbon atoms include methane, ethane, propane, butane, propene, 1-butene, and 2-methylpropene.

上記Rで表される炭素数1〜20の(n+1)価のフッ素化炭化水素基は、炭素数1〜20の(n+1)価の炭化水素基が有する水素原子の一部又は全部が、フッ素原子で置換されている基である。上記炭素数1〜20の(n+1)価の炭化水素基としては、例えば、上記Rで表される炭素数1〜20の(n+1)価の炭化水素基として例示した基と同様の基等が挙げられる。In the (n + 1) -valent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R 2 , some or all of the hydrogen atoms of the (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms are It is a group substituted with a fluorine atom. Examples of the (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms include the same groups as those exemplified as the (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms represented by R 2 above. Is mentioned.

上記Rで表される炭素数1〜20の1価の炭化水素基としては、例えば、上記RK1〜RK4で表される炭素数1〜20の1価の有機基として例示した炭素数1〜20の1価の炭化水素基と同様の基等が挙げられる。Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 3 include the carbon number exemplified as the monovalent organic group having 1 to 20 carbon atoms represented by R K1 to R K4. Examples thereof include the same groups as 1 to 20 monovalent hydrocarbon groups.

上記Rで表される炭素数1〜20の1価のフッ素化炭化水素基は、炭素数1〜20の1価の炭化水素基が有する水素原子の一部又は全部が、フッ素原子で置換されている基である。上記炭素数1〜20の1価の炭化水素基としては、例えば、上記Rで表される炭素数1〜20の1価の炭化水素基として例示した基と同様の基等が挙げられる。In the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R 3 , a part or all of the hydrogen atoms of the monovalent hydrocarbon group having 1 to 20 carbon atoms is substituted with a fluorine atom. It is a group that has been. Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include the same groups as those exemplified as the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 3 .

上記Rは、酸解離性を有することが好ましい。上記Rが酸解離性を有することで、当該液浸露光用膜形成組成物は、露光部における重合体(a1)のアルカリ現像液への溶解性を高めることができ、その結果、現像欠陥の発生をさらに抑制できる。なお、酸解離性とは、酸の存在下で解離する性質をいう。R 3 preferably has acid dissociation properties. Since the R 3 has acid dissociation properties, the immersion exposure film-forming composition can enhance the solubility of the polymer (a1) in the alkaline developer in the exposed portion, and as a result, development defects. Can be further suppressed. In addition, acid dissociation refers to the property of dissociating in the presence of an acid.

上記Rで表される酸解離性を有する基としては、例えば、後述の式(4)におけるYとして例示した酸解離性基と同様の基等が挙げられる。Examples of the group having acid dissociability represented by R 3 include the same groups as the acid dissociable groups exemplified as Y in the formula (4) described later.

上記構造単位(I)としては、例えば、下記式(1−1)〜(1−7)で表される構造単位等が挙げられる。   Examples of the structural unit (I) include structural units represented by the following formulas (1-1) to (1-7).

Figure 2013147267
Figure 2013147267

これらの中で、レジスト膜等表面の液浸露光時の後退接触角をより高める観点からは、式(1−2)〜(1−6)で表される構造単位が好ましく、式(1−3)及び(1−4)で表される構造単位がより好ましい。また、アルカリ現像液への溶解性の観点からは、酸解離性基を有する式(1−2)、(1−4)、(1−6)及び(1−7)で表される構造単位が好ましく、式(1−2)、(1−4)及び(1−6)で表される構造単位がより好ましい。   Among these, from the viewpoint of further increasing the receding contact angle at the time of immersion exposure on the surface of the resist film or the like, the structural units represented by the formulas (1-2) to (1-6) are preferable. The structural units represented by 3) and (1-4) are more preferred. Moreover, from the viewpoint of solubility in an alkali developer, the structural unit represented by the formulas (1-2), (1-4), (1-6) and (1-7) having an acid dissociable group Are preferred, and structural units represented by formulas (1-2), (1-4) and (1-6) are more preferred.

上記酸解離性基を有する構造単位(I)を与える化合物としては、下記式(3)で表される化合物が好ましい。   As the compound that gives the structural unit (I) having an acid dissociable group, a compound represented by the following formula (3) is preferable.

Figure 2013147267
Figure 2013147267

上記式(3)中、R、A、X、R及びnは、上記式(1)と同義である。R3’は、酸解離性基である。In the formula (3), R 1, A , X, R 2 and n have the same meanings as in formula (1). R 3 ′ is an acid dissociable group.

上記R3’で表される酸解離性基としては、例えば、後述の式(4)におけるYとして例示した酸解離性基と同様の基等が挙げられる。Examples of the acid dissociable group represented by R 3 ′ include the same groups as the acid dissociable groups exemplified as Y in the formula (4) described later.

構造単位(I)を与える化合物(単量体)としては、例えば、下記式(i−1)〜(i−7)で表される化合物等が挙げられる。   Examples of the compound (monomer) that gives the structural unit (I) include compounds represented by the following formulas (i-1) to (i-7).

Figure 2013147267
Figure 2013147267

<化合物の合成方法>
構造単位(I)を与える化合物の合成方法としては、上記式(1)におけるRが−O−を有する場合、例えば、テトラヒドロフラン等の溶媒中で、アルカリ解離性基を有するアルコールと、2−(ブロモメチル)アクリル酸エチル等のハロアルキルアクリル酸エステル等とを反応させる方法等が挙げられる。また、上記式(1)におけるRが炭化水素基の場合、例えば、テトラヒドロフラン等の溶媒中で、亜鉛の存在下、エチル2−ブロモ−2,2−ジフルオロアセテート等のハロカルボン酸エステルと、2−(ブロモメチル)アクリル酸エチル等のハロアルキルアクリル酸エステル等とを反応させる方法等が挙げられる。
<Method of compound synthesis>
As a method for synthesizing the compound giving the structural unit (I), when R 2 in the above formula (1) has —O—, for example, in a solvent such as tetrahydrofuran, an alcohol having an alkali dissociable group, and 2- Examples thereof include a method of reacting with a haloalkyl acrylate such as (bromomethyl) ethyl acrylate. When R 2 in the above formula (1) is a hydrocarbon group, for example, in a solvent such as tetrahydrofuran, in the presence of zinc, a halocarboxylic acid ester such as ethyl 2-bromo-2,2-difluoroacetate and 2 Examples thereof include a method of reacting with a haloalkyl acrylate ester such as-(bromomethyl) ethyl acrylate.

重合体(a1)における構造単位(I)の含有割合としては、重合体(a1)を構成する全構造単位に対して、10モル%〜100モル%が好ましく、30モル%〜100モル%がより好ましく、50モル%〜100モル%がさらに好ましい。重合体(a1)における構造単位(I)の含有割合を上記範囲とすることで、レジスト膜等表面の液浸露光時の大きな後退接触角と、現像欠陥の抑制とを効果的に発現させることができる。   As a content rate of structural unit (I) in a polymer (a1), 10 mol%-100 mol% are preferable with respect to all the structural units which comprise a polymer (a1), 30 mol%-100 mol% are preferable. More preferably, it is more preferably 50 mol% to 100 mol%. By making the content ratio of the structural unit (I) in the polymer (a1) within the above range, a large receding contact angle at the time of immersion exposure on the surface of the resist film and the like, and development defects can be effectively expressed. Can do.

[他の構造単位]
重合体(a1)は、本発明の効果を損なわない範囲で、後述する構造単位(II)〜(VI)等の他の構造単位を有していてもよい。上記他の構造単位の含有割合としては、目的に応じて適宜決定することができる。
[Other structural units]
The polymer (a1) may have other structural units such as structural units (II) to (VI) described later as long as the effects of the present invention are not impaired. The content ratio of the other structural units can be appropriately determined according to the purpose.

重合体(a1)の含有率としては、[A]重合体成分を構成する全重合体に対して、0.1質量%〜30質量%が好ましく、0.5質量%〜20質量%がより好ましく、1質量%〜10質量%がさらに好ましい。重合体(a1)の含有率を上記範囲とすることで、レジスト膜等表面の液浸露光時の大きな後退接触角と、現像欠陥の抑制とをより効果的に発現させることができる。   As a content rate of a polymer (a1), 0.1 mass%-30 mass% are preferable with respect to the total polymer which comprises a [A] polymer component, and 0.5 mass%-20 mass% are more. Preferably, 1% by mass to 10% by mass is more preferable. By making the content rate of a polymer (a1) into the said range, the big receding contact angle at the time of the immersion exposure of surfaces, such as a resist film, and suppression of a development defect can be expressed more effectively.

<[A]重合体成分中の各重合体の合成方法>
[A]重合体成分を構成する各重合体は、例えば、適宜選択された重合開始剤の存在下、重合溶媒中で、所定の単量体をラジカル重合等の重合をさせることにより合成することができる。
<[A] Method for synthesizing each polymer in polymer component>
[A] Each polymer constituting the polymer component is synthesized, for example, by subjecting a predetermined monomer to polymerization such as radical polymerization in a polymerization solvent in the presence of a suitably selected polymerization initiator. Can do.

上記重合開始剤としては、例えば、
アゾ系ラジカル開始剤として、アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−シクロプロピルプロピオニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2’−アゾビス(2−メチルプロピオネート)、ジメチル2,2’−アゾビスイソブチレート等;
過酸化物系ラジカル開始剤として、ベンゾイルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。
As the polymerization initiator, for example,
As azo radical initiators, azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropio) Nitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2′-azobis (2-methylpropionate), dimethyl 2,2′-azobisisobutyrate and the like;
Examples of the peroxide radical initiator include benzoyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, and the like.

これらの中で、アゾ系ラジカル開始剤が好ましく、AIBNがより好ましい。なお、重合開始剤は、単独で又は2種以上を組み合わせて用いてもよい。   Of these, azo radical initiators are preferred, and AIBN is more preferred. In addition, you may use a polymerization initiator individually or in combination of 2 or more types.

上記重合溶媒としては、例えば、
アルコール類として、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール等;
環状エーテル類として、テトラヒドロフラン、ジオキサン等;
多価アルコールのアルキルエーテル類として、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等;
多価アルコールのアルキルエーテルアセテート類として、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等;
芳香族炭化水素類として、トルエン、キシレン等;
ケトン類として、アセトン、2−ブタノン、メチルイソブチルケトン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノン、ジアセトンアルコール等;
エステル類として、酢酸エチル、酢酸ブチル、2−ヒドロキシプロピオン酸メチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2−ヒドロキシ−3−メチルブタン酸メチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル等が挙げられる。
As the polymerization solvent, for example,
Examples of alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, ethylene glycol, diethylene glycol, and propylene glycol;
As cyclic ethers, tetrahydrofuran, dioxane and the like;
As alkyl ethers of polyhydric alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, Propylene glycol monomethyl ether, propylene glycol monoethyl ether, etc .;
Examples of polyhydric alcohol alkyl ether acetates include ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol ethyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol monomethyl ether acetate;
As aromatic hydrocarbons, toluene, xylene, etc .;
Examples of ketones include acetone, 2-butanone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, diacetone alcohol, and the like;
Esters include ethyl acetate, butyl acetate, methyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, 2-hydroxy Examples include methyl-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, and the like.

これらの中で、環状エーテル類、多価アルコールのアルキルエーテル類、多価アルコールのアルキルエーテルアセテート類、ケトン類又はエステル類が好ましく、ケトン類がより好ましく、2−ブタノンさらに好ましい。なお、上記重合溶媒は1種又は2種以上を用いることができる。   Among these, cyclic ethers, alkyl ethers of polyhydric alcohols, alkyl ether acetates of polyhydric alcohols, ketones or esters are preferable, ketones are more preferable, and 2-butanone is further preferable. In addition, the said polymerization solvent can use 1 type (s) or 2 or more types.

各重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)としては、1,000〜50,000が好ましく、1,000〜30,000がより好ましく、1,000〜20,000がさらに好ましく、2,000〜10,000が特に好ましい。各重合体のMwを1,000以上とすることで、形成されるレジスト膜等の耐水性及び機械的特性を良好にでき、Mwを50,000以下とすることで、重合体の溶媒に対する溶解性を高めることができる。   As a polystyrene conversion weight average molecular weight (Mw) by gel permeation chromatography (GPC) of each polymer, 1,000-50,000 are preferable, 1,000-30,000 are more preferable, 1,000-20 1,000 is more preferable, and 2,000 to 10,000 is particularly preferable. By setting the Mw of each polymer to 1,000 or more, water resistance and mechanical properties of the formed resist film can be improved, and by setting the Mw to 50,000 or less, the polymer dissolves in the solvent. Can increase the sex.

各重合体のMwとGPCによるポリスチレン換算数平均分子量(Mn)との比(Mw/Mn)としては、1〜5が好ましく、1〜3がより好ましく、1〜2がさらに好ましい。   The ratio (Mw / Mn) of Mw of each polymer to the number average molecular weight (Mn) in terms of polystyrene by GPC is preferably 1 to 5, more preferably 1 to 3, and still more preferably 1 to 2.

当該液浸露光用膜形成組成物は、ハロゲンイオン、金属等の不純物が少ないほど好ましい。不純物を少なくすることにより、塗布性とアルカリ現像液への均一な溶解性とを改善することができる。不純物を少なくするために各重合体を精製する方法としては、例えば、水洗、液々抽出、脱メタルフィルター通液等の化学的精製法、これらの化学的精製法と限外ろ過、遠心分離等の物理的精製法との組み合わせ等が挙げられる。   The film forming composition for immersion exposure is more preferable as it contains less impurities such as halogen ions and metals. By reducing the impurities, it is possible to improve coatability and uniform solubility in an alkali developer. Examples of methods for purifying each polymer in order to reduce impurities include chemical purification methods such as water washing, liquid-liquid extraction, and demetalization filter passage, these chemical purification methods and ultrafiltration, centrifugation, etc. And a combination with a physical purification method.

[A]重合体成分の含有量としては、当該液浸露光用膜形成組成物中の全固形分に対して、70質量%〜100質量%が好ましく、80質量%〜100質量%がより好ましく、90質量%〜100質量%がさらに好ましい。   [A] The content of the polymer component is preferably 70% by mass to 100% by mass and more preferably 80% by mass to 100% by mass with respect to the total solid content in the film forming composition for immersion exposure. 90 mass% to 100 mass% is more preferable.

<[B]溶媒>
[B]溶媒は、[A]重合体成分等の各成分を溶解又は均一に分散する溶媒である。
<[B] Solvent>
[B] The solvent is a solvent that dissolves or uniformly disperses each component such as the polymer component [A].

[B]溶媒としては、例えば、アルコール系溶媒、エーテル系溶媒、炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、水等が挙げられる。   [B] Examples of the solvent include alcohol solvents, ether solvents, hydrocarbon solvents, ketone solvents, ester solvents, water, and the like.

上記アルコール系溶媒としては、例えば、ブタノール、ペンタノール、4−メチル−2−ペンタノール等の1価アルコール類;エチレングリコール、プロピレングリコール等の多価アルコール類等が挙げられる。   Examples of the alcohol solvent include monohydric alcohols such as butanol, pentanol and 4-methyl-2-pentanol; polyhydric alcohols such as ethylene glycol and propylene glycol.

上記エーテル系溶媒としては、例えば、
多価アルコールのアルキルエーテル類として、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールメチルエチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル等;
多価アルコールのアルキルエーテルアセテート類として、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等;
脂肪族エーテル類として、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ブチルメチルエーテル、ブチルエチルエーテル、ジイソアミルエーテル、ヘキシルメチルエーテル、オクチルメチルエーテル、シクロペンチルメチルエーテル、ジシクロペンチルエーテル等;
脂肪族−芳香族エーテル類として、アニソール、フェニルエチルエーテル等;
環状エーテル類として、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等が挙げられる。
As the ether solvent, for example,
Examples of polyhydric alcohol alkyl ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, ethylene glycol diethyl ether, and diethylene glycol dimethyl ether;
Examples of polyhydric alcohol alkyl ether acetates include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, and diethylene glycol monoethyl ether acetate;
Examples of aliphatic ethers include diethyl ether, dipropyl ether, dibutyl ether, butyl methyl ether, butyl ethyl ether, diisoamyl ether, hexyl methyl ether, octyl methyl ether, cyclopentyl methyl ether, dicyclopentyl ether and the like;
Aliphatic-aromatic ethers such as anisole and phenylethyl ether;
Examples of cyclic ethers include tetrahydrofuran, tetrahydropyran, dioxane and the like.

上記炭化水素系溶媒としては、例えば、デカン、ドデセン、ウンテカン等の高級炭化水素類が挙げられる。   Examples of the hydrocarbon solvent include higher hydrocarbons such as decane, dodecene, and untecan.

上記ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン等が挙げられる。   Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl- n-hexyl ketone, di-iso-butyl ketone, trimethylnonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, diacetone alcohol, acetophenone, etc. Can be mentioned.

上記エステル系溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸iso−プロピル、酢酸n−ブチル、酢酸iso−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸iso−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。   Examples of the ester solvent include methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, n-nonyl acetate, methyl acetoacetate, ethyl acetoacetate, ethylene glycol monomethyl ether, acetic acid Ethylene glycol monoethyl ether, acetic acid diethylene glycol monomethyl ether, acetic acid diethylene glycol monoethyl ether, acetic acid diethylene glycol mono-n-butyl ether, acetic acid propylene glycol monomethyl ether, vinegar Propylene glycol monoethyl ether, Propylene glycol monopropyl ether, Propylene glycol monobutyl ether, Dipropylene glycol monomethyl ether acetate, Dipropylene glycol monoethyl ether acetate, Diacetic acid glycol, Methoxytriglycol acetate, Ethyl propionate, Propionic acid n -Butyl, iso-amyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate, diethyl malonate, dimethyl phthalate, diethyl phthalate, etc. Can be mentioned.

これらの中で、ケトン系溶媒及びエステル系溶媒が好ましく、ケトン系溶媒としては、シクロヘキサノンがより好ましく、エステル系溶媒としては、酢酸プロピレングリコールモノメチルエーテルがより好ましい。   Of these, ketone solvents and ester solvents are preferred, the ketone solvent is more preferably cyclohexanone, and the ester solvent is more preferably propylene glycol monomethyl ether acetate.

<任意成分>
当該液浸露光用膜形成組成物は、任意成分を含有していてもよい。各任意成分は、それぞれ単独で又は2種以上を組み合わせて用いてもよい。また、各任意成分の含有量は、その目的に応じて適宜決定することができる。
<Optional component>
The film forming composition for immersion exposure may contain an optional component. Each optional component may be used alone or in combination of two or more. Moreover, content of each arbitrary component can be suitably determined according to the objective.

<液浸露光用膜形成組成物の調製方法>
当該液浸露光用膜形成組成物は、[A]重合体成分、[B]溶媒、及び必要に応じて任意成分を所定の割合で混合することにより調製できる。
<Method for Preparing Film Formation Composition for Immersion Exposure>
The film forming composition for immersion exposure can be prepared by mixing the [A] polymer component, the [B] solvent, and, if necessary, optional components at a predetermined ratio.

当該液浸露光用膜形成組成物の固形分濃度としては、0.1質量%〜50質量%が好ましく、0.5質量%〜30質量%がより好ましく、1質量%〜10質量%がさらに好ましい。   As solid content concentration of the said film formation composition for immersion exposure, 0.1 mass%-50 mass% are preferable, 0.5 mass%-30 mass% are more preferable, 1 mass%-10 mass% are further preferable.

<フォトレジスト組成物として用いられる液浸露光用膜形成組成物>
当該液浸露光用膜形成組成物は、例えば、フォトレジスト組成物として好適に用いることができる(以下、フォトレジスト組成物として用いられる液浸露光用膜形成組成物を、「液浸露光用膜形成組成物(PR)」ともいう)。当該液浸露光用膜形成組成物をフォトレジスト組成物として用いることで、液浸露光用膜形成組成物(PR)は、重合体(a1)がレジスト膜表層に偏在化することにより、レジスト膜表面の液浸露光時の後退接触角をより大きくすることができると共に、アルカリ現像時にはアルカリ解離性基の解離により後退接触角をより小さくすることができ、その結果、現像欠陥の発生をより抑制することができる。
<Film-forming composition for immersion exposure used as a photoresist composition>
The film forming composition for immersion exposure can be suitably used, for example, as a photoresist composition (hereinafter, the film forming composition for immersion exposure used as a photoresist composition is referred to as “film for immersion exposure”). Forming composition (PR) "). By using the film-forming composition for immersion exposure as a photoresist composition, the film-forming composition for immersion exposure (PR) becomes a resist film because the polymer (a1) is unevenly distributed on the resist film surface layer. It is possible to increase the receding contact angle during immersion exposure on the surface, and to further reduce the receding contact angle due to dissociation of alkali dissociable groups during alkali development, thereby further suppressing development defects. can do.

液浸露光用膜形成組成物(PR)は、上記[A]重合体成分及び[B]溶媒以外に、好適成分として[C]酸発生体及び[D]酸拡散制御体、並びにその他の任意成分を含有していてもよい。以下、各成分について詳述する。なお、[B]溶媒については、<液浸露光用膜形成組成物>の項で上述しているため、詳細な説明は省略する。   In addition to the above [A] polymer component and [B] solvent, the film forming composition for immersion exposure (PR) includes [C] acid generator, [D] acid diffusion controller, and other optional components as suitable components. It may contain components. Hereinafter, each component will be described in detail. The [B] solvent has been described above in the section <Film forming composition for immersion exposure>, and will not be described in detail.

液浸露光用膜形成組成物(PR)における[A]重合体成分(以下、「[A1]重合体成分」ともいう)としては、下記重合体成分であることが好ましい。   The [A] polymer component (hereinafter, also referred to as “[A1] polymer component”) in the film forming composition for immersion exposure (PR) is preferably the following polymer component.

<[A1]重合体成分>
[A1]重合体成分は、上記重合体(a1)を含んでいる限り特に限定されないが、[A1]重合体成分における重合体(a1)(以下、「重合体(a1−1)」ともいう)としては、下記重合体であることが好ましい。また、[A1]重合体成分は、この重合体(a1)よりもフッ素原子含有率が小さく、かつ酸解離性基を有する重合体(a2)を含んでいることが好ましい。
<[A1] Polymer component>
[A1] The polymer component is not particularly limited as long as it contains the polymer (a1). [A1] The polymer (a1) in the polymer component (hereinafter also referred to as “polymer (a1-1)”). ) Is preferably the following polymer. [A1] The polymer component preferably contains a polymer (a2) having a fluorine atom content lower than that of the polymer (a1) and having an acid dissociable group.

<重合体(a1−1)>
重合体(a1−1)は、上述の構造単位(I)に加え、構造単位(II)を有していることが好ましい。
<Polymer (a1-1)>
The polymer (a1-1) preferably has a structural unit (II) in addition to the above structural unit (I).

[構造単位(II)]
構造単位(II)は、酸解離性基を含む構造単位である。重合体(a1−1)が上記構造単位(II)を有することで、液浸露光用膜形成組成物(PR)は、露光部における重合体(a1−1)のアルカリ現像液への溶解性を高めることができ、その結果、現像欠陥の発生をさらに抑制できる。
[Structural unit (II)]
The structural unit (II) is a structural unit containing an acid dissociable group. Since the polymer (a1-1) has the structural unit (II), the film-forming composition for immersion exposure (PR) is soluble in the alkaline developer of the polymer (a1-1) in the exposed area. As a result, the occurrence of development defects can be further suppressed.

構造単位(II)としては、例えば下記式(4)で表される構造単位等が挙げられる。   Examples of the structural unit (II) include a structural unit represented by the following formula (4).

Figure 2013147267
Figure 2013147267

上記式(4)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Yは、酸解離性基である。   In said formula (4), R is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group. Y is an acid dissociable group.

上記Yで表される酸解離性基としては、下記式(Y−1)で表される基が好ましい。   The acid dissociable group represented by Y is preferably a group represented by the following formula (Y-1).

Figure 2013147267
Figure 2013147267

上記式(Y−1)中、Ra1、Ra2及びRa3は、それぞれ独立して、炭素数1〜4のアルキル基又は炭素数3〜20の1価の脂環式炭化水素基である。Ra2及びRa3は互いに結合して、それらが結合している炭素原子と共に炭素数3〜20の2価の脂環式炭化水素基を形成してもよい。In the above formula (Y-1), R a1 , R a2 and R a3 are each independently an alkyl group having 1 to 4 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. . R a2 and R a3 may be bonded to each other to form a divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms together with the carbon atom to which they are bonded.

上記Ra1、Ra2及びRa3で表される炭素数1〜4のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等が挙げられる。Examples of the alkyl group having 1 to 4 carbon atoms represented by R a1 , R a2 and R a3 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and 2-methyl. A propyl group, a 1-methylpropyl group, a t-butyl group, etc. are mentioned.

上記Ra1、Ra2及びRa3で表される炭素数3〜20の1価の脂環式炭化水素基、並びに上記Ra2及びRa3が互いに結合してそれらが結合している炭素原子と共に形成される炭素数3〜20の2価の脂環式炭化水素基としては、例えば、アダマンタン骨格、ノルボルナン骨格等の有橋式骨格や、シクロペンタン、シクロヘキサン等の単環のシクロアルカン骨格を有する基;これらの基を、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基等の炭素数1〜10の直鎖状、分岐状又は環状のアルキル基の1種又は1個以上で置換した基等の脂環式炭化水素骨格を有する基が挙げられる。Along with the C 3-20 monovalent alicyclic hydrocarbon group represented by R a1 , R a2 and R a3 , and the carbon atom to which R a2 and R a3 are bonded to each other and bonded to each other Examples of the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms formed include a bridged skeleton such as an adamantane skeleton and a norbornane skeleton, and a monocyclic cycloalkane skeleton such as cyclopentane and cyclohexane. Group; these groups are, for example, one or more of linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group, n-propyl group and i-propyl group. And groups having an alicyclic hydrocarbon skeleton such as a group substituted with.

これらの中で、現像後のレジストパターンの形状を向上させることができる点で単環のシクロアルカン骨格を有する基が好ましい。   Among these, a group having a monocyclic cycloalkane skeleton is preferable in that the shape of the resist pattern after development can be improved.

上記式(4)で表される構造単位としては、例えば、式(4−1)〜(4−7)で表される構造単位等が挙げられる。   Examples of the structural unit represented by the formula (4) include structural units represented by the formulas (4-1) to (4-7).

Figure 2013147267
Figure 2013147267

上記式(4−1)〜(4−7)中、Rは、式(4)と同義である。Ra1、Ra2及びRa3は、式(Y−1)と同義である。rは、それぞれ独立して、1〜3の整数である。これらの中で、式(4−3)で表される構造単位が好ましく、上記式(4−3)中のrは、1であることがより好ましく、上記式(4−3)中のRa1は、エチル基であることがさらに好ましい。In said formula (4-1)-(4-7), R is synonymous with Formula (4). R a1 , R a2 and R a3 have the same meaning as in formula (Y-1). Each r is independently an integer of 1 to 3. Among these, the structural unit represented by the formula (4-3) is preferable, r in the formula (4-3) is more preferably 1, and R in the formula (4-3) is preferable. More preferably, a1 is an ethyl group.

構造単位(II)の含有割合としては、重合体(a1−1)を構成する全構造単位に対して、0モル%〜90モル%が好ましく、0モル%〜70モル%がより好ましく、10モル%〜50モル%がさらに好ましい。上記構造単位の含有割合を上記範囲とすることで、露光部の溶け残りを効果的に抑制することができる。   As a content rate of structural unit (II), 0 mol%-90 mol% are preferable with respect to all the structural units which comprise a polymer (a1-1), 0 mol%-70 mol% are more preferable, 10 More preferably, mol% to 50 mol%. By making the content rate of the said structural unit into the said range, the undissolved residue of an exposure part can be suppressed effectively.

<重合体(a2)>
重合体(a2)は、重合体(a1−1)よりもフッ素原子含有率が小さい重合体であり、かつ酸解離性基を有する重合体である。[A]重合体成分がベース重合体として上記重合体(a2)を含有することで、液浸露光用膜形成組成物(PR)は、重合体(a1−1)をレジスト膜表層に効果的に偏在化させることができ、その結果、レジスト膜表面の液浸露光時の後退接触角をより大きくすることができる。なお、ベース重合体とは、フォトレジスト組成物から形成されるレジスト膜を構成する重合体の主成分となる重合体をいい、好ましくは、レジスト膜を構成する全重合体に対して50質量%以上を占める重合体をいう。
<Polymer (a2)>
The polymer (a2) is a polymer having a fluorine atom content smaller than that of the polymer (a1-1) and a polymer having an acid dissociable group. [A] Since the polymer component contains the polymer (a2) as a base polymer, the film-forming composition for immersion exposure (PR) is effective for the polymer (a1-1) as a resist film surface layer. As a result, the receding contact angle at the time of immersion exposure on the resist film surface can be further increased. The base polymer refers to a polymer that is the main component of the polymer that constitutes the resist film formed from the photoresist composition, and preferably 50% by mass with respect to the total polymer that constitutes the resist film. The polymer which occupies the above is said.

重合体(a2)としては、上記構成を有している限り特に限定されないが、上述の重合体(a1−1)についての構造単位(II)を有していることが好ましい。また、重合体(a2)は、本発明の効果を損なわない範囲で、その他の構造単位を有していてもよい。その他の構造単位の含有割合としては、目的に応じて適宜決定することができる。なお、重合体(a2)は、各構造単位を2種以上含んでいてもよい。   Although it does not specifically limit as long as it has the said structure as a polymer (a2), It is preferable to have the structural unit (II) about the above-mentioned polymer (a1-1). Moreover, the polymer (a2) may have another structural unit in the range which does not impair the effect of this invention. The content ratio of other structural units can be appropriately determined according to the purpose. In addition, the polymer (a2) may contain 2 or more types of each structural unit.

重合体(a2)における構造単位(II)の含有割合としては、重合体(a2)を構成する全構造単位に対して、10モル%〜100モル%が好ましく、20モル%〜90モル%がより好ましく、30モル%〜80モル%がさらに好ましい。上記構造単位の含有割合を上記範囲とすることで、現像後のレジストパターンの形状を効果的に向上させることができる。   As a content rate of structural unit (II) in a polymer (a2), 10 mol%-100 mol% are preferable with respect to all the structural units which comprise a polymer (a2), 20 mol%-90 mol% are preferable. More preferably, it is more preferably 30 mol% to 80 mol%. By making the content rate of the said structural unit into the said range, the shape of the resist pattern after image development can be improved effectively.

[その他の構造単位]
重合体(a2)が有していてもよい上記構造単位(II)以外の構造単位としては、例えば、ラクトン構造、環状カーボネート構造、及びスルトン構造からなる群より選択される少なくとも1種の構造を含む構造単位等が挙げられる。上記構造単位としては、例えば、ラクトン構造を含む構造単位として下記式(L−1)及び(L−4)〜(L−14)で表される構造単位等が、環状カーボネート構造を含む構造単位として下記式(L−2)で表される構造単位等が、スルトン構造を含む構造単位として下記式(L−3)で表される構造単位等が挙げられる。重合体(a2)がラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも1種の構造を含む構造単位を有することで、レジスト膜の密着性を向上させることができる。
[Other structural units]
Examples of the structural unit other than the structural unit (II) that the polymer (a2) may have include at least one structure selected from the group consisting of a lactone structure, a cyclic carbonate structure, and a sultone structure. Examples include structural units. As the structural unit, for example, structural units represented by the following formulas (L-1) and (L-4) to (L-14) as structural units including a lactone structure include structural units including a cyclic carbonate structure: As a structural unit represented by the following formula (L-2), and a structural unit represented by the following formula (L-3) as a structural unit containing a sultone structure. When the polymer (a2) has a structural unit including at least one structure selected from the group consisting of a lactone structure, a cyclic carbonate structure, and a sultone structure, the adhesion of the resist film can be improved.

Figure 2013147267
Figure 2013147267

上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。In the above formula, R L1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.

その他の構造単位の含有割合としては、重合体(a2)を構成する全構造単位に対して、10モル%〜90モル%が好ましく、20モル%〜80モル%がより好ましい。   As a content rate of another structural unit, 10 mol%-90 mol% are preferable with respect to all the structural units which comprise a polymer (a2), and 20 mol%-80 mol% are more preferable.

重合体(a2)の含有量としては、重合体(a1−1)100質量部に対して、300質量部〜5,000質量部が好ましく、1,000質量部〜3,000質量部がより好ましい。重合体(a2)の含有量を上記範囲とすることで、上記重合体(a1−1)をレジスト膜表層に効率良く偏在化させることができる。   As content of a polymer (a2), 300 mass parts-5,000 mass parts are preferable with respect to 100 mass parts of polymers (a1-1), and 1,000 mass parts-3,000 mass parts are more. preferable. By making content of a polymer (a2) into the said range, the said polymer (a1-1) can be unevenly distributed efficiently in a resist film surface layer.

<[C]酸発生体>
[C]酸発生体は、放射線の露光により酸を発生する感放射線性の成分である。液浸露光用膜形成組成物(PR)が[C]酸発生体を含有することで、露光により発生した酸の作用により重合体中の酸解離性基を解離させ、生成したカルボキシ基等の極性により露光部における上記重合体が現像液に対して易溶となる。その結果、コントラストの高いレジストパターンを形成することができる。液浸露光用膜形成組成物(PR)を構成する[C]酸発生体の含有形態としては、後述のような化合物の形態(以下、「[C]酸発生剤」ともいう)でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。なお、[C]酸発生体は、単独で又は2種以上を組み合わせて用いてもよい。
<[C] acid generator>
[C] The acid generator is a radiation-sensitive component that generates an acid upon exposure to radiation. Since the film forming composition for immersion exposure (PR) contains a [C] acid generator, the acid-dissociable group in the polymer is dissociated by the action of the acid generated by exposure, and the generated carboxy group or the like Due to the polarity, the polymer in the exposed area becomes easily soluble in the developer. As a result, a resist pattern with high contrast can be formed. The inclusion form of the [C] acid generator constituting the film forming composition for immersion exposure (PR) may be a compound form as described later (hereinafter also referred to as “[C] acid generator”). It may be a form incorporated as part of the coalescence or both forms. In addition, you may use a [C] acid generator individually or in combination of 2 or more types.

[C]酸発生剤としては、例えば、スルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩等のオニウム塩化合物、スルホン酸化合物等が挙げられる。   [C] Examples of the acid generator include onium salt compounds such as sulfonium salts, tetrahydrothiophenium salts and iodonium salts, and sulfonic acid compounds.

上記スルホニウム塩としては、例えば、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムパーフルオロ−n−ブタンスルホネート、トリフェニルスルホニウム6−アダマンチルカルボニルオキシ−1,1,2,2−テトラフルオロヘキサンスルホネート、トリフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、シクロヘキシル・2−オキソシクロヘキシル・メチルスルホニウムトリフルオロメタンスルホネート、ジシクロヘキシル・2−オキソシクロヘキシルスルホニウムトリフルオロメタンスルホネート、2−オキソシクロヘキシルジメチルスルホニウムトリフルオロメタンスルホネート、4−ヒドロキシ−1−ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウム2−(ビシクロ[2.2.1]ヘプタ−2−イル)−1,1,2,2−テトラフルオロエタンスルホネート等が挙げられる。   Examples of the sulfonium salt include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium perfluoro-n-butanesulfonate, triphenylsulfonium 6-adamantylcarbonyloxy-1,1,2,2-tetrafluorohexanesulfonate, and triphenyl. Sulfonium perfluoro-n-octane sulfonate, cyclohexyl, 2-oxocyclohexyl, methylsulfonium trifluoromethanesulfonate, dicyclohexyl, 2-oxocyclohexylsulfonium trifluoromethanesulfonate, 2-oxocyclohexyldimethylsulfonium trifluoromethanesulfonate, 4-hydroxy-1-naphthyl Dimethylsulfonium trifluoromethanesulfonate, tri E sulfonyl sulfonium 2- (bicyclo [2.2.1] hept-2-yl) 1,1,2,2-tetrafluoroethane sulfonate, and the like.

上記テトラヒドロチオフェニウム塩としては、例えば、4−ヒドロキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−ヒドロキシ−1−ナフチルテトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、4−ヒドロキシ−1−ナフチルテトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(1−ナフチルアセトメチル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(1−ナフチルアセトメチル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(1−ナフチルアセトメチル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート等が挙げられる。   Examples of the tetrahydrothiophenium salt include 4-hydroxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate, 4-hydroxy-1-naphthyltetrahydrothiophenium nonafluoro-n-butanesulfonate, 4-hydroxy-1 -Naphtyltetrahydrothiophenium perfluoro-n-octanesulfonate, 1- (1-naphthylacetomethyl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (1-naphthylacetomethyl) tetrahydrothiophenium nonafluoro-n-butane Sulfonate, 1- (1-naphthylacetomethyl) tetrahydrothiophenium perfluoro-n-octane sulfonate, 1- (3,5-dimethyl-4-hydroxyphenyl) tetrahydro Ofenium trifluoromethanesulfonate, 1- (3,5-dimethyl-4-hydroxyphenyl) tetrahydrothiophenium nonafluoro-n-butanesulfonate, 1- (3,5-dimethyl-4-hydroxyphenyl) tetrahydrothiophenium Examples include perfluoro-n-octane sulfonate.

上記ヨードニウム塩としては、例えば、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ−n−ブタンスルホネート、ジフェニルヨードニウムパーフルオロ−n−オクタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムノナフルオロ−n−ブタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムパーフルオロ−n−オクタンスルホネート等が挙げられる。   Examples of the iodonium salt include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis ( 4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t-butylphenyl) iodonium perfluoro-n-octanesulfonate, and the like.

上記スルホン酸化合物としては、例えば、トリフルオロメタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、ノナフルオロ−n−ブタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、パーフルオロ−n−オクタンスルホニルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボジイミド、N−ヒドロキシスクシイミドトリフルオロメタンスルホネート、N−ヒドロキシスクシイミドノナフルオロ−n−ブタンスルホネート、N−ヒドロキシスクシイミドパーフルオロ−n−オクタンスルホネート、1,8−ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート等が挙げられる。   Examples of the sulfonic acid compound include trifluoromethanesulfonylbicyclo [2.2.1] hept-5-ene-2,3-dicarbodiimide, nonafluoro-n-butanesulfonylbicyclo [2.2.1] hept-5. -Ene-2,3-dicarbodiimide, perfluoro-n-octanesulfonylbicyclo [2.2.1] hept-5-ene-2,3-dicarbodiimide, N-hydroxysuccinimide trifluoromethanesulfonate, N- Examples thereof include hydroxysuccinimide nonafluoro-n-butanesulfonate, N-hydroxysuccinimide perfluoro-n-octanesulfonate, 1,8-naphthalenedicarboxylic acid imide trifluoromethanesulfonate, and the like.

[C]酸発生剤としては、オニウム塩化合物が好ましく、スルホニウム塩がより好ましく、トリフェニルスルホニウムパーフルオロ−n−ブタンスルホネートがさらに好ましい。   [C] The acid generator is preferably an onium salt compound, more preferably a sulfonium salt, and further preferably triphenylsulfonium perfluoro-n-butanesulfonate.

[C]酸発生剤の含有量としては、レジストとしての感度及び現像性を確保する観点から、液浸露光用膜形成組成物(PR)に含まれる[A]重合体成分100質量部に対して0.1質量部〜30質量部が好ましく、0.1質量部〜20質量部がより好ましい。[C]酸発生剤の含有量が0.1質量部未満では、液浸露光用膜形成組成物(PR)の感度及び現像性が低下する傾向にある。一方、30質量部を超えると、放射線に対する透明性が低下して矩形のレジストパターンが得られ難くなる傾向がある。   [C] The content of the acid generator is from the viewpoint of ensuring the sensitivity and developability as a resist with respect to 100 parts by mass of the polymer component [A] contained in the film forming composition for immersion exposure (PR). 0.1 to 30 parts by mass is preferable, and 0.1 to 20 parts by mass is more preferable. When the content of the [C] acid generator is less than 0.1 parts by mass, the sensitivity and developability of the film forming composition for immersion exposure (PR) tend to be lowered. On the other hand, if it exceeds 30 parts by mass, the transparency to radiation tends to decrease, and it becomes difficult to obtain a rectangular resist pattern.

<[D]酸拡散制御体>
[D]酸拡散制御体は、露光の際にレジスト膜中で発生した酸の拡散を制御し、未露光部における好ましくない化学反応を抑制する成分である。液浸露光用膜形成組成物(PR)が[D]酸拡散制御体を含有することで、露光部と未露光部とのコントラストを高め、良好なレジストパターンを形成することができる。[D]酸拡散制御体の液浸露光用膜形成組成物(PR)における含有形態としては、遊離の化合物の形態(以下、「[D]酸拡散制御剤」ともいう)でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。なお、[D]酸拡散制御剤は、単独で又は2種以上を組み合わせて用いてもよい。
<[D] Acid diffusion controller>
[D] The acid diffusion controller is a component that controls the diffusion of the acid generated in the resist film during exposure and suppresses an undesirable chemical reaction in the unexposed area. When the film forming composition for immersion exposure (PR) contains the [D] acid diffusion controller, the contrast between the exposed portion and the unexposed portion can be increased, and a good resist pattern can be formed. [D] The content of the acid diffusion controller in the immersion exposure film-forming composition (PR) may be a free compound (hereinafter also referred to as “[D] acid diffusion controller”). It may be a form incorporated as part or both of these forms. In addition, you may use [D] acid spreading | diffusion controlling agent individually or in combination of 2 or more types.

[D]酸拡散制御剤としては、例えば、アミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。   [D] Examples of the acid diffusion controller include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.

上記アミン化合物としては、例えば、モノ(シクロ)アルキルアミン類;ジ(シクロ)アルキルアミン類;トリ(シクロ)アルキルアミン類;置換アルキルアニリン又はその誘導体;エチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルアミン、2,2−ビス(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2−(4−アミノフェニル)−2−(3−ヒドロキシフェニル)プロパン、2−(4−アミノフェニル)−2−(4−ヒドロキシフェニル)プロパン、1,4−ビス(1−(4−アミノフェニル)−1−メチルエチル)ベンゼン、1,3−ビス(1−(4−アミノフェニル)−1−メチルエチル)ベンゼン、ビス(2−ジメチルアミノエチル)エーテル、ビス(2−ジエチルアミノエチル)エーテル、1−(2−ヒドロキシエチル)−2−イミダゾリジノン、2−キノキサリノール、N,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’’N’’−ペンタメチルジエチレントリアミン等が挙げられる。   Examples of the amine compound include mono (cyclo) alkylamines; di (cyclo) alkylamines; tri (cyclo) alkylamines; substituted alkylanilines or derivatives thereof; ethylenediamine, N, N, N ′, N ′. -Tetramethylethylenediamine, tetramethylenediamine, hexamethylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenylamine, 2,2-bis (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl) -2- (3-hydroxyphenyl) propane, 2- (4 -Aminophenyl) -2- (4-hydroxyphenyl) propane 1,4-bis (1- (4-aminophenyl) -1-methylethyl) benzene, 1,3-bis (1- (4-aminophenyl) -1-methylethyl) benzene, bis (2-dimethylamino) Ethyl) ether, bis (2-diethylaminoethyl) ether, 1- (2-hydroxyethyl) -2-imidazolidinone, 2-quinoxalinol, N, N, N ′, N′-tetrakis (2-hydroxypropyl) ) Ethylenediamine, N, N, N ′, N ″ N ″ -pentamethyldiethylenetriamine and the like.

上記アミド基含有化合物としては、例えば、N−t−ブトキシカルボニル−4−ヒドロキシピペリジン等のN−t−ブトキシカルボニル基含有アミド化合物;N−t−アミロキシカルボニル−4−ヒドロキシピペリジン等のN−t−アミロキシカルボニル基含有アミド化合物;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N−メチルピロリドン、N−アセチル−1−アダマンチルアミン、イソシアヌル酸トリス(2−ヒドロキシエチル)等が挙げられる。   Examples of the amide group-containing compound include Nt-butoxycarbonyl group-containing amide compounds such as Nt-butoxycarbonyl-4-hydroxypiperidine; N-t-amyloxycarbonyl-4-hydroxypiperidine and the like N- t-amyloxycarbonyl group-containing amide compound; formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone, N-acetyl-1-adamantylamine, isocyanuric acid tris (2-hydroxyethyl) and the like can be mentioned.

上記ウレア化合物としては、例えば、尿素、メチルウレア、1,1−ジメチルウレア、1,3−ジメチルウレア、1,1,3,3−テトラメチルウレア、1,3−ジフェニルウレア、トリ−n−ブチルチオウレア等が挙げられる。   Examples of the urea compound include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, and tri-n-butyl. Examples include thiourea.

上記含窒素複素環化合物としては、例えば、2−フェニルイミダゾール等のイミダゾール類;ピリジン類;ピペラジン類;ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、ピペリジンエタノール、3−ピペリジノ−1,2−プロパンジオール、モルホリン、4−メチルモルホリン、1−(4−モルホリニル)エタノール、4−アセチルモルホリン、3−(N−モルホリノ)−1,2−プロパンジオール、1,4−ジメチルピペラジン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。   Examples of the nitrogen-containing heterocyclic compound include imidazoles such as 2-phenylimidazole; pyridines; piperazines; pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, piperidineethanol, 3-piperidino-1,2 -Propanediol, morpholine, 4-methylmorpholine, 1- (4-morpholinyl) ethanol, 4-acetylmorpholine, 3- (N-morpholino) -1,2-propanediol, 1,4-dimethylpiperazine, 1,4 -Diazabicyclo [2.2.2] octane etc. are mentioned.

これらの中で、アミド基含有化合物が好ましく、N−t−アミロキシカルボニル基含有アミド化合物がより好ましく、N−t−アミロキシカルボニル−4−ヒドロキシピペリジンがさらに好ましい。   Of these, amide group-containing compounds are preferred, Nt-amyloxycarbonyl group-containing amide compounds are more preferred, and Nt-amyloxycarbonyl-4-hydroxypiperidine is more preferred.

また、[D]酸拡散制御剤として光崩壊性塩基を用いることもできる。この光崩壊性塩基は、未露光部においてアニオンによる高い酸捕捉機能によりクエンチャーとして機能し、露光部から拡散する酸を捕捉する結果、脱保護反応のコントラストが向上し、解像度をより向上させることができる。光崩壊性塩基の一例として、露光により分解して酸拡散制御性を失うオニウム塩化合物が挙げられる。このオニウム塩化合物としては、例えば、下記式(5−1)で表されるスルホニウム塩化合物、下記式(5−2)で表されるヨードニウム塩化合物等が挙げられる。   [D] A photodegradable base can also be used as the acid diffusion controller. This photodegradable base functions as a quencher due to the high acid capturing function by the anion in the unexposed area, and as a result of capturing the acid diffusing from the exposed area, the contrast of the deprotection reaction is improved and the resolution is further improved. Can do. As an example of the photodegradable base, an onium salt compound that is decomposed by exposure and loses acid diffusion controllability can be mentioned. Examples of the onium salt compound include a sulfonium salt compound represented by the following formula (5-1), an iodonium salt compound represented by the following formula (5-2), and the like.

Figure 2013147267
Figure 2013147267

上記式(5−1)及び式(5−2)中、Rb1〜Rb5はそれぞれ独立して、水素原子、アルキル基、アルコキシ基、ヒドロキシ基、ハロゲン原子又は−SO−Rである。Rは、アルキル基、シクロアルキル基、アルコキシ基又はアリール基である。Zは、OH、Rb6−COO、R−SO−N―Rb6、Rb6−SO 、又は下記式(5’)で表されるアニオンである。Rb6は、炭素数1〜10の直鎖状若しくは分岐状のアルキル基、炭素数3〜20のシクロアルキル基、炭素数6〜30のアリール基、炭素数7〜30のアラルキル基である。但し、上記アルキル基、シクロアルキル基、アリール基及びアラルキル基が有する水素原子の一部又は全部は、置換されていてもよい。Rは、炭素数1〜10の直鎖状若しくは分岐状のアルキル基又は炭素数3〜20のシクロアルキル基である。但し、上記アルキル基及びシクロアルキル基が有する水素原子の一部又は全部は、フッ素原子で置換されていてもよい。ZがRb6−SO の場合、SO が結合する炭素原子にフッ素原子が結合する場合はない。The formula (5-1) and formula (5-2), independently R b1 to R b5 are each a hydrogen atom, an alkyl group, an alkoxy group, hydroxy group, is a halogen atom or -SO 2 -R X . R X is an alkyl group, a cycloalkyl group, an alkoxy group or an aryl group. Z is OH , R b6 —COO , R Y —SO 2 —N Rb 6 , R b6 —SO 3 , or an anion represented by the following formula (5 ′). R b6 is a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. However, one part or all part of the hydrogen atom which the said alkyl group, cycloalkyl group, aryl group, and aralkyl group have may be substituted. R Y is a linear or branched alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms. However, some or all of the hydrogen atoms of the alkyl group and cycloalkyl group may be substituted with fluorine atoms. When Z is R b6 —SO 3 , a fluorine atom is not bonded to a carbon atom to which SO 3 is bonded.

Figure 2013147267
Figure 2013147267

上記式(5’)中、Rb7は、炭素数1〜12の直鎖状若しくは分岐状のアルキル基又は炭素数1〜12の直鎖状若しくは分岐状のアルコキシ基である。但し、上記アルキル基及びアルコキシ基が有する水素原子の一部又は全部は、フッ素原子で置換されていてもよい。uは、0〜2の整数である。In the above formula (5 ′), R b7 is a linear or branched alkyl group having 1 to 12 carbon atoms or a linear or branched alkoxy group having 1 to 12 carbon atoms. However, some or all of the hydrogen atoms of the alkyl group and alkoxy group may be substituted with fluorine atoms. u is an integer of 0-2.

上記Rb1〜Rb5で表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、i−プロピル基、ブチル基、i―ブチル基、t−ブチル基等が挙げられる。Examples of the alkyl group represented by R b1 to R b5 include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, an i-butyl group, and a t-butyl group.

上記Rb1〜Rb5で表されるアルコキシ基としては、例えば、メトキシ基、エトキシ基、ブトキシ基等が挙げられる。Examples of the alkoxy group represented by R b1 to R b5 include a methoxy group, an ethoxy group, and a butoxy group.

上記Rb1〜Rb5で表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。The halogen atoms represented by R b1 to R b5, for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

上記Rで表されるアルキル基及びアルコキシ基としては、例えば、上記Rb1〜Rb5で例示したそれぞれの基と同様の基等を適用することができる。As the alkyl group and alkoxy group represented by R X , for example, the same groups as the groups exemplified for R b1 to R b5 can be applied.

上記Rで表されるシクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基、トリシクロデカニル基、テトラシクロドデカニル基、アダマンチル基等が挙げられる。Examples of the cycloalkyl group represented by R X include a cyclopentyl group, a cyclohexyl group, a norbornyl group, a tricyclodecanyl group, a tetracyclododecanyl group, an adamantyl group, and the like.

上記Rで表されるアリール基としては、例えば、フェニル基、ナフチル基、アントリル基等が挙げられる。Examples of the aryl group represented by R X include a phenyl group, a naphthyl group, and an anthryl group.

上記Rb1〜Rb5としては、水素原子及び−SO−Rが好ましい。また、上記Rとしては、シクロアルキル基が好ましく、シクロヘキシル基がより好ましい。As the R b1 to R b5, hydrogen atom and -SO 2 -R X are preferred. Moreover, as said R <X >, a cycloalkyl group is preferable and a cyclohexyl group is more preferable.

上記Rb6で表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、i−プロピル基、ブチル基、i―ブチル基、t−ブチル基等が挙げられる。Examples of the alkyl group represented by R b6 include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, an i-butyl group, and a t-butyl group.

上記Rb6で表されるシクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基、トリシクロデカニル基、テトラシクロドデカニル基、アダマンチル基等が挙げられる。Examples of the cycloalkyl group represented by R b6 include a cyclopentyl group, a cyclohexyl group, a norbornyl group, a tricyclodecanyl group, a tetracyclododecanyl group, an adamantyl group, and the like.

上記Rb6で表されるアリール基としては、例えば、フェニル基、ナフチル基、アントリル基等が挙げられる。Examples of the aryl group represented by R b6 include a phenyl group, a naphthyl group, and an anthryl group.

上記Rb6で表されるアラルキル基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基等が挙げられる。Examples of the aralkyl group represented by R b6 include a benzyl group, a phenethyl group, and a phenylpropyl group.

上記アルキル基、シクロアルキル基、アリール基及びアラルキル基が有してもよい置換基としては、例えば、ヒドロキシ基、ハロゲン原子、アルコキシ基、ラクトン基、アルキルカルボニル基等が挙げられる。   Examples of the substituent that the alkyl group, cycloalkyl group, aryl group, and aralkyl group may have include a hydroxy group, a halogen atom, an alkoxy group, a lactone group, and an alkylcarbonyl group.

上記Rで表されるアルキル基及びシクロアルキル基としては、例えば、上記Rb6で例示したそれぞれの基と同様の基等を適用することができる。As the alkyl group and cycloalkyl group represented by R Y , for example, the same groups as the groups exemplified for R b6 can be applied.

上記式(5−1)で表されるスルホニウム塩化合物としては、例えば、トリフェニルスルホニウムハイドロオキサイド、トリフェニルスルホニウムサリチラート、トリフェニルスルホニウム4−トリフルオロメチルサリチラート、ジフェニル−4−ヒドロキシフェニルスルホニウムサリチラート、トリフェニルスルホニウム10−カンファースルホネート、4−t−ブトキシフェニル・ジフェニルスルホニウム10−カンファースルホネート等が挙げられる。これらの中で、トリフェニルスルホニウムサリチラート、トリフェニルスルホニウム10−カンファースルホネートがより好ましい。なお、これらのスルホニウム塩化合物は、単独で又は2種以上を組み合わせて用いてもよい。   Examples of the sulfonium salt compound represented by the formula (5-1) include triphenylsulfonium hydroxide, triphenylsulfonium salicylate, triphenylsulfonium 4-trifluoromethyl salicylate, and diphenyl-4-hydroxyphenyl. Examples include sulfonium salicylate, triphenylsulfonium 10-camphor sulfonate, 4-t-butoxyphenyl diphenylsulfonium 10-camphor sulfonate, and the like. Among these, triphenylsulfonium salicylate and triphenylsulfonium 10-camphorsulfonate are more preferable. In addition, you may use these sulfonium salt compounds individually or in combination of 2 or more types.

上記式(5−2)で表されるヨードニウム塩化合物としては、例えば、ビス(4−t−ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4−t−ブチルフェニル)ヨードニウムサリチラート、ビス(4−t−ブチルフェニル)ヨードニウム4−トリフルオロメチルサリチラート、ビス(4−t−ブチルフェニル)ヨードニウム10−カンファースルホネート等が挙げられる。なお、これらのヨードニウム塩化合物は、単独で又は2種以上を組み合わせて用いてもよい。   Examples of the iodonium salt compound represented by the above formula (5-2) include bis (4-t-butylphenyl) iodonium hydroxide, bis (4-t-butylphenyl) iodonium salicylate, and bis (4- t-butylphenyl) iodonium 4-trifluoromethyl salicylate, bis (4-t-butylphenyl) iodonium 10-camphorsulfonate, and the like. In addition, you may use these iodonium salt compounds individually or in combination of 2 or more types.

上記光崩壊性塩基としては、スルホニウム塩化合物が好ましく、トリフェニルスルホニウムサリチラート、トリフェニルスルホニウム10−カンファースルホネートがより好ましい。   As the photodegradable base, a sulfonium salt compound is preferable, and triphenylsulfonium salicylate and triphenylsulfonium 10-camphorsulfonate are more preferable.

[D]酸拡散制御剤の含有量としては、液浸露光用膜形成組成物(PR)に含まれる[A]重合体成分100質量部に対して、30質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下がさらに好ましい。[D]酸拡散制御剤が過剰に含有されると、形成したレジスト膜の感度が著しく低下するおそれがある。   [D] The content of the acid diffusion controller is preferably 30 parts by mass or less, and 20 parts by mass with respect to 100 parts by mass of the polymer component [A] contained in the film forming composition for immersion exposure (PR). The following is more preferable, and 10 parts by mass or less is more preferable. [D] If the acid diffusion controller is excessively contained, the sensitivity of the formed resist film may be significantly lowered.

<その他の任意成分>
液浸露光用膜形成組成物(PR)は、本発明の効果を損なわない範囲で、[E]偏在化促進剤等のその他の任意成分を含有していてもよい。各任意成分は、それぞれ単独で又は2種以上を組み合わせて用いてもよい。また、その他の任意成分の含有量は、その目的に応じて適宜決定することができる。
<Other optional components>
The film forming composition for immersion exposure (PR) may contain other optional components such as an [E] uneven distribution accelerator as long as the effects of the present invention are not impaired. Each optional component may be used alone or in combination of two or more. Further, the content of other optional components can be appropriately determined according to the purpose.

<[E]偏在化促進剤>
[E]偏在化促進剤は、重合体(a1−1)を、より効率的にレジスト膜表面に偏析させる成分である。液浸露光用膜形成組成物(PR)が[E]偏在化促進剤を含有することで、重合体(a1−1)の配合量を少なくすることができる。[E]偏在化促進剤としては、例えば、ラクトン化合物、カーボネート化合物、ニトリル化合物、多価アルコール等が挙げられる。なお[E]偏在化促進剤は、単独で又は2種以上を組み合わせて用いてもよい。
<[E] Uneven distribution promoter>
[E] The uneven distribution promoter is a component that causes the polymer (a1-1) to segregate on the resist film surface more efficiently. When the film forming composition for immersion exposure (PR) contains the [E] uneven distribution accelerator, the blending amount of the polymer (a1-1) can be reduced. [E] Examples of the uneven distribution promoter include lactone compounds, carbonate compounds, nitrile compounds, and polyhydric alcohols. In addition, you may use [E] uneven distribution promoter individually or in combination of 2 or more types.

上記ラクトン化合物としては、例えば、γ−ブチロラクトン、バレロラクトン、メバロニックラクトン、ノルボルナンラクトン等が挙げられる。
上記カーボネート化合物としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が挙げられる。
上記ニトリル化合物としては、例えば、スクシノニトリル等が挙げられる。
上記多価アルコールとしては、例えば、グリセリン等が挙げられる。
Examples of the lactone compound include γ-butyrolactone, valerolactone, mevalonic lactone, norbornane lactone, and the like.
Examples of the carbonate compound include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, and the like.
Examples of the nitrile compound include succinonitrile.
Examples of the polyhydric alcohol include glycerin.

これらの中で、ラクトン化合物が好ましく、γ−ブチロラクトンがより好ましい。   Of these, lactone compounds are preferred, and γ-butyrolactone is more preferred.

[E]偏在化促進剤の含有量としては、重合体の総量100質量部に対して、5質量部〜300質量部が好ましい。   [E] The content of the uneven distribution accelerator is preferably 5 parts by mass to 300 parts by mass with respect to 100 parts by mass of the total amount of the polymer.

<液浸上層膜形成用組成物として用いられる液浸露光用膜形成組成物>
当該液浸露光用膜形成組成物は、例えば、液浸上層膜形成用組成物として好適に用いることができる(以下、液浸上層膜形成用組成物として用いられる液浸露光用膜形成組成物(本発明の液浸上層膜形成用組成物)を、「液浸露光用膜形成組成物(TC)」ともいう)。液浸露光用膜形成組成物(TC)を用いてレジスト膜上に液浸上層膜を形成することにより、液浸上層膜表面の液浸露光時の後退接触角をより大きくすることができると共に、アルカリ現像時にはアルカリ解離性基の解離により後退接触角をより小さくすることができ、その結果、現像欠陥の発生をより抑制することができる。
<Film-forming composition for immersion exposure used as a composition for forming an upper-layer film for immersion>
The film forming composition for immersion exposure can be suitably used, for example, as a composition for forming an upper liquid immersion film (hereinafter referred to as a film forming composition for immersion exposure used as a composition for forming an upper film for immersion). (The composition for forming a liquid immersion upper layer film of the present invention) is also referred to as “film forming composition for liquid immersion exposure (TC)”). By forming the liquid immersion upper film on the resist film using the film formation composition for liquid immersion exposure (TC), the receding contact angle at the time of liquid immersion exposure on the liquid immersion upper film can be further increased. During alkali development, the receding contact angle can be further reduced by dissociation of the alkali-dissociable group, and as a result, development defects can be further suppressed.

液浸露光用膜形成組成物(TC)は、上記[A]重合体成分及び[B]溶媒以外に、その他の成分を含有していてもよい。以下、各成分について詳述する。なお、[B]溶媒については、<液浸露光用膜形成組成物>の項で上述しているため、詳細な説明は省略する。   The film forming composition (TC) for immersion exposure may contain other components in addition to the above [A] polymer component and [B] solvent. Hereinafter, each component will be described in detail. The [B] solvent has been described above in the section <Film forming composition for immersion exposure>, and will not be described in detail.

液浸露光用膜形成組成物(TC)における[A]重合体成分(以下、「[A2]重合体成分」ともいう)としては、下記の重合体成分であることが好ましい。   The [A] polymer component (hereinafter also referred to as “[A2] polymer component”) in the film forming composition (TC) for immersion exposure is preferably the following polymer component.

<[A2]重合体成分>
[A2]重合体成分は、上記重合体(a1)([A2]重合体成分における重合体(a1を、以下、「重合体(a1−2)」ともいう))を含んでいる限り特に限定されないが、本発明の効果を損なわない限り、重合体(a1)と異なる重合体(以下、「重合体(a3)」ともいう)を含んでいてもよい。[A2]重合体成分は、重合体(a1−2)と同一又は異なる重合体(a3)中に、構造単位(III)〜(V)を有することが好ましい。また、[A2]重合体成分は、重合体(a1−2)と同一又は異なる重合体(a3)中に、構造単位(VI)等のその他の構造単位を有していてもよい。なお、各重合体は、それぞれ各構造単位を2種以上有していてもよい。以下、各構造単位について詳述する。
<[A2] Polymer component>
[A2] The polymer component is particularly limited as long as it contains the polymer (a1) (the polymer in the [A2] polymer component (a1 is hereinafter also referred to as “polymer (a1-2)”)). However, a polymer different from the polymer (a1) (hereinafter also referred to as “polymer (a3)”) may be included as long as the effects of the present invention are not impaired. [A2] The polymer component preferably has structural units (III) to (V) in the same or different polymer (a3) as the polymer (a1-2). [A2] The polymer component may have other structural units such as the structural unit (VI) in the same or different polymer (a3) as the polymer (a1-2). In addition, each polymer may have 2 or more types of each structural unit, respectively. Hereinafter, each structural unit will be described in detail.

[構造単位(III)]
構造単位(III)は、フッ素化スルホンアミド基を含む構造単位(以下、「構造単位(III−1)」ともいう)及びα−トリフルオロメチルアルコール基を含む構造単位(以下、「構造単位(III−2)」ともいう)からなる群より選択される少なくとも1種の構造単位である。液浸露光用膜形成組成物(TC)は、[A2]重合体成分が上記構造単位(III)をさらに有することで、液浸上層膜の撥水性及び除去性を向上させることができると共に、現像欠陥の発生を抑制することができる。
[Structural unit (III)]
The structural unit (III) includes a structural unit containing a fluorinated sulfonamide group (hereinafter also referred to as “structural unit (III-1)”) and a structural unit containing an α-trifluoromethyl alcohol group (hereinafter referred to as “structural unit ( III-2) ”) is at least one structural unit selected from the group consisting of. The film forming composition for liquid immersion exposure (TC) can improve the water repellency and removability of the liquid immersion upper layer film by the [A2] polymer component further having the structural unit (III), Occurrence of development defects can be suppressed.

構造単位(III−1)としては、下記式(5)で表される構造単位であることが好ましい。   The structural unit (III-1) is preferably a structural unit represented by the following formula (5).

Figure 2013147267
Figure 2013147267

上記式(5)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Rn1は、2価の連結基である。Rn2は、炭素数1〜20のフッ素化アルキル基である。In said formula (5), RD is a hydrogen atom, a methyl group, a fluorine atom, or a trifluoromethyl group. R n1 is a divalent linking group. R n2 is a fluorinated alkyl group having 1 to 20 carbon atoms.

上記Rとしては、上記式(5)で表される構造単位を与える単量体の共重合性等の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。The RD is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer that gives the structural unit represented by the formula (5).

上記Rn1で表される2価の連結基としては、例えば、炭素数1〜6の2価の鎖状炭化水素基、炭素数4〜12の2価の脂環式炭化水素基等が挙げられる。Examples of the divalent linking group represented by R n1 include a divalent chain hydrocarbon group having 1 to 6 carbon atoms and a divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms. It is done.

上記炭素数1〜6の2価の鎖状炭化水素基としては、例えば、
飽和鎖状炭化水素基として、メタンジイル基、1,2−エタンジイル基、1,1−エタンジイル基、1,3−プロパンジイル基、1,2−プロパンジイル基、1,1−プロパンジイル基、2,2−プロパンジイル基、1,4−プロパンジイル基、1,5−ペンタンジイル基、1,6−ヘキサンジイル基、1−メチル−1,3−プロパンジイル基、2−メチル−1,3−プロパンジイル基、2−メチル−1,2−プロパンジイル基、1−メチル−1,4−ブタンジイル基、2−メチル−1,4−ブタンジイル基等;
不飽和鎖状炭化水素基として、1,2−エテンジイル基、1,3−プロペンジイル基、1,2−プロペンジイル基等が挙げられる。
Examples of the divalent chain hydrocarbon group having 1 to 6 carbon atoms include:
As saturated chain hydrocarbon groups, methanediyl group, 1,2-ethanediyl group, 1,1-ethanediyl group, 1,3-propanediyl group, 1,2-propanediyl group, 1,1-propanediyl group, 2 , 2-propanediyl group, 1,4-propanediyl group, 1,5-pentanediyl group, 1,6-hexanediyl group, 1-methyl-1,3-propanediyl group, 2-methyl-1,3- Propanediyl group, 2-methyl-1,2-propanediyl group, 1-methyl-1,4-butanediyl group, 2-methyl-1,4-butanediyl group and the like;
Examples of the unsaturated chain hydrocarbon group include a 1,2-ethenediyl group, a 1,3-propenediyl group, and a 1,2-propenediyl group.

上記炭素数4〜12の2価の脂環式炭化水素基としては、例えば、
単環式炭化水素基として、1,3−シクロブタンジイル基等のシクロブタンジイル基;1,3−シクロペンタンジイル基等のシクロペンタンジイル基;1,4−シクロヘキサンジイル基、1,2−シクロヘキサンジイル基等のシクロヘキサンジイル基;1,5−シクロオクタンジイル基等のシクロオクタンジイル基など;
多環式炭化水素基として、1,4−ノルボルナンジイル基、2,5−ノルボルナンジイル基等のノルボルナンジイル基、1,3−アダマンタンジイル基、2,4−アダマンタンジイル基等のアダマンタンジイル基等が挙げられる。
これらの中で、単環式炭化水素基が好ましく、シクロヘキサンジイル基がより好ましく、1,2−シクロヘキサンジイル基がさらに好ましい。
Examples of the divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms include:
As monocyclic hydrocarbon group, cyclobutanediyl group such as 1,3-cyclobutanediyl group; cyclopentanediyl group such as 1,3-cyclopentanediyl group; 1,4-cyclohexanediyl group, 1,2-cyclohexanediyl Cyclohexanediyl groups such as groups; cyclooctanediyl groups such as 1,5-cyclooctanediyl groups;
As polycyclic hydrocarbon groups, 1,4-norbornanediyl groups, norbornanediyl groups such as 2,5-norbornanediyl groups, 1,3-adamantanediyl groups, adamantanediyl groups such as 2,4-adamantanediyl groups, etc. Is mentioned.
Among these, a monocyclic hydrocarbon group is preferable, a cyclohexanediyl group is more preferable, and a 1,2-cyclohexanediyl group is more preferable.

上記Rn1としては、炭素数1〜6の2価の鎖状炭化水素基が好ましく、炭素数1〜3の2価の鎖状炭化水素基がより好ましく、1,2−エタンジイル基がさらに好ましい。R n1 is preferably a divalent chain hydrocarbon group having 1 to 6 carbon atoms, more preferably a divalent chain hydrocarbon group having 1 to 3 carbon atoms, and further preferably a 1,2-ethanediyl group. .

上記Rn2で表される炭素数1〜20のフッ素化アルキル基としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリフルオロエチル基、ペンタフルオロメチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基等が挙げられる。これらの中で、トリフルオロメチル基が好ましい。Examples of the fluorinated alkyl group having 1 to 20 carbon atoms represented by R n2 include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a trifluoroethyl group, a pentafluoromethyl group, a heptafluoropropyl group, Nonafluorobutyl group etc. are mentioned. Of these, a trifluoromethyl group is preferred.

構造単位(III−2)としては、α−トリフルオロメチルアルコール基(−C(R)(OH)(CF)基、Rは1価の有機基である。)を含む構造単位であれば特に限定されないが、例えば、下記式(6)で表される構造単位等が挙げられる。As the structural unit (III-2), any structural unit including an α-trifluoromethyl alcohol group (—C (R) (OH) (CF 3 ) group, R is a monovalent organic group) may be used. Although it does not specifically limit, For example, the structural unit etc. which are represented by following formula (6) are mentioned.

Figure 2013147267
Figure 2013147267

上記式(6)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rt1は、2価の連結基である。In said formula (6), RE is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group. R t1 is a divalent linking group.

上記Rとしては、上記式(6)で表される構造単位を与える単量体の共重合性等の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。The above-mentioned R E, from the viewpoint of copolymerizability of the monomer giving the structural unit represented by the above formula (6), a hydrogen atom, preferably a methyl group, more preferably a methyl group.

上記Rt1で表される2価の連結基としては、例えば、上記式(5)におけるRn1として例示した基と同様の基等が挙げられる。また、これらの鎖状炭化水素基及び脂環式炭化水素基中のメチレン基(−CH−)は、酸素原子、カルボニル基又はエステル基で置換されていてもよい。Rt1としては、炭素数1〜3の2価の鎖状炭化水素基、炭素数4〜12の2価の脂環式炭化水素基が好ましく、プロパンジイル基、シクロヘキサン骨格を含む2価の基、ノルボルネン骨格を含む2価の基、アダマンタン骨格を含む2価の基がより好ましく、1,2−プロパンジイル基、1−シクロヘキシル−1,2−エタンジイル基がさらに好ましい。Examples of the divalent linking group represented by R t1 include the same groups as those exemplified as R n1 in the above formula (5). Moreover, the methylene group (—CH 2 —) in these chain hydrocarbon groups and alicyclic hydrocarbon groups may be substituted with an oxygen atom, a carbonyl group or an ester group. R t1 is preferably a divalent chain hydrocarbon group having 1 to 3 carbon atoms or a divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms, and a divalent group containing a propanediyl group or a cyclohexane skeleton. Further, a divalent group containing a norbornene skeleton and a divalent group containing an adamantane skeleton are more preferred, and a 1,2-propanediyl group and a 1-cyclohexyl-1,2-ethanediyl group are more preferred.

上記式(6)で表される構造単位としては、例えば、下記式(6−1)〜(6−8)で表される構造単位等が挙げられる。   Examples of the structural unit represented by the above formula (6) include structural units represented by the following formulas (6-1) to (6-8).

Figure 2013147267
Figure 2013147267

上記式(6−1)〜(6−8)中、Rは、上記式(6)と同義である。In the above formulas (6-1) to (6-8), R E has the same meaning as the above formula (6).

これらの中で、上記式(6−4)及び(6−8)で表される構造単位が好ましい。   Among these, the structural units represented by the above formulas (6-4) and (6-8) are preferable.

[A2]重合体成分における構造単位(III)の含有割合としては、[A2]重合体成分を構成する全構造単位に対して、0モル%〜90モル%が好ましく、1モル%〜80モル%がより好ましく、4モル%〜75モル%がさらに好ましく、20モル%〜70モル%が特に好ましい。[A2]重合体成分における構造単位(III)の含有割合を上記範囲とすることで、液浸露光用膜形成組成物(TC)から形成される液浸上層膜の撥水性及び除去性を効果的に向上させることができると共に、現像欠陥の発生を効果的に抑制することができる。   [A2] The content ratio of the structural unit (III) in the polymer component is preferably 0 mol% to 90 mol%, preferably 1 mol% to 80 mol, based on all structural units constituting the [A2] polymer component. % Is more preferable, 4 mol% to 75 mol% is further preferable, and 20 mol% to 70 mol% is particularly preferable. [A2] By making the content ratio of the structural unit (III) in the polymer component within the above range, the water repellency and removability of the liquid immersion upper layer film formed from the film formation composition for liquid immersion exposure (TC) are effective. And development defects can be effectively suppressed.

重合体(a1−2)における構造単位(III)の含有割合としては、重合体(a1−2)を構成する全構造単位に対して、0モル%〜90モル%が好ましく、5モル%〜85モル%がより好ましく、15モル%〜65モル%がさらに好ましい。重合体(a1−2)における構造単位(III)の含有割合を上記範囲とすることで、上記撥水性等の特性を効果的に高めることができる。   As a content rate of structural unit (III) in a polymer (a1-2), 0 mol%-90 mol% are preferable with respect to all the structural units which comprise a polymer (a1-2)-5 mol%- 85 mol% is more preferable and 15 mol%-65 mol% is still more preferable. By making the content rate of structural unit (III) in a polymer (a1-2) into the said range, the characteristics, such as said water repellency, can be improved effectively.

重合体(a3)における構造単位(III)の含有割合としては、重合体(a3)を構成する全構造単位に対して、0モル%〜90モル%が好ましく、5モル%〜85モル%がより好ましく、15モル%〜65モル%がさらに好ましい。重合体(a3)における構造単位(III)の含有割合を上記範囲とすることで、上記撥水性等の特性を効果的に高めることができる。   As a content rate of structural unit (III) in a polymer (a3), 0 mol%-90 mol% are preferable with respect to all the structural units which comprise a polymer (a3), and 5 mol%-85 mol% are preferable. More preferably, 15 mol% to 65 mol% is more preferable. By making the content rate of structural unit (III) in a polymer (a3) into the said range, the characteristics, such as the said water repellency, can be improved effectively.

[構造単位(IV)]
構造単位(IV)は、スルホ基を含む構造単位である。液浸露光用膜形成組成物(TC)は、[A2]重合体成分が上記構造単位(IV)をさらに有することで、液浸上層膜の除去性及び剥がれ耐性をより向上させることができると共に、現像欠陥の発生をより抑制することができる。
[Structural unit (IV)]
The structural unit (IV) is a structural unit containing a sulfo group. The film forming composition for liquid immersion exposure (TC) can further improve the removability and peeling resistance of the liquid immersion upper layer film by the [A2] polymer component further having the structural unit (IV). The occurrence of development defects can be further suppressed.

構造単位(IV)としては、例えば下記式(7)で表される構造単位等が挙げられる。   Examples of the structural unit (IV) include a structural unit represented by the following formula (7).

Figure 2013147267
Figure 2013147267

上記式(7)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Rs1は、単結合、酸素原子、硫黄原子、炭素数1〜6の2価の鎖状炭化水素基、炭素数4〜12の2価の脂環式炭化水素基、炭素数6〜12の2価の芳香族炭化水素基又は−C(=O)−X’−R’−基である。X’は、酸素原子、硫黄原子又はNH基である。R’は、単結合、炭素数1〜6の2価の鎖状炭化水素基、炭素数4〜12の2価の脂環式炭化水素基又は炭素数6〜12の2価の芳香族炭化水素基である。In said formula (7), R <F> is a hydrogen atom, a methyl group, a fluorine atom, or a trifluoromethyl group. R s1 is a single bond, oxygen atom, sulfur atom, divalent chain hydrocarbon group having 1 to 6 carbon atoms, divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms, or 6 to 12 carbon atoms. A divalent aromatic hydrocarbon group or a —C (═O) —X′—R′— group. X ′ is an oxygen atom, a sulfur atom or an NH group. R ′ is a single bond, a divalent chain hydrocarbon group having 1 to 6 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms, or a divalent aromatic carbon group having 6 to 12 carbon atoms. It is a hydrogen group.

上記Rとしては、構造単位(IV)を与える単量体の共重合性等の観点から、水素原子、メチル基が好ましい。As R F , a hydrogen atom or a methyl group is preferable from the viewpoint of the copolymerizability of the monomer giving the structural unit (IV).

上記Rs1及びR’で表される炭素数1〜6の2価の鎖状炭化水素基、並びに炭素数4〜12の2価の脂環式炭化水素基としては、例えば、上記式(5)においてRn1として例示した基と同様の基等が挙げられる。Examples of the divalent chain hydrocarbon group having 1 to 6 carbon atoms and the divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms represented by R s1 and R ′ include, for example, the above formula (5 ), The same groups as those exemplified as R n1 in the above.

上記Rs1で表される炭素数6〜12の2価の芳香族炭化水素基としては、例えば、フェニレン基、トリレン基等のアリーレン基等が挙げられる。As a C6-C12 bivalent aromatic hydrocarbon group represented by said Rs1 , arylene groups, such as a phenylene group and a tolylene group, etc. are mentioned, for example.

上記Rs1としては、単結合、炭素数1〜6の2価の鎖状炭化水素基、炭素数6〜12の2価の芳香族炭化水素、又はR’が炭素数1〜6の2価の鎖状炭化水素基である−C(=O)−NH−R’−が好ましく、単結合、メタンジイル基、フェニレン基、−C(=O)−NH−CH(CH)−CH−がより好ましく、単結合、−C(=O)−NH−CH(CH)−CH−がさらに好ましい。As R s1 , a single bond, a divalent chain hydrocarbon group having 1 to 6 carbon atoms, a divalent aromatic hydrocarbon having 6 to 12 carbon atoms, or R ′ is divalent having 1 to 6 carbon atoms. —C (═O) —NH—R′—, which is a chain hydrocarbon group, is preferably a single bond, a methanediyl group, a phenylene group, —C (═O) —NH—CH (CH 3 ) —CH 2 —. Are more preferable, and a single bond, —C (═O) —NH—CH (CH 3 ) —CH 2 — is more preferable.

構造単位(IV)としては、例えば、下記式(7−1)〜(7−4)で表される構造単位等が挙げられる。   Examples of the structural unit (IV) include structural units represented by the following formulas (7-1) to (7-4).

Figure 2013147267
Figure 2013147267

上記式(7−1)〜(7−4)中、Rは、上記式(7)と同義である。これらの中で、上記式(7−1)で表される構造単位、上記式(7−4)で表される構造単位が好ましい。In formulas (7-1) to (7-4), R F has the same meaning as formula (7). Among these, the structural unit represented by the above formula (7-1) and the structural unit represented by the above formula (7-4) are preferable.

[A2]重合体成分における構造単位(IV)の含有割合としては、[A2]重合体成分を構成する全構造単位に対して、0モル%〜10モル%が好ましく、0.1モル%〜5モル%がより好ましく、0.2モル%〜2モル%がさらに好ましい。[A2]重合体成分における構造単位(IV)の含有割合を上記範囲とすることで、液浸上層膜の除去性及び剥がれ耐性を効果的に向上させることができると共に、現像欠陥の発生を効果的に抑制することができる。   [A2] The content ratio of the structural unit (IV) in the polymer component is preferably 0 mol% to 10 mol%, preferably 0.1 mol% to the total structural unit constituting the [A2] polymer component. 5 mol% is more preferable, and 0.2 mol% to 2 mol% is more preferable. [A2] By making the content ratio of the structural unit (IV) in the polymer component within the above range, the removability and peeling resistance of the liquid immersion upper layer film can be effectively improved, and the occurrence of development defects is effective. Can be suppressed.

重合体(a3)における構造単位(IV)の含有割合としては、重合体(a3)を構成する全構造単位に対して、通常、0モル%〜20モル%であり、0.2モル%〜10モル%がより好ましく、0.5モル%〜7モル%がさらに好ましい。重合体(a3)における構造単位(IV)の含有割合を上記範囲とすることで、上記液浸上層膜の除去性等の特性を効果的に高めることができる。   As a content rate of structural unit (IV) in a polymer (a3), it is 0 mol%-20 mol% normally with respect to all the structural units which comprise a polymer (a3), 0.2 mol%- 10 mol% is more preferable and 0.5 mol%-7 mol% are further more preferable. By setting the content ratio of the structural unit (IV) in the polymer (a3) within the above range, characteristics such as removability of the liquid immersion upper layer film can be effectively enhanced.

[構造単位(V)]
構造単位(V)は、カルボキシ基を含む構造単位(以下、「構造単位(V−1)」ともいう)及び上記式(2)で表される基を含む構造単位(以下、「構造単位(V−2)」ともいう)からなる群より選択される少なくとも1種の構造単位である。液浸露光用膜形成組成物(TC)は、[A2]重合体成分が上記構造単位(V)をさらに有することで、液浸上層膜の除去性及び剥がれ耐性をさらに向上させることができると共に、現像欠陥の発生をさらに抑制することができる。
[Structural unit (V)]
The structural unit (V) includes a structural unit containing a carboxy group (hereinafter also referred to as “structural unit (V-1)”) and a structural unit containing the group represented by the above formula (2) (hereinafter referred to as “structural unit ( V-2) is also at least one structural unit selected from the group consisting of. In the film forming composition for liquid immersion exposure (TC), the [A2] polymer component further includes the structural unit (V), so that the removability and peeling resistance of the liquid immersion upper layer film can be further improved. The occurrence of development defects can be further suppressed.

構造単位(V−1)としては、例えば、下記式(8−1)〜(8−3)で表される構造単位等が挙げられる。   Examples of the structural unit (V-1) include structural units represented by the following formulas (8-1) to (8-3).

Figure 2013147267
Figure 2013147267

上記式(8−1)〜(8−3)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rc1及びRc2は、それぞれ独立して、炭素数1〜6の2価の鎖状炭化水素基、炭素数4〜12の2価の脂環式炭化水素基又は炭素数6〜12の2価の芳香族炭化水素基である。In the above formulas (8-1) to (8-3), R G is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. R c1 and R c2 are each independently a divalent chain hydrocarbon group having 1 to 6 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms, or 2 having 6 to 12 carbon atoms. Valent aromatic hydrocarbon group.

上記Rとしては、水素原子、メチル基が好ましく、メチル基がより好ましい。As said RG , a hydrogen atom and a methyl group are preferable and a methyl group is more preferable.

上記Rc1及びRc2で表される炭素数1〜6の2価の鎖状炭化水素基としては、例えば、上記式(5)におけるRn1として例示した基と同様の基等が挙げられる。これらの中で、飽和鎖状炭化水素基が好ましく、1,2−エタンジイル基がより好ましい。Examples of the divalent chain hydrocarbon group having 1 to 6 carbon atoms represented by R c1 and R c2 include the same groups as those exemplified as R n1 in the above formula (5). Of these, saturated chain hydrocarbon groups are preferred, and 1,2-ethanediyl groups are more preferred.

上記Rc1及びRc2で表される炭素数4〜12の2価の脂環式炭化水素基としては、例えば、上記式(5)におけるRn1として例示した基と同様の基等が挙げられる。これらの中で、単環式炭化水素基が好ましく、シクロヘキサンジイル基がより好ましく、1,2−シクロヘキサンジイル基がより好ましい。Examples of the divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms represented by R c1 and R c2 include the same groups as those exemplified as R n1 in the above formula (5). . Among these, a monocyclic hydrocarbon group is preferable, a cyclohexanediyl group is more preferable, and a 1,2-cyclohexanediyl group is more preferable.

上記Rc1及びRc2で表される炭素数6〜12の2価の芳香族炭化水素基としては、例えば、上記式(7)におけるRs1として例示した基と同様の基等が挙げられる。Examples of the divalent aromatic hydrocarbon group having 6 to 12 carbon atoms represented by R c1 and R c2 include the same groups as those exemplified as R s1 in the above formula (7).

構造単位(V−1)としては、例えば、下記式(8−1−1)〜(8−1−3)で表される構造単位、並びに下記式(8−2−1)及び(8−2−2)で表される構造単位等が挙げられる。   As the structural unit (V-1), for example, structural units represented by the following formulas (8-1-1) to (8-1-3), and the following formulas (8-2-1) and (8- And the structural unit represented by 2-2).

Figure 2013147267
Figure 2013147267

上記式(8−1−1)〜(8−2−2)中、Rは、上記式(8−1)〜(8−3)と同義である。In the above formulas (8-1-1) to (8-2-2), R G has the same meaning as the above formulas (8-1) to (8-3).

これらの中で、上記式(8−1)及び(8−3)で表される構造単位が好ましい。また、上記式(8−1)で表される構造単位の中では、式(8−1−1)で表される構造単位がより好ましい。   Among these, the structural units represented by the above formulas (8-1) and (8-3) are preferable. Moreover, in the structural unit represented by the said Formula (8-1), the structural unit represented by Formula (8-1-1) is more preferable.

構造単位(V−2)は、上記式(2)で表される基を含む構造単位である。   The structural unit (V-2) is a structural unit containing a group represented by the above formula (2).

上記式(2)中、Rは、水素原子、ハロゲン原子、ニトロ基、炭素数1〜20のアルキル基、炭素数3〜20の1価の脂環式炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシル基、炭素数7〜20のアラルキル基又は炭素数6〜20のアリール基である。上記アルキル基、脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基及びアリール基が有する水素原子の一部又は全部は、置換されていてもよい。Rは、−C(=O)−R、−S(=O)−R、−R−CN、又は−R−NOである。上記R及びRは、それぞれ独立して、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のフッ素化アルキル基、炭素数3〜20の1価の脂環式炭化水素基、炭素数1〜20のアルコキシ基、シアノ基、シアノメチル基、炭素数7〜20のアラルキル基又は炭素数6〜20のアリール基である。但し、R又はRと、Rとが互いに結合して環構造を形成していてもよい。上記R及びRは、それぞれ独立して、単結合、メチレン基又は炭素数2〜5のアルキレン基である。In the above formula (2), R 4 is a hydrogen atom, a halogen atom, a nitro group, an alkyl group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, 1 to 20 carbon atoms An alkoxy group having 1 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Some or all of the hydrogen atoms of the alkyl group, alicyclic hydrocarbon group, alkoxy group, acyl group, aralkyl group and aryl group may be substituted. R 5 is —C (═O) —R 6 , —S (═O) 2 —R 7 , —R 8 —CN, or —R 9 —NO 2 . R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a fluorinated alkyl group having 1 to 20 carbon atoms, or a monovalent alicyclic hydrocarbon having 3 to 20 carbon atoms. Group, an alkoxy group having 1 to 20 carbon atoms, a cyano group, a cyanomethyl group, an aralkyl group having 7 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms. However, R 6 or R 7 and R 4 may be bonded to each other to form a ring structure. R 8 and R 9 are each independently a single bond, a methylene group or an alkylene group having 2 to 5 carbon atoms.

上記Rで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。この中で、フッ素原子及び塩素原子が好ましい。Examples of the halogen atom represented by R 4 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom and a chlorine atom are preferable.

上記Rで表される炭素数1〜20のアルキル基及び炭素数1〜20の1価の脂環式炭化水素基としては、例えば、上記Rで表される炭素数1〜20の1価の炭化水素基として示したそれぞれの基の例示と同様の基等が挙げられる。Examples of the alkyl group having 1 to 20 carbon atoms and the monovalent alicyclic hydrocarbon group having 1 to 20 carbon atoms represented by R 4 include 1 to 1 carbon atoms represented by R 3. Examples thereof include the same groups as those exemplified for each group shown as a valent hydrocarbon group.

上記Rで表される炭素数1〜20のアルコキシ基としては、例えば、メトキシ基、エトキシ基等が挙げられる。As a C1-C20 alkoxy group represented by said R < 4 >, a methoxy group, an ethoxy group, etc. are mentioned, for example.

上記Rで表される炭素数1〜20のアシル基としては、例えば、アセチル基、プロピオニル基等が挙げられる。As a C1-C20 acyl group represented by said R < 4 >, an acetyl group, a propionyl group, etc. are mentioned, for example.

上記Rで表される炭素数7〜20のアラルキル基としては、例えば、ベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。Examples of the aralkyl group having 7 to 20 carbon atoms represented by R 4 include a benzyl group, a phenethyl group, and a naphthylmethyl group.

上記Rで表される炭素数6〜20のアリール基としては、例えば、フェニル基、トリル基、ジメチルフェニル基、2,4,6−トリメチルフェニル基、ナフチル基等が挙げられる。Examples of the aryl group having 6 to 20 carbon atoms represented by R 4 include a phenyl group, a tolyl group, a dimethylphenyl group, a 2,4,6-trimethylphenyl group, and a naphthyl group.

上記Rで表されるアルキル基、1価の脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基及びアリール基が有していてもよい置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基等が挙げられる。Examples of the substituent that the alkyl group, monovalent alicyclic hydrocarbon group, alkoxy group, acyl group, aralkyl group and aryl group represented by R 4 may have include a fluorine atom and a chlorine atom. And halogen atoms such as hydroxyl group, nitro group, cyano group and the like.

上記Rとしては、液浸露光用膜形成組成物(TC)から形成される液浸上層膜の現像液溶解性と剥がれ耐性とをバランスさせる観点から、これらの中で、水素原子、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基及び炭素数2〜5のアシル基が好ましく、水素原子、メチル基、エチル基、アセチル基がより好ましい。As R 4 , among these, from the viewpoint of balancing the solubility of the developer in the liquid immersion upper layer film formed from the film forming composition for liquid immersion exposure (TC) and the peeling resistance, among these, a hydrogen atom, a carbon number A 1-5 alkyl group, a C1-C5 alkoxy group, and a C2-C5 acyl group are preferable, and a hydrogen atom, a methyl group, an ethyl group, and an acetyl group are more preferable.

上記Rが−C(=O)−R又は−S(=O)−Rの場合、R及びRで表されるアルキル基、1価の脂環式炭化水素基、アルコキシ基、アラルキル基及びアリール基としては、例えば、上記Rのそれぞれの基として例示した基と同様の基等が挙げられる。また、R及びRで表されるフッ素化アルキル基としては、例えば、上記Rのアルキル基として例示した基の水素原子の少なくとも1つがフッ素原子で置換された基等が挙げられる。これらの中で、R及びRとしては、水素原子、アルキル基が好ましく、水素原子、メチル基、エチル基がより好ましい。When R 5 is —C (═O) —R 6 or —S (═O) 2 —R 7 , the alkyl group represented by R 6 and R 7 , a monovalent alicyclic hydrocarbon group, alkoxy Examples of the group, the aralkyl group, and the aryl group include the same groups as those exemplified as the respective groups for R 4 . Examples of the fluorinated alkyl group represented by R 6 and R 7 include a group in which at least one hydrogen atom of the group exemplified as the alkyl group for R 4 is substituted with a fluorine atom. Among these, as R 6 and R 7 , a hydrogen atom and an alkyl group are preferable, and a hydrogen atom, a methyl group, and an ethyl group are more preferable.

上記R又はRとRとが互いに結合して形成する環構造を含む基としては、R又はRとRとがそれぞれ結合する原子を含み、かつオキソ基を有する炭素数5〜12の2価の脂環式炭化水素基が好ましい。The group containing a ring structure formed by bonding R 6 or R 7 and R 4 to each other includes an atom to which R 6 or R 7 and R 4 are bonded, and has 5 carbon atoms having an oxo group. ~ 12 divalent alicyclic hydrocarbon groups are preferred.

が、−R−CN及び−R−NOの場合、R及びRとしては、単結合、メタンジイル基又はエタンジイル基が好ましい。When R 5 is —R 8 —CN and —R 9 —NO 2 , R 8 and R 9 are preferably a single bond, a methanediyl group or an ethanediyl group.

上記式(2)で表される基としては、下記式(2−1)〜(2−8)で表される基が好ましい。   As group represented by said Formula (2), group represented by following formula (2-1)-(2-8) is preferable.

Figure 2013147267
Figure 2013147267

上記式(2−1)〜(2−8)中、*は結合部位を示す。   In the above formulas (2-1) to (2-8), * represents a binding site.

構造単位(V−2)としては、例えば、上記式(2)で表される基を有する(メタ)アクリル酸エステル誘導体、(メタ)アクリルアミド誘導体、ビニルエーテル誘導体、オレフィン誘導体、スチレン誘導体等に由来する構造単位等が挙げられる。これらの中で、(メタ)アクリル酸エステル誘導体由来の構造単位が好ましい。すなわち、構造単位(V−2)としては、下記式(9)で表される構造単位が好ましい。   The structural unit (V-2) is derived from, for example, a (meth) acrylic acid ester derivative having a group represented by the above formula (2), a (meth) acrylamide derivative, a vinyl ether derivative, an olefin derivative, a styrene derivative, or the like. Examples include structural units. Of these, structural units derived from (meth) acrylic acid ester derivatives are preferred. That is, as the structural unit (V-2), a structural unit represented by the following formula (9) is preferable.

Figure 2013147267
Figure 2013147267

上記式(9)中、R及びRは、上記式(2)と同義である。mは、1〜3の整数である。R及びRがそれぞれ複数の場合、複数のR及びRはそれぞれ同一でも異なっていてもよい。Lは、(m+1)価の連結基である。Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。In the above formula (9), R 4 and R 5 is as defined in the above formula (2). m is an integer of 1-3. When R 4 and R 5 is plural, respectively, it may be different in each of a plurality of R 4 and R 5 are the same. L 1 is a (m + 1) -valent linking group. R H is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.

上記Rとしては、上記式(9)で表される構造単位を与える単量体の共重合性等の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。The RH is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoint of copolymerizability of the monomer that gives the structural unit represented by the formula (9).

上記Lで表される(m+1)価の連結基としては、例えば、2価の連結基(nが1の場合)として、アルカンジイル基、2価の脂環式炭化水素基、アルケンジイル基、アレーンジイル基等が挙げられる。なお、これらの基が有する水素原子の一部又は全部は、フッ素原子や塩素原子等のハロゲン原子、シアノ基等で置換されていてもよい。Examples of the (m + 1) -valent linking group represented by L 1 include an alkanediyl group, a divalent alicyclic hydrocarbon group, an alkenediyl group, as a divalent linking group (when n is 1), And arenediyl groups. Note that some or all of the hydrogen atoms contained in these groups may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, a cyano group, or the like.

上記アルカンジイル基としては、例えば、メタンジイル基、エタンジイル基、プロパンジイル基、ブタンジイル基、ヘキサンジイル基、オクタンジイル基等が挙げられる。上記アルカンジイル基としては、炭素数1〜8のアルカンジイル基が好ましい。   Examples of the alkanediyl group include methanediyl group, ethanediyl group, propanediyl group, butanediyl group, hexanediyl group, and octanediyl group. As said alkanediyl group, a C1-C8 alkanediyl group is preferable.

上記2価の脂環式炭化水素基としては、例えば、シクロペンタンジイル基、シクロヘキサンジイル基等の単環の脂環式炭化水素基;ノルボルナンジイル基、アダマンタンジイル基等の多環の脂環式炭化水素等が挙げられる。上記2価の脂環式炭化水素基としては、炭素数5〜12の2価の脂環式炭化水素基が好ましい。   Examples of the divalent alicyclic hydrocarbon group include monocyclic alicyclic hydrocarbon groups such as cyclopentanediyl group and cyclohexanediyl group; and polycyclic alicyclic groups such as norbornanediyl group and adamantanediyl group. A hydrocarbon etc. are mentioned. As said bivalent alicyclic hydrocarbon group, a C5-C12 bivalent alicyclic hydrocarbon group is preferable.

上記アルケンジイル基としては、例えば、エテンジイル基、プロペンジイル基、ブテンジイル基等が挙げられる。上記アルケンジイル基としては、炭素数2〜6のアルケンジイル基が好ましい。   Examples of the alkenediyl group include an ethenediyl group, a propenediyl group, and a butenediyl group. As said alkenediyl group, a C2-C6 alkenediyl group is preferable.

上記アレーンジイル基としては、例えば、フェニレン基、トリレン基、ナフチレン基等が挙げられる。上記アレーンジイル基としては、炭素数6〜15のアレーンジイル基が好ましい。   Examples of the arenediyl group include a phenylene group, a tolylene group, and a naphthylene group. As the above arenediyl group, an arenediyl group having 6 to 15 carbon atoms is preferable.

これらの中で、Lとしては、アルカンジイル基、2価の脂環式炭化水素基が好ましく、炭素数1〜4のアルカンジイル基、炭素数6〜11の2価の脂環式炭化水素基がより好ましい。Among these, as L 1 , an alkanediyl group, a divalent alicyclic hydrocarbon group is preferable, an alkanediyl group having 1 to 4 carbon atoms, and a divalent alicyclic hydrocarbon having 6 to 11 carbon atoms. Groups are more preferred.

下記式(9)で表される構造単位としては、下記式(9−1)〜(9−10)で表される構造単位が好ましい。   As the structural unit represented by the following formula (9), structural units represented by the following formulas (9-1) to (9-10) are preferable.

Figure 2013147267
Figure 2013147267

上記式(9−1)〜(9−10)中、Rは上記式(9)と同義である。In said formula (9-1)-(9-10), RH is synonymous with said formula (9).

[A2]重合体成分における構造単位(V)の含有割合としては、[A2]重合体成分を構成する全構造単位に対して、0モル%〜30モル%が好ましく、1モル%〜20モル%がより好ましく、4モル%〜15モル%がさらに好ましい。[A2]重合体成分における構造単位(V)の含有割合を上記範囲とすることで、液浸露光用膜形成組成物(TC)から形成される液浸上層膜の除去性及び剥がれ耐性を効果的に向上させることができると共に、現像欠陥の発生を効果的に抑制することができる。   [A2] The content of the structural unit (V) in the polymer component is preferably 0 mol% to 30 mol%, preferably 1 mol% to 20 mol, based on all structural units constituting the [A2] polymer component. % Is more preferable, and 4 mol% to 15 mol% is more preferable. [A2] By making the content ratio of the structural unit (V) in the polymer component within the above range, the removability and peeling resistance of the liquid immersion upper layer film formed from the film forming composition for liquid immersion exposure (TC) are effective. And development defects can be effectively suppressed.

重合体(a3)における構造単位(V)の含有割合としては、重合体(a3)を構成する全構造単位に対して、0モル%〜60モル%が好ましく、10モル%〜55モル%がより好ましく、25モル%〜50モル%がさらに好ましい。重合体(a3)における構造単位(V)の含有割合を上記範囲とすることで、上記液浸上層膜の除去性等の特性を効果的に高めることができる。   As a content rate of the structural unit (V) in a polymer (a3), 0 mol%-60 mol% are preferable with respect to all the structural units which comprise a polymer (a3), and 10 mol%-55 mol% are preferable. More preferably, it is more preferably 25 mol% to 50 mol%. By making the content rate of the structural unit (V) in a polymer (a3) into the said range, characteristics, such as the removability of the said liquid immersion upper layer film | membrane, can be improved effectively.

[その他の構造単位]
[A2]重合体成分としては、上記構造単位(I)及び構造単位(III)〜(V)以外にも、重合体(a1)と同一又は異なる重合体(a3)中に、後述する構造単位(VI)等のその他の構造単位を有していてもよい。その他の構造単位の含有割合としては、目的に応じて適宜決定することができる。
[Other structural units]
[A2] As the polymer component, in addition to the structural unit (I) and the structural units (III) to (V), in the polymer (a3) that is the same as or different from the polymer (a1), a structural unit described later You may have other structural units, such as (VI). The content ratio of other structural units can be appropriately determined according to the purpose.

[構造単位(VI)]
[A2]重合体成分は、下記式(Z)で表される構造単位(VI)をさらに有することが好ましい。[A2]重合体成分がこの構造単位(VI)をさらに有することで、形成される液浸上層膜の撥水性を高めることができる。

Figure 2013147267
[Structural unit (VI)]
[A2] The polymer component preferably further has a structural unit (VI) represented by the following formula (Z). [A2] When the polymer component further has the structural unit (VI), the water repellency of the formed liquid immersion upper layer film can be increased.
Figure 2013147267

上記式(Z)中、RM1は、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。RM2は、フッ素原子を有する炭素数1〜6の直鎖状若しくは分岐状のアルキル基又はフッ素原子を有する炭素数4〜20の1価の脂環式炭化水素基である。但し、上記アルキル基及び脂環式炭化水素基が有する水素原子の一部又は全部は、置換基により置換されていてもよい。In formula (Z), R M1 represents a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group. R M2 is a linear or branched alkyl group having 1 to 6 carbon atoms having a fluorine atom or a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms having a fluorine atom. However, one part or all part of the hydrogen atom which the said alkyl group and alicyclic hydrocarbon group have may be substituted by the substituent.

上記RM2で表されるフッ素原子を有する炭素数1〜6の直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等の炭素数1〜6の直鎖状若しくは分岐状のアルキル基が有する水素原子の一部又は全部がフッ素原子で置換されている基等が挙げられる。Examples of the linear or branched alkyl group having 1 to 6 carbon atoms and having a fluorine atom represented by R M2, for example, a methyl group, an ethyl group, a propyl group, having 1 to 6 carbon atoms such as butyl group Examples include a group in which part or all of the hydrogen atoms of the linear or branched alkyl group are substituted with fluorine atoms.

上記RM2で表されるフッ素原子を有する炭素数4〜20の1価の脂環式炭化水素基としては、例えば、シクロペンチル基、シクロペンチルプロピル基、シクロヘキシル基、シクロヘキシルメチル基、シクロヘプチル基、シクロオクチル基、シクロオクチルメチル基等の炭素数4〜20の1価の脂環式炭化水素基が有する水素原子の一部又は全部がフッ素原子で置換されている基等が挙げられる。Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms having a fluorine atom represented by R M2, for example, cyclopentyl, cyclopentyl propyl, cyclohexyl, cyclohexylmethyl group, a cycloheptyl group, a cycloalkyl Examples include a group in which part or all of the hydrogen atoms of a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms such as an octyl group and a cyclooctylmethyl group are substituted with fluorine atoms.

上記置換基としては、例えば、フッ素原子、ヒドロキシ基、カルボキシ基、アミノ基等が挙げられる。   As said substituent, a fluorine atom, a hydroxy group, a carboxy group, an amino group etc. are mentioned, for example.

構造単位(VI)としては、例えば、下記式(Z−1)〜(Z−6)で表される構造単位等が挙げられる。

Figure 2013147267
Examples of the structural unit (VI) include structural units represented by the following formulas (Z-1) to (Z-6).
Figure 2013147267

上記式(Z−1)〜(Z−6)中、RM1は、上記式(Z)と同義である。In the above formulas (Z-1) to (Z-6), R M1 has the same meaning as the above formula (Z).

これらの中で、上記式(Z−1)及び(Z−3)で表される構造単位が好ましい。   Among these, the structural units represented by the above formulas (Z-1) and (Z-3) are preferable.

[A2]重合体成分における構造単位(VI)の含有割合としては、[A2]重合体成分を構成する全構造単位に対して、0モル%〜50モル%が好ましく、1モル%〜40モル%がより好ましく、2モル%〜30モル%がさらに好ましい。[A2]重合体成分における構造単位(VI)の含有割合を上記範囲とすることで、液浸上層膜形成用組成物(TC)から形成される液浸上層膜の撥水性及び除去性がより向上すると共に、現像欠陥の発生をより抑制することができる。   [A2] The content ratio of the structural unit (VI) in the polymer component is preferably 0 mol% to 50 mol%, preferably 1 mol% to 40 mol, with respect to all structural units constituting the [A2] polymer component. % Is more preferable, and 2 mol% to 30 mol% is more preferable. [A2] By making the content ratio of the structural unit (VI) in the polymer component within the above range, the water repellency and removability of the liquid immersion upper film formed from the liquid immersion upper film formation composition (TC) are further improved. As a result, development defects can be further suppressed.

重合体(a1−2)における構造単位(VI)の含有割合としては、重合体(a1−2)を構成する全構造単位に対して、0モル%〜70モル%が好ましく、5モル%〜65モル%がより好ましく、10モル%〜60モル%がさらに好ましい。重合体(a1−2)における構造単位(VI)の含有割合を上記範囲とすることで、上記液浸上層膜の撥水性等の特性を効果的に高めることができる。   As a content rate of structural unit (VI) in a polymer (a1-2), 0 mol%-70 mol% are preferable with respect to all the structural units which comprise a polymer (a1-2), 5 mol%- 65 mol% is more preferable, and 10 mol% to 60 mol% is more preferable. By setting the content ratio of the structural unit (VI) in the polymer (a1-2) within the above range, the water repellency and other characteristics of the liquid immersion upper layer film can be effectively enhanced.

<その他の成分>
液浸露光用膜形成組成物(TC)は、本発明の効果を損なわない範囲で、上記[A2]重合体成分及び[B]溶媒以外のその他の成分を含有してもよい。その他の成分は、それぞれ単独で又は2種以上を組み合わせて用いてもよい。
<Other ingredients>
The film forming composition (TC) for immersion exposure may contain other components other than the above-mentioned [A2] polymer component and [B] solvent as long as the effects of the present invention are not impaired. Other components may be used alone or in combination of two or more.

<重合体>
本発明の重合体は、上記式(1)で表される構造単位(I)を有する重合体である。当該重合体は、上記構造単位(I)を有するので、例えば、液浸露光時には大きな後退接触角を示し、かつ現像欠陥の発生を抑制できる液浸露光用膜形成組成物の成分として好適に用いることができる。
<Polymer>
The polymer of the present invention is a polymer having the structural unit (I) represented by the above formula (1). Since the polymer has the structural unit (I), for example, it is suitably used as a component of a film forming composition for immersion exposure that exhibits a large receding contact angle during immersion exposure and can suppress development defects. be able to.

<化合物>
本発明の化合物は、上記式(3)で表される化合物である。当該化合物が上記構造を有するので、例えば、上述の構造単位(I)を与える単量体として好適である。
<Compound>
The compound of the present invention is a compound represented by the above formula (3). Since the compound has the above structure, it is suitable as a monomer that gives the structural unit (I), for example.

なお、当該重合体及び化合物は、<液浸露光用膜形成組成物>における重合体(a1)の項で上述しているため、ここでの説明は省略する。   In addition, since the said polymer and compound are mentioned above in the term of the polymer (a1) in <film forming composition for immersion exposure>, description here is abbreviate | omitted.

液浸露光用膜形成組成物(PR)を用いたレジストパターンの形成方法(I)及び液浸露光用膜形成組成物(TC)を用いたレジストパターンの形成方法(II)を、それぞれ分けて以下に示す。   The resist pattern formation method (I) using the immersion exposure film-forming composition (PR) and the resist pattern formation method (II) using the immersion exposure film-forming composition (TC) are respectively divided. It is shown below.

<レジストパターンの形成方法(I)>
液浸露光用膜形成組成物(PR)を用いたレジストパターンの形成方法は、
(A1)液浸露光用膜形成組成物(PR)を用い、基板上にレジスト膜を形成する工程(以下、「工程(A1)」ともいう)、
(A2)液浸露光液を介する放射線の照射により、上記レジスト膜を液浸露光する工程(以下、「工程(A2)」ともいう)、及び
(A3)上記液浸露光されたレジスト膜を現像液により現像してレジストパターンを形成する工程(以下、「工程(A3)」ともいう)を含む。以下、各工程について詳述する。
<Method for Forming Resist Pattern (I)>
The method of forming a resist pattern using the film forming composition for immersion exposure (PR) is as follows:
(A1) A step of forming a resist film on a substrate using the film formation composition for immersion exposure (PR) (hereinafter also referred to as “step (A1)”),
(A2) immersion exposure of the resist film by irradiation with radiation through an immersion exposure liquid (hereinafter also referred to as “process (A2)”), and (A3) development of the immersion exposed resist film. And a step of developing with a liquid to form a resist pattern (hereinafter also referred to as “step (A3)”). Hereinafter, each process is explained in full detail.

[工程(A1)]
本工程では、液浸露光用膜形成組成物(PR)を用い、基板上にレジスト膜を形成する。上記基板としては、例えば、シリコンウエハ、アルミニウムで被覆したウエハ等が挙げられる。この基板上に液浸露光用膜形成組成物(PR)を塗布することによりレジスト膜が形成される。液浸露光用膜形成組成物(PR)の塗布方法としては、特に限定されないが、例えば、スピンコート法等の公知の方法により塗布することができる。液浸露光用膜形成組成物(PR)を塗布する際には、形成されるレジスト膜が所望の膜厚となるように、塗布する液浸露光用膜形成組成物(PR)の量を調整する。なお、この組成物を基板上に塗布した後、溶媒を揮発させるためにソフトベーク(以下、「SB」ともいう)を行ってもよい。SBの加熱温度としては、通常30℃〜200℃であり、50℃〜150℃が好ましい。
[Step (A1)]
In this step, a resist film is formed on the substrate using the film forming composition for immersion exposure (PR). Examples of the substrate include a silicon wafer and a wafer coated with aluminum. A resist film is formed by applying a film forming composition (PR) for immersion exposure on this substrate. The method for applying the film forming composition for immersion exposure (PR) is not particularly limited, and for example, it can be applied by a known method such as a spin coating method. When applying the film forming composition (PR) for immersion exposure, the amount of the film forming composition (PR) to be applied is adjusted so that the resist film to be formed has a desired thickness. To do. In addition, after apply | coating this composition on a board | substrate, in order to volatilize a solvent, you may perform a soft baking (henceforth "SB"). As heating temperature of SB, it is 30 to 200 degreeC normally, and 50 to 150 degreeC is preferable.

[工程(A2)]
本工程では、液浸露光液を介する放射線の照射により、上記工程(A1)で形成したレジスト膜を液浸露光する。上記液浸露光液としては、通常、空気より屈折率の高い液体を使用する。具体的には、例えば、純水、長鎖又は環状の脂肪族化合物等が挙げられる。この液浸露光液を介した状態、すなわち、レンズとレジスト膜との間に液浸露光液を満たした状態で、露光装置から放射線を照射し、所定のパターンを有するマスクを介してレジスト膜を露光する。
[Step (A2)]
In this step, the resist film formed in the step (A1) is subjected to immersion exposure by irradiation with radiation through the immersion exposure solution. As the immersion exposure liquid, a liquid having a higher refractive index than air is usually used. Specific examples include pure water, long chain or cyclic aliphatic compounds, and the like. In this state through the immersion exposure liquid, that is, in a state where the immersion exposure liquid is filled between the lens and the resist film, the exposure apparatus irradiates radiation, and the resist film is formed through a mask having a predetermined pattern. Exposure.

上記放射線としては、使用される[C]酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、荷電粒子線等から適宜選定されて使用されるが、これらの中で、ArFエキシマレーザー光(波長193nm)及びKrFエキシマレーザー光(波長248nm)に代表される遠紫外線が好ましく、ArFエキシマレーザー光(波長193nm)がより好ましい。なお、露光量等の露光条件は、液浸露光用レジスト組成物の配合組成や添加剤の種類等に応じて適宜選定することができる。   The radiation is appropriately selected from visible light, ultraviolet light, far ultraviolet light, X-rays, charged particle beams, etc., depending on the type of [C] acid generator used. Among these, Far ultraviolet rays represented by ArF excimer laser light (wavelength 193 nm) and KrF excimer laser light (wavelength 248 nm) are preferable, and ArF excimer laser light (wavelength 193 nm) is more preferable. In addition, exposure conditions, such as exposure amount, can be suitably selected according to the compounding composition of the resist composition for immersion exposure, the kind of additive, etc.

露光後に加熱処理(PEB)を行うことが好ましい。このPEBにより、樹脂成分中の酸解離性基の解離反応を円滑に進行させることができる。PEBの加熱条件は、液浸露光用膜形成組成物(PR)の配合組成によって適宜調整されるが、通常30℃〜200℃であり、50℃〜170℃が好ましい。   It is preferable to perform heat treatment (PEB) after exposure. By this PEB, the dissociation reaction of the acid dissociable group in the resin component can be smoothly advanced. The heating condition of PEB is appropriately adjusted depending on the composition of the film forming composition for immersion exposure (PR), but is usually 30 ° C to 200 ° C, preferably 50 ° C to 170 ° C.

また、液浸露光用膜形成組成物(PR)の潜在能力を最大限に引き出すため、例えば、特公平6−12452号公報(特開昭59−93448号公報)等に開示されているように、使用される基板上に有機系又は無機系の反射防止膜を形成しておくこともできる。   Further, in order to maximize the potential of the film forming composition (PR) for immersion exposure, for example, as disclosed in Japanese Patent Publication No. 6-12452 (Japanese Patent Laid-Open No. 59-93448) and the like. An organic or inorganic antireflection film may be formed on the substrate to be used.

[工程(A3)]
本工程では、上記工程(A2)で液浸露光されたレジスト膜を現像液により現像してレジストパターンを形成する。上記現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n−プロピルアミン、ジエチルアミン、ジ−n−プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ−[4.3.0]−5−ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液が好ましい。なお、この現像液には、例えば、メタノール、エタノール等のアルコール類等の水溶性有機溶媒や、界面活性剤を適量添加することもできる。
[Step (A3)]
In this step, the resist film subjected to the immersion exposure in the above step (A2) is developed with a developer to form a resist pattern. Examples of the developer include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyl Diethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [ 4.3.0] An alkaline aqueous solution in which at least one alkaline compound such as 5-nonene is dissolved is preferable. For example, a suitable amount of a water-soluble organic solvent such as alcohols such as methanol and ethanol, and a surfactant can be added to the developer.

<レジストパターンの形成方法(II)>
液浸露光用膜形成組成物(TC)を用いたレジストパターンの形成方法は、
(B1)フォトレジスト組成物を用い、基板上にレジスト膜を形成する工程(以下、「工程(B1)」ともいう)、
(B2)液浸露光用膜形成組成物(TC)を用い、上記レジスト膜上に液浸上層膜を形成する工程(以下、「工程(B2)」ともいう)、
(B3)液浸露光液を介する放射線の照射により、上記レジスト膜及び液浸上層膜を液浸露光する工程(以下、「工程(B3)」ともいう)、並びに
(B4)上記液浸露光されたレジスト膜及び液浸上層膜を現像液により現像してレジストパターンを形成する工程(以下、「工程(B4)」ともいう)を含む。以下、各工程について詳述する。
<Method for Forming Resist Pattern (II)>
The method of forming a resist pattern using the film forming composition for immersion exposure (TC) is as follows:
(B1) A step of forming a resist film on a substrate using a photoresist composition (hereinafter also referred to as “step (B1)”),
(B2) a step of forming an immersion upper layer film on the resist film using the film formation composition for immersion exposure (TC) (hereinafter also referred to as “step (B2)”),
(B3) immersion exposure of the resist film and immersion upper layer film by irradiation with radiation through the immersion exposure liquid (hereinafter also referred to as “process (B3)”), and (B4) the immersion exposure. The resist film and the immersion upper layer film are developed with a developer to form a resist pattern (hereinafter also referred to as “process (B4)”). Hereinafter, each process is explained in full detail.

[工程(B1)]
本工程では、フォトレジスト組成物を用い、基板上にレジスト膜を形成する。上記フォトレジスト組成物としては、例えば、酸発生剤を含有するポジ型又はネガ型の化学増幅型レジスト組成物、アルカリ可溶性樹脂とキノンジアジド系感光剤とからなるポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤とからなるネガ型レジスト組成物等が挙げられる。このフォトレジスト組成物として、市販のフォトレジスト組成物を使用することもできる。上記フォトレジスト組成物の塗布方法としては、特に限定されないが、上記工程(A1)で用いた方法と同様の方法を採用することができる。なお、フォトレジスト組成物を基板上に塗布した後、上記工程(A1)で用いた方法と同様の方法で、SBを行ってもよい。
[Step (B1)]
In this step, a photoresist film is used to form a resist film on the substrate. Examples of the photoresist composition include a positive or negative chemically amplified resist composition containing an acid generator, a positive resist composition comprising an alkali-soluble resin and a quinonediazide-based photosensitizer, and an alkali-soluble resin. Examples thereof include a negative resist composition composed of a crosslinking agent. A commercially available photoresist composition can also be used as this photoresist composition. Although it does not specifically limit as a coating method of the said photoresist composition, The method similar to the method used at the said process (A1) is employable. In addition, after apply | coating a photoresist composition on a board | substrate, you may perform SB by the method similar to the method used at the said process (A1).

[工程(B2)]
本工程では、液浸露光用膜形成組成物(TC)を用い、上記レジスト膜上に液浸上層膜を形成する。本工程では、液浸露光用膜形成組成物(TC)を塗布した後、焼成することが好ましい。この焼成により液浸露光液とレジスト膜とが直接接触しなくなるため、液浸露光液がレジスト膜に浸透することに起因するレジスト膜のリソグラフィー性能が低下したり、レジスト膜から液浸露光液に溶出した成分によって投影露光装置のレンズが汚染されたりすることを効果的に防止できる。液浸上層膜を形成する方法は、上記フォトレジスト組成物に代えて液浸露光用膜形成組成物(TC)を用いること以外は、上記レジスト膜を形成する方法と同様の方法を採用することができる。
[Step (B2)]
In this step, an immersion upper film is formed on the resist film using a film forming composition (TC) for immersion exposure. In this step, it is preferable to bake after applying the film forming composition (TC) for immersion exposure. Since the immersion exposure liquid and the resist film are not in direct contact with each other by this baking, the lithography performance of the resist film due to the immersion exposure liquid penetrating into the resist film is reduced, or the resist film is changed into the immersion exposure liquid. It is possible to effectively prevent the lens of the projection exposure apparatus from being contaminated by the eluted components. The method for forming the liquid immersion upper film is the same as the method for forming the resist film except that the film forming composition for liquid immersion exposure (TC) is used in place of the photoresist composition. Can do.

[工程(B3)及び工程(B4)]
工程(B3)では、液浸露光液を介する放射線の照射により、上記レジスト膜及び液浸上層膜を液浸露光する。また、工程(B4)では、上記液浸露光されたレジスト膜及び液浸上層膜を現像液により現像してレジストパターンを形成する。この工程(B3)及び工程(B4)は、それぞれ上記工程(A2)及び工程(A3)で用いた方法と同様の方法を採用することができる。
[Step (B3) and Step (B4)]
In the step (B3), the resist film and the immersion upper layer film are subjected to immersion exposure by irradiation of radiation through the immersion exposure liquid. In the step (B4), the resist film and the liquid immersion upper layer film that have been subjected to the liquid immersion exposure are developed with a developing solution to form a resist pattern. For the step (B3) and the step (B4), the same method as that used in the step (A2) and the step (A3) can be employed.

以下、本発明を実施例によりさらに具体的に説明するが、本発明は、これらの実施例に制限されるものではない。各種物性値の測定方法を以下に示す。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. The measuring method of various physical property values is shown below.

H−NMR分析及び13C−NMR分析]
H−NMR分析及び13C−NMR分析は、核磁気共鳴装置(JNM−ECX400、日本電子製)を用い、測定溶媒としてCDClを用いて、テトラメチルシラン(TMS)を内部標準として測定した。
[ 1 H-NMR analysis and 13 C-NMR analysis]
1 H-NMR analysis and 13 C-NMR analysis were performed using a nuclear magnetic resonance apparatus (JNM-ECX400, manufactured by JEOL Ltd.), using CDCl 3 as a measurement solvent, and tetramethylsilane (TMS) as an internal standard. .

[重量平均分子量(Mw)及び数平均分子量(Mn)測定]
重合体のMw及びMnは、下記条件によるゲルパーミエーションクロマトグラフィー(GPC)により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
GPCカラム:G2000HXL 2本、G3000HXL 1本、G4000HXL1本(東ソー製)
溶出溶媒 :テトラヒドロフラン
流量 :1.0mL/分
カラム温度 :40℃
標準物質 :単分散ポリスチレン
検出器 :示差屈折計
[Weight average molecular weight (Mw) and number average molecular weight (Mn) measurement]
Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) under the following conditions. The degree of dispersion (Mw / Mn) was calculated from the measurement results of Mw and Mn.
GPC column: 2 G2000HXL, 1 G3000HXL, 1 G4000HXL (manufactured by Tosoh)
Elution solvent: Tetrahydrofuran Flow rate: 1.0 mL / min Column temperature: 40 ° C
Standard material: Monodisperse polystyrene Detector: Differential refractometer

<化合物の合成>
[合成例1](化合物(Q’)の合成)
3Lの反応器に、エチレングリコール62.1g(1モル)を入れ、これにテトラヒドロフラン(THF)1,000mLを加え、メカニカルスターラーで攪拌した。次いで、上記反応器にトリフルオロ酢酸無水物231.0g(1.1モル)を加え、室温で2時間攪拌した。次いで、飽和炭酸水素ナトリウム水溶液1,000g及び酢酸エチル2,000mLを加え、有機層を分離し抽出液を得た。この抽出液を水で5回洗浄した後、無水硫酸ナトリウム(乾燥剤)で乾燥させた。その後、ブフナー漏斗にて上記乾燥剤をろ別し、有機溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、下記式で表される化合物(Q’)(2−ヒドロキシエチル2,2,2−トリフルオロアセテート)(49.1g)を得た(収率31%)。
<Synthesis of compounds>
[Synthesis Example 1] (Synthesis of Compound (Q ′))
Into a 3 L reactor, 62.1 g (1 mol) of ethylene glycol was added, 1,000 mL of tetrahydrofuran (THF) was added thereto, and the mixture was stirred with a mechanical stirrer. Next, 231.0 g (1.1 mol) of trifluoroacetic anhydride was added to the reactor, and the mixture was stirred at room temperature for 2 hours. Subsequently, 1,000 g of saturated aqueous sodium hydrogen carbonate solution and 2,000 mL of ethyl acetate were added, and the organic layer was separated to obtain an extract. The extract was washed 5 times with water and then dried over anhydrous sodium sulfate (desiccant). Thereafter, the desiccant was filtered off with a Buchner funnel, the organic solvent was distilled off, the residue was purified by silica gel column chromatography, and the compound (Q ′) (2-hydroxyethyl 2) represented by the following formula was obtained. , 2,2-trifluoroacetate) (49.1 g) was obtained (yield 31%).

Figure 2013147267
Figure 2013147267

(化合物(Q’)のH−NMR分析)
H−NMR(CDCl)δ:3.79(t、2H)、4.45(t、2H)
( 1 H-NMR analysis of compound (Q ′))
1 H-NMR (CDCl 3 ) δ: 3.79 (t, 2H), 4.45 (t, 2H)

[合成例2](化合物(Q−1)の合成)
滴下漏斗及びコンデンサーを備えた1Lの三口反応器を乾燥させた後、上記合成した化合物(Q’)15.81g(0.1モル)、トリエチルアミン10.12g(0.1モル)及びジクロロメタン100mLを仕込み、氷浴で0℃まで冷却した。その後、2−(ブロモメチル)アクリル酸エチル19.30g(0.1モル)を30分間かけて滴下した。滴下後、室温で3時間攪拌した。その後、沈殿物をろ過により除去し、得られたろ液に1N塩酸200mLを加えて反応を停止させた。得られた有機層を水及び飽和食塩水で順次洗浄した。その後、有機層を無水硫酸マグネシウムで乾燥してから減圧濃縮した。その後、カラムクロマトグラフィーにより精製を行い、下記式で表される化合物(Q−1)16.74gを得た(収率62%)。
[Synthesis Example 2] (Synthesis of Compound (Q-1))
After drying a 1 L three-necked reactor equipped with a dropping funnel and a condenser, 15.81 g (0.1 mol) of the synthesized compound (Q ′), 10.12 g (0.1 mol) of triethylamine and 100 mL of dichloromethane were added. Charged and cooled to 0 ° C. in an ice bath. Thereafter, 19.30 g (0.1 mol) of ethyl 2- (bromomethyl) acrylate was added dropwise over 30 minutes. After dropping, the mixture was stirred at room temperature for 3 hours. Thereafter, the precipitate was removed by filtration, and 200 mL of 1N hydrochloric acid was added to the obtained filtrate to stop the reaction. The obtained organic layer was washed successively with water and saturated brine. Thereafter, the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Thereafter, purification was performed by column chromatography to obtain 16.74 g of a compound (Q-1) represented by the following formula (yield 62%).

Figure 2013147267
Figure 2013147267

(化合物(Q−1)のH−NMR分析)
H−NMR(CDCl)δ:1.30(t、3H)、2.25−2.31(m、2H)、3.80−4.22(m、4H)、4.44(t、2H)、5.80(s、1H)、6.36(s、1H)
(1 H-NMR analysis of the compound (Q-1))
1 H-NMR (CDCl 3 ) δ: 1.30 (t, 3H), 2.25-2.31 (m, 2H), 3.80-4.22 (m, 4H), 4.44 (t 2H), 5.80 (s, 1H), 6.36 (s, 1H)

[実施例1](化合物(Q−2)の合成)
2−(ブロモメチル)アクリル酸エチル19.30gの代わりに、2−(ブロモメチル)アクリル酸−1−エチルシクロペンチル26.12gを用いた以外は、合成例2と同様に操作して、下記式で表される化合物(Q−2)15.22gを得た(収率45%)。
[Example 1] (Synthesis of Compound (Q-2))
The same procedure as in Synthesis Example 2 was performed except that 26.12 g of 2- (bromomethyl) acrylic acid-1-ethylcyclopentyl was used instead of 19.30 g of ethyl 2- (bromomethyl) acrylate. Compound (Q-2) 15.22g was obtained (45% yield).

Figure 2013147267
Figure 2013147267

(化合物(Q−2)のH−NMR分析)
H−NMR(CDCl)δ:0.82−0.86(m、3H)、1.57−1.86(m、6H)、1.87−2.08(m、2H)、2.12−2.31(m、2H)、3.79−4.13(m、4H)、4.39(t、2H)、5.79(s、1H)、6.35(s、1H)
(1 H-NMR analysis of the compound (Q-2))
1 H-NMR (CDCl 3 ) δ: 0.82-0.86 (m, 3H), 1.57-1.86 (m, 6H), 1.87-2.08 (m, 2H), 2 12-2.31 (m, 2H), 3.79-4.13 (m, 4H), 4.39 (t, 2H), 5.79 (s, 1H), 6.35 (s, 1H) )

[合成例3](化合物(Q−3)の合成)
化合物(Q’)15.81gの代わりに、メチル2,2−ジフルオロ−3−ヒドロキシペンタノエート16.81gを用いた以外は、合成例2と同様に操作して、下記式で表される化合物(Q−3)9.56gを得た(収率34%)。
[Synthesis Example 3] (Synthesis of Compound (Q-3))
The same operation as in Synthesis Example 2 was performed except that 16.81 g of methyl 2,2-difluoro-3-hydroxypentanoate was used instead of 15.81 g of compound (Q ′), and represented by the following formula: 9.56 g of compound (Q-3) was obtained (yield 34%).

Figure 2013147267
Figure 2013147267

(化合物(Q−3)のH−NMR分析)
H−NMR(CDCl)δ:0.95(t,3H)、1.30(t、3H)、1.75−1.89(m,2H)、3.81−3.92(m、5H)、4.15−4.25(m、2H)、5.34−5.39(m,1H)、5.78(s、1H)、6.35(s、1H)
(1 H-NMR analysis of the compound (Q-3))
1 H-NMR (CDCl 3 ) δ: 0.95 (t, 3H), 1.30 (t, 3H), 1.75-1.89 (m, 2H), 3.81-3.92 (m 5H), 4.15-4.25 (m, 2H), 5.34-5.39 (m, 1H), 5.78 (s, 1H), 6.35 (s, 1H)

[実施例2](化合物(Q−4)の合成)
2−(ブロモメチル)アクリル酸エチル19.30gの代わりに、2−(ブロモメチル)アクリル酸−1−エチルシクロペンチル26.12gを、化合物(Q’)15.81gの代わりに、メチル2,2−ジフルオロ−3−ヒドロキシペンタノエート16.81gを用いた以外は、合成例2と同様に操作して、下記式で表される化合物(Q−4)10.80gを得た(収率31%)。
[Example 2] (Synthesis of Compound (Q-4))
Instead of 19.30 g of ethyl 2- (bromomethyl) acrylate, 26.12 g of 2- (bromomethyl) acrylic acid-1-ethylcyclopentyl was used instead of 15.81 g of compound (Q ′) methyl 2,2-difluoro. 10.80 g of compound (Q-4) represented by the following formula was obtained (yield 31%) except that 16.81 g of -3-hydroxypentanoate was used. .

Figure 2013147267
Figure 2013147267

(化合物(Q−4)のH−NMR分析)
H−NMR(CDCl)δ:0.80−0.87(m、3H)、0.94(t,3H)、1.59−2.11(m,10H)、2.10−2.29(m、2H)、3.80−3.94(m、5H)、5.32−5.41(m,1H)、5.77(s、1H)、6.36(s、1H)
(1 H-NMR analysis of the compound (Q-4))
1 H-NMR (CDCl 3 ) δ: 0.80-0.87 (m, 3H), 0.94 (t, 3H), 1.59-2.11 (m, 10H), 2.10-2 .29 (m, 2H), 3.80-3.94 (m, 5H), 5.32-5.41 (m, 1H), 5.77 (s, 1H), 6.36 (s, 1H) )

[合成例4](化合物(Q−5)の合成)
滴下漏斗及びコンデンサーを備えた1Lの三口反応器を乾燥させた後、これに亜鉛粉末6.54g(0.1モル)、トリメチルシリルクロライド0.5mL(40ミリモル)及びテトラヒドロフラン(THF)100mLを入れ、室温で10分攪拌した。その後、エチル2−ブロモ−2,2−ジフルオロアセテート24.36g(0.12モル)を20mLのTHFで溶解したものを30分かけて滴下した。室温で2時間攪拌後、2−(ブロモメチル)アクリル酸エチル19.30g(0.1モル)を加え、室温にて3時間攪拌した。反応液に水100mLを加えて反応を停止させ、酢酸エチルを500mL加えた。得られた有機層を飽和食塩水で洗浄した。その後、有機層を無水硫酸マグネシウムで乾燥してから減圧濃縮した。その後、カラムクロマトグラフィーにより精製を行い、下記式で表される化合物(Q−5)5.33gを得た(収率24%)。
[Synthesis Example 4] (Synthesis of Compound (Q-5))
After drying a 1 L three-necked reactor equipped with a dropping funnel and a condenser, 6.54 g (0.1 mol) of zinc powder, 0.5 mL (40 mmol) of trimethylsilyl chloride and 100 mL of tetrahydrofuran (THF) were added thereto. Stir at room temperature for 10 minutes. Thereafter, 24.36 g (0.12 mol) of ethyl 2-bromo-2,2-difluoroacetate dissolved in 20 mL of THF was added dropwise over 30 minutes. After stirring at room temperature for 2 hours, 19.30 g (0.1 mol) of ethyl 2- (bromomethyl) acrylate was added, and the mixture was stirred at room temperature for 3 hours. The reaction was stopped by adding 100 mL of water, and 500 mL of ethyl acetate was added. The obtained organic layer was washed with saturated brine. Thereafter, the organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Then, it refine | purified by column chromatography and obtained 5.33 g of compounds (Q-5) represented by a following formula (yield 24%).

Figure 2013147267
Figure 2013147267

(化合物(Q−5)のH−NMR分析)
H−NMR(CDCl)δ:1.28−1.41(m、6H)、3.16(t、2H)、4.19−4.36(m、4H)、5.85(s、1H)、6.44(s、1H)
(1 H-NMR analysis of the compound (Q-5))
1 H-NMR (CDCl 3 ) δ: 1.28-1.41 (m, 6H), 3.16 (t, 2H), 4.19-4.36 (m, 4H), 5.85 (s) 1H), 6.44 (s, 1H)

[実施例3](化合物(Q−6)の合成)
2−(ブロモメチル)アクリル酸エチル19.30gの代わりに、2−(ブロモメチル)アクリル酸−1−エチルシクロペンチル26.12gを用いた以外は、合成例4と同様に操作して、下記式で表される化合物(Q−6)5.52gを得た(収率19%)。
[Example 3] (Synthesis of Compound (Q-6))
The same procedure as in Synthesis Example 4 was performed, except that 26.12 g of 2- (bromomethyl) acrylic acid-1-ethylcyclopentyl was used instead of 19.30 g of ethyl 2- (bromomethyl) acrylate. 5.52 g of the compound (Q-6) obtained was obtained (yield 19%).

Figure 2013147267
Figure 2013147267

(化合物(Q−6)のH−NMR分析)
H−NMR(CDCl)δ:0.81−0.88(m、3H)、1.33−1.41(m、3H)、1.55−1.84(m、6H)、1.85−2.04(m、2H)、2.10−2.30(m、2H)、3.15(t、2H)、4.20−4.24(m、2H)、5.82(s、1H)、6.42(s、1H)
(1 H-NMR analysis of the compound (Q-6))
1 H-NMR (CDCl 3 ) δ: 0.81-0.88 (m, 3H), 1.33-1.41 (m, 3H), 1.55-1.84 (m, 6H), 1 .85-2.04 (m, 2H), 2.10-2.30 (m, 2H), 3.15 (t, 2H), 4.20-4.24 (m, 2H), 5.82 (S, 1H), 6.42 (s, 1H)

<各重合体の合成>
各実施例及び比較例の重合体の合成で用いた化合物(Q−1)〜(Q−6)以外の化合物(単量体)を以下に示す。
<Synthesis of each polymer>
Compounds (monomers) other than the compounds (Q-1) to (Q-6) used in the synthesis of the polymers of the examples and comparative examples are shown below.

Figure 2013147267
Figure 2013147267

<重合体(a1−1)の合成>
[実施例4](重合体(a1−1−1)の合成)
上記(Q−1)8.65g(80モル%)及び化合物(M−2)1.35g(20モル%)を2−ブタノン10gに溶解し、AIBN0.41gを添加して単量体溶液を調製した。次いで、2−ブタノン20gを入れた100mLの三口フラスコを30分窒素パージした後、撹拌しながら80℃に加熱し、上記単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。この重合溶液をメタノール200g中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をメタノール40gで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(a1−1−1)を得た(6.3g、収率63%)。重合体(a1−1−1)のMwは4,000であり、Mw/Mnは1.39であった。13C−NMR分析の結果、(Q−1)及び(M−2)に由来する構造単位の含有割合は、それぞれ81.3モル%及び18.7モル%であった。また、13C−NMR分析の結果、重合体(a1−1−1)のフッ素原子含有率は18.3質量%であった。
<Synthesis of polymer (a1-1)>
[Example 4] (Synthesis of polymer (a1-1-1))
8.65 g (80 mol%) of the above (Q-1) and 1.35 g (20 mol%) of the compound (M-2) are dissolved in 10 g of 2-butanone, and 0.41 g of AIBN is added to obtain a monomer solution. Prepared. Next, a 100 mL three-necked flask containing 20 g of 2-butanone was purged with nitrogen for 30 minutes, and then heated to 80 ° C. with stirring, and the monomer solution was added dropwise over 3 hours using a dropping funnel. The dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours. After completion of the polymerization reaction, the polymerization solution was cooled with water and cooled to 30 ° C. or lower. This polymerization solution was put into 200 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 40 g of methanol, filtered, and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (a1-1-1) (6.3 g, yield). 63%). Mw of the polymer (a1-1-1) was 4,000, and Mw / Mn was 1.39. As a result of 13 C-NMR analysis, the content ratios of structural units derived from (Q-1) and (M-2) were 81.3 mol% and 18.7 mol%, respectively. As a result of the 13 C-NMR analysis, the fluorine atom content of the polymer (a1-1-1) was 18.3% by mass.

[実施例5〜9及び合成例5](重合体(a1−1−2)〜(a1−1−6)及び(ca−1)の合成)
下記表1に示す種類及び使用量の化合物を用いた以外は、実施例4と同様に操作し、(a1−1)成分となる重合体(a1−1−2)〜(a1−1−6)及び(ca−1)を合成した。得られた各重合体のMw、(Mw/Mn)及びフッ素原子含有率を表1に合わせて示す。なお、表1中の「−」は、該当する成分を配合しなかったことを示す。
[Examples 5 to 9 and Synthesis Example 5] (Synthesis of Polymers (a1-1-2) to (a1-1-6) and (ca-1))
Except having used the compound of the kind and usage-amount shown in following Table 1, it operate | moves similarly to Example 4 and the polymer (a1-1-2)-(a1-1-6) used as (a1-1) component. ) And (ca-1) were synthesized. Table 1 shows the Mw, (Mw / Mn), and fluorine atom content of each polymer obtained. In addition, "-" in Table 1 indicates that the corresponding component was not blended.

Figure 2013147267
Figure 2013147267

<重合体(a2)の合成>
[合成例6](重合体(a2−1)の合成)
(M−1)43.1g(50モル%)、(M−6)56.9g(50モル%)を2−ブタノン100gに溶解し、AIBN4.21gを添加して単量体溶液を調製した。次いで、2−ブタノン200gを入れた1,000mLの三口フラスコを30分窒素パージした後、撹拌しながら80℃に加熱し、上記単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。この重合溶液をメタノール2,000g中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末を400gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(a2−1)を得た(62.3g、収率62%)。重合体(a2−1)のMwは5,500であり、Mw/Mnは1.41であった。13C−NMR分析の結果、(M−1)及び(M−6)に由来する構造単位の含有割合は、それぞれ48.2モル%及び51.8モル%であった。また、13C−NMR分析の結果、重合体(a2−1)のフッ素原子含有率は0質量%であった。
<Synthesis of polymer (a2)>
[Synthesis Example 6] (Synthesis of polymer (a2-1))
(M-1) 43.1 g (50 mol%) and (M-6) 56.9 g (50 mol%) were dissolved in 100 g of 2-butanone, and 4.21 g of AIBN was added to prepare a monomer solution. . Then, a 1,000 mL three-necked flask containing 200 g of 2-butanone was purged with nitrogen for 30 minutes, and then heated to 80 ° C. with stirring, and the monomer solution was added dropwise over 3 hours using a dropping funnel. The dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours. After completion of the polymerization reaction, the polymerization solution was cooled with water and cooled to 30 ° C. or lower. This polymerization solution was put into 2,000 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice with 400 g of methanol, filtered, and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (a2-1) (62.3 g, yield 62). %). Mw of the polymer (a2-1) was 5,500, and Mw / Mn was 1.41. As a result of 13 C-NMR analysis, the content ratios of structural units derived from (M-1) and (M-6) were 48.2 mol% and 51.8 mol%, respectively. In addition, as a result of 13 C-NMR analysis, the fluorine atom content of the polymer (a2-1) was 0% by mass.

[合成例7、8](重合体(a2−2)及び(a2−3)の合成)
下記表2に示す種類及び使用量の化合物を用いた以外は、合成例6と同様に操作し、各重合体を合成した。得られた各重合体のMw、(Mw/Mn)及びフッ素原子含有率を表2に合わせて示す。
[Synthesis Examples 7 and 8] (Synthesis of polymers (a2-2) and (a2-3))
Each polymer was synthesized in the same manner as in Synthesis Example 6 except that the types and amounts of compounds shown in Table 2 below were used. Table 2 shows the Mw, (Mw / Mn), and fluorine atom content of each polymer obtained.

Figure 2013147267
Figure 2013147267

<重合体(a1−2)の合成>
[実施例10](重合体(a1−2−1)の合成)
構造単位(I)を与える化合物(Q−1)0.73g(5モル%)、構造単位(III)を与える化合物(M−7)6.83g(35モル%)、及び構造単位(VI)を与える化合物(M−8)5.44g(60モル%)、並びに重合開始剤2,2’−アゾビス−(2−メチルプロピオン酸メチル)1.00gをメチルエチルケトン40.00gに溶解させた単量体溶液を準備し、30分間窒素パージした。窒素パージの後、フラスコ内をマグネティックスターラーで攪拌しながら、80℃になるように加熱し、滴下漏斗を用い、予め準備しておいた単量体溶液を3時間かけて滴下した。滴下終了後、さらに3時間反応を続けた。30℃以下になるまで冷却することにより重合液を得た。
次いで、得られた共重合液を44gに濃縮した後、分液漏斗に移した。この分液漏斗にメタノール44g及びn−ヘキサン220gを投入し、分離精製を実施した。分離後、下層液を回収した。回収した下層液に及びn−ヘキサン220gを投入し、分離精製を実施した。分離後、下層液を回収した。回収した下層液を4−メチル−2−ペンタノールに置換し、重合体成分(a1−2−1)を含む溶液を得た。その重合体溶液0.5gをアルミ皿にのせ、155℃に加熱したホットプレート上で30分間加熱した後の残渣の質量から上記重合体成分(a1−2−1)を含む溶液の固形分濃度を算出し、その固形分濃度の値をその後の保護膜形成用組成物溶液の調製と収率計算に用いた。得られた重合体(a1−2−1)のMwは10,000、Mw/Mnは1.51、収率は75%であった。また、13C−NMR分析の結果、化合物(Q−1)、化合物(M−7)及び化合物(M−8)に由来する各構造単位の含有率は、それぞれ4.9モル%、34.9モル%、60.2モル%であった。
<Synthesis of polymer (a1-2)>
[Example 10] (Synthesis of polymer (a1-2-1))
Compound (Q-1) giving structural unit (I) 0.73 g (5 mol%), compound (M-7) giving structural unit (III) 6.83 g (35 mol%), and structural unit (VI) Amount obtained by dissolving 5.44 g (60 mol%) of the compound (M-8) that gives azobenzene, and 1.00 g of the polymerization initiator 2,2′-azobis- (methyl methyl 2-methylpropionate) in 40.00 g of methyl ethyl ketone A body solution was prepared and purged with nitrogen for 30 minutes. After purging with nitrogen, the inside of the flask was heated to 80 ° C. while stirring with a magnetic stirrer, and a monomer solution prepared in advance was added dropwise over 3 hours using a dropping funnel. After completion of dropping, the reaction was continued for another 3 hours. The polymerization liquid was obtained by cooling until it became 30 degrees C or less.
Subsequently, after concentrating the obtained copolymer liquid to 44 g, it moved to the separatory funnel. To this separatory funnel, 44 g of methanol and 220 g of n-hexane were added for separation and purification. After separation, the lower layer solution was recovered. The recovered lower layer solution and 220 g of n-hexane were added to carry out separation and purification. After separation, the lower layer solution was recovered. The recovered lower layer solution was replaced with 4-methyl-2-pentanol to obtain a solution containing the polymer component (a1-2-1). The solid content concentration of the solution containing the polymer component (a1-2-1) is calculated from the mass of the residue after 0.5 g of the polymer solution is placed on an aluminum dish and heated on a hot plate heated to 155 ° C. for 30 minutes. The solid content concentration value was used for the subsequent preparation of the protective film-forming composition solution and the yield calculation. Mw of the obtained polymer (a1-2-1) was 10,000, Mw / Mn was 1.51, and the yield was 75%. As a result of 13 C-NMR analysis, the content of each structural unit derived from the compound (Q-1), the compound (M-7), and the compound (M-8) was 4.9 mol% and 34. They were 9 mol% and 60.2 mol%.

[実施例11及び合成例9](重合体(a1−2−2)及び(ca−2)の合成)
表3に記載の化合物を所定量配合した以外は、実施例10と同様に操作して重合体(a1−2−2)及び(ca−2)を得た。また、得られた各重合体の各構造単位の含有率、Mw、Mw/Mn比を表3に合わせて示す。
[Example 11 and Synthesis Example 9] (Synthesis of polymers (a1-2-2) and (ca-2))
Polymers (a1-2-2) and (ca-2) were obtained in the same manner as in Example 10 except that a predetermined amount of the compounds shown in Table 3 was blended. Moreover, the content rate of each structural unit of each obtained polymer, Mw, and Mw / Mn ratio are shown according to Table 3.

Figure 2013147267
Figure 2013147267

<重合体(a3)の合成>
[合成例10](重合体(a3−1)の合成)
構造単位(III)を与える化合物(M−7)60.57g(85モル%)、及び重合開始剤 2,2’−アゾビス−(2−メチルプロピオン酸メチル)4.53gをイソプロパノール40.00gに溶解させた単量体溶液を準備した。
一方、温度計及び滴下漏斗を備えた200mLの三つ口フラスコにイソプロパノール50gを投入し、30分間窒素パージした。窒素パージの後、フラスコ内をマグネティックスターラーで攪拌しながら、80℃になるように加熱し、滴下漏斗を用い、予め準備しておいた単量体溶液を2時間かけて滴下した。滴下終了後、さらに1時間反応を行い、構造単位(IV)を与える化合物(M−9)3.19g(15モル%)のイソプロパノール溶液10gを30分かけて滴下した。その後、さらに1時間反応を行った後、30℃以下になるまで冷却することにより重合液を得た。
得られた上記重合液を150gに濃縮した後、分液漏斗に移した。この分液漏斗にメタノール50gとn−ヘキサン600gを投入し、分離精製を実施した。分離後、下層液を回収した。この下層液をイソプロパノールで希釈して100gとし、再度、分液漏斗に移した。その後、メタノール50gとn−ヘキサン600gを上記分液漏斗に投入して、分離精製を実施し、分離後、下層液を回収した。回収した下層液を4−メチル−2−ペンタノールに置換し、全量を250gに調整した。調整後、水250gを加えて分離精製を実施し、分離後、上層液を回収した。回収した上層液は、4−メチル−2−ペンタノールに置換し、重合体(a3−1)を含む溶液を得た。得られた重合体(a3−1)のMwは8,000、Mw/Mnは1.51であり、収率は80%であった。また、(M−7)及び(M−9)に由来する各構造単位の含有率は、それぞれ98モル%及び2モル%であった。
<Synthesis of polymer (a3)>
[Synthesis Example 10] (Synthesis of polymer (a3-1))
40.57 g (85 mol%) of the compound (M-7) giving the structural unit (III) and 4.53 g of the polymerization initiator 2,2′-azobis- (methyl methyl 2-methylpropionate) in 40.00 g of isopropanol A dissolved monomer solution was prepared.
Meanwhile, 50 g of isopropanol was charged into a 200 mL three-necked flask equipped with a thermometer and a dropping funnel, and purged with nitrogen for 30 minutes. After purging with nitrogen, the inside of the flask was heated to 80 ° C. while stirring with a magnetic stirrer, and a monomer solution prepared in advance was added dropwise over 2 hours using a dropping funnel. After completion of the dropping, the reaction was further continued for 1 hour, and 10 g of an isopropanol solution of 3.19 g (15 mol%) of the compound (M-9) giving the structural unit (IV) was dropped over 30 minutes. Then, after reacting further for 1 hour, the polymerization liquid was obtained by cooling until it became 30 degrees C or less.
The obtained polymerization solution was concentrated to 150 g and transferred to a separatory funnel. The separatory funnel was charged with 50 g of methanol and 600 g of n-hexane to carry out separation and purification. After separation, the lower layer solution was recovered. This lower layer solution was diluted with isopropanol to 100 g, and again transferred to a separatory funnel. Thereafter, 50 g of methanol and 600 g of n-hexane were put into the above separatory funnel, separation and purification were performed, and the lower layer liquid was recovered after separation. The recovered lower layer solution was replaced with 4-methyl-2-pentanol, and the total amount was adjusted to 250 g. After the adjustment, 250 g of water was added for separation and purification. After separation, the upper layer liquid was recovered. The recovered upper layer liquid was substituted with 4-methyl-2-pentanol to obtain a solution containing the polymer (a3-1). Mw of the obtained polymer (a3-1) was 8,000, Mw / Mn was 1.51, and the yield was 80%. Moreover, the content rate of each structural unit derived from (M-7) and (M-9) was 98 mol% and 2 mol%, respectively.

<液浸露光用膜形成組成物(PR)の調製>
液浸露光用膜形成組成物(PR)の調製に用いた[B]溶媒、[C]酸発生剤及び[D]酸拡散制御剤を以下に示す。
<Preparation of film forming composition (PR) for immersion exposure>
The [B] solvent, [C] acid generator and [D] acid diffusion controller used for the preparation of the film forming composition for immersion exposure (PR) are shown below.

[[B]溶媒]
B−1:酢酸プロピレングリコールモノメチルエーテル
B−2:シクロヘキサノン
[[B] solvent]
B-1: Propylene glycol monomethyl ether acetate B-2: Cyclohexanone

[C]酸発生剤
下記式(C−1)で表されるトリフェニルスルホニウムノナフルオロブタンスルホネート
[C] Acid generator Triphenylsulfonium nonafluorobutanesulfonate represented by the following formula (C-1)

Figure 2013147267
Figure 2013147267

[D]酸拡散制御剤
下記式(D−1)で表されるN−t−アミロキシカルボニル−4−ヒドロキシピペリジン
[D] Acid diffusion controller Nt-amyloxycarbonyl-4-hydroxypiperidine represented by the following formula (D-1)

Figure 2013147267
Figure 2013147267

[実施例12]
[A]重合体成分としての(a1−1−1)5質量部及び(a2−1)100質量部、[B]溶媒としての(B−1)2,590質量部及び(B−2)1,110質量部、[C]酸発生剤としての(C−1)9.9質量部、並びに[D]酸拡散制御剤としての(D−1)7.9質量部を混合し、得られた混合液を孔径0.20μmのフィルタでろ過して液浸露光用膜形成組成物(PR)を調製した。
[Example 12]
[A] (a1-1-1) 5 parts by mass as polymer component and (a2-1) 100 parts by mass, [B] (B-1) 2,590 parts by mass as solvent (B-2) 1,110 parts by mass, (C-1) 9.9 parts by mass as [C] acid generator, and (D-1) 7.9 parts by mass as [D] acid diffusion controller were mixed to obtain The obtained mixed solution was filtered through a filter having a pore size of 0.20 μm to prepare a film forming composition (PR) for immersion exposure.

[実施例13〜19及び比較例1、2]
下記表4に示す種類及び配合量の各成分を用いた以外は、実施例12と同様に操作し、各液浸露光用膜形成組成物を調製した。
[Examples 13 to 19 and Comparative Examples 1 and 2]
Except having used each component of the kind and compounding quantity shown in following Table 4, it operated similarly to Example 12 and prepared each film | membrane formation composition for immersion exposure.

<液浸露光用膜形成組成物(TC)の調製>
液浸露光用膜形成組成物(TC)の調製に用いた[B]溶媒について以下に示す。
[[B]溶媒]
(B−3):4−メチル−2−ペンタノール
(B−4):ジイソアミルエーテル
<Preparation of film forming composition (TC) for immersion exposure>
The [B] solvent used for the preparation of the film forming composition for immersion exposure (TC) is shown below.
[[B] solvent]
(B-3): 4-methyl-2-pentanol (B-4): diisoamyl ether

[実施例20]
重合体(a1−2)としての重合体(a1−2−1)20質量部、重合体(a3)としての重合体(a3−1)80質量部、並びに[B]溶媒としての(B−3)1,000質量部及び(B−4)4,000質量部を混合し、2時間撹拌した後、孔径0.2μmのフィルタでろ過することにより、実施例20の液浸露光用膜形成組成物(TC)を得た。
[Example 20]
20 parts by mass of the polymer (a1-2-1) as the polymer (a1-2), 80 parts by mass of the polymer (a3-1) as the polymer (a3), and (B- 3) 1,000 parts by mass and (B-4) 4,000 parts by mass were mixed, stirred for 2 hours, and then filtered through a filter having a pore diameter of 0.2 μm to form a film for immersion exposure in Example 20. A composition (TC) was obtained.

[実施例21及び比較例3]
表5に示す種類及び配合量の各成分を混合した以外は、実施例20と同様にして、各液浸露光用膜形成組成物(TC)を得た。
[Example 21 and Comparative Example 3]
Except having mixed each component of the kind and compounding quantity shown in Table 5, it carried out similarly to Example 20, and obtained each film formation composition (TC) for immersion exposure.

<各液浸露光用膜形成組成物(TC)の評価に用いられるフォトレジスト組成物(α)の調製>
各液浸露光用膜形成組成物(TC)の評価に用いられるフォトレジスト組成物(α)を以下の方法により調製した。
<Preparation of photoresist composition (α) used for evaluation of film forming composition (TC) for each immersion exposure>
A photoresist composition (α) used for evaluating each film forming composition for immersion exposure (TC) was prepared by the following method.

<フォトレジスト組成物用重合体の合成>
[合成例11]
化合物(M−6)53.93g(50モル%)、化合物(M−3)35.38g(40モル%)、化合物(M−10)10.69g(10モル%)を2−ブタノン200gに溶解し、さらにジメチル2,2’−アゾビス(2−メチルプロピオネート)5.58gを投入した単量体溶液を準備し、100gの2−ブタノンを投入した500mLの三口フラスコを30分窒素パージした。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、事前に準備した上記単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2,000gのメタノールへ投入し、析出した白色粉末をろ別した。ろ別された白色粉末を2回400gずつのメタノールを用いてスラリー状にして洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体(P−1)を得た(74g、収率74%)。この重合体(P−1)は、Mwが6,900、Mw/Mn=1.70であった。また、13C−NMR分析の結果、この重合体(P−1)は、化合物(M−6)、化合物(M−3)及び化合物(M−10)に由来する各構造単位の含有割合が53.0:37.2:9.8(モル比)の共重合体であった。なお、この重合体中の各単量体由来の低分子量成分の含有量は、この重合体100質量%に対して、0.03質量%であった。
<Synthesis of polymer for photoresist composition>
[Synthesis Example 11]
Compound (M-6) 53.93 g (50 mol%), compound (M-3) 35.38 g (40 mol%), compound (M-10) 10.69 g (10 mol%) into 2-butanone 200 g Dissolve and prepare a monomer solution containing 5.58 g of dimethyl 2,2′-azobis (2-methylpropionate), and purge a 500 mL three-necked flask containing 100 g of 2-butanone with a nitrogen purge for 30 minutes. did. After purging with nitrogen, the reaction kettle was heated to 80 ° C. with stirring, and the monomer solution prepared in advance was added dropwise using a dropping funnel over 3 hours. The polymerization start was carried out for 6 hours with the start of dropping as the polymerization start time. After completion of the polymerization, the polymerization solution was cooled with water to 30 ° C. or less, poured into 2,000 g of methanol, and the precipitated white powder was separated by filtration. The filtered white powder was washed twice by slurry with 400 g of methanol, filtered, and dried at 50 ° C. for 17 hours to obtain a white powder polymer (P-1). (74 g, 74% yield). This polymer (P-1) had Mw of 6,900 and Mw / Mn = 1.70. In addition, as a result of 13 C-NMR analysis, this polymer (P-1) has a content ratio of each structural unit derived from the compound (M-6), the compound (M-3) and the compound (M-10). The copolymer was 53.0: 37.2: 9.8 (molar ratio). In addition, content of the low molecular weight component derived from each monomer in this polymer was 0.03 mass% with respect to 100 mass% of this polymer.

<フォトレジスト組成物(α)の調製>
重合体(P−1)100質量部、酸発生剤としてのトリフェニルスルホニウムノナフルオロ−n−ブタンスルホネート1.5質量部及び1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート6質量部、並びに酸拡散制御剤としてのR−(+)−(tert−ブトキシカルボニル)−2−ピペリジンメタノール0.65質量部を混合し、この混合物に、溶媒として、プロピレングリコールモノメチルエーテルアセテート2,900質量部、シクロヘキサノン1,250質量部及びγ−ブチロラクトン100質量部を加えて、全固形分濃度を5質量%に調整し、孔径30nmのフィルターでろ過することにより、フォトレジスト組成物(α)を調製した。
<Preparation of photoresist composition (α)>
100 parts by weight of polymer (P-1), 1.5 parts by weight of triphenylsulfonium nonafluoro-n-butanesulfonate as acid generator and 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium 6 parts by mass of nonafluoro-n-butanesulfonate and 0.65 parts by mass of R-(+)-(tert-butoxycarbonyl) -2-piperidinemethanol as an acid diffusion controller were mixed, and this mixture was used as a solvent. By adding 2,900 parts by mass of propylene glycol monomethyl ether acetate, 1,250 parts by mass of cyclohexanone and 100 parts by mass of γ-butyrolactone, adjusting the total solid content concentration to 5% by mass, and filtering through a filter with a pore size of 30 nm A photoresist composition (α) was prepared.

<液浸露光用膜形成組成物(PR)の評価>
上記調製した各液浸露光用膜形成組成物(PR)について、以下のようにレジスト膜及びレジストパターンを形成し、下記評価を行った。その結果を表4に合わせて示す。
<Evaluation of film forming composition (PR) for immersion exposure>
About each prepared film forming composition for immersion exposure (PR), the resist film and the resist pattern were formed as follows, and the following evaluation was performed. The results are also shown in Table 4.

[後退接触角]
温度23℃、相対湿度45%、1気圧の条件下で、後退接触角測定装置(DSA−10、KRUSS製)を用いて後退接触角(°)を測定した。この測定では、まず、針をアセトン及びイソプロピルアルコールで洗浄し、次いで、針に水を注入し、後退接触角測定装置のウエハステージ上に測定対象としてのシリコンウエハをセットした。その後、レジスト膜表面と針の先端との距離が1mm以下になるようにステージの高さを調整し、針から水を排出してウエハ上に20μLの水滴を形成した後、この水滴を針によって10μL/分の速度で180秒間吸引すると共に、接触角を1秒毎に測定した。接触角が安定した時点から合計20点の接触角を測定し、その平均値を後退接触角(°)とした。
8インチのシリコンウエハ上に各液浸露光用膜形成組成物(PR)をスピンコートし、110℃で60秒間SBを行うことにより形成した膜厚110nmのレジスト膜の後退接触角を表4中の「SB後」とした。このSB後の後退接触角が75°以上の場合、撥水性は良好と、75°未満の場合、不良と評価できる。
8インチのシリコンウエハ上に各液浸露光用膜形成組成物(PR)をスピンコートし、110℃で60秒間SBを行うことで膜厚110nmのレジスト膜を形成した。その後、現像装置(クリーントラックACT8、東京エレクトロン製)を用い、2.38質量%TMAH水溶液で30秒間現像し、純水で15秒間リンスし、2,000rpmで振り切り乾燥した後のレジストパターンの後退接触角を表4中の「現像後」とした。この現像後の後退接触角は、10°未満の場合、良好と、10°以上の場合、不良と評価できる。
[Backward contact angle]
The receding contact angle (°) was measured using a receding contact angle measuring device (DSA-10, manufactured by KRUSS) under the conditions of a temperature of 23 ° C., a relative humidity of 45%, and 1 atm. In this measurement, first, the needle was washed with acetone and isopropyl alcohol, then water was injected into the needle, and a silicon wafer as a measurement target was set on the wafer stage of the receding contact angle measuring device. Thereafter, the height of the stage is adjusted so that the distance between the resist film surface and the tip of the needle is 1 mm or less, and water is discharged from the needle to form a 20 μL water droplet on the wafer. While suctioning at a rate of 10 μL / min for 180 seconds, the contact angle was measured every second. A total of 20 contact angles were measured from the time when the contact angle was stabilized, and the average value was defined as the receding contact angle (°).
Table 4 shows the receding contact angle of a resist film having a thickness of 110 nm formed by spin-coating each immersion exposure film-forming composition (PR) on an 8-inch silicon wafer and performing SB at 110 ° C. for 60 seconds. “After SB”. When the receding contact angle after SB is 75 ° or more, the water repellency can be evaluated as good, and when it is less than 75 °, it can be evaluated as defective.
Each immersion exposure film-forming composition (PR) was spin-coated on an 8-inch silicon wafer, and SB was performed at 110 ° C. for 60 seconds to form a resist film having a thickness of 110 nm. Then, using a developing device (Clean Track ACT8, manufactured by Tokyo Electron), developed with a 2.38 mass% TMAH aqueous solution for 30 seconds, rinsed with pure water for 15 seconds, shaken and dried at 2,000 rpm, and then the resist pattern receded. The contact angle was defined as “after development” in Table 4. The receding contact angle after development can be evaluated as good when it is less than 10 °, and as poor when it is 10 ° or more.

[現像欠陥抑制性]
12インチのシリコンウエハ上に反射防止膜形成用組成物(ARC66、日産化学製)を用いて下層反射防止膜を形成し、この下層反射防止膜上に各液浸露光用膜形成組成物(PR)をスピンコートし、110℃で60秒間SBを行い膜厚110nmのレジスト膜を形成した。次いで、ArFエキシマレーザー液浸露光装置(NSR S610C、NIKON製)を用い、マスクパターンを介してNA=1.3、ratio=0.812、Crosspoleの条件により上記レジスト膜を露光した。露光後、120℃で60秒間PEBを行った。その後、2.38質量%TMAH水溶液で30秒間現像し、純水で15秒間リンスし、2,000rpmで振り切り乾燥してポジ型のレジストパターンを形成した。このとき、線幅55nmのラインアンドスペースパターン(1L/1S)を形成する露光量を最適露光量とした。この最適露光量にてウエハ全面に線幅55nmのラインアンドスペースパターン(1L/1S)を形成し、現像欠陥検査用ウエハとした。なお、測長には走査型電子顕微鏡(S−9380、日立ハイテクノロジーズ製)を用いた。その後、現像欠陥検査装置(KLA2810、KLA−Tencor製)を用い、上記現像欠陥検査用ウエハ上の現像欠陥を測定した。測定した現像欠陥をレジスト由来のものと外部由来の異物とに分類した後、レジスト由来と判断されるものの数を合計し、この値が50個/ウエハ以下の場合、現像欠陥抑制性は良好と、50個/ウエハ超の場合、不良と評価できる。
[Development defect suppression]
A lower antireflection film is formed on a 12-inch silicon wafer using an antireflection film forming composition (ARC66, manufactured by Nissan Chemical Industries), and each immersion exposure film forming composition (PR ) And spin-coated at 110 ° C. for 60 seconds to form a resist film having a thickness of 110 nm. Next, using a ArF excimer laser immersion exposure apparatus (NSR S610C, manufactured by NIKON), the resist film was exposed through the mask pattern under the conditions of NA = 1.3, ratio = 0.812, and Crosssole. After the exposure, PEB was performed at 120 ° C. for 60 seconds. Thereafter, development was performed with a 2.38 mass% TMAH aqueous solution for 30 seconds, rinsed with pure water for 15 seconds, and shaken and dried at 2,000 rpm to form a positive resist pattern. At this time, the exposure amount for forming a line and space pattern (1L / 1S) having a line width of 55 nm was determined as the optimum exposure amount. A line-and-space pattern (1L / 1S) having a line width of 55 nm was formed on the entire surface of the wafer with this optimum exposure amount, and a wafer for development defect inspection was obtained. Note that a scanning electron microscope (S-9380, manufactured by Hitachi High-Technologies) was used for length measurement. Thereafter, the development defects on the development defect inspection wafer were measured using a development defect inspection apparatus (KLA2810, manufactured by KLA-Tencor). After classifying the measured development defects into those derived from resist and foreign matter derived from the outside, the total number of those determined to be derived from resist is totaled. When this value is 50 / wafer or less, the development defect suppression is good. In the case of more than 50 / wafer, it can be evaluated as defective.

Figure 2013147267
Figure 2013147267

表4の結果から明らかなように、実施例ではSB後及び現像後共に後退接触角が良好であったのに対し、比較例ではSB後及び現像後の少なくともいずれかが不良であった。また、実施例では現像欠陥抑制性が良好であったのに対し、比較例ではいずれも不良であった。   As is clear from the results in Table 4, in Example, the receding contact angle was good both after SB and after development, whereas in Comparative Example, at least one after SB and after development was poor. In addition, the development defect suppression property was good in the examples, whereas all of the comparative examples were bad.

<液浸露光用膜形成組成物(TC)の評価>
上記実施例及び比較例で得られた各液浸露光用膜形成組成物(TC)を用い、この組成物を30分間撹拌した後、目視にて白濁が認められないものについて、以下に示す各種評価を行った。評価結果を表5に合わせて示す。なお、現像欠陥の抑制確認として、Blob欠陥及びブリッジ欠陥について評価した。
<Evaluation of film forming composition (TC) for immersion exposure>
Each of the film-forming compositions (TC) for immersion exposure obtained in the above Examples and Comparative Examples was stirred for 30 minutes, and then the following various types were observed with no turbidity observed visually. Evaluation was performed. The evaluation results are shown in Table 5. In addition, Blob defects and bridge defects were evaluated as confirmation of suppression of development defects.

[溶解性]
CLEAN TRACK ACT8(東京エレクトロン製)にて8インチシリコンウエハ上に、各液浸露光用膜形成組成物(TC)をスピンコートし、90℃で60秒SBを行い、膜厚90nmの液浸上層膜を形成した。膜厚はラムダエースVM90(大日本スクリーン製)を用いて測定した。上記液浸上層膜に対して、2.38質量%TMAH水溶液を用いて60秒間パドル現像し、振り切りによりスピンドライした後、ウエハ表面を観察した。このとき、残渣がなく現像されていれば、現像液に対する溶解性が「A(良好)」であり、残渣が観察されれば「B[不良)」と評価した。
[Solubility]
Each film forming composition (TC) for immersion exposure is spin-coated on an 8-inch silicon wafer with CLEAN TRACK ACT8 (manufactured by Tokyo Electron), SB is performed at 90 ° C. for 60 seconds, and an immersion upper layer having a film thickness of 90 nm A film was formed. The film thickness was measured using Lambda Ace VM90 (Dainippon Screen). The liquid immersion upper layer film was subjected to paddle development for 60 seconds using a 2.38 mass% TMAH aqueous solution, spin-dried by shaking, and the wafer surface was observed. At this time, if there was no residue and development was performed, the solubility in the developer was “A (good)”, and if the residue was observed, it was evaluated as “B [poor]”.

[後退接触角]
8インチシリコンウエハ上に、各液浸露光用膜形成組成物(TC)をスピンコートし、ホットプレート上にて90℃で60秒SBを行い、膜厚30nmの液浸上層膜を形成した。その後、DSA−10(KRUS製)を使用して、速やかに、23℃、湿度45%、常圧の環境下で、後退接触角(°)を測定した。すなわち、DSA−10のウエハステージ位置を調整し、この調整したステージ上に上記ウエハをセットした。次に、針に水を注入し、上記セットしたウエハ上に水滴を形成可能な初期位置に針の位置を微調整した。その後、この針から水を排出させてウエハ上に25μLの水滴を形成し、一旦、この水滴から針を引き抜き、再び初期位置に針を引き下げて水滴内に配置した。続いて、10μL/minの速度で90秒間、針によって水滴を吸引すると同時に接触角を毎秒1回、合計90回測定した。このうち、接触角の測定値が安定した時点から20秒間の接触角についての平均値を算出して後退接触角(°)とした。後退接触角が90°に近い程、液浸上層膜の撥水性が高いことを示す。この後退接触角が75°以上の場合、撥水性は良好と、75°未満の場合、不良と評価できる。
[Backward contact angle]
Each immersion exposure film-forming composition (TC) was spin-coated on an 8-inch silicon wafer, and subjected to SB at 90 ° C. for 60 seconds on a hot plate to form an immersion upper film having a thickness of 30 nm. Then, using DSA-10 (manufactured by KRUS), the receding contact angle (°) was measured immediately under an environment of 23 ° C., humidity 45%, and normal pressure. That is, the wafer stage position of DSA-10 was adjusted, and the wafer was set on the adjusted stage. Next, water was injected into the needle, and the position of the needle was finely adjusted to an initial position where water droplets could be formed on the set wafer. Thereafter, water was discharged from the needle to form a 25 μL water droplet on the wafer. The needle was once withdrawn from the water droplet, and again pulled down to the initial position and placed in the water droplet. Subsequently, a water droplet was sucked with a needle at a speed of 10 μL / min for 90 seconds, and at the same time, the contact angle was measured once every second, for a total of 90 times. Of these, the average value for the contact angle for 20 seconds from the time when the measured value of the contact angle was stabilized was calculated as the receding contact angle (°). The closer the receding contact angle is to 90 °, the higher the water repellency of the liquid immersion upper layer film. When the receding contact angle is 75 ° or more, the water repellency can be evaluated as good, and when it is less than 75 °, it can be evaluated as defective.

[溶出量]
CLEAN TRACK ACT8を用いて、100℃で60秒のHMDS(ヘキサメチルジシラザン)処理を行った8インチシリコンウエハ上の中心部に、中央部が直径11.3cmの円形状にくり抜かれたシリコンゴムシート(クレハエラストマー製、厚み;1.0mm、形状;1辺30cmの正方形)を載せた。次いで、シリコンゴム中央部のくり抜き部に10mLホールピペットを用いて超純水10mLを満たした。
一方、予め、下層反射防止膜用組成物(ARC29A、ブルワー・サイエンス製)を、CLEAN TRACK ACT8を用いて膜厚77nmの下層反射防止膜を形成するように塗布した。次いで、上記調製したフォトレジスト組成物(α)を下層反射防止膜上にスピンコートし、115℃で60秒SBすることにより膜厚205nmのレジスト膜を形成した。その後、レジスト膜上に、各液浸露光用膜形成組成物(TC)を塗布して液浸上層膜を形成した。液浸上層膜側が、上記準備したウエハのシリコンゴムシート内の超純水に接触するように重ね、その状態のまま10秒間保った。その後、超純水をガラス注射器にて回収し、これを分析用サンプルとした。なお、評価終了後の超純水の回収率は95%以上であった。
超純水中の酸発生剤のアニオン部のピーク強度を、LC−MS(液体クロマトグラフ質量分析計、LC部:AGILENT製 SERIES1100、MS部:Perseptive Biosystems,Inc.製 Mariner)を用いて下記の測定条件で測定した。その際、上記酸発生剤の1ppb、10ppb、100ppb水溶液のピーク強度を、下記の測定条件で測定して検量線を作成し、この検量線を用いて上記ピーク強度から溶出量を算出した。また、同様にして、酸拡散制御剤の1ppb、10ppb、100ppb水溶液の各ピーク強度を下記測定条件で測定して検量線を作成し、この検量線を用いて上記ピーク強度から酸拡散制御剤の溶出量を算出した。その溶出量が共に5.0×10−12mol/cm以下であった場合に、フォトレジスト組成物の溶出の抑制性能が「A(良好)」、少なくともいずれかが5.0×10−12mol/cmよりも大きかった場合に不良「B(不良)」と評価した。
[Elution amount]
Silicon rubber with a central portion cut into a circular shape with a diameter of 11.3 cm at the center on an 8-inch silicon wafer that was subjected to HMDS (hexamethyldisilazane) treatment at 100 ° C. for 60 seconds using CLEAN TRACK ACT8 A sheet (made of Kureha elastomer, thickness: 1.0 mm, shape: square with a side of 30 cm) was placed. Next, 10 mL of ultrapure water was filled in the hollowed out portion at the center of the silicon rubber using a 10 mL hole pipette.
On the other hand, a composition for a lower antireflection film (ARC29A, manufactured by Brewer Science) was applied in advance so as to form a lower antireflection film having a film thickness of 77 nm using CLEAN TRACK ACT8. Next, the prepared photoresist composition (α) was spin-coated on the lower antireflection film, and SB was performed at 115 ° C. for 60 seconds to form a resist film having a thickness of 205 nm. Then, each film | membrane formation composition (TC) for immersion exposure was apply | coated on the resist film, and the immersion upper layer film | membrane was formed. The liquid immersion upper layer side was stacked so as to come into contact with the ultrapure water in the silicon rubber sheet of the prepared wafer, and kept in that state for 10 seconds. Thereafter, ultrapure water was collected with a glass syringe and used as a sample for analysis. The recovery rate of ultrapure water after the evaluation was 95% or more.
The peak intensity of the anion part of the acid generator in ultrapure water was measured using LC-MS (liquid chromatograph mass spectrometer, LC part: SERIES1100 manufactured by AGILENT, MS part: Mariner manufactured by Perseptive Biosystems, Inc.) as follows. Measured under measurement conditions. At that time, the peak intensity of the 1 ppb, 10 ppb, and 100 ppb aqueous solutions of the acid generator was measured under the following measurement conditions to prepare a calibration curve, and the elution amount was calculated from the peak intensity using the calibration curve. Similarly, each peak intensity of the 1 ppb, 10 ppb, and 100 ppb aqueous solutions of the acid diffusion control agent is measured under the following measurement conditions to create a calibration curve, and the calibration curve is used to calculate the acid diffusion control agent from the peak intensity. The amount of elution was calculated. When both of the elution amounts were 5.0 × 10 −12 mol / cm 2 or less, the elution suppression performance of the photoresist composition was “A (good)”, at least one of which was 5.0 × 10 − When it was larger than 12 mol / cm 2 , it was evaluated as defective “B (defective)”.

(測定条件)
使用カラム;「CAPCELL PAK MG」、資生堂製、1本
流量;0.2mL/分
流出溶媒:水/メタノール(3/7)に0.1質量%のギ酸を添加したもの
測定温度;35℃
(Measurement condition)
Column used: “CAPCELL PAK MG”, manufactured by Shiseido, 1 flow rate: 0.2 mL / min Eluent: water / methanol (3/7) with 0.1% by weight of formic acid Measurement temperature: 35 ° C.

[Blob欠陥]
CLEAN TRACK ACT12を用いて、100℃、60秒の処理条件でHMDS(ヘキサメチルジシラザン)処理を行った8インチシリコンウエハを用意した。この8インチシリコンウエハ上に、上記調製したフォトレジスト組成物(α)を塗布し、ホットプレート上で90℃、60秒の条件でSBを行い、膜厚120nmのレジスト膜を形成した。このレジスト膜上に、各液浸露光用膜形成組成物(TC)をスピンコートし、90℃、60秒の条件でSBを行って膜厚30nmの液浸上層膜を形成した。その後、パターンが形成されていない擦りガラスを介して露光を行った。液浸上層膜上にCLEAN TRACK ACT8のリンスノズルから超純水を60秒間吐出させ、4,000rpmで15秒間振り切りによりスピンドライを行った。次に、LDノズルによってパドル現像を30秒間行い、液浸上層膜を除去した。なお、このパドル現像では、現像液として2.38質量%TMAH水溶液を使用した。現像後、液浸上層膜の溶け残りが観察された箇所の数をKLA2351(KLAテンコール製)で測定し、Blob欠陥の測定とした。検出されたBlob欠陥が200個以下の場合を「A(良好)」とし、200個を超えた場合を「B(不良)」と評価した。
[Blob defect]
An 8-inch silicon wafer subjected to HMDS (hexamethyldisilazane) treatment at 100 ° C. for 60 seconds was prepared using CLEAN TRACK ACT12. The photoresist composition (α) prepared above was applied onto this 8-inch silicon wafer, and SB was performed on a hot plate at 90 ° C. for 60 seconds to form a resist film having a thickness of 120 nm. On this resist film, each film-forming composition (TC) for immersion exposure was spin-coated, and SB was performed at 90 ° C. for 60 seconds to form an immersion upper film having a thickness of 30 nm. Then, it exposed through the frosted glass in which the pattern is not formed. Ultrapure water was discharged from a rinse nozzle of CLEAN TRACK ACT8 on the immersion upper layer film for 60 seconds, and spin drying was performed by shaking off at 4,000 rpm for 15 seconds. Next, paddle development was performed with an LD nozzle for 30 seconds to remove the liquid immersion upper layer film. In this paddle development, a 2.38 mass% TMAH aqueous solution was used as a developer. After development, the number of locations where the undissolved portion of the liquid immersion upper layer film was observed was measured with KLA2351 (manufactured by KLA Tencor) to determine the Blob defect. The case where the number of detected blob defects was 200 or less was evaluated as “A (good)”, and the case where the number exceeded 200 was evaluated as “B (defective)”.

[ブリッジ欠陥]
12インチシリコンウエハ表面に、下層反射防止膜(ARC66、日産化学製)を、塗布装置(Lithius Pro−i、東京エレクトロン製)を使用してスピンコートした後、SB(205℃、60秒)を行うことにより膜厚105nmの下層反射防止膜を形成した。次いで、CLEAN TRACK ACT12を使用して上記調製したフォトレジスト組成物(α)をスピンコートし、100℃で60秒SBを行い、23℃で30秒間冷却することにより膜厚100nmのレジスト膜を形成した。その後、レジスト膜上に、各液浸露光用膜形成組成物(TC)を塗布して液浸上層膜を形成した。
次に、ArF液浸露光装置(S610C、NIKON製)を使用し、NA:1.30、Crosspoleの光学条件にて、45nmライン/90nmピッチのパターンを投影するためのマスクを介して露光した(以下、マスクによって投影されるパターンの寸法をそのマスクの「パターン寸法」と呼ぶ。例えば、パターン寸法が40nmライン/84nmピッチのマスクとは40nmライン/84nmピッチのパターンを投影するためのマスクのことを指す)。上記塗布装置のホットプレート上で100℃、60秒の条件でPEBを行い、23℃で30秒間冷却した後、現像カップのGPノズルにて、2.38質量%TMAH水溶液を現像液としてパドル現像を10秒間行い、超純水でリンスした。2,000rpm、15秒間振り切りでスピンドライすることにより、レジストパターンが形成された評価用基板を得た。このとき、パターン寸法が45nmライン/90nmピッチのマスクにおいて、45nmライン/90nmピッチのレジストパターンが形成される露光量を最適露光量とした。45nm/90nmピッチのレジストパターンが形成される際、ブリッジ欠陥が見られなかった場合を「A(良好)」、見られた場合を「B(不良)」と評価した。
[Bridge defect]
A 12-inch silicon wafer surface was spin-coated with a lower antireflection film (ARC66, manufactured by Nissan Chemical Co., Ltd.) using a coating apparatus (Lithius Pro-i, manufactured by Tokyo Electron), and then SB (205 ° C., 60 seconds). As a result, a lower antireflection film having a film thickness of 105 nm was formed. Next, the photoresist composition (α) prepared above is spin-coated using CLEAN TRACK ACT12, SB is performed at 100 ° C. for 60 seconds, and cooled at 23 ° C. for 30 seconds to form a resist film having a thickness of 100 nm. did. Then, each film | membrane formation composition (TC) for immersion exposure was apply | coated on the resist film, and the immersion upper layer film | membrane was formed.
Next, using an ArF immersion exposure apparatus (S610C, manufactured by NIKON), exposure was performed through a mask for projecting a pattern of 45 nm line / 90 nm pitch under the optical conditions of NA: 1.30 and Crosspore ( Hereinafter, the dimension of the pattern projected by the mask is referred to as the “pattern dimension.” For example, a mask having a pattern dimension of 40 nm line / 84 nm pitch is a mask for projecting a pattern of 40 nm line / 84 nm pitch. ). PEB is performed on the hot plate of the coating apparatus at 100 ° C. for 60 seconds, cooled at 23 ° C. for 30 seconds, and then paddle developed with a 2.38 mass% TMAH aqueous solution as a developer at the GP nozzle of the developing cup. For 10 seconds and rinsed with ultrapure water. An evaluation substrate on which a resist pattern was formed was obtained by spin-drying at 2,000 rpm for 15 seconds. At this time, the exposure amount at which a resist pattern having a 45 nm line / 90 nm pitch was formed in a mask having a pattern dimension of 45 nm line / 90 nm pitch was determined as the optimum exposure amount. When a resist pattern having a 45 nm / 90 nm pitch was formed, the case where no bridge defect was found was evaluated as “A (good)”, and the case where it was seen was evaluated as “B (bad)”.

[剥がれ耐性]
基板として、HMDS処理をしていない8インチシリコンウエハを用いた。上記基板上に、各液浸露光用膜形成組成物(TC)を上記CLEAN TRACK ACT8にてスピンコートした後、90℃、60秒の条件でSBを行い、膜厚30nmの液浸上層膜を形成した。その後、CLEAN TRACK ACT8にて純水によるリンスを60秒間行い、振り切りによる乾燥を行った。目視によりリンス後に中心部でハガレが観測された場合を「C(不良)」と、エッジ部でのみハガレが観測された場合を「B(やや良好)」と、ハガレが観測されない場合を「A(良好)」と評価した。
[Peeling resistance]
As the substrate, an 8-inch silicon wafer not subjected to HMDS treatment was used. On the substrate, each film forming composition (TC) for immersion exposure is spin-coated with the CLEAN TRACK ACT8, and then SB is performed at 90 ° C. for 60 seconds to form an immersion upper layer film having a thickness of 30 nm. Formed. Thereafter, rinsing with pure water was performed for 60 seconds in CLEAN TRACK ACT8, and drying by shaking was performed. “C (defect)” when peeling is observed at the center after rinsing by visual inspection, “B (somewhat good)” when peeling is observed only at the edge, and “A” when no peeling is observed. (Good) ”.

[パターン形状]
高解像度のレジストパターンが形成されるか否かを評価するため本評価を行った。まず、12インチシリコンウエハ上に、上記塗布装置を使用して、下層反射防止膜用組成物(ARC66、日産化学製)をスピンコートし、SB(205℃、60秒)を行うことにより膜厚105nmの下層反射防止膜を形成した。形成した下層反射防止膜上に、上記調製したフォトレジスト組成物(α)をスピンコートし、SB(100℃、60秒)を行うことにより膜厚100nmのレジスト膜を形成した。
形成したレジスト膜上に、各液浸露光用膜形成組成物(TC)をスピンコートし、SB(90℃、60秒)を行うことにより膜厚30nmの液浸上層膜を形成した。ArF液浸露光装置(S610C、NIKON製)を使用し、45nmライン/90nmピッチのパターンを投影するためのマスクを介して露光した。上記塗布装置のホットプレート上で100℃、60秒の条件でPEBを行い、23℃で30秒間冷却した後、現像カップのGPノズルにて、2.38質量%TMAH水溶液を現像液としてパドル現像を10秒間行い、超純水でリンスした。2,000rpm、15秒間振り切りでスピンドライすることにより、レジストパターンが形成された評価用基板を得た。
形成されたレジストパターンについて、線幅90nmのライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する露光量を最適露光量とした。なお、測定には走査型電子顕微鏡(CG−4000、日立計測器製)を使用した。また、線幅90nmライン・アンド・スペースパターンの断面形状を、走査型電子顕微鏡(S−4800、日立計測器製)にて観察した。基板上に形成されたレジストパターンの膜の中間での線幅Lbと、膜の上部での線幅Laを測定し、0.9≦La/Lb≦1.1であった場合を「A(良好)」と、La/Lb<0.9、又はLa/Lb>1.1であった場合を「B(不良)」と評価した。
[Pattern shape]
This evaluation was performed to evaluate whether or not a high-resolution resist pattern was formed. First, on the 12-inch silicon wafer, using the above-mentioned coating apparatus, the lower antireflection film composition (ARC66, manufactured by Nissan Chemical Industries) is spin-coated, and SB (205 ° C., 60 seconds) is performed to obtain a film thickness. A 105 nm lower antireflection film was formed. On the formed lower antireflection film, the prepared photoresist composition (α) was spin-coated, and SB (100 ° C., 60 seconds) was performed to form a resist film having a thickness of 100 nm.
On the formed resist film, each immersion exposure film-forming composition (TC) was spin-coated, and SB (90 ° C., 60 seconds) was performed to form an immersion upper layer film having a thickness of 30 nm. Using an ArF immersion exposure apparatus (S610C, manufactured by NIKON), exposure was performed through a mask for projecting a pattern of 45 nm line / 90 nm pitch. PEB is performed on the hot plate of the coating apparatus at 100 ° C. for 60 seconds, cooled at 23 ° C. for 30 seconds, and then paddle developed with a 2.38 mass% TMAH aqueous solution as a developer at the GP nozzle of the developing cup. For 10 seconds and rinsed with ultrapure water. An evaluation substrate on which a resist pattern was formed was obtained by spin-drying at 2,000 rpm for 15 seconds.
With respect to the formed resist pattern, the exposure amount for forming a line-and-space pattern (1L1S) having a line width of 90 nm in a one-to-one line width was determined as the optimum exposure amount. Note that a scanning electron microscope (CG-4000, manufactured by Hitachi Instruments) was used for the measurement. In addition, the cross-sectional shape of the line-and-space pattern with a line width of 90 nm was observed with a scanning electron microscope (S-4800, manufactured by Hitachi Keiki Co., Ltd.). The line width Lb in the middle of the resist pattern film formed on the substrate and the line width La in the upper part of the film were measured, and when 0.9 ≦ La / Lb ≦ 1.1, the case of “A ( “Good” ”and La / Lb <0.9 or La / Lb> 1.1 were evaluated as“ B (defect) ”.

Figure 2013147267
Figure 2013147267

表5の結果から明らかなように、実施例ではいずれの評価項目についても良好であったのに対し、比較例では上記評価項目中に不良であるものが見られた。   As is clear from the results in Table 5, all the evaluation items were good in the examples, whereas in the comparative example, some of the evaluation items were defective.

本発明は、フォトレジスト組成物等として用いることで、液浸露光プロセスにおいて、液浸露光時にはレジスト膜や液浸上層膜表面に大きな後退接触角を与え、かつ現像欠陥の発生を抑制できると共に、液浸上層膜形成用組成物として用いた場合には、さらに良好な形状のレジストパターンを形成することができる。従って、当該液浸露光用膜形成組成物、重合体及び化合物は、更なる微細化が進む半導体デバイスにおける製造プロセスに好適に使用することができ、液浸露光プロセスにおける製品の品質及び生産性を向上することができる。   The present invention can be used as a photoresist composition or the like to provide a large receding contact angle on the surface of the resist film or the liquid immersion upper layer film at the time of liquid immersion exposure in the liquid immersion exposure process, and to suppress development defects. When used as a composition for forming a liquid immersion upper layer film, a resist pattern having a better shape can be formed. Therefore, the film-forming composition, polymer and compound for immersion exposure can be suitably used for a manufacturing process in a semiconductor device that is further miniaturized, and the product quality and productivity in the immersion exposure process can be improved. Can be improved.

Claims (7)

下記式(1)で表される構造単位を有する重合体(a1)を含む重合体成分、及び
溶媒
を含有する液浸上層膜形成用組成物。
Figure 2013147267
(式(1)中、Rは、アルカリ解離性基である。Aは、−CO−O−*、−O−、−NR−又は−SO−O−*である。Rは、水素原子又は炭素数1〜10の1価の炭化水素基である。*は、Rとの結合部位を示す。Xは、炭素数1〜20の2価の炭化水素基又は炭素数1〜20の2価のフッ素化炭化水素基である。Rは、炭素数1〜20の(n+1)価の炭化水素基、炭素数1〜20の(n+1)価のフッ素化炭化水素基、又はこれらの基と−CO−、−COO−、−OCO−、−O−、−NR−、−CS−、−S−、−SO−及び−SO−からなる群より選択される少なくとも1種の基とを組み合わせた基である。但し、nが1の場合、Rは、単結合であってもよい。Rは、水素原子又は炭素数1〜10の1価の炭化水素基である。Rは、炭素数1〜20の1価の炭化水素基、炭素数1〜20の1価のフッ素化炭化水素基、又はこれらの基と−CO−、−COO−、−OCO−、−O−、−NR−、−CS−、−S−、−SO−及び−SO−からなる群より選択される少なくとも1種の基とを組み合わせた基である。Rは、水素原子又は炭素数1〜10の1価の炭化水素基である。nは、1〜3の整数である。nが2以上の場合、複数のR、A及びXは、それぞれ同一でも異なっていてもよい。)
The composition for liquid immersion upper film | membrane formation containing the polymer component containing the polymer (a1) which has a structural unit represented by following formula (1), and a solvent.
Figure 2013147267
(In the formula (1), R 1 is an alkali dissociable group .A is, -CO-O - *, - O -, - NR A - , or .R A is -SO 2 -O- * is , A hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, * represents a bonding site with R 1 , X is a divalent hydrocarbon group having 1 to 20 carbon atoms or 1 carbon atom; A divalent fluorinated hydrocarbon group having ˜20, R 2 is an (n + 1) valent hydrocarbon group having 1 to 20 carbon atoms, an (n + 1) valent fluorinated hydrocarbon group having 1 to 20 carbon atoms, Or at least selected from the group consisting of these groups and —CO—, —COO—, —OCO—, —O—, —NR B —, —CS—, —S—, —SO— and —SO 2 —. is a group which combines with one group. However, when n is 1, R 2 is a single bond which may be a .R B is a hydrogen atom or a carbon number from 1 to 10 The monovalent hydrocarbon is a group .R 3, and a monovalent hydrocarbon group, a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms, or their group having 1 to 20 carbon atoms -CO-, A group in which at least one group selected from the group consisting of —COO—, —OCO—, —O—, —NR C —, —CS—, —S—, —SO— and —SO 2 — is combined. R C is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 1 to 3. When n is 2 or more, a plurality of R 1 , A and X may be the same or different.
上記式(1)におけるRが、炭素数1〜20のフッ素化アルキル基又は炭素数1〜20のフッ素化アルキルカルボニル基である請求項1に記載の液浸上層膜形成用組成物。2. The composition for forming a liquid immersion upper layer film according to claim 1, wherein R 1 in the formula (1) is a fluorinated alkyl group having 1 to 20 carbon atoms or a fluorinated alkylcarbonyl group having 1 to 20 carbon atoms. 上記式(1)におけるXが、炭素数1〜20の2価のフッ素化炭化水素基である請求項1に記載の液浸上層膜形成用組成物。   The composition for forming a liquid immersion upper layer film according to claim 1, wherein X in the formula (1) is a divalent fluorinated hydrocarbon group having 1 to 20 carbon atoms. 上記式(1)におけるRが、酸解離性を有する請求項1に記載の液浸上層膜形成用組成物。The composition for forming a liquid immersion upper layer film according to claim 1, wherein R 3 in the formula (1) has acid dissociation properties. 上記重合体成分が、重合体(a1)と同一又は異なる重合体中に、フッ素化スルホンアミド基を含む構造単位及びα−トリフルオロメチルアルコール基を含む構造単位からなる群より選択される少なくとも1種の構造単位をさらに有する請求項1に記載の液浸上層膜形成用組成物。   The polymer component is at least one selected from the group consisting of a structural unit containing a fluorinated sulfonamide group and a structural unit containing an α-trifluoromethyl alcohol group in the same or different polymer as the polymer (a1). The composition for forming a liquid immersion upper film according to claim 1, further comprising a seed structural unit. 上記重合体成分が、重合体(a1)と同一又は異なる重合体中に、スルホ基を含む構造単位をさらに有する請求項1に記載の液浸上層膜形成用組成物。   The composition for forming a liquid immersion upper layer film according to claim 1, wherein the polymer component further has a structural unit containing a sulfo group in the same or different polymer as the polymer (a1). 上記重合体成分が、重合体(a1)と同一又は異なる重合体中に、カルボキシ基を含む構造単位及び下記式(2)で表される基を含む構造単位からなる群より選択される少なくとも1種の構造単位をさらに有する請求項1に記載の液浸上層膜形成用組成物。
Figure 2013147267
(式(2)中、Rは、水素原子、ハロゲン原子、ニトロ基、炭素数1〜20のアルキル基、炭素数3〜20の1価の脂環式炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシル基、炭素数7〜20のアラルキル基又は炭素数6〜20のアリール基である。上記アルキル基、脂環式炭化水素基、アルコキシ基、アシル基、アラルキル基及びアリール基が有する水素原子の一部又は全部は、置換されていてもよい。Rは、−C(=O)−R、−S(=O)−R、−R−CN、又は−R−NOである。上記R及びRは、それぞれ独立して、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のフッ素化アルキル基、炭素数3〜20の1価の脂環式炭化水素基、炭素数1〜20のアルコキシ基、シアノ基、シアノメチル基、炭素数7〜20のアラルキル基又は炭素数6〜20のアリール基である。但し、R又はRと、Rとが互いに結合して環構造を形成していてもよい。上記R及びRは、それぞれ独立して、単結合、メチレン基又は炭素数2〜5のアルキレン基である。)
The polymer component is at least 1 selected from the group consisting of a structural unit containing a carboxy group and a structural unit containing a group represented by the following formula (2) in the same or different polymer as the polymer (a1). The composition for forming a liquid immersion upper film according to claim 1, further comprising a seed structural unit.
Figure 2013147267
(In Formula (2), R 4 is a hydrogen atom, a halogen atom, a nitro group, an alkyl group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or 1 to 20 carbon atoms. An alkoxy group, an acyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, the above-described alkyl group, alicyclic hydrocarbon group, alkoxy group, acyl group, Some or all of the hydrogen atoms of the aralkyl group and aryl group may be substituted, and R 5 represents —C (═O) —R 6 , —S (═O) 2 —R 7 , —R. 8 -CN, or -R 9 -NO 2. The above R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a fluorinated alkyl group having 1 to 20 carbon atoms, C3-C20 monovalent alicyclic hydrocarbon group, C1-C20 alkoxy group Cyano group, a cyanomethyl group, an aralkyl group or an aryl group having 6 to 20 carbon atoms having 7 to 20 carbon atoms. However, the R 6 or R 7, to form a ring structure and R 4 together R 8 and R 9 are each independently a single bond, a methylene group or an alkylene group having 2 to 5 carbon atoms.)
JP2014508237A 2012-03-30 2013-03-29 Composition for forming immersion upper layer film Active JP6070694B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012082309 2012-03-30
JP2012082309 2012-03-30
PCT/JP2013/059753 WO2013147267A1 (en) 2012-03-30 2013-03-29 Composition for formation of overlay film for immersion lithography

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016158209A Division JP6191746B2 (en) 2012-03-30 2016-08-10 Composition for forming immersion upper layer film

Publications (2)

Publication Number Publication Date
JPWO2013147267A1 true JPWO2013147267A1 (en) 2015-12-14
JP6070694B2 JP6070694B2 (en) 2017-02-01

Family

ID=49260505

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2014508236A Active JP6164211B2 (en) 2012-03-30 2013-03-29 Photoresist composition for immersion exposure
JP2014508237A Active JP6070694B2 (en) 2012-03-30 2013-03-29 Composition for forming immersion upper layer film
JP2016158209A Active JP6191746B2 (en) 2012-03-30 2016-08-10 Composition for forming immersion upper layer film
JP2017024212A Active JP6390726B2 (en) 2012-03-30 2017-02-13 Polymer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014508236A Active JP6164211B2 (en) 2012-03-30 2013-03-29 Photoresist composition for immersion exposure

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2016158209A Active JP6191746B2 (en) 2012-03-30 2016-08-10 Composition for forming immersion upper layer film
JP2017024212A Active JP6390726B2 (en) 2012-03-30 2017-02-13 Polymer

Country Status (3)

Country Link
JP (4) JP6164211B2 (en)
KR (1) KR102046849B1 (en)
WO (2) WO2013147267A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119487B2 (en) * 2012-08-01 2017-04-26 住友化学株式会社 Resist composition and method for producing resist pattern
JP5910445B2 (en) * 2012-09-28 2016-04-27 Jsr株式会社 Composition for forming liquid immersion upper layer film and method for forming resist pattern
JP6237182B2 (en) * 2013-12-06 2017-11-29 Jsr株式会社 Resin composition, resist pattern forming method, polymer and compound
JP6369301B2 (en) * 2014-11-20 2018-08-08 Jsr株式会社 Radiation-sensitive resin composition and resist pattern forming method
JP6304347B2 (en) * 2016-11-10 2018-04-04 Jsr株式会社 Resin composition and resist pattern forming method
JP6380617B2 (en) * 2017-06-09 2018-08-29 Jsr株式会社 Resin composition, resist pattern forming method, polymer and compound
JP7298836B2 (en) 2018-06-22 2023-06-27 ダイキン工業株式会社 Method for producing fluorine-containing compound
WO2021070493A1 (en) * 2019-10-08 2021-04-15 Jsr株式会社 Radiation-sensitive resin composition, method for forming resist pattern, polymer, and compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017623A (en) * 1996-07-05 1998-01-20 Wako Pure Chem Ind Ltd New water-soluble polymer, antireflection film material containing the same, and method for forming pattern by using the material
JP2006184575A (en) * 2004-12-27 2006-07-13 Tokyo Ohka Kogyo Co Ltd Material for forming resist protective film and resist pattern forming method using same
JP2006194962A (en) * 2005-01-11 2006-07-27 Tokyo Ohka Kogyo Co Ltd Material for forming protective film, laminate and resist pattern forming method
JP2007140228A (en) * 2005-11-21 2007-06-07 Shin Etsu Chem Co Ltd Resist protective film material and pattern forming method
WO2013069750A1 (en) * 2011-11-11 2013-05-16 Jsr株式会社 Composition for forming resist upper layer film, method for forming resist pattern, compound, method for producing compound, and polymer

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385882A (en) * 1964-10-16 1968-05-28 Du Pont Fluoroalkyl glutarates
JP2591154B2 (en) * 1989-05-09 1997-03-19 日本油脂株式会社 contact lens
JPH04194816A (en) * 1990-11-22 1992-07-14 Nippon Oil & Fats Co Ltd High oxygen permeable contact lens
JPH05222128A (en) * 1992-02-14 1993-08-31 Kuraray Co Ltd Fluoropolymer and molding made therefrom
JP4037015B2 (en) * 1999-09-22 2008-01-23 富士フイルム株式会社 Photopolymerizable composition, image forming material and planographic printing plate
JP4181750B2 (en) * 2001-01-12 2008-11-19 富士フイルム株式会社 Positive image forming material
JP3988552B2 (en) * 2002-07-08 2007-10-10 旭硝子株式会社 Fluorine-containing compound and fluorine-containing polymer
JP4073266B2 (en) * 2002-07-18 2008-04-09 富士フイルム株式会社 Positive resist composition
JP4133376B2 (en) * 2002-09-03 2008-08-13 信越化学工業株式会社 Polymer compound, positive resist material, and pattern forming method using the same
JP4110398B2 (en) * 2003-03-07 2008-07-02 信越化学工業株式会社 Alicyclic ring-containing methacrylate compounds having an oxygen substituent at the α-position methyl group
JP4411102B2 (en) * 2003-09-01 2010-02-10 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
JP4448780B2 (en) * 2004-01-26 2010-04-14 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
JP2006091579A (en) * 2004-09-24 2006-04-06 Fuji Photo Film Co Ltd Positive resist composition and method for forming pattern by using the same
JP2006091677A (en) * 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd Positive resist composition and method for forming pattern by using the same
JP2006227180A (en) * 2005-02-16 2006-08-31 Fuji Photo Film Co Ltd Positive resist composition for liquid immersion exposure, and pattern forming method using the same
JP2007086514A (en) * 2005-09-22 2007-04-05 Fujifilm Corp Resist composition and pattern forming method using it
EP2003148B1 (en) 2006-03-31 2017-07-19 JSR Corporation Radiation-sensitive resin composition comprising a fluorine-containing polymer
JP5140329B2 (en) * 2007-06-08 2013-02-06 富士フイルム株式会社 Resist composition and pattern forming method using the resist composition
JP2009002999A (en) 2007-06-19 2009-01-08 Tokyo Ohka Kogyo Co Ltd Resist pattern forming method and surface modifying material
JP5337811B2 (en) * 2007-10-26 2013-11-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Methods and materials for manufacturing confinement layers and devices manufactured using the same
JP5398248B2 (en) 2008-02-06 2014-01-29 東京応化工業株式会社 Resist composition for immersion exposure and resist pattern forming method using the same
WO2010123009A1 (en) * 2009-04-21 2010-10-28 Jsr株式会社 Radiation-sensitive resin composition, polymer, and method for forming resist pattern
EP2338892A1 (en) * 2009-12-18 2011-06-29 Bayer Schering Pharma Aktiengesellschaft Prostate specific membrane antigen inhibitors
JP5581726B2 (en) 2010-02-22 2014-09-03 Jsr株式会社 Radiation-sensitive resin composition and resist pattern forming method
JP5732306B2 (en) * 2011-04-20 2015-06-10 東京応化工業株式会社 Compound, polymer compound, acid generator, resist composition, resist pattern forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017623A (en) * 1996-07-05 1998-01-20 Wako Pure Chem Ind Ltd New water-soluble polymer, antireflection film material containing the same, and method for forming pattern by using the material
JP2006184575A (en) * 2004-12-27 2006-07-13 Tokyo Ohka Kogyo Co Ltd Material for forming resist protective film and resist pattern forming method using same
JP2006194962A (en) * 2005-01-11 2006-07-27 Tokyo Ohka Kogyo Co Ltd Material for forming protective film, laminate and resist pattern forming method
JP2007140228A (en) * 2005-11-21 2007-06-07 Shin Etsu Chem Co Ltd Resist protective film material and pattern forming method
WO2013069750A1 (en) * 2011-11-11 2013-05-16 Jsr株式会社 Composition for forming resist upper layer film, method for forming resist pattern, compound, method for producing compound, and polymer

Also Published As

Publication number Publication date
JP2017004002A (en) 2017-01-05
KR102046849B1 (en) 2019-11-20
JP2017122231A (en) 2017-07-13
JP6070694B2 (en) 2017-02-01
WO2013147266A1 (en) 2013-10-03
JP6191746B2 (en) 2017-09-06
JPWO2013147266A1 (en) 2015-12-14
JP6390726B2 (en) 2018-09-19
WO2013147267A1 (en) 2013-10-03
JP6164211B2 (en) 2017-07-19
KR20140145582A (en) 2014-12-23

Similar Documents

Publication Publication Date Title
JP6390726B2 (en) Polymer
JP6052283B2 (en) Photoresist composition
JP5692229B2 (en) Radiation sensitive resin composition, polymer and compound
JP5655855B2 (en) Radiation sensitive resin composition, resist pattern forming method, polymer and compound
JP5713012B2 (en) Radiation sensitive resin composition, resist pattern forming method, polymer and compound
JP6149656B2 (en) Photoresist composition, resist pattern forming method, polymer and compound
JP5910445B2 (en) Composition for forming liquid immersion upper layer film and method for forming resist pattern
JP2017122780A (en) Radiation-sensitive resin composition, resist pattern forming method, polymer and compound
JP2017156649A (en) Radiation-sensitive resin composition, resist pattern forming method, polymer and compound
JP5729114B2 (en) Radiation sensitive resin composition, pattern forming method, polymer and compound
JP5935807B2 (en) Composition for forming liquid immersion upper layer film and method for forming resist pattern
JP5737211B2 (en) Composition for forming liquid immersion upper layer film and method for forming resist pattern
JP5569402B2 (en) Radiation sensitive resin composition, polymer and compound
JP6528692B2 (en) Radiation sensitive resin composition, resist pattern forming method, polymer and compound
WO2013129623A1 (en) Radiation-sensitive resin composition, resist pattern formation method, polymer, and compound
JP2017072843A (en) Resin composition and method for forming resist pattern
KR20120122947A (en) Radiation-sensitive resin composition, pattern forming method, polymer and compound
JP2016224123A (en) Radiation-sensitive resin composition and method for forming resist pattern

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250