JP6723640B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6723640B2
JP6723640B2 JP2016083665A JP2016083665A JP6723640B2 JP 6723640 B2 JP6723640 B2 JP 6723640B2 JP 2016083665 A JP2016083665 A JP 2016083665A JP 2016083665 A JP2016083665 A JP 2016083665A JP 6723640 B2 JP6723640 B2 JP 6723640B2
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
outdoor
refrigerant
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016083665A
Other languages
Japanese (ja)
Other versions
JP2017194202A5 (en
JP2017194202A (en
Inventor
内藤 宏治
宏治 内藤
浦田 和幹
和幹 浦田
和彦 谷
和彦 谷
貴則 五十川
貴則 五十川
安田 源
源 安田
裕昭 金子
裕昭 金子
匠 上赤
匠 上赤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2016083665A priority Critical patent/JP6723640B2/en
Priority to PCT/JP2017/007692 priority patent/WO2017183308A1/en
Priority to CN201780024214.4A priority patent/CN109073264B/en
Publication of JP2017194202A publication Critical patent/JP2017194202A/en
Publication of JP2017194202A5 publication Critical patent/JP2017194202A5/ja
Application granted granted Critical
Publication of JP6723640B2 publication Critical patent/JP6723640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は空気調和機に関し、具体的には例えば、マルチ型冷暖同時空気調和機における冷暖同時運転時に非主体側運転室内機の能力を良好に調整可能な空気調和機に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more specifically, to an air conditioner capable of satisfactorily adjusting the capacity of a non-main body side operating indoor unit during simultaneous cooling and heating operation in a multi-type simultaneous cooling and heating air conditioner.

ビルや商業施設等において、冷房と暖房とを独立かつ同時に使用可能な空気調和機(マルチ型冷暖同時空気調和機)が知られている。この空気調和機では、室内機の冷房運転と暖房運転とが混在する場合に、冷房能力と暖房能力とのバランスが考慮されて冷媒の通流方向が決定されている。具体的には、冷房能力が多い場合には、室外熱交換器が凝縮器になるように流路が切り替えられる。このような流路での運転は「冷房主体」といわれる。一方で、暖房能力が多い場合には、室外熱交換器が蒸発器になるように流路が切り替えられる。このような流路での運転は「暖房主体」といわれる。 BACKGROUND ART In a building, a commercial facility, and the like, an air conditioner (multi-type simultaneous cooling/heating simultaneous air conditioner) capable of independently and simultaneously using cooling and heating is known. In this air conditioner, when the cooling operation and the heating operation of the indoor unit coexist, the flow direction of the refrigerant is determined in consideration of the balance between the cooling capacity and the heating capacity. Specifically, when the cooling capacity is large, the flow path is switched so that the outdoor heat exchanger serves as a condenser. The operation in such a flow path is called "cooling mainly". On the other hand, when the heating capacity is large, the flow path is switched so that the outdoor heat exchanger functions as an evaporator. The operation in such a flow path is called "mainly heating".

マルチ型冷暖同時空気調和機として、特許文献1に記載の技術が知られている。特許文献1には、複数台の利用ユニットと、熱源ユニットと、中継ユニットとを備え、冷房運転及び暖房運転が可能な空気調和機が記載されている。そして、複数の利用ユニットの運転に冷房運転と暖房運転とが混在している場合に、冷房運転の利用ユニットの冷房負荷関係量の合計値と、暖房運転の利用ユニットの暖房負荷関係量の合計値のうち、合計値が大きい方の運転(主たる運転)の空調負荷関係量が最大となる利用ユニットに基づいて圧縮機の運転回転数を制御することが記載されている。また、合計値が小さい方の運転(従たる運転)の空調負荷関係量が最大となる利用ユニットに基づいて熱源側送風機の風量を制御するようになっている。 A technique described in Patent Document 1 is known as a multi-type simultaneous cooling and heating air conditioner. Patent Document 1 describes an air conditioner that includes a plurality of utilization units, a heat source unit, and a relay unit and is capable of cooling and heating operations. Then, when the cooling operation and the heating operation are mixed in the operation of the plurality of usage units, the total value of the cooling load related quantities of the usage unit of the cooling operation and the total of the heating load related quantities of the usage unit of the heating operation. It is described that the operating speed of the compressor is controlled based on the utilization unit in which the air conditioning load related amount of the operation with the larger total value (main operation) among the values is the maximum. Further, the air volume of the heat source side blower is controlled based on the utilization unit in which the air conditioning load related amount of the operation with the smaller total value (subordinate operation) is the maximum.

特開2011−112233号公報JP, 2011-112233, A

特許文献1に記載の技術では、冷暖同時運転時、室外送風機を制御し、室外熱交換器に供給される空気の流量を変更することで、室外空気と室外熱交換器を流れる冷媒との熱交換量が制御されている。そのため、熱交換量をできるだけ抑制するためには、室外送風機が停止されることになる。しかし、室外送風機が停止されても、自然対流によって室外熱交換器での放熱が進行し、熱交換量を十分に抑制できないことがある。 In the technique described in Patent Document 1, the heat of the outdoor air and the refrigerant flowing through the outdoor heat exchanger is controlled by controlling the outdoor blower and changing the flow rate of the air supplied to the outdoor heat exchanger during the simultaneous cooling and heating operation. The exchange rate is controlled. Therefore, in order to suppress the heat exchange amount as much as possible, the outdoor blower is stopped. However, even if the outdoor blower is stopped, heat dissipation in the outdoor heat exchanger progresses due to natural convection, and the amount of heat exchange may not be sufficiently suppressed.

このようなときには、例えば冷房主体の場合には、主たる運転である冷房能力が過多になったり、従たる運転である暖房能力が不足したりすることになる。一方で、暖房主体の場合には、主たる運転である暖房能力が過多になったり、従たる運転である冷房能力が不足したりすることになる。従って、特許文献1に記載の技術では、冷暖同時運転時に、外気の状態によっては、冷房運転や暖房運転が過不足することがある。そのため、使用者のニーズに十分に応えることができない。 In such a case, for example, in the case of mainly cooling, the cooling capacity that is the main operation becomes excessive, or the heating capacity that is the secondary operation becomes insufficient. On the other hand, in the case of mainly heating, the heating capacity, which is the main operation, becomes excessive, and the cooling capacity, which is the secondary operation, becomes insufficient. Therefore, in the technology described in Patent Document 1, the cooling operation and the heating operation may be excessive or insufficient depending on the state of the outside air during the simultaneous cooling and heating operation. Therefore, it cannot fully meet the needs of the user.

本発明はこのような課題に鑑みて為されたものであり、本発明が解決しようとする課題は、安定して冷暖同時運転可能な空気調和機を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide an air conditioner capable of stable simultaneous cooling and heating operation.

本発明者らは前記課題を解決するべく鋭意検討を行った。その結果、以下の知見を見出した。即ち、本発明の要旨は、空調対象となる複数の室内機のうちの一部の室内機で冷房運転又は暖房運転のいずれか一方のモードで運転を行いつつ、当該一部の室内機以外の残りの室内機においては、前記一部の室内機での運転モードとは異なるモードとして暖房運転又は冷房運転を行う冷暖同時運転が可能な空気調和機において、前記複数の室内機のそれぞれに設置された、複数の室内熱交換器と、当該室内熱交換器に対して室内の空気を送風し、当該室内の空気と冷媒との間で熱交換を行う室内ファンと、前記室内熱交換器に対して配管により接続され、当該配管を通流して送られる冷媒を圧縮する圧縮機と、当該圧縮機からみて冷媒流れの上流側又は下流側に設けられ、前記配管を通流する冷媒を膨張させる第一膨張機構と、前記室内熱交換器、前記圧縮機及び前記第一膨張機構とともに冷凍サイクルを構成する室外熱交換器と、当該室外熱交換器に対して室外の空気を送風して、当該室外の空気と冷媒との間で熱交換を行う室外ファンと、前記冷凍サイクルにおいて前記室外熱交換器が凝縮器として機能するように流路を形成させる冷房主体運転と、前記冷凍サイクルにおいて前記室外熱交換器が蒸発器として機能するように流路を形成させる暖房主体運転と、を切り替える冷暖主体切り替え装置と、前記冷房主体運転のときには前記室外熱交換器において熱交換された後の冷媒、又は、前記暖房主体運転のときには前記室外熱交換器において熱交換される前の冷媒を膨張させる第二膨張機構と、前記室外熱交換器からの冷媒が直接、又は、前記一部の室内機の室内熱交換器で熱交換された後の冷媒が前記残りの室内機の室内熱交換器に供給されるように流路を切り替える流路切り替え機構と、前記流路切り替え機構によって流路が切り替えられ、前記一部の室内機の室内熱交換器で熱交換された後の冷媒が前記残りの室内機の室内熱交換器に供給されているときに、前記残りの室内機の室内熱交換器による空調能力に応じて、前記室外ファンの回転数を制御する演算制御装置と、を備え、前記演算制御装置は、前記室外ファンの回転数が予め定められた下限以下になった場合に、前記冷房主体運転のときには暖房運転となっている前記残りの室内機の室内熱交換器による空調能力に応じて前記第二膨張機構を制御し、前記暖房主体運転のときには冷房運転となっている前記残りの室内機の室内熱交換器による空調能力に応じて前記第二膨張機構を制御することで、前記室外熱交換器における冷媒循環量を調整し、前記冷房主体運転のとき、前記残りの室内機の空調能力が不足するときには前記凝縮器における冷媒循環量を減らすことで前記残りの室内機の空調能力を増やすとともに、前記残りの室内機の空調能力が過多のときには前記凝縮器における冷媒循環量を増やすことで前記残りの室内機の空調能力を減らすことを特徴とする、空気調和機に関する。 The present inventors have diligently studied to solve the above problems. As a result, the following findings were found. That is, the gist of the present invention, while operating in either one of the cooling operation or the heating operation in some indoor units of the plurality of indoor units to be air-conditioned, other than the some indoor units. In the remaining indoor units, in an air conditioner capable of simultaneous heating and cooling operation that performs heating operation or cooling operation as a mode different from the operation mode in some of the indoor units, it is installed in each of the plurality of indoor units. Also, a plurality of indoor heat exchangers, an indoor fan that blows indoor air to the indoor heat exchanger, and performs heat exchange between the indoor air and the refrigerant, and the indoor heat exchanger A compressor that is connected by a pipe and that compresses the refrigerant that is sent through the pipe, and a compressor that expands the refrigerant that flows through the pipe provided on the upstream side or the downstream side of the refrigerant flow when viewed from the compressor. One expansion mechanism, the indoor heat exchanger, the outdoor heat exchanger that constitutes a refrigeration cycle together with the compressor and the first expansion mechanism, and the outdoor heat exchanger to blow outdoor air to the outdoor heat exchanger. An outdoor fan that performs heat exchange between the air and the refrigerant, a cooling main operation that forms a flow path so that the outdoor heat exchanger functions as a condenser in the refrigeration cycle, and the outdoor heat in the refrigeration cycle. A heating-main operation that forms a flow path so that the exchanger functions as an evaporator, and a cooling/heating main switching device that switches the refrigerant, and a refrigerant after heat exchange in the outdoor heat exchanger during the cooling-main operation, or, In the heating-main operation, the second expansion mechanism that expands the refrigerant before heat exchange in the outdoor heat exchanger, the refrigerant from the outdoor heat exchanger is directly, or the indoor heat of the some indoor units A flow path switching mechanism that switches the flow path so that the refrigerant after heat exchange in the exchanger is supplied to the indoor heat exchanger of the remaining indoor unit, and the flow path is switched by the flow path switching mechanism, When the refrigerant that has undergone heat exchange in the indoor heat exchanger of some indoor units is being supplied to the indoor heat exchangers of the remaining indoor units, the air conditioning capacity of the indoor heat exchangers of the remaining indoor units According to the above, an arithmetic and control unit for controlling the rotation speed of the outdoor fan is provided, and the arithmetic and control unit, when the rotation speed of the outdoor fan is equal to or lower than a predetermined lower limit, performs the cooling main operation. The second expansion mechanism is controlled according to the air conditioning capacity of the indoor heat exchanger of the remaining indoor unit that is in the heating operation during the heating operation, and the remaining indoor unit that is in the cooling operation during the heating-main operation Air Conditioning Capacity by Indoor Heat Exchanger By controlling the second expansion mechanism according to, to adjust the refrigerant circulation amount in the outdoor heat exchanger, in the cooling main operation, when the air conditioning capacity of the remaining indoor unit is insufficient in the condenser While increasing the air conditioning capacity of the remaining indoor unit by reducing the amount of refrigerant circulation, when the air conditioning capacity of the remaining indoor unit is excessive, by increasing the refrigerant circulation amount in the condenser the air conditioning capacity of the remaining indoor unit The present invention relates to an air conditioner, which is characterized in that

本発明によれば、安定して冷暖同時運転可能な空気調和機を提供することができる。 According to the present invention, it is possible to provide an air conditioner capable of stable simultaneous cooling and heating operation.

第一実施形態の空気調和機における冷房主体運転時での系統図である。It is a system diagram at the time of cooling main operation in the air conditioner of a first embodiment. 第一実施形態の空気調和機における冷房能力と暖房能力とのバランスを示したモリエル線図である。It is a Mollier diagram showing the balance between the cooling capacity and the heating capacity in the air conditioner of the first embodiment. 第一実施形態の空気調和機における冷房主体運転時でのフローである。It is a flow at the time of cooling main operation in the air conditioner of 1st embodiment. 第一実施形態の空気調和機における暖房主体運転時での系統図である。It is a system diagram at the time of heating main operation in the air conditioner of 1st embodiment. 第一実施形態の空気調和機における暖房主体運転時でのフローである。It is a flow at the time of heating main operation in the air conditioner of 1st embodiment. 第二実施形態の空気調和機における冷房主体運転時での系統図である。It is a system diagram at the time of cooling main operation in the air conditioner of 2nd embodiment. 第二実施形態の空気調和機における冷房主体運転時でのフローである。It is a flow at the time of cooling main operation in the air conditioner of 2nd embodiment. 第二実施形態の空気調和機における暖房主体運転時での系統図である。It is a system diagram at the time of heating main operation in the air conditioner of 2nd embodiment. 第二実施形態の空気調和機における暖房主体運転時でのフローである。It is a flow at the time of heating main operation in the air conditioner of 2nd embodiment.

以下、図面を適宜参照しながら、本発明を実施するための形態(本実施形態)を説明する。それぞれの実施形態において、同じ装置や部材については同じ符号を付すものとし、その詳細な説明は省略する。また、参照する各フローチャートにおいて、同じ制御については同じステップ番号を付すものとし、その詳細な説明は省略する。 Hereinafter, a mode for carrying out the present invention (this embodiment) will be described with reference to the drawings as appropriate. In the respective embodiments, the same devices and members are designated by the same reference numerals, and detailed description thereof will be omitted. In the flowcharts to be referred to, the same step numbers will be given to the same controls, and detailed description thereof will be omitted.

[1.第一実施形態]
図1は、第一実施形態の空気調和機100における冷房主体運転時での系統図である。空気調和機100は、複数の室内機40a,40b,40c,40dのうちの一部の室内機で冷房運転又は暖房運転のいずれか一方のモードで運転を行いつつ、当該一部の室内機以外の残りの室内機においては、前記一部の室内機での運転モードとは異なるモードとして暖房運転又は冷房運転を行う冷暖同時運転が可能なものである。
[1. First embodiment]
FIG. 1 is a system diagram of the air conditioner 100 of the first embodiment during cooling-main operation. The air conditioner 100 operates in some of the plurality of indoor units 40a, 40b, 40c, 40d in either one of the cooling operation mode and the heating operation mode, and other than the some indoor units. In the remaining indoor units, it is possible to perform the cooling/heating simultaneous operation in which the heating operation or the cooling operation is performed as a mode different from the operation mode in the some indoor units.

空気調和機100は、1台の室外機10と、室内機40a,40b,40c,40dと室外機10との間に存在する冷暖切り替えユニット30a,30b,30c,30d(流路切り替え機構)とを備えて構成される。冷暖切り替えユニット30a,30b,30c,30dは、室内熱交換器41a,41bに対しては室外熱交換器14からの冷媒が直接、又は、一部の暖房運転室内機40a,40bに設置された室内熱交換器41a,41bで熱交換された後の冷媒が残りの冷房運転室内機40dに設置された室内熱交換器41dに供給されるように流路を切り替えるものである。ここでいう「室外熱交換器14からの冷媒が室内熱交換器41a,41bに直接供給」とは、「室外熱交換器14において熱交換された後の冷媒が、他の室内熱交換器、即ち室内熱交換器41c,41dを経由せずに、室内熱交換器41a,41bに供給」という意味である。以下において「直接供給」という場合には、同様の意味を表すものとする。 The air conditioner 100 includes one outdoor unit 10 and cooling/heating switching units 30a, 30b, 30c, 30d (flow channel switching mechanism) existing between the indoor units 40a, 40b, 40c, 40d and the outdoor unit 10. It is configured with. In the cooling/heating switching units 30a, 30b, 30c, 30d, the refrigerant from the outdoor heat exchanger 14 is installed directly in the indoor heat exchangers 41a, 41b, or in some of the heating operation indoor units 40a, 40b. The flow paths are switched so that the refrigerant after heat exchange in the indoor heat exchangers 41a and 41b is supplied to the indoor heat exchanger 41d installed in the remaining cooling operation indoor unit 40d. As used herein, "refrigerant from the outdoor heat exchanger 14 is directly supplied to the indoor heat exchangers 41a and 41b" means that the refrigerant after heat exchange in the outdoor heat exchanger 14 is another indoor heat exchanger, That is, it is supplied to the indoor heat exchangers 41a and 41b without passing through the indoor heat exchangers 41c and 41d. In the following, the term “direct supply” has the same meaning.

室内機40a,40b,40c,40dには、それぞれ、室内熱交換器41a,41b,41c,41dが配置され、詳細は後記するが、これらや圧縮機11や室外熱交換器14は配管で相互に接続されている。また、室内熱交換器41a,41b,41c,41dには、空調対象となる室内の空気を送風することで、空気と冷媒との間で熱交換を行う室内ファン49a,49b,49c,49dが備えられている。また、室内機40a,40b,40c,40dには、室内膨張弁42a,42b,42c,42d(第一膨張機構)が備えられている。 Indoor heat exchangers 41a, 41b, 41c, 41d are arranged in the indoor units 40a, 40b, 40c, 40d, respectively, and details thereof will be described later, but these, the compressor 11, and the outdoor heat exchanger 14 are mutually connected by piping. It is connected to the. Further, the indoor heat exchangers 41a, 41b, 41c, 41d are provided with indoor fans 49a, 49b, 49c, 49d for performing heat exchange between the air and the refrigerant by blowing the air in the room to be air-conditioned. It is equipped. The indoor units 40a, 40b, 40c, 40d are provided with indoor expansion valves 42a, 42b, 42c, 42d (first expansion mechanism).

また、室外機10には、高低圧ガス主管22が高圧側又は低圧側のいずれかにつながるように切り替わる高低圧ガス管側四方弁12と、冷房主体又は暖房主体のいずれかに応じて流路を切り替える(熱交換器側)四方弁13(冷暖主体切り替え装置)と、室外熱交換器14と、外気を室外熱交換器14に送風して外気と冷媒との間で熱交換させる室外ファン19とを備えている。そして、前記の室内熱交換器41a,41b,41c,41dと、圧縮機11と、室内膨張弁42a,42b,42c,42dと、室外熱交換器14とは、冷媒が通流可能なように配管で接続されている。これらによって、冷凍サイクルが構成されている。 Further, in the outdoor unit 10, a high/low pressure gas pipe side four-way valve 12 that is switched so that the high/low pressure gas main pipe 22 is connected to either the high pressure side or the low pressure side, and a flow path depending on whether the cooling main body or the heating main body is used. (Heat exchanger side) four-way valve 13 (cooling/heating main switching device), the outdoor heat exchanger 14, and an outdoor fan 19 that blows outdoor air to the outdoor heat exchanger 14 to exchange heat between the outdoor air and the refrigerant. It has and. The indoor heat exchangers 41a, 41b, 41c, 41d, the compressor 11, the indoor expansion valves 42a, 42b, 42c, 42d, and the outdoor heat exchanger 14 are arranged so that a refrigerant can flow therethrough. It is connected by piping. A refrigeration cycle is constituted by these.

また、室外機10には、冷房主体運転のときには室外熱交換器14において熱交換された後の冷媒や、暖房主体運転のときには室外熱交換器15において熱交換される前の冷媒を膨張させる室外膨張弁15(第二膨張機構)が備えられている。室外膨張弁15の機能は後記する。 In addition, the outdoor unit 10 expands the refrigerant after heat exchange in the outdoor heat exchanger 14 in the cooling main operation or the refrigerant before heat exchange in the outdoor heat exchanger 15 in the heating main operation. An expansion valve 15 (second expansion mechanism) is provided. The function of the outdoor expansion valve 15 will be described later.

なお、図1や後記する系統図において、ドット柄で示した弁は閉弁していることを表している。また、室外機10は本実施形態では1台であるが、2台以上とすることも同様に可能である。また、本実施形態では、室内機40a,40b,40c,40dを4台とした例を示しているが、4台より多くすることも少なくすることも可能である。 In addition, in FIG. 1 and the system diagram described later, the valves shown by dots are closed. Further, the number of outdoor units 10 is one in this embodiment, but it is also possible to use two or more outdoor units. Further, in the present embodiment, an example in which the number of indoor units 40a, 40b, 40c, 40d is four is shown, but it is also possible to increase or decrease the number of indoor units 40a, 40b, 40c, 40d.

更に室内機40aは暖房運転、室内機40bは暖房高圧停止、室内機40cは暖房低圧停止、室内機40dは冷房運転としており、暖房運転機と冷房運転機の混在運転を想定している。なお、室内熱交換器41a,41bは高圧側に繋がり凝縮器、室内熱交換器41c,41dは低圧側に繋がり蒸発器として作用する。 Further, the indoor unit 40a is in heating operation, the indoor unit 40b is in heating high pressure stop, the indoor unit 40c is in heating low pressure stop, and the indoor unit 40d is in cooling operation, and a mixed operation of the heating operation unit and the cooling operation unit is assumed. The indoor heat exchangers 41a and 41b are connected to the high pressure side, and the indoor heat exchangers 41c and 41d are connected to the low pressure side, and act as an evaporator.

室外機10は冷暖同時マルチ用の室外機であり、圧縮機11、高低圧ガス管側四方弁12、四方弁13、室外熱交換器14、室外膨張弁15及びアキュムレータ18から構成される。圧縮機11のアキュムレータ側は低圧側であり、圧縮機11の四方弁側は高圧側になる。この差圧で冷媒が搬送される。 The outdoor unit 10 is an outdoor unit for simultaneous cooling and heating, and includes a compressor 11, a high/low pressure gas pipe side four-way valve 12, a four-way valve 13, an outdoor heat exchanger 14, an outdoor expansion valve 15 and an accumulator 18. The accumulator side of the compressor 11 is the low pressure side, and the four-way valve side of the compressor 11 is the high pressure side. The refrigerant is transported by this differential pressure.

2個の四方弁12,13の使い方について説明する。今回対象とする冷暖同時運転の場合、高低圧ガス管側四方弁12は高低圧ガス主管22が高圧側につながるように切り替えわる。また、室外四方弁13は、室内の冷房負荷と暖房負荷とのバランスの状況に応じて、即ち、冷房主体又は暖房主体に応じて、室外熱交換器14を高圧側と低圧側とのいずれかに切り替える。簡易的には冷房負荷が暖房負荷より大きい場合は、室外熱交換器14を高圧側につなげ凝縮器として使用する。これは冷房主体といわれる。暖房負荷が冷房負荷より大きい場合は、室外熱交換器14を低圧側につなげ蒸発器として使用する。これは暖房主体といわれる。図1は冷房主体の一例であり、後記する図4は暖房主体の一例である。冷房負荷と暖房負荷とのバランスについては、後程図2を使い詳細説明する。 How to use the two four-way valves 12 and 13 will be described. In the case of the simultaneous cooling and heating operation targeted for this time, the high/low pressure gas pipe side four-way valve 12 is switched so that the high/low pressure gas main pipe 22 is connected to the high pressure side. In addition, the outdoor four-way valve 13 controls the outdoor heat exchanger 14 to have either a high pressure side or a low pressure side depending on the balance condition between the indoor cooling load and the indoor heating load, that is, depending on the cooling main body or the heating main body. Switch to. For simplicity, when the cooling load is larger than the heating load, the outdoor heat exchanger 14 is connected to the high pressure side and used as a condenser. It is said that this is mainly an air conditioner. When the heating load is larger than the cooling load, the outdoor heat exchanger 14 is connected to the low pressure side and used as an evaporator. This is called heating. FIG. 1 is an example of a cooling system, and FIG. 4 described later is an example of a heating system. The balance between the cooling load and the heating load will be described later in detail with reference to FIG.

空気調和機100において、冷房主体又は暖房主体のいずれかに伴って行われる四方弁12,13の制御や圧縮機11の制御、詳細は後記するが室外膨張弁15の制御は、制御機構28によって行われる。制御機構28は、いずれも図示しないが、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、I/F(インターフェイス)等を備えて構成される。そして、制御機構28は、ROMに格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。 In the air conditioner 100, control of the four-way valves 12 and 13 and control of the compressor 11, which are performed in association with either cooling or heating, and control of the outdoor expansion valve 15, which will be described later in detail, are performed by the control mechanism 28. Done. Although not shown, the control mechanism 28 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an I/F (interface), and the like. The control mechanism 28 is embodied by the CPU executing a predetermined control program stored in the ROM.

次に冷媒の流れについて説明する。図1に示すように、室外機10の室外熱交換器14と、室内機40a,40b,40c,40dのそれぞれの室内熱交換器41a,41b,41c,41dとは、液主管21、高低圧ガス主管22及び低圧ガス主管23の三本の配管で接続されている。そして、この配管の内部を冷媒が通流する。 Next, the flow of the refrigerant will be described. As shown in FIG. 1, the outdoor heat exchanger 14 of the outdoor unit 10 and the indoor heat exchangers 41a, 41b, 41c, 41d of the indoor units 40a, 40b, 40c, 40d are the liquid main pipe 21, high pressure and low pressure, respectively. The main gas pipe 22 and the low-pressure gas main pipe 23 are connected by three pipes. Then, the refrigerant flows through the inside of this pipe.

まず、圧縮機11で圧縮された高温高圧のガス冷媒の一部は高低圧ガス管側四方弁12により高低圧ガス主管22に送られる。そして、暖房室内機40aや暖房高圧停止室内機40bに送られ、それぞれの室内熱交換器41a,41bで凝縮し高圧液冷媒となり、液主管21へと送られる。圧縮機11で圧縮された高温高圧のガス冷媒の残りは四方弁13を通って室外熱交換器14で凝縮し高圧液冷媒となり、液主管21へ送られ、前述の室内で凝縮した液冷媒と合流して冷房室内機40dへ送られる。ここで、室内膨張弁42dで絞られ減圧し、室内熱交換器41dで蒸発し低圧ガス冷媒となり、低圧ガス主管23を通って室外機に送られる。そして、アキュムレータ18を通って圧縮機11に戻り再び循環する。 First, a part of the high temperature and high pressure gas refrigerant compressed by the compressor 11 is sent to the high and low pressure gas main pipe 22 by the high and low pressure gas pipe side four-way valve 12. Then, it is sent to the heating indoor unit 40 a and the heating high pressure stop indoor unit 40 b, condensed in the indoor heat exchangers 41 a and 41 b to become a high pressure liquid refrigerant, and sent to the liquid main pipe 21. The rest of the high-temperature and high-pressure gas refrigerant compressed by the compressor 11 passes through the four-way valve 13 to be condensed in the outdoor heat exchanger 14 to become a high-pressure liquid refrigerant, which is sent to the liquid main pipe 21 and the liquid refrigerant condensed in the room described above. They are merged and sent to the cooling indoor unit 40d. Here, the indoor expansion valve 42d is throttled to reduce the pressure, evaporated in the indoor heat exchanger 41d to become a low-pressure gas refrigerant, and sent to the outdoor unit through the low-pressure gas main pipe 23. Then, it returns to the compressor 11 through the accumulator 18 and circulates again.

このように冷媒は冷凍サイクル内を循環し熱を伝達する。そのため、熱収支を検討する際には、室外熱交換器14での熱交換量や、室内機40a,40b,40c,40d毎の蒸発熱交換量、凝縮熱交換量或いは圧縮機11での動力のそれぞれを考慮することが好ましい。ここで、熱収支に関するモリエル線図を参照しながら、空気調和機100での熱収支について検討する。 In this way, the refrigerant circulates in the refrigeration cycle and transfers heat. Therefore, when the heat balance is examined, the heat exchange amount in the outdoor heat exchanger 14, the evaporation heat exchange amount in each of the indoor units 40a, 40b, 40c, 40d, the condensation heat exchange amount, or the power in the compressor 11 It is preferable to consider each of the above. Here, the heat balance in the air conditioner 100 will be examined with reference to the Mollier diagram regarding the heat balance.

図2は、第一実施形態の空気調和機100における冷房能力と暖房能力とのバランスを示したモリエル線図である。図2は、横軸を比エンタルピ(kJ/kg)、縦軸を冷凍サイクル各部圧力(MPa)として示したものである。モリエル線図の各点について、状態1,3の部分は圧力と温度を測定することで一意に求まり、状態4は圧力と状態3の比エンタルピとから求まり、状態1は圧力と圧縮機の特性とから、又は、圧力と凝縮器及び蒸発器の特性とから求めることができる。そのため、図2に示すモリエル線図は、空気調和機100の運転状態を推定するのに役にたつ。
なお、図2において、凝縮器は、室内熱交換器41a,41b及び室外熱交換器14に相当する。また、蒸発器は、室内熱交換器41c,41dに相当する。
FIG. 2 is a Mollier diagram showing the balance between the cooling capacity and the heating capacity in the air conditioner 100 of the first embodiment. In FIG. 2, the horizontal axis shows the specific enthalpy (kJ/kg) and the vertical axis shows the pressure (MPa) of each part of the refrigeration cycle. For each point in the Mollier diagram, the states 1 and 3 are uniquely obtained by measuring the pressure and temperature, the state 4 is obtained from the pressure and the specific enthalpy of the state 3, and the state 1 is the characteristics of the pressure and the compressor. Or from the pressure and the characteristics of the condenser and the evaporator. Therefore, the Mollier diagram shown in FIG. 2 is useful for estimating the operating state of the air conditioner 100.
In addition, in FIG. 2, the condenser corresponds to the indoor heat exchangers 41 a and 41 b and the outdoor heat exchanger 14. The evaporator corresponds to the indoor heat exchangers 41c and 41d.

更に、図2に示すモリエル線図において、状態1〜状態2は圧縮機11の吸入〜吐出状態、状態2〜状態3は蒸発器の入口〜出口状態、状態4〜状態1は凝縮器の入口〜出口状態の比エンタルピ変化を表わしている。そして、この比エンタルピ変化量に冷媒循環量(kg/s)を掛け合わせると、W(状態1〜状態2):圧縮機動力や、Qcond(状態2〜状態3):凝縮器での熱交換量,Qevap(状態4〜状態1):蒸発器での熱交換量を求めることもできる。また、図2より明らかであるが、この3つには定常運転時に以下の式(1)がなりたつ。
Qcond=Qevap+W ・・・式(1)
Further, in the Mollier diagram shown in FIG. 2, states 1 and 2 are the suction and discharge states of the compressor 11, states 2 and 3 are the inlet and outlet states of the evaporator, and states 4 and 1 are the inlet of the condenser. ~ Shows the change in specific enthalpy at the exit state. Then, when this specific enthalpy change amount is multiplied by the refrigerant circulation amount (kg/s), W (state 1 to state 2): compressor power and Qcond (state 2 to state 3): heat exchange in the condenser Amount, Qevap (state 4 to state 1): The amount of heat exchange in the evaporator can also be obtained. Further, as is clear from FIG. 2, the following equation (1) holds for these three during steady operation.
Qcond=Qevap+W... Formula (1)

この式(1)について、冷媒側からみて説明すると分かりやすい。冷媒が凝縮器で放出する熱量Qcondは、冷媒が蒸発器で吸収した熱量Qevapと、圧縮機14で吸収した圧縮機動力Wとの合算値となることを意味する。この熱バランスが崩れて、例えば凝縮器で放出する熱量の方が小さくなる場合、冷媒に熱が溜まるため、放熱しやすいように凝縮器の圧力及び凝縮温度が上がり熱バランスを保とうとする。逆に凝縮器で放出する熱量の方が大きくなる場合、冷媒の熱が減り放熱しにくくなるように凝縮器の圧力及び凝縮温度が下がり熱バランスを保とうとする。ここで、図1に示す空気調和機100のように、室内機40a,40b,40c,40dが複数ある場合や、暖房運転機と冷房運転機が混在する場合においても熱を合算するのみで考え方は変わらない。 It is easy to understand this formula (1) when viewed from the refrigerant side. The heat quantity Qcond that the refrigerant releases in the condenser means that it becomes a total value of the heat quantity Qevap absorbed in the evaporator by the refrigerant and the compressor power W absorbed in the compressor 14. When this heat balance is lost and, for example, the amount of heat released by the condenser becomes smaller, heat is accumulated in the refrigerant, so that the pressure and the condensation temperature of the condenser are increased to try to maintain the heat balance so that heat can be easily dissipated. On the contrary, when the amount of heat released by the condenser is larger, the pressure of the condenser and the condensing temperature are reduced so that the heat of the refrigerant is reduced and it is difficult to dissipate the heat, so that the heat balance is maintained. Here, as in the air conditioner 100 shown in FIG. 1, even when there are a plurality of indoor units 40a, 40b, 40c, 40d, or when a heating operation machine and a cooling operation machine coexist, it is only necessary to add heat. Does not change.

室外機10が冷房主体の場合、Qcondは全暖房運転室内機40aでの放熱量ΣQindoorheatと室外熱交換器14での放熱量Qoutdoorとの合算となる。また、Qevapは全冷房運転室内機40dでの吸熱量ΣQindoorcoolとなる。このため、前記の熱バランスの式をQoutdoorに対し展開すると、以下のように表わされる。
Qoutdoor=−ΣQindoorheat+ΣQindoorcool+W ・・・式(2)
When the outdoor unit 10 is mainly used for cooling, Qcond is the sum of the heat radiation amount ΣQindoorheat in the heating only indoor unit 40a and the heat radiation amount Qoutdoor in the outdoor heat exchanger 14. Further, Qevap is the heat absorption amount ΣQindoorcool in the cooling only indoor unit 40d. Therefore, when the above heat balance equation is expanded to Qoutdoor, it is expressed as follows.
Qoutdoor=−ΣQindoorheat+ΣQindoorcool+W Equation (2)

室外熱交換器14での放熱量を調整するには、前記のように、室外ファン19の風量をモータMを制御することで調整する方法が考えられる。しかし、例えば外気低温時の屋外では、室外ファン19を停止していても自然対流による放熱を回避できない。更に屋外で風が吹く場合には強制対流による放熱も発生する。これらによって、冷房能力が過多になったり、暖房能力が不足したりする。そこで、このような事態に対応するため、室外器10に室外膨張弁15を設け、冷媒循環量を減らして放熱を抑制する。 In order to adjust the heat radiation amount in the outdoor heat exchanger 14, a method of adjusting the air amount of the outdoor fan 19 by controlling the motor M as described above can be considered. However, for example, outdoors when the outside air temperature is low, heat dissipation due to natural convection cannot be avoided even if the outdoor fan 19 is stopped. Further, when the wind blows outdoors, heat radiation due to forced convection also occurs. As a result, the cooling capacity becomes excessive and the heating capacity becomes insufficient. Therefore, in order to deal with such a situation, the outdoor expansion valve 15 is provided in the outdoor unit 10 to reduce the refrigerant circulation amount and suppress heat radiation.

また、以下のように、室外熱交換器14での熱交換量が限りなく0に近い〔前記式(2)において、Qoutdoor≒0〕場合に、冷媒循環量を0に抑制するには、膨張弁による冷媒循環量調整を行う。
ΣQindoorheat≒ΣQindoorcool+W ・・・式(3)
Further, as described below, when the amount of heat exchange in the outdoor heat exchanger 14 is as close as possible to 0 [Qoutdoor≈0 in the above formula (2)], the expansion of Refrigerant circulation amount is adjusted by the valve.
ΣQindoorheat ≒ ΣQindoorcool+W ... Formula (3)

次に、図1にて、熱交換量の式を考える。室外熱交換器14は前記のように凝縮器となる。また室内機40a,40bも共に高圧側につながる為、凝縮器となる。そして、これら凝縮器の熱交換量を合算したものがQcondとなる。一方、室内機41c,41dは低圧側につながる為、蒸発器となりえる。室内機40cは停止室内機であるため室内膨張弁42cを閉じているのが一般的であるが、過渡的に膨張弁を開いたりする場合には蒸発器として機能できるため、この分の熱交換量も合算したものがQevapとなる。 Next, referring to FIG. 1, consider the equation of the heat exchange amount. The outdoor heat exchanger 14 serves as a condenser as described above. Further, since both the indoor units 40a and 40b are connected to the high pressure side, they become condensers. Then, the sum of the heat exchange amounts of these condensers becomes Qcond. On the other hand, since the indoor units 41c and 41d are connected to the low pressure side, they can serve as evaporators. Since the indoor unit 40c is a stopped indoor unit, the indoor expansion valve 42c is generally closed. However, when the expansion valve is transiently opened, it can function as an evaporator. Qevap is the sum of the quantities.

ここで、室外熱交換器の熱交換量(以下、室外熱交換量という)をQod、室内熱交換器の熱交換量(以下、能力という)を室内機毎にQa〜Qdと定義し、前記の式(2)に適用すると以下の式(4)が得られる。
Qod=−Qa−Qb+Qc+Qd+W ・・・式(4)
なお、冷房主体であるため冷房運転室内機40c,40dの能力Qc+Qdは通常圧縮機11の回転数で制御することとなる。また、圧縮機11の動力Wも圧縮機11の運転状態に伴い変化する。一方で、暖房運転室内機40a,40bの能力は室外熱交換量Qodにより調整することとなる。式(4)において、暖房運転室内機40a,40bの能力Qa,Qbにはマイナスの符号が付いているため、室外熱交換量Qodが増えると暖房運転室内機40a,40bの能力は減り、室外熱交換量Qodが減ると暖房運転室内機40a,40bの能力は増えることが分かる。つまり室外熱交換量Qodを調整することで、非主体側である暖房側の室内機40a,40bの能力を調整できる。
Here, the heat exchange amount of the outdoor heat exchanger (hereinafter referred to as the outdoor heat exchange amount) is defined as Qod, and the heat exchange amount of the indoor heat exchanger (hereinafter referred to as the capacity) is defined as Qa to Qd for each indoor unit. When applied to the equation (2), the following equation (4) is obtained.
Qod=-Qa-Qb+Qc+Qd+W... Formula (4)
Since the cooling is mainly performed, the capacity Qc+Qd of the cooling operation indoor units 40c and 40d is normally controlled by the rotation speed of the compressor 11. The power W of the compressor 11 also changes with the operating state of the compressor 11. On the other hand, the capacities of the heating operation indoor units 40a and 40b are adjusted by the outdoor heat exchange amount Qod. In Expression (4), since the capacities Qa and Qb of the heating operation indoor units 40a and 40b have a minus sign, the capacity of the heating operation indoor units 40a and 40b decreases as the outdoor heat exchange amount Qod increases, and It can be seen that the capacity of the heating operation indoor units 40a and 40b increases as the heat exchange amount Qod decreases. That is, by adjusting the outdoor heat exchange amount Qod, the capacities of the indoor units 40a, 40b on the heating side, which is the non-main body side, can be adjusted.

室外熱交換量Qodを調整するには、室外ファン19の回転数を変更し風量を変えることで調整可能となる。ただ、前記のように、室外ファン19を停止させたときでも、意図しない放熱が生じ、非主体側である暖房運転室内機40c,40dの能力が不足する場合がある。そこで、このような場合において、室外ファン19を停止した後には、室外膨張弁15の開度を絞ることにより、室外熱交換器14に流れる冷媒循環量を減らし、室内機40a,40bに流れる冷媒循環量を増やせる。これにより、暖房運転室内機40c,40dでの暖房能力を上昇させることができる。そして、最終的には室外膨張弁15の開度を予め定められた下限以下(全閉でもよい)にすると、冷媒は流れないため熱交換量を限りなく0に抑制できる。 The amount of outdoor heat exchange Qod can be adjusted by changing the number of rotations of the outdoor fan 19 and changing the air volume. However, as described above, even when the outdoor fan 19 is stopped, unintended heat radiation may occur, and the capacity of the heating operation indoor units 40c and 40d on the non-main side may be insufficient. Therefore, in such a case, after the outdoor fan 19 is stopped, the opening degree of the outdoor expansion valve 15 is reduced to reduce the circulation amount of the refrigerant flowing through the outdoor heat exchanger 14 and the refrigerant flowing through the indoor units 40a and 40b. The circulation amount can be increased. As a result, the heating capacity of the heating operation indoor units 40c and 40d can be increased. Then, finally, when the opening degree of the outdoor expansion valve 15 is set to a predetermined lower limit or less (may be fully closed), the refrigerant does not flow, so that the heat exchange amount can be suppressed to 0 without limit.

この室外膨張弁15の制御の過程で暖房能力が過多となった場合には再び室外膨張弁15の開度を開けばよい。逆に室外膨張弁15の開度が下限開度に到達しても暖房能力が不足となった場合には、四方弁13を使い冷房主体から暖房主体へモードを切り替える。 If the heating capacity becomes excessive during the process of controlling the outdoor expansion valve 15, the opening degree of the outdoor expansion valve 15 may be opened again. On the contrary, when the heating capacity becomes insufficient even when the opening degree of the outdoor expansion valve 15 reaches the lower limit opening degree, the four-way valve 13 is used to switch the mode from the cooling main body to the heating main body.

図3は、第一実施形態の空気調和機100における冷房主体運転時でのフローである。図3に示すフローは、特に断らない限り、図1に示す制御機構28(演算制御装置)によって実行される。冷房主体運転時、主たる運転である冷房運転室内機40c,40dの冷房能力調整は、圧縮機11の回転数を調整し冷媒循環量を制御することで行われる(ステップS100)。例えば冷房能力が不足する場合には、圧縮機11の回転数を上げることで冷媒循環量を増やし、冷房能力を増やす。一方で、設定温度に対して吹き出し温度が低い等、冷房能力が過多な場合には、圧縮機11の回転数を下げることで冷媒循環量を減らし、冷房能力を減らす。そして、以下で、従たる運転である暖房運転室内機40a,40bでの暖房能力調整が行われる。 FIG. 3 is a flow at the time of cooling-main operation in the air conditioner 100 of the first embodiment. The flow shown in FIG. 3 is executed by the control mechanism 28 (arithmetic control device) shown in FIG. 1 unless otherwise specified. During the cooling main operation, the cooling capacity adjustment of the cooling operation indoor units 40c and 40d, which is the main operation, is performed by adjusting the rotation speed of the compressor 11 and controlling the refrigerant circulation amount (step S100). For example, when the cooling capacity is insufficient, the rotation speed of the compressor 11 is increased to increase the refrigerant circulation amount and increase the cooling capacity. On the other hand, when the cooling capacity is excessive, such as when the blowing temperature is lower than the set temperature, the refrigerant circulation amount is reduced by decreasing the rotation speed of the compressor 11, and the cooling capacity is reduced. Then, in the following, the heating capacity adjustment in the heating operation indoor units 40a, 40b, which is the subordinate operation, is performed.

まず、暖房運転室内機40a、40bの空調能力が空調負荷に対して過多であるか否かが判断される(ステップS101)。能力過多と判断された場合には(Yes方向)、次に、室外膨張弁15の開度が制御目標開度以下であるか否かを判断する(ステップS102)。なお、「ステップS101でのNo方向」については後記する。 First, it is determined whether the air conditioning capacity of the heating operation indoor units 40a and 40b is excessive with respect to the air conditioning load (step S101). If it is determined that the capacity is excessive (Yes direction), then it is determined whether the opening degree of the outdoor expansion valve 15 is equal to or smaller than the control target opening degree (step S102). The "No direction in step S101" will be described later.

ステップS102でYesと判断された場合には、室外膨張弁15の開度が大きくされる(ステップS103)。これにより、室外熱交換器14における冷媒循環量が多くなり、室外熱交換器14で熱交換される冷媒量が増えるため、暖房能力が抑えられる。一方で、ステップS102でNoと判断された場合には、室外膨張弁15による効果のみだと不足し得るため、室外ファン回転数19の回転数を増やすようにモータMが制御される(ステップS104)。これにより、室外熱交換器14での放熱量が増えるため、暖房能力が抑えられる。そして、これらの制御により、空気調和機100の制御が終了する。 If Yes is determined in step S102, the opening degree of the outdoor expansion valve 15 is increased (step S103). As a result, the refrigerant circulation amount in the outdoor heat exchanger 14 increases and the amount of refrigerant exchanged in the outdoor heat exchanger 14 increases, so that the heating capacity is suppressed. On the other hand, if it is determined No in step S102, the effect of the outdoor expansion valve 15 alone may be insufficient. Therefore, the motor M is controlled to increase the rotation speed of the outdoor fan rotation speed 19 (step S104). ). As a result, the amount of heat radiated in the outdoor heat exchanger 14 increases, so that the heating capacity is suppressed. Then, the control of the air conditioner 100 is completed by these controls.

また、前記のステップS101でNoと判断された場合、暖房運転室内機40a,40bの能力が不足するか否かが判断される(ステップS105)。ここで不足しない、即ち、暖房能力が過多でも不足でもない場合には(No方向)、暖房能力と冷房能力とがバランスよく運転されているため、空気調和機100の制御が終了する。 When it is determined No in step S101, it is determined whether or not the capacity of the heating operation indoor units 40a and 40b is insufficient (step S105). If there is no shortage, that is, if the heating capacity is neither excessive nor insufficient (No direction), the heating capacity and the cooling capacity are operating in a well-balanced manner, and the control of the air conditioner 100 ends.

しかし、ステップS105において、能力が不足していると判断された場合(Yes方向)、次に、室外ファン19の回転数が予め定められた下限より大きい否かを判断する(ステップS106)。この判断の結果、室外ファン19の回転数が下限より大きい場合(Yes方向)、室外ファン19の回転数を減らすようにモータMが制御される(ステップS107)。これにより、室外熱交換器14での放熱が抑制され、暖房能力が増加する。そして、これらの制御により、空気調和機100の制御が終了する。 However, if it is determined in step S105 that the capacity is insufficient (Yes direction), then it is determined whether the rotation speed of the outdoor fan 19 is larger than a predetermined lower limit (step S106). As a result of this determination, when the rotation speed of the outdoor fan 19 is higher than the lower limit (Yes direction), the motor M is controlled so as to reduce the rotation speed of the outdoor fan 19 (step S107). As a result, heat dissipation in the outdoor heat exchanger 14 is suppressed and the heating capacity is increased. Then, the control of the air conditioner 100 is completed by these controls.

一方で、前記のステップS106において、室外ファン19の回転数が下限以下であると判断された場合(No方向)、室外ファン19の回転数減少による放熱量の抑制ができず、暖房能力を増加できない。そこで、次に、室外膨張弁15の開度が予め定められた下限より大きい否かが判断される(ステップS108)。この判断において、室外膨張弁15の開度が下限より大きい場合には(Yes方向)、室外膨張弁15の開度を小さくする(ステップS109)。これにより、室外膨張弁15によって、室外熱交換器14における冷媒循環量を少なくする。即ち、室外熱交換器14で熱交換される冷媒量を少なくし、暖房能力を増加させる。 On the other hand, when it is determined in step S106 that the rotation speed of the outdoor fan 19 is equal to or lower than the lower limit (No direction), the heat radiation amount cannot be suppressed due to the decrease in the rotation speed of the outdoor fan 19, and the heating capacity is increased. Can not. Therefore, it is next determined whether or not the opening degree of the outdoor expansion valve 15 is larger than a predetermined lower limit (step S108). In this determination, when the opening degree of the outdoor expansion valve 15 is larger than the lower limit (Yes direction), the opening degree of the outdoor expansion valve 15 is reduced (step S109). As a result, the outdoor expansion valve 15 reduces the refrigerant circulation amount in the outdoor heat exchanger 14. That is, the amount of refrigerant that is heat-exchanged in the outdoor heat exchanger 14 is reduced and the heating capacity is increased.

一方で、室外膨張弁15の開度が下限以下である場合(No方向)、室外膨張弁15による冷媒循環量が下限になっている。そのため、室外膨張弁15の開度は既に十分に小さく、室外膨張弁15を操作できず暖房能力の増加できない。この場合には、四方弁13を切り替えて、運転モードを暖房主体に切り替える(ステップS110)。そして、これらの制御により、空気調和機100の制御が終了する。 On the other hand, when the opening degree of the outdoor expansion valve 15 is less than or equal to the lower limit (No direction), the refrigerant circulation amount by the outdoor expansion valve 15 is the lower limit. Therefore, the opening degree of the outdoor expansion valve 15 is already sufficiently small, the outdoor expansion valve 15 cannot be operated, and the heating capacity cannot be increased. In this case, the four-way valve 13 is switched to switch the operation mode to the heating-dominant mode (step S110). Then, the control of the air conditioner 100 is completed by these controls.

なお、図3に示すフローにおいて、暖房主体に運転モードを切り替える制御(ステップS110)以外には、所定時間ごとにステップS100以降のフローが行われ、室内の負荷及び冷房と暖房との熱バランスをとるように空気調和機100が制御される。 In addition, in the flow shown in FIG. 3, except for the control for switching the operation mode to the heating main body (step S110), the flow from step S100 onward is performed at predetermined time intervals to balance the indoor load and the heat balance between cooling and heating. The air conditioner 100 is controlled so as to take it.

図4は、第一実施形態の空気調和機100における暖房主体運転時での系統図である。前記の例では冷房主体運転での系統図及びフローを説明したので、次に、暖房主体運転での系統図及びフローを説明する。 FIG. 4 is a system diagram during the heating-main operation in the air conditioner 100 of the first embodiment. Since the system diagram and the flow in the cooling main operation have been described in the above example, the system diagram and the flow in the heating main operation will be described next.

図4に示す暖房主体運転では、図1に示す冷房主体運転とは異なり、四方弁13の向きが室外熱交換器14を低圧に接続する側となり、室外熱交換器14は蒸発器となる。従って、図4において、凝縮器は、室内熱交換器41c,41dに相当する。また、蒸発器は、室内熱交換器41a,41b及び室外熱交換器14に相当する。 In the heating-main operation shown in FIG. 4, unlike the cooling-main operation shown in FIG. 1, the direction of the four-way valve 13 is the side connecting the outdoor heat exchanger 14 to a low pressure, and the outdoor heat exchanger 14 is an evaporator. Therefore, in FIG. 4, the condenser corresponds to the indoor heat exchangers 41c and 41d. The evaporator corresponds to the indoor heat exchangers 41a and 41b and the outdoor heat exchanger 14.

ここで、前記の冷房主体運転と同様に、図2を参照しながら熱バランスを説明する。室外機10が暖房主体の場合、前記の式(1)におけるQcondは全暖房運転室内機40a,40bでの放熱量ΣQindoorheatとなる。また、Qevapは全冷房運転室内機40c,40dでの吸熱量ΣQindoorcoolと室外熱交換器14での吸熱量Qoutdoorとの合算となる。このため、前記の熱バランスの式(1)をQoutdoorに対し展開すると、以下の式(5)のように表わされる。
Qoutdoor=ΣQindoorheat−ΣQindoorcool−W ・・・式(5)
Here, the heat balance will be described with reference to FIG. 2 as in the case of the cooling main operation. When the outdoor unit 10 is mainly used for heating, Qcond in the above equation (1) is the heat radiation amount ΣQindoorheat in the heating only indoor units 40a and 40b. Qevap is the sum of the heat absorption amount ΣQindoorcool in the cooling only indoor units 40c and 40d and the heat absorption amount Qoutdoor in the outdoor heat exchanger 14. Therefore, when the above heat balance equation (1) is expanded with respect to Qoutdoor, it is expressed as the following equation (5).
Qoutdoor=ΣQindoorheat−ΣQindoorcool−W (Equation (5))

室外熱交換器14での吸熱量を調整するには、室外ファン19の風量を調整する方法が考えられる。しかし、前記の冷房主体で説明したように、室外ファン19を停止していても意図しない放熱が発生しうることから、前記の冷房主体の場合と同様に室外膨張弁15が使用され、放熱が抑制される。 To adjust the amount of heat absorbed by the outdoor heat exchanger 14, a method of adjusting the air volume of the outdoor fan 19 can be considered. However, as described above with respect to cooling, since unintended heat release may occur even when the outdoor fan 19 is stopped, the outdoor expansion valve 15 is used in the same manner as in the case of cooling and the heat release is not performed. Suppressed.

ここで、図4において、室内機40a,40bが高圧側につながる為、前記のように凝縮器となり、これら凝縮器の熱交換量を合算したものがQcondとなる。一方、室内機41c,41d及び室外熱交換器14は低圧側につながる為、前記のように蒸発器となる。これを合算したものがQevapとなる。そして、図1で説明した熱バランスの式(2)を室外熱交換器14の熱交換量(以下、室外熱交換量という)Qodで展開すると以下の式(6)のようになる。
Qod=Qa+Qb−Qc−Qd−W ・・・式(6)
Here, in FIG. 4, since the indoor units 40a and 40b are connected to the high pressure side, the condensers are provided as described above, and the sum of the heat exchange amounts of these condensers is Qcond. On the other hand, since the indoor units 41c and 41d and the outdoor heat exchanger 14 are connected to the low pressure side, they serve as the evaporator as described above. The sum of these is Qevap. When the heat balance equation (2) described in FIG. 1 is expanded by the heat exchange amount Qod of the outdoor heat exchanger 14 (hereinafter referred to as the outdoor heat exchange amount), the following equation (6) is obtained.
Qod=Qa+Qb-Qc-Qd-W... Formula (6)

なお、暖房主体であるため暖房運転室内機40a,40bの能力Qa+Qbは通常圧縮機11の回転数で制御することとなる。また、圧縮機11の動力Wも圧縮機11の運転状態に伴い変化する。一方で、冷房運転室内機40c,40dの能力は室外熱交換量Qodにより調整することとなる。式(6)において、冷房運転室内機40c,40dの能力Qc,Qdにはマイナスの符号が付いているため、室外熱交換量Qodが増えると冷房運転室内機40c,40dの能力は減り、室外熱交換量Qodが減ると冷房運転室内機40c,40dの能力は増えることが分かる。つまり室外熱交換量Qodを調整することで、非主体側である冷房側の室内機40c,40dの能力を調整できる。 Since the heating is mainly performed, the capacity Qa+Qb of the heating operation indoor units 40a and 40b is normally controlled by the rotation speed of the compressor 11. The power W of the compressor 11 also changes with the operating state of the compressor 11. On the other hand, the capacities of the cooling operation indoor units 40c and 40d are adjusted by the outdoor heat exchange amount Qod. In the formula (6), since the capacities Qc and Qd of the cooling operation indoor units 40c and 40d have a minus sign, when the outdoor heat exchange amount Qod increases, the capacities of the cooling operation indoor units 40c and 40d decrease and the outdoor operation It can be seen that the capacity of the cooling operation indoor units 40c, 40d increases when the heat exchange amount Qod decreases. That is, by adjusting the outdoor heat exchange amount Qod, the capacities of the indoor units 40c and 40d on the cooling side, which is the non-main body side, can be adjusted.

室外熱交換量Qodを調整するには、室外ファン19の回転数を変更するようにモータMを制御して風量を変えることで調整可能となる。ただ、前記のように、室外ファン19を停止させたときでも、意図しない放熱が生じ、非主体側である冷房運転室内機40a,40bの能力が不足する場合がある。そこで、このような場合において、室外ファン19を停止した後には、室外膨張弁15の開度を絞ることにより、室外熱交換器14に流れる冷媒循環量を減らし、室内機40c,40dに流れる冷媒循環量を増やせる。これにより、冷房運転室内機40a,40bでの冷房能力を上昇させることができる。そして、最終的には室外膨張弁15の開度を予め定められた下限(全閉でもよい)以下にすると、冷媒は流れないため熱交換量を限りなく0に抑制できる。 The amount of outdoor heat exchange Qod can be adjusted by controlling the motor M so as to change the rotation speed of the outdoor fan 19 and changing the air volume. However, as described above, even when the outdoor fan 19 is stopped, unintended heat radiation may occur, and the capacity of the cooling operation indoor units 40a and 40b, which is the non-main body side, may be insufficient. Therefore, in such a case, after the outdoor fan 19 is stopped, the opening degree of the outdoor expansion valve 15 is reduced to reduce the refrigerant circulation amount flowing to the outdoor heat exchanger 14 and the refrigerant flowing to the indoor units 40c and 40d. The circulation amount can be increased. As a result, the cooling capacity of the cooling operation indoor units 40a and 40b can be increased. Then, finally, when the opening degree of the outdoor expansion valve 15 is made equal to or smaller than a predetermined lower limit (fully closed), the refrigerant does not flow, so that the heat exchange amount can be suppressed to 0 without limit.

この室外膨張弁15の制御の過程で冷房能力が過多となった場合には再び室外膨張弁15の開度を開けばよい。逆に室外膨張弁15の開度が下限開度に到達しても冷房能力が不足となった場合には、四方弁13を使い暖房主体から冷房主体へモードを切り替える。 If the cooling capacity becomes excessive during the process of controlling the outdoor expansion valve 15, the opening degree of the outdoor expansion valve 15 may be opened again. On the contrary, when the cooling capacity becomes insufficient even when the opening of the outdoor expansion valve 15 reaches the lower limit opening, the four-way valve 13 is used to switch the mode from the heating main body to the cooling main body.

図5は、第一実施形態の空気調和機100における暖房主体運転時でのフローである。図5に示すフローも、特に断らない限り、図1に示す制御機構28によって実行される。図5に示す暖房主体運転時のフローは、前記の図3に示す冷房主体運手時のフローと基本的には同じ流れであるため、相違点を主に説明する。 FIG. 5: is a flow at the time of heating main operation in the air conditioner 100 of 1st embodiment. The flow shown in FIG. 5 is also executed by the control mechanism 28 shown in FIG. 1 unless otherwise specified. The flow during the heating-main operation shown in FIG. 5 is basically the same as the flow during the cooling-main transport shown in FIG. 3, so the differences will be mainly described.

暖房主体運転時には、主たる運転である暖房運転室内機40a、40bでの暖房能力調整は、冷房主体運転時と同様、圧縮機11の回転数を調整し冷媒循環量を制御することで行われる(ステップS200)。例えば暖房能力が不足する場合には、圧縮機11の回転数を上げることで冷媒循環量を増やし、暖房能力を増やす。一方で、暖房能力が過多な場合には、圧縮機11の回転数を下げることで冷媒循環量を減らし、暖房能力を減らす。そして、以下で、従たる運転である冷房運転室内機40c,40dでの冷房能力調整が行われる。 During the heating main operation, the heating capacity adjustment in the heating operation indoor units 40a and 40b, which is the main operation, is performed by adjusting the rotation speed of the compressor 11 and controlling the refrigerant circulation amount, as in the cooling main operation ( Step S200). For example, when the heating capacity is insufficient, the rotation speed of the compressor 11 is increased to increase the refrigerant circulation amount and increase the heating capacity. On the other hand, when the heating capacity is excessive, the rotation speed of the compressor 11 is reduced to reduce the refrigerant circulation amount and reduce the heating capacity. Then, in the following, the cooling capacity adjustment in the cooling operation indoor units 40c, 40d, which is the subordinate operation, is performed.

まず、冷房運転室内機40c,40dの能力が空調負荷に対して過多であるか否かが判断される(ステップS201)。能力過多と判断された場合には(Yes方向)、前記の冷房主体運転時(図3参照)と同様に、室外膨張弁15や室外ファン19が制御される(ステップS102〜S104)。 First, it is determined whether or not the capacity of the cooling operation indoor units 40c and 40d is excessive with respect to the air conditioning load (step S201). When it is determined that the capacity is excessive (Yes direction), the outdoor expansion valve 15 and the outdoor fan 19 are controlled (steps S102 to S104) as in the case of the cooling main operation (see FIG. 3).

一方で、前記のステップS201において、冷房運転室内機40c,40dの能力が過多ではないと判断された場合には(ステップS201のNo方向)、冷房運転室内機40c,40dの能力が不足するか否かが判断される(ステップS205)。そして、能力不足と判断された場合には(Yes方向)、前記の冷房主体運転時(図3参照)と同様に、室外膨張弁15や室外ファン19が制御される(ステップS106〜S109)。 On the other hand, if it is determined in step S201 that the cooling operation indoor units 40c and 40d are not excessive in capacity (No direction in step S201), the cooling operation indoor units 40c and 40d are insufficient in capacity. It is determined whether or not (step S205). Then, when it is determined that the capacity is insufficient (Yes direction), the outdoor expansion valve 15 and the outdoor fan 19 are controlled (steps S106 to S109), as in the case of the cooling main operation (see FIG. 3).

そして、ステップS106〜S109における室外膨張弁15や室外ファン19の制御によっても冷房運転能力が回復しない場合には、前記の冷房主体運転時(図3参照)と同様に、運転モードを切り替える。即ち、冷房主体に切り替える(ステップS210)。 Then, when the cooling operation capacity is not recovered even by the control of the outdoor expansion valve 15 and the outdoor fan 19 in steps S106 to S109, the operation mode is switched as in the cooling main operation (see FIG. 3). That is, the system is switched to the cooling system (step S210).

以上のように、空気調和機100では、冷房主体運転では図3に示すフローが、暖房主体運転では図5に示すフローが実行される。特に、いずれのフローにおいても、室外ファン19の回転数が予め定められた開度以下となり、室外熱交換器14での熱交換量が十分に抑制されているにも関わらず従たる運転の能力が不足している場合でも、従たる運転能力を増加できる。 As described above, in the air conditioner 100, the flow shown in FIG. 3 is executed in the cooling main operation, and the flow shown in FIG. 5 is executed in the heating main operation. In particular, in any of the flows, the rotational speed of the outdoor fan 19 becomes equal to or less than a predetermined opening degree, and the ability of the subordinate operation is achieved even though the heat exchange amount in the outdoor heat exchanger 14 is sufficiently suppressed. Even if there is a shortage, secondary driving ability can be increased.

また、例えばステップS110やステップS210において、主体運転が変更されている。そして、この変更は、室外膨張弁15の開度が予め設定された下限以下になったときに行われる。そのため、主体運転の変更が、客観的に把握しやすい「室外膨張弁15の開度」という指標に基づいて行われるため、空気調和機100の制御を簡便に行うことができる。 Further, for example, in step S110 or step S210, the main operation is changed. And this change is performed when the opening degree of the outdoor expansion valve 15 becomes below the preset lower limit. Therefore, the main operation is changed based on the index “opening degree of the outdoor expansion valve 15” which is objectively easy to grasp, and thus the air conditioner 100 can be easily controlled.

さらに、前記の図1や図4に示すように、空気調和機100では、液主管21、高低圧ガス主管22及び低圧ガス主管23の三本の配管が使用されている。そのため、室外機10に室外膨張弁15を取り付けるだけで図3や図5に示すフローを行うことができ、既存の設備を活かしやすくなる。 Further, as shown in FIGS. 1 and 4, the air conditioner 100 uses three pipes, a liquid main pipe 21, a high/low pressure gas main pipe 22, and a low pressure gas main pipe 23. Therefore, the flow shown in FIGS. 3 and 5 can be performed only by attaching the outdoor expansion valve 15 to the outdoor unit 10, and it becomes easy to utilize the existing equipment.

[2.第二実施形態]
図6は、第二実施形態の空気調和機200における冷房主体運転時での系統図である。図6に示す空気調和機200は冷房主体モードになっており、室外熱交換器14は凝縮器になっている。図6に示す空気調和機200では、室外機10及び室内機40a,40b,40c,40dの台数は前記の空気調和機100と同じであるが、これらを接続する配管本数が高圧管24及び低圧管25の二本のみになっている。即ち、前記の空気調和機100における液主管21は、図6に示す高圧管24及び低圧管25にガス冷媒とともに液冷媒が通流することで、省略されている。
[2. Second embodiment]
FIG. 6 is a system diagram of the air conditioner 200 of the second embodiment during the cooling main operation. The air conditioner 200 shown in FIG. 6 is in the cooling main mode, and the outdoor heat exchanger 14 is a condenser. In the air conditioner 200 shown in FIG. 6, the numbers of the outdoor units 10 and the indoor units 40a, 40b, 40c, 40d are the same as those of the air conditioner 100 described above, but the number of pipes connecting them is the high pressure pipe 24 and the low pressure pipe. There are only two tubes 25. That is, the liquid main pipe 21 in the air conditioner 100 is omitted because the liquid refrigerant flows through the high pressure pipe 24 and the low pressure pipe 25 shown in FIG. 6 together with the gas refrigerant.

また、空気調和機200では、室外機10から室内機40a,40b,40c,40d側に送られた二相冷媒を液とガスに分離するための気液分離機61と、分離後の液圧とガス圧とを調整する第一減圧機構62及び第二減圧機構63(いずれも例えば膨張弁等)が備えられている。 Further, in the air conditioner 200, the gas-liquid separator 61 for separating the two-phase refrigerant sent from the outdoor unit 10 to the indoor units 40a, 40b, 40c, 40d into liquid and gas, and the liquid pressure after separation. A first pressure reducing mechanism 62 and a second pressure reducing mechanism 63 (both are, for example, expansion valves) for adjusting the gas pressure and the gas pressure.

さらに、空気調和機200では、室外膨張弁15が備えられている点は前記の空気調和機100と同じであるが、室外膨張弁15に加えて、室外機10に戻ってきた冷媒を室外熱交換器14に流さずにバイパスさせる室外熱交換器バイパス弁17が備えられている。このバイパス弁17は、図示はしないが鉛直方向に備えられたバイパス管の途中に備えられており、鉛直方向下側に配置された管を通流する気液混合冷媒のうちのガス冷媒のみをバイパスさせることができるようになっている。 Further, the air conditioner 200 is the same as the above-described air conditioner 100 in that the outdoor expansion valve 15 is provided, but in addition to the outdoor expansion valve 15, the refrigerant returned to the outdoor unit 10 is used as the outdoor heat. An outdoor heat exchanger bypass valve 17 is provided to bypass the heat exchanger 14 without flowing it. Although not shown, this bypass valve 17 is provided in the middle of a bypass pipe provided in the vertical direction, and only the gas refrigerant of the gas-liquid mixed refrigerant flowing through the pipe arranged in the vertically lower side is provided. It can be bypassed.

以下で、冷房主体運転時の空気調和機200における冷媒の流れを説明する。空気調和機200では、通常時には、室外膨張弁15は全開、室外熱交換器バイパス弁17は全閉になっている。 The flow of the refrigerant in the air conditioner 200 during the cooling-main operation will be described below. In the air conditioner 200, normally, the outdoor expansion valve 15 is fully open and the outdoor heat exchanger bypass valve 17 is fully closed.

圧縮機11で圧縮された高圧ガス冷媒は、四方弁13に吐出され、室外熱交換器14に供給される。そして、室外熱交換器14において室外ファン19により適度に凝縮されることで高圧二相冷媒となる。この高圧二相冷媒は、全開の室外膨張弁15及び逆止弁26を通過し、高圧管24を通って気液分離器61へ送られる。気液分離器61で分離された液冷媒は、第一減圧機構62と冷房運転する室内機の室内膨張弁42dとの間に送られる。一方で、気液分離器61で分離された飽和ガス冷媒は、暖房運転する室内機40a,40bへ送られ、凝縮されて高圧液冷媒となる。この高圧液冷媒は、室内膨張弁42a,42bを通り、第一減圧機構62と室内膨張弁42dとの間に送られる。これにより、この高圧液冷媒と、前記の第一減圧機構62と冷房運転する室内機の室内膨張弁42dとの間に送られた液冷媒とが合流することになる。 The high-pressure gas refrigerant compressed by the compressor 11 is discharged to the four-way valve 13 and supplied to the outdoor heat exchanger 14. Then, in the outdoor heat exchanger 14, it is appropriately condensed by the outdoor fan 19 to become a high-pressure two-phase refrigerant. The high-pressure two-phase refrigerant passes through the fully opened outdoor expansion valve 15 and the check valve 26, and is sent to the gas-liquid separator 61 through the high-pressure pipe 24. The liquid refrigerant separated by the gas-liquid separator 61 is sent between the first pressure reducing mechanism 62 and the indoor expansion valve 42d of the indoor unit that performs the cooling operation. On the other hand, the saturated gas refrigerant separated by the gas-liquid separator 61 is sent to the indoor units 40a, 40b that perform the heating operation, and is condensed to be a high-pressure liquid refrigerant. The high-pressure liquid refrigerant passes through the indoor expansion valves 42a and 42b and is sent between the first pressure reducing mechanism 62 and the indoor expansion valve 42d. As a result, the high-pressure liquid refrigerant merges with the liquid refrigerant sent between the first pressure reducing mechanism 62 and the indoor expansion valve 42d of the indoor unit that is in the cooling operation.

こうして合流した液冷媒は室内膨張弁42dで絞られ減圧し、室内熱交換器41dで室内空気と熱交換し蒸発し低圧ガス冷媒となる。この低圧ガス冷媒は、低圧管25へ送られ、室外機10内で逆止弁26を通り圧縮機11に戻り再び循環する。ここで、暖房運転室内機40a,40bの能力が不足する場合には室外ファン19の風量を落として熱交換を抑制するとよい。ただ、室外ファン19が停止すると、それ以上の熱交換量抑制ができないことになる。 The liquid refrigerant thus merged is throttled and decompressed by the indoor expansion valve 42d, exchanges heat with the indoor air in the indoor heat exchanger 41d, and is evaporated to become a low-pressure gas refrigerant. This low-pressure gas refrigerant is sent to the low-pressure pipe 25, passes through the check valve 26 in the outdoor unit 10, returns to the compressor 11, and circulates again. Here, when the capacity of the heating operation indoor units 40a and 40b is insufficient, it is preferable to reduce the air volume of the outdoor fan 19 to suppress heat exchange. However, when the outdoor fan 19 is stopped, it becomes impossible to further suppress the heat exchange amount.

そこで、室外ファン19が停止された後でも依然として暖房運転の能力が不足している場合には、室外膨張弁15及び室外熱交換器バイパス弁17が制御される。具体的には、室外ファン19が停止した後、室外膨張弁15を絞り、室外熱交換器バイパス弁17を開くことで、室外熱交換器14を流れる冷媒がバイパスされる。これにより、室外熱交換器14での放熱が抑制され、暖房運転室内機40a,40bの能力を確保することができる。そして、室外膨張弁15の開度を予め定められた下限以下(全閉でもよい)にするとともに、室外熱交換器バイパス弁17を全開にすれば、室外熱交換器14には冷媒が流れず、放熱を限りなく0に抑制することができる。 Therefore, when the heating operation capacity is still insufficient even after the outdoor fan 19 is stopped, the outdoor expansion valve 15 and the outdoor heat exchanger bypass valve 17 are controlled. Specifically, after the outdoor fan 19 is stopped, the outdoor expansion valve 15 is throttled and the outdoor heat exchanger bypass valve 17 is opened to bypass the refrigerant flowing through the outdoor heat exchanger 14. As a result, heat dissipation in the outdoor heat exchanger 14 is suppressed, and the capacity of the heating operation indoor units 40a, 40b can be secured. If the opening degree of the outdoor expansion valve 15 is set to a predetermined lower limit or less (may be fully closed) and the outdoor heat exchanger bypass valve 17 is fully opened, the refrigerant does not flow into the outdoor heat exchanger 14. The heat radiation can be suppressed to zero without limit.

この室外膨張弁15及び室外熱交換器バイパス弁17の制御過程で暖房能力が過多となった場合には再び室外膨張弁15の開度が大きくするとともに、室外熱交換器バイパス弁17の開度を絞る。逆に、室外膨張弁17の開度を予め定められた下限以下(全閉でもよい)に到達しても暖房能力が不足となった場合には、四方弁13を使い、図6に示す冷房主体から図7に示す暖房主体に、運転モードが切り替える。 When the heating capacity becomes excessive in the control process of the outdoor expansion valve 15 and the outdoor heat exchanger bypass valve 17, the opening degree of the outdoor expansion valve 15 is increased again and the opening degree of the outdoor heat exchanger bypass valve 17 is increased. Squeeze On the contrary, if the heating capacity becomes insufficient even when the opening degree of the outdoor expansion valve 17 reaches the predetermined lower limit or less (may be fully closed), the four-way valve 13 is used to perform the cooling operation shown in FIG. The operation mode is switched from the main body to the heating main body shown in FIG. 7.

図7は、第二実施形態の空気調和機200における冷房主体運転時でのフローである。図7に示すフローも、特に断らない限り、図6に示す制御機構28によって実行される。また、図7に示すフローは、基本的には前記の空気調和機100で冷房主体運転を行っているときのフロー(図3参照)と同じである。そこで、前記の図3に示すフローとは異なる点を中心に、第二実施形態での空気調和機200におけるフローを説明する。 FIG. 7: is a flow at the time of cooling main operation in the air conditioner 200 of 2nd embodiment. The flow shown in FIG. 7 is also executed by the control mechanism 28 shown in FIG. 6 unless otherwise specified. Further, the flow shown in FIG. 7 is basically the same as the flow (see FIG. 3) when the cooling-main operation is performed in the air conditioner 100. Therefore, the flow in the air conditioner 200 in the second embodiment will be described focusing on the points different from the flow shown in FIG.

冷房主体で空気調和機200を運転している際、前記のように、室外膨張弁15は全開であり、また、室外熱交換器バイパス弁17(以下、「バイパス弁17」と略記することがある)は全閉である。そして、冷房主体運転中、主たる運転である冷房能力の調整は、圧縮機11の回転数が制御されることで行われる(ステップ101)。また、従たる運転である暖房能力の調整は、以下のようにして行われる。即ち、暖房能力が過多である場合(ステップS101のYes方向)、室外膨張弁15や室外ファン19が制御されることで、暖房能力の調整が行われる(ステップS102〜ステップS104)。 When the air conditioner 200 is mainly operated by cooling, the outdoor expansion valve 15 is fully opened as described above, and the outdoor heat exchanger bypass valve 17 (hereinafter, may be abbreviated as “bypass valve 17”). Yes) is fully closed. Then, during the cooling-main operation, the cooling capacity, which is the main operation, is adjusted by controlling the rotation speed of the compressor 11 (step 101). Further, the adjustment of the heating capacity, which is the subordinate operation, is performed as follows. That is, when the heating capacity is excessive (Yes in step S101), the outdoor expansion valve 15 and the outdoor fan 19 are controlled to adjust the heating capacity (steps S102 to S104).

一方で、暖房能力が不足する場合(ステップS105のYes方向)、室外膨張弁15や室外ファン19が制御されることは前記の空気調和機100と同様であるが(図3参照)、図6に示す空気調和機200では、これらに加えてさらにバイパス弁17が制御される(ステップS309)。具体的には、暖房運転室内機40a,40bの能力が不足し(ステップS105のYes方向)、かつ、室外膨張弁15の開度が下限より大きい場合(ステップS108のYes方向)には、室外膨張弁15の開度を小さくするとともに、バイパス弁17の開度を大きくする制御が行われる(ステップS309)。バイパス弁17が開かれることで、室外熱交換器14における冷媒循環量が減少し、熱交換される冷媒の量は減少することになる。そのため、室外熱交換器14による冷媒からの放熱が抑制され、これにより、暖房運転能力の回復が図られる。 On the other hand, when the heating capacity is insufficient (Yes in step S105), the outdoor expansion valve 15 and the outdoor fan 19 are controlled as in the air conditioner 100 (see FIG. 3), but FIG. In the air conditioner 200 shown in (1), the bypass valve 17 is further controlled in addition to these (step S309). Specifically, when the capacity of the heating operation indoor units 40a and 40b is insufficient (Yes in step S105) and the opening of the outdoor expansion valve 15 is larger than the lower limit (Yes in step S108), the outdoor operation is performed. Control for reducing the opening degree of the expansion valve 15 and increasing the opening degree of the bypass valve 17 is performed (step S309). By opening the bypass valve 17, the refrigerant circulation amount in the outdoor heat exchanger 14 decreases, and the amount of the refrigerant to be heat-exchanged decreases. Therefore, heat dissipation from the refrigerant by the outdoor heat exchanger 14 is suppressed, whereby the heating operation capacity is restored.

図8は、第二実施形態の空気調和機200における暖房主体運転時での系統図である。前記の例では冷房主体運転での系統図及びフローを説明したので、次に、暖房主体運転での系統図及びフローを説明する。 FIG. 8 is a system diagram of the air conditioner 200 of the second embodiment during heating-main operation. Since the system diagram and the flow in the cooling main operation have been described in the above example, the system diagram and the flow in the heating main operation will be described next.

前記の図7に示す暖房主体運転では、図6に示す冷房主体運転とは異なり、四方弁13の向きが室外熱交換器14を低圧に接続する側となり、室外熱交換器は蒸発器となる。従って、図6において、凝縮器は、室内熱交換器41c,41dに相当する。また、蒸発器は、室内熱交換器41a,41b及び室外熱交換器14に相当する。以下で、暖房主体運転時の空気調和機200における冷媒の流れを説明する。空気調和機200では、前記のように、通常時には、室外膨張弁15は全開、室外熱交換器バイパス弁17は全閉になっている。 In the heating-main operation shown in FIG. 7, unlike the cooling-main operation shown in FIG. 6, the direction of the four-way valve 13 is the side connecting the outdoor heat exchanger 14 to a low pressure, and the outdoor heat exchanger is the evaporator. .. Therefore, in FIG. 6, the condenser corresponds to the indoor heat exchangers 41c and 41d. The evaporator corresponds to the indoor heat exchangers 41a and 41b and the outdoor heat exchanger 14. The flow of the refrigerant in the air conditioner 200 during the heating-main operation will be described below. In the air conditioner 200, as described above, normally, the outdoor expansion valve 15 is fully open and the outdoor heat exchanger bypass valve 17 is fully closed.

圧縮機11で圧縮された高圧ガス冷媒は、四方弁13に吐出され、逆止弁26及び高圧管24を通って、気液分離機61へ送られる。ここで分離された高圧ガス冷媒は、暖房運転室内機40a,40bへ送られ、凝縮されて高圧液冷媒となる。この高圧液冷媒は、室内膨張弁42a,42bを通り、第一減圧機構62と室内膨張弁42dとの間に送られる。送られた一部の液冷媒は、室内膨張弁42dで絞られ減圧され、室内熱交換器41dで室内空気と熱交換することで蒸発し、低圧ガス冷媒となる。この低圧ガス冷媒は低圧管25へ送られる。残りの液冷媒は第二減圧機構63を通り、低圧管25に送られた前記低圧ガス冷媒と合流して気液二相流となる。 The high-pressure gas refrigerant compressed by the compressor 11 is discharged to the four-way valve 13, passes through the check valve 26 and the high-pressure pipe 24, and is sent to the gas-liquid separator 61. The high-pressure gas refrigerant separated here is sent to the heating operation indoor units 40a, 40b and condensed to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant passes through the indoor expansion valves 42a and 42b and is sent between the first pressure reducing mechanism 62 and the indoor expansion valve 42d. A part of the sent liquid refrigerant is throttled and decompressed by the indoor expansion valve 42d and evaporated by exchanging heat with the indoor air in the indoor heat exchanger 41d to become a low pressure gas refrigerant. This low-pressure gas refrigerant is sent to the low-pressure pipe 25. The remaining liquid refrigerant passes through the second pressure reducing mechanism 63 and merges with the low pressure gas refrigerant sent to the low pressure pipe 25 to form a gas-liquid two-phase flow.

この気液二相流は、低圧管25を通り、逆止弁26を介して室外熱交換器14へ送られる。そして室外空気と熱交換することで蒸発し、低圧ガス冷媒になる。この低圧ガス冷媒は、四方弁13を通り圧縮機11に戻り再び循環する。ここで、冷房運転室内機40c,40dの能力が不足する場合は、室外ファン19の風量を落として熱交換を抑制するとよい。そして、室外ファン19の風量を落とし続けた結果室外ファン19が停止した場合には、第二減圧機構63を絞ることで冷房能力を増やすことができる。 This gas-liquid two-phase flow passes through the low pressure pipe 25 and is sent to the outdoor heat exchanger 14 via the check valve 26. It then evaporates by exchanging heat with the outdoor air and becomes a low-pressure gas refrigerant. This low-pressure gas refrigerant returns to the compressor 11 through the four-way valve 13 and circulates again. Here, when the capacity of the cooling operation indoor units 40c and 40d is insufficient, it is preferable to reduce the air volume of the outdoor fan 19 to suppress heat exchange. When the outdoor fan 19 stops as a result of continuing to reduce the air volume of the outdoor fan 19, the cooling capacity can be increased by narrowing down the second pressure reducing mechanism 63.

ただ、第二減圧機構63を絞っても依然冷房能力が不足する場合、第二減圧機構63が全閉となり得る。しかし、この場合、室外熱交換器14には、ガス冷媒しか流れない状態となる。ガス冷媒は質量流量が同じ場合液冷媒に比べて体積流量は多くなり、流速も速くなる。そして、流速が速いと、低圧管25内の流路抵抗は簡易的には流速の2乗に比例する為、圧力損失が増大し、冷凍サイクルとしての効率が低下してしまう。 However, when the cooling capacity is still insufficient even if the second pressure reducing mechanism 63 is throttled, the second pressure reducing mechanism 63 may be fully closed. However, in this case, only the gas refrigerant flows into the outdoor heat exchanger 14. When the gas refrigerant has the same mass flow rate, the gas refrigerant has a larger volume flow rate and a higher flow rate than the liquid refrigerant. When the flow velocity is high, the flow passage resistance in the low-pressure pipe 25 is simply proportional to the square of the flow velocity, so that the pressure loss increases and the efficiency of the refrigeration cycle decreases.

そこで、空気調和機200では、室外ファン19が停止した後、第二減圧機構63を絞った結果、室外熱交換器14に送られる冷媒のガスの比率(乾き度)が高くなると、室外膨張弁15は開いたまま、室外熱交換器バイパス弁17も開く。これにより、室外熱交換器14を流れるガス冷媒の一部がバイパスされ、室外熱交換器14でのガス流速が低下でき、圧力損失を低減できる。 Therefore, in the air conditioner 200, if the ratio (dryness) of the refrigerant gas sent to the outdoor heat exchanger 14 becomes high as a result of narrowing the second pressure reducing mechanism 63 after the outdoor fan 19 has stopped, the outdoor expansion valve The outdoor heat exchanger bypass valve 17 is also opened while keeping 15 open. As a result, a part of the gas refrigerant flowing through the outdoor heat exchanger 14 is bypassed, the gas flow velocity in the outdoor heat exchanger 14 can be reduced, and the pressure loss can be reduced.

そして、この室外熱交換器バイパス弁17の制御過程で、冷房能力が過多となったときには、再び室外熱交換器バイパス弁17が絞られる。これにより、ガス冷媒と液冷媒とが室外熱交換器14に再び供給されるようになる。一方で、第二減圧機構63の開度を予め定められた下限以下(全閉でもよい)に到達しても冷房能力が不足となった場合には、四方弁13を使い、図7に示す暖房主体から図6に示す冷房主体に、運転モードが切り替えられる。 Then, in the control process of the outdoor heat exchanger bypass valve 17, when the cooling capacity becomes excessive, the outdoor heat exchanger bypass valve 17 is throttled again. As a result, the gas refrigerant and the liquid refrigerant are supplied again to the outdoor heat exchanger 14. On the other hand, when the cooling capacity becomes insufficient even when the opening degree of the second decompression mechanism 63 reaches the predetermined lower limit or less (may be fully closed), the four-way valve 13 is used and shown in FIG. The operation mode is switched from the heating main body to the cooling main body shown in FIG.

図9は、第二実施形態の空気調和機200における暖房主体運転時でのフローである。図9に示すフローも、特に断らない限り、図6に示す制御機構28によって実行される。図9に示す暖房主体運転時のフローは、前記の空気調和機100における暖房主体運転時のフロー(図5参照)と基本的には同じ流れであるため、図5に示すフローとの相違点を主に説明する。 FIG. 9: is a flow at the time of heating main operation in the air conditioner 200 of 2nd embodiment. The flow shown in FIG. 9 is also executed by the control mechanism 28 shown in FIG. 6 unless otherwise specified. The flow during the heating-main operation shown in FIG. 9 is basically the same as the flow during the heating-main operation in the air conditioner 100 (see FIG. 5), and therefore is different from the flow shown in FIG. Will be mainly explained.

暖房主体で空気調和機200を運転している際、バイパス弁17は全閉で暖房運転が行われている。そして、主たる運転である暖房能力の調整は、圧縮機11の回転数が調整されることで行われる(ステップ201)。また、従たる運転である冷房能力の調整は、以下のようにして行われる。即ち、冷房能力が過多である場合(ステップS201のYes方向)、室外膨張弁15や室外ファン19が制御されることで、冷房能力の調整が行われる(ステップS102〜ステップS104)。 When the air conditioner 200 is operated mainly by heating, the bypass valve 17 is fully closed and the heating operation is performed. Then, the heating capacity, which is the main operation, is adjusted by adjusting the rotation speed of the compressor 11 (step 201). Further, the adjustment of the cooling capacity, which is a subordinate operation, is performed as follows. That is, when the cooling capacity is excessive (Yes in step S201), the outdoor expansion valve 15 and the outdoor fan 19 are controlled to adjust the cooling capacity (steps S102 to S104).

一方で、冷房能力が不足する場合(ステップS205のYes方向)、室外ファン19が制御されることは前記の空気調和機100と同様であるが(図3参照)、図6に示す空気調和機200では、これに加えてさらに第二減圧機構63及びバイパス弁17が制御される。具体的には、まず、冷房運転室内機40c,40dの能力が不足し(ステップS205のYes方向)、かつ、室外ファン19の回転数が下限より大きい場合(ステップS106のNo方向)、第二減圧機構63の開度が下限より大きいか否かが判断される(ステップS408)。そして、第二減圧機構63の開度が下限より大きい場合には(Yes方向)、第二減圧機構63が絞られる(ステップS409)。これにより、冷房運転室内機40dに供給される冷媒量が多くなり、冷房能力の回復が図られる。反対に、第二減圧機構63の開度が下限以下である場合には(No方向)、これ以上第二減圧機構63の絞ることができないため、四方弁13が切り替えられて、運転モードが暖房主体から冷房主体に変更される(ステップS410)。 On the other hand, when the cooling capacity is insufficient (Yes in step S205), the outdoor fan 19 is controlled as in the air conditioner 100 described above (see FIG. 3), but the air conditioner shown in FIG. In 200, in addition to this, the second pressure reducing mechanism 63 and the bypass valve 17 are further controlled. Specifically, first, when the capacity of the cooling operation indoor units 40c and 40d is insufficient (Yes in step S205) and the rotation speed of the outdoor fan 19 is larger than the lower limit (No in step S106), the second It is determined whether the opening degree of the decompression mechanism 63 is larger than the lower limit (step S408). Then, when the opening degree of the second pressure reducing mechanism 63 is larger than the lower limit (Yes direction), the second pressure reducing mechanism 63 is narrowed (step S409). As a result, the amount of refrigerant supplied to the cooling operation indoor unit 40d increases, and the cooling capacity is restored. On the contrary, when the opening degree of the second pressure reducing mechanism 63 is less than or equal to the lower limit (No direction), the second pressure reducing mechanism 63 cannot be further throttled, so the four-way valve 13 is switched and the operation mode is set to the heating mode. The main body is changed to the cooling main body (step S410).

以上のように、空気調和機200では、冷房主体運転では図7に示すフローが、暖房主体運転では図9に示すフローが実行される。そのため、前記の空気調和機100と同様に、空気調和機200においても、室外の状態によらず、安定して空気調和を行うことができる。 As described above, in the air conditioner 200, the flow shown in FIG. 7 is executed in the cooling main operation, and the flow shown in FIG. 9 is executed in the heating main operation. Therefore, similarly to the air conditioner 100, the air conditioner 200 can perform stable air conditioning regardless of the outdoor condition.

10 室外機
11 圧縮機
12 高低圧ガス管側四方弁
13 四方弁
14 室外熱交換器
15 室外膨張弁
17 室外熱交換器バイパス弁
18 アキュムレータ
19 室外ファン
21 液主管
22 高低圧ガス主管
23 低圧ガス主管
24 高圧管
25 低圧管
26 逆止弁
28 制御機構
30a,30b,30c,30d 冷暖切り替えユニット
31a,31b,31c,31d 高低圧ガス管用膨張弁
32a,32b,32c,32d 低圧ガス管用膨張弁
40a,40b,40c,40d 室内機
41a,41b,41c,41d 室内熱交換器
42a,42b,42c,42d 室内膨張弁
49a,49b,49c,49d 室外ファン
61 気液分離機
62 第一減圧機構
63 第二減圧機構
10 Outdoor unit 11 Compressor 12 High/low pressure gas pipe side four-way valve 13 Four-way valve 14 Outdoor heat exchanger 15 Outdoor expansion valve 17 Outdoor heat exchanger bypass valve 18 Accumulator 19 Outdoor fan 21 Liquid main pipe 22 High/low pressure gas main pipe 23 Low pressure gas main pipe 24 high-pressure pipe 25 low-pressure pipe 26 check valve 28 control mechanisms 30a, 30b, 30c, 30d cooling/heating switching units 31a, 31b, 31c, 31d high-low pressure gas pipe expansion valves 32a, 32b, 32c, 32d low-pressure gas pipe expansion valve 40a, 40b, 40c, 40d indoor units 41a, 41b, 41c, 41d indoor heat exchangers 42a, 42b, 42c, 42d indoor expansion valves 49a, 49b, 49c, 49d outdoor fan 61 gas-liquid separator 62 first pressure reducing mechanism 63 second Decompression mechanism

Claims (5)

空調対象となる複数の室内機のうちの一部の室内機で冷房運転又は暖房運転のいずれか一方のモードで運転を行いつつ、当該一部の室内機以外の残りの室内機においては、前記一部の室内機での運転モードとは異なるモードとして暖房運転又は冷房運転を行う冷暖同時運転が可能な空気調和機において、
前記複数の室内機のそれぞれに設置された、複数の室内熱交換器と、
当該室内熱交換器に対して室内の空気を送風し、当該室内の空気と冷媒との間で熱交換を行う室内ファンと、
前記室内熱交換器に対して配管により接続され、当該配管を通流して送られる冷媒を圧縮する圧縮機と、
当該圧縮機からみて冷媒流れの上流側又は下流側に設けられ、前記配管を通流する冷媒を膨張させる第一膨張機構と、
前記室内熱交換器、前記圧縮機及び前記第一膨張機構とともに冷凍サイクルを構成する室外熱交換器と、
当該室外熱交換器に対して室外の空気を送風して、当該室外の空気と冷媒との間で熱交換を行う室外ファンと、
前記冷凍サイクルにおいて前記室外熱交換器が凝縮器として機能するように流路を形成させる冷房主体運転と、前記冷凍サイクルにおいて前記室外熱交換器が蒸発器として機能するように流路を形成させる暖房主体運転と、を切り替える冷暖主体切り替え装置と、
前記冷房主体運転のときには前記室外熱交換器において熱交換された後の冷媒、又は、前記暖房主体運転のときには前記室外熱交換器において熱交換される前の冷媒を膨張させる第二膨張機構と、
前記室外熱交換器からの冷媒が直接、又は、前記一部の室内機の室内熱交換器で熱交換された後の冷媒が前記残りの室内機の室内熱交換器に供給されるように流路を切り替える流路切り替え機構と、
前記流路切り替え機構によって流路が切り替えられ、前記一部の室内機の室内熱交換器で熱交換された後の冷媒が前記残りの室内機の室内熱交換器に供給されているときに、前記残りの室内機の室内熱交換器による空調能力に応じて、前記室外ファンの回転数を制御する演算制御装置と、を備え、
前記演算制御装置は、前記室外ファンの回転数が予め定められた下限以下になった場合に、前記冷房主体運転のときには暖房運転となっている前記残りの室内機の室内熱交換器による空調能力に応じて前記第二膨張機構を制御し、前記暖房主体運転のときには冷房運転となっている前記残りの室内機の室内熱交換器による空調能力に応じて前記第二膨張機構を制御することで、前記室外熱交換器における冷媒循環量を調整し、
前記冷房主体運転のとき、前記残りの室内機の空調能力が不足するときには前記凝縮器における冷媒循環量を減らすことで前記残りの室内機の空調能力を増やすとともに、前記残りの室内機の空調能力が過多のときには前記凝縮器における冷媒循環量を増やすことで前記残りの室内機の空調能力を減らすことを特徴とする、空気調和機。
While operating in either one of the cooling operation or the heating operation in some indoor units of the plurality of indoor units to be air-conditioned, in the remaining indoor units other than the some indoor units, In an air conditioner capable of simultaneous cooling and heating operation that performs heating operation or cooling operation as a mode different from the operation mode in some indoor units,
A plurality of indoor heat exchangers installed in each of the plurality of indoor units,
An indoor fan that blows indoor air to the indoor heat exchanger, and performs heat exchange between the indoor air and the refrigerant,
A compressor which is connected to the indoor heat exchanger by a pipe and which compresses a refrigerant sent through the pipe,
A first expansion mechanism that is provided on the upstream side or the downstream side of the refrigerant flow as viewed from the compressor and expands the refrigerant flowing through the pipe,
An outdoor heat exchanger that constitutes a refrigeration cycle together with the indoor heat exchanger, the compressor, and the first expansion mechanism,
An outdoor fan that blows outdoor air to the outdoor heat exchanger to perform heat exchange between the outdoor air and the refrigerant,
In the refrigeration cycle, a cooling-main operation in which the outdoor heat exchanger forms a flow path so as to function as a condenser, and a heating in which the outdoor heat exchanger forms a flow path so as to function as an evaporator in the refrigeration cycle. A cooling/heating main switching device for switching between main operation and
A refrigerant after heat exchange in the outdoor heat exchanger during the cooling main operation, or a second expansion mechanism for expanding the refrigerant before heat exchange in the outdoor heat exchanger during the heating main operation,
The refrigerant from the outdoor heat exchanger is flowed directly or, after being heat-exchanged in the indoor heat exchangers of the some indoor units, the refrigerant is supplied to the indoor heat exchangers of the remaining indoor units. A flow path switching mechanism that switches the path,
The flow path is switched by the flow path switching mechanism, when the refrigerant after heat exchange in the indoor heat exchanger of the some indoor units is being supplied to the indoor heat exchanger of the remaining indoor unit, According to the air conditioning capacity of the indoor heat exchanger of the remaining indoor unit, the arithmetic and control unit for controlling the rotation speed of the outdoor fan,
When the number of rotations of the outdoor fan is equal to or lower than a predetermined lower limit, the arithmetic and control unit controls the air conditioning capacity by the indoor heat exchanger of the remaining indoor unit that is in the heating operation during the cooling-main operation. By controlling the second expansion mechanism according to the above, and controlling the second expansion mechanism according to the air conditioning capacity of the indoor heat exchanger of the remaining indoor unit that is in the cooling operation during the heating-main operation. Adjusting the refrigerant circulation amount in the outdoor heat exchanger ,
In the cooling-main operation, when the air conditioning capacity of the remaining indoor units is insufficient, the air conditioning capacity of the remaining indoor units is increased by reducing the refrigerant circulation amount in the condenser, and the air conditioning capacity of the remaining indoor units is reduced. When the air conditioner is excessive , the air conditioner is characterized in that the air conditioning capacity of the remaining indoor units is reduced by increasing the refrigerant circulation amount in the condenser .
空調対象となる複数の室内機のうちの一部の室内機で冷房運転又は暖房運転のいずれか一方のモードで運転を行いつつ、当該一部の室内機以外の残りの室内機においては、前記一部の室内機での運転モードとは異なるモードとして暖房運転又は冷房運転を行う冷暖同時運転が可能な空気調和機において、
前記複数の室内機のそれぞれに設置された、複数の室内熱交換器と、
当該室内熱交換器に対して室内の空気を送風し、当該室内の空気と冷媒との間で熱交換を行う室内ファンと、
前記室内熱交換器に対して配管により接続され、当該配管を通流して送られる冷媒を圧縮する圧縮機と、
当該圧縮機からみて冷媒流れの上流側又は下流側に設けられ、前記配管を通流する冷媒を膨張させる第一膨張機構と、
前記室内熱交換器、前記圧縮機及び前記第一膨張機構とともに冷凍サイクルを構成する室外熱交換器と、
当該室外熱交換器に対して室外の空気を送風して、当該室外の空気と冷媒との間で熱交換を行う室外ファンと、
前記冷凍サイクルにおいて前記室外熱交換器が凝縮器として機能するように流路を形成させる冷房主体運転と、前記冷凍サイクルにおいて前記室外熱交換器が蒸発器として機能するように流路を形成させる暖房主体運転と、を切り替える冷暖主体切り替え装置と、
前記冷房主体運転のときには前記室外熱交換器において熱交換された後の冷媒、又は、前記暖房主体運転のときには前記室外熱交換器において熱交換される前の冷媒を膨張させる第二膨張機構と、
前記室外熱交換器からの冷媒が直接、又は、前記一部の室内機の室内熱交換器で熱交換された後の冷媒が前記残りの室内機の室内熱交換器に供給されるように流路を切り替える流路切り替え機構と、
前記流路切り替え機構によって流路が切り替えられ、前記一部の室内機の室内熱交換器で熱交換された後の冷媒が前記残りの室内機の室内熱交換器に供給されているときに、前記残りの室内機の室内熱交換器による空調能力に応じて、前記室外ファンの回転数を制御する演算制御装置と、を備え、
前記演算制御装置は、前記室外ファンの回転数が予め定められた下限以下になったときに、前記第二膨張機構により、前記室外熱交換器における冷媒循環量を調整し、さらに、前記第二膨張機構による冷媒循環量が下限になったときに、前記冷房主体運転及び前記暖房主体運転のいずれか一方から他方に運転モードを切り替えることを特徴とする、空気調和機。
While operating in either one of the cooling operation or the heating operation in some indoor units of the plurality of indoor units to be air-conditioned, in the remaining indoor units other than the some indoor units, In an air conditioner capable of simultaneous cooling and heating operation that performs heating operation or cooling operation as a mode different from the operation mode in some indoor units,
A plurality of indoor heat exchangers installed in each of the plurality of indoor units,
An indoor fan that blows indoor air to the indoor heat exchanger, and performs heat exchange between the indoor air and the refrigerant,
A compressor which is connected to the indoor heat exchanger by a pipe and which compresses a refrigerant sent through the pipe,
A first expansion mechanism that is provided on the upstream side or the downstream side of the refrigerant flow as viewed from the compressor and expands the refrigerant flowing through the pipe,
An outdoor heat exchanger that constitutes a refrigeration cycle together with the indoor heat exchanger, the compressor, and the first expansion mechanism,
An outdoor fan that blows outdoor air to the outdoor heat exchanger to perform heat exchange between the outdoor air and the refrigerant,
In the refrigeration cycle, a cooling-main operation in which the outdoor heat exchanger forms a flow path so as to function as a condenser, and a heating in which the outdoor heat exchanger forms a flow path so as to function as an evaporator in the refrigeration cycle. A cooling/heating main switching device for switching between main operation and
A refrigerant after heat exchange in the outdoor heat exchanger in the cooling main operation, or a second expansion mechanism for expanding the refrigerant before heat exchange in the outdoor heat exchanger in the heating main operation,
The refrigerant from the outdoor heat exchanger is flowed directly or, after being heat-exchanged in the indoor heat exchanger of the some indoor units, the refrigerant is supplied to the indoor heat exchangers of the remaining indoor units. A flow path switching mechanism that switches the path,
The flow path is switched by the flow path switching mechanism, when the refrigerant after heat exchange in the indoor heat exchanger of the some indoor units is being supplied to the indoor heat exchanger of the remaining indoor unit, According to the air conditioning capacity of the indoor heat exchanger of the remaining indoor unit, an arithmetic and control unit for controlling the rotation speed of the outdoor fan,
The arithmetic and control unit adjusts the refrigerant circulation amount in the outdoor heat exchanger by the second expansion mechanism when the rotation speed of the outdoor fan becomes equal to or lower than a predetermined lower limit, and further, the second An air conditioner, wherein when a refrigerant circulation amount by an expansion mechanism reaches a lower limit, an operation mode is switched from one of the cooling main operation and the heating main operation to the other.
前記複数の室内熱交換器と前記室外熱交換器とは、液冷媒が通流する液主管と、ガス冷媒が通流する二本のガス主管とによって接続されていることを特徴とする、請求項1又は2に記載の空気調和機。 Wherein the plurality of indoor heat exchangers and the outdoor heat exchanger are connected by a liquid main pipe through which a liquid refrigerant flows and two gas main pipes through which a gas refrigerant flows, The air conditioner according to Item 1 or 2. 冷房主体運転での主体である冷房運転、又は、暖房主体運転での主体である暖房運転のいずれかにおいて、主体とは異なる運転モードである暖房又は冷房を行っている室内機において、
前記演算制御装置は、
当該室内機の能力が空調負荷に対し過多なときには、前記室外熱交換器における冷媒循
環量が多くなるように前記第二膨張機構を制御し、
当該室内機の能力が空調負荷に対し不足するときには、前記室外熱交換器における冷媒循環量が少なくなるように前記第二膨張機構を制御することを特徴とする、請求項1又は2に記載の空気調和機。
In either the cooling operation, which is the main operation in the cooling main operation, or the heating operation, which is the main operation in the heating main operation, in an indoor unit performing heating or cooling that is an operation mode different from the main operation,
The arithmetic and control unit,
When the capacity of the indoor unit is excessive with respect to the air conditioning load, the second expansion mechanism is controlled so that the refrigerant circulation amount in the outdoor heat exchanger increases.
The second expansion mechanism is controlled so that the refrigerant circulation amount in the outdoor heat exchanger is reduced when the capacity of the indoor unit is insufficient for the air conditioning load. Air conditioner.
前記演算制御装置は、
前記室内機の能力が空調負荷に対し過多なときには、前記室外熱交換器における放熱量が大きくなるように前記室外ファンの回転数を大きくし、
前記室内機の能力が空調負荷に対し不足するときには、前記室外熱交換器における放熱量が小さくなるように前記室外ファンの回転数を小さくすることを特徴とする、請求項4に記載の空気調和機。
The arithmetic and control unit,
When the capacity of the indoor unit is excessive with respect to the air conditioning load, the rotation speed of the outdoor fan is increased so that the amount of heat radiation in the outdoor heat exchanger is increased,
The air conditioner according to claim 4, wherein when the capacity of the indoor unit is insufficient with respect to the air conditioning load, the rotation speed of the outdoor fan is reduced so that the heat radiation amount in the outdoor heat exchanger is reduced. Machine.
JP2016083665A 2016-04-19 2016-04-19 Air conditioner Active JP6723640B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016083665A JP6723640B2 (en) 2016-04-19 2016-04-19 Air conditioner
PCT/JP2017/007692 WO2017183308A1 (en) 2016-04-19 2017-02-28 Air conditioner
CN201780024214.4A CN109073264B (en) 2016-04-19 2017-02-28 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016083665A JP6723640B2 (en) 2016-04-19 2016-04-19 Air conditioner

Publications (3)

Publication Number Publication Date
JP2017194202A JP2017194202A (en) 2017-10-26
JP2017194202A5 JP2017194202A5 (en) 2018-10-04
JP6723640B2 true JP6723640B2 (en) 2020-07-15

Family

ID=60116007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083665A Active JP6723640B2 (en) 2016-04-19 2016-04-19 Air conditioner

Country Status (3)

Country Link
JP (1) JP6723640B2 (en)
CN (1) CN109073264B (en)
WO (1) WO2017183308A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102266359B1 (en) * 2020-01-16 2021-06-17 엘지전자 주식회사 Control Method of the Air Conditioner System for Simultaneous Cooling and Heating and Air Conditioner System using the same
CN114211929B (en) * 2021-11-25 2023-11-28 三一重机有限公司 Air conditioner control method, air conditioner control system and working machine
EP4227605A1 (en) * 2022-02-11 2023-08-16 Daikin Europe N.V. Refrigeration device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531256B2 (en) * 1989-02-17 1996-09-04 三菱電機株式会社 Air conditioner
JP2777176B2 (en) * 1989-02-27 1998-07-16 株式会社東芝 Air conditioner
JP2974179B2 (en) * 1991-10-09 1999-11-08 松下冷機株式会社 Multi-room air conditioner
JP3627101B2 (en) * 2000-10-20 2005-03-09 株式会社日立製作所 Air conditioner
JP4399667B2 (en) * 2004-09-08 2010-01-20 日立アプライアンス株式会社 Air conditioner
JP2006343052A (en) * 2005-06-10 2006-12-21 Hitachi Ltd Simultaneous cooling and heating multi-air conditioner
CN102713461B (en) * 2009-12-28 2015-06-10 大金工业株式会社 Heat-pump system
WO2013093966A1 (en) * 2011-12-21 2013-06-27 日立アプライアンス株式会社 Air conditioner

Also Published As

Publication number Publication date
CN109073264B (en) 2021-09-21
WO2017183308A1 (en) 2017-10-26
JP2017194202A (en) 2017-10-26
CN109073264A (en) 2018-12-21

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JP6034418B2 (en) Air conditioner
JP6058219B2 (en) Air conditioner
JP4675810B2 (en) Air conditioner
WO2017042967A1 (en) Air conditioner
KR20100096858A (en) Air conditioner
US20100206000A1 (en) Air conditioner and method of controlling the same
JP3575484B2 (en) Heat source unit of air conditioner and air conditioner
EP3483523A1 (en) Refrigeration cycle apparatus and air-conditioning apparatus provided with same
JP2012122670A (en) Air conditioner
JP6067178B2 (en) Heat source side unit and air conditioner
JP6723640B2 (en) Air conditioner
KR101186331B1 (en) Multi-air conditioner for heating and cooling operations at the same time
WO2014132433A1 (en) Air conditioning device
JP6448780B2 (en) Air conditioner
JP6041995B2 (en) Air conditioner
JP3969381B2 (en) Multi-room air conditioner
KR20190081866A (en) air-conditioning system
JP7386613B2 (en) Heat exchanger and air conditioner equipped with it
JP2002357353A (en) Air conditioner
KR100885566B1 (en) Controlling method for air conditioner
WO2021014520A1 (en) Air-conditioning device
JP6413692B2 (en) Air conditioner
CN215002011U (en) Air conditioner
JP2012063083A (en) Heat source unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200623

R150 Certificate of patent or registration of utility model

Ref document number: 6723640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150