JPWO2013093966A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JPWO2013093966A1
JPWO2013093966A1 JP2013549949A JP2013549949A JPWO2013093966A1 JP WO2013093966 A1 JPWO2013093966 A1 JP WO2013093966A1 JP 2013549949 A JP2013549949 A JP 2013549949A JP 2013549949 A JP2013549949 A JP 2013549949A JP WO2013093966 A1 JPWO2013093966 A1 JP WO2013093966A1
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
indoor
outdoor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013549949A
Other languages
Japanese (ja)
Other versions
JP5716102B2 (en
Inventor
内藤 宏治
宏治 内藤
康孝 吉田
康孝 吉田
浦田 和幹
和幹 浦田
博之 川口
博之 川口
古田 裕貴
裕貴 古田
坪江 宏明
宏明 坪江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Publication of JPWO2013093966A1 publication Critical patent/JPWO2013093966A1/en
Application granted granted Critical
Publication of JP5716102B2 publication Critical patent/JP5716102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0313Pressure sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

冷暖同時マルチ型の空気調和機で高低差施工時の場合であっても、暖房運転を行う室内機に冷媒が流れるようにすることで、暖房能力を向上させる。少なくとも1台の室外機と、第1の室内機及び第2の室内機とが冷媒配管により接続され、室外機は、圧縮機と室外熱交換器とを備え、第1の室内機は、第1の室内熱交換器を備え、第2の室内機は、第2の室内熱交換器を備えた空気調和機において、第1の室内機が暖房運転を行い、前記第2の室内機が冷房運転を行う場合で、かつ、前記室外熱交換器が凝縮器として作用する場合に、前記圧縮機からの冷媒は前記室外熱交換器に流れる一方で、前記第1の室内熱交換器に流れるように冷媒配管が構成され、前記室外熱交換器の冷媒出口側に配置された膨張弁の開度を絞ることにより、前記第1の室内熱交換器の入口側の冷媒圧力が該第1の室内熱交換器の出口側の冷媒圧力よりも高くなるように制御する。Even when cooling and heating simultaneous multi-type air conditioners are used at the time of height difference construction, heating capacity is improved by allowing the refrigerant to flow through the indoor units that perform heating operation. At least one outdoor unit, the first indoor unit, and the second indoor unit are connected by a refrigerant pipe, the outdoor unit includes a compressor and an outdoor heat exchanger, and the first indoor unit includes 1 indoor heat exchanger, the second indoor unit is an air conditioner equipped with a second indoor heat exchanger, the first indoor unit performs a heating operation, and the second indoor unit is cooled. When operating, and when the outdoor heat exchanger acts as a condenser, the refrigerant from the compressor flows to the outdoor heat exchanger while flowing to the first indoor heat exchanger. The refrigerant pressure on the inlet side of the first indoor heat exchanger is reduced by reducing the opening of the expansion valve disposed on the refrigerant outlet side of the outdoor heat exchanger. Control is performed so as to be higher than the refrigerant pressure on the outlet side of the heat exchanger.

Description

本発明は、空気調和機に関し、特に複数の室内機を備えた冷暖同時マルチ型の空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to a cooling and heating simultaneous multi-type air conditioner including a plurality of indoor units.

従来知られている冷暖同時マルチ型空気調和機の制御方法について、たとえば以下の特許文献に示すものがある。
特許文献1では、圧縮機の吐出圧力と吸入圧力より、圧縮機の容量と室外機側送風機の回転数を制御することで空調を行っている。
特許文献2では、冷房運転と暖房運転の負荷が従となる運転の利用ユニットの能力を調整するのに、室外機側送風機の風量を制御することで空調を行っている。
Conventionally known methods for controlling a cooling and heating simultaneous multi-type air conditioner include those disclosed in the following patent documents, for example.
In Patent Document 1, air conditioning is performed by controlling the capacity of the compressor and the rotational speed of the outdoor unit side blower from the discharge pressure and suction pressure of the compressor.
In patent document 2, in order to adjust the capacity | capacitance of the utilization unit of the driving | operation with which the load of air_conditionaing | cooling operation and heating operation becomes subordinate, air conditioning is performed by controlling the air volume of the outdoor unit side air blower.

特許第2716559号公報Japanese Patent No. 2716559 特開2011−112233号公報JP 2011-112233 A

近年、高層ビルなどの室内外高低差が大きい建物でも空調できるような冷暖同時マルチ型の空気調和機のニーズが高まっている。しかし、上記特許文献の何れにおいても室内機側の液管圧力を積極的に制御することは行われていない。上記特許文献に記載の空気調和機において、室外機が上、室内機が下で所定の高低差をもって施工されると、冷房負荷が多く室外熱交換器が凝縮器として機能している場合には、室内液管には高低差と液密度分の液ヘッドがかかることになる。すると、高低差を更に拡大すると、室内液管の圧力が圧縮機の吐出圧力同等以上の圧力となることも想定される。つまり、暖房運転を行う室内機の出口側の冷媒圧力(液管圧力)が入口側の冷媒圧力(高圧ガス管圧力)と同等以上となり、高圧ガス冷媒が当該室内機の室内熱交換器を流れない虞がある。   In recent years, there is an increasing need for a simultaneous heating and cooling multi-type air conditioner that can air-condition buildings such as high-rise buildings that have large indoor and outdoor height differences. However, in any of the above patent documents, the liquid pipe pressure on the indoor unit side is not actively controlled. In the air conditioner described in the above-mentioned patent document, when the outdoor unit is installed on the upper side and the indoor unit is installed on the lower side with a predetermined height difference, when the outdoor heat exchanger functions as a condenser with a large cooling load, The liquid head for the height difference and the liquid density is applied to the indoor liquid pipe. Then, if the height difference is further enlarged, it is assumed that the pressure in the indoor liquid pipe becomes equal to or higher than the discharge pressure of the compressor. That is, the refrigerant pressure (liquid pipe pressure) on the outlet side of the indoor unit that performs the heating operation becomes equal to or higher than the refrigerant pressure (high pressure gas pipe pressure) on the inlet side, and the high pressure gas refrigerant flows through the indoor heat exchanger of the indoor unit. There is no fear.

ここで、特許文献1や特許文献2に記載の室外ファン風量制御では、吐出圧力を調整することは可能であるが液管圧力を調整することはできない。   Here, in the outdoor fan air volume control described in Patent Document 1 and Patent Document 2, the discharge pressure can be adjusted, but the liquid pipe pressure cannot be adjusted.

したがって、上記特許文献1や特許文献2に記載の冷暖同時マルチ型の空気調和機では、室外機が上側で室内機が下側に設置された場合で、これらの高低差が所定値以上である場合に、暖房運転を行う室内機に冷媒が流れず暖房運転能力を発揮することができない虞がある。   Therefore, in the cooling and heating simultaneous multi-type air conditioner described in Patent Document 1 and Patent Document 2, when the outdoor unit is installed on the upper side and the indoor unit is installed on the lower side, the difference in height between them is a predetermined value or more. In such a case, there is a possibility that the refrigerant does not flow to the indoor unit that performs the heating operation and the heating operation capability cannot be exhibited.

そこで本発明は、冷暖同時マルチ型の空気調和機で高低差施工時の場合であっても、暖房運転を行う室内機に冷媒が流れるようにすることで、暖房能力を向上させることを目的とする。   Therefore, the present invention aims to improve the heating capacity by allowing the refrigerant to flow into the indoor unit that performs the heating operation even in the case of the elevation difference construction in the simultaneous cooling and heating multi-type air conditioner. To do.

上記目的を達成するために、本発明は、少なくとも1台の室外機と、第1の室内機及び第2の室内機とが冷媒配管により接続され、前記室外機は、圧縮機と室外熱交換器とを備え、前記第1の室内機は、第1の室内熱交換器を備え、前記第2の室内機は、第2の室内熱交換器を備えた空気調和機において、前記第1の室内機が暖房運転を行い、前記第2の室内機が冷房運転を行う場合で、かつ、前記室外熱交換器が凝縮器として作用する場合に、前記圧縮機からの冷媒は前記室外熱交換器に流れる一方で、前記第1の室内熱交換器に流れるように冷媒配管が構成され、前記室外熱交換器の冷媒出口側に配置された膨張弁の開度を絞ることにより、前記第1の室内熱交換器の入口側の冷媒圧力が該第1の室内熱交換器の出口側の冷媒圧力よりも高くなるように制御することを特徴とする。   In order to achieve the above object, according to the present invention, at least one outdoor unit, the first indoor unit and the second indoor unit are connected by a refrigerant pipe, and the outdoor unit exchanges heat with the compressor. The first indoor unit includes a first indoor heat exchanger, and the second indoor unit includes an air conditioner including a second indoor heat exchanger. When the indoor unit performs a heating operation and the second indoor unit performs a cooling operation, and when the outdoor heat exchanger acts as a condenser, the refrigerant from the compressor is used as the outdoor heat exchanger. On the other hand, the refrigerant pipe is configured to flow to the first indoor heat exchanger, and the opening of the expansion valve disposed on the refrigerant outlet side of the outdoor heat exchanger is reduced, thereby reducing the first The refrigerant pressure on the inlet side of the indoor heat exchanger is higher than the refrigerant pressure on the outlet side of the first indoor heat exchanger. And controlling the Kunar so.

本発明によれば、冷暖同時マルチ型の空気調和機で高低差施工時の場合であっても、暖房運転を行う室内機に冷媒が流れるようにすることで、暖房能力を向上させることが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to improve the heating capacity by allowing the refrigerant to flow through the indoor unit that performs the heating operation even in the case of the elevation difference construction in the simultaneous cooling and heating multi-type air conditioner. It becomes.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

実施例1の冷凍サイクル系統図を示す。The refrigeration cycle system diagram of Example 1 is shown. 実施例1のモリエル線図を示す。The Mollier diagram of Example 1 is shown. 実施例1の室外膨張弁15の制御フローチャートの一例を示す図である。It is a figure which shows an example of the control flowchart of the outdoor expansion valve 15 of Example 1. FIG. 実施例1の冷凍サイクル図の一部の抜粋図である。FIG. 3 is an excerpt of a part of the refrigeration cycle diagram of Example 1. 実施例2の室外膨張弁制御フローチャートを説明するための図である。It is a figure for demonstrating the outdoor expansion valve control flowchart of Example 2. FIG. 実施例3の室外膨張弁制御フローチャートを説明するための図である。It is a figure for demonstrating the outdoor expansion valve control flowchart of Example 3. FIG. 実施例4の冷凍サイクル構造を説明するための図である。6 is a diagram for explaining a refrigeration cycle structure of Example 4. FIG. 実施例5の室外膨張弁の制御フローチャートを説明するための図である。It is a figure for demonstrating the control flowchart of the outdoor expansion valve of Example 5. FIG. 実施例6の冷凍サイクルの系統図である。6 is a system diagram of a refrigeration cycle in Example 6. FIG.

以下、本発明の空気調和機の実施の形態について図を参照して説明する。   Hereinafter, an embodiment of an air conditioner of the present invention will be described with reference to the drawings.

図1は実施例1の空気調和機の冷凍サイクルの系統図である。この空気調和機は屋上に設置された1台の室外機10と、下のフロアの空調に使われる室内機40a、40bを、冷媒の高低圧ガス管31、低圧ガス管32、液主管33で接続して構成される。室外機10は、1台でもよく複数台並列に接続されてもよい。また室内機(40a、40b)は2台でもよく複数台接続されていてもよい。   FIG. 1 is a system diagram of a refrigeration cycle of the air conditioner of the first embodiment. This air conditioner is composed of one outdoor unit 10 installed on the roof and indoor units 40a and 40b used for air conditioning on the lower floor with a refrigerant high / low pressure gas pipe 31, a low pressure gas pipe 32, and a liquid main pipe 33. Connected and configured. One outdoor unit 10 or a plurality of outdoor units 10 may be connected in parallel. Two indoor units (40a, 40b) may be connected or a plurality of indoor units may be connected.

本実施例での各室内機の運転状態は、室内機40aは暖房運転、室内機40bは冷房運転を行うものであり、冷暖同時運転の状態となっている。また冷房負荷が暖房負荷より多い場合を想定し、室外熱交換器14は凝縮器とする。
冷暖同時運転における冷房主体モード(冷房負荷>暖房負荷の状態)の冷媒流れを説明する。まず、室外機10と室内機(40a、40b)との高低差が所定値以下である場合(現行製品仕様程度の場合)について説明する。圧縮機11で圧縮された高圧ガス冷媒は高低圧切替四方弁12と熱交換器切替四方弁13に吐出される。高低圧切替四方弁12に送られた高圧ガス冷媒は、高低圧ガス管31をとおり暖房運転する室内機40aへ送られる。ここで、室内機40aのガス管側は、高圧側開閉機構51aが開、低圧側開閉機構52aが閉となるため高低圧ガス管31から流れる高圧ガス冷媒が室内熱交換器41aへ送られ、室内空気と熱交換し凝縮し高圧液冷媒となり、室内膨張弁42a、液枝管35aへと送られる。
The operation state of each indoor unit in the present embodiment is that the indoor unit 40a performs heating operation and the indoor unit 40b performs cooling operation, and is in a state of simultaneous cooling and heating operation. Further, assuming that the cooling load is greater than the heating load, the outdoor heat exchanger 14 is a condenser.
The refrigerant flow in the cooling main mode (cooling load> heating load state) in the simultaneous cooling and heating operation will be described. First, a case where the height difference between the outdoor unit 10 and the indoor units (40a, 40b) is equal to or less than a predetermined value (in the case of current product specifications) will be described. The high-pressure gas refrigerant compressed by the compressor 11 is discharged to the high-low pressure switching four-way valve 12 and the heat exchanger switching four-way valve 13. The high-pressure gas refrigerant sent to the high-low pressure switching four-way valve 12 is sent through the high-low pressure gas pipe 31 to the indoor unit 40 a that performs heating operation. Here, since the high pressure side opening / closing mechanism 51a is opened and the low pressure side opening / closing mechanism 52a is closed on the gas pipe side of the indoor unit 40a, the high pressure gas refrigerant flowing from the high / low pressure gas pipe 31 is sent to the indoor heat exchanger 41a, It exchanges heat with the indoor air, condenses into high-pressure liquid refrigerant, and is sent to the indoor expansion valve 42a and the liquid branch pipe 35a.

一方、熱交換器切替四方弁13に吐出された高圧ガス冷媒は、室外熱交換器14で凝縮され高圧液冷媒となり、室外膨張弁15で若干絞られ液阻止弁23、液主管33へと送られる。そして液枝管35aを介して室内機40aから送られた高圧液冷媒と合流し、液枝管35bを経由し冷房運転する室内機40bへと送られる。室内機40bに送られた高圧液冷媒は、室内膨張弁42bで絞られ減圧し、室内熱交換器41bで室内空気と熱交換し蒸発し低圧ガス冷媒となり、高圧側開閉機構51bが閉、低圧側開閉機構52bが開となるため低圧ガス管32へ送られ、圧縮機11に戻り再び循環する。   On the other hand, the high-pressure gas refrigerant discharged to the heat exchanger switching four-way valve 13 is condensed by the outdoor heat exchanger 14 to become high-pressure liquid refrigerant, and is slightly throttled by the outdoor expansion valve 15 and sent to the liquid blocking valve 23 and the liquid main pipe 33. It is done. Then, it merges with the high-pressure liquid refrigerant sent from the indoor unit 40a via the liquid branch pipe 35a, and is sent via the liquid branch pipe 35b to the indoor unit 40b performing the cooling operation. The high-pressure liquid refrigerant sent to the indoor unit 40b is throttled and depressurized by the indoor expansion valve 42b, evaporates by exchanging heat with the indoor air in the indoor heat exchanger 41b, becomes a low-pressure gas refrigerant, and the high-pressure side opening / closing mechanism 51b is closed. Since the side opening / closing mechanism 52b is opened, it is sent to the low-pressure gas pipe 32 and returns to the compressor 11 to circulate again.

次に、室外機10と室内機(40a、40b)との高低差が所定値以上となった場合について説明する。室外機10や冷房運転する室内機40bについては冷媒流れが同じであり、暖房運転する室内機40a周辺に限定して説明する。室内機40aの室内熱交換器41aの入口側の冷媒圧力(ガス管側圧力)は、高圧側開閉機構51aが開、低圧側開閉機構52aが閉となるため高低圧ガス管31と同等である。また、高低圧ガス管31を高圧で使用する場合は、低圧で使用するときに比べガス流速が遅く配管の圧力損失も小さいため、高低圧ガス管31の冷媒圧力は圧縮機11の吐出圧力とほぼ同等といえる。つまり、室内機40aの室内熱交換器41aの入口側の冷媒圧力(ガス管側圧力)は、ほぼ圧縮機11の吐出圧力である。   Next, the case where the height difference between the outdoor unit 10 and the indoor units (40a, 40b) is equal to or greater than a predetermined value will be described. The outdoor unit 10 and the indoor unit 40b that performs cooling operation have the same refrigerant flow, and the description will be limited to the vicinity of the indoor unit 40a that performs heating operation. The refrigerant pressure (gas pipe side pressure) on the inlet side of the indoor heat exchanger 41a of the indoor unit 40a is the same as that of the high and low pressure gas pipe 31 because the high pressure side opening / closing mechanism 51a is opened and the low pressure side opening / closing mechanism 52a is closed. . Further, when the high / low pressure gas pipe 31 is used at a high pressure, the gas flow rate is slow and the pressure loss of the pipe is small compared to when the high / low pressure gas pipe 31 is used at a low pressure. It can be said that it is almost equivalent. That is, the refrigerant pressure (gas pipe side pressure) on the inlet side of the indoor heat exchanger 41a of the indoor unit 40a is substantially the discharge pressure of the compressor 11.

一方、室内機40aの室内熱交換器41aの出口側の冷媒圧力(液管側圧力)も順を追って説明すると、圧縮機11の吐出圧力に対し液阻止弁23では、室外熱交換器14と室外膨張弁15の分の圧力損失だけ圧力が低下する。しかし、液主管33では重力と液冷媒密度に起因するヘッドがかかるため、下に行くほど圧力が上昇する。このため、液枝管35aでは、室外機10と室内機40aとの高低差が大きい場合、圧縮機11の吐出圧力と同等以上まで圧力が上昇する場合がある。室内機40aの冷媒流れとしては、室内熱交換器41aの入口側の冷媒圧力(ガス管側圧力)よりも出口側の冷媒圧力(液管側圧力)が大きくないと、高低圧ガス管31からの高圧ガス冷媒が室内機40aに流れないため、室内機40aは暖房能力を発生することができない。   On the other hand, the refrigerant pressure (liquid pipe side pressure) on the outlet side of the indoor heat exchanger 41a of the indoor unit 40a will be described in order. The liquid blocking valve 23 with respect to the discharge pressure of the compressor 11 is connected to the outdoor heat exchanger 14 and The pressure is reduced by the pressure loss of the outdoor expansion valve 15. However, since the head due to gravity and liquid refrigerant density is applied to the liquid main pipe 33, the pressure increases as it goes downward. For this reason, in the liquid branch pipe 35a, when the height difference between the outdoor unit 10 and the indoor unit 40a is large, the pressure may increase to be equal to or higher than the discharge pressure of the compressor 11. As the refrigerant flow of the indoor unit 40a, if the refrigerant pressure (liquid pipe side pressure) on the outlet side is not larger than the refrigerant pressure (gas pipe side pressure) on the inlet side of the indoor heat exchanger 41a, Since the high-pressure gas refrigerant does not flow into the indoor unit 40a, the indoor unit 40a cannot generate heating capacity.

このような状態では、室外ファン19の風量を落としても圧縮機11の吐出圧力は上昇するが、同じく液主管33の圧力も上昇してしまうため、室内機40aの入口側と出口側とに圧力差をつけることはできず、室内機40aに冷媒が流れ込むようにはならない。また、圧縮機11の周波数を上げたとしても同じく圧縮機11の吐出圧力と液主管33の圧力は共に上昇するため室内機40aに冷媒が流れ込むようにはならない。   In such a state, although the discharge pressure of the compressor 11 rises even if the air volume of the outdoor fan 19 is reduced, the pressure of the liquid main pipe 33 also rises, so that the pressure is increased between the inlet side and the outlet side of the indoor unit 40a. A pressure difference cannot be applied, and the refrigerant does not flow into the indoor unit 40a. Even if the frequency of the compressor 11 is increased, the discharge pressure of the compressor 11 and the pressure of the liquid main pipe 33 are both increased, so that the refrigerant does not flow into the indoor unit 40a.

そこで、本実施例においては、室外膨張弁15の開度を絞ることにより、暖房運転する室内機40aへ高低圧ガス管31からの高圧ガス冷媒を流すことが可能とする。より詳細に説明すると本実施例の空気調和機は、少なくとも1台の室外機10と、第1の室内機40a及び第2の室内機40bとが冷媒配管により接続され、室外機10は、圧縮機11と室外熱交換器14とを備え、第1の室内機40aは、第1の室内熱交換器41aを備え、第2の室内機40bは、第2の室内熱交換器41bを備えている。   Therefore, in the present embodiment, the high-pressure gas refrigerant from the high-low pressure gas pipe 31 can be flowed to the indoor unit 40a that performs the heating operation by reducing the opening of the outdoor expansion valve 15. More specifically, in the air conditioner of the present embodiment, at least one outdoor unit 10, the first indoor unit 40a and the second indoor unit 40b are connected by a refrigerant pipe, and the outdoor unit 10 is compressed. The first indoor unit 40a includes a first indoor heat exchanger 41a, and the second indoor unit 40b includes a second indoor heat exchanger 41b. Yes.

そして第1の室内機40aが暖房運転を行い、第2の室内機40bが冷房運転を行う場合で、かつ、室外熱交換器14が凝縮器として作用する場合に、圧縮機11からの冷媒は室外熱交換器14に流れる一方で、第1の室内熱交換器41aに流れるように冷媒配管が構成される。さらに室外熱交換器14の冷媒出口側に配置された膨張弁(室外膨張弁15)の開度を絞ることにより、第1の室内熱交換器41aの入口側の冷媒圧力が第1の室内熱交換器41aの出口側の冷媒圧力よりも高くなるように制御するものである。なお、この場合に、第1の室内熱交換器41aは凝縮器として作用し、室外熱交換器14からの冷媒は、第1の室内熱交換器41aから流れる冷媒と合わせて第2の室内熱交換器41bに流れる。   When the first indoor unit 40a performs the heating operation and the second indoor unit 40b performs the cooling operation, and when the outdoor heat exchanger 14 acts as a condenser, the refrigerant from the compressor 11 is While flowing to the outdoor heat exchanger 14, the refrigerant pipe is configured to flow to the first indoor heat exchanger 41a. Further, by reducing the opening of the expansion valve (outdoor expansion valve 15) arranged on the refrigerant outlet side of the outdoor heat exchanger 14, the refrigerant pressure on the inlet side of the first indoor heat exchanger 41a is changed to the first indoor heat. It controls so that it may become higher than the refrigerant | coolant pressure of the exit side of the exchanger 41a. In this case, the first indoor heat exchanger 41a acts as a condenser, and the refrigerant from the outdoor heat exchanger 14 is combined with the refrigerant flowing from the first indoor heat exchanger 41a to generate the second indoor heat. It flows to the exchanger 41b.

このような構成を採用することにより、圧縮機11の吐出圧力は変わらず液主管33の圧力のみを下げられるため、室外機10が上側で室内機40aが下側でこれらに所定値以上の高低差があった場合であっても、室内機40aに高低圧ガス管31からの冷媒を流すことが可能となり、室内機40aの暖房能力を発揮させることが可能となる。   By adopting such a configuration, since the discharge pressure of the compressor 11 does not change and only the pressure of the liquid main pipe 33 can be lowered, the outdoor unit 10 is on the upper side and the indoor unit 40a is on the lower side. Even if there is a difference, the refrigerant from the high / low pressure gas pipe 31 can be allowed to flow through the indoor unit 40a, and the heating capacity of the indoor unit 40a can be exhibited.

制御目標は暖房室内機に接続される液管圧力が吐出圧力より低くなるところであり、暖房室内機の液管側に圧力センサを取り付けてもよい。あるいは、暖房室内機の暖房能力が発生していない場合は吐出圧力より液管圧力が高くなっていると推定し、暖房能力が発生するまで室外膨張弁を絞ってもよい。暖房能力の有無は、室内機の空気吸込みと吹出し温度差から推定してもよく、吐出圧力から推定される飽和温度とガス管温度を比較して、ガス管部で冷媒に所定過熱度が取れているかどうかで推定してもよい。あるいは室外膨張弁流量特性と適正な液主管流量から室外膨張弁での圧力損失を推定し、別途に求めた高低差ヘッド分の圧力損失分を予め室外膨張弁を絞ることにより与えてもよい。あるいは高低差については運転中の圧力と冷媒循環量、室内膨張弁流量特性、室外膨張弁流量特性より推定してもよい。また、この冷暖同時マルチは接続配管が液管1本とガス管2本で構成されていてもよいし、ガス管2本で構成されていてもよい。また、この制御は冷暖同時マルチで、室外熱交換器が凝縮器で、冷房運転をしている室内機と暖房運転をしている室内機が混在し、双方の室内機が運転開始した場合に制御開始するのではなく、運転中に暖房室内機液管圧力が吐出圧力より高い場合や暖房室内機の能力が不足した場合に室外膨張弁を絞る制御を実施してもよい。   The control target is where the liquid pipe pressure connected to the heating indoor unit is lower than the discharge pressure, and a pressure sensor may be attached to the liquid pipe side of the heating indoor unit. Alternatively, when the heating capacity of the heating indoor unit is not generated, it may be estimated that the liquid pipe pressure is higher than the discharge pressure, and the outdoor expansion valve may be throttled until the heating capacity is generated. The presence or absence of the heating capacity may be estimated from the difference between the air intake and blow-out temperature of the indoor unit. The saturation temperature estimated from the discharge pressure and the gas pipe temperature are compared, and a predetermined superheat level is obtained in the refrigerant in the gas pipe section. You may estimate by whether or not. Alternatively, the pressure loss at the outdoor expansion valve may be estimated from the outdoor expansion valve flow rate characteristics and the appropriate liquid main pipe flow rate, and the pressure loss corresponding to the separately obtained height difference head may be given by narrowing the outdoor expansion valve in advance. Alternatively, the height difference may be estimated from the operating pressure and the refrigerant circulation rate, the indoor expansion valve flow rate characteristic, and the outdoor expansion valve flow rate characteristic. In this simultaneous cooling and heating multi, the connection pipe may be constituted by one liquid pipe and two gas pipes, or may be constituted by two gas pipes. In addition, this control is a multi-cooling simultaneous multi-unit, when the outdoor heat exchanger is a condenser, the indoor unit performing cooling operation and the indoor unit performing heating operation coexist, and both indoor units start operation. Instead of starting the control, control may be performed to throttle the outdoor expansion valve when the heating indoor unit liquid pipe pressure is higher than the discharge pressure during operation or when the capacity of the heating indoor unit is insufficient.

図2は本実施例のモリエル線図を示す。なお図2の上部には図1の冷凍サイクル系統図の簡略化した図を示す。ユニットの運転状態は、室内機(40a、40b)に暖房運転と冷房運転とが混在し、室外機10の室外熱交換器14は凝縮器として作用し、さらに室外機10が上側で室内機(40a、40b)が下側に設置される所定値以上の高低差をもって施工される場合である。   FIG. 2 shows a Mollier diagram of this embodiment. 2 is a simplified diagram of the refrigeration cycle diagram of FIG. As for the operation state of the unit, heating operation and cooling operation are mixed in the indoor units (40a, 40b), the outdoor heat exchanger 14 of the outdoor unit 10 acts as a condenser, and the outdoor unit 10 is connected to the indoor unit ( 40a, 40b) is a case where construction is performed with a height difference of a predetermined value or more installed on the lower side.

図2−1は本実施例の室外膨張弁15の制御がない場合のモリエル線図を示す。圧縮機11の出口(●)から冷媒は室外熱交換器14をとおり、比エンタルピは減少し、室外熱交換器14の圧力損失で圧力も若干低下する。室外熱交換器14の出口では室外膨張弁15があるものの、膨張弁開度を絞る制御をしていないため、室外膨張弁15前後差圧ΔPvoは小さい。室外熱交換器14の出口側から室外液阻止弁(□)まではほとんど状態は変わらず、液主管33に入る。液主管33において冷媒の比エンタルピはそのままでヘッドΔPHが掛かり、冷媒圧力が上昇し暖房運転を行う室内機40aの暖房機液管(液枝管35a)(○)の状態となる。ここで、暖房運転を行う室内機40aのガス管の圧力、つまり高低圧ガス管31から室内機40aに流れるガス管の圧力(暖房機ガス管の圧力)をPGihとすると、暖房機液管の圧力PLih≧暖房機ガス管の圧力PGihとなるため、暖房運転を行う室内機40aには冷媒が流れない。   FIG. 2-1 shows a Mollier diagram when the outdoor expansion valve 15 of this embodiment is not controlled. From the outlet (●) of the compressor 11, the refrigerant passes through the outdoor heat exchanger 14, the specific enthalpy decreases, and the pressure drops slightly due to the pressure loss of the outdoor heat exchanger 14. Although there is an outdoor expansion valve 15 at the outlet of the outdoor heat exchanger 14, the differential pressure ΔPvo before and after the outdoor expansion valve 15 is small because control for reducing the expansion valve opening degree is not performed. The state from the outlet side of the outdoor heat exchanger 14 to the outdoor liquid blocking valve (□) hardly changes and enters the liquid main pipe 33. In the liquid main pipe 33, the specific enthalpy of the refrigerant remains unchanged, the head ΔPH is applied, and the refrigerant pressure rises, resulting in a state of the heater liquid pipe (liquid branch pipe 35a) (◯) of the indoor unit 40a that performs the heating operation. Here, if the pressure of the gas pipe of the indoor unit 40a that performs the heating operation, that is, the pressure of the gas pipe flowing from the high / low pressure gas pipe 31 to the indoor unit 40a (pressure of the heating machine gas pipe) is PGih, Since the pressure PLih ≧ the pressure PGih of the heater gas pipe, the refrigerant does not flow into the indoor unit 40a that performs the heating operation.

次に図2−2には本実施例の室外膨張弁15の制御がある場合のモリエル線図を示す。圧縮機11の出口(●)から冷媒は室外熱交換器14をとおり、比エンタルピは減少し、室外熱交換器14の圧力損失で圧力も若干低下する。室外熱交換器14の出口では室外膨張弁15の開度を絞る制御をするため、室外膨張弁15の前後差圧ΔPvoが大きくなっている。これにより室外熱交換器14の出口側から室外液阻止弁(□)までの圧力が図2−1に比べて下がるため、暖房機液管(液枝管35a)(○)の圧力も同様に図2−1に比べると下がる。すると、暖房機液管の圧力PLih<暖房機ガス管の圧力PGihとなるため暖房機(室内機40a)に冷媒が流れ、暖房機(室内機40a)内で凝縮した冷媒は室外熱交換器14で凝縮した冷媒と合流して、冷房運転を行う室内機40bに送られる。そして、室内機40b内で減圧、熱交換がなされ再び圧縮機11へ送られることで冷凍サイクルが形成される。   Next, FIG. 2-2 shows a Mollier diagram when the outdoor expansion valve 15 of this embodiment is controlled. From the outlet (●) of the compressor 11, the refrigerant passes through the outdoor heat exchanger 14, the specific enthalpy decreases, and the pressure drops slightly due to the pressure loss of the outdoor heat exchanger 14. Since the opening degree of the outdoor expansion valve 15 is controlled at the outlet of the outdoor heat exchanger 14, the front-rear differential pressure ΔPvo of the outdoor expansion valve 15 is increased. As a result, the pressure from the outlet side of the outdoor heat exchanger 14 to the outdoor liquid blocking valve (□) is lower than that in FIG. 2-1, so the pressure of the heater liquid pipe (liquid branch pipe 35a) (◯) is also the same. Compared to Fig. 2-1. Then, since the pressure PLih of the heater liquid pipe <the pressure PGih of the heater gas pipe, the refrigerant flows into the heater (indoor unit 40a), and the refrigerant condensed in the heater (indoor unit 40a) is the outdoor heat exchanger 14. Then, the refrigerant is condensed with the refrigerant and sent to the indoor unit 40b that performs the cooling operation. And the pressure reduction and heat exchange are made in the indoor unit 40b, and it sends to the compressor 11 again, and a refrigerating cycle is formed.

図3は本実施例の室外膨張弁15の制御フローチャートの一例を示す図である。空気調和機の運転開始後に、室内機に冷房運転と暖房運転するものがあり、室外熱交換器14が凝縮器として作用している場合に室外膨張弁15の制御へと移行する。図3に示すように、圧縮機11の吐出側の冷媒圧力が液枝管35aの冷媒圧力より高い場合(図3のTrueの場合)は、特に室外膨張弁15の操作は無く、圧縮機11の吐出側の冷媒圧力が液枝管35aの冷媒圧力以下となった場合に室外膨張弁を絞るようにする。なお、ここでは液枝管35aの冷媒圧力を用いて説明したが、液主管33の一部であり下側に配置される配管の冷媒圧力を用いても良い。   FIG. 3 is a diagram illustrating an example of a control flowchart of the outdoor expansion valve 15 of the present embodiment. After starting the operation of the air conditioner, some indoor units perform cooling operation and heating operation, and when the outdoor heat exchanger 14 acts as a condenser, the control proceeds to the outdoor expansion valve 15. As shown in FIG. 3, when the refrigerant pressure on the discharge side of the compressor 11 is higher than the refrigerant pressure in the liquid branch pipe 35a (in the case of True in FIG. 3), the outdoor expansion valve 15 is not particularly operated, and the compressor 11 When the refrigerant pressure on the discharge side becomes equal to or lower than the refrigerant pressure in the liquid branch pipe 35a, the outdoor expansion valve is throttled. In addition, although demonstrated using the refrigerant | coolant pressure of the liquid branch pipe 35a here, you may use the refrigerant | coolant pressure of the piping which is a part of liquid main pipe | tube 33 and is arrange | positioned below.

図3に示す制御は上記した特定の場合のイベント的な制御であり、運転モードが変化した場合(室内機の運転状態が変わった等)、所定条件を満たした場合(吐出圧力>液管圧力となった場合)、冷媒循環量、室外ファン風量などが変わった場合などは適宜、絞った膨張弁開度を元の状態に戻してもよい。あるいは吐出圧力と液管圧力の差圧が所定範囲に収まるように室外膨張弁15の開度を制御してもよい。   The control shown in FIG. 3 is event-like control in the specific case described above. When the operation mode changes (such as when the indoor unit operation state changes), or when a predetermined condition is satisfied (discharge pressure> liquid pipe pressure). When the refrigerant circulation amount, the outdoor fan air amount, etc. change, the throttle valve opening degree that has been throttled may be restored to the original state as appropriate. Alternatively, the opening degree of the outdoor expansion valve 15 may be controlled so that the differential pressure between the discharge pressure and the liquid pipe pressure is within a predetermined range.

図4は実施例1の冷凍サイクル図の一部を抜粋したもので、室内機の液主管33、液枝管35a、又は35bに圧力センサ(71、72、73)を取り付けたものである。室内機側に圧力センサがあることで、室外機10と室内機(40a、40b)とが所定値以上の高低差をもって設置された場合に、液管圧力を室外膨張弁15で制御することが容易となる。ここで、圧力センサの取り付け位置は圧力センサ71のように、室内機があるフロアと同じ室内液管集合部(液主管33の一部)でもよく、室内機の液枝管(35a、35b)でもよく、室内機内部の液管に圧力センサを取り付けてもよい。   FIG. 4 is an excerpt from a part of the refrigeration cycle diagram of the first embodiment, in which pressure sensors (71, 72, 73) are attached to the liquid main pipe 33, the liquid branch pipe 35a, or 35b of the indoor unit. The pressure sensor on the indoor unit side allows the liquid pipe pressure to be controlled by the outdoor expansion valve 15 when the outdoor unit 10 and the indoor units (40a, 40b) are installed with a height difference of a predetermined value or more. It becomes easy. Here, the mounting position of the pressure sensor may be the same indoor liquid pipe assembly (a part of the liquid main pipe 33) as the floor where the indoor unit is located, as in the pressure sensor 71, and the liquid branch pipes (35a, 35b) of the indoor unit. Alternatively, a pressure sensor may be attached to the liquid pipe inside the indoor unit.

一例として、暖房運転する室内機40aの液枝管35aに設置された圧力センサ72と用いて説明すると、第1の室内機40aが暖房運転を行い、第2の室内機40bが冷房運転を行う場合で、かつ、室外熱交換器14が凝縮器として作用する場合に、圧縮機11の吐出側の検出圧力が圧力センサ72の検出圧力以下になった場合に、室外熱交換器14の冷媒出口側に配置された室外膨張弁15の開度を絞ることにより、第1の室内熱交換器41aの入口側の冷媒圧力が第1の室内熱交換器41aの出口側の冷媒圧力よりも高くなるように制御する。これにより室内熱交換器41aに高低圧ガス管31からの高圧ガス冷媒を流すことが可能となる。   As an example, when it demonstrates using the pressure sensor 72 installed in the liquid branch pipe 35a of the indoor unit 40a which performs heating operation, the 1st indoor unit 40a performs heating operation and the 2nd indoor unit 40b performs cooling operation. In the case where the outdoor heat exchanger 14 acts as a condenser, and the detected pressure on the discharge side of the compressor 11 becomes equal to or lower than the detected pressure of the pressure sensor 72, the refrigerant outlet of the outdoor heat exchanger 14 The refrigerant pressure on the inlet side of the first indoor heat exchanger 41a becomes higher than the refrigerant pressure on the outlet side of the first indoor heat exchanger 41a by reducing the opening of the outdoor expansion valve 15 arranged on the side. To control. As a result, the high-pressure gas refrigerant from the high-low pressure gas pipe 31 can flow through the indoor heat exchanger 41a.

以下、本実施例について図5を用いて説明する。
図5は本実施例の室外膨張弁制御フローチャートを説明するための図である。実施例1の図3と異なる点としては、暖房運転を行う室内機40aの吸込み空気温度と吹出し空気温度の温度差が設定値以下になった場合に室外膨張弁15を絞るようにしたものである。図示していないが、室内機40aは空気吸込み側の温度を検出する第1の温度センサと、空気吹出し側の温度を検出する第2の温度センサを備えている。そして第2の温度センサにより検出される空気吹出し側の温度と第1の温度センサにより検出される空気吸込み側の温度との温度差が設定値以下になった場合に、室外膨張弁15の開度を絞ることにより、室内熱交換器41aの入口側の冷媒圧力が室内熱交換器41aの出口側の冷媒圧力よりも高くなるように制御するものである。これにより実施例1と同様に室内機40aの暖房能力を発揮させることができる。その他の点については実施例1と同様であるため、詳細な説明は省略する。
Hereinafter, the present embodiment will be described with reference to FIG.
FIG. 5 is a diagram for explaining an outdoor expansion valve control flowchart of this embodiment. The difference from FIG. 3 of the first embodiment is that the outdoor expansion valve 15 is throttled when the temperature difference between the intake air temperature and the blown air temperature of the indoor unit 40a that performs the heating operation becomes equal to or less than a set value. is there. Although not shown, the indoor unit 40a includes a first temperature sensor that detects the temperature on the air suction side and a second temperature sensor that detects the temperature on the air blowing side. When the temperature difference between the temperature on the air blowing side detected by the second temperature sensor and the temperature on the air suction side detected by the first temperature sensor becomes equal to or less than the set value, the outdoor expansion valve 15 is opened. By reducing the degree, the refrigerant pressure on the inlet side of the indoor heat exchanger 41a is controlled to be higher than the refrigerant pressure on the outlet side of the indoor heat exchanger 41a. Thereby, the heating capability of the indoor unit 40a can be exhibited similarly to the first embodiment. Since the other points are the same as those in the first embodiment, detailed description thereof is omitted.

これにより、室内機側に液管圧力を測定する圧力センサを取り付ける必要が無い。また、暖房運転する室内機40aの吸込み空気温度と吹出し空気温度の温度差は室内機40aの暖房能力を求める指標ではあるが、ここでの設定値は2Kや3Kと小さくてよい。ここで判定したいのは暖房運転する室内機40aに高圧ガスが流れているかどうかであり、すでに発生している暖房能力を更に増加させるために室外膨張弁15を制御するわけではなく、従来の室外膨張弁制御とは異なる。暖房能力を制御するのは室外ファン19の制御で実施するのが一般的である。ここでも室外膨張弁15は室内機40aの吸込み空気温度と吹出し空気温度の温度差が所定範囲に収まるように制御してよい。   Thereby, it is not necessary to attach the pressure sensor which measures a liquid pipe pressure to the indoor unit side. The temperature difference between the intake air temperature and the blown air temperature of the indoor unit 40a that performs heating operation is an index for determining the heating capacity of the indoor unit 40a, but the set value here may be as small as 2K or 3K. What is to be determined here is whether or not high-pressure gas is flowing through the indoor unit 40a that performs heating operation, and does not control the outdoor expansion valve 15 in order to further increase the heating capacity that has already been generated. Different from expansion valve control. The heating capacity is generally controlled by controlling the outdoor fan 19. Here again, the outdoor expansion valve 15 may be controlled so that the temperature difference between the intake air temperature and the blown air temperature of the indoor unit 40a falls within a predetermined range.

以下、本実施例について図6を用いて説明する。
図6は本実施例の室外膨張弁制御フローチャートを説明するための図である。実施例1の図3、また実施例2の図5と異なる点としては、暖房運転を行う室内機40aのガス管温度が設定値以下になった場合に室外膨張弁15を絞るようにしたものである。より具体的には、室内機40aの入口側の冷媒温度と圧縮機11の吐出側の冷媒圧力における飽和温度との温度差が設定値以下になった場合に、室外膨張弁15の開度を絞ることにより、室内熱交換器41aの入口側の冷媒圧力が室内熱交換器41aの出口側の冷媒圧力よりも高くなるように制御する。これにより実施例1と同様に室内機40aの暖房能力を発揮させることができる。
Hereinafter, the present embodiment will be described with reference to FIG.
FIG. 6 is a diagram for explaining an outdoor expansion valve control flowchart of this embodiment. The difference from FIG. 3 of the first embodiment and FIG. 5 of the second embodiment is that the outdoor expansion valve 15 is throttled when the gas pipe temperature of the indoor unit 40a that performs the heating operation becomes lower than the set value. It is. More specifically, when the temperature difference between the refrigerant temperature on the inlet side of the indoor unit 40a and the saturation temperature in the refrigerant pressure on the discharge side of the compressor 11 is equal to or less than a set value, the opening degree of the outdoor expansion valve 15 is set. By restricting, the refrigerant pressure on the inlet side of the indoor heat exchanger 41a is controlled to be higher than the refrigerant pressure on the outlet side of the indoor heat exchanger 41a. Thereby, the heating capability of the indoor unit 40a can be exhibited similarly to the first embodiment.

またこのように制御することにより実施例2と同様に室内機側に液管圧力を測定する圧力センサを取り付ける必要が無い。また、設定値も吐出圧力から求まる飽和温度を基準に考えるため、室内機40aのガス管側温度が飽和温度とほぼ同等かそれ以下の場合は、室内機40aにガス冷媒が流れていないと判断し、室外膨張弁15を絞るようにする。ここでも室外膨張弁はガス管温度が所定範囲に収まるように制御してもよい。   Moreover, by controlling in this way, it is not necessary to attach a pressure sensor for measuring the liquid pipe pressure on the indoor unit side as in the second embodiment. Further, since the set value is considered based on the saturation temperature obtained from the discharge pressure, if the gas pipe side temperature of the indoor unit 40a is substantially equal to or lower than the saturation temperature, it is determined that no gas refrigerant is flowing in the indoor unit 40a. Then, the outdoor expansion valve 15 is throttled. Here again, the outdoor expansion valve may be controlled so that the gas pipe temperature falls within a predetermined range.

以下、本実施例について図7を用いて説明する。
図7は本実施例の冷凍サイクル構造を説明するための図である。これまで説明した実施例では、室外膨張弁15を絞ることにより、暖房運転をする室内機40aの液管圧力を下げているが、図7では液ヘッドの要因となる液管内の液冷媒を低減して、液管圧力が上昇するのを抑えるようにしたものである。
Hereinafter, the present embodiment will be described with reference to FIG.
FIG. 7 is a diagram for explaining the refrigeration cycle structure of the present embodiment. In the embodiment described so far, the liquid pipe pressure of the indoor unit 40a that performs the heating operation is lowered by restricting the outdoor expansion valve 15, but in FIG. 7, the liquid refrigerant in the liquid pipe that causes the liquid head is reduced. Thus, an increase in the liquid pipe pressure is suppressed.

まず、図7の左図は通常運転の液主管33、低圧ガス管32の状態を示したものである。低圧ガス管32及び液主管33の垂直管部に関しては、断面表示させており、内部の冷媒状態が記載されている。低圧ガス管32はガス単相、液主管33は液単相として使われている。ここで、液単相時のヘッドは液密度ρL×高低差ΔH×重力加速度で求めることができる。   First, the left figure of FIG. 7 shows the state of the liquid main pipe 33 and the low-pressure gas pipe 32 in normal operation. The vertical pipe portions of the low-pressure gas pipe 32 and the liquid main pipe 33 are shown in cross-section and the internal refrigerant state is described. The low-pressure gas pipe 32 is used as a gas single phase, and the liquid main pipe 33 is used as a liquid single phase. Here, the head in the liquid single phase can be obtained by liquid density ρL × height difference ΔH × gravity acceleration.

次に図7の右図は液ヘッドを低減した例である。左図に対し冷房運転を行う室内機40bの室内膨張弁42bを開くことにより、液主管33の冷媒の一部を低圧ガス管32に移動させたものである。なお、液主管33に対し、低圧ガス管32は容積が大きいため、このような冷媒の移動も容易に行うことができる。更に冷媒の移動については、アキュムレータ、レシーバなどの補器に移動させてもよい。このようにして液主管33の冷媒を二相状態にすることにより、二相状態の平均密度ρGL<液密度ρLのため、二相時のヘッドρGL×ΔH×gも小さくすることができ、冷暖同時運転時の暖房能力も発生させることが可能となる。   Next, the right figure of FIG. 7 is an example in which the liquid head is reduced. A part of the refrigerant in the liquid main pipe 33 is moved to the low-pressure gas pipe 32 by opening the indoor expansion valve 42b of the indoor unit 40b that performs the cooling operation with respect to the left figure. Since the low-pressure gas pipe 32 has a larger volume than the liquid main pipe 33, such a movement of the refrigerant can be easily performed. Further, the refrigerant may be moved to an auxiliary device such as an accumulator or a receiver. By setting the refrigerant in the liquid main pipe 33 in the two-phase state in this manner, the two-phase head density ρGL <liquid density ρL, so that the head ρGL × ΔH × g in the two-phase state can be reduced. It is also possible to generate heating capacity during simultaneous operation.

以下、本実施例について図8を用いて説明する。
図8は本実施例の室外膨張弁の制御フローチャートを説明するための図である。本実施例は実施例1〜3と異なり、室外機10と室内機(40a、40b)との高低差分の圧力損失を予め室外膨張弁15で絞らせるものである。ここで、室内外高低差は施工業者が制御回路に記憶させる方式をとってもよく、試運転時などの運転状態から推定してもよい。
Hereinafter, the present embodiment will be described with reference to FIG.
FIG. 8 is a view for explaining a control flowchart of the outdoor expansion valve of the present embodiment. This embodiment is different from the first to third embodiments in that the pressure loss of the difference in height between the outdoor unit 10 and the indoor units (40a, 40b) is throttled by the outdoor expansion valve 15 in advance. Here, the indoor / outdoor height difference may be stored in the control circuit by the contractor, or may be estimated from an operating state such as a trial operation.

絞らせる室外膨張弁15の開度は、高低差に対し冷媒物性を考慮し液主管33にかかる圧力を求めた後、凝縮器として作用する室外熱交換器14を流れる冷媒循環量、凝縮器出口状態(液単相or二相)、膨張弁流量特性により求める。例えば同等の圧力損失を発生させるために冷媒循環量が多い場合には膨張弁開度を開き気味とし、凝縮器出口状態が二相の場合は膨張弁開度を開き気味とし、膨張弁口径が小さい機種に対しては膨張弁開度を開き気味とするとよい。求まった開度は、室外膨張弁演算時に常に考慮されるようにする。これらの室外膨張弁開度演算は制御回路28に設定するものである。
なお、この絞りは図8のフローチャートのように室内機冷房運転と暖房運転が混在し室外熱交換器が凝縮器となる場合に常に入ってもよく、図3、図5、図6のような判定条件を満たした場合に室外膨張弁を絞る際に、絞る開度の目安として使用してもよい。
The degree of opening of the outdoor expansion valve 15 to be throttled is determined by determining the pressure applied to the liquid main pipe 33 in consideration of the physical properties of the refrigerant with respect to the height difference, and then the amount of refrigerant circulating through the outdoor heat exchanger 14 acting as a condenser, the outlet of the condenser It is determined from the state (liquid single phase or two phase) and expansion valve flow rate characteristics. For example, in order to generate an equivalent pressure loss, the expansion valve opening degree is opened when the refrigerant circulation amount is large, and when the condenser outlet state is two-phase, the expansion valve opening degree is opened and the expansion valve aperture is For small models, it is recommended to open the expansion valve opening. The obtained opening is always taken into account when calculating the outdoor expansion valve. These outdoor expansion valve opening calculations are set in the control circuit 28.
In addition, this throttling may be always entered when the indoor unit cooling operation and the heating operation are mixed and the outdoor heat exchanger becomes a condenser as shown in the flowchart of FIG. 8, as shown in FIGS. When the outdoor expansion valve is throttled when the determination condition is satisfied, it may be used as a guide for the opening degree to be throttled.

図9は実施例6の冷凍サイクルの系統図である。室外機10、室内機40a、40bの台数は実施例1と同じであるが、接続配管本数がガス管に相当する2本(低圧ガス管32、高圧ガス管34)のみで、液管はガス管にガスと共に冷媒を流すことにより省略されている。更に室内機40a、40b側に送られた二相冷媒を液とガスに分離するための気液分離器61、分離後の液冷媒の冷媒圧力を調整する第一減圧機構62、またガス冷媒の冷媒圧力を調整する第二減圧機構63がある。   FIG. 9 is a system diagram of the refrigeration cycle of Example 6. The number of outdoor units 10 and indoor units 40a and 40b is the same as in Example 1, but the number of connecting pipes is only two (low pressure gas pipe 32 and high pressure gas pipe 34) corresponding to gas pipes, and the liquid pipe is a gas pipe. Omitted by flowing refrigerant along with gas in the tube. Furthermore, a gas-liquid separator 61 for separating the two-phase refrigerant sent to the indoor units 40a and 40b into liquid and gas, a first decompression mechanism 62 for adjusting the refrigerant pressure of the liquid refrigerant after separation, and the gas refrigerant There is a second pressure reducing mechanism 63 that adjusts the refrigerant pressure.

冷暖同時運転で冷房主体モード(冷房負荷>暖房負荷の状態)の冷媒流れを説明する。なお、通常この製品形態では室外膨張弁15が存在しないため、まず室外膨張弁15がなく高低差が所定値以下の現行製品仕様程度の場合について説明する。圧縮機11で圧縮された高圧ガス冷媒が熱交換器切替四方弁13に吐出され、室外熱交換器14に流れる。ここで冷媒は、室外ファン19により適度に凝縮し高圧二相冷媒となり、逆止弁を通って高圧ガス管34、気液分離器61へ送られる。ここで分離された液冷媒は、第一減圧機構62を通った後に冷房運転する室内機40aの室内膨張弁42aの間で適正な圧力で維持するように制御される。この適正な圧力とは、第一減圧機構62から室内膨張弁42aの間の圧力を気液分離器61の圧力より低くすることであり、これにより暖房運転を行う室内機40bへも飽和ガス冷媒が流れるようになる。   The refrigerant flow in the cooling main mode (cooling load> heating load state) in the simultaneous cooling and heating operation will be described. Since the outdoor expansion valve 15 does not normally exist in this product form, the case where there is no outdoor expansion valve 15 and the height difference is about the current product specification below a predetermined value will be described first. The high-pressure gas refrigerant compressed by the compressor 11 is discharged to the heat exchanger switching four-way valve 13 and flows to the outdoor heat exchanger 14. Here, the refrigerant is appropriately condensed by the outdoor fan 19 to become a high-pressure two-phase refrigerant, and is sent to the high-pressure gas pipe 34 and the gas-liquid separator 61 through the check valve. The liquid refrigerant separated here is controlled so as to be maintained at an appropriate pressure between the indoor expansion valves 42a of the indoor unit 40a that performs the cooling operation after passing through the first pressure reducing mechanism 62. The proper pressure is to make the pressure between the first decompression mechanism 62 and the indoor expansion valve 42a lower than the pressure of the gas-liquid separator 61, and to this, the saturated gas refrigerant is supplied to the indoor unit 40b that performs the heating operation. Begins to flow.

この点について説明すると、気液分離器61で分離された飽和ガス冷媒は、暖房運転する室内機40bへ送られることで凝縮し高圧液冷媒となり室内膨張弁42bに送られる。また、液枝管35bを介して、第一減圧機構62と室内膨張弁42aの間に合流する。こうして合流した液冷媒は室内膨張弁42aで絞られ減圧され、室内熱交換器41aで室内空気と熱交換されることにより蒸発して低圧ガス冷媒となる。このとき、高圧側開閉機構52aが閉、低圧側開閉機構51aが開となるため低圧ガス管32へ送られ、室外機10内で逆止弁を通り圧縮機11に戻り再び圧縮されて循環する。   Explaining this point, the saturated gas refrigerant separated by the gas-liquid separator 61 is condensed by being sent to the indoor unit 40b that performs the heating operation, and becomes high-pressure liquid refrigerant and sent to the indoor expansion valve 42b. Moreover, it joins between the 1st pressure reduction mechanism 62 and the indoor expansion valve 42a via the liquid branch pipe 35b. The liquid refrigerant thus joined is throttled and depressurized by the indoor expansion valve 42a, and is evaporated to become low-pressure gas refrigerant by exchanging heat with indoor air in the indoor heat exchanger 41a. At this time, since the high-pressure side opening / closing mechanism 52a is closed and the low-pressure side opening / closing mechanism 51a is opened, the high-pressure side opening / closing mechanism 51a is opened and sent to the low-pressure gas pipe 32. .

次に、室外機10と室内機(40a、40b)との高低差が所定値以上となった場合(現行製品仕様以上に拡大した場合)について説明する。室外機10周辺や冷房運転する室内機40bについては冷媒流れが同じであり、暖房運転する室内機40bや気液分離器61の状態を中心に説明する。ここで、室外熱交換量を同等とすると、高低差が大きい場合、気液分離器61に液冷媒が溜り満液となり暖房運転を行う室内機40bにガス冷媒を送ることができなくなる。   Next, a case where the height difference between the outdoor unit 10 and the indoor units (40a, 40b) is equal to or greater than a predetermined value (when expanded to be greater than the current product specification) will be described. The refrigerant flow is the same for the vicinity of the outdoor unit 10 and the indoor unit 40b that performs cooling operation, and the description will focus on the state of the indoor unit 40b and gas-liquid separator 61 that perform heating operation. Here, assuming that the amount of outdoor heat exchange is the same, if the height difference is large, the liquid refrigerant accumulates in the gas-liquid separator 61 and becomes full, and the gas refrigerant cannot be sent to the indoor unit 40b that performs the heating operation.

このため室外ファン19の風量を落とし、室外熱交換量を減らして気液分離器61が二相となる状態を作り出さなければならない。しかし、外気が低い場合などには室外熱交換器14の熱交換量を室外ファン19の風量のみで低減させるにも限界があり、気液分離器61は満液のまま暖房運転を行う室内機40bにガス冷媒を送ることができず暖房能力が発生できなくなる虞がある。   For this reason, the air volume of the outdoor fan 19 must be reduced, the outdoor heat exchange amount must be reduced, and the gas-liquid separator 61 must be in a two-phase state. However, when the outside air is low or the like, there is a limit to reducing the heat exchange amount of the outdoor heat exchanger 14 only by the air volume of the outdoor fan 19, and the gas-liquid separator 61 is an indoor unit that performs heating operation while being full. There is a possibility that the gas refrigerant cannot be sent to 40b and the heating capacity cannot be generated.

そこで本実施例においては、室外機10が室外膨張弁15を備えたものとして、この室外膨張弁15を制御することにより、室内機40bの暖房能力を発揮させるようにしたものである。つまり、上記のような場合に室外膨張弁15の開度を絞ることにより、僅かに室外熱交換器14における熱交換量を減らすことができる。また、等エンタルピで減圧すると、冷媒は液単相から二相へと相変化する。これにより気液分離器61内に飽和ガス冷媒を作りだし、暖房能力を発生することができる。
ここで、室外膨張弁の制御としては図5に記載のフローチャートのように暖房運転を行う室内機40aの吸込み空気温度と吹出し空気温度の温度差が設定値以下になった場合に室外膨張弁15を絞るようにしてもよい。絞ることにより気液分離器61が二相となる状態を作りだすことができる。また、図6に記載の暖房運転を行う室内機40aのガス管温度が設定値以下になった場合に関しては、冷房主体運転時には暖房機には飽和ガスしか流れないため基準温度をガス管飽和温度としてもよい。また図8に記載のように、高低差分の圧力損失を予め室外膨張弁15で絞らせてもよい。
Therefore, in the present embodiment, the outdoor unit 10 is provided with the outdoor expansion valve 15, and by controlling the outdoor expansion valve 15, the heating capacity of the indoor unit 40b is exhibited. In other words, the amount of heat exchange in the outdoor heat exchanger 14 can be slightly reduced by reducing the opening of the outdoor expansion valve 15 in the above case. Further, when the pressure is reduced by isoenthalpy, the refrigerant changes from a liquid single phase to a two-phase. As a result, a saturated gas refrigerant is produced in the gas-liquid separator 61, and heating capacity can be generated.
Here, as the control of the outdoor expansion valve, the outdoor expansion valve 15 when the temperature difference between the intake air temperature and the blown air temperature of the indoor unit 40a that performs the heating operation becomes equal to or less than a set value as shown in the flowchart of FIG. You may make it squeeze. By squeezing, it is possible to create a state in which the gas-liquid separator 61 has two phases. Further, in the case where the gas pipe temperature of the indoor unit 40a performing the heating operation shown in FIG. 6 is equal to or lower than the set value, only the saturated gas flows through the heater during the cooling main operation, so the reference temperature is set to the gas pipe saturation temperature. It is good. Further, as shown in FIG. 8, the pressure loss of the difference in height may be previously throttled by the outdoor expansion valve 15.

10 室外機
11 圧縮機
12 高低圧切替四方弁
13 熱交換器切替四方弁
14 室外熱交換器
15 室外膨張弁
19 室外ファン
21 高低圧ガス阻止弁
22 低圧ガス阻止弁
23 液阻止弁
28 制御回路
31 高低圧ガス管
32 低圧ガス管
33 液主管
34 高圧ガス管
35a、35b 液枝管
40a、40b 室内機
41a、41b 室内熱交換器
42a、42b 室内膨張弁
51a、51b 高圧側開閉機構
52a、52b 低圧側開閉機構
61 気液分離器
62 第一減圧機構
63 第二減圧機構
71、72、73 圧力センサ
DESCRIPTION OF SYMBOLS 10 Outdoor unit 11 Compressor 12 High / low pressure switching four-way valve 13 Heat exchanger switching four-way valve 14 Outdoor heat exchanger 15 Outdoor expansion valve 19 Outdoor fan 21 High / low pressure gas blocking valve 22 Low pressure gas blocking valve 23 Liquid blocking valve 28 Control circuit 31 High-low pressure gas pipe 32 Low-pressure gas pipe 33 Liquid main pipe 34 High-pressure gas pipes 35a, 35b Liquid branch pipes 40a, 40b Indoor units 41a, 41b Indoor heat exchangers 42a, 42b Indoor expansion valves 51a, 51b High-pressure side opening / closing mechanisms 52a, 52b Low pressure Side opening / closing mechanism 61 Gas-liquid separator 62 First decompression mechanism 63 Second decompression mechanism 71, 72, 73 Pressure sensor

上記目的を達成するために、本発明は、少なくとも1台の室外機と、第1の室内機及び第2の室内機とが冷媒配管により接続され、前記室外機は、圧縮機と室外熱交換器とを備え、前記第1の室内機は、第1の室内熱交換器を備え、前記第2の室内機は、第2の室内熱交換器を備えた空気調和機において、前記第1の室内機が暖房運転を行い、前記第2の室内機が冷房運転を行う場合で、かつ、前記室外熱交換器が凝縮器として作用する場合に、前記圧縮機からの冷媒は前記室外熱交換器に流れる一方で、前記第1の室内熱交換器に流れるように冷媒配管が構成され、前記室外熱交換器の冷媒出口側に配置された膨張弁の開度を絞ることにより、前記第1の室内熱交換器の入口側のガス冷媒圧力が該第1の室内熱交換器の出口側の冷媒圧力よりも高くなるように制御することを特徴とする。
In order to achieve the above object, according to the present invention, at least one outdoor unit, the first indoor unit and the second indoor unit are connected by a refrigerant pipe, and the outdoor unit exchanges heat with the compressor. The first indoor unit includes a first indoor heat exchanger, and the second indoor unit includes an air conditioner including a second indoor heat exchanger. When the indoor unit performs a heating operation and the second indoor unit performs a cooling operation, and when the outdoor heat exchanger acts as a condenser, the refrigerant from the compressor is used as the outdoor heat exchanger. On the other hand, the refrigerant pipe is configured to flow to the first indoor heat exchanger, and the opening of the expansion valve disposed on the refrigerant outlet side of the outdoor heat exchanger is reduced, thereby reducing the first the outlet side of the liquid refrigerant pressure in the indoor heat exchanger inlet-side gas refrigerant pressure of the first indoor heat exchanger And controlling so remote higher.

Claims (10)

少なくとも1台の室外機と、
第1の室内機及び第2の室内機とが冷媒配管により接続され、
前記室外機は、圧縮機と室外熱交換器とを備え、
前記第1の室内機は、第1の室内熱交換器を備え、
前記第2の室内機は、第2の室内熱交換器を備えた空気調和機において、
前記第1の室内機が暖房運転を行い、前記第2の室内機が冷房運転を行う場合で、かつ、前記室外熱交換器が凝縮器として作用する場合に、
前記圧縮機からの冷媒は前記室外熱交換器に流れる一方で、前記第1の室内熱交換器に流れるように冷媒配管が構成され、
前記室外熱交換器の冷媒出口側に配置された膨張弁の開度を絞ることにより、前記第1の室内熱交換器の入口側の冷媒圧力が該第1の室内熱交換器の出口側の冷媒圧力よりも高くなるように制御することを特徴とする空気調和機。
At least one outdoor unit;
The first indoor unit and the second indoor unit are connected by a refrigerant pipe,
The outdoor unit includes a compressor and an outdoor heat exchanger,
The first indoor unit includes a first indoor heat exchanger,
The second indoor unit is an air conditioner including a second indoor heat exchanger,
When the first indoor unit performs a heating operation, the second indoor unit performs a cooling operation, and when the outdoor heat exchanger acts as a condenser,
While refrigerant from the compressor flows to the outdoor heat exchanger, a refrigerant pipe is configured to flow to the first indoor heat exchanger,
By restricting the opening of the expansion valve disposed on the refrigerant outlet side of the outdoor heat exchanger, the refrigerant pressure on the inlet side of the first indoor heat exchanger is reduced to the outlet side of the first indoor heat exchanger. An air conditioner that is controlled to be higher than a refrigerant pressure.
請求項1に記載の空気調和機において、
前記第1の室内熱交換器は凝縮器として作用し、
前記室外熱交換器からの冷媒は、前記第1の室内熱交換器から流れる冷媒と合わせて前記第2の室内熱交換器に流れることを特徴とする空気調和機。
In the air conditioner according to claim 1,
The first indoor heat exchanger acts as a condenser;
The air conditioner characterized in that the refrigerant from the outdoor heat exchanger flows into the second indoor heat exchanger together with the refrigerant flowing from the first indoor heat exchanger.
請求項1に記載の空気調和機において、
前記膨張弁は、前記室外機が備えた室外膨張弁であることを特徴とする空気調和機。
In the air conditioner according to claim 1,
The air conditioner is characterized in that the expansion valve is an outdoor expansion valve provided in the outdoor unit.
請求項1〜3の何れかに記載の空気調和機において、
前記室外機は、前記第1の室内機及び前記第2の室内機よりも上側に設置されることを特徴とする空気調和機。
In the air conditioner in any one of Claims 1-3,
The air conditioner is characterized in that the outdoor unit is installed above the first indoor unit and the second indoor unit.
請求項1又は2に記載の空気調和機において、
前記第1の室内熱交換器の入口側の冷媒圧力が出口側の冷媒圧力以下になった場合に、前記膨張弁の開度を絞ることにより、前記第1の室内熱交換器の入口側の冷媒圧力が該第1の室内熱交換器の出口側の冷媒圧力よりも高くなるように制御することを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2,
When the refrigerant pressure on the inlet side of the first indoor heat exchanger becomes equal to or lower than the refrigerant pressure on the outlet side, the opening of the expansion valve is reduced to reduce the pressure on the inlet side of the first indoor heat exchanger. An air conditioner characterized by controlling the refrigerant pressure to be higher than the refrigerant pressure on the outlet side of the first indoor heat exchanger.
請求項1又は2に記載の空気調和機において、
前記第1の室内機の空気吸込み側の温度を検出する第1の温度センサと、
前記第1の室内機の空気吹出し側の温度を検出する第2の温度センサと、を備え、
前記第2の温度センサにより検出される空気吹出し側の温度と前記第1の温度センサにより検出される空気吸込み側の温度との温度差が設定値以下になった場合に、前記膨張弁の開度を絞ることにより、前記第1の室内熱交換器の入口側の冷媒圧力が該第1の室内熱交換器の出口側の冷媒圧力よりも高くなるように制御することを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2,
A first temperature sensor for detecting a temperature on an air suction side of the first indoor unit;
A second temperature sensor for detecting the temperature of the air blowing side of the first indoor unit,
When the temperature difference between the temperature on the air blowing side detected by the second temperature sensor and the temperature on the air suction side detected by the first temperature sensor becomes a set value or less, the expansion valve is opened. The air conditioning is characterized by controlling the refrigerant pressure on the inlet side of the first indoor heat exchanger so as to be higher than the refrigerant pressure on the outlet side of the first indoor heat exchanger by reducing the degree. Machine.
請求項1又は2に記載の空気調和機において、
前記第1の室内機の入口側の冷媒温度と前記圧縮機の吐出側の冷媒圧力における飽和温度との温度差が設定値以下になった場合に、前記膨張弁の開度を絞ることにより、前記第1の室内熱交換器の入口側の冷媒圧力が該第1の室内熱交換器の出口側の冷媒圧力よりも高くなるように制御することを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2,
When the temperature difference between the refrigerant temperature on the inlet side of the first indoor unit and the saturation temperature on the refrigerant pressure on the discharge side of the compressor is equal to or less than a set value, the opening of the expansion valve is reduced, An air conditioner that controls the refrigerant pressure on the inlet side of the first indoor heat exchanger to be higher than the refrigerant pressure on the outlet side of the first indoor heat exchanger.
請求項1又は2に記載の空気調和機において、
冷媒流量と室外膨張弁流量特性から、高低差分の圧力損失が発生するように室外膨張弁を絞ることを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2,
An air conditioner characterized in that the outdoor expansion valve is throttled so that a pressure loss with a difference in height is generated from the refrigerant flow rate and the outdoor expansion valve flow rate characteristic.
少なくとも1台の室外機と、
第1の室内機及び第2の室内機とが冷媒配管により接続され、
前記室外機は、圧縮機と室外熱交換器とを備え、
前記第1の室内機は、第1の室内熱交換器を備え、
前記第2の室内機は、第2の室内熱交換器を備えた空気調和機において、
前記第1の室内機が暖房運転を行い、前記第2の室内機が冷房運転を行う場合で、かつ、前記室外熱交換器が凝縮器として作用する場合に、
前記圧縮機からの冷媒は前記室外熱交換器に流れる一方で、前記第1の室内熱交換器に流れるように冷媒配管が構成され、
前記第2の室内熱交換器の冷媒出口側に配置された膨張弁の開度を開けることにより、前記第1の室内熱交換器の入口側の冷媒圧力が該第1の室内熱交換器の出口側の冷媒圧力よりも高くなるように制御することを特徴とする空気調和機。
At least one outdoor unit;
The first indoor unit and the second indoor unit are connected by a refrigerant pipe,
The outdoor unit includes a compressor and an outdoor heat exchanger,
The first indoor unit includes a first indoor heat exchanger,
The second indoor unit is an air conditioner including a second indoor heat exchanger,
When the first indoor unit performs a heating operation, the second indoor unit performs a cooling operation, and when the outdoor heat exchanger acts as a condenser,
While refrigerant from the compressor flows to the outdoor heat exchanger, a refrigerant pipe is configured to flow to the first indoor heat exchanger,
By opening the opening of the expansion valve disposed on the refrigerant outlet side of the second indoor heat exchanger, the refrigerant pressure on the inlet side of the first indoor heat exchanger is changed to that of the first indoor heat exchanger. An air conditioner that is controlled to be higher than the refrigerant pressure on the outlet side.
請求項9に記載の空気調和機において、
前記第1の室内熱交換器は凝縮器として作用し、
前記室外熱交換器からの冷媒は、前記第1の室内熱交換器から流れる冷媒と合わせて前記第2の室内熱交換器に流れることを特徴とする空気調和機。
The air conditioner according to claim 9,
The first indoor heat exchanger acts as a condenser;
The air conditioner characterized in that the refrigerant from the outdoor heat exchanger flows into the second indoor heat exchanger together with the refrigerant flowing from the first indoor heat exchanger.
JP2013549949A 2011-12-21 2011-12-21 Air conditioner Active JP5716102B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/007144 WO2013093966A1 (en) 2011-12-21 2011-12-21 Air conditioner

Publications (2)

Publication Number Publication Date
JPWO2013093966A1 true JPWO2013093966A1 (en) 2015-04-27
JP5716102B2 JP5716102B2 (en) 2015-05-13

Family

ID=48667898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013549949A Active JP5716102B2 (en) 2011-12-21 2011-12-21 Air conditioner

Country Status (2)

Country Link
JP (1) JP5716102B2 (en)
WO (1) WO2013093966A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594023B2 (en) * 2015-04-28 2019-10-23 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP6723640B2 (en) * 2016-04-19 2020-07-15 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2020165585A (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Unit for refrigerating device, heat source unit, and refrigerating device
CN110906503B (en) * 2019-11-07 2020-12-22 珠海格力电器股份有限公司 Air conditioner low-temperature heating control method and device and air conditioner
CN117404823B (en) * 2023-12-15 2024-03-29 北京环都拓普空调有限公司 High-drop-height direct expansion machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189717A (en) * 1995-01-11 1996-07-23 Matsushita Refrig Co Ltd Heat pump type air-conditioner
JPH11294871A (en) * 1998-04-14 1999-10-29 Toshiba Corp Air conditioner
WO2008090927A1 (en) * 2007-01-23 2008-07-31 Daikin Industries, Ltd. Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716559B2 (en) * 1990-03-02 1998-02-18 三菱電機株式会社 Cooling / heating mixed type multi-room air conditioner
JP5137933B2 (en) * 2009-11-24 2013-02-06 三菱電機株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189717A (en) * 1995-01-11 1996-07-23 Matsushita Refrig Co Ltd Heat pump type air-conditioner
JPH11294871A (en) * 1998-04-14 1999-10-29 Toshiba Corp Air conditioner
WO2008090927A1 (en) * 2007-01-23 2008-07-31 Daikin Industries, Ltd. Air conditioner

Also Published As

Publication number Publication date
JP5716102B2 (en) 2015-05-13
WO2013093966A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP6576552B2 (en) Air conditioner
JP6091399B2 (en) Air conditioner
CN108027179B (en) Air conditioner
JP5054935B2 (en) Air conditioner
JP3864980B2 (en) Air conditioner
JP6479162B2 (en) Air conditioner
KR101639837B1 (en) Air conditioner
JP5448566B2 (en) Multi air conditioner
JP5716102B2 (en) Air conditioner
KR101794413B1 (en) Air conditioner and a method controlling the same
JP5751355B1 (en) Refrigeration equipment
JP5535504B2 (en) Multi-type air conditioner
JP2006300371A (en) Air conditioner
JPWO2014106900A1 (en) Air conditioner
JPWO2017168681A1 (en) Air conditioner
JP5506433B2 (en) Multi-type air conditioner
JP2006046779A (en) Air conditioner
US8205463B2 (en) Air conditioner and method of controlling the same
JP2006300373A (en) Air conditioner
KR20140017865A (en) Air conditioner and method of controlling the same
JP5487171B2 (en) Air conditioner
JP5005011B2 (en) Air conditioner
JP5645413B2 (en) Air conditioner
JP5874754B2 (en) Refrigeration equipment
KR20120114997A (en) Air conditoner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5716102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250