JPWO2013140539A1 - Drive control apparatus for hybrid vehicle - Google Patents

Drive control apparatus for hybrid vehicle Download PDF

Info

Publication number
JPWO2013140539A1
JPWO2013140539A1 JP2014505870A JP2014505870A JPWO2013140539A1 JP WO2013140539 A1 JPWO2013140539 A1 JP WO2013140539A1 JP 2014505870 A JP2014505870 A JP 2014505870A JP 2014505870 A JP2014505870 A JP 2014505870A JP WO2013140539 A1 JPWO2013140539 A1 JP WO2013140539A1
Authority
JP
Japan
Prior art keywords
electric motor
engine
gear
planetary gear
rotating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014505870A
Other languages
Japanese (ja)
Inventor
丸山 智之
智之 丸山
智仁 大野
智仁 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014505870A priority Critical patent/JPWO2013140539A1/en
Publication of JPWO2013140539A1 publication Critical patent/JPWO2013140539A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

エンジンの始動に伴い発生させられる反力を抑制するハイブリッド車両の駆動制御装置を提供する。第1遊星歯車装置14のキャリアC1と第2遊星歯車装置16のキャリアC2との間を断接するクラッチCL、及びそのキャリアC2をハウジング26に対して断接するブレーキBKとを備え、エンジン12の始動に際して、ブレーキBKを係合させて第1電動機MG1によりエンジン12の回転を引き上げ、エンジン12の始動に伴い出力歯車30に発生する反力を第2電動機MG2により抑制するものであることから、エンジン12の停止状態からのそのエンジン12の始動に伴う反力を好適に抑制することができる。Provided is a drive control device for a hybrid vehicle that suppresses a reaction force generated when an engine is started. The engine 12 includes a clutch CL for connecting / disconnecting the carrier C1 of the first planetary gear unit 14 and the carrier C2 of the second planetary gear unit 16 and a brake BK for connecting / disconnecting the carrier C2 to / from the housing 26. At this time, the brake BK is engaged, the rotation of the engine 12 is pulled up by the first electric motor MG1, and the reaction force generated in the output gear 30 when the engine 12 is started is suppressed by the second electric motor MG2. The reaction force accompanying the start of the engine 12 from the stop state of 12 can be suitably suppressed.

Description

本発明は、ハイブリッド車両の駆動制御装置の改良に関する。   The present invention relates to an improvement in a drive control device for a hybrid vehicle.

内燃機関等のエンジンに加えて、駆動源として機能する少なくとも1つの電動機を備えたハイブリッド車両が知られている。例えば、特許文献1に記載された車両がそれである。この技術によれば、内燃機関、第1電動機、及び第2電動機を備えたハイブリッド車両において、前記内燃機関の出力軸を非回転部材に対して固定するブレーキを備え、車両の走行状態に応じてそのブレーキの係合状態を制御することで、車両のエネルギ効率を向上させると共に運転者の要求に応じた走行を実現できる。   A hybrid vehicle is known that includes at least one electric motor that functions as a drive source in addition to an engine such as an internal combustion engine. For example, this is the vehicle described in Patent Document 1. According to this technique, in the hybrid vehicle including the internal combustion engine, the first electric motor, and the second electric motor, the brake is provided to fix the output shaft of the internal combustion engine to the non-rotating member, and according to the traveling state of the vehicle. By controlling the engagement state of the brake, it is possible to improve the energy efficiency of the vehicle and to travel according to the driver's request.

特開2008−265600号公報JP 2008-265600 A

しかし、前記従来の技術では、例えば、前記エンジンを停止させると共に専ら前記電動機により走行用の駆動力を発生させる走行モードや、車両停止状態において前記エンジンが停止させられている状態からのエンジン始動時に、そのエンジンの始動に伴い出力側に発生する反力が問題となる。すなわち、前記従来の技術では、前記エンジンの停止状態からのそのエンジンの始動に伴う反力を好適に抑制(キャンセル)することができないという弊害があった。このような課題は、ハイブリッド車両の性能向上を意図して本発明者が鋭意研究を続ける過程において新たに見出したものである。   However, in the conventional technique, for example, when the engine is stopped from a state where the engine is stopped and the engine is stopped when the vehicle is stopped, for example, a driving mode in which the driving force for driving is generated exclusively by the electric motor. The reaction force generated on the output side as the engine starts becomes a problem. That is, the conventional technique has a disadvantage that the reaction force accompanying the start of the engine from the stopped state of the engine cannot be suitably suppressed (cancelled). Such a problem has been newly found in the process in which the present inventor has intensively studied to improve the performance of a hybrid vehicle.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、エンジンの始動に伴い発生させられる反力を抑制するハイブリッド車両の駆動制御装置を提供することにある。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a drive control device for a hybrid vehicle that suppresses a reaction force generated when the engine is started.

斯かる目的を達成するために、本第1発明の要旨とするところは、全体として4つの回転要素を有する第1差動機構及び第2差動機構と、それら4つの回転要素にそれぞれ連結されたエンジン、第1電動機、第2電動機、及び出力回転部材とを、備え、前記4つの回転要素のうちの1つは、前記第1差動機構の回転要素と前記第2差動機構の回転要素とがクラッチを介して選択的に連結され、そのクラッチによる係合対象となる前記第1差動機構又は前記第2差動機構の回転要素が、非回転部材に対してブレーキを介して選択的に連結されるハイブリッド車両の駆動制御装置であって、前記エンジンの始動に際して、前記ブレーキを係合させて前記第1電動機により前記エンジンの回転を引き上げ、前記エンジンの始動に伴い前記出力回転部材に発生する反力を前記第2電動機により抑制することを特徴とするハイブリッド車両の駆動制御装置である。   In order to achieve such an object, the gist of the first aspect of the present invention is that a first differential mechanism and a second differential mechanism having four rotating elements as a whole, and these four rotating elements are respectively connected. An engine, a first motor, a second motor, and an output rotating member, wherein one of the four rotating elements is a rotating element of the first differential mechanism and a rotation of the second differential mechanism. An element is selectively connected via a clutch, and the rotating element of the first differential mechanism or the second differential mechanism to be engaged by the clutch is selected via a brake for a non-rotating member. A hybrid vehicle drive control device, wherein the engine is started by engaging the brake and pulling up the rotation of the engine by the first electric motor. A drive control device for a hybrid vehicle which comprises suppressing by said second electric motor reaction forces generated.

このように、前記第1発明によれば、全体として4つの回転要素を有する第1差動機構及び第2差動機構と、それら4つの回転要素にそれぞれ連結されたエンジン、第1電動機、第2電動機、及び出力回転部材とを、備え、前記4つの回転要素のうちの1つは、前記第1差動機構の回転要素と前記第2差動機構の回転要素とがクラッチを介して選択的に連結され、そのクラッチによる係合対象となる前記第1差動機構又は前記第2差動機構の回転要素が、非回転部材に対してブレーキを介して選択的に連結されるハイブリッド車両の駆動制御装置であって、前記エンジンの始動に際して、前記ブレーキを係合させて前記第1電動機により前記エンジンの回転を引き上げ、前記エンジンの始動に伴い前記出力回転部材に発生する反力を前記第2電動機により抑制するものであることから、前記エンジンの停止状態からのそのエンジンの始動に伴う反力を好適に抑制することができる。すなわち、エンジンの始動に伴い発生させられる反力を抑制するハイブリッド車両の駆動制御装置を提供することができる。   As described above, according to the first aspect of the invention, the first differential mechanism and the second differential mechanism having four rotation elements as a whole, the engine, the first electric motor, Two electric motors and an output rotating member, and one of the four rotating elements is selected by selecting the rotating element of the first differential mechanism and the rotating element of the second differential mechanism via a clutch. Of the hybrid vehicle in which the rotating element of the first differential mechanism or the second differential mechanism to be engaged by the clutch is selectively connected to the non-rotating member via a brake. In the drive control device, when starting the engine, the brake is engaged and the rotation of the engine is pulled up by the first electric motor, and the reaction force generated in the output rotating member as the engine starts is increased. 2 Since is suppressed by motivation, it is possible to suitably suppress the reaction force accompanying the start of the engine from a stop condition of the engine. In other words, it is possible to provide a drive control device for a hybrid vehicle that suppresses a reaction force generated when the engine is started.

前記第1発明に従属する本第2発明の要旨とするところは、前記第1差動機構は、前記第1電動機に連結された第1回転要素、前記エンジンに連結された第2回転要素、及び前記出力回転部材に連結された第3回転要素を備えたものであり、前記第2差動機構は、前記第2電動機に連結された第1回転要素、第2回転要素、及び第3回転要素を備え、それら第2回転要素及び第3回転要素の何れか一方が前記第1差動機構における第3回転要素に連結されたものであり、前記クラッチは、前記第1差動機構における第2回転要素と、前記第2差動機構における第2回転要素及び第3回転要素のうち前記第1差動機構における第3回転要素に連結されていない方の回転要素とを選択的に係合させるものであり、前記ブレーキは、前記第2差動機構における第2回転要素及び第3回転要素のうち前記第1差動機構における第3回転要素に連結されていない方の回転要素を、前記非回転部材に対して選択的に係合させるものである。このようにすれば、実用的なハイブリッド車両の駆動装置において、エンジンの始動に伴い発生させられる反力を抑制することができる。   The gist of the second invention subordinate to the first invention is that the first differential mechanism includes a first rotating element connected to the first electric motor, a second rotating element connected to the engine, And a third rotating element coupled to the output rotating member, wherein the second differential mechanism includes a first rotating element, a second rotating element, and a third rotating element coupled to the second electric motor. An element, and one of the second rotating element and the third rotating element is connected to the third rotating element in the first differential mechanism, and the clutch is the first rotating mechanism in the first differential mechanism. Selectively engage the two-rotating element and the rotating element that is not connected to the third rotating element in the first differential mechanism among the second rotating element and the third rotating element in the second differential mechanism And the brake is provided with the second differential. Of the second rotating element and the third rotating element, the rotating element that is not connected to the third rotating element in the first differential mechanism is selectively engaged with the non-rotating member. . If it does in this way, in the practical hybrid vehicle drive device, the reaction force generated when the engine is started can be suppressed.

本発明が好適に適用されるハイブリッド車両用駆動装置の構成を説明する骨子図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a skeleton diagram illustrating a configuration of a hybrid vehicle drive device to which the present invention is preferably applied. 図1の駆動装置の駆動を制御するために備えられた制御系統の要部を説明する図である。It is a figure explaining the principal part of the control system provided in order to control the drive of the drive device of FIG. 図1の駆動装置において成立させられる5種類の走行モードそれぞれにおけるクラッチ及びブレーキの係合状態を示す係合表である。FIG. 2 is an engagement table showing clutch and brake engagement states in each of five types of travel modes established in the drive device of FIG. 1. FIG. 図1の駆動装置において各回転要素の回転速度の相対関係を直線上で表すことができる共線図であり、図3のモード1、3に対応する図である。FIG. 4 is a collinear diagram that can represent the relative relationship of the rotational speeds of the respective rotary elements on a straight line in the drive device of FIG. 1, and is a diagram corresponding to modes 1 and 3 of FIG. 図1の駆動装置において各回転要素の回転速度の相対関係を直線上で表すことができる共線図であり、図3のモード2に対応する図である。FIG. 4 is a collinear diagram that can represent the relative relationship of the rotation speeds of the respective rotary elements on a straight line in the drive device of FIG. 1, corresponding to mode 2 of FIG. 3. 図1の駆動装置において各回転要素の回転速度の相対関係を直線上で表すことができる共線図であり、図3のモード4に対応する図である。FIG. 4 is a collinear diagram that can represent the relative relationship of the rotational speeds of the respective rotary elements on a straight line in the drive device of FIG. 1, corresponding to mode 4 of FIG. 3. 図1の駆動装置において各回転要素の回転速度の相対関係を直線上で表すことができる共線図であり、図3のモード5に対応する図である。FIG. 4 is a collinear diagram that can represent the relative relationship of the rotational speeds of the respective rotary elements on a straight line in the drive device of FIG. 1, corresponding to mode 5 of FIG. 3. 図1の駆動装置における伝達効率を説明する図である。It is a figure explaining the transmission efficiency in the drive device of FIG. 図1の駆動装置における電子制御装置に備えられた制御機能の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control function with which the electronic control apparatus in the drive device of FIG. 1 was equipped. 図1の駆動装置において各回転要素の回転速度の相対関係を直線上で表すことができる共線図であり、エンジン始動時の制御について説明している。FIG. 2 is a collinear diagram that can represent the relative relationship between the rotational speeds of the rotary elements on a straight line in the drive apparatus of FIG. 図1の駆動装置における電子制御装置によるエンジン始動制御の一例を説明するフローチャートである。2 is a flowchart illustrating an example of engine start control by an electronic control unit in the drive unit of FIG. 1. 本発明が好適に適用される他のハイブリッド車両用駆動装置の構成を説明する骨子図である。It is a skeleton diagram explaining the composition of the other hybrid vehicle drive device to which the present invention is applied suitably. 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成を説明する骨子図である。It is a skeleton diagram explaining the composition of still another hybrid vehicle drive device to which the present invention is preferably applied. 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成を説明する骨子図である。It is a skeleton diagram explaining the composition of still another hybrid vehicle drive device to which the present invention is preferably applied. 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成を説明する骨子図である。It is a skeleton diagram explaining the composition of still another hybrid vehicle drive device to which the present invention is preferably applied. 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成を説明する骨子図である。It is a skeleton diagram explaining the composition of still another hybrid vehicle drive device to which the present invention is preferably applied. 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成を説明する骨子図である。It is a skeleton diagram explaining the composition of still another hybrid vehicle drive device to which the present invention is preferably applied. 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成及び作動をそれぞれ説明する共線図である。FIG. 6 is a collinear diagram illustrating the configuration and operation of still another hybrid vehicle drive device to which the present invention is preferably applied. 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成及び作動をそれぞれ説明する共線図である。FIG. 6 is a collinear diagram illustrating the configuration and operation of still another hybrid vehicle drive device to which the present invention is preferably applied. 本発明が好適に適用される更に別のハイブリッド車両用駆動装置の構成及び作動をそれぞれ説明する共線図である。FIG. 6 is a collinear diagram illustrating the configuration and operation of still another hybrid vehicle drive device to which the present invention is preferably applied.

本発明において、前記第1差動機構及び第2差動機構は、前記クラッチが係合された状態において全体として4つの回転要素を有するものである。また、好適には、前記第1差動機構及び第2差動機構の要素相互間に前記クラッチに加え他のクラッチを備えた構成において、前記第1差動機構及び第2差動機構は、それら複数のクラッチが係合された状態において全体として4つの回転要素を有するものである。換言すれば、本発明は、共線図上において4つの回転要素として表される第1差動機構及び第2差動機構と、それら4つの回転要素にそれぞれ連結されたエンジン、第1電動機、第2電動機、及び出力回転部材とを、備え、前記4つの回転要素のうちの1つは、前記第1差動機構の回転要素と前記第2差動機構の回転要素とがクラッチを介して選択的に連結され、そのクラッチによる係合対象となる前記第1差動機構又は前記第2差動機構の回転要素が、非回転部材に対してブレーキを介して選択的に連結されるハイブリッド車両の駆動制御装置に好適に適用されるものである。   In the present invention, the first differential mechanism and the second differential mechanism have four rotating elements as a whole in a state where the clutch is engaged. Preferably, in a configuration including another clutch in addition to the clutch between elements of the first differential mechanism and the second differential mechanism, the first differential mechanism and the second differential mechanism are: In the state in which the plurality of clutches are engaged, there are four rotating elements as a whole. In other words, the present invention relates to a first differential mechanism and a second differential mechanism that are represented as four rotating elements on the nomographic chart, an engine connected to each of the four rotating elements, a first electric motor, A second electric motor, and an output rotating member, wherein one of the four rotating elements includes a rotating element of the first differential mechanism and a rotating element of the second differential mechanism via a clutch. A hybrid vehicle that is selectively connected and a rotating element of the first differential mechanism or the second differential mechanism that is to be engaged by the clutch is selectively connected to a non-rotating member via a brake. It is suitably applied to the drive control apparatus.

前記クラッチ及びブレーキは、好適には、何れも油圧に応じて係合状態が制御される(係合乃至解放させられる)油圧式係合装置であり、例えば、湿式多板型の摩擦係合装置等が好適に用いられるが、噛合式の係合装置すなわち所謂ドグクラッチ(噛合クラッチ)であってもよい。或いは、電磁式クラッチや磁粉式クラッチ等、電気的な指令に応じて係合状態が制御される(係合乃至解放させられる)ものであってもよい。   The clutch and the brake are preferably hydraulic engagement devices whose engagement state is controlled (engaged or released) according to the hydraulic pressure, for example, a wet multi-plate friction engagement device. However, a meshing engagement device, that is, a so-called dog clutch (meshing clutch) may be used. Alternatively, the engagement state may be controlled (engaged or released) according to an electrical command, such as an electromagnetic clutch or a magnetic powder clutch.

本発明が適用される駆動装置においては、前記クラッチ及びブレーキの係合状態等に応じて、複数の走行モードの何れかが選択的に成立させられる。好適には、前記エンジンの運転が停止させられると共に、前記第1電動機及び第2電動機の少なくとも一方を走行用の駆動源として用いるEV走行モードにおいて、前記ブレーキが係合されると共に前記クラッチが解放されることでモード1が、前記ブレーキ及びクラッチが共に係合されることでモード2がそれぞれ成立させられる。前記エンジンを駆動させると共に、前記第1電動機及び第2電動機により必要に応じて駆動乃至発電等を行うハイブリッド走行モードにおいて、前記ブレーキが係合されると共に前記クラッチが解放されることでモード3が、前記ブレーキが解放されると共に前記クラッチが係合されることでモード4が、前記ブレーキ及びクラッチが共に解放されることでモード5がそれぞれ成立させられる。   In the drive device to which the present invention is applied, one of a plurality of travel modes is selectively established according to the engagement state of the clutch and the brake. Preferably, the operation of the engine is stopped and the brake is engaged and the clutch is released in an EV traveling mode in which at least one of the first electric motor and the second electric motor is used as a driving source for traveling. Thus, mode 1 is established, and mode 2 is established by engaging both the brake and the clutch. In the hybrid travel mode in which the engine is driven and the first electric motor and the second electric motor drive or generate electric power as necessary, the mode is set when the brake is engaged and the clutch is released. Mode 4 is established when the brake is released and the clutch is engaged, and mode 5 is established when both the brake and the clutch are released.

本発明において、好適には、前記クラッチが係合させられ、且つ、前記ブレーキが解放させられている場合における前記第1差動機構及び第2差動機構それぞれにおける各回転要素の共線図における並び順は、前記第1差動機構及び第2差動機構それぞれにおける第2回転要素及び第3回転要素に対応する回転速度を重ねて表した場合に、前記第1差動機構における第1回転要素、前記第2差動機構における第1回転要素、前記第1差動機構における第2回転要素及び第2差動機構における第2回転要素、前記第1差動機構における第3回転要素及び第2差動機構における第3回転要素の順である。   In the present invention, preferably, in the collinear diagram of each rotating element in each of the first differential mechanism and the second differential mechanism when the clutch is engaged and the brake is released. The arrangement order indicates the first rotation in the first differential mechanism when the rotation speeds corresponding to the second rotation element and the third rotation element in each of the first differential mechanism and the second differential mechanism are superimposed. An element, a first rotating element in the second differential mechanism, a second rotating element in the first differential mechanism, a second rotating element in the second differential mechanism, a third rotating element in the first differential mechanism, and a second rotating element. It is the order of the 3rd rotation element in 2 differential mechanisms.

以下、本発明の好適な実施例を図面に基づいて詳細に説明する。以下の説明に用いる図面において、各部の寸法比等は必ずしも正確には描かれていない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings used for the following description, the dimensional ratios and the like of each part are not necessarily drawn accurately.

図1は、本発明が好適に適用されるハイブリッド車両用駆動装置10(以下、単に駆動装置10という)の構成を説明する骨子図である。この図1に示すように、本実施例の駆動装置10は、例えばFF(前置エンジン前輪駆動)型車両等に好適に用いられる横置き用の装置であり、主動力源であるエンジン12、第1電動機MG1、第2電動機MG2、第1差動機構としての第1遊星歯車装置14、及び第2差動機構としての第2遊星歯車装置16を共通の中心軸CE上に備えて構成されている。前記駆動装置10は、中心軸CEに対して略対称的に構成されており、図1においては中心線の下半分を省略して図示している。以下の各実施例についても同様である。   FIG. 1 is a skeleton diagram illustrating the configuration of a hybrid vehicle drive device 10 (hereinafter simply referred to as drive device 10) to which the present invention is preferably applied. As shown in FIG. 1, the drive device 10 of the present embodiment is a device for horizontal use that is preferably used in, for example, an FF (front engine front wheel drive) type vehicle and the like, and an engine 12, which is a main power source, The first electric motor MG1, the second electric motor MG2, the first planetary gear device 14 as a first differential mechanism, and the second planetary gear device 16 as a second differential mechanism are provided on a common central axis CE. ing. The driving device 10 is configured substantially symmetrically with respect to the central axis CE, and the lower half of the central line is omitted in FIG. The same applies to each of the following embodiments.

前記エンジン12は、例えば、気筒内噴射されるガソリン等の燃料の燃焼によって駆動力を発生させるガソリンエンジン等の内燃機関である。前記第1電動機MG1及び第2電動機MG2は、好適には、何れも駆動力を発生させるモータ(発動機)及び反力を発生させるジェネレータ(発電機)としての機能を有する所謂モータジェネレータであり、それぞれのステータ(固定子)18、22が非回転部材であるハウジング(ケース)26に固設されると共に、各ステータ18、22の内周側にロータ(回転子)20、24を備えて構成されている。   The engine 12 is, for example, an internal combustion engine such as a gasoline engine that generates a driving force by combustion of fuel such as gasoline injected in a cylinder. The first electric motor MG1 and the second electric motor MG2 are preferably so-called motor generators each having a function as a motor (engine) for generating driving force and a generator (generator) for generating reaction force. Each stator (stator) 18, 22 is fixed to a housing (case) 26 that is a non-rotating member, and the rotor (rotor) 20, 24 is provided on the inner peripheral side of each stator 18, 22. Has been.

前記第1遊星歯車装置14は、ギヤ比がρ1であるシングルピニオン型の遊星歯車装置であり、第1回転要素としてのサンギヤS1、ピニオンギヤP1を自転及び公転可能に支持する第2回転要素としてのキャリアC1、及びピニオンギヤP1を介してサンギヤS1と噛み合う第3回転要素としてのリングギヤR1を回転要素(要素)として備えている。前記第2遊星歯車装置16は、ギヤ比がρ2であるシングルピニオン型の遊星歯車装置であり、第1回転要素としてのサンギヤS2、ピニオンギヤP2を自転及び公転可能に支持する第2回転要素としてのキャリアC2、及びピニオンギヤP2を介してサンギヤS2と噛み合う第3回転要素としてのリングギヤR2を回転要素(要素)として備えている。   The first planetary gear unit 14 is a single pinion type planetary gear unit having a gear ratio of ρ1, and serves as a second rotating element that supports the sun gear S1 and the pinion gear P1 as the first rotating element so as to be capable of rotating and revolving. A ring gear R1 as a third rotating element that meshes with the sun gear S1 via the carrier C1 and the pinion gear P1 is provided as a rotating element (element). The second planetary gear device 16 is a single pinion type planetary gear device having a gear ratio of ρ2, and serves as a second rotating element that supports the sun gear S2 and the pinion gear P2 as the first rotating element so as to be capable of rotating and revolving. A ring gear R2 as a third rotating element that meshes with the sun gear S2 via the carrier C2 and the pinion gear P2 is provided as a rotating element (element).

前記第1遊星歯車装置14のサンギヤS1は、前記第1電動機MG1のロータ20に連結されている。前記第1遊星歯車装置14のキャリアC1は、前記エンジン12のクランク軸と一体的に回転させられる入力軸28に連結されている。この入力軸28は、前記中心軸CEを軸心とするものであり、以下の実施例において、特に区別しない場合には、この中心軸CEの軸心の方向を軸方向(軸心方向)という。前記第1遊星歯車装置14のリングギヤR1は、出力回転部材である出力歯車30に連結されると共に、前記第2遊星歯車装置16のリングギヤR2と相互に連結されている。前記第2遊星歯車装置16のサンギヤS2は、前記第2電動機MG2のロータ24に連結されている。   The sun gear S1 of the first planetary gear unit 14 is connected to the rotor 20 of the first electric motor MG1. The carrier C1 of the first planetary gear unit 14 is connected to an input shaft 28 that is rotated integrally with the crankshaft of the engine 12. The input shaft 28 is centered on the central axis CE. In the following embodiments, the direction of the central axis of the central axis CE is referred to as an axial direction (axial direction) unless otherwise distinguished. . The ring gear R1 of the first planetary gear device 14 is connected to an output gear 30 that is an output rotating member, and is also connected to the ring gear R2 of the second planetary gear device 16. The sun gear S2 of the second planetary gear device 16 is connected to the rotor 24 of the second electric motor MG2.

前記出力歯車30から出力された駆動力は、図示しない差動歯車装置及び車軸等を介して図示しない左右一対の駆動輪へ伝達される。一方、車両の走行路面から駆動輪に対して入力されるトルクは、前記差動歯車装置及び車軸等を介して前記出力歯車30から前記駆動装置10へ伝達(入力)される。前記入力軸28における前記エンジン12と反対側の端部には、例えばベーンポンプ等の機械式オイルポンプ32が連結されており、前記エンジン12の駆動に伴い後述する油圧制御回路60等の元圧とされる油圧が出力されるようになっている。このオイルポンプ32に加えて、電気エネルギにより駆動される電動式オイルポンプが設けられたものであってもよい。   The driving force output from the output gear 30 is transmitted to a pair of left and right drive wheels (not shown) via a differential gear device and an axle (not shown). On the other hand, torque input to the drive wheels from the road surface of the vehicle is transmitted (input) from the output gear 30 to the drive device 10 via the differential gear device and the axle. A mechanical oil pump 32 such as a vane pump is connected to an end portion of the input shaft 28 opposite to the engine 12, and an original pressure of a hydraulic control circuit 60 or the like to be described later when the engine 12 is driven. The hydraulic pressure is output. In addition to the oil pump 32, an electric oil pump driven by electric energy may be provided.

前記第1遊星歯車装置14のキャリアC1と前記第2遊星歯車装置16のキャリアC2との間には、それらキャリアC1とC2との間を選択的に係合させる(キャリアC1とC2との間を断接する)クラッチCLが設けられている。前記第2遊星歯車装置16のキャリアC2と非回転部材である前記ハウジング26との間には、そのハウジング26に対して前記キャリアC2を選択的に係合(固定)させるブレーキBKが設けられている。これらのクラッチCL及びブレーキBKは、好適には、何れも油圧制御回路60から供給される油圧に応じて係合状態が制御される(係合乃至解放させられる)油圧式係合装置であり、例えば、湿式多板型の摩擦係合装置等が好適に用いられるが、噛合式の係合装置すなわち所謂ドグクラッチ(噛合クラッチ)であってもよい。更には、電磁式クラッチや磁粉式クラッチ等、電子制御装置40から供給される電気的な指令に応じて係合状態が制御される(係合乃至解放させられる)ものであってもよい。   The carrier C1 of the first planetary gear device 14 and the carrier C2 of the second planetary gear device 16 are selectively engaged between the carriers C1 and C2 (between the carriers C1 and C2). A clutch CL is provided. A brake BK for selectively engaging (fixing) the carrier C2 with respect to the housing 26 is provided between the carrier C2 of the second planetary gear device 16 and the housing 26 which is a non-rotating member. Yes. The clutch CL and the brake BK are preferably hydraulic engagement devices whose engagement states are controlled (engaged or released) according to the hydraulic pressure supplied from the hydraulic control circuit 60. For example, a wet multi-plate friction engagement device or the like is preferably used, but a meshing engagement device, that is, a so-called dog clutch (meshing clutch) may be used. Furthermore, an engagement state may be controlled (engaged or released) according to an electrical command supplied from the electronic control device 40, such as an electromagnetic clutch or a magnetic powder clutch.

図1に示すように、前記駆動装置10において、前記第1遊星歯車装置14及び第2遊星歯車装置16は、それぞれ前記入力軸28と同軸上(中心軸CE上)に配置されており、且つ、前記中心軸CEの軸方向において対向する位置に配置されている。すなわち、前記中心軸CEの軸方向に関して、前記第1遊星歯車装置14は、前記第2遊星歯車装置16に対して前記エンジン12側に配置されている。前記中心軸CEの軸方向に関して、前記第1電動機MG1は、前記第1遊星歯車装置14に対して前記エンジン12側に配置されている。前記中心軸CEの軸方向に関して、前記第2電動機MG1は、前記第2遊星歯車装置16に対して前記エンジン12の反対側に配置されている。すなわち、前記第1電動機MG1、第2電動機MG2は、前記中心軸CEの軸方向に関して、前記第1遊星歯車装置14及び第2遊星歯車装置16を間に挟んで対向する位置に配置されている。すなわち、前記駆動装置10においては、前記中心軸CEの軸方向において、前記エンジン12側から前記第1電動機MG1、第1遊星歯車装置14、クラッチCL、第2遊星歯車装置16、ブレーキBK、第2電動機MG2の順でそれらの構成が同軸上に配置されている。   As shown in FIG. 1, in the driving device 10, the first planetary gear device 14 and the second planetary gear device 16 are arranged coaxially with the input shaft 28 (on the central axis CE), and , Are arranged at positions facing each other in the axial direction of the central axis CE. That is, with respect to the axial direction of the central axis CE, the first planetary gear device 14 is disposed on the engine 12 side with respect to the second planetary gear device 16. With respect to the axial direction of the central axis CE, the first electric motor MG1 is disposed on the engine 12 side with respect to the first planetary gear unit 14. With respect to the axial direction of the central axis CE, the second electric motor MG1 is disposed on the opposite side of the engine 12 with respect to the second planetary gear device 16. That is, the first electric motor MG1 and the second electric motor MG2 are arranged at positions facing each other with the first planetary gear device 14 and the second planetary gear device 16 interposed therebetween with respect to the axial direction of the central axis CE. . That is, in the drive device 10, in the axial direction of the central axis CE, the first electric motor MG1, the first planetary gear device 14, the clutch CL, the second planetary gear device 16, the brake BK, Those components are arranged on the same axis in the order of the two electric motors MG2.

図2は、前記駆動装置10の駆動を制御するためにその駆動装置10に備えられた制御系統の要部を説明する図である。この図2に示す電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェイス等を含んで構成され、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を実行する所謂マイクロコンピュータであり、前記エンジン12の駆動制御や、前記第1電動機MG1及び第2電動機MG2に関するハイブリッド駆動制御をはじめとする前記駆動装置10の駆動に係る各種制御を実行する。すなわち、本実施例においては、前記電子制御装置40が前記駆動装置10の適用されたハイブリッド車両の駆動制御装置に相当する。この電子制御装置40は、前記エンジン12の出力制御用や前記第1電動機MG1及び第2電動機MG2の作動制御用といったように、必要に応じて各制御毎に個別の制御装置として構成される。   FIG. 2 is a diagram for explaining a main part of a control system provided in the driving device 10 in order to control the driving of the driving device 10. The electronic control unit 40 shown in FIG. 2 includes a CPU, a ROM, a RAM, an input / output interface, and the like, and executes signal processing in accordance with a program stored in advance in the ROM while using a temporary storage function of the RAM. The microcomputer is a so-called microcomputer, and executes various controls related to driving of the drive device 10 including drive control of the engine 12 and hybrid drive control related to the first electric motor MG1 and the second electric motor MG2. That is, in this embodiment, the electronic control device 40 corresponds to a drive control device for a hybrid vehicle to which the drive device 10 is applied. The electronic control device 40 is configured as an individual control device for each control as required, such as for output control of the engine 12 and for operation control of the first electric motor MG1 and the second electric motor MG2.

図2に示すように、前記電子制御装置40には、前記駆動装置10の各部に設けられたセンサやスイッチ等から各種信号が供給されるように構成されている。すなわち、アクセル開度センサ42により運転者の出力要求量に対応する図示しないアクセルペダルの操作量であるアクセル開度ACCを表す信号、エンジン回転速度センサ44により前記エンジン12の回転速度であるエンジン回転速度NEを表す信号、MG1回転速度センサ46により前記第1電動機MG1の回転速度NMG1を表す信号、MG2回転速度センサ48により前記第2電動機MG2の回転速度NMG2を表す信号、出力回転速度センサ50により車速Vに対応する前記出力歯車30の回転速度NOUTを表す信号、シフトセンサ52により図示しないシフト操作装置の操作位置(シフトポジション)PSを表す信号、及びバッテリSOCセンサ54により図示しないバッテリの充電容量(充電状態)SOCを表す信号等が、それぞれ上記電子制御装置40に供給される。As shown in FIG. 2, the electronic control device 40 is configured to be supplied with various signals from sensors, switches, and the like provided in each part of the driving device 10. That is, a signal representing an accelerator opening degree A CC which is an operation amount of an accelerator pedal (not shown) corresponding to a driver's output request amount by the accelerator opening sensor 42, and an engine which is the rotation speed of the engine 12 by the engine rotation speed sensor 44. signal representative of the rotational speed N E, a signal indicative of the rotational speed N MG1 of the first electric motor MG1 by MG1 rotational speed sensor 46, a signal indicative of the rotational speed N MG2 of the second electric motor MG2 by MG2 rotational speed sensor 48, output rotation signal representative of the rotational speed N OUT of the output gear 30 by the speed sensor 50 corresponding to the vehicle speed V, the operating position (shift position) signal representing the P S of the shift operating device (not shown) by the shift sensor 52, and the battery SOC sensor 54 A signal indicating the charge capacity (charge state) SOC of a battery (not shown) It is supplied to the electronic control unit 40.

前記電子制御装置40からは、前記駆動装置10の各部に作動指令が出力されるように構成されている。すなわち、前記エンジン12の出力を制御するエンジン出力制御指令として、燃料噴射装置による吸気配管等への燃料供給量を制御する燃料噴射量信号、点火装置による前記エンジン12の点火時期(点火タイミング)を指令する点火信号、及び電子スロットル弁のスロットル弁開度θTHを操作するためにスロットルアクチュエータへ供給される電子スロットル弁駆動信号等が、そのエンジン12の出力を制御するエンジン制御装置56へ出力される。前記第1電動機MG1及び第2電動機MG2の作動を指令する指令信号がインバータ58へ出力され、そのインバータ58を介してバッテリからその指令信号に応じた電気エネルギが前記第1電動機MG1及び第2電動機MG2に供給されてそれら第1電動機MG1及び第2電動機MG2の出力(トルク)が制御される。前記第1電動機MG1及び第2電動機MG2により発電された電気エネルギが前記インバータ58を介してバッテリに供給され、そのバッテリに蓄積されるようになっている。前記クラッチCL、ブレーキBKの係合状態を制御する指令信号が油圧制御回路60に備えられたリニアソレノイド弁等の電磁制御弁へ供給され、それら電磁制御弁から出力される油圧が制御されることで前記クラッチCL、ブレーキBKの係合状態が制御されるようになっている。The electronic control device 40 is configured to output an operation command to each part of the driving device 10. That is, as an engine output control command for controlling the output of the engine 12, a fuel injection amount signal for controlling a fuel supply amount to an intake pipe or the like by the fuel injection device, and an ignition timing (ignition timing) of the engine 12 by the ignition device. An ignition signal to be commanded, an electronic throttle valve drive signal supplied to the throttle actuator for operating the throttle valve opening θ TH of the electronic throttle valve, and the like are output to an engine control device 56 that controls the output of the engine 12. The A command signal for commanding the operation of the first motor MG1 and the second motor MG2 is output to the inverter 58, and electric energy corresponding to the command signal is transmitted from the battery via the inverter 58 to the first motor MG1 and the second motor. The output (torque) of the first electric motor MG1 and the second electric motor MG2 is controlled by being supplied to MG2. Electric energy generated by the first electric motor MG1 and the second electric motor MG2 is supplied to the battery via the inverter 58 and stored in the battery. A command signal for controlling the engagement state of the clutch CL and the brake BK is supplied to an electromagnetic control valve such as a linear solenoid valve provided in the hydraulic control circuit 60, and the hydraulic pressure output from the electromagnetic control valve is controlled. Thus, the engagement state of the clutch CL and the brake BK is controlled.

前記駆動装置10は、前記第1電動機MG1及び第2電動機MG2を介して運転状態が制御されることにより、入力回転速度と出力回転速度の差動状態が制御される電気式差動部として機能する。例えば、前記第1電動機MG1により発電された電気エネルギを前記インバータ58を介してバッテリや第2電動機MG2へ供給する。これにより、前記エンジン12の動力の主要部は機械的に前記出力歯車30へ伝達される一方、その動力の一部は前記第1電動機MG1の発電のために消費されてそこで電気エネルギに変換され、前記インバータ58を通してその電気エネルギが前記第2電動機MG2へ供給される。そして、その第2電動機MG2が駆動されて第2電動機MG2から出力された動力が前記出力歯車30へ伝達される。この電気エネルギの発生から第2電動機MG2で消費されるまでに関連する機器により、前記エンジン12の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。   The drive device 10 functions as an electric differential unit that controls the differential state between the input rotation speed and the output rotation speed by controlling the operation state via the first electric motor MG1 and the second electric motor MG2. To do. For example, the electric energy generated by the first electric motor MG1 is supplied to the battery and the second electric motor MG2 via the inverter 58. As a result, the main part of the power of the engine 12 is mechanically transmitted to the output gear 30, while a part of the power is consumed for power generation of the first electric motor MG 1 and is converted into electric energy there. The electric energy is supplied to the second electric motor MG2 through the inverter 58. Then, the second electric motor MG2 is driven, and the power output from the second electric motor MG2 is transmitted to the output gear 30. Electrical path from conversion of part of the power of the engine 12 into electrical energy and conversion of the electrical energy into mechanical energy by related equipment from the generation of the electrical energy to consumption by the second electric motor MG2. Is configured.

以上のように構成された駆動装置10が適用されたハイブリッド車両においては、前記エンジン12、第1電動機MG1、及び第2電動機MG2の駆動状態、及び前記クラッチCL、ブレーキBKの係合状態等に応じて、複数の走行モードの何れかが選択的に成立させられる。図3は、前記駆動装置10において成立させられる5種類の走行モードそれぞれにおける前記クラッチCL、ブレーキBKの係合状態を示す係合表であり、係合を「○」で、解放を空欄でそれぞれ示している。この図3に示す走行モード「EV−1」、「EV−2」は、何れも前記エンジン12の運転が停止させられると共に、前記第1電動機MG1及び第2電動機MG2の少なくとも一方を走行用の駆動源として用いるEV走行モードである。「HV−1」、「HV−2」、「HV−3」は、何れも前記エンジン12を例えば走行用の駆動源として駆動させると共に、前記第1電動機MG1及び第2電動機MG2により必要に応じて駆動乃至発電等を行うハイブリッド走行モードである。このハイブリッド走行モードにおいて、前記第1電動機MG1及び第2電動機MG2の少なくとも一方により反力を発生させるものであってもよく、無負荷の状態で空転させるものであってもよい。   In the hybrid vehicle to which the drive device 10 configured as described above is applied, the driving state of the engine 12, the first electric motor MG1, and the second electric motor MG2 and the engagement state of the clutch CL and the brake BK are set. In response, one of the plurality of travel modes is selectively established. FIG. 3 is an engagement table showing the engagement states of the clutch CL and the brake BK in each of the five types of travel modes established in the drive device 10, wherein the engagement is “◯” and the release is blank. Show. In the traveling modes “EV-1” and “EV-2” shown in FIG. 3, the operation of the engine 12 is stopped, and at least one of the first electric motor MG1 and the second electric motor MG2 is used for traveling. This is an EV travel mode used as a drive source. “HV-1”, “HV-2”, and “HV-3” are all driven by the first electric motor MG1 and the second electric motor MG2 while driving the engine 12 as a driving source for traveling, for example. This is a hybrid travel mode for driving or generating power. In this hybrid travel mode, a reaction force may be generated by at least one of the first electric motor MG1 and the second electric motor MG2, or may be idled in an unloaded state.

図3に示すように、前記駆動装置10においては、前記エンジン12の運転が停止させられると共に、前記第1電動機MG1及び第2電動機MG2の少なくとも一方を走行用の駆動源として用いるEV走行モードにおいて、前記ブレーキBKが係合されると共に前記クラッチCLが解放されることでモード1(走行モード1)である「EV−1」が、前記ブレーキBK及びクラッチCLが共に係合されることでモード2(走行モード2)である「EV−2」がそれぞれ成立させられる。前記エンジン12を例えば走行用の駆動源として駆動させると共に、前記第1電動機MG1及び第2電動機MG2により必要に応じて駆動乃至発電等を行うハイブリッド走行モードにおいて、前記ブレーキBKが係合されると共に前記クラッチCLが解放されることでモード3(走行モード3)である「HV−1」が、前記ブレーキBKが解放されると共に前記クラッチCLが係合されることでモード4(走行モード4)である「HV−2」が、前記ブレーキBK及びクラッチCLが共に解放されることでモード5(走行モード5)である「HV−3」がそれぞれ成立させられる。   As shown in FIG. 3, in the driving apparatus 10, the operation of the engine 12 is stopped, and in the EV traveling mode in which at least one of the first electric motor MG <b> 1 and the second electric motor MG <b> 2 is used as a driving source for traveling. When the brake BK is engaged and the clutch CL is released, the mode 1 (travel mode 1) is “EV-1”, and when the brake BK and the clutch CL are both engaged, the mode is 2 (travel mode 2), “EV-2”, is established. In the hybrid traveling mode in which the engine 12 is driven as a driving source for traveling, for example, and the first electric motor MG1 and the second electric motor MG2 are driven or generated as necessary, the brake BK is engaged. “HV-1”, which is mode 3 (travel mode 3) when the clutch CL is released, and mode 4 (travel mode 4) when the brake BK is released and the clutch CL is engaged. “HV-2”, which is the mode 5 (travel mode 5), is established by releasing both the brake BK and the clutch CL.

図4〜図7、及び図10は、前記駆動装置10(第1遊星歯車装置14及び第2遊星歯車装置16)において、前記クラッチCL及びブレーキBKそれぞれの係合状態に応じて連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示しており、横軸方向において前記第1遊星歯車装置14及び第2遊星歯車装置16のギヤ比ρの相対関係を示し、縦軸方向において相対的回転速度を示す二次元座標である。車両前進時における前記出力歯車30の回転方向を正の方向(正回転)として各回転速度を表している。横線X1は回転速度零を示している。縦線Y1〜Y4は、左から順に実線Y1が前記第1遊星歯車装置14のサンギヤS1(第1電動機MG1)、破線Y2が前記第2遊星歯車装置16のサンギヤS2(第2電動機MG2)、実線Y3が前記第1遊星歯車装置14のキャリアC1(エンジン12)、破線Y3′が前記第2遊星歯車装置16のキャリアC2、実線Y4が前記第1遊星歯車装置14のリングギヤR1(出力歯車30)、破線Y4′が前記第2遊星歯車装置16のリングギヤR2それぞれの相対回転速度を示している。図4〜図7、及び図10においては、縦線Y3及びY3′、縦線Y4及びY4′をそれぞれ重ねて表している。ここで、前記リングギヤR1及びR2は相互に連結されているため、縦線Y4、Y4′にそれぞれ示すリングギヤR1及びR2の相対回転速度は等しい。   4 to 7 and FIG. 10, in the driving device 10 (the first planetary gear device 14 and the second planetary gear device 16), the connection state differs depending on the engagement states of the clutch CL and the brake BK. FIG. 2 is a collinear chart that can represent the relative relationship between the rotational speeds of the rotating elements on a straight line, and the relative relationship between the gear ratios ρ of the first planetary gear device 14 and the second planetary gear device 16 in the horizontal axis direction. And is a two-dimensional coordinate indicating the relative rotational speed in the vertical axis direction. The rotational speeds of the output gears 30 when the vehicle moves forward are represented as positive directions (positive rotations). A horizontal line X1 indicates zero rotation speed. In the vertical lines Y1 to Y4, in order from the left, the solid line Y1 is the sun gear S1 (first electric motor MG1) of the first planetary gear unit 14, the broken line Y2 is the sun gear S2 (second electric motor MG2) of the second planetary gear unit 16, The solid line Y3 is the carrier C1 (engine 12) of the first planetary gear unit 14, the broken line Y3 'is the carrier C2 of the second planetary gear unit 16, and the solid line Y4 is the ring gear R1 (output gear 30) of the first planetary gear unit 14. ), The broken line Y4 ′ indicates the relative rotational speed of each ring gear R2 of the second planetary gear unit 16. 4 to 7 and FIG. 10, vertical lines Y3 and Y3 ′ and vertical lines Y4 and Y4 ′ are overlaid. Here, since the ring gears R1 and R2 are connected to each other, the relative rotational speeds of the ring gears R1 and R2 indicated by the vertical lines Y4 and Y4 ′ are equal.

図4〜図7、及び図10においては、前記第1遊星歯車装置14における3つの回転要素の相対的な回転速度を実線L1で、前記第2遊星歯車装置16における3つの回転要素の相対的な回転速度を破線L2でそれぞれ示している。前記縦線Y1〜Y4(Y2〜Y4′)の間隔は、前記第1遊星歯車装置14及び第2遊星歯車装置16の各ギヤ比ρ1、ρ2に応じて定められている。すなわち、前記第1遊星歯車装置14における3つの回転要素に対応する縦線Y1、Y3、Y4に関して、サンギヤS1とキャリアC1との間が1に対応するものとされ、キャリアC1とリングギヤR1との間がρ1に対応するものとされる。前記第2遊星歯車装置16における3つの回転要素に対応する縦線Y2、Y3′、Y4′に関して、サンギヤS2とキャリアC2との間が1に対応するものとされ、キャリアC2とリングギヤR2との間がρ2に対応するものとされる。すなわち、前記駆動装置10において、好適には、前記第1遊星歯車装置14のギヤ比ρ1よりも前記第2遊星歯車装置16のギヤ比ρ2の方が大きい(ρ2>ρ1)。以下、図4〜図7等を用いて前記駆動装置10における各走行モードについて説明する。   4 to 7 and FIG. 10, the relative rotational speeds of the three rotating elements in the first planetary gear device 14 are indicated by a solid line L1, and the relative speeds of the three rotating elements in the second planetary gear device 16 are relative to each other. Rotational speed is indicated by a broken line L2. The intervals between the vertical lines Y1 to Y4 (Y2 to Y4 ′) are determined according to the gear ratios ρ1 and ρ2 of the first planetary gear device 14 and the second planetary gear device 16. That is, regarding the vertical lines Y1, Y3, Y4 corresponding to the three rotating elements in the first planetary gear device 14, the space between the sun gear S1 and the carrier C1 corresponds to 1, and the carrier C1 and the ring gear R1 The interval corresponds to ρ1. Regarding the vertical lines Y2, Y3 ', Y4' corresponding to the three rotating elements in the second planetary gear device 16, the space between the sun gear S2 and the carrier C2 corresponds to 1, and the carrier C2 and the ring gear R2 The interval corresponds to ρ2. That is, in the drive device 10, the gear ratio ρ2 of the second planetary gear device 16 is preferably larger than the gear ratio ρ1 of the first planetary gear device 14 (ρ2> ρ1). Hereinafter, each traveling mode in the drive device 10 will be described with reference to FIGS.

図3に示す「EV−1」は、前記駆動装置10におけるモード1(走行モード1)に相当するものであり、好適には、前記エンジン12の運転が停止させられると共に、前記第2電動機MG2が走行用の駆動源として用いられるEV走行モードである。図4は、このモード1に対応する共線図であり、この共線図を用いて説明すれば、前記クラッチCLが解放されることで前記第1遊星歯車装置14のキャリアC1と前記第2遊星歯車装置16のキャリアC2との相対回転が可能とされている。前記ブレーキBKが係合されることで前記第2遊星歯車装置16のキャリアC2が非回転部材である前記ハウジング26に対して連結(固定)され、その回転速度が零とされている。このモード1においては、前記第2遊星歯車装置16において、前記サンギヤS2の回転方向と前記リングギヤR2の回転方向とが逆方向となり、前記第2電動機MG2により負のトルク(負の方向のトルク)が出力されると、そのトルクにより前記リングギヤR2すなわち出力歯車30は正の方向に回転させられる。すなわち、前記第2電動機MG2により負のトルクを出力させることにより、前記駆動装置10の適用されたハイブリッド車両を前進走行させることができる。この場合において、好適には、前記第1電動機MG1は空転させられる。このモード1では、前記キャリアC1及びC2の相対回転が許容されると共に、そのキャリアC2が非回転部材に連結された所謂THS(Toyota Hybrid System)を搭載した車両におけるEV走行と同様のEV走行制御を行うことができる。   “EV-1” shown in FIG. 3 corresponds to mode 1 (traveling mode 1) in the driving device 10, and preferably the operation of the engine 12 is stopped and the second electric motor MG2 is stopped. Is an EV traveling mode used as a driving source for traveling. FIG. 4 is a collinear diagram corresponding to this mode 1, and will be described using this collinear diagram. When the clutch CL is released, the carrier C1 and the second planetary gear device 14 of the first planetary gear unit 14 are disengaged. The planetary gear device 16 can rotate relative to the carrier C2. Engagement of the brake BK causes the carrier C2 of the second planetary gear device 16 to be connected (fixed) to the housing 26, which is a non-rotating member, so that its rotational speed is zero. In this mode 1, in the second planetary gear device 16, the rotation direction of the sun gear S2 and the rotation direction of the ring gear R2 are opposite to each other, and negative torque (torque in the negative direction) is generated by the second electric motor MG2. Is output, the torque causes the ring gear R2, that is, the output gear 30, to rotate in the positive direction. That is, by outputting negative torque by the second electric motor MG2, the hybrid vehicle to which the drive device 10 is applied can be caused to travel forward. In this case, preferably, the first electric motor MG1 is idled. In this mode 1, the relative rotation of the carriers C1 and C2 is allowed, and EV travel control similar to EV travel in a vehicle equipped with a so-called THS (Toyota Hybrid System) in which the carrier C2 is connected to a non-rotating member. It can be performed.

図3に示す「EV−2」は、前記駆動装置10におけるモード2(走行モード2)に相当するものであり、好適には、前記エンジン12の運転が停止させられると共に、前記第1電動機MG1及び第2電動機MG2の少なくとも一方が走行用の駆動源として用いられるEV走行モードである。図5は、このモード2に対応する共線図であり、この共線図を用いて説明すれば、前記クラッチCLが係合されることで前記第1遊星歯車装置14のキャリアC1と前記第2遊星歯車装置16のキャリアC2との相対回転が不能とされている。更に、前記ブレーキBKが係合されることで前記第2遊星歯車装置16のキャリアC2及びそのキャリアC2に係合された前記第1遊星歯車装置14のキャリアC1が非回転部材である前記ハウジング26に対して連結(固定)され、その回転速度が零とされている。このモード2においては、前記第1遊星歯車装置14において、前記サンギヤS1の回転方向と前記リングギヤR1の回転方向とが逆方向となると共に、前記第2遊星歯車装置16において、前記サンギヤS2の回転方向と前記リングギヤR2の回転方向とが逆方向となる。すなわち、前記第1電動機MG1乃至前記第2電動機MG2により負のトルク(負の方向のトルク)が出力されると、そのトルクにより前記リングギヤR1及びR2すなわち出力歯車30は正の方向に回転させられる。すなわち、前記第1電動機MG1及び第2電動機MG2の少なくとも一方により負のトルクを出力させることにより、前記駆動装置10の適用されたハイブリッド車両を前進走行させることができる。   “EV-2” shown in FIG. 3 corresponds to mode 2 (traveling mode 2) in the driving apparatus 10, and preferably the operation of the engine 12 is stopped and the first electric motor MG1 is stopped. In addition, this is an EV traveling mode in which at least one of the second electric motor MG2 is used as a driving source for traveling. FIG. 5 is a collinear diagram corresponding to this mode 2. If the collinear diagram is used to explain, the carrier C1 of the first planetary gear device 14 and the first planetary gear device 14 are engaged by engaging the clutch CL. The relative rotation of the two planetary gear unit 16 with the carrier C2 is disabled. Further, when the brake BK is engaged, the carrier C2 of the second planetary gear device 16 and the carrier C1 of the first planetary gear device 14 engaged with the carrier C2 are non-rotating members. Are connected (fixed) to each other and their rotational speed is zero. In this mode 2, the rotation direction of the sun gear S1 is opposite to the rotation direction of the ring gear R1 in the first planetary gear device 14, and the rotation of the sun gear S2 is reversed in the second planetary gear device 16. The direction and the rotation direction of the ring gear R2 are opposite to each other. That is, when negative torque (torque in the negative direction) is output from the first electric motor MG1 to the second electric motor MG2, the ring gears R1 and R2, that is, the output gear 30 are rotated in the positive direction by the torque. . That is, the hybrid vehicle to which the drive device 10 is applied can be caused to travel forward by outputting negative torque by at least one of the first electric motor MG1 and the second electric motor MG2.

前記モード2においては、前記第1電動機MG1及び第2電動機MG2の少なくとも一方により発電を行う形態を成立させることもできる。この形態においては、前記第1電動機MG1及び第2電動機MG2の一方或いは両方により走行用の駆動力(トルク)を分担して発生させることが可能となり、各電動機を効率の良い動作点で動作させたり、熱によるトルク制限等の制約を緩和する走行等が可能となる。更に、バッテリの充電状態が満充電の場合等、回生による発電が許容されない場合に、前記第1電動機MG1及び第2電動機MG2の一方或いは両方を空転させることも可能である。すなわち、前記モード2においては、前記第1電動機MG1及び第2電動機MG2により仕事量を相互に補い合うことができ、幅広い走行条件においてEV走行を行うことや、長時間継続してEV走行を行うことが可能となる。従って、前記モード2は、プラグインハイブリッド車両等、EV走行を行う割合が高いハイブリッド車両において好適に採用される。   In the mode 2, it is possible to establish a mode in which power generation is performed by at least one of the first electric motor MG1 and the second electric motor MG2. In this form, it becomes possible to share and generate driving force (torque) for traveling by one or both of the first electric motor MG1 and the second electric motor MG2, and each electric motor is operated at an efficient operating point. Or running that relaxes restrictions such as torque limitation due to heat. Furthermore, it is possible to idle one or both of the first electric motor MG1 and the second electric motor MG2 when power generation by regeneration is not allowed, such as when the battery is fully charged. In other words, in the mode 2, the first electric motor MG1 and the second electric motor MG2 can compensate for each other's work, and can perform EV traveling under a wide range of traveling conditions or perform EV traveling continuously for a long time. Is possible. Therefore, the mode 2 is suitably employed in a hybrid vehicle having a high EV traveling ratio such as a plug-in hybrid vehicle.

図3に示す「HV−1」は、前記駆動装置10におけるモード3(走行モード3)に相当するものであり、好適には、前記エンジン12が駆動されて走行用の駆動源として用いられると共に、必要に応じて前記第1電動機MG1及び第2電動機MG2による駆動乃至発電が行われるハイブリッド走行モードである。図4の共線図は、このモード3に対応するものでもあり、この共線図を用いて説明すれば、前記クラッチCLが解放されることで前記第1遊星歯車装置14のキャリアC1と前記第2遊星歯車装置16のキャリアC2との相対回転が可能とされている。前記ブレーキBKが係合されることで前記第2遊星歯車装置16のキャリアC2が非回転部材である前記ハウジング26に対して連結(固定)され、その回転速度が零とされている。このモード3においては、前記エンジン12が駆動させられ、その出力トルクにより前記出力歯車30が回転させられる。この際、前記第1遊星歯車装置14において、前記第1電動機MG1により反力トルクを出力させることで、前記エンジン12からの出力の前記出力歯車30への伝達が可能とされる。前記第2遊星歯車装置16においては、前記ブレーキBKが係合されていることで、前記サンギヤS2の回転方向と前記リングギヤR2の回転方向とが逆方向となる。すなわち、前記第2電動機MG2により負のトルク(負の方向のトルク)が出力されると、そのトルクにより前記リングギヤR1及びR2すなわち出力歯車30は正の方向に回転させられる。   “HV-1” shown in FIG. 3 corresponds to mode 3 (traveling mode 3) in the driving device 10, and preferably, the engine 12 is driven and used as a driving source for traveling. This is a hybrid travel mode in which driving or power generation is performed by the first electric motor MG1 and the second electric motor MG2 as necessary. The collinear diagram of FIG. 4 also corresponds to this mode 3. If described using this collinear diagram, the carrier C1 of the first planetary gear device 14 and the carrier C1 are released by releasing the clutch CL. The second planetary gear device 16 can rotate relative to the carrier C2. Engagement of the brake BK causes the carrier C2 of the second planetary gear device 16 to be connected (fixed) to the housing 26, which is a non-rotating member, so that its rotational speed is zero. In mode 3, the engine 12 is driven, and the output gear 30 is rotated by the output torque. At this time, in the first planetary gear unit 14, the output torque from the engine 12 can be transmitted to the output gear 30 by causing the first electric motor MG 1 to output a reaction torque. In the second planetary gear unit 16, the rotation direction of the sun gear S2 and the rotation direction of the ring gear R2 are opposite because the brake BK is engaged. That is, when a negative torque (torque in the negative direction) is output by the second electric motor MG2, the ring gears R1 and R2, that is, the output gear 30 are rotated in the positive direction by the torque.

図3に示す「HV−2」は、前記駆動装置10におけるモード4(走行モード4)に相当するものであり、好適には、前記エンジン12が駆動されて走行用の駆動源として用いられると共に、必要に応じて前記第1電動機MG1及び第2電動機MG2による駆動乃至発電が行われるハイブリッド走行モードである。図6は、このモード4に対応する共線図であり、この共線図を用いて説明すれば、前記クラッチCLが係合されることで前記第1遊星歯車装置14のキャリアC1と前記第2遊星歯車装置16のキャリアC2との相対回転が不能とされており、前記キャリアC1及びC2が一体的に回転させられる1つの回転要素として動作する。前記リングギヤR1及びR2は相互に連結されていることで、それらリングギヤR1及びR2は一体的に回転させられる1つの回転要素として動作する。すなわち、前記モード4において、前記駆動装置10における前記第1遊星歯車装置14及び第2遊星歯車装置16における回転要素は、全体として4つの回転要素を備えた差動機構として機能する。すなわち、図6において紙面向かって左から順に示す4つの回転要素であるサンギヤS1(第1電動機MG1)、サンギヤS2(第2電動機MG2)、相互に連結されたキャリアC1及びC2(エンジン12)、相互に連結されたリングギヤR1及びR2(出力歯車30)の順に結合した複合スプリットモードとなる。   “HV-2” shown in FIG. 3 corresponds to mode 4 (traveling mode 4) in the driving apparatus 10, and preferably, the engine 12 is driven and used as a driving source for traveling. This is a hybrid travel mode in which driving or power generation is performed by the first electric motor MG1 and the second electric motor MG2 as necessary. FIG. 6 is a collinear diagram corresponding to the mode 4, and will be described using this collinear diagram. When the clutch CL is engaged, the carrier C1 of the first planetary gear unit 14 and the first The relative rotation of the two planetary gear unit 16 with the carrier C2 is disabled, and the carriers C1 and C2 operate as one rotating element that is rotated integrally. Since the ring gears R1 and R2 are connected to each other, the ring gears R1 and R2 operate as one rotating element that is rotated integrally. That is, in the mode 4, the rotating elements in the first planetary gear device 14 and the second planetary gear device 16 in the driving device 10 function as a differential mechanism including four rotating elements as a whole. That is, four gears in order from the left in FIG. 6 are the sun gear S1 (first electric motor MG1), the sun gear S2 (second electric motor MG2), the carriers C1 and C2 (engine 12) connected to each other, A composite split mode is obtained in which ring gears R1 and R2 (output gear 30) connected to each other are connected in this order.

図6に示すように、前記モード4において、好適には、前記第1遊星歯車装置14及び第2遊星歯車装置16における各回転要素の共線図における並び順が、縦線Y1で示すサンギヤS1、縦線Y2で示すサンギヤS2、縦線Y3(Y3′)で示すキャリアC1及びC2、縦線Y4(Y4′)で示すリングギヤR1及びR2の順となる。前記第1遊星歯車装置14及び第2遊星歯車装置16それぞれのギヤ比ρ1、ρ2は、共線図において図6に示すように前記サンギヤS1に対応する縦線Y1と前記サンギヤS2に対応する縦線Y2とが上記の並び順となるように、すなわち縦線Y1と縦線Y3との間隔が、縦線Y2と縦線Y3′との間隔よりも広くなるように定められている。換言すれば、サンギヤS1、S2とキャリアC1、C2との間が1に対応するものとされ、キャリアC1、C2とリングギヤR1、R2との間がρ1、ρ2に対応することから、前記駆動装置10においては、前記第1遊星歯車装置14のギヤ比ρ1よりも前記第2遊星歯車装置16のギヤ比ρ2の方が大きい。   As shown in FIG. 6, in the mode 4, it is preferable that the arrangement order of the rotating elements in the first planetary gear device 14 and the second planetary gear device 16 in the alignment chart is a sun gear S1 indicated by a vertical line Y1. The sun gear S2 indicated by the vertical line Y2, the carriers C1 and C2 indicated by the vertical line Y3 (Y3 ′), and the ring gears R1 and R2 indicated by the vertical line Y4 (Y4 ′) are arranged in this order. The gear ratios ρ1 and ρ2 of the first planetary gear device 14 and the second planetary gear device 16 are respectively shown in FIG. 6 in the collinear diagram as a vertical line Y1 corresponding to the sun gear S1 and a vertical line corresponding to the sun gear S2. It is determined that the line Y2 is arranged in the above-described order, that is, the interval between the vertical line Y1 and the vertical line Y3 is wider than the interval between the vertical line Y2 and the vertical line Y3 ′. In other words, the sun gears S1 and S2 and the carriers C1 and C2 correspond to 1, and the carriers C1 and C2 and the ring gears R1 and R2 correspond to ρ1 and ρ2. 10, the gear ratio ρ2 of the second planetary gear device 16 is larger than the gear ratio ρ1 of the first planetary gear device 14.

前記モード4においては、前記クラッチCLが係合されることで前記第1遊星歯車装置14のキャリアC1と前記第2遊星歯車装置16のキャリアC2とが連結されており、それらキャリアC1及びC2が一体的に回転させられる。このため、前記エンジン12の出力に対して、前記第1電動機MG1及び第2電動機MG2の何れによっても反力を受けることができる。すなわち、前記エンジン12の駆動に際して、その反力を前記第1電動機MG1及び第2電動機MG2の一方乃至両方で分担して受けることが可能となり、換言すれば、前記第1電動機MG1及び第2電動機MG2により仕事量を相互に補い合うことができる。すなわち、前記モード4においては、効率の良い動作点で動作させたり、熱によるトルク制限等の制約を緩和する走行等が可能となる。   In the mode 4, when the clutch CL is engaged, the carrier C1 of the first planetary gear device 14 and the carrier C2 of the second planetary gear device 16 are connected, and the carriers C1 and C2 are connected to each other. It can be rotated integrally. For this reason, the reaction force can be applied to the output of the engine 12 by either the first electric motor MG1 or the second electric motor MG2. That is, when the engine 12 is driven, the reaction force can be shared by one or both of the first electric motor MG1 and the second electric motor MG2, in other words, the first electric motor MG1 and the second electric motor. The workload can be compensated for by MG2. That is, in the mode 4, it is possible to operate at an efficient operating point, or to travel such that the restriction such as torque limitation due to heat is relaxed.

例えば、前記第1電動機MG1及び第2電動機MG2のうち、効率良く動作できる方の電動機により優先的に反力を受けるように制御することで、効率の向上を図ることができる。例えば、比較的車速Vが高い高車速時であり且つ比較的エンジン回転速度NEが低い低回転時には、前記第1電動機MG1の回転速度NMG1が負の値すなわち負回転となる場合がある。斯かる場合において、前記第1電動機MG1により前記エンジン12の反力を受けることを考えると、その第1電動機MG1により電力を消費して負トルクを発生させる逆転力行の状態となり、効率低下につながるおそれがある。ここで、図6から明らかなように、前記駆動装置10においては、縦線Y2で示す前記第2電動機MG2の回転速度は、縦線Y1で示す前記第1電動機MG1の回転速度に比べて負の値をとり難く、正回転の状態で前記エンジン12の反力を受けることができる場合が多い。従って、前記第1電動機MG1の回転速度が負の値である場合等において、前記第2電動機MG2により優先的に前記エンジン12の反力を受けるように制御することで、効率向上による燃費の向上を図ることができる。更に、前記第1電動機MG1及び第2電動機MG2の何れかにおいて熱によるトルク制限がなされた場合に、トルク制限がなされていない電動機の回生乃至出力によって駆動力をアシストすることで、前記エンジン12の駆動に必要な反力を確保すること等が可能とされる。For example, the efficiency can be improved by controlling the first motor MG1 and the second motor MG2 so as to receive the reaction force preferentially by the motor that can operate efficiently. For example, relatively vehicle speed V is high high-speed drive and at the time of relatively engine rotational speed N E is lower low rotation, there is a case where the rotational speed N MG1 of the first electric motor MG1 is a negative value or negative rotation. In such a case, considering that the reaction force of the engine 12 is received by the first electric motor MG1, the first electric motor MG1 is in a reverse power running state in which electric power is consumed and negative torque is generated, leading to a reduction in efficiency. There is a fear. Here, as is apparent from FIG. 6, in the driving device 10, the rotational speed of the second electric motor MG2 indicated by the vertical line Y2 is negative compared to the rotational speed of the first electric motor MG1 indicated by the vertical line Y1. It is often difficult to take the value of and the reaction force of the engine 12 can be received in the forward rotation state. Therefore, when the rotational speed of the first electric motor MG1 is a negative value, the fuel efficiency is improved by improving the efficiency by controlling the second electric motor MG2 to receive the reaction force of the engine 12 preferentially. Can be achieved. Further, when torque is limited by heat in either the first electric motor MG1 or the second electric motor MG2, the driving force is assisted by regeneration or output of an electric motor that is not torque limited, so that the engine 12 It is possible to ensure a reaction force necessary for driving.

図8は、前記駆動装置10における伝達効率を説明する図であり、横軸に変速比を、縦軸に理論伝達効率をそれぞれ示している。この図8に示す変速比は、前記第1遊星歯車装置14及び第2遊星歯車装置16における、出力側回転速度に対する入力側回転速度の比すなわち減速比であり、例えば、前記出力歯車30の回転速度(リングギヤR1、R2の回転速度)に対する前記キャリアC1等の入力回転部材の回転速度の比に相当する。図8に示す横軸においては、紙面向かって左側が変速比の小さいハイギヤ側であり、右側が変速比の大きいローギヤ側となる。図8に示す理論伝達効率は、前記駆動装置10における伝達効率の理論値であり、前記第1遊星歯車装置14、第2遊星歯車装置16に入力される動力が電気パスを介さずに機械的な伝達によって全て前記出力歯車30へ伝達される場合に最大効率1.0となる。   FIG. 8 is a diagram for explaining the transmission efficiency in the driving device 10, wherein the horizontal axis represents the transmission ratio and the vertical axis represents the theoretical transmission efficiency. The gear ratio shown in FIG. 8 is the ratio of the input side rotational speed to the output side rotational speed, that is, the reduction ratio in the first planetary gear device 14 and the second planetary gear device 16, for example, the rotation of the output gear 30. This corresponds to the ratio of the rotational speed of the input rotary member such as the carrier C1 to the speed (rotational speed of the ring gears R1 and R2). In the horizontal axis shown in FIG. 8, the left side of the drawing is the high gear side with a small gear ratio, and the right side is the low gear side with a large gear ratio. The theoretical transmission efficiency shown in FIG. 8 is a theoretical value of the transmission efficiency in the drive device 10, and the power input to the first planetary gear device 14 and the second planetary gear device 16 is mechanical without passing through an electrical path. The maximum efficiency is 1.0 when all of the signals are transmitted to the output gear 30 by simple transmission.

図8では、前記駆動装置10におけるモード3(HV−1)時の伝達効率を一点鎖線で、モード4(HV−2)時の伝達効率を実線でそれぞれ示している。この図8に示すように、前記駆動装置10におけるモード3(HV−1)時の伝達効率は、変速比γ1において最大効率となる。この変速比γ1において、前記第1電動機MG1(サンギヤS1)の回転速度は零となるものであり、その第1電動機MG1において反力を受けることによる電気パスは零となり、機械的な動力伝達のみによって前記エンジン12乃至前記第2電動機MG2から出力歯車30へ動力を伝達することができる動作点となる。以下、このように電気パスがゼロの高効率動作点をメカニカルポイント(機械伝達ポイント)という。前記変速比γ1は、オーバードライブ側の変速比すなわち1よりも小さな変速比であり、以下、この変速比γ1を第1機械伝達変速比γ1という。図8に示すように、前記モード3時の伝達効率は、変速比が前記第1機械伝達変速比γ1よりもローギヤ側の値となるに従い緩やかに低下する一方、変速比が前記第1機械伝達変速比γ1よりもハイギヤ側の値となるに従いローギヤ側よりも急激に低下する。   In FIG. 8, the transmission efficiency in the mode 3 (HV-1) in the driving device 10 is indicated by a one-dot chain line, and the transmission efficiency in the mode 4 (HV-2) is indicated by a solid line. As shown in FIG. 8, the transmission efficiency in the mode 3 (HV-1) in the driving device 10 is the maximum efficiency at the speed ratio γ1. At this speed ratio γ1, the rotational speed of the first electric motor MG1 (sun gear S1) becomes zero, and the electric path caused by receiving the reaction force in the first electric motor MG1 becomes zero, and only mechanical power transmission is performed. Thus, an operating point at which power can be transmitted from the engine 12 to the second electric motor MG2 to the output gear 30 is obtained. Hereinafter, a high-efficiency operating point with zero electrical path is referred to as a mechanical point (mechanical transmission point). The gear ratio γ1 is a gear ratio on the overdrive side, that is, a gear ratio smaller than 1. Hereinafter, the gear ratio γ1 is referred to as a first mechanical transmission gear ratio γ1. As shown in FIG. 8, the transmission efficiency in the mode 3 gradually decreases as the gear ratio becomes a value on the low gear side with respect to the first machine transmission gear ratio γ1, while the gear ratio becomes the first machine transmission. As it becomes a value on the high gear side with respect to the gear ratio γ1, it decreases more rapidly than the low gear side.

図8に示すように、前記駆動装置10におけるモード4(HV−2)においては、前記クラッチCLの係合により構成された4つの回転要素において図6の共線図に係る前記第1電動機MG1及び第2電動機MG2それぞれの回転速度が横軸上の異なる位置となるように前記第1遊星歯車装置14及び第2遊星歯車装置16それぞれのギヤ比ρ1、ρ2が定められていることで、そのモード4時の伝達効率は、前記変速比γ1に加えて変速比γ2にメカニカルポイントを有する。すなわち、前記モード4時には、前記第1機械伝達変速比γ1において前記第1電動機MG1の回転速度が零となるものであり、その第1電動機MG1において反力を受けることによる電気パスが零となるメカニカルポイントが実現されると共に、変速比γ2において前記第2電動機MG2の回転速度が零となり、その第2電動機MG2において反力を受けることによる電気パスが零となるメカニカルポイントが実現される。以下、この変速比γ2を第2機械伝達変速比γ2という。この第2機械伝達変速比γ2は、前記第1機械伝達変速比γ1よりも小さい変速比に相当する。すなわち、前記駆動装置10におけるモード4時においては、前記モード3時に対してハイギヤ側にメカニカルポイントを持つシステムとなる。   As shown in FIG. 8, in mode 4 (HV-2) in the driving apparatus 10, the first electric motor MG1 according to the collinear diagram of FIG. 6 is used in the four rotating elements configured by the engagement of the clutch CL. And the gear ratios ρ1, ρ2 of the first planetary gear device 14 and the second planetary gear device 16 are determined so that the rotational speeds of the second motor MG2 are different positions on the horizontal axis, The transmission efficiency in mode 4 has a mechanical point in the speed ratio γ2 in addition to the speed ratio γ1. That is, at the time of the mode 4, the rotational speed of the first electric motor MG1 becomes zero at the first mechanical transmission speed ratio γ1, and the electric path due to receiving the reaction force at the first electric motor MG1 becomes zero. A mechanical point is realized as well as a mechanical point where the rotational speed of the second electric motor MG2 becomes zero at the gear ratio γ2 and the electric path by the reaction force is zero in the second electric motor MG2. Hereinafter, the speed ratio γ2 is referred to as a second mechanical transmission speed ratio γ2. The second machine transmission speed ratio γ2 corresponds to a speed ratio smaller than the first machine transmission speed ratio γ1. That is, in the mode 4 in the driving device 10, the system has a mechanical point on the high gear side with respect to the mode 3 time.

図8に示すように、前記モード4時の伝達効率は、前記第1機械伝達変速比γ1よりもローギヤ側の領域では、変速比の増加に応じて前記モード3時の伝達効率よりも急激に低下する。前記第1機械伝達変速比γ1と第2機械伝達変速比γ2との間の変速比の領域では低効率側に湾曲している。この領域において、前記モード4時の伝達効率は、前記モード3時の伝達効率と同等か、或いはそれよりも高効率となる。前記モード4時の伝達効率は、前記第2機械伝達変速比γ2よりもハイギヤ側の領域では変連比の減少に従って低下するものの、前記モード3時の伝達効率よりも相対的に高効率となる。すなわち、前記モード4時においては、前記第1機械伝達変速比γ1に加えてその第1機械伝達変速比γ1よりもハイギヤ側の第2機械伝達変速比γ2にメカニカルポイントを有することで、比較的変速比の小さいハイギヤ動作時の伝達効率の向上を実現できる。従って、例えば比較的高速走行時の伝達効率向上による燃費の向上を図ることが可能となる。   As shown in FIG. 8, the transmission efficiency at the time of the mode 4 is sharper than the transmission efficiency at the time of the mode 3 in the region on the low gear side from the first mechanical transmission speed ratio γ1 as the speed ratio increases. descend. The region of the gear ratio between the first machine transmission speed ratio γ1 and the second machine transmission speed ratio γ2 is curved toward the low efficiency side. In this region, the transmission efficiency in the mode 4 is equal to or higher than the transmission efficiency in the mode 3. The transmission efficiency at the time of the mode 4 is relatively higher than the transmission efficiency at the time of the mode 3 although the transmission efficiency decreases in the region on the high gear side from the second mechanical transmission speed ratio γ2 as the shift ratio decreases. . That is, at the time of the mode 4, in addition to the first machine transmission speed ratio γ 1, a mechanical point is provided in the second machine transmission speed ratio γ 2 on the higher gear side than the first machine transmission speed ratio γ 1. It is possible to improve transmission efficiency during high gear operation with a small gear ratio. Therefore, for example, it is possible to improve fuel efficiency by improving transmission efficiency during relatively high-speed traveling.

以上、図8を用いて説明したように、前記駆動装置10においては、前記エンジン12を例えば走行用の駆動源として駆動させると共に、前記第1電動機MG1及び第2電動機MG2により必要に応じて駆動乃至発電等を行うハイブリッド走行時に、前記モード3(HV−1)とモード4(HV−2)とを適宜切り換えることで伝達効率の向上を実現することができる。例えば、前記第1機械低速変速比γ1よりもローギヤ側の変速比の領域では前記モード3を成立させる一方、その第1機械伝達変速比γ1よりもハイギヤ側の変速比の領域では前記モード4を成立させるといった制御を行うことで、ローギヤ領域からハイギヤ領域まで広い変速比の領域で伝達効率を向上させることができる。   As described above with reference to FIG. 8, in the driving device 10, the engine 12 is driven as a driving source for traveling, for example, and is driven as necessary by the first electric motor MG <b> 1 and the second electric motor MG <b> 2. In addition, during hybrid traveling in which power generation is performed, transmission efficiency can be improved by appropriately switching between the mode 3 (HV-1) and the mode 4 (HV-2). For example, the mode 3 is established in the region of the gear ratio on the low gear side from the first machine low speed gear ratio γ1, while the mode 4 is established in the region of the gear ratio on the high gear side from the first machine transmission gear ratio γ1. By performing the control such that the transmission is established, the transmission efficiency can be improved in a wide gear ratio region from the low gear region to the high gear region.

図3に示す「HV−3」は、前記駆動装置10におけるモード5(走行モード5)に相当するものであり、好適には、前記エンジン12が駆動されて走行用の駆動源として用いられると共に、必要に応じて前記第1電動機MG1による駆動乃至発電が行われるハイブリッド走行モードである。このモード5においては、前記第2電動機MG2を駆動系から切り離して前記エンジン12及び第1電動機MG1により駆動を行う等の形態を実現することができる。図7は、このモード5に対応する共線図であり、この共線図を用いて説明すれば、前記クラッチCLが解放されることで前記第1遊星歯車装置14のキャリアC1と前記第2遊星歯車装置16のキャリアC2との相対回転が可能とされている。前記ブレーキBKが解放されることで前記第2遊星歯車装置16のキャリアC2が非回転部材である前記ハウジング26に対して相対回転可能とされている。斯かる構成においては、前記第2電動機MG2を駆動系(動力伝達経路)から切り離して停止させておくことが可能である。   “HV-3” shown in FIG. 3 corresponds to mode 5 (travel mode 5) in the drive device 10, and is preferably used as a drive source for travel when the engine 12 is driven. This is a hybrid travel mode in which driving or power generation is performed by the first electric motor MG1 as necessary. In this mode 5, it is possible to realize a mode in which the second electric motor MG2 is disconnected from the drive system and driven by the engine 12 and the first electric motor MG1. FIG. 7 is a collinear diagram corresponding to this mode 5. If described with reference to this collinear diagram, the carrier C1 of the first planetary gear unit 14 and the second planetary gear device 14 are released by releasing the clutch CL. The planetary gear device 16 can rotate relative to the carrier C2. By releasing the brake BK, the carrier C2 of the second planetary gear device 16 can be rotated relative to the housing 26, which is a non-rotating member. In such a configuration, the second electric motor MG2 can be disconnected from the drive system (power transmission path) and stopped.

前記モード3においては、前記ブレーキBKが係合されているため、車両走行時において前記第2電動機MG2は前記出力歯車30(リングギヤR2)の回転に伴い常時回転させられる。斯かる形態において、比較的高回転となる領域では前記第2電動機MG2の回転速度が限界値(上限値)に達することや、前記リングギヤR2の回転速度が増速されて前記サンギヤS2に伝達されること等から、効率向上の観点からは比較的高車速時に前記第2電動機MG2を常時回転させておくことは必ずしも好ましくない。一方、前記モード5においては、比較的高車速時に前記第2電動機MG2を駆動系から切り離して前記エンジン12及び第1電動機MG1により駆動を行う形態を実現することで、その第2電動機MG2の駆動が不要な場合における引き摺り損失を低減できることに加え、その第2電動機MG2に許容される最高回転速度(上限値)に起因する最高車速への制約を解消すること等が可能とされる。   In the mode 3, since the brake BK is engaged, the second electric motor MG2 is always rotated with the rotation of the output gear 30 (ring gear R2) when the vehicle is traveling. In such a form, in the region where the rotation is relatively high, the rotation speed of the second electric motor MG2 reaches a limit value (upper limit value), or the rotation speed of the ring gear R2 is increased and transmitted to the sun gear S2. Therefore, from the viewpoint of improving efficiency, it is not always preferable to always rotate the second electric motor MG2 at a relatively high vehicle speed. On the other hand, in the mode 5, the second motor MG2 is driven by the engine 12 and the first motor MG1 by separating the second motor MG2 from the drive system at a relatively high vehicle speed, thereby driving the second motor MG2. In addition to being able to reduce drag loss when no is required, it is possible to eliminate restrictions on the maximum vehicle speed caused by the maximum rotation speed (upper limit value) allowed for the second electric motor MG2.

以上の説明から明らかなように、前記駆動装置10においては、前記エンジン12が駆動されて走行用の駆動源として用いられるハイブリッド走行に関して、前記クラッチCL及びブレーキBKの係合乃至解放の組み合わせにより、HV−1(モード3)、HV−2(モード4)、及びHV−3(モード5)の3つのモードを選択的に成立させることができる。これにより、例えば車両の車速や変速比等に応じてそれら3つのモードのうち最も伝達効率の高いモードを選択的に成立させることで、伝達効率の向上延いては燃費の向上を実現することができる。   As is clear from the above description, in the driving device 10, with respect to the hybrid driving used as the driving source for driving when the engine 12 is driven, the clutch CL and the brake BK are engaged or released in combination. Three modes of HV-1 (mode 3), HV-2 (mode 4), and HV-3 (mode 5) can be selectively established. Thereby, for example, by selectively establishing the mode with the highest transmission efficiency among these three modes according to the vehicle speed, the gear ratio, etc. of the vehicle, it is possible to improve the transmission efficiency and thus improve the fuel efficiency. it can.

図9は、前記電子制御装置40に備えられた制御機能の要部を説明する機能ブロック線図である。この図9に示す走行モード判定部70は、前記駆動装置10において成立させられる走行モードを判定する。基本的には、予め定められた関係から、前記アクセル開度センサ42により検出されるアクセル開度ACC、前記出力回転速度センサ50により検出される出力回転速度NOUTに対応する車速V、及び前記バッテリSOCセンサ54により検出されるバッテリSOC等に基づいて、図3を用いて前述したモード1〜5のうち何れか1つの走行モードの成立を判定する。好適には、前記バッテリSOCセンサ54により検出されるバッテリSOCが予め定められた閾値未満である場合には、前記エンジン12が駆動されて走行用の駆動源として用いられるハイブリッド走行モードである前記モード3〜5のうち何れか1つの走行モードの成立を判定する。好適には、前記バッテリSOCセンサ54により検出されるバッテリSOCが前記閾値以上である場合には、前記エンジン12が停止させられるEV走行モードである前記モード1乃至モード2の成立を判定する。例えば、前記バッテリSOCセンサ54により検出されるバッテリSOCが前記閾値以上である場合において、車両発進時すなわち前記出力回転速度センサ50により検出される出力回転速度NOUTに対応する車速Vが零である状態から図示しないブレーキペダルのオフ操作(ブレーキペダルの踏み込みを解除する操作)が行われた場合には、前記エンジン12を停止させ、専ら前記第1電動機MG1等を走行用の駆動源として用いるEV走行モードである前記モード1等の成立を判定する。その他、前記駆動装置10が適用されたハイブリッド車両の走行状態に応じて、伝達効率や前記エンジン12の燃費を向上させる走行モードを適宜選択する。FIG. 9 is a functional block diagram for explaining a main part of the control function provided in the electronic control unit 40. The traveling mode determination unit 70 shown in FIG. 9 determines a traveling mode that is established in the drive device 10. Basically, from a predetermined relationship, the accelerator opening A CC detected by the accelerator opening sensor 42, the vehicle speed V corresponding to the output rotation speed N OUT detected by the output rotation speed sensor 50, and Based on the battery SOC or the like detected by the battery SOC sensor 54, it is determined whether any one of the traveling modes among the modes 1 to 5 described above with reference to FIG. Preferably, when the battery SOC detected by the battery SOC sensor 54 is less than a predetermined threshold, the mode is a hybrid travel mode in which the engine 12 is driven and used as a drive source for travel. The establishment of any one of the travel modes 3 to 5 is determined. Preferably, when the battery SOC detected by the battery SOC sensor 54 is equal to or greater than the threshold value, it is determined whether or not the mode 1 or the mode 2 that is the EV traveling mode in which the engine 12 is stopped is established. For example, when the battery SOC detected by the battery SOC sensor 54 is greater than or equal to the threshold value, the vehicle speed V corresponding to the output rotational speed N OUT detected by the output rotational speed sensor 50 when the vehicle starts is zero. When an unillustrated brake pedal off operation (an operation to release the brake pedal depression) is performed from the state, the engine 12 is stopped and the first electric motor MG1 or the like is exclusively used as a driving source for traveling. It is determined whether the mode 1 or the like that is the traveling mode is established. In addition, according to the traveling state of the hybrid vehicle to which the driving device 10 is applied, a traveling mode for improving the transmission efficiency and the fuel consumption of the engine 12 is appropriately selected.

クラッチ係合制御部72は、前記油圧制御回路60を介して前記クラッチCLの係合状態を制御する。例えば、前記油圧制御回路60に備えられた、前記クラッチCLに対応する電磁制御弁からの出力圧を制御することで、そのクラッチCLの係合状態を係合乃至解放の間で切り替える制御を行う。ブレーキ係合制御部74は、前記油圧制御回路60を介して前記ブレーキBKの係合状態を制御する。例えば、前記油圧制御回路60に備えられた、前記ブレーキBKに対応する電磁制御弁からの出力圧を制御することで、そのブレーキBKの係合状態を係合乃至解放の間で切り替える制御を行う。前記クラッチ係合制御部72及びブレーキ係合制御部74は、基本的には、前記走行モード判定部70により判定された走行モードが成立させられるように前記クラッチCL及びブレーキBKの係合状態を制御する。すなわち、前記モード1〜5それぞれに関して、前述した図3に示す組み合わせで前記クラッチCL及びブレーキBKが係合乃至解放されるようにそれらの係合状態を制御する。   The clutch engagement control unit 72 controls the engagement state of the clutch CL via the hydraulic control circuit 60. For example, by controlling the output pressure from the electromagnetic control valve corresponding to the clutch CL provided in the hydraulic pressure control circuit 60, control is performed to switch the engagement state of the clutch CL between engagement and release. . The brake engagement control unit 74 controls the engagement state of the brake BK via the hydraulic control circuit 60. For example, by controlling the output pressure from the electromagnetic control valve corresponding to the brake BK provided in the hydraulic control circuit 60, control is performed to switch the engagement state of the brake BK between engagement and release. . The clutch engagement control unit 72 and the brake engagement control unit 74 basically change the engagement state of the clutch CL and the brake BK so that the travel mode determined by the travel mode determination unit 70 is established. Control. That is, for each of the modes 1 to 5, the engagement state is controlled so that the clutch CL and the brake BK are engaged or released in the combination shown in FIG.

エンジン始動判定部76は、前記エンジン12が停止させられた状態からのそのエンジン12の始動を判定する。好適には、前記走行モード判定部70により判定された走行モードに対応して、前記エンジン12の始動を判定する。すなわち、前記走行モード判定部70により、前記エンジン12を停止させると共に前記第1電動機MG1及び第2電動機MG2の少なくとも一方を走行用の駆動源とする走行モードであるEV走行モードから、前記エンジン12を駆動させる走行モードであるハイブリッド走行モードへの移行が判定された場合には、前記エンジン12の始動を判定する。具体的には、図3に示す前記モード1(EV−1)乃至モード2(EV−2)が成立させられている状態から、前記モード3(HV−1)、モード4(HV−2)、乃至モード5(HV−3)への移行が判定された場合には、前記エンジン12の始動を判定する。好適には、シフトレンジが停止位置である「P」レンジである場合等、前記エンジン12が停止させられた車両停止状態からの発進に際して、前記エンジン12を始動させるか否かを判定する。   The engine start determination unit 76 determines start of the engine 12 from a state where the engine 12 is stopped. Preferably, the start of the engine 12 is determined in accordance with the travel mode determined by the travel mode determination unit 70. That is, the engine 12 is stopped by the travel mode determination unit 70 and the engine 12 is moved from an EV travel mode that is a travel mode in which at least one of the first electric motor MG1 and the second electric motor MG2 is a driving source for travel. When the shift to the hybrid travel mode, which is the travel mode for driving the vehicle, is determined, the start of the engine 12 is determined. Specifically, from the state in which the mode 1 (EV-1) to the mode 2 (EV-2) shown in FIG. 3 are established, the mode 3 (HV-1) and the mode 4 (HV-2). When the shift to the mode 5 (HV-3) is determined, the start of the engine 12 is determined. Preferably, it is determined whether or not to start the engine 12 when starting from a vehicle stop state in which the engine 12 is stopped, such as when the shift range is the “P” range that is a stop position.

電動機作動制御部78は、前記インバータ58を介して前記第1電動機MG1及び第2電動機MG2の作動を制御する。具体的には、前記インバータ58を介して図示しないバッテリから前記第1電動機MG1、第2電動機MG2へ供給される電気エネルギを制御することによりそれら第1電動機MG1、第2電動機MG2により必要な出力すなわち目標トルク(目標電動機出力)が得られるように制御する。前記第1電動機MG1、第2電動機MG2により発電が行われる際には、それら第1電動機MG1、第2電動機MG2により発電された電気エネルギを前記インバータ58を介してバッテリに蓄積する。   The electric motor operation control unit 78 controls the operations of the first electric motor MG1 and the second electric motor MG2 through the inverter 58. Specifically, by controlling the electric energy supplied from the battery (not shown) to the first electric motor MG1 and the second electric motor MG2 via the inverter 58, the necessary output by the first electric motor MG1 and the second electric motor MG2 That is, control is performed so that a target torque (target motor output) is obtained. When electric power is generated by the first electric motor MG1 and the second electric motor MG2, electric energy generated by the first electric motor MG1 and the second electric motor MG2 is stored in the battery via the inverter 58.

前記ブレーキ係合制御部74は、前記エンジン12の停止状態からのそのエンジン12の始動に際して、前記ブレーキBKを係合させる制御を行う。すなわち、前記エンジン始動判定部76により前記エンジン12の始動が判定された場合には、前記ブレーキ係合制御部74により前記油圧制御回路60を介して前記ブレーキBKへ供給される油圧を制御することにより、そのブレーキBKを係合させる。換言すれば、前記エンジン12の停止状態からのそのエンジン12の始動に際して、前記ブレーキBKの係合により前記第2遊星歯車装置16のキャリアC2を非回転部材である前記ハウジング26に固定させる制御を行う。   The brake engagement control unit 74 performs control for engaging the brake BK when the engine 12 is started from the stopped state. That is, when the engine start determination unit 76 determines that the engine 12 is started, the brake engagement control unit 74 controls the hydraulic pressure supplied to the brake BK via the hydraulic control circuit 60. Thus, the brake BK is engaged. In other words, when starting the engine 12 from the stopped state of the engine 12, control is performed to fix the carrier C2 of the second planetary gear device 16 to the housing 26 which is a non-rotating member by the engagement of the brake BK. Do.

前記電動機作動制御部78は、前記エンジン12の停止状態からのそのエンジン12の始動に際して、前記第1電動機MG1により前記エンジン12の回転(回転速度)を引き上げる制御を行う。すなわち、前記エンジン始動判定部76により前記エンジン12の始動が判定された場合には、前記電動機作動制御部78により前記インバータ58を介して、前記第1電動機MG1から前記エンジン12の回転を引き上げるトルクを出力させる。後述する図10に示すように、前記クラッチCLが解放されると共に前記ブレーキBKが係合された状態においては、前記第1電動機MG1により正のトルク(正の方向のトルク)が出力されると、そのトルクにより前記キャリアC1の回転速度すなわち前記エンジン12の回転速度NEは正の方向に引き上げられる。すなわち、前記第1電動機MG1により正のトルクを出力させることで前記エンジン12の回転が引き上げられる。When the engine 12 is started from the stopped state of the engine 12, the electric motor operation control unit 78 performs control to increase the rotation (rotational speed) of the engine 12 by the first electric motor MG1. That is, when the engine start determination unit 76 determines that the engine 12 is started, the motor operation control unit 78 increases the rotation of the engine 12 from the first electric motor MG1 via the inverter 58. Is output. As shown in FIG. 10 described later, when the clutch CL is disengaged and the brake BK is engaged, a positive torque (torque in the positive direction) is output by the first electric motor MG1. , the rotational speed N E of the rotational speed, or the engine 12 of the carrier C1 by its torque is raised in the positive direction. That is, the rotation of the engine 12 is increased by outputting a positive torque by the first electric motor MG1.

前記電動機作動制御部78は、前記エンジン12の停止状態からのそのエンジン12の始動に際して、そのエンジン12の始動に伴い出力回転部材である前記出力歯車30に発生する反力を前記第2電動機MG2により抑制する制御を行う。すなわち、前記エンジン始動判定部76により前記エンジン12の始動が判定された場合には、前記電動機作動制御部78により前記インバータ58を介して、前記エンジン12の始動に伴い前記出力歯車30に発生する反力を抑制するトルクを前記第2電動機MG2から出力させる。好適には、前記エンジン12の始動に伴い前記出力歯車30に発生する反力を打ち消す(キャンセルすなわち相殺する)トルクを前記第2電動機MG2から出力させる。後述する図10に示すように、前記クラッチCLが解放されると共に前記ブレーキBKが係合された状態においては、前記第2電動機MG2により出力される負のトルク(負の方向のトルク)が、前記エンジン12の始動に伴い前記出力歯車30に発生する反力を抑制するトルクに相当する。この第2電動機MG2から出力されるトルク(負のトルク)の大きさは、好適には、予め実験的に求められた、前記エンジン12の始動に伴い前記出力歯車30に発生するトルクを抑制する所定値(一定値)とされるが、前記ハイブリッド車両の駆動状態に応じて適宜定められるものであってもよい。例えば、前記エンジン12の始動に際して、そのエンジン12の始動に伴い前記出力歯車30に発生する反力が、前記アクセル開度ACC、車速V、要求駆動力(駆動力要求量)等に基づいて算出され、その算出された反力に対応するトルクが前記第2電動機MG2から出力されるように制御するものであってもよい。When the engine 12 is started from the stopped state of the engine 12, the electric motor operation control unit 78 generates a reaction force generated in the output gear 30 that is an output rotating member with the start of the engine 12, the second electric motor MG2. The control which suppresses by is performed. That is, when the engine start determination unit 76 determines that the engine 12 is started, the motor operation control unit 78 generates the output gear 30 through the inverter 58 as the engine 12 starts. Torque for suppressing the reaction force is output from the second electric motor MG2. Preferably, a torque that cancels (cancels or cancels) the reaction force generated in the output gear 30 as the engine 12 is started is output from the second electric motor MG2. As shown in FIG. 10 to be described later, in the state where the clutch CL is released and the brake BK is engaged, the negative torque (torque in the negative direction) output by the second electric motor MG2 is: This corresponds to a torque that suppresses a reaction force generated in the output gear 30 as the engine 12 is started. The magnitude of the torque (negative torque) output from the second electric motor MG2 is preferably obtained by suppressing the torque generated in the output gear 30 when the engine 12 is started, which has been experimentally obtained in advance. Although it is a predetermined value (a constant value), it may be appropriately determined according to the driving state of the hybrid vehicle. For example, when the engine 12 is started, the reaction force generated in the output gear 30 when the engine 12 is started is based on the accelerator opening A CC , the vehicle speed V, the required driving force (driving force required amount), and the like. Control may be performed so that a torque corresponding to the calculated reaction force is output from the second electric motor MG2.

図10は、前記駆動装置10において各回転要素の回転速度の相対関係を直線上で表すことができる共線図であり、前記エンジン12が停止させられ、前記クラッチCLが解放されると共に前記ブレーキBKが係合された状態から、前記エンジン12が始動させられる際の制御について説明する図である。この図10においては、車両停止状態すなわち車速Vが零である状態からの前記エンジン12の始動について説明している。この図10に示すように、前記クラッチCLが解放されると共に前記ブレーキBKが係合された状態において、前記エンジン12が停止させられた状態からそのエンジン12を始動させる場合、例えば、前記第1電動機MG1のトルクにより前記エンジン12の回転(回転速度)が引き上げられる。この際、前記第1遊星歯車装置14のサンギヤS1には、前記第1電動機MG1によるエンジン回転引き上げのためのトルク(クランキングトルク)が発生すると共に、前記キャリアC1には、前記エンジン12に係るフリクショントルクが発生する。これらのトルクにより、出力回転部材である前記出力歯車30すなわち相互に連結された前記リングギヤR1及びR2には、図10に示すように反力トルクすなわち車両前進方向とは逆方向の駆動力(減速方向の駆動力)が発生する。すなわち、前記駆動装置10においては、前記エンジン12の始動時における反力トルクが出力軸(車軸)側へ伝達される構成となっており、そのエンジン12の始動に際して車両後進方向の駆動力が生じる。斯かる反力トルクは、車両走行中においては減速感として運転者に知覚され、ドライバビリティが低下するおそれがある。車両停止中において前記シフトセンサ52により検出されるシフトレンジが「P」レンジである場合すなわちパーキング噛み合い状態である場合においても、パーキングギヤの構造及びポールのガタ等に応じた車両後進方向の移動が生じ、運転者に違和感を与えるおそれがある。   FIG. 10 is a collinear diagram that can represent the relative relationship between the rotational speeds of the rotating elements in the driving device 10 on a straight line. The engine 12 is stopped, the clutch CL is released, and the brake is applied. It is a figure explaining the control at the time of starting the said engine 12 from the state in which BK was engaged. In FIG. 10, the start of the engine 12 from a vehicle stop state, that is, a state where the vehicle speed V is zero is described. As shown in FIG. 10, when the engine 12 is started from a state where the engine 12 is stopped in a state where the clutch CL is released and the brake BK is engaged, for example, the first The rotation (rotational speed) of the engine 12 is increased by the torque of the electric motor MG1. At this time, the sun gear S1 of the first planetary gear unit 14 generates torque (cranking torque) for raising the engine rotation by the first electric motor MG1, and the carrier C1 is associated with the engine 12. Friction torque is generated. Due to these torques, the output gear 30 which is an output rotating member, that is, the ring gears R1 and R2 connected to each other, as shown in FIG. 10, is a reaction torque, that is, a driving force (deceleration in the direction opposite to the vehicle forward direction). Direction driving force). That is, the drive device 10 is configured such that the reaction torque at the start of the engine 12 is transmitted to the output shaft (axle) side, and a drive force in the vehicle reverse direction is generated when the engine 12 is started. . Such reaction torque is perceived by the driver as a feeling of deceleration while the vehicle is running, and drivability may be reduced. Even when the shift range detected by the shift sensor 52 while the vehicle is stopped is the “P” range, that is, in the parking meshing state, the vehicle moves backward in accordance with the structure of the parking gear and the backlash of the pole. This may cause the driver to feel uncomfortable.

本実施例においては、図10に白抜矢印で示すように、前記エンジン12の始動時における反力トルクを抑制延いてはキャンセルさせるトルクを前記第2電動機MG2により発生させる制御を行う。前述のように、前記駆動装置10において、前記ブレーキBKが係合された状態においては、前記第2電動機MG2における負のトルク(負の方向のトルク)により、前記リングギヤR2すなわち出力歯車30が正の方向に回転させられるため、前記エンジン12の始動に際して前記第2電動機MG2により所定の大きさの負のトルクを出力させることにより、そのエンジン12の始動に伴い前記出力歯車30に発生させられる反力トルクを抑制延いてはキャンセルする(打ち消す)ことができる。すなわち、前記エンジン始動判定部76によりエンジンの始動が判定された場合に、前記ブレーキ係合制御部74により前記ブレーキBKを係合させた後、前記電動機作動制御部78により前記第1電動機MG1により前記エンジン12の回転を引き上げるトルクを発生させると共に、そのエンジン12の始動に伴い前記出力歯車30に発生する反力を抑制延いてはキャンセルさせるトルクを前記第2電動機MG2により発生させる制御を行うことにより、エンジン始動に伴い出力側に発生させられる反力トルクを好適にキャンセルすることができる。   In the present embodiment, as indicated by the white arrow in FIG. 10, the second electric motor MG2 performs control to suppress and extend the torque of the reaction force when the engine 12 is started. As described above, in the driving device 10, when the brake BK is engaged, the ring gear R2, that is, the output gear 30 is positive due to the negative torque (torque in the negative direction) in the second electric motor MG2. Therefore, when the engine 12 is started, a negative torque having a predetermined magnitude is output by the second electric motor MG2, so that the output gear 30 is generated when the engine 12 is started. The force torque can be suppressed and canceled (cancelled). That is, when the engine start determination unit 76 determines that the engine is started, the brake engagement control unit 74 engages the brake BK, and then the motor operation control unit 78 controls the first motor MG1. The second electric motor MG2 performs a control for generating a torque for increasing the rotation of the engine 12 and for generating a torque that suppresses and cancels the reaction force generated in the output gear 30 as the engine 12 starts. Thus, the reaction torque generated on the output side when the engine is started can be preferably canceled.

図11は、前記電子制御装置40によるエンジン始動制御の一例の要部を説明するフローチャートであり、所定の周期で繰り返し実行されるものである。   FIG. 11 is a flowchart for explaining a main part of an example of engine start control by the electronic control unit 40, and is repeatedly executed at a predetermined cycle.

先ず、ステップ(以下、ステップを省略する)S1において、前記EV走行モードからハイブリッド走行モードへの移行が判定される等して、前記エンジン12が停止させられた状態からそのエンジン12の始動が判定されたか否かが判断される。このS1の判断が否定される場合には、それをもって本ルーチンが終了させられるが、S1の判断が肯定される場合には、S2において、前記ブレーキBKを係合させる指令が出力される。次に、S3において、前記ブレーキBKの係合(係合油圧制御)が完了したか否かが判断される。このS3の判断が否定される場合には、S2以下の処理が実行されるが、S3の判断が肯定される場合には、S4において、前記エンジン12の始動制御が行われる。すなわち、前記第1電動機MG1の出力トルクが制御されることにより前記エンジン12の回転が引き上げられる。次に、S5において、前記エンジン12の始動に伴い前記出力歯車30に発生する反力を抑制するトルクが前記第2電動機MG2により発生させられた後、本ルーチンが終了させられる。以上の制御において、S1が前記走行モード判定部70及びエンジン始動判定部76の動作に、S2及びS3が前記ブレーキ係合制御部74の動作に、S4及びS5が前記電動機作動制御部78の動作にそれぞれ対応する。   First, in step (hereinafter, step is omitted) S1, it is determined whether the engine 12 is started from the state in which the engine 12 is stopped, for example, by determining the transition from the EV traveling mode to the hybrid traveling mode. It is determined whether or not it has been done. If the determination at S1 is negative, the routine is terminated. If the determination at S1 is affirmative, a command for engaging the brake BK is output at S2. Next, in S3, it is determined whether or not the engagement (engagement hydraulic pressure control) of the brake BK is completed. When the determination at S3 is negative, the processing after S2 is executed. When the determination at S3 is affirmative, the start control of the engine 12 is performed at S4. That is, the rotation of the engine 12 is increased by controlling the output torque of the first electric motor MG1. Next, in S5, after the torque that suppresses the reaction force generated in the output gear 30 as the engine 12 is started is generated by the second electric motor MG2, this routine is ended. In the above control, S1 is an operation of the travel mode determination unit 70 and the engine start determination unit 76, S2 and S3 are operations of the brake engagement control unit 74, and S4 and S5 are operations of the motor operation control unit 78. Correspond to each.

続いて、本発明の他の好適な実施例を図面に基づいて詳細に説明する。以下の説明において、実施例相互に共通する部分については同一の符号を付してその説明を省略する。   Next, another preferred embodiment of the present invention will be described in detail with reference to the drawings. In the following description, parts common to the embodiments are denoted by the same reference numerals and description thereof is omitted.

図12〜図17は、本発明が好適に適用される他のハイブリッド車両用駆動装置100、110、120、130、140、150の構成をそれぞれ説明する骨子図である。本発明のハイブリッド車両の駆動制御装置は、図12に示す駆動装置100や図13に示す駆動装置110のように、中心軸CE方向の前記第1電動機MG1、第1遊星歯車装置14、第2電動機MG2、第2遊星歯車装置16、クラッチCL及びブレーキBKの配置(配列)を変更した構成にも好適に適用される。図14に示す駆動装置120のように、前記第2遊星歯車装置16のキャリアC2と非回転部材である前記ハウジング26との間に、そのキャリアC2のハウジング26に対する一方向の回転を許容し且つ逆方向の回転を阻止する一方向クラッチ(ワンウェイクラッチ)OWCを、前記ブレーキBKと並列に備えた構成にも好適に適用される。図15に示す駆動装置130、図16に示す駆動装置140、図17に示す駆動装置150のように、前記シングルピニオン型の第2遊星歯車装置16の代替として、第2差動機構としてのダブルピニオン型の第2遊星歯車装置16′を備えた構成にも好適に適用される。この第2遊星歯車装置16′は、第1回転要素としてのサンギヤS2′、相互に噛み合わされた複数のピニオンギヤP2′を自転及び公転可能に支持する第2回転要素としてのキャリアC2′、及びピニオンギヤP2′を介してサンギヤS2′と噛み合う第3回転要素としてのリングギヤR2′を回転要素(要素)として備えたものである。   12 to 17 are skeleton diagrams illustrating configurations of other hybrid vehicle drive devices 100, 110, 120, 130, 140, and 150 to which the present invention is preferably applied. The drive control device for a hybrid vehicle according to the present invention, like the drive device 100 shown in FIG. 12 and the drive device 110 shown in FIG. 13, is the first electric motor MG1, the first planetary gear device 14, and the second The present invention is also preferably applied to a configuration in which the arrangement (arrangement) of the electric motor MG2, the second planetary gear device 16, the clutch CL, and the brake BK is changed. Like the driving device 120 shown in FIG. 14, the carrier C2 is allowed to rotate in one direction with respect to the housing 26 between the carrier C2 of the second planetary gear device 16 and the housing 26 which is a non-rotating member. The present invention is also preferably applied to a configuration in which a one-way clutch (one-way clutch) OWC that prevents reverse rotation is provided in parallel with the brake BK. As an alternative to the single-pinion type second planetary gear unit 16, such as a driving unit 130 shown in FIG. 15, a driving unit 140 shown in FIG. 16, and a driving unit 150 shown in FIG. The present invention is also preferably applied to a configuration including a pinion type second planetary gear device 16 '. The second planetary gear unit 16 'includes a sun gear S2' as a first rotation element, a carrier C2 'as a second rotation element that supports a plurality of pinion gears P2' meshed with each other so as to rotate and revolve, and a pinion gear. A ring gear R2 ′ as a third rotating element meshing with the sun gear S2 ′ via P2 ′ is provided as a rotating element (element).

図18〜図20は、前記駆動装置10の代替として、本発明が好適に適用される他のハイブリッド車両用駆動装置160、170、180の構成及び作動をそれぞれ説明する共線図である。図18〜図20では、前述した図4〜7等の共線図と同様に、前記第1遊星歯車装置14におけるサンギヤS1、キャリアC1、リングギヤR1の相対的な回転速度を実線L1で、前記第2遊星歯車装置16におけるサンギヤS2、キャリアC2、リングギヤR2の相対的な回転速度を破線L2でそれぞれ示している。図18に示すハイブリッド車両用駆動装置160では、前記第1遊星歯車装置14のサンギヤS1、キャリアC1、及びリングギヤR1は、前記第1電動機MG1、前記エンジン12、及び前記第2電動機MG2にそれぞれ連結されている。前記第2遊星歯車装置16のサンギヤS2、キャリアC2、及びリングギヤR2は、前記第2電動機MG2、前記出力歯車30、及び前記ブレーキBKを介して前記ハウジング26にそれぞれ連結されている。前記サンギヤS1とリングギヤR2とが前記クラッチCLを介して選択的に連結されている。前記リングギヤR1とサンギヤS2とが相互に連結されている。図19に示すハイブリッド車両用駆動装置170では、前記第1遊星歯車装置14のサンギヤS1、キャリアC1、及びリングギヤR1は、前記第1電動機MG1、前記出力歯車30、及び前記エンジン12にそれぞれ連結されている。前記第2遊星歯車装置16のサンギヤS2、キャリアC2、及びリングギヤR2は、前記第2電動機MG2、前記出力歯車30、及び前記ブレーキBKを介して前記ハウジング26にそれぞれ連結されている。前記サンギヤS1と前記リングギヤR2とが前記クラッチCLを介して選択的に連結されている。前記クラッチC1及びC2が相互に連結されている。図20に示すハイブリッド車両用駆動装置180では、前記第1遊星歯車装置14のサンギヤS1、キャリアC1、及びリングギヤR1は、前記第1電動機MG1、前記出力歯車30、及び前記エンジン12にそれぞれ連結されている。前記第2遊星歯車装置16のサンギヤS2、キャリアC2、及びリングギヤR2は、前記第2電動機MG2、前記ブレーキBKを介して前記ハウジング26、及び前記出力歯車30にそれぞれ連結されている。前記リングギヤR1とキャリアC2とがクラッチCLを介して選択的に連結されている。前記キャリアC1とリングギヤR2とが相互に連結されている。   18 to 20 are collinear diagrams illustrating configurations and operations of other hybrid vehicle drive devices 160, 170, and 180 to which the present invention is preferably applied as an alternative to the drive device 10. 18 to 20, the relative rotational speeds of the sun gear S1, the carrier C1, and the ring gear R1 in the first planetary gear device 14 are represented by the solid line L1 as in the collinear charts of FIGS. The relative rotational speeds of the sun gear S2, the carrier C2, and the ring gear R2 in the second planetary gear device 16 are indicated by broken lines L2. In the hybrid vehicle drive device 160 shown in FIG. 18, the sun gear S1, the carrier C1, and the ring gear R1 of the first planetary gear device 14 are connected to the first electric motor MG1, the engine 12, and the second electric motor MG2, respectively. Has been. The sun gear S2, the carrier C2, and the ring gear R2 of the second planetary gear device 16 are connected to the housing 26 via the second electric motor MG2, the output gear 30, and the brake BK, respectively. The sun gear S1 and the ring gear R2 are selectively connected via the clutch CL. The ring gear R1 and the sun gear S2 are connected to each other. In the hybrid vehicle drive device 170 shown in FIG. 19, the sun gear S1, the carrier C1, and the ring gear R1 of the first planetary gear device 14 are connected to the first electric motor MG1, the output gear 30, and the engine 12, respectively. ing. The sun gear S2, the carrier C2, and the ring gear R2 of the second planetary gear device 16 are connected to the housing 26 via the second electric motor MG2, the output gear 30, and the brake BK, respectively. The sun gear S1 and the ring gear R2 are selectively connected via the clutch CL. The clutches C1 and C2 are connected to each other. In the hybrid vehicle drive device 180 shown in FIG. 20, the sun gear S1, the carrier C1, and the ring gear R1 of the first planetary gear device 14 are connected to the first electric motor MG1, the output gear 30, and the engine 12, respectively. ing. The sun gear S2, the carrier C2, and the ring gear R2 of the second planetary gear device 16 are connected to the housing 26 and the output gear 30 through the second electric motor MG2 and the brake BK, respectively. The ring gear R1 and the carrier C2 are selectively connected via a clutch CL. The carrier C1 and the ring gear R2 are connected to each other.

図18〜図20に示す実施例では、前述した図4〜7等に示す実施例と同様に、共線図上において4つの回転要素を有する(4つの回転要素として表現される)第1差動機構としての第1遊星歯車装置14及び第2差動機構としての第2遊星歯車装置16、16′と、それら4つの回転要素にそれぞれ連結された第1電動機MG1、第2電動機MG2、エンジン12、及び出力回転部材(出力歯車30)とを、備え、前記4つの回転要素のうちの1つは、前記第1遊星歯車装置14の回転要素と前記第2遊星歯車装置16、16′の回転要素とがクラッチCLを介して選択的に連結され、そのクラッチCLによる係合対象となる前記第2遊星歯車装置16、16′の回転要素が、非回転部材であるハウジング26に対してブレーキBKを介して選択的に連結されるハイブリッド車両の駆動制御装置である点で、共通している。すなわち、図9等を用いて前述した本発明のハイブリッド車両の駆動制御装置は、図18〜図20に示す構成にも好適に適用される。   In the embodiment shown in FIGS. 18 to 20, the first difference having four rotation elements (expressed as four rotation elements) on the collinear chart is the same as the embodiment shown in FIGS. The first planetary gear unit 14 as the moving mechanism and the second planetary gear units 16 and 16 'as the second differential mechanism, and the first electric motor MG1, the second electric motor MG2, and the engine connected to the four rotating elements, respectively. 12 and an output rotation member (output gear 30), one of the four rotation elements being the rotation element of the first planetary gear device 14 and the second planetary gear device 16, 16 '. A rotating element is selectively connected via a clutch CL, and the rotating element of the second planetary gear devices 16 and 16 'to be engaged by the clutch CL is braked against the housing 26 which is a non-rotating member. Via BK In that it is a drive control apparatus for a hybrid vehicle which is selectively connected, it is common. That is, the hybrid vehicle drive control apparatus of the present invention described above with reference to FIG. 9 and the like is also preferably applied to the configurations shown in FIGS.

このように、本実施例によれば、クラッチCLが係合された状態において全体として4つの回転要素を有する(図4〜図7等に示す共線図上において4つの回転要素として表される)第1差動機構である第1遊星歯車装置14及び第2差動機構である第2遊星歯車装置16、16′と、それら4つの回転要素にそれぞれ連結されたエンジン12、第1電動機MG1、第2電動機MG2、及び出力回転部材である出力歯車30とを、備え、前記4つの回転要素のうちの1つは、前記第1差動機構の回転要素と前記第2差動機構の回転要素とがクラッチCLを介して選択的に連結され、そのクラッチCLによる係合対象となる前記第1差動機構又は前記第2差動機構の回転要素が、非回転部材であるハウジング26に対してブレーキBKを介して選択的に連結されるハイブリッド車両の駆動制御装置であって、前記エンジン12の始動に際して、前記ブレーキBKを係合させて前記第1電動機MG1により前記エンジン12の回転を引き上げ、前記エンジン12の始動に伴い出力回転部材である前記出力歯車30に発生する反力を前記第2電動機MG2により抑制するものであることから、前記エンジン12の停止状態からのそのエンジン12の始動に伴う反力を好適に抑制することができ、運転者の意図しない駆動力変化を好適に抑制することができる。すなわち、エンジン12の始動に伴い発生させられる反力を抑制するハイブリッド車両の駆動制御装置としての前記電子制御装置40を提供することができる。   Thus, according to the present embodiment, there are four rotation elements as a whole in a state in which the clutch CL is engaged (represented as four rotation elements on the collinear chart shown in FIGS. 4 to 7 and the like). ) The first planetary gear unit 14 that is the first differential mechanism and the second planetary gear units 16 and 16 'that are the second differential mechanism, and the engine 12 and the first electric motor MG1 that are respectively connected to these four rotating elements. , A second electric motor MG2, and an output gear 30 that is an output rotation member, and one of the four rotation elements is a rotation element of the first differential mechanism and a rotation of the second differential mechanism. Are connected to each other through a clutch CL, and the rotating element of the first differential mechanism or the second differential mechanism to be engaged by the clutch CL is connected to the housing 26 which is a non-rotating member. Through the brake BK A drive control apparatus for a hybrid vehicle that is selectively coupled, wherein when the engine 12 is started, the brake BK is engaged and the rotation of the engine 12 is pulled up by the first electric motor MG1 to start the engine 12 Accordingly, the reaction force generated in the output gear 30 that is an output rotating member is suppressed by the second electric motor MG2, and therefore, the reaction force accompanying the start of the engine 12 from the stopped state of the engine 12 is preferable. Therefore, a change in driving force not intended by the driver can be suitably suppressed. That is, it is possible to provide the electronic control device 40 as a drive control device for a hybrid vehicle that suppresses a reaction force generated when the engine 12 is started.

前記第1遊星歯車装置14は、前記第1電動機MG1に連結された第1回転要素としてのサンギヤS1、前記エンジン12に連結された第2回転要素としてのキャリアC1、及び前記出力歯車30に連結された第3回転要素としてのリングギヤR1を備え、前記第2遊星歯車装置16(16′)は、前記第2電動機MG2に連結された第1回転要素としてのサンギヤS2(S2′)、第2回転要素としてのキャリアC2(C2′)、及び第3回転要素としてのリングギヤR2(R2′)を備え、それらキャリアC2(C2′)及びリングギヤR2(R2′)の何れか一方が前記第1遊星歯車装置14のリングギヤR1に連結されたものであり、前記クラッチCLは、前記第1遊星歯車装置14におけるキャリアC1と、前記キャリアC2(C2′)及びリングギヤR2(R2′)のうち前記リングギヤR1に連結されていない方の回転要素とを選択的に係合させるものであり、前記ブレーキBKは、前記キャリアC2(C2′)及びリングギヤR2(R2′)のうち前記リングギヤR1に連結されていない方の回転要素を、非回転部材であるハウジング26に対して選択的に係合させるものであることから、実用的なハイブリッド車両の駆動装置10等において、エンジン12の始動に伴い発生させられる反力を抑制することができる。   The first planetary gear unit 14 is connected to a sun gear S1 as a first rotating element connected to the first electric motor MG1, a carrier C1 as a second rotating element connected to the engine 12, and the output gear 30. The second planetary gear unit 16 (16 ′) includes a sun gear S2 (S2 ′), a second rotation element connected to the second electric motor MG2, and a second gear R1. A carrier C2 (C2 ′) as a rotating element and a ring gear R2 (R2 ′) as a third rotating element are provided, and any one of the carrier C2 (C2 ′) and the ring gear R2 (R2 ′) is the first planet. The clutch CL is connected to the ring gear R1 of the gear device 14, and the clutch CL includes the carrier C1 in the first planetary gear device 14 and the carrier C2 (C ′) And the ring gear R2 (R2 ′), which is selectively engaged with the rotating element not connected to the ring gear R1, the brake BK includes the carrier C2 (C2 ′) and the ring gear R2. Since the rotating element not connected to the ring gear R1 in (R2 ′) is selectively engaged with the housing 26 which is a non-rotating member, a practical hybrid vehicle drive device 10 or the like, it is possible to suppress a reaction force that is generated when the engine 12 is started.

以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、その趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。   The preferred embodiments of the present invention have been described in detail with reference to the drawings. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. Is.

10、100、110、120、130、140、150、160、170、180:ハイブリッド車両用駆動装置、12:エンジン、14:第1遊星歯車装置(第1差動機構)、16、16′:第2遊星歯車装置(第2差動機構)、18、22:ステータ、20、24:ロータ、26:ハウジング(非回転部材)、28:入力軸、30:出力歯車(出力回転部材)、32:オイルポンプ、40:電子制御装置(駆動制御装置)、42:アクセル開度センサ、44:エンジン回転速度センサ、46:MG1回転速度センサ、48:MG2回転速度センサ、50:出力回転速度センサ、52:シフトセンサ、54:バッテリSOCセンサ、56:エンジン制御装置、58:インバータ、60:油圧制御回路、70:走行モード判定部、72:クラッチ係合制御部、74:ブレーキ係合制御部、76:エンジン始動判定部、78:電動機作動制御部、BK:ブレーキ、CL:クラッチ、C1、C2、C2′:キャリア(第2回転要素)、MG1:第1電動機、MG2:第2電動機、OWC:一方向クラッチ、P1、P2、P2′:ピニオンギヤ、R1、R2、R2′:リングギヤ(第3回転要素)、S1、S2、S2′:サンギヤ(第1回転要素)   10, 100, 110, 120, 130, 140, 150, 160, 170, 180: drive device for hybrid vehicle, 12: engine, 14: first planetary gear device (first differential mechanism), 16, 16 ′: Second planetary gear device (second differential mechanism), 18, 22: stator, 20, 24: rotor, 26: housing (non-rotating member), 28: input shaft, 30: output gear (output rotating member), 32 : Oil pump, 40: electronic control device (drive control device), 42: accelerator opening sensor, 44: engine rotational speed sensor, 46: MG1 rotational speed sensor, 48: MG2 rotational speed sensor, 50: output rotational speed sensor, 52: Shift sensor, 54: Battery SOC sensor, 56: Engine control device, 58: Inverter, 60: Hydraulic control circuit, 70: Travel mode determination unit, 72: Ku Switch engagement control unit, 74: brake engagement control unit, 76: engine start determination unit, 78: motor operation control unit, BK: brake, CL: clutch, C1, C2, C2 ': carrier (second rotation element) ), MG1: first motor, MG2: second motor, OWC: one-way clutch, P1, P2, P2 ′: pinion gear, R1, R2, R2 ′: ring gear (third rotation element), S1, S2, S2 ′ : Sun gear (first rotating element)

図1に示すように、前記駆動装置10において、前記第1遊星歯車装置14及び第2遊星歯車装置16は、それぞれ前記入力軸28と同軸上(中心軸CE上)に配置されており、且つ、前記中心軸CEの軸方向において対向する位置に配置されている。すなわち、前記中心軸CEの軸方向に関して、前記第1遊星歯車装置14は、前記第2遊星歯車装置16に対して前記エンジン12側に配置されている。前記中心軸CEの軸方向に関して、前記第1電動機MG1は、前記第1遊星歯車装置14に対して前記エンジン12側に配置されている。前記中心軸CEの軸方向に関して、前記第2電動機MG2は、前記第2遊星歯車装置16に対して前記エンジン12の反対側に配置されている。すなわち、前記第1電動機MG1、第2電動機MG2は、前記中心軸CEの軸方向に関して、前記第1遊星歯車装置14及び第2遊星歯車装置16を間に挟んで対向する位置に配置されている。すなわち、前記駆動装置10においては、前記中心軸CEの軸方向において、前記エンジン12側から前記第1電動機MG1、第1遊星歯車装置14、クラッチCL、第2遊星歯車装置16、ブレーキBK、第2電動機MG2の順でそれらの構成が同軸上に配置されている。 As shown in FIG. 1, in the driving device 10, the first planetary gear device 14 and the second planetary gear device 16 are arranged coaxially with the input shaft 28 (on the central axis CE), and , Are arranged at positions facing each other in the axial direction of the central axis CE. That is, with respect to the axial direction of the central axis CE, the first planetary gear device 14 is disposed on the engine 12 side with respect to the second planetary gear device 16. With respect to the axial direction of the central axis CE, the first electric motor MG1 is disposed on the engine 12 side with respect to the first planetary gear unit 14. With respect to the axial direction of the central axis CE, the second electric motor MG2 is disposed on the opposite side of the engine 12 with respect to the second planetary gear device 16. That is, the first electric motor MG1 and the second electric motor MG2 are arranged at positions facing each other with the first planetary gear device 14 and the second planetary gear device 16 interposed therebetween with respect to the axial direction of the central axis CE. . That is, in the drive device 10, in the axial direction of the central axis CE, the first electric motor MG1, the first planetary gear device 14, the clutch CL, the second planetary gear device 16, the brake BK, Those components are arranged on the same axis in the order of the two electric motors MG2.

図18〜図20は、前記駆動装置10の代替として、本発明が好適に適用される他のハイブリッド車両用駆動装置160、170、180の構成及び作動をそれぞれ説明する共線図である。図18〜図20では、前述した図4〜7等の共線図と同様に、前記第1遊星歯車装置14におけるサンギヤS1、キャリアC1、リングギヤR1の相対的な回転速度を実線L1で、前記第2遊星歯車装置16におけるサンギヤS2、キャリアC2、リングギヤR2の相対的な回転速度を破線L2でそれぞれ示している。図18に示すハイブリッド車両用駆動装置160では、前記第1遊星歯車装置14のサンギヤS1、キャリアC1、及びリングギヤR1は、前記第1電動機MG1、前記エンジン12、及び前記第2電動機MG2にそれぞれ連結されている。前記第2遊星歯車装置16のサンギヤS2、キャリアC2、及びリングギヤR2は、前記第2電動機MG2、前記出力歯車30、及び前記ブレーキBKを介して前記ハウジング26にそれぞれ連結されている。前記サンギヤS1とリングギヤR2とが前記クラッチCLを介して選択的に連結されている。前記リングギヤR1とサンギヤS2とが相互に連結されている。図19に示すハイブリッド車両用駆動装置170では、前記第1遊星歯車装置14のサンギヤS1、キャリアC1、及びリングギヤR1は、前記第1電動機MG1、前記出力歯車30、及び前記エンジン12にそれぞれ連結されている。前記第2遊星歯車装置16のサンギヤS2、キャリアC2、及びリングギヤR2は、前記第2電動機MG2、前記出力歯車30、及び前記ブレーキBKを介して前記ハウジング26にそれぞれ連結されている。前記サンギヤS1と前記リングギヤR2とが前記クラッチCLを介して選択的に連結されている。前記キャリアC1及びC2が相互に連結されている。図20に示すハイブリッド車両用駆動装置180では、前記第1遊星歯車装置14のサンギヤS1、キャリアC1、及びリングギヤR1は、前記第1電動機MG1、前記出力歯車30、及び前記エンジン12にそれぞれ連結されている。前記第2遊星歯車装置16のサンギヤS2、キャリアC2、及びリングギヤR2は、前記第2電動機MG2、前記ブレーキBKを介して前記ハウジング26、及び前記出力歯車30にそれぞれ連結されている。前記リングギヤR1とキャリアC2とがクラッチCLを介して選択的に連結されている。前記キャリアC1とリングギヤR2とが相互に連結されている。 18 to 20 are collinear diagrams illustrating configurations and operations of other hybrid vehicle drive devices 160, 170, and 180 to which the present invention is preferably applied as an alternative to the drive device 10. 18 to 20, the relative rotational speeds of the sun gear S1, the carrier C1, and the ring gear R1 in the first planetary gear device 14 are represented by the solid line L1 as in the collinear charts of FIGS. The relative rotational speeds of the sun gear S2, the carrier C2, and the ring gear R2 in the second planetary gear device 16 are indicated by broken lines L2. In the hybrid vehicle drive device 160 shown in FIG. 18, the sun gear S1, the carrier C1, and the ring gear R1 of the first planetary gear device 14 are connected to the first electric motor MG1, the engine 12, and the second electric motor MG2, respectively. Has been. The sun gear S2, the carrier C2, and the ring gear R2 of the second planetary gear device 16 are connected to the housing 26 via the second electric motor MG2, the output gear 30, and the brake BK, respectively. The sun gear S1 and the ring gear R2 are selectively connected via the clutch CL. The ring gear R1 and the sun gear S2 are connected to each other. In the hybrid vehicle drive device 170 shown in FIG. 19, the sun gear S1, the carrier C1, and the ring gear R1 of the first planetary gear device 14 are connected to the first electric motor MG1, the output gear 30, and the engine 12, respectively. ing. The sun gear S2, the carrier C2, and the ring gear R2 of the second planetary gear device 16 are connected to the housing 26 via the second electric motor MG2, the output gear 30, and the brake BK, respectively. The sun gear S1 and the ring gear R2 are selectively connected via the clutch CL. The carriers C1 and C2 are connected to each other. In the hybrid vehicle drive device 180 shown in FIG. 20, the sun gear S1, the carrier C1, and the ring gear R1 of the first planetary gear device 14 are connected to the first electric motor MG1, the output gear 30, and the engine 12, respectively. ing. The sun gear S2, the carrier C2, and the ring gear R2 of the second planetary gear device 16 are connected to the housing 26 and the output gear 30 through the second electric motor MG2 and the brake BK, respectively. The ring gear R1 and the carrier C2 are selectively connected via a clutch CL. The carrier C1 and the ring gear R2 are connected to each other.

Claims (2)

全体として4つの回転要素を有する第1差動機構及び第2差動機構と、該4つの回転要素にそれぞれ連結されたエンジン、第1電動機、第2電動機、及び出力回転部材とを、備え、
前記4つの回転要素のうちの1つは、前記第1差動機構の回転要素と前記第2差動機構の回転要素とがクラッチを介して選択的に連結され、
該クラッチによる係合対象となる前記第1差動機構又は前記第2差動機構の回転要素が、非回転部材に対してブレーキを介して選択的に連結される
ハイブリッド車両の駆動制御装置であって、
前記エンジンの始動に際して、前記ブレーキを係合させて前記第1電動機により前記エンジンの回転を引き上げ、前記エンジンの始動に伴い前記出力回転部材に発生する反力を前記第2電動機により抑制することを特徴とするハイブリッド車両の駆動制御装置。
A first differential mechanism and a second differential mechanism having four rotation elements as a whole, and an engine, a first electric motor, a second electric motor, and an output rotation member respectively connected to the four rotation elements;
In one of the four rotation elements, the rotation element of the first differential mechanism and the rotation element of the second differential mechanism are selectively connected via a clutch,
A drive control device for a hybrid vehicle, wherein a rotating element of the first differential mechanism or the second differential mechanism to be engaged by the clutch is selectively connected to a non-rotating member via a brake. And
When starting the engine, engaging the brake and pulling up the rotation of the engine by the first electric motor, and suppressing the reaction force generated in the output rotating member with the starting of the engine by the second electric motor. A hybrid vehicle drive control device.
前記第1差動機構は、前記第1電動機に連結された第1回転要素、前記エンジンに連結された第2回転要素、及び前記出力回転部材に連結された第3回転要素を備えたものであり、
前記第2差動機構は、前記第2電動機に連結された第1回転要素、第2回転要素、及び第3回転要素を備え、それら第2回転要素及び第3回転要素の何れか一方が前記第1差動機構における第3回転要素に連結されたものであり、
前記クラッチは、前記第1差動機構における第2回転要素と、前記第2差動機構における第2回転要素及び第3回転要素のうち前記第1差動機構における第3回転要素に連結されていない方の回転要素とを選択的に係合させるものであり、
前記ブレーキは、前記第2差動機構における第2回転要素及び第3回転要素のうち前記第1差動機構における第3回転要素に連結されていない方の回転要素を、前記非回転部材に対して選択的に係合させるものである
請求項1に記載のハイブリッド車両の駆動制御装置。
The first differential mechanism includes a first rotating element connected to the first electric motor, a second rotating element connected to the engine, and a third rotating element connected to the output rotating member. Yes,
The second differential mechanism includes a first rotating element, a second rotating element, and a third rotating element connected to the second electric motor, and any one of the second rotating element and the third rotating element is the above-mentioned Connected to the third rotating element in the first differential mechanism,
The clutch is coupled to a second rotating element in the first differential mechanism and a third rotating element in the first differential mechanism among the second rotating element and the third rotating element in the second differential mechanism. Which selectively engages the rotating element that is not present,
The brake is configured such that, of the second rotating element and the third rotating element in the second differential mechanism, the rotating element that is not connected to the third rotating element in the first differential mechanism is connected to the non-rotating member. The hybrid vehicle drive control device according to claim 1, wherein the drive control device is selectively engaged.
JP2014505870A 2012-03-21 2012-03-21 Drive control apparatus for hybrid vehicle Pending JPWO2013140539A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014505870A JPWO2013140539A1 (en) 2012-03-21 2012-03-21 Drive control apparatus for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014505870A JPWO2013140539A1 (en) 2012-03-21 2012-03-21 Drive control apparatus for hybrid vehicle

Publications (1)

Publication Number Publication Date
JPWO2013140539A1 true JPWO2013140539A1 (en) 2015-08-03

Family

ID=53772647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014505870A Pending JPWO2013140539A1 (en) 2012-03-21 2012-03-21 Drive control apparatus for hybrid vehicle

Country Status (1)

Country Link
JP (1) JPWO2013140539A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199942A (en) * 2004-01-19 2005-07-28 Toyota Motor Corp Power output device, automobile with the power output device mounted thereon, and power transmission
JP2008265600A (en) * 2007-04-23 2008-11-06 Toyota Motor Corp Vehicle and control method thereof
JP2011098712A (en) * 2009-11-09 2011-05-19 Hyundai Motor Co Ltd Transmission of hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199942A (en) * 2004-01-19 2005-07-28 Toyota Motor Corp Power output device, automobile with the power output device mounted thereon, and power transmission
JP2008265600A (en) * 2007-04-23 2008-11-06 Toyota Motor Corp Vehicle and control method thereof
JP2011098712A (en) * 2009-11-09 2011-05-19 Hyundai Motor Co Ltd Transmission of hybrid vehicle

Similar Documents

Publication Publication Date Title
JP6114255B2 (en) Drive control apparatus for hybrid vehicle
JP5967105B2 (en) Drive control apparatus for hybrid vehicle
WO2013140537A1 (en) Drive control device for hybrid vehicle
JP5874814B2 (en) Drive control apparatus for hybrid vehicle
JP5846219B2 (en) Drive control apparatus for hybrid vehicle
JP5884897B2 (en) Drive control apparatus for hybrid vehicle
WO2013145100A1 (en) Drive control device for a hybrid vehicle
JP5884898B2 (en) Drive control apparatus for hybrid vehicle
JP6024740B2 (en) Drive control apparatus for hybrid vehicle
JP5884896B2 (en) Drive control apparatus for hybrid vehicle
WO2013145099A1 (en) Hybrid vehicle drive control device
JP5954408B2 (en) Drive control apparatus for hybrid vehicle
JPWO2013140543A1 (en) Drive control apparatus for hybrid vehicle
WO2013145089A1 (en) Drive control device for hybrid vehicle
WO2013140545A1 (en) Drive control device for hybrid vehicle
WO2013140539A1 (en) Drive control device for hybrid vehicle
JP2013203388A (en) Drive controller of hybrid vehicle
WO2013145091A1 (en) Hybrid vehicle drive control device
JP5924402B2 (en) Drive control apparatus for hybrid vehicle
WO2013145098A1 (en) Hybrid vehicle drive control device
JP2013203385A (en) Drive control device for hybrid vehicle
JP2013203383A (en) Drive control device for hybrid vehicle
JPWO2013140539A1 (en) Drive control apparatus for hybrid vehicle
JP2013203387A (en) Drive control device of hybrid vehicle
JPWO2013145098A1 (en) Drive control apparatus for hybrid vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201