JPWO2013081066A1 - Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element - Google Patents

Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
JPWO2013081066A1
JPWO2013081066A1 JP2013547217A JP2013547217A JPWO2013081066A1 JP WO2013081066 A1 JPWO2013081066 A1 JP WO2013081066A1 JP 2013547217 A JP2013547217 A JP 2013547217A JP 2013547217 A JP2013547217 A JP 2013547217A JP WO2013081066 A1 JPWO2013081066 A1 JP WO2013081066A1
Authority
JP
Japan
Prior art keywords
liquid crystal
side chain
polymer film
group
chain polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013547217A
Other languages
Japanese (ja)
Other versions
JP6150731B2 (en
Inventor
耕平 後藤
耕平 後藤
喜弘 川月
喜弘 川月
瑞穂 近藤
瑞穂 近藤
昌幸 安藤
昌幸 安藤
大桂夫 北川
大桂夫 北川
幸樹 椿
幸樹 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2013081066A1 publication Critical patent/JPWO2013081066A1/en
Application granted granted Critical
Publication of JP6150731B2 publication Critical patent/JP6150731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133715Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films by first depositing a monomer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

ラビング無しに膜への高効率な異方性の導入を可能とする液晶配向膜の製造方法を提供し、液晶配向膜及び液晶表示素子を提供する。[I]基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子膜を形成する工程、[II]前記側鎖型高分子膜に偏光した紫外線を照射する工程、及び[III]前記紫外線の照射された側鎖型高分子膜を加熱する工程を有する液晶配向膜の製造方法であって、[II]工程の紫外線照射量が、前記側鎖型高分子膜の、前記偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを最大にする紫外線照射量の1%〜70%の範囲内であることを特徴とする。。Provided is a method for producing a liquid crystal alignment film that enables highly efficient anisotropy to be introduced into the film without rubbing, and provides a liquid crystal alignment film and a liquid crystal display element. [I] forming a photosensitive side chain polymer film that exhibits liquid crystallinity in a predetermined temperature range on a substrate; [II] irradiating the side chain polymer film with polarized ultraviolet rays; And [III] a method for producing a liquid crystal alignment film comprising a step of heating the side chain polymer film irradiated with ultraviolet rays, wherein the amount of ultraviolet irradiation in the step [II] is that of the side chain polymer film In addition, the present invention is characterized in that it is within the range of 1% to 70% of the ultraviolet ray irradiation amount that maximizes ΔA, which is the difference between the ultraviolet light absorbance in the direction parallel to the polarization direction of the polarized ultraviolet light and the ultraviolet light absorbance in the direction perpendicular thereto. To do. .

Description

本発明は、液晶配向膜の製造方法、液晶配向膜及び液晶表示素子に関し、特に、液晶表示素子に用いられる液晶配向膜の製造方法、その製造方法によって得られる液晶配向膜及びその液晶配向膜を使用した液晶表示素子に関する。   The present invention relates to a method for manufacturing a liquid crystal alignment film, a liquid crystal alignment film, and a liquid crystal display element, and in particular, a method for manufacturing a liquid crystal alignment film used in a liquid crystal display element, a liquid crystal alignment film obtained by the manufacturing method, and a liquid crystal alignment film It is related with the used liquid crystal display element.

液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。   The liquid crystal display element is known as a light, thin and low power consumption display device, and has been remarkably developed in recent years. The liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.

すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。そして、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。   That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, and is formed on a surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates. The liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate. In such a liquid crystal alignment film, the ability to control the alignment of liquid crystal (hereinafter referred to as alignment control ability) is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.

配向制御能を付与するための液晶配向膜の配向処理方法としては、従来からラビング法が知られている。ラビング法とは、基板上のポリビニルアルコールやポリアミドやポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビングし)、擦った方向(ラビング方向)に液晶を配向させる方法である。このラビング法は簡便に比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。そして、液晶配向膜に用いられる有機膜としては、耐熱性等の信頼性や電気的特性に優れたポリイミド系の有機膜が主に選択されてきた。   A rubbing method is conventionally known as an alignment treatment method for a liquid crystal alignment film for imparting alignment control ability. The rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction). This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements. As an organic film used for the liquid crystal alignment film, a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.

しかしながら、ポリイミドなどからなる液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。
そこで、ラビングを行わない液晶配向膜の別の配向処理方法として、光配向法が盛んに検討されている。
光配向法には様々な方法があるが、直線偏光又はコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。
However, in the rubbing method of rubbing the surface of the liquid crystal alignment film made of polyimide or the like, generation of dust or static electricity may be a problem. In addition, due to the high definition of the liquid crystal surface element in recent years and the unevenness caused by the corresponding electrodes on the substrate and the switching active element for driving the liquid crystal, the surface of the liquid crystal alignment film cannot be uniformly rubbed with a cloth. In some cases, alignment of the liquid crystal could not be realized.
Therefore, a photo-alignment method has been actively studied as another alignment treatment method for a liquid crystal alignment film that is not rubbed.
There are various photo alignment methods. Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.

主な光配向法としては、分解型の光配向法が知られている。例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して異方的な分解を生じさせる。そして、分解せずに残されたポリイミドにより液晶を配向させるようにする(特許文献1を参照)。
また、光架橋型や光異性化型の光配向法も知られている。例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせる。そして、偏光方向と直交した方向に液晶を配向させる(非特許文献1を参照)。また、アゾベンゼンを側鎖に有する側鎖型高分子を用いた場合、偏光紫外線を照射し、偏光と平行な側鎖のアゾベンゼン部で異性化反応を生じさせ、偏光方向と直交した方向に液晶を配向させる(非特許文献2を参照)。
A decomposition type photo-alignment method is known as a main photo-alignment method. For example, the polyimide film is irradiated with polarized ultraviolet rays, and anisotropic decomposition is caused by utilizing the polarization direction dependence of the ultraviolet absorption of the molecular structure. Then, the liquid crystal is aligned by the remaining polyimide without being decomposed (see Patent Document 1).
In addition, photocrosslinking type and photoisomerization type photo-alignment methods are also known. For example, polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light. Then, the liquid crystal is aligned in a direction orthogonal to the polarization direction (see Non-Patent Document 1). In addition, when a side chain polymer having azobenzene in the side chain is used, irradiation with polarized ultraviolet light causes an isomerization reaction at the azobenzene portion of the side chain parallel to the polarized light, and the liquid crystal is aligned in a direction perpendicular to the polarization direction. Oriented (see Non-Patent Document 2).

以上の例のように、光配向法による液晶配向膜の配向処理方法では、ラビングを不要とし、発塵や静電気の発生の懸念が無い。そして、表面に凹凸のある液晶表示素子の基板に対しても配向処理を施すことができ、工業的な生産プロセスに好適な液晶配向膜の配向処理の方法となる。   As in the above example, the liquid crystal alignment film alignment treatment method by the photo alignment method eliminates the need for rubbing, and there is no fear of generation of dust or static electricity. An alignment process can be performed even on a substrate of a liquid crystal display element having an uneven surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process.

日本特許第3893659号公報Japanese Patent No. 3893659

M.Shadt et al., Jpn. J. Appl. Phys. 31, 2155(1992)M.M. Shadt et al. , Jpn. J. et al. Appl. Phys. 31, 2155 (1992) K.Ichimura et al., Chem. Rev. 100, 1847(2000)K. Ichimura et al. Chem. Rev. 100, 1847 (2000)

以上のように、光配向法は、液晶表示素子の配向処理方法として従来から工業的に利用されてきたラビング法と比べてラビング工程そのものを不要とし、そのため大きな利点を備える。そして、ラビングによって配向制御能がほぼ一定となるラビング法に比べ、光配向法では、偏光した光の照射量を変化させて配向制御能を制御することができる。しかしながら、光配向法では、ラビング法による場合と同程度の配向制御能を実現しようとする場合、大量の偏光した光の照射量が必要となったり、安定な液晶の配向が実現できない場合がある。   As described above, the photo-alignment method does not require a rubbing process as compared with a rubbing method that has been industrially used as an alignment treatment method for liquid crystal display elements, and thus has a great advantage. And compared with the rubbing method in which the alignment control ability becomes almost constant by rubbing, the photo alignment method can control the alignment control ability by changing the irradiation amount of polarized light. However, in the photo-alignment method, in order to achieve the same degree of alignment control ability as in the rubbing method, a large amount of polarized light irradiation may be required or stable liquid crystal alignment may not be realized. .

例えば、上記した特許文献1に記載の分解型の光配向法では、ポリイミド膜に出力500Wの高圧水銀灯からの紫外光を60分間照射する必要があるなど、長時間かつ大量の紫外線照射が必要となる。また、二量化型や光異性化型の光配向法の場合においても、数J(ジュール)〜数十J程度の多くの量の紫外線照射が必要となる場合がある。さらに、光架橋型や光異性化型の光配向法の場合、液晶の配向の熱安定性や光安定性に劣るため、液晶表示素子とした場合に、配向不良や表示焼き付きが発生するといった問題があった。
したがって、光配向法では、配向処理の高効率化や安定な液晶配向の実現が求められており、液晶配向膜への高い配向制御能の付与を高効率に行うことができる液晶配向膜の製造方法の開発が求められている。
For example, in the decomposition type photo-alignment method described in Patent Document 1, it is necessary to irradiate the polyimide film with ultraviolet light from a high-pressure mercury lamp with an output of 500 W for 60 minutes. Become. Even in the case of a dimerization type or photoisomerization type photo-alignment method, a large amount of ultraviolet irradiation of about several J (joule) to several tens of J may be required. Furthermore, in the case of the photo-crosslinking type or photoisomerization type photo-alignment method, since the thermal stability and light stability of the liquid crystal alignment are inferior, there is a problem that alignment failure or display burn-in occurs when a liquid crystal display element is used. was there.
Therefore, in the photo-alignment method, there is a demand for higher efficiency of alignment treatment and realization of stable liquid crystal alignment, and production of a liquid crystal alignment film that can impart high alignment control ability to the liquid crystal alignment film with high efficiency. There is a need for method development.

そこで、本発明は、光を用いて高効率で良好な液晶の配向制御を可能とする液晶配向膜の製造方法を提供することを目的とする。
また、本発明は、その液晶配向膜の製造方法を用いて、光を用いた高効率な配向処理を実現して製造された液晶配向膜を提供することを目的とする。
さらに、本発明は、光を用いた高効率な配向処理を実現して製造された液晶配向膜を備えた液晶表示素子を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for producing a liquid crystal alignment film that enables high-efficiency and good liquid crystal alignment control using light.
Another object of the present invention is to provide a liquid crystal alignment film manufactured by realizing a highly efficient alignment process using light using the method for manufacturing a liquid crystal alignment film.
Furthermore, an object of the present invention is to provide a liquid crystal display element including a liquid crystal alignment film manufactured by realizing a highly efficient alignment process using light.

本発明者は、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
本発明の液晶配向膜の製造方法は、液晶性を発現し得る感光性の側鎖型高分子膜を用い、ラビング処理を行うこと無く、偏光照射によって配向処理を行う方法を利用する。そして、偏光照射の後、その側鎖型高分子膜を加熱する工程を設けて液晶配向膜を製造する。このとき、偏光の照射量と偏光照射後の加熱工程での加熱温度を最適化することにより、液晶配向膜において高効率な配向処理を実現し、高い効率で、かつ良好な配向制御能の付与を実現することができる。
本発明は、以下を要旨とするものである。
(1)[I]基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子膜を形成する工程、
[II]前記側鎖型高分子膜に偏光した紫外線を照射する工程、及び
[III]前記紫外線の照射された側鎖型高分子膜を加熱する工程
を有する液晶配向膜の製造方法であって、
[II]工程の紫外線照射量が、前記側鎖型高分子膜の、前記偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを最大にする紫外線照射量の1%〜70%の範囲内であることを特徴とする液晶配向膜の製造方法。
As a result of intensive studies, the inventor has obtained the following knowledge and completed the present invention.
The method for producing a liquid crystal alignment film of the present invention uses a method in which an alignment treatment is performed by irradiation with polarized light without using a rubbing treatment, using a photosensitive side chain polymer film capable of exhibiting liquid crystallinity. And after polarized light irradiation, the process which heats the side chain type polymer film is provided, and a liquid crystal aligning film is manufactured. At this time, by optimizing the irradiation amount of polarized light and the heating temperature in the heating process after the irradiation of polarized light, a highly efficient alignment process is realized in the liquid crystal alignment film, and high alignment efficiency and good alignment control ability are imparted. Can be realized.
The gist of the present invention is as follows.
(1) [I] A step of forming a photosensitive side chain polymer film that exhibits liquid crystallinity in a predetermined temperature range on a substrate;
[II] A method for producing a liquid crystal alignment film, comprising: irradiating the side chain polymer film with polarized ultraviolet light; and [III] heating the side chain polymer film irradiated with ultraviolet light. ,
[II] The amount of UV irradiation in the step maximizes ΔA, which is the difference between the UV absorbance in the direction parallel to the polarization direction of the polarized UV and the UV absorbance in the direction perpendicular to the polarization direction of the polarized UV. The manufacturing method of the liquid crystal aligning film characterized by being in the range of 1%-70% of ultraviolet irradiation amount.

(2)[II]工程の紫外線照射量が、前記ΔAを最大にする紫外線照射量の1%〜50%の範囲内である上記(1)に記載の液晶配向膜の製造方法。
(3)[III]工程の加熱温度が、前記側鎖型高分子膜が液晶性を発現する温度範囲の下限より10℃高い温度から当該温度範囲の上限より10℃低い温度までの範囲の温度である上記(1)又は(2)に記載の液晶配向膜の製造方法。
(4)前記、液晶性を発現する感光性の側鎖型高分子に含有される感光性基がアゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン、フェニルベンゾエート、又はその誘導体である上記(1)〜(3)のいずれか1項に記載の液晶配向膜の製造方法。
(2) The method for producing a liquid crystal alignment film according to (1), wherein the ultraviolet irradiation amount in the step [II] is in the range of 1% to 50% of the ultraviolet irradiation amount that maximizes the ΔA.
(3) The heating temperature in the step [III] is a temperature ranging from a temperature 10 ° C. higher than the lower limit of the temperature range in which the side chain polymer film exhibits liquid crystallinity to a temperature 10 ° C. lower than the upper limit of the temperature range. The manufacturing method of the liquid crystal aligning film as described in said (1) or (2) which is.
(4) The photosensitive group contained in the photosensitive side chain polymer exhibiting liquid crystallinity is azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan, phenylbenzoate, or a derivative thereof. The method for producing a liquid crystal alignment film according to any one of (1) to (3) above.

(5)[I]基板上に、所定の温度範囲で液晶性を発現する光架橋性の側鎖型高分子膜を形成する工程、
[II]前記光架橋性側鎖型高分子膜に偏光した紫外線を照射する工程、及び
[III]前記紫外線の照射された側鎖型高分子膜を加熱する工程
[IV]前記紫外線を照射され、その後加熱された側鎖型高分子膜に無偏光の紫外線を照射する工程
を有する液晶配向膜の製造方法であって、
[II]工程の紫外線照射量が、前記側鎖型高分子膜の、前記偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを最大にする紫外線照射量の1%〜70%の範囲内であることを特徴とする液晶配向膜の製造方法。
(6)[II]工程の紫外線照射量が、前記ΔAを最大にする紫外線照射量の1%〜50%の範囲内である上記(5)に記載の液晶配向膜の製造方法。
(7)[III]工程の加熱温度が、前記側鎖型高分子膜が液晶性を発現する温度範囲の下限より10℃高い温度から当該温度範囲の上限より10℃低い温度までの範囲の温度である上記(5)又は(6)に記載の液晶配向膜の製造方法。
(8)[IV]工程の紫外線照射により、前記側鎖型高分子膜の有する光架橋性基の20モル%以上が反応する上記(5)〜(7)のいずれか1項に記載の液晶配向膜の製造方法。
(9)前記、液晶性を発現する光架橋性の側鎖型高分子に含有される感光性基が桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン、又はその誘導体である上記(5)〜(8)のいずれか1項に記載の液晶配向膜の製造方法。
(5) [I] A step of forming a photocrosslinkable side chain polymer film that exhibits liquid crystallinity in a predetermined temperature range on a substrate;
[II] A step of irradiating the photocrosslinkable side chain polymer film with polarized ultraviolet light, and [III] a step of heating the side chain polymer film irradiated with ultraviolet light. [IV] The irradiation of the ultraviolet light. Then, a method for producing a liquid crystal alignment film comprising a step of irradiating non-polarized ultraviolet rays to the heated side chain polymer film,
[II] The amount of UV irradiation in the step maximizes ΔA, which is the difference between the UV absorbance in the direction parallel to the polarization direction of the polarized UV and the UV absorbance in the direction perpendicular to the polarization direction of the polarized UV. The manufacturing method of the liquid crystal aligning film characterized by being in the range of 1%-70% of ultraviolet irradiation amount.
(6) The method for producing a liquid crystal alignment film according to (5), wherein the ultraviolet irradiation amount in the step [II] is in the range of 1% to 50% of the ultraviolet irradiation amount that maximizes the ΔA.
(7) The temperature in the range from [10] higher than the lower limit of the temperature range in which the side chain polymer film exhibits liquid crystallinity to the temperature lower by 10 ° C. than the upper limit of the temperature range. The manufacturing method of the liquid crystal aligning film as described in said (5) or (6) which is.
(8) The liquid crystal according to any one of the above (5) to (7), wherein 20 mol% or more of the photocrosslinkable group of the side chain polymer film reacts by ultraviolet irradiation in the step [IV]. A method for producing an alignment film.
(9) The above (5) to (5), wherein the photosensitive group contained in the photocrosslinkable side chain polymer exhibiting liquid crystallinity is cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan, or a derivative thereof. The method for producing a liquid crystal alignment film according to any one of (8).

(10)前記側鎖型高分子膜は、炭化水素、アクリレート、及びメタクリレートからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)〜(7)の少なくとも1種で表される側鎖とを有する構造である上記(1)〜(9)のいずれか1項に記載の液晶配向膜の製造方法。

Figure 2013081066
(10) The side chain type polymer film includes at least one main chain composed of at least one selected from the group consisting of hydrocarbons, acrylates and methacrylates, and at least one of the following formulas (1) to (7): The manufacturing method of the liquid crystal aligning film of any one of said (1)-(9) which is a structure which has a side chain represented by these.
Figure 2013081066

(式(1)中、A、Bはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、及び炭素数5〜8の環状炭化水素からなる群から選ばれる少なくとも1種の基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、−COO−、−OCO−、−N=N−、−C=C−、−C≡C−、又はC64−を表し、l1(lともいう)は1〜12の整数を表し、m1は1〜3の整数を表し、n1は1〜12の整数を表す。式(2)中、A、B、Dはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、及び炭素数5〜8の環状炭化水素からなる群から選ばれる少なくとも1種の基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、−COO−、−OCO−、−N=N−、−C=C−、−C≡C−、又はC64−を表し、Rは水素原子、又は炭素数1〜6のアルキル基を表す。l2(lともいう)は1〜12の整数を表し、m2は1〜3の整数を表し、n2は1〜12の整数を表す。式(3)中、Aは単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Xは単結合、−COO−、−OCO−、−N=N−、−C=C−、−C≡C−、又はC64−を表し、Rは水素原子、又は炭素数1〜6のアルキル基を表す。l3(lともいう)は1〜12の整数を表し、m3は1〜3の整数を表す。式(4)中、l4(lともいう)は1〜12の整数を表す。式(5)中、Aは単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Xは−COO−を表し、Yはベンゼン環、ナフタレン環、及びビフェニル環からなる群から選ばれる少なくとも1種の基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l5(lともいう)は1〜12の整数を表し、m4は1〜3の整数を表す。式(6)中、Aは単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Rは水素原子、−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、炭素数1〜6のアルキル基、及び炭素数1〜6のアルキルオキシ基からなる群から選ばれる少なくとも1種の基を表す。l6(lともいう)は1〜12の整数を表す。式(6)中のベンゼン環に結合する水素原子はそれぞれ独立に−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。式(7)中、Aは単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Bは単結合、−COO−、−OCO−、−N=N−、−C=C−、−C≡C−、又はC64−を表す。Wはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、及び炭素数5〜8の環状炭化水素からなる群から選ばれる少なくとも1種の基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l7は1〜12の整数を表し、m5、m6はそれぞれ1〜3の整数を表す。)(In Formula (1), A 1 and B 1 each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or NH—CO—, and Y 1 is at least one group selected from the group consisting of a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, and a cyclic hydrocarbon having 5 to 8 carbon atoms, and the hydrogen atoms bonded thereto are independent of each other. May be substituted with —NO 2 , —CN, —C═C (CN) 2 , —C═CH—CN, a halogen group, an alkyl group, or an alkyloxy group, wherein X 1 is a single bond, —COO—. , -OCO -, - N = N -, - C = C -, - C≡C-, or C 6 H 4 - represents, (also referred to as l 1) l1 represents an integer of 1 to 12, m1 is 1 represents an integer of 1 to 3, and n1 represents an integer of 1 to 12. In formula (2), A 2 , B 2 , D 1 independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or NH—CO—, and Y 2 represents a benzene ring, naphthalene ring, biphenyl ring. , Furan ring, pyrrole ring, and at least one group selected from the group consisting of cyclic hydrocarbons having 5 to 8 carbon atoms, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —C ═C (CN) 2 , —C═CH—CN, a halogen group, an alkyl group, or an alkyloxy group, where X 2 is a single bond, —COO—, —OCO—, —N═N—. , -C = C -, - C≡C- , or C 6 H 4 - represents, R 1 represents a hydrogen atom, or (also referred to as l 2) .l2 represents an alkyl group having 1 to 6 carbon atoms is 1 12 represents an integer, m2 represents an integer of 1 to 3, and n2 represents an integer of 1 to 12. . To formula (3) in, A 3 is a single bond, -O -, - CH 2 - , - COO -, - OCO -, - CONH-, or an NH-CO-, X 3 is a single bond, - COO—, —OCO—, —N═N—, —C═C—, —C≡C—, or C 6 H 4 —, wherein R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. represents .L3 (also referred to as l 3) represents an integer of 1 to 12, in m3 is an integer of 1-3. equation (4), (also referred to as l 4) l4 represents an integer of 1 to 12. In Formula (5), A 4 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or NH—CO—, X 4 represents —COO—, Y 3 is at least one group selected from the group consisting of a benzene ring, a naphthalene ring, and a biphenyl ring, and each hydrogen atom bonded thereto is independently —N O 2 , —CN, —C═C (CN) 2 , —C═CH—CN, a halogen group, an alkyl group, or an alkyloxy group may be substituted. l5 (also referred to as l 5) represents an integer of 1 to 12, m4 represents an integer of 1-3. In Formula (6), A 5 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or NH—CO—, and R 3 represents a hydrogen atom, —NO 2 , -CN, -C = C (CN) 2 , -C = CH-CN, a halogen group, an alkyl group having 1 to 6 carbon atoms, and an alkyloxy group having 1 to 6 carbon atoms. Represents a group of species. l6 (also referred to as l 6) represents an integer of 1 to 12. -NO 2 each independently hydrogen atom bonded to the benzene ring in formula (6), -CN, -C = C (CN) 2, -C = CH-CN, a halogen group, an alkyl group, or an alkyl group May be substituted. In Formula (7), A 6 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or NH—CO—, and B 3 represents a single bond, —COO—. , —OCO—, —N═N—, —C═C—, —C≡C—, or C 6 H 4 —. W 1 is at least one group selected from the group consisting of a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, and a cyclic hydrocarbon having 5 to 8 carbon atoms, and the hydrogen atoms bonded thereto are each Independently, it may be substituted with —NO 2 , —CN, —C═C (CN) 2 , —C═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. l7 represents an integer of 1 to 12, and m5 and m6 each represents an integer of 1 to 3. )

(11)上記(1)〜(10)のいずれか1項に記載の液晶配向膜の製造方法により製造された液晶配向膜。
(12)上記(11)に記載の液晶配向膜を有する液晶表示素子。
(11) A liquid crystal alignment film manufactured by the method for manufacturing a liquid crystal alignment film according to any one of (1) to (10) above.
(12) A liquid crystal display device having the liquid crystal alignment film according to (11).

本発明によれば、高効率な配向処理を可能とする液晶配向膜の製造方法が提供される。
また、その液晶配向膜の製造方法を用いて、高効率な配向処理を可能とする液晶配向膜を提供することができる。さらに、その液晶配向膜を用いて、高効率な配向処理を実現して製造された液晶配向膜を備えた液晶表示素子を提供することが可能となる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the liquid crystal aligning film which enables highly efficient orientation processing is provided.
Moreover, the liquid crystal aligning film which enables highly efficient alignment processing can be provided using the manufacturing method of the liquid crystal aligning film. Furthermore, it is possible to provide a liquid crystal display device including a liquid crystal alignment film manufactured by realizing a highly efficient alignment process using the liquid crystal alignment film.

本発明の第1の形態の液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が小さい場合、すなわち、本発明の上記[I]〜[IV]の工程を有する液晶配向膜の製造方法において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜15%の範囲内である場合の模式図である。(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、図(d)は加熱後に無偏光照射した側鎖型高分子膜の状態を模式的示す図である。前記第1の形態については、後述する。It is a figure of one example which illustrates typically the anisotropic introduction process in the manufacturing method of the liquid crystal aligning film of the 1st form of this invention. (A) is a figure which shows typically the state of the side chain type polymer film before polarized light irradiation, especially when the introduced anisotropy is small, that is, the above [I] to [IV] of the present invention. In the manufacturing method of the liquid crystal aligning film which has a process of (II), it is a schematic diagram when the ultraviolet irradiation amount of a [II] process exists in the range of 1%-15% of the ultraviolet irradiation amount which makes (DELTA) A the maximum. (B) is a figure which shows typically the state of the side chain type polymer film after polarized light irradiation, (c) is a figure which shows typically the state of the side chain type polymer film after a heating. (D) is a figure which shows typically the state of the side chain type polymer film irradiated with non-polarized light after a heating. The first form will be described later.

本発明の第1の形態の液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、特に導入された異方性が大きい場合、すなわち、本発明の上記[I]〜[IV]の工程を有する液晶配向膜の製造方法において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%〜70%の範囲内である場合の模式図である。(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、図(d)は加熱後に無偏光照射した側鎖型高分子膜の状態を模式的示す図である。It is a figure of one example which illustrates typically the anisotropy introduction process in the manufacturing method of the liquid crystal aligning film of the 1st form of the present invention, especially when the introduced anisotropy is large, ie, the present invention In the method for producing a liquid crystal alignment film having the steps [I] to [IV], the ultraviolet irradiation amount in the step [II] is in the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ΔA. It is a schematic diagram in the case. (A) is a figure which shows typically the state of the side chain type polymer film before polarized light irradiation, (b) is a figure which shows the state of the side chain type polymer film after polarized light irradiation typically. (C) is a diagram schematically showing the state of the side chain polymer film after heating, and (d) schematically shows the state of the side chain polymer film irradiated with non-polarized light after heating. FIG.

本発明の第2の形態の液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、特に、側鎖型高分子が上述の式(6)で表される構造の場合、すなわち、本発明の上記[I]〜[III]の工程を有する製造方法において、式(6)で表される構造の側鎖型高分子膜を用いた場合における、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合の模式図である。(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図である。前記第2の形態については、後述する。It is a figure of one example which illustrates typically the anisotropic introduction process in the manufacturing method of the liquid crystal aligning film of the 2nd form of this invention, and especially a side chain type polymer is above-mentioned Formula (6). In the case of the structure represented, that is, in the production method having the steps [I] to [III] of the present invention, in the case where the side chain type polymer film having the structure represented by the formula (6) is used, [II] It is a schematic diagram when the amount of ultraviolet irradiation in the step is within a range of 1% to 70% of the amount of ultraviolet irradiation that maximizes ΔA. (A) is a figure which shows typically the state of the side chain type polymer film before polarized light irradiation, (b) is a figure which shows the state of the side chain type polymer film after polarized light irradiation typically. (C) is a figure which shows typically the state of the side chain type polymer film after a heating. The second form will be described later.

本発明の第2の形態の液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、特に、側鎖型高分子が上述の式(7)で表される構造の場合、すなわち、本発明の上記[I]〜[III]の工程を有する製造方法において、式(7)で表される構造の側鎖型高分子を用いた場合における、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合の模式図である。(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図である。It is a figure of one example which illustrates typically the anisotropic introduction process in the manufacturing method of the liquid crystal aligning film of the 2nd form of this invention, and especially a side chain type polymer is above-mentioned Formula (7). In the case of the structure represented, that is, in the production method having the steps [I] to [III] of the present invention, when the side chain type polymer having the structure represented by the formula (7) is used, [ II] It is a schematic diagram when the ultraviolet ray irradiation amount in the step is within a range of 1% to 70% of the ultraviolet ray irradiation amount that maximizes ΔA. (A) is a figure which shows typically the state of the side chain type polymer film before polarized light irradiation, (b) is a figure which shows the state of the side chain type polymer film after polarized light irradiation typically. (C) is a figure which shows typically the state of the side chain type polymer film after a heating.

本発明の液晶配向膜の製造方法において用いる、液晶性を発現し得る感光性の側鎖型高分子膜は、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子膜である。そして、主鎖に結合する側鎖は感光性を有し、光に感応して架橋反応、異性化反応、又は光フリース転位を起こすことができる。主鎖に結合する感光性を有する基は特に限定されないが、光に感応して架橋反応、又は光フリース転位を起こす構造が望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。液晶性を発現し得る感光性の側鎖型高分子膜の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。   The photosensitive side chain polymer film that can exhibit liquid crystallinity used in the method for producing a liquid crystal alignment film of the present invention is a photosensitive side chain polymer film that exhibits liquid crystallinity in a predetermined temperature range. . And the side chain couple | bonded with a principal chain has photosensitivity, can respond to light, and can raise | generate a crosslinking reaction, an isomerization reaction, or a light fleece rearrangement. The photosensitive group that binds to the main chain is not particularly limited, but a structure that undergoes a crosslinking reaction or photofleece rearrangement in response to light is desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time. The structure of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable to have a rigid mesogenic component in the side chain structure.

この場合、該側鎖型高分子を液晶配向膜とした際に、安定な液晶配向を得ることができる。該高分子の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、先端部に結合された、光に感応して架橋反応や異性化反応をする感光性基とを有する構造や、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。   In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used as a liquid crystal alignment film. The polymer structure has, for example, a main chain and a side chain bonded to the main chain, and the side chain includes a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip. A structure having a photosensitive group bonded to a moiety, which undergoes a crosslinking reaction or an isomerization reaction in response to light, or a main chain and a side chain bonded to the main chain, and the side chain also serves as a mesogenic component, and A structure having a phenylbenzoate group that undergoes a photo-Fries rearrangement reaction can be obtained.

液晶性を発現し得る感光性の側鎖型高分子膜の構造のより具体的な例としては、炭化水素、アクリレート、メタクリレート、マレイミド及びシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)〜(7)の少なくとも1種からなる側鎖を有する構造であることが好ましい。   As a more specific example of the structure of the photosensitive side chain type polymer film capable of exhibiting liquid crystallinity, it is composed of at least one selected from the group consisting of hydrocarbon, acrylate, methacrylate, maleimide and siloxane. A structure having a main chain and a side chain composed of at least one of the following formulas (1) to (7) is preferable.

Figure 2013081066
Figure 2013081066

(式(1)中の、A、B、X1、、l1、m1、n1は、上記で定義したとおりであり、式(2)中の、A、B、D1、、Y、R、l2、m2、n2は上記で定義したとおりであり、式(3)中の、A、X、R、l3、m3は、上記で定義したとおりであり、式(4)中のl4は上記で定義したとおりであり、式(5)中のA、X、Y、l5、m4は上記で定義したとおりであり、式(6)中のA5、、l6は上記で定義したとおりであり。式(7)中のA、B、W、l7、m5、m6は上記で定義したとおりである。)(A 1 , B 1 , X 1, Y 1 , 11, m 1, n 1 in formula (1) are as defined above, and A 2 , B 2 , D 1 in formula (2) , X 2 , Y 2 , R 1 , l2, m2, and n2 are as defined above, and A 3 , X 3 , R 2 , l3, and m3 in formula (3) are as defined above. 14 in formula (4) is as defined above, and A 4 , X 4 , Y 3 , 15 and m4 in formula (5) are as defined above, and formula (6) a 5, R 3, l6 in are as defined above a 6 in. formula (7), B 3, W 1, l7, m5, m6 are as defined above.)

上記式(1)〜(7)で表される側鎖は、ビフェニル、ターフェニル、フェニルシクロヘキシル、フェニルベンゾエート、アゾベンゼンなどの基をメソゲン成分として有する構造を備える。そして、その先端部には、光に感応して二量化反応を起こし、架橋反応をする感光性基を有するか、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する、少なくともいずれか一方を有する。   The side chain represented by the above formulas (1) to (7) has a structure having groups such as biphenyl, terphenyl, phenylcyclohexyl, phenylbenzoate, and azobenzene as mesogenic components. And at the tip, it has a photosensitive group that undergoes a dimerization reaction in response to light and undergoes a crosslinking reaction, or has a main chain and a side chain bonded thereto, and the side chain also becomes a mesogenic component. And having at least one of phenylbenzoate groups that undergo a photo-Fries rearrangement reaction.

本発明において、側鎖型高分子膜は、液晶性や光反応性を失わない範囲で、光反応性を持たない側鎖構造と併用しても良い。例を挙げると下記式(8)のような構造が挙げられる。

Figure 2013081066
上記式(8)中、Eは、単結合、−O−、−CH−、−COO、−OCO−、−CONH−、−NH−CO−を表し、Zは単結合、−COO、−OCO−、−N=N−、−C=C−、−C≡C−、又はC64−を表し、k1は1〜12の整数を表し、p1、q1はそれぞれ独立して0〜3の整数を表し、Rは水素原子、−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、炭素数1〜6のアルキルオキシ基、カルボキシル基、又はその組み合わせからなる基を表す。In the present invention, the side chain polymer film may be used in combination with a side chain structure having no photoreactivity within a range not losing liquid crystallinity and photoreactivity. For example, a structure like the following formula (8) can be mentioned.
Figure 2013081066
In the above formula (8), E 1 represents a single bond, —O—, —CH 2 —, —COO, —OCO—, —CONH—, —NH—CO—, and Z represents a single bond, —COO, —OCO—, —N═N—, —C═C—, —C≡C—, or C 6 H 4 —, k1 represents an integer of 1 to 12, and p1 and q1 each independently represents 0. Represents an integer of ˜3, and R 4 represents a hydrogen atom, —NO 2 , —CN, —C═C (CN) 2 , —C═CH—CN, a halogen group, an alkyloxy group having 1 to 6 carbon atoms, carboxyl The group which consists of group or its combination is represented.

以下では、本発明の液晶配向膜の製造方法において用いられる、液晶性を発現し得る感光性の側鎖型高分子膜について、単に本発明の側鎖型高分子膜と称することにする。
本発明の液晶配向膜の製造方法は、本発明の側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射する。次いで、加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜を製造する。本発明の液晶配向膜の製造方法では、本発明の側鎖型高分子膜の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、側鎖型高分子膜への高効率な異方性の導入を実現する。さらに、本発明の液晶配向膜の製造方法で、光反応性基として光架橋性基を有する構造の場合、本発明の側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、無偏光の紫外線を照射することで、高分子膜中に導入された異方性を固定化できる。
Hereinafter, the photosensitive side chain polymer film capable of exhibiting liquid crystallinity used in the method for producing a liquid crystal alignment film of the present invention is simply referred to as a side chain polymer film of the present invention.
In the method for producing a liquid crystal alignment film of the present invention, after forming a coating film on a substrate using the side chain polymer of the present invention, polarized ultraviolet rays are irradiated. Next, a highly efficient anisotropy is introduced into the side chain polymer film by heating, and a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured. In the method for producing a liquid crystal alignment film of the present invention, a side chain polymer is obtained by utilizing the principle of molecular reorientation induced by the photoreaction and liquid crystallinity of the side chain polymer film of the present invention. Realizes highly efficient anisotropy introduction into the film. Furthermore, in the method for producing a liquid crystal alignment film of the present invention, in the case of a structure having a photocrosslinkable group as a photoreactive group, after forming a coating film on a substrate using the side chain polymer of the present invention, The anisotropy introduced into the polymer film can be fixed by irradiating the ultraviolet ray, and then heating and then irradiating the non-polarized ultraviolet ray.

図1は、本発明の液晶配向膜の製造方法において、光反応性基として光架橋性基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図1(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図1(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図1(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、図1(d)は無偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が小さい場合、すなわち、本発明の上記[I]〜[IV]の工程を有する液晶配向膜の製造方法において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜15%の範囲内である場合の模式図である。   FIG. 1 shows an anisotropic introduction process in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the method for producing a liquid crystal alignment film of the present invention. It is a figure of one example typically demonstrated. FIG. 1 (a) is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light, and FIG. 1 (b) is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light. FIG. 1 (c) is a diagram schematically showing a state of the side chain polymer film after heating, and FIG. 1 (d) is a side chain polymer film after non-polarized light irradiation. In the method for producing a liquid crystal alignment film having the steps [I] to [IV] of the present invention, particularly when the introduced anisotropy is small, [II] It is a schematic diagram in case the ultraviolet irradiation amount of a process exists in the range of 1%-15% of the ultraviolet irradiation amount which makes (DELTA) A the maximum.

図2は、本発明の液晶配向膜の製造方法において、光反応性基として光架橋性基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図2(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図2(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図2(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、図2(d)は無偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が大きい場合、すなわち、本発明の上記[I]〜[IV]の工程を有する液晶配向膜の製造方法において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%〜70%の範囲内である場合の模式図である。   FIG. 2 shows an anisotropic introduction process in a method for producing a liquid crystal alignment film using a side chain polymer having a photocrosslinkable group as a photoreactive group in the method for producing a liquid crystal alignment film of the present invention. It is a figure of one example typically demonstrated. FIG. 2A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light, and FIG. 2B is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light. 2 (c) is a diagram schematically showing a state of the side chain polymer film after heating, and FIG. 2 (d) is a side chain polymer film after non-polarized light irradiation. In the method for producing a liquid crystal alignment film having the steps [I] to [IV] of the present invention, particularly when the introduced anisotropy is large, [II] It is a schematic diagram in case the ultraviolet irradiation amount of a process exists in the range of 15%-70% of the ultraviolet irradiation amount which makes (DELTA) A the maximum.

図3は本発明の液晶配向膜の製造方法において、光反応性基として上述の式(6)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図3(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図3(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図3(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が小さい場合、すなわち、本発明の上記[I]〜[III]の工程を有する製造方法において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合の模式図である。   FIG. 3 shows a method for producing a liquid crystal alignment film according to the present invention, which is a liquid crystal alignment film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (6) as a photoreactive group. It is a figure of one example which illustrates typically the introduction processing of anisotropy in a manufacturing method. FIG. 3A is a diagram schematically showing the state of the side chain polymer film before polarized light irradiation, and FIG. 3B is a schematic diagram of the state of the side chain polymer film after polarized light irradiation. FIG. 3 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the above-described aspect of the present invention. In a manufacturing method which has the process of [I]-[III], it is a schematic diagram in case the ultraviolet irradiation amount of a [II] process exists in the range of 1%-70% of the ultraviolet irradiation amount which makes (DELTA) A the maximum. .

図4は本発明の液晶配向膜の製造方法において、光反応性基として上述の式(7)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図4(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図4(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図4(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が大きい場合、すなわち、本発明の上記[I]〜[III]の工程を有する製造方法において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合の模式図である。   FIG. 4 shows a method for producing a liquid crystal alignment film according to the present invention, wherein a liquid crystal alignment film using a side chain type polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (7) as a photoreactive group. It is a figure of one example which illustrates typically the introduction processing of anisotropy in a manufacturing method. FIG. 4A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light, and FIG. 4B is a schematic diagram of the state of the side chain polymer film after irradiation with polarized light. FIG. 4 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is large, that is, the above-mentioned of the present invention. In a manufacturing method which has the process of [I]-[III], it is a schematic diagram in case the ultraviolet irradiation amount of a [II] process exists in the range of 1%-70% of the ultraviolet irradiation amount which makes (DELTA) A the maximum. .

以下、光反応性基として光架橋性基を有する構造の側鎖型高分子を用いた実施の形態を第1の形態、光反応性基として光フリース転位基を有する構造の側鎖型高分子を用いた実施の形態を第2の形態と称して説明することにする。
本発明の第1の形態の液晶配向膜の製造方法における、側鎖型高分子膜への異方性の導入処理で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜15%の範囲内である場合は、先ず、基板上に本発明の側鎖型高分子膜1を形成する。図1(a)に示すように、基板上に形成された本発明の側鎖型高分子膜1では、側鎖2がランダムに配列する構造を有する。側鎖型高分子膜1の側鎖2のランダム配列に従い、側鎖2のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜1は等方性である。
Hereinafter, an embodiment using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group is the first embodiment, and a side chain polymer having a structure having a photofleece rearrangement group as a photoreactive group An embodiment using this will be described as a second embodiment.
In the method for producing a liquid crystal alignment film according to the first aspect of the present invention, in the process of introducing anisotropy into the side-chain polymer film, the ultraviolet irradiation amount at which the ultraviolet irradiation amount in the step [II] maximizes ΔA When the content is in the range of 1% to 15%, first, the side chain polymer film 1 of the present invention is formed on the substrate. As shown in FIG. 1A, the side chain polymer film 1 of the present invention formed on a substrate has a structure in which the side chains 2 are randomly arranged. According to the random arrangement of the side chain 2 of the side chain polymer film 1, the mesogenic component and the photosensitive group of the side chain 2 are also randomly oriented, and the side chain polymer film 1 is isotropic.

本発明の第1の形態の液晶配向膜の製造方法における、側鎖型高分子膜への異方性の導入処理で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%〜70%の範囲内である場合は、先ず、基板上に本実施の形態の側鎖型高分子膜3を形成する。図2(a)に示すように、基板上に形成された本発明の側鎖型高分子膜3では、側鎖4がランダムに配列する構造を有する。側鎖型高分子膜3の側鎖4のランダム配列に従い、側鎖4のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜2は等方性である。   In the method for producing a liquid crystal alignment film according to the first aspect of the present invention, in the process of introducing anisotropy into the side-chain polymer film, the ultraviolet irradiation amount at which the ultraviolet irradiation amount in the step [II] maximizes ΔA Is within the range of 15% to 70%, first, the side chain type polymer film 3 of the present embodiment is formed on the substrate. As shown in FIG. 2A, the side chain type polymer film 3 of the present invention formed on the substrate has a structure in which the side chains 4 are randomly arranged. According to the random arrangement of the side chain 4 of the side chain polymer film 3, the mesogenic component and the photosensitive group of the side chain 4 are also randomly oriented, and the side chain polymer film 2 is isotropic.

本発明の第2の形態の液晶配向膜の製造方法における、側鎖型高分子膜への異方性の導入処理で、上述の式(6)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いた場合において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合は、先ず、基板上に本発明の側鎖型高分子膜5を形成する。図3(a)に示すように、基板上に形成された本発明の側鎖型高分子膜5では、側鎖6がランダムに配列する構造を有する。側鎖型高分子膜5の側鎖6のランダム配列に従い、側鎖6のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜5は等方性である。   In the method for producing a liquid crystal alignment film according to the second aspect of the present invention, a structure having an optical fleece rearrangement group represented by the above formula (6) in the anisotropy introduction treatment to the side chain polymer film In the case of using the liquid crystal alignment film using the side chain type polymer of [II], when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, First, the side chain polymer film 5 of the present invention is formed on a substrate. As shown in FIG. 3A, the side chain polymer film 5 of the present invention formed on the substrate has a structure in which the side chains 6 are randomly arranged. According to the random arrangement of the side chain 6 of the side chain polymer film 5, the mesogenic component and the photosensitive group of the side chain 6 are also randomly oriented, and the side chain polymer film 5 is isotropic.

本発明の第2の形態の液晶配向膜の製造方法における、側鎖型高分子膜への異方性の導入処理で、上述の式(7)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いた場合において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合は、先ず、基板上に本発明の側鎖型高分子膜7を形成する。図4(a)に示すように、基板上に形成された本発明の側鎖型高分子膜7では、側鎖8がランダムに配列する構造を有する。側鎖型高分子膜7の側鎖8のランダム配列に従い、側鎖8のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜7は等方性である。   In the method for producing a liquid crystal alignment film according to the second aspect of the present invention, a structure having an optical fleece rearrangement group represented by the above formula (7) in the anisotropy introduction treatment to the side chain polymer film In the case of using the liquid crystal alignment film using the side chain type polymer of [II], when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, First, the side chain polymer film 7 of the present invention is formed on a substrate. As shown in FIG. 4A, the side chain polymer film 7 of the present invention formed on the substrate has a structure in which the side chains 8 are randomly arranged. According to the random arrangement of the side chains 8 of the side chain polymer film 7, the mesogenic components and the photosensitive groups of the side chains 8 are also randomly oriented, and the side chain polymer film 7 is isotropic.

本発明の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜15%の範囲内である場合において、この等方性の本発明の側鎖型高分子膜1に対し、偏光した紫外線を照射する。すると、図1(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖2のうちの感光性基を有する側鎖2aの感光性基が優先的に二量化反応などの光反応を起こす。その結果、光反応をした側鎖2aの密度が照射紫外線の偏光方向で僅かに高くなり、結果として本発明の側鎖型高分子膜1に非常に小さな異方性が付与される。   In the first embodiment of the present invention, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ΔA, this isotropic side of the present invention. The chain polymer film 1 is irradiated with polarized ultraviolet rays. Then, as shown in FIG. 1B, the photosensitive group of the side chain 2a having the photosensitive group among the side chains 2 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like. Causes a photoreaction. As a result, the density of the side chain 2a subjected to photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, very small anisotropy is imparted to the side chain type polymer film 1 of the present invention.

本発明の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%〜70%の範囲内である場合において、この等方性の本発明の側鎖型高分子膜3に対し、偏光した紫外線を照射する。すると、図2(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖4のうちの感光性基を有する側鎖4aの感光性基が優先的に二量化反応などの光反応を起こす。その結果、光反応をした側鎖4aの密度が照射紫外線の偏光方向で高くなり、結果として本発明の側鎖型高分子膜3に小さな異方性が付与される。   In the first embodiment of the present invention, when the ultraviolet irradiation amount in the step [II] is in the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ΔA, this isotropic side of the present invention. The chain polymer film 3 is irradiated with polarized ultraviolet rays. Then, as shown in FIG. 2B, the photosensitive group of the side chain 4a having the photosensitive group among the side chains 4 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like. Causes a photoreaction. As a result, the density of the side chain 4a subjected to photoreaction increases in the polarization direction of the irradiated ultraviolet rays, and as a result, a small anisotropy is imparted to the side chain type polymer film 3 of the present invention.

本発明の第2の形態で、上述の式(6)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合において、この等方性の本発明の側鎖型高分子膜5に対し、偏光した紫外線を照射する。すると、図3(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖6のうちの感光性基を有する側鎖6aの感光性基が優先的に光フリース転位などの光反応を起こす。その結果、光反応をした側鎖6aの密度が照射紫外線の偏光方向で僅かに高くなり、結果として本発明の側鎖型高分子膜5に非常に小さな異方性が付与される。   In the second embodiment of the present invention, ultraviolet irradiation in the step [II] is performed using a liquid crystal alignment film using a side chain polymer having a structure having a photo-Fleece rearrangement group, represented by the above formula (6). When the amount is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, the isotropic side chain polymer film 5 of the present invention is irradiated with polarized ultraviolet rays. Then, as shown in FIG. 3 (b), the photosensitive group of the side chain 6a having the photosensitive group among the side chains 6 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to light fleece rearrangement or the like. Causes a photoreaction. As a result, the density of the side chain 6a subjected to photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, very small anisotropy is imparted to the side chain type polymer film 5 of the present invention.

本発明の第2の形態で、上述の式(7)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合において、この等方性の本発明の側鎖型高分子膜7に対し、偏光した紫外線を照射する。すると、図4(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖8のうちの感光性基を有する側鎖8aの感光性基が優先的に光フリース転位などの光反応を起こす。その結果、光反応をした側鎖8aの密度が照射紫外線の偏光方向で高くなり、結果として本発明の側鎖型高分子膜7に小さな異方性が付与される。   In the second embodiment of the present invention, using the liquid crystal alignment film using the side chain type polymer having the structure having the optical fleece rearrangement group represented by the above formula (7), ultraviolet irradiation in the step [II] When the amount is in the range of 1% to 70% of the ultraviolet ray irradiation amount that maximizes ΔA, the isotropic side chain polymer film 7 of the present invention is irradiated with polarized ultraviolet rays. Then, as shown in FIG. 4 (b), the photosensitive group of the side chain 8a having the photosensitive group among the side chains 8 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to light fleece rearrangement or the like. Causes a photoreaction. As a result, the density of the side chain 8a subjected to photoreaction increases in the polarization direction of the irradiated ultraviolet rays, and as a result, a small anisotropy is imparted to the side chain polymer film 7 of the present invention.

次いで、本発明の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜15%の範囲内である場合において、偏光照射後の本発明の側鎖型高分子膜1を加熱し、液晶状態にする。すると図1(c)に示すように、側鎖型高分子膜1では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた架橋反応の量が異なっている。この場合、照射紫外線の偏光方向と平行方向に生じた架橋反応の量が非常に小さいため、この架橋反応部位は可塑剤としての働きをする。そのため、照射紫外線の偏光方向と垂直方向の液晶性が平行方向の液晶性より高くなり、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖2が再配向する。その結果、光架橋反応で誘起された本発明の側鎖型高分子膜1の非常に小さな異方性は、熱によって増幅され、本発明の側鎖型高分子膜1においてより大きな異方性が付与されることになる。   Next, in the first embodiment of the present invention, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ΔA, The side chain polymer film 1 is heated to a liquid crystal state. Then, as shown in FIG.1 (c), in the side chain type polymer film 1, the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. In this case, since the amount of the crosslinking reaction generated in the direction parallel to the polarization direction of the irradiated ultraviolet ray is very small, this crosslinking reaction site functions as a plasticizer. Therefore, the liquid crystallinity in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is higher than the liquid crystallinity in the parallel direction, and the side chain 2 containing the mesogenic component is reoriented by self-organizing in the direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the very small anisotropy of the side chain polymer film 1 of the present invention induced by the photocrosslinking reaction is amplified by heat, and the larger anisotropy is present in the side chain polymer film 1 of the present invention. Will be granted.

同様に、本発明の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%〜70%の範囲内である場合において、偏光照射後の本発明の側鎖型高分子膜3を加熱し、液晶状態にする。すると図2(c)に示すように、側鎖型高分子膜3では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた架橋反応の量が異なっている。そのため、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖4が再配向する。その結果、光架橋反応で誘起された本発明の側鎖型高分子膜3の小さな異方性は、熱によって増幅され、本発明の側鎖型高分子膜3においてより大きな異方性が付与されることになる。   Similarly, in the first embodiment of the present invention, when the ultraviolet irradiation amount in the step [II] is within the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ΔA, the present invention after irradiation with polarized light. The side chain polymer film 3 is heated to a liquid crystal state. Then, as shown in FIG. 2C, in the side chain type polymer film 3, the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. Therefore, the side chain 4 containing the mesogenic component is reoriented by self-organizing in a direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the small anisotropy of the side chain polymer film 3 of the present invention induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted in the side chain polymer film 3 of the present invention. Will be.

同様に、本発明の第2の形態で、上述の式(6)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合において、偏光照射後の本発明の側鎖型高分子膜5を加熱し、液晶状態にする。すると図3(c)に示すように、側鎖型高分子膜5では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた光フリース転位反応の量が異なっている。この場合、照射紫外線の偏光方向と垂直方向に生じた光フリース転位体の液晶配向力が反応前の側鎖の液晶配向力より強いため、照射紫外線の偏光方向と垂直な方向に自己組織化してメソゲン成分を含む側鎖6が再配向する。その結果、光フリース転位反応で誘起された本発明の側鎖型高分子膜5の非常に小さな異方性は、熱によって増幅され、本発明の側鎖型高分子膜5においてより大きな異方性が付与されることになる。   Similarly, in the second embodiment of the present invention, using the liquid crystal alignment film using the side chain type polymer having the structure having the optical fleece rearrangement group represented by the above formula (6), [II] step In the case where the UV irradiation amount is in the range of 1% to 70% of the UV irradiation amount that maximizes ΔA, the side chain polymer film 5 of the present invention after polarized light irradiation is heated to a liquid crystal state. . Then, as shown in FIG. 3 (c), in the side chain type polymer film 5, the amount of the generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet light and the direction perpendicular thereto. . In this case, since the liquid crystal alignment force of the light fleece rearrangement generated in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is stronger than the liquid crystal alignment force of the side chain before the reaction, it is self-organized in the direction perpendicular to the polarization direction of the irradiated ultraviolet light. The side chain 6 containing the mesogenic component is reoriented. As a result, the very small anisotropy of the side chain polymer film 5 of the present invention induced by the photofleece rearrangement reaction is amplified by heat, and is more anisotropic in the side chain polymer film 5 of the present invention. Sex will be given.

同様に、本発明の第2の形態で、上述の式(7)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合において、偏光照射後の本発明の側鎖型高分子膜7を加熱し、液晶状態にする。すると図4(c)に示すように、側鎖型高分子膜7では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた光フリース転位反応の量が異なっている。光フリース転位体8(a)のアンカリング力は転位前の側鎖8より強いため、ある一定量以上の光フリース転位体が生じると、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖8が再配向する。その結果、光フリース転位反応で誘起された本発明の側鎖型高分子膜7の小さな異方性は、熱によって増幅され、本発明の側鎖型高分子膜7においてより大きな異方性が付与されることになる。   Similarly, in the second embodiment of the present invention, using the liquid crystal alignment film using the side chain type polymer having the structure having the optical Fleece rearrangement group represented by the above formula (7), [II] step In the case where the UV irradiation amount is in the range of 1% to 70% of the UV irradiation amount that maximizes ΔA, the side-chain polymer film 7 of the present invention after polarized light irradiation is heated to a liquid crystal state. . Then, as shown in FIG. 4 (c), in the side chain polymer film 7, the amount of the generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet light and the direction perpendicular thereto. . Since the anchoring force of the optical fleece rearrangement 8 (a) is stronger than that of the side chain 8 before the rearrangement, when a certain amount or more of the optical fleece rearrangement occurs, it is self-assembled in a direction parallel to the polarization direction of the irradiated ultraviolet light. The side chain 8 containing the mesogenic component is reoriented. As a result, the small anisotropy of the side chain polymer film 7 of the present invention induced by the photofleece rearrangement reaction is amplified by heat, and the larger anisotropy is present in the side chain polymer film 7 of the present invention. Will be granted.

さらに、本発明の第1の形態において、図1(d)や図2(d)に示すように、本発明の側鎖型高分子の光反応性基が光架橋性基である場合、図1(c)や図2(c)に示されるような、メソゲンの自己組織化により側鎖高分子膜に異方性を誘起された後、無偏光照射することで、誘起された大きな異方性が固定化される。
したがって、本発明の液晶配向膜の製造方法では、本発明の側鎖型高分子膜への偏光した紫外線の照射と加熱処理、さらに、本発明の第1の形態の場合は加熱処理の後の無偏光照射とを順次行うことにより、高効率に異方性の導入された液晶配向膜を得ることができる。
そして、本発明の液晶配向膜の製造方法では、本発明の側鎖型高分子膜への偏光した紫外線の照射量と、加熱処理における加熱温度を最適化する。それにより高効率な、側鎖型高分子膜への異方性の導入を実現することができる。
Furthermore, in the first embodiment of the present invention, when the photoreactive group of the side chain polymer of the present invention is a photocrosslinkable group, as shown in FIG. 1 (d) and FIG. 2 (d), As shown in Fig. 1 (c) and Fig. 2 (c), anisotropy is induced in the side chain polymer film by self-organization of mesogens, and then the large anisotropy induced by non-polarized light irradiation. Sex is fixed.
Therefore, in the method for producing a liquid crystal alignment film of the present invention, the side-chain polymer film of the present invention is irradiated with polarized ultraviolet rays and subjected to heat treatment. Further, in the case of the first embodiment of the present invention, after the heat treatment By sequentially performing non-polarized light irradiation, a liquid crystal alignment film having anisotropy introduced with high efficiency can be obtained.
And in the manufacturing method of the liquid crystal aligning film of this invention, the irradiation amount of the polarized ultraviolet-ray to the side chain type polymer film of this invention, and the heating temperature in heat processing are optimized. Thereby, introduction of anisotropy into the side chain type polymer film can be realized with high efficiency.

本発明者は、鋭意検討を行った結果、次の知見を得た。すなわち、本発明の側鎖型高分子膜への高効率な異方性の導入に最適な偏光紫外線の照射量は、その側鎖型高分子膜において感光性基が光架橋反応や光異性化反応、若しくは光フリース転位反応する量を最適にする偏光紫外線の照射量に対応する。本発明の側鎖型高分子膜に対して偏光した紫外線を照射した結果、光架橋反応や光異性化反応、若しくは光フリース転位反応する側鎖の感光性基が少ないと、十分な光反応量とならない。その場合、その後に加熱しても十分な自己組織化は進行しない。   As a result of intensive studies, the present inventor has obtained the following knowledge. That is, the optimum irradiation amount of polarized ultraviolet light for introducing highly efficient anisotropy into the side chain polymer film of the present invention is that the photo-sensitive group in the side chain polymer film is subjected to photocrosslinking reaction or photoisomerization. It corresponds to the irradiation amount of polarized ultraviolet rays that optimizes the amount of reaction or photofleece rearrangement reaction. As a result of irradiating the side-chain polymer film of the present invention with polarized ultraviolet rays, a sufficient amount of photoreaction can be obtained when there are few photogroups in the side chain that undergoes photocrosslinking reaction, photoisomerization reaction, or photofries rearrangement reaction. Not. In that case, sufficient self-organization does not proceed even after heating.

一方、本発明の側鎖型高分子膜で、光架橋性基を有する構造に対して偏光した紫外線を照射した結果、架橋反応する側鎖の感光性基が過剰となると側鎖での架橋反応が進行しすぎることになる。その場合、得られる膜は剛直になって、その後の加熱による自己組織化の進行の妨げとなることがある。また、本発明の側鎖型高分子膜で、光フリース転位基を有する構造に対して偏光した紫外線を照射した結果、光フリース転位反応する側鎖の感光性基が過剰となると、側鎖型高分子膜の液晶性が低下しすぎることになる。その場合、得られる膜の液晶性も低下し、その後の過熱による自己組織化の進行の妨げとなることがある。さらに、光フリース転位基を有する構造に対して偏光した紫外線を照射する場合、紫外線の照射量が多すぎると、本発明の側鎖型高分子が光分解し、その後の過熱による自己組織化の進行の妨げとなることがある。   On the other hand, when the side chain polymer film of the present invention is irradiated with polarized ultraviolet rays to the structure having a photocrosslinkable group, the crosslink reaction in the side chain occurs when the photopolymer of the side chain undergoing the crosslink reaction becomes excessive. Will progress too much. In that case, the resulting film may become rigid and hinder the progress of self-assembly by subsequent heating. In addition, when the side chain type polymer film of the present invention is irradiated with polarized ultraviolet rays to the structure having the light fleece rearrangement group, the side chain type becomes excessive when the side chain photosensitive group that undergoes the light fleece rearrangement reaction becomes excessive. The liquid crystallinity of the polymer film will be too low. In that case, the liquid crystallinity of the obtained film is also lowered, which may hinder the progress of self-assembly due to subsequent overheating. Furthermore, when irradiating polarized ultraviolet light to a structure having a photofleece rearrangement group, if the amount of ultraviolet light irradiation is too large, the side chain polymer of the present invention is photodegraded and then self-organized by overheating. May interfere with progress.

したがって、本発明の側鎖型高分子膜において、偏光紫外線の照射によって側鎖の感光性基が光架橋反応や光異性化反応、若しくは光フリース転位反応する最適な量は、その側鎖型高分子膜の有する感光性基の0.1モル%〜40モル%にすることが好ましく、0.1モル%〜20モル%にすることがより好ましい。本発明において、光反応する側鎖の感光性基の量をこのような範囲にすることにより、その後の加熱処理での自己組織化が効率良く進み、膜中での高効率な異方性の形成が可能となる。   Therefore, in the side chain type polymer film of the present invention, the optimum amount of the side chain photosensitive group that undergoes photocrosslinking reaction, photoisomerization reaction, or photofleece rearrangement reaction by irradiation with polarized ultraviolet rays is the side chain type high molecular weight film. It is preferable to make it 0.1 mol%-40 mol% of the photosensitive group which a molecular film has, and it is more preferable to set it as 0.1 mol%-20 mol%. In the present invention, by setting the amount of the photoreactive side chain photosensitive group within such a range, the self-organization in the subsequent heat treatment proceeds efficiently, and the highly efficient anisotropy in the film is achieved. Formation is possible.

本発明の液晶配向膜の製造方法では、偏光した紫外線の照射量の最適化により、側鎖型高分子膜の側鎖における、感光性基の光架橋反応や光異性化反応、又は光フリース転位反応の量を最適化する。そして、その後の加熱処理と併せて、高効率な、側鎖型高分子膜への異方性の導入を実現する。その場合、好適な偏光紫外線の量については、本発明の側鎖型高分子膜の紫外吸収の評価に基づいて行うことが可能である。   In the method for producing a liquid crystal alignment film of the present invention, by optimizing the irradiation amount of polarized ultraviolet rays, photocrosslinking reaction or photoisomerization reaction of photosensitive groups or photofleece rearrangement in the side chain of the side chain polymer film Optimize the amount of reaction. In combination with the subsequent heat treatment, high-efficiency introduction of anisotropy into the side chain polymer film is realized. In this case, a suitable amount of polarized ultraviolet light can be determined based on the evaluation of ultraviolet absorption of the side chain polymer film of the present invention.

すなわち、本発明の側鎖型高分子膜について、偏光紫外線照射後の、偏光した紫外線の偏光方向と平行な方向の紫外線吸収と、垂直な方向の紫外線吸収とをそれぞれ測定する。紫外吸収の測定結果から、その側鎖型高分子膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価する。そして、本発明の側鎖型高分子膜において実現されるΔAの最大値(ΔAmax)とそれを実現する偏光紫外線の照射量を求める。本発明の液晶配向膜の製造方法では、このΔAmaxを実現する偏光紫外線照射量を基準として、液晶配向膜の製造において照射する、好ましい量の偏光した紫外線量を決めることができる。   That is, with respect to the side chain polymer film of the present invention, the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet light and the ultraviolet absorption in the vertical direction after irradiation with polarized ultraviolet light are measured. From the measurement result of ultraviolet absorption, ΔA, which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays, is evaluated. Then, the maximum value (ΔAmax) of ΔA realized in the side chain type polymer film of the present invention and the irradiation amount of polarized ultraviolet light that realizes it are obtained. In the method for producing a liquid crystal alignment film according to the present invention, a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the irradiation amount of polarized ultraviolet rays that realizes this ΔAmax.

本発明の液晶配向膜の製造方法では、本発明の側鎖型高分子膜への偏光した紫外線の照射量を、ΔAmaxを実現する偏光紫外線の量の1%〜70%の範囲内とすることが好ましく、1%〜50%の範囲内とすることがより好ましい。本発明の側鎖型高分子膜において、ΔAmaxを実現する偏光紫外線の量の1%〜50%の範囲内の偏光紫外線の照射量は、その側鎖型高分子膜の有する感光性基全体の0.1モル%〜20モル%を光架橋反応させる偏光紫外線の量に相当する。   In the method for producing a liquid crystal alignment film of the present invention, the irradiation amount of polarized ultraviolet rays on the side chain polymer film of the present invention is in the range of 1% to 70% of the amount of polarized ultraviolet rays that realizes ΔAmax. Is preferable, and it is more preferable to set it within the range of 1% to 50%. In the side chain type polymer film of the present invention, the irradiation amount of polarized ultraviolet light within the range of 1% to 50% of the amount of polarized ultraviolet light that realizes ΔAmax is the total amount of photosensitive groups of the side chain type polymer film. 0.1 mol% to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.

次に、本発明の液晶配向膜の製造方法では、本発明の側鎖型高分子膜に偏光した紫外線を照射した後、その側鎖型高分子膜の加熱を行う。本発明の側鎖型高分子膜は、所定の温度範囲で液晶性を発現し得る高分子膜である。偏光紫外線照射後の加熱処理は、この側鎖型高分子膜の液晶性を発現させる温度を基準にして決めることができる。すなわち、偏光紫外線照射後の加熱温度は、本発明の側鎖型高分子膜が液晶性を発現する温度範囲(以下、液晶温度範囲と言う。)の下限より10℃高い温度からその液晶温度範囲の上限より10℃低い温度までの範囲の温度であることが好ましい。   Next, in the method for producing a liquid crystal alignment film of the present invention, the side chain polymer film of the present invention is irradiated with polarized ultraviolet light, and then the side chain polymer film is heated. The side chain polymer film of the present invention is a polymer film that can exhibit liquid crystallinity in a predetermined temperature range. The heat treatment after irradiation with polarized ultraviolet rays can be determined based on the temperature at which the liquid crystallinity of the side chain polymer film is developed. That is, the heating temperature after irradiation with polarized ultraviolet rays ranges from a temperature 10 ° C. higher than the lower limit of the temperature range in which the side chain polymer film of the present invention exhibits liquid crystallinity (hereinafter referred to as a liquid crystal temperature range). The temperature is preferably in the range up to 10 ° C. lower than the upper limit.

本発明の側鎖型高分子膜は、偏光した紫外線の照射後に、加熱され、液晶状態となって、偏光方向と平行な方向に自己組織化して再配向する。その結果、光架橋反応や光異性化反応、及び、光フリース転位反応で誘起された本発明の側鎖型高分子膜の小さな異方性は、熱によって増幅されることになる。しかし、本発明の側鎖型高分子膜が加熱により液晶状態を呈している場合でも、加熱温度が低いと、液晶状態の側鎖型高分子膜の粘度は高く、自己組織化による再配向が生じにくくなってしまう。例えば、加熱温度が本発明の側鎖型高分子膜の液晶温度範囲の下限から10℃高い温度までの範囲である場合、本発明の側鎖型高分子膜における熱による異方性の増幅効果を十分なものとすることができない。   The side chain polymer film of the present invention is heated after irradiation with polarized ultraviolet rays to be in a liquid crystal state, and self-organizes in a direction parallel to the polarization direction to be reoriented. As a result, the small anisotropy of the side chain polymer film of the present invention induced by the photocrosslinking reaction, photoisomerization reaction, and photofleece rearrangement reaction is amplified by heat. However, even when the side chain polymer film of the present invention exhibits a liquid crystal state by heating, if the heating temperature is low, the viscosity of the side chain polymer film in the liquid crystal state is high and realignment due to self-organization is not possible. It becomes difficult to occur. For example, when the heating temperature is in the range from the lower limit of the liquid crystal temperature range of the side chain polymer film of the present invention to a temperature higher by 10 ° C., the anisotropy amplification effect due to heat in the side chain polymer film of the present invention Cannot be sufficient.

また、本発明の側鎖型高分子膜が加熱により液晶状態を呈しているとしても、加熱温度が高いと、側鎖型高分子膜の状態が等方性の液体状態に近くなり、自己組織化によって一方向に再配向することが困難になってしまう。例えば、加熱温度が本発明の側鎖型高分子膜の液晶温度範囲の上限から10℃低い温度より高い温度である場合、本発明の側鎖型高分子膜における熱による異方性の増幅効果を十分なものとすることができない。   Further, even if the side chain polymer film of the present invention exhibits a liquid crystal state by heating, if the heating temperature is high, the state of the side chain polymer film becomes close to an isotropic liquid state, and self-organization This makes it difficult to reorient in one direction. For example, when the heating temperature is higher than the temperature lower by 10 ° C. from the upper limit of the liquid crystal temperature range of the side chain polymer film of the present invention, the anisotropy amplification effect due to heat in the side chain polymer film of the present invention Cannot be sufficient.

以上より、本発明の液晶配向膜の製造方法では、側鎖型高分子膜への高効率な異方性の導入を実現するため、その側鎖型高分子膜の液晶温度範囲を基準として好適な加熱温度を定める。そして上述したように、偏光紫外線照射後の加熱の温度を、その側鎖型高分子膜の液晶温度範囲の下限より10℃高い温度を下限とし、液晶温度範囲の上限より10℃低い温度を上限とする範囲内の温度とする。したがって、例えば、本発明の側鎖型高分子膜の液晶温度範囲が100℃〜200℃である場合、偏光紫外線照射後の加熱の温度を110℃〜190℃とすることが望ましい。こうすることにより、本発明の側鎖型高分子膜において、より大きな異方性が付与されることになる。   As described above, the method for producing a liquid crystal alignment film of the present invention is suitable on the basis of the liquid crystal temperature range of the side chain polymer film in order to achieve highly efficient anisotropy introduction into the side chain polymer film. Determine the appropriate heating temperature. As described above, the heating temperature after irradiation with polarized ultraviolet light is 10 ° C. lower than the lower limit of the liquid crystal temperature range of the side chain polymer film, and the upper limit is 10 ° C. lower than the upper limit of the liquid crystal temperature range. The temperature is within the range. Therefore, for example, when the liquid crystal temperature range of the side chain polymer film of the present invention is 100 ° C. to 200 ° C., the heating temperature after irradiation with polarized ultraviolet light is preferably 110 ° C. to 190 ° C. By so doing, greater anisotropy is imparted to the side chain polymer film of the present invention.

以上では、本発明の液晶配向膜の製造方法における配向処理を説明したが、次に本発明の液晶配向膜の製造方法について説明する。
本発明の液晶配向膜の製造方法は、以下の[1]〜[III]の工程、又は以下の[1]〜[IV]の工程を以下の順で有する。そして、高い効率で異方性の導入された液晶配向膜を製造する。
[I]基板上に、液晶性を発現し得る感光性の側鎖型高分子膜を形成する工程、
[II]工程[I]で得られた側鎖型高分子膜に偏光した紫外線を照射する工程
[III]工程[II]で偏光した紫外線の照射された側鎖型高分子膜を加熱する工程
[IV]前記紫外線を照射され、その後加熱された側鎖型高分子膜に無偏光の紫外線を照射する工程
以下、本発明の液晶配向膜の製造方法の有する[I]〜[III]の工程、又は以下の[1]〜[IV]の工程の各工程について説明する。
The alignment treatment in the method for manufacturing a liquid crystal alignment film of the present invention has been described above. Next, the method for manufacturing a liquid crystal alignment film of the present invention will be described.
The method for producing a liquid crystal alignment film of the present invention includes the following steps [1] to [III] or the following steps [1] to [IV] in the following order. Then, a liquid crystal alignment film into which anisotropy is introduced is manufactured with high efficiency.
[I] forming a photosensitive side chain polymer film capable of exhibiting liquid crystallinity on a substrate;
[II] A step of irradiating the side chain type polymer film obtained in the step [I] with polarized ultraviolet rays [III] A step of heating the side chain type polymer film irradiated with the polarized ultraviolet rays in the step [II] [IV] A step of irradiating the non-polarized ultraviolet rays onto the side chain polymer film that has been irradiated with the ultraviolet rays and then heated The steps [I] to [III] of the method for producing a liquid crystal alignment film of the present invention Or each process of the following [1]-[IV] processes is explained.

工程[I]では、基板上の本発明の側鎖型高分子膜を形成する。基板については、特に限定はされないが。例えば、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板などの透明基板を用いることができる。得られた液晶配向膜の適用を考慮し、液晶表示素子の製造のプロセスの簡素化の観点から、液晶駆動のためのITO(Indium Tin Oxide:酸化インジウムスズ)電極などが形成された基板を用いるも可能である。また、反射型の液晶表示素子への適用を考慮し、シリコンウェハなどの不透明な基板も使用でき、この場合の電極としてアルミなどの光を反射する材料を使用したものも使用できる。   In step [I], the side chain polymer film of the present invention on the substrate is formed. The substrate is not particularly limited. For example, in addition to a glass substrate, a transparent substrate such as a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used. In consideration of application of the obtained liquid crystal alignment film, a substrate on which an ITO (Indium Tin Oxide) electrode for driving a liquid crystal or the like is formed is used from the viewpoint of simplifying the manufacturing process of the liquid crystal display element. Is also possible. In consideration of application to a reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used. In this case, an electrode using a material that reflects light such as aluminum can also be used.

本発明の側鎖型高分子膜が所望の溶剤に溶解された溶液状である場合、基板上の膜形成は、その溶液状の側鎖型高分子膜を塗布することにより行う。塗布法方は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)又はスプレー法などがあり、目的に応じてこれらを用いてもよい。   When the side chain polymer film of the present invention is in the form of a solution dissolved in a desired solvent, film formation on the substrate is performed by applying the solution-like side chain polymer film. The method of coating is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an ink jet method, or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.

基板上に溶液状の本発明の側鎖型高分子膜を塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により20℃〜180℃、好ましくは40℃〜150℃で溶媒を蒸発させて本発明の側鎖型高分子膜を得ることができる。側鎖型高分子膜の厚みは、厚すぎると液晶配向膜を適用する液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm〜300nm、より好ましくは10nm〜100nmである。
尚、[I]工程の後、続く[II]工程の前に、側鎖型高分子膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
After the solution-like side chain polymer film of the present invention is applied on the substrate, it is 20 ° C. to 180 ° C., preferably 40 ° C. by a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven. The side chain polymer membrane of the present invention can be obtained by evaporating the solvent at ˜150 ° C. If the thickness of the side chain polymer film is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element to which the liquid crystal alignment film is applied, and if it is too thin, the reliability of the liquid crystal display element may be lowered. It is 5 nm to 300 nm, more preferably 10 nm to 100 nm.
In addition, it is also possible to provide the process of cooling the board | substrate with which the side chain type polymer film was formed to room temperature after the [I] process and before the following [II] process.

工程[II]では、工程[I]で得られた側鎖型高分子膜に偏光した紫外線を照射する。側鎖型高分子膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100nm〜400nmの範囲の紫外線を使用することがきる。好ましくは、使用する側鎖型高分子膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長250nm〜400nmの範囲の紫外線を選択して使用することがきる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
偏光した紫外線の照射量については、上述したように、使用する本発明の側鎖型高分子膜のΔAmaxを実現する偏光紫外線の量の1%〜70%の範囲内とすることが好ましく、1%〜50%の範囲内とすることがより好ましい。
In step [II], the side chain polymer film obtained in step [I] is irradiated with polarized ultraviolet rays. When irradiating the surface of the side chain polymer film with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction. As the ultraviolet rays to be used, ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of the side chain polymer film to be used. For example, ultraviolet rays having a wavelength in the range of 250 nm to 400 nm can be selected and used so that a photocrosslinking reaction can be selectively induced. As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.
As described above, the irradiation amount of the polarized ultraviolet light is preferably in the range of 1% to 70% of the amount of the polarized ultraviolet light that realizes ΔAmax of the side chain polymer film of the present invention to be used. More preferably, it is within the range of 50% to 50%.

工程[III]では、工程[II]で偏光した紫外線の照射された側鎖型高分子膜加熱する。加熱は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段を用いる。加熱の温度については、上述したように、使用する本発明の側鎖型高分子膜の液晶性を発現させる温度を考慮して決めることができる。すなわち、偏光紫外線照射後の加熱温度は、使用する本発明の側鎖型高分子膜が液晶性を発現する液晶温度範囲の下限より10℃高い温度を下限とし、液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。
以上の工程を有することにより、本発明の液晶配向膜の製造方法では、高効率な、側鎖型高分子膜への異方性の導入を実現する。そして、高効率に本発明の液晶配向膜を製造することができる。
工程[IV]では、前記紫外線を照射され、その後加熱された側鎖型高分子膜に無偏光の紫外線を照射する。この工程により、[II]工程で反応せずに残り、[III]工程で再配向した本発明の側鎖型高分子膜が架橋反応を起こし、配向が安定化する。
[IV]工程の紫外線照射により、前記側鎖型高分子膜の有する光架橋性基の20モル%以上を反応させることが好ましい。換言すれば、[II]工程で光架橋性基が20モル%以上残っていないと、この工程において充分に配向安定化させることが容易でない。再配向した光反応性基がその配向状態のまま固定化され難いためである。上記式(6)、(7)の場合、この工程を行うと逆に本発明の効果が発揮することが容易でない。
In step [III], the side chain polymer film irradiated with the ultraviolet light polarized in step [II] is heated. For the heating, a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven is used. As described above, the heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the side chain polymer film of the present invention to be used is developed. That is, the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the upper limit of the liquid crystal temperature range, with the temperature being 10 ° C. higher than the lower limit of the liquid crystal temperature range in which the side chain polymer film of the present invention used exhibits liquid crystallinity. It is preferable that the temperature is within a range where the lower temperature is the upper limit.
By having the above steps, the method for producing a liquid crystal alignment film of the present invention realizes highly efficient introduction of anisotropy into the side chain polymer film. And the liquid crystal aligning film of this invention can be manufactured highly efficiently.
In step [IV], the ultraviolet light is irradiated, and then the heated side chain polymer film is irradiated with unpolarized ultraviolet light. By this step, the side chain polymer film of the present invention that remains unreacted in the step [II] and is reoriented in the step [III] undergoes a crosslinking reaction, and the orientation is stabilized.
It is preferable to react 20 mol% or more of the photocrosslinkable group of the side chain polymer film by ultraviolet irradiation in the step [IV]. In other words, if 20 mol% or more of the photocrosslinkable group does not remain in the step [II], it is not easy to sufficiently stabilize the alignment in this step. This is because the re-orientated photoreactive group is difficult to be fixed in the aligned state. In the case of the above formulas (6) and (7), when this step is performed, it is not easy to exert the effect of the present invention.

本発明の実施形態について、実施例を挙げてより詳細に説明する。なお、本発明はこれらに限定して解釈されるものではない。
<合成例1>
4,4’−ビフェニルジオールと1,6−ジブロモヘキサンをアルカリ条件下で加熱することにより、4’−(6−ブロモヘキシルオキシ)ビフェニル−4−オールを合成した。この生成物にメタクリル酸リチウム反応させ、2−(4’−ヒドロキシビフェニル−4−イルオキシ)ヘキシルオキシメタクリレートを得た。次いで、塩基性条件化において、4−メトキシシンナモイルクロリドを加え下記式(9)に示される化合物を合成した。
<合成例2>
1−ヒドロキシシンナミックアシッドと1−ヒドロキシ−6−ヘキサノールをアルカリ条件下で加熱することにより4−(6−ヒドロキシヘキシルオキシ)シンナミックアシッドを合成した。この生成物にメタクリル酸クロライドを塩基性条件下で反応させ、下記式(10)に示される化合物を得た。
The embodiment of the present invention will be described in more detail with reference to examples. In addition, this invention is limited to these and is not interpreted.
<Synthesis Example 1>
By heating 4,4′-biphenyldiol and 1,6-dibromohexane under alkaline conditions, 4 ′-(6-bromohexyloxy) biphenyl-4-ol was synthesized. This product was reacted with lithium methacrylate to give 2- (4′-hydroxybiphenyl-4-yloxy) hexyloxy methacrylate. Subsequently, 4-basic cinnamoyl chloride was added under basic conditions to synthesize a compound represented by the following formula (9).
<Synthesis Example 2>
4- (6-Hydroxyhexyloxy) cinnamic acid was synthesized by heating 1-hydroxycinnamic acid and 1-hydroxy-6-hexanol under alkaline conditions. This product was reacted with methacrylic acid chloride under basic conditions to obtain a compound represented by the following formula (10).

<合成例3>
1−ヒドロキシ安息香酸と1−ヒドロキシ−6−ヘキサノールをアルカリ条件下で加熱することにより4−(6−ヒドロキシヘキシルオキシ)安息香酸を合成した。この生成物にメタクリル酸クロライドを塩基性条件下で反応させ、下記式(11)に示される化合物を得た。
<合成例4>
4−ヨードフェノールと6−クロロ−1−ヘキサノールをアルカリ条件化で加熱することにより4−(6−ヒドロキシヘキシルオキシ)ヨードフェノールを合成した。この生成物に2−メチル−3−ブチン−2−オールを反応させた後、アルカリ条件化で過熱することで4−(6−ヒドロキシヘキシルオキシ)エチニルベンゼン(化合物A)を得た。また、別経路において、4−メトキシシンナミックアシッドクロライドと4−ヨードフェノールを反応させ、4−ヨードフェニル−3−(4−メトキシフェニル)アクリレート(化合物B)を合成した。続いて、化合物Aと化合物Bを塩基性条件下で反応させることにより、下記式(12)に示される化合物を得た。
<Synthesis Example 3>
4- (6-hydroxyhexyloxy) benzoic acid was synthesized by heating 1-hydroxybenzoic acid and 1-hydroxy-6-hexanol under alkaline conditions. This product was reacted with methacrylic acid chloride under basic conditions to obtain a compound represented by the following formula (11).
<Synthesis Example 4>
4- (6-hydroxyhexyloxy) iodophenol was synthesized by heating 4-iodophenol and 6-chloro-1-hexanol under alkaline conditions. This product was reacted with 2-methyl-3-butyn-2-ol and then heated under alkaline conditions to obtain 4- (6-hydroxyhexyloxy) ethynylbenzene (Compound A). In another route, 4-methoxycinnamic acid chloride and 4-iodophenol were reacted to synthesize 4-iodophenyl-3- (4-methoxyphenyl) acrylate (Compound B). Subsequently, a compound represented by the following formula (12) was obtained by reacting compound A and compound B under basic conditions.

<合成例5>
1−ヒドロキシ安息香酸と1−ヒドロキシ−6−ヘキサノールをアルカリ条件下で加熱することにより4−(6−ヒドロキシヘキシルオキシ)安息香酸を合成した後、塩化チオニルを加えることにより、4−(6−ヒドロキシヘキシルオキシ)安息香酸クロライドを得た。この生成物にp−メトキシフェノールを塩基性条件下で反応させ、下記式(13)に示される化合物を得た。
<合成例6>
上記式(9)で示されるメタクリル酸エステルをテトラヒドロフラン中に溶解し、反応開始剤としてアゾビスイソブチロニトリル(AIBN)を添加して重合することにより重合体1を得た。この重合体1は116℃〜315℃の温度範囲で液晶性を示した。
<合成例7>
上記式(10)で示されるメタクリル酸エステルをテトラヒドロフラン中に溶解し、反応開始剤としてアゾビスイソブチロニトリル(AIBN)を添加して重合することにより重合体2を得た。この重合体2は135℃〜187℃の温度範囲で液晶性を示した。
<Synthesis Example 5>
After synthesizing 4- (6-hydroxyhexyloxy) benzoic acid by heating 1-hydroxybenzoic acid and 1-hydroxy-6-hexanol under alkaline conditions, 4- (6-hydroxyhexyloxy) benzoic acid is added by adding thionyl chloride. Hydroxyhexyloxy) benzoic acid chloride was obtained. This product was reacted with p-methoxyphenol under basic conditions to obtain a compound represented by the following formula (13).
<Synthesis Example 6>
The methacrylic acid ester represented by the above formula (9) was dissolved in tetrahydrofuran and polymerized by adding azobisisobutyronitrile (AIBN) as a reaction initiator to obtain a polymer 1. The polymer 1 exhibited liquid crystallinity in the temperature range of 116 ° C to 315 ° C.
<Synthesis Example 7>
The methacrylic acid ester represented by the above formula (10) was dissolved in tetrahydrofuran and polymerized by adding azobisisobutyronitrile (AIBN) as a reaction initiator to obtain a polymer 2. This polymer 2 exhibited liquid crystallinity in the temperature range of 135 ° C to 187 ° C.

<合成例8>
上記式(10)で示されるメタクリル酸エステルと上記式(11)で示されるメタクリル酸エステルを25対75となる割合でテトラヒドロフラン中に溶解し、反応開始剤としてアゾビスイソブチロニトリル(AIBN)を添加して重合することにより重合体3を得た。この重合体3は146℃〜183℃の温度範囲で液晶性を示した。
<合成例9>
上記式(12)で示されるメタクリル酸エステルをテトラヒドロフラン中に溶解し、反応開始剤としてアゾビスイソブチロニトリル(AIBN)を添加して重合することにより重合体4を得た。この重合体4は66℃〜320℃の温度範囲で液晶性を示した。
<合成例10>
上記式(13)で示されるメタクリル酸エステルをテトラヒドロフラン中に溶解し、反応開始剤としてアゾビスイソブチロニトリル(AIBN)を添加して重合することにより重合体5を得た。この重合体5は143℃〜283℃の温度範囲で液晶性を示した。
<Synthesis Example 8>
The methacrylic acid ester represented by the above formula (10) and the methacrylic acid ester represented by the above formula (11) are dissolved in tetrahydrofuran at a ratio of 25 to 75, and azobisisobutyronitrile (AIBN) is used as a reaction initiator. Was added for polymerization to obtain a polymer 3. The polymer 3 exhibited liquid crystallinity in the temperature range of 146 ° C to 183 ° C.
<Synthesis Example 9>
The methacrylic acid ester represented by the above formula (12) was dissolved in tetrahydrofuran and polymerized by adding azobisisobutyronitrile (AIBN) as a reaction initiator to obtain a polymer 4. The polymer 4 exhibited liquid crystallinity in the temperature range of 66 ° C to 320 ° C.
<Synthesis Example 10>
Polymer 5 was obtained by dissolving the methacrylic acid ester represented by the above formula (13) in tetrahydrofuran, adding azobisisobutyronitrile (AIBN) as a reaction initiator and polymerizing. The polymer 5 exhibited liquid crystallinity in the temperature range of 143 ° C to 283 ° C.

Figure 2013081066
Figure 2013081066

<異方性を導入された液晶配向膜の作成>
<実施例1>
合成例6で得られた重合体1を用い、塩化メチレンに溶解し、光学的に等方性の基板に、約190nmの厚さでスピンコートすることで基板上に側鎖型高分子膜を形成した。この基板を用いて紫外吸収スペクトルを測定したところ、最大吸光度は314nmで0.89であった。得られた基板上の側鎖型高分子膜に、グランテーラープリズムを用いて直線偏光に変換した紫外線を照射した。
<Creation of liquid crystal alignment film with anisotropy introduced>
<Example 1>
The polymer 1 obtained in Synthesis Example 6 was dissolved in methylene chloride and spin-coated on an optically isotropic substrate with a thickness of about 190 nm to form a side chain polymer film on the substrate. Formed. When the ultraviolet absorption spectrum was measured using this substrate, the maximum absorbance was 0.89 at 314 nm. The side chain polymer film on the obtained substrate was irradiated with ultraviolet rays converted to linearly polarized light using a Grand Taylor prism.

こうして得られた基板上の側鎖型高分子膜を用いて紫外吸収スペクトルを測定し、側鎖型高分子膜について、照射した偏光紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価した。ΔAは偏光紫外線を波長365nm換算で4500mJ照射した際に、314nmで最大0.2となるが、ΔAが0.065(最大値に対して32%の差)になるように偏光紫外線を650mJ照射し、続いて、この基板を155℃まで加熱し、側鎖型高分子膜を液晶相として、そのまま5分間保持した。その後、室温まで冷却して、膜中に異方性の導入された側鎖型高分子膜を有する基板を得た。その際のΔAは1.8に増幅され、配向度は0.73となった。次に、異方性の導入された側鎖型高分子膜を有する基板に波長365nm換算で1500mJの無偏光紫外線を照射することにより、液晶配向膜を有する基板を得た。   The side-chain polymer film on the substrate thus obtained was used to measure the ultraviolet absorption spectrum, and the side-chain polymer film was measured in a direction perpendicular to the UV absorbance in the direction parallel to the polarization direction of the irradiated polarized UV light. ΔA, which is the difference from the ultraviolet absorbance, was evaluated. ΔA reaches a maximum of 0.2 at 314 nm when irradiated with polarized ultraviolet light at a wavelength of 365 nm, but 650 mJ is irradiated so that ΔA is 0.065 (a difference of 32% with respect to the maximum value). Subsequently, the substrate was heated to 155 ° C., and the side chain polymer film was kept as a liquid crystal phase for 5 minutes. Then, it cooled to room temperature and obtained the board | substrate which has the side chain type polymer film into which the anisotropy was introduce | transduced in the film | membrane. At that time, ΔA was amplified to 1.8, and the degree of orientation was 0.73. Next, a substrate having a liquid crystal alignment film was obtained by irradiating the substrate having an anisotropically introduced side chain polymer film with non-polarized ultraviolet rays having a wavelength of 365 nm in terms of 1500 mJ.

<実施例2>
合成例6で得られた重合体1を用い、偏光紫外線の照射量を500mJ(ΔAの最大値の25%のΔAとなる照射量)とした以外は実施例1と同様に偏光紫外線照射とその後の熱処理を行った。その結果、熱処理前後のΔAは0.05から1.85に増幅され、その時の配向度は314nmで0.74となった。その後、実施例1と同様に無偏光紫外線を照射し、液晶配向膜を有する基板を得た。
<実施例3>
合成例7で得られた重合体2をテトラヒドロフランに溶解し、光学的に等方性の基板に、約150nmの厚さでスピンコートしたこと、偏光紫外線の照射量を5mJ(ΔAの最大値の10%のΔAとなる照射量)とし、その後の熱処理を165℃で5分間とした以外は実施例1と同様に偏光紫外線照射とその後の熱処理を行った。その結果、熱処理前後のΔAは0.03から1.6に増幅され、その時の配向度は314nmで0.72となった。その後、実施例1と同様に無偏光紫外線を1000mJ照射し、液晶配向膜を有する基板を得た。
<実施例4>
合成例8で得られた重合体3を用い、偏光紫外線の照射量を20mJ(ΔAの最大値の40%のΔAとなる照射量)とした以外は実施例3と同様に偏光紫外線照射とその後の熱処理を行った。その結果、熱処理前後のΔAは0.12から1.6に増幅され、その時の配向度は314nmで0.62となった。その後、実施例1と同様に無偏光紫外線を1000mJ照射し、液晶配向膜を有する基板を得た。
<Example 2>
The polymer 1 obtained in Synthesis Example 6 was used, and the irradiation with polarized ultraviolet rays was performed in the same manner as in Example 1 except that the irradiation amount with polarized ultraviolet rays was 500 mJ (the irradiation amount with which ΔA was 25% of the maximum value of ΔA). The heat treatment was performed. As a result, ΔA before and after the heat treatment was amplified from 0.05 to 1.85, and the degree of orientation at that time was 0.74 at 314 nm. Thereafter, unpolarized ultraviolet rays were irradiated in the same manner as in Example 1 to obtain a substrate having a liquid crystal alignment film.
<Example 3>
The polymer 2 obtained in Synthesis Example 7 was dissolved in tetrahydrofuran, spin-coated on an optically isotropic substrate with a thickness of about 150 nm, and the irradiation amount of polarized ultraviolet rays was 5 mJ (maximum value of ΔA). The amount of irradiation was 10% ΔA), and irradiation with polarized ultraviolet rays and subsequent heat treatment were performed in the same manner as in Example 1 except that the subsequent heat treatment was performed at 165 ° C. for 5 minutes. As a result, ΔA before and after the heat treatment was amplified from 0.03 to 1.6, and the degree of orientation at that time was 0.72 at 314 nm. Thereafter, 1000 mJ of non-polarized ultraviolet rays was irradiated in the same manner as in Example 1 to obtain a substrate having a liquid crystal alignment film.
<Example 4>
Using the polymer 3 obtained in Synthesis Example 8, the polarized ultraviolet light irradiation and the subsequent treatment were performed in the same manner as in Example 3 except that the irradiation amount of the polarized ultraviolet light was 20 mJ (the irradiation amount at which ΔA was 40% of the maximum value of ΔA). The heat treatment was performed. As a result, ΔA before and after the heat treatment was amplified from 0.12 to 1.6, and the degree of orientation at that time was 0.62 at 314 nm. Thereafter, 1000 mJ of non-polarized ultraviolet rays was irradiated in the same manner as in Example 1 to obtain a substrate having a liquid crystal alignment film.

<実施例5>
合成例9で得られた重合体4を塩化メチレンに溶解し、光学的に等方性の基板に、約220nmの厚さでスピンコートすることで基板上に側鎖型高分子膜を形成したこと、偏光紫外線の照射量を300mJ(ΔAの最大値の29%のΔAとなる照射量)とし、その後の熱処理を200℃で5分間とした以外は実施例1と同様に偏光紫外線照射とその後の熱処理を行った。その結果、熱処理前後のΔAは0.04から1.4に増幅され、その時の配向度は294nmで0.62となった。その後、実施例1と同様に無偏光紫外線を5000mJ照射し、液晶配向膜を有する基板を得た。
<実施例6>
合成例10で得られた重合体5を塩化メチレンに溶解し、光学的に等方性の基板に、約220nmの厚さでスピンコートすることで基板上に側鎖型高分子膜を形成したこと、偏光紫外線の照射量を1000mJ(ΔAの最大値の49%のΔAとなる照射量)とし、その後の熱処理を180℃で5分間とした以外は実施例1と同様に偏光紫外線照射とその後の熱処理を行った。その結果、熱処理前後のΔAは0.07から1.7に増幅され、その時の配向度は262nmで0.72となる液晶配向膜を有する基板を得た。
<Example 5>
The polymer 4 obtained in Synthesis Example 9 was dissolved in methylene chloride, and a side chain polymer film was formed on the substrate by spin-coating to an optically isotropic substrate with a thickness of about 220 nm. Irradiation with polarized ultraviolet rays was performed in the same manner as in Example 1 except that the irradiation amount of polarized ultraviolet rays was 300 mJ (irradiation amount at which ΔA was 29% of the maximum value of ΔA), and the subsequent heat treatment was performed at 200 ° C. for 5 minutes. The heat treatment was performed. As a result, ΔA before and after the heat treatment was amplified from 0.04 to 1.4, and the degree of orientation at that time was 0.62 at 294 nm. Thereafter, in the same manner as in Example 1, 5000 mJ of non-polarized ultraviolet rays was irradiated to obtain a substrate having a liquid crystal alignment film.
<Example 6>
The polymer 5 obtained in Synthesis Example 10 was dissolved in methylene chloride and spin-coated on an optically isotropic substrate with a thickness of about 220 nm to form a side chain polymer film on the substrate. Irradiation with polarized ultraviolet rays was carried out in the same manner as in Example 1 except that the irradiation amount of polarized ultraviolet rays was 1000 mJ (irradiation amount at which ΔA was 49% of the maximum value of ΔA), and the subsequent heat treatment was carried out at 180 ° C. for 5 minutes. The heat treatment was performed. As a result, ΔA before and after the heat treatment was amplified from 0.07 to 1.7, and a substrate having a liquid crystal alignment film having an alignment degree of 0.72 at 262 nm was obtained.

<比較例1>
合成例6で得られた重合体1を用い、塩化メチレンに溶解し、光学的に等方性の基板に、約190nmの厚さでスピンコートすることで基板上に側鎖型高分子膜を形成した。この基板を用いて紫外吸収スペクトルを測定したところ、最大吸光度は314nmで0.89であった。得られた基板上の側鎖型高分子膜に、グランテーラープリズムを用いて直線偏光に変換した紫外線を照射した。
こうして得られた基板上の側鎖型高分子膜を用いて紫外吸収スペクトルを測定し、側鎖型高分子膜について、照射した偏光紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価した。ΔAは偏光紫外線を波長365nm換算で4500mJ照射した際に、314nmで最大0.2となるが、ΔAが0.065(最大値に対して32%の差)になるように偏光紫外線を650mJ照射し、続いて、この基板を155℃まで加熱し、側鎖型高分子膜を液晶相として、そのまま5分間保持した。その後、室温まで冷却して、膜中に異方性の導入された液晶配向膜を有する基板を得た。その際のΔAは1.8に増幅され、配向度は0.73となった。
<Comparative Example 1>
The polymer 1 obtained in Synthesis Example 6 was dissolved in methylene chloride and spin-coated on an optically isotropic substrate with a thickness of about 190 nm to form a side chain polymer film on the substrate. Formed. When the ultraviolet absorption spectrum was measured using this substrate, the maximum absorbance was 0.89 at 314 nm. The side chain polymer film on the obtained substrate was irradiated with ultraviolet rays converted to linearly polarized light using a Grand Taylor prism.
The side-chain polymer film on the substrate thus obtained was used to measure the ultraviolet absorption spectrum, and the side-chain polymer film was measured in a direction perpendicular to the UV absorbance in the direction parallel to the polarization direction of the irradiated polarized UV light. ΔA, which is the difference from the ultraviolet absorbance, was evaluated. ΔA reaches a maximum of 0.2 at 314 nm when irradiated with polarized ultraviolet light at a wavelength of 365 nm, but 650 mJ is irradiated so that ΔA is 0.065 (a difference of 32% with respect to the maximum value). Subsequently, the substrate was heated to 155 ° C., and the side chain polymer film was kept as a liquid crystal phase for 5 minutes. Then, it cooled to room temperature and obtained the board | substrate which has the liquid crystal aligning film into which the anisotropy was introduce | transduced in the film | membrane. At that time, ΔA was amplified to 1.8, and the degree of orientation was 0.73.

<比較例2>
合成例6で得られた重合体1を塩化メチレンに溶解し、光学的に等方性の基板に、約190nmの厚さでスピンコートすることで基板上に側鎖型高分子膜を形成したこと、偏光紫外線の照射量を4500mJ(ΔAが最大値となる照射量)とした以外は比較例1と同様に偏光紫外線照射とその後の熱処理を行い、膜中に異方性の導入された液晶配向膜を得た。この際、熱処理前後のΔAは0.07から0.07と変化せず、配向度も314nmで0.12であり、ΔAと配向度の増幅は確認されなかった。
<比較例3>
合成例7で得られた重合体2をテトラヒドロフランに溶解し、光学的に等方性の基板に、約150nmの厚さでスピンコートすることで基板上に側鎖型高分子膜を形成したこと、偏光紫外線の照射量を900mJ(ΔAが最大値となる照射量)とし、その後の熱処理を165℃とした以外は比較例1と同様に偏光紫外線照射とその後の熱処理を行い、膜中に異方性の導入された液晶配向膜を得た。この際、熱処理前後のΔAは0.07から0.07と変化せず、配向度も314nmで0.12であり、ΔAと配向度の増幅は確認されなかった。
<Comparative Example 2>
The polymer 1 obtained in Synthesis Example 6 was dissolved in methylene chloride and spin-coated on an optically isotropic substrate with a thickness of about 190 nm to form a side chain polymer film on the substrate. A liquid crystal in which anisotropy was introduced into the film was carried out in the same manner as in Comparative Example 1 except that the irradiation amount of polarized ultraviolet light was 4500 mJ (the irradiation amount at which ΔA was the maximum value). An alignment film was obtained. At this time, ΔA before and after the heat treatment did not change from 0.07 to 0.07, the degree of orientation was 0.12 at 314 nm, and amplification of ΔA and the degree of orientation was not confirmed.
<Comparative Example 3>
The polymer 2 obtained in Synthesis Example 7 was dissolved in tetrahydrofuran and spin-coated on an optically isotropic substrate with a thickness of about 150 nm to form a side chain polymer film on the substrate. The irradiation with polarized ultraviolet light and the subsequent heat treatment were performed in the same manner as in Comparative Example 1 except that the irradiation amount of polarized ultraviolet light was 900 mJ (the irradiation amount at which ΔA was the maximum value) and the subsequent heat treatment was 165 ° C. A liquid crystal alignment film having an introduced directionality was obtained. At this time, ΔA before and after the heat treatment did not change from 0.07 to 0.07, the degree of orientation was 0.12 at 314 nm, and amplification of ΔA and the degree of orientation was not confirmed.

<比較例4>
合成例7で得られた重合体2をテトラヒドロフランに溶解し、光学的に等方性の基板に、約150nmの厚さでスピンコートすることで基板上に側鎖型高分子膜を形成したこと、偏光紫外線の照射量を5mJ(ΔAが最大値の10%のΔAとなる照射量)とし、その後の熱処理を重合体2の液晶温度範囲以上である200℃とした以外は比較例1と同様に偏光紫外線照射とその後の熱処理を行い、液晶配向膜を得た。この際、熱処理前後のΔAは0.07から0と減少し、配向ども314nmで0となり、高分子薄膜中の異方性が消失した。
<Comparative Example 4>
The polymer 2 obtained in Synthesis Example 7 was dissolved in tetrahydrofuran and spin-coated on an optically isotropic substrate with a thickness of about 150 nm to form a side chain polymer film on the substrate. The same as Comparative Example 1 except that the irradiation amount of polarized ultraviolet rays was set to 5 mJ (the irradiation amount at which ΔA was 10% of the maximum value ΔA), and the subsequent heat treatment was set to 200 ° C. above the liquid crystal temperature range of polymer 2. Were subjected to polarized ultraviolet irradiation and subsequent heat treatment to obtain a liquid crystal alignment film. At this time, ΔA before and after the heat treatment decreased from 0.07 to 0, and the orientation became 0 at 314 nm, and the anisotropy in the polymer thin film disappeared.

<液晶セルの作成と評価>
<実施例7>
実施例1で作成した液晶配向膜を有する基板2枚を用いて、メルクジャパン(株)製の液晶ZLI−4792を挟持したアンチパラレル液晶セルを得た。得られた液晶セルを直交ニコル下で観察したところ、配向不良のない均一な液晶配向が観察された。また、このような異方性を導入された液晶配向膜付きのITO基板を2枚作製し、それらの間に液晶ZLI−4792を挟持し、得られた液晶セルをさらに一対の直線偏光板で挟持することにより、液晶の厚さが6μmのTN(Twisted Nematic)型液晶表示素子を作成した。このTN型液晶表示素子ではITO電極への電圧印加による液晶の駆動が確認できた。液晶表示素子は全面にわたり配向欠陥の無いことが確認され、電圧印加による均一な液晶の配向変化が確認された。本実施の形態の液晶配向膜を用い、本実施の液晶表示素子を製造することができた。評価結果を表1にまとめる。
<実施例8>
実施例2で作成した液晶配向膜を有する基板2枚を用いて、実施例7と同様な方法にて液晶セルを作成した。結果を表1に示す。
<実施例9>
実施例3で作成した液晶配向膜を有する基板2枚を用いて、実施例7と同様な方法にて液晶セルを作成した。結果を表1に示す。
<実施例10>
実施例4で作成した液晶配向膜を有する基板2枚を用いて、実施例7と同様な方法にて液晶セルを作成した。結果を表1に示す。
<Creation and evaluation of liquid crystal cell>
<Example 7>
Using two substrates having the liquid crystal alignment film prepared in Example 1, an anti-parallel liquid crystal cell sandwiching liquid crystal ZLI-4792 manufactured by Merck Japan Ltd. was obtained. When the obtained liquid crystal cell was observed under crossed Nicols, uniform liquid crystal alignment without alignment failure was observed. In addition, two ITO substrates with a liquid crystal alignment film introduced with such anisotropy are produced, and a liquid crystal ZLI-4792 is sandwiched between them, and the obtained liquid crystal cell is further paired with a pair of linear polarizing plates. By sandwiching, a TN (Twisted Nematic) type liquid crystal display element having a liquid crystal thickness of 6 μm was produced. In this TN type liquid crystal display element, it was confirmed that the liquid crystal was driven by applying a voltage to the ITO electrode. The liquid crystal display element was confirmed to have no alignment defect over the entire surface, and a uniform change in the alignment of the liquid crystal due to voltage application was confirmed. The liquid crystal display element of this embodiment was able to be manufactured using the liquid crystal alignment film of this embodiment. The evaluation results are summarized in Table 1.
<Example 8>
A liquid crystal cell was prepared in the same manner as in Example 7 using the two substrates having the liquid crystal alignment film prepared in Example 2. The results are shown in Table 1.
<Example 9>
A liquid crystal cell was prepared in the same manner as in Example 7 using the two substrates having the liquid crystal alignment film prepared in Example 3. The results are shown in Table 1.
<Example 10>
A liquid crystal cell was prepared in the same manner as in Example 7 using the two substrates having the liquid crystal alignment film prepared in Example 4. The results are shown in Table 1.

<実施例11>
実施例5で作成した液晶配向膜を有する基板2枚を用いて、実施例7と同様な方法にて液晶セルを作成した。結果を表1に示す。
<実施例12>
実施例6で作成した液晶配向膜を有する基板2枚を用いて、実施例7と同様な方法にて液晶セルを作成した。結果を表1に示す。
<比較例5>
比較例1で作成した液晶配向膜を有する基板2枚を用いて、実施例7と同様な方法にて液晶セルを作成した。結果を表1に示す。
<比較例6>
比較例2で作成した液晶配向膜を有する基板2枚を用いて、実施例7と同様な方法にて液晶セルを作成した。結果を表1に示す。
<比較例7>
比較例3で作成した液晶配向膜を有する基板2枚を用いて、実施例7と同様な方法にて液晶セルを作成した。結果を表1に示す。
<比較例8>
比較例4で作成した液晶配向膜を有する基板2枚を用いて、実施例7と同様な方法にて液晶セルを作成した。結果を表1に示す。
以上の評価結果から、本発明の液晶配向膜の製造方法を用い、少ない紫外線照射量によって作製された本発明の液晶配向膜は、液晶表示素子を提供できることがわかった。
<Example 11>
A liquid crystal cell was prepared in the same manner as in Example 7 using the two substrates having the liquid crystal alignment film prepared in Example 5. The results are shown in Table 1.
<Example 12>
A liquid crystal cell was prepared in the same manner as in Example 7 using the two substrates having the liquid crystal alignment film prepared in Example 6. The results are shown in Table 1.
<Comparative Example 5>
A liquid crystal cell was prepared in the same manner as in Example 7 using the two substrates having the liquid crystal alignment film prepared in Comparative Example 1. The results are shown in Table 1.
<Comparative Example 6>
A liquid crystal cell was prepared in the same manner as in Example 7 using the two substrates having the liquid crystal alignment film prepared in Comparative Example 2. The results are shown in Table 1.
<Comparative Example 7>
A liquid crystal cell was prepared in the same manner as in Example 7 using the two substrates having the liquid crystal alignment film prepared in Comparative Example 3. The results are shown in Table 1.
<Comparative Example 8>
A liquid crystal cell was prepared in the same manner as in Example 7 using the two substrates having the liquid crystal alignment film prepared in Comparative Example 4. The results are shown in Table 1.
From the above evaluation results, it was found that the liquid crystal alignment film of the present invention produced by using the method for producing a liquid crystal alignment film of the present invention with a small amount of ultraviolet irradiation can provide a liquid crystal display element.

Figure 2013081066
Figure 2013081066

本発明の製造方法は、高効率な配向処理を可能とする液晶配向膜の製造に有用である。
なお、2011年11月29日に出願された日本特許出願2011−260180号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The production method of the present invention is useful for producing a liquid crystal alignment film that enables highly efficient alignment treatment.
It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-260180 filed on November 29, 2011 are cited herein as disclosure of the specification of the present invention. Incorporated.

1 側鎖型高分子膜
2、2a 側鎖
3 側鎖型高分子膜
4、4a 側鎖
5 側鎖型高分子膜
6、6a 側鎖
7 側鎖型高分子膜
8、8a 側鎖
DESCRIPTION OF SYMBOLS 1 Side chain type polymer film 2, 2a Side chain 3 Side chain type polymer film 4, 4a Side chain 5 Side chain type polymer film 6, 6a Side chain 7 Side chain type polymer film 8, 8a Side chain

Claims (12)

[I]基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子膜を形成する工程、
[II]前記側鎖型高分子膜に偏光した紫外線を照射する工程、及び
[III]前記紫外線の照射された側鎖型高分子膜を加熱する工程
を有する液晶配向膜の製造方法であって、
[II]工程の紫外線照射量が、前記側鎖型高分子膜の、前記偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを最大にする紫外線照射量の1%〜70%の範囲内であることを特徴とする液晶配向膜の製造方法。
[I] A step of forming a photosensitive side chain polymer film that exhibits liquid crystallinity in a predetermined temperature range on a substrate;
[II] A method for producing a liquid crystal alignment film, comprising: irradiating the side chain polymer film with polarized ultraviolet light; and [III] heating the side chain polymer film irradiated with ultraviolet light. ,
[II] The amount of UV irradiation in the step maximizes ΔA, which is the difference between the UV absorbance in the direction parallel to the polarization direction of the polarized UV and the UV absorbance in the direction perpendicular to the polarization direction of the polarized UV. The manufacturing method of the liquid crystal aligning film characterized by being in the range of 1%-70% of ultraviolet irradiation amount.
[II]工程の紫外線照射量が、前記ΔAを最大にする紫外線照射量の1%〜50%の範囲内である請求項1に記載の液晶配向膜の製造方法。   The method for producing a liquid crystal alignment film according to claim 1, wherein the ultraviolet irradiation amount in the step [II] is in the range of 1% to 50% of the ultraviolet irradiation amount that maximizes the ΔA. [III]工程の加熱温度が、前記側鎖型高分子膜が液晶性を発現する温度範囲の下限より10℃高い温度から当該温度範囲の上限より10℃低い温度までの範囲の温度である請求項1又は2に記載の液晶配向膜の製造方法。   The heating temperature in the step [III] is a temperature in a range from a temperature 10 ° C. higher than the lower limit of the temperature range in which the side chain polymer film exhibits liquid crystallinity to a temperature 10 ° C. lower than the upper limit of the temperature range. Item 3. A method for producing a liquid crystal alignment film according to Item 1 or 2. 前記、液晶性を発現する感光性の側鎖型高分子に含有される感光性基がアゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン、フェニルベンゾエート、又はその誘導体である請求項1〜3に記載の液晶配向膜の製造方法。   The photosensitive group contained in the photosensitive side chain polymer exhibiting liquid crystallinity is azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan, phenylbenzoate, or a derivative thereof. The manufacturing method of the liquid crystal aligning film of 1-3. [I]基板上に、所定の温度範囲で液晶性を発現する光架橋性の側鎖型高分子膜を形成する工程、
[II]前記光架橋性側鎖型高分子膜に偏光した紫外線を照射する工程、及び
[III]前記紫外線の照射された側鎖型高分子膜を加熱する工程
[IV]前記紫外線を照射され、その後加熱された側鎖型高分子膜に無偏光の紫外線を照射する工程
を有する液晶配向膜の製造方法であって、
[II]工程の紫外線照射量が、前記側鎖型高分子膜の、前記偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを最大にする紫外線照射量の1%〜70%の範囲内であることを特徴とする液晶配向膜の製造方法。
[I] a step of forming a photocrosslinkable side chain polymer film that exhibits liquid crystallinity in a predetermined temperature range on a substrate;
[II] A step of irradiating the photocrosslinkable side chain polymer film with polarized ultraviolet light, and [III] a step of heating the side chain polymer film irradiated with ultraviolet light. [IV] The irradiation of the ultraviolet light. Then, a method for producing a liquid crystal alignment film comprising a step of irradiating non-polarized ultraviolet rays to the heated side chain polymer film,
[II] The amount of UV irradiation in the step maximizes ΔA, which is the difference between the UV absorbance in the direction parallel to the polarization direction of the polarized UV and the UV absorbance in the direction perpendicular to the polarization direction of the polarized UV. The manufacturing method of the liquid crystal aligning film characterized by being in the range of 1%-70% of ultraviolet irradiation amount.
[II]工程の紫外線照射量が、前記ΔAを最大にする紫外線照射量の1%〜50%の範囲内である請求項5に記載の液晶配向膜の製造方法。   6. The method for producing a liquid crystal alignment film according to claim 5, wherein the ultraviolet irradiation amount in the step [II] is in the range of 1% to 50% of the ultraviolet irradiation amount that maximizes the ΔA. [III]工程の加熱温度が、前記側鎖型高分子膜が液晶性を発現する温度範囲の下限より10℃高い温度から当該温度範囲の上限より10℃低い温度までの範囲の温度である請求項5又は6に記載の液晶配向膜の製造方法。   The heating temperature in the step [III] is a temperature in a range from a temperature 10 ° C. higher than the lower limit of the temperature range in which the side chain polymer film exhibits liquid crystallinity to a temperature 10 ° C. lower than the upper limit of the temperature range. Item 7. A method for producing a liquid crystal alignment film according to Item 5 or 6. [IV]工程の紫外線照射により、前記側鎖型高分子膜の有する光架橋性基の20モル%以上が反応する請求項5〜7に記載の液晶配向膜の製造方法。   The method for producing a liquid crystal alignment film according to claim 5, wherein 20 mol% or more of the photocrosslinkable group of the side chain polymer film reacts by ultraviolet irradiation in the step [IV]. 前記、液晶性を発現する光架橋性の側鎖型高分子に含有される感光性基が桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン、又はその誘導体である請求項5〜8に記載の液晶配向膜の製造方法。   9. The photosensitive group contained in the photocrosslinkable side chain polymer that exhibits liquid crystallinity is cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan, or a derivative thereof. A method for producing a liquid crystal alignment film. 前記側鎖型高分子膜は、炭化水素、アクリレート、及びメタクリレートからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)〜(7)の少なくとも1種で表される側鎖とを有する構造である請求項1〜9のいずれか1項に記載の液晶配向膜の製造方法。
Figure 2013081066
(式(1)中、A、Bはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、及び炭素数5〜8の環状炭化水素なる群から選ばれる少なくとも1種の基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、−COO−、−OCO−、−N=N−、−C=C−、−C≡C−、又はC64−を表し、l1は1〜12の整数を表し、m1は1〜3の整数を表し、n1は1〜12の整数を表す。式(2)中、A、B、Dはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、及び炭素数5〜8の環状炭化水素からなる群から選ばれる少なくとも1種の基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、−COO−、−OCO−、−N=N−、−C=C−、−C≡C−、又はC64−を表し、Rは水素原子、又は炭素数1〜6のアルキル基を表す。l2は1〜12の整数を表し、m2は1〜3の整数を表し、n2は1〜12の整数を表す。式(3)中、Aは単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Xは単結合、−COO−、−OCO−、−N=N−、−C=C−、−C≡C−、又はC64−を表し、Rは水素原子、又は炭素数1〜6のアルキル基を表す。l3は1〜12の整数を表し、m3は1〜3の整数を表す。式(4)中、l4は1〜12の整数を表す。式(5)中、Aは単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Xは−COO−を表し、Yはベンゼン環、ナフタレン環、及びビフェニル環からなる群から選ばれる少なくとも1種の基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l5は1〜12の整数を表し、m4は1〜3の整数を表す。式(6)中、Aは単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Rは水素原子、−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、炭素数1〜6のアルキル基、及び炭素数1〜6のアルキルオキシ基からなる群から選ばれる少なくとも1種の基を表す。l6は1〜12の整数を表す。式(6)中のベンゼン環に結合する水素原子はそれぞれ独立に−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。式(7)中、Aは単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、又はNH−CO−を表し、Bは単結合、−COO−、−OCO−、−N=N−、−C=C−、−C≡C−、又はC64−を表す。Wはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、及び炭素数5〜8の環状炭化水素からなる群から選ばれる少なくとも1種の基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−C=C(CN)、−C=CH−CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l7は1〜12の整数を表し、m5、m6はそれぞれ1〜3の整数を表す。)
The side chain polymer film is represented by a main chain composed of at least one selected from the group consisting of hydrocarbon, acrylate, and methacrylate, and at least one of the following formulas (1) to (7). The method for producing a liquid crystal alignment film according to claim 1, wherein the structure has a side chain.
Figure 2013081066
(In Formula (1), A 1 and B 1 each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or NH—CO—, and Y 1 is at least one group selected from the group consisting of a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, and a cyclic hydrocarbon having 5 to 8 carbon atoms, and the hydrogen atoms bonded thereto are each independently -NO 2, -CN, -C = C (CN) 2, -C = CH-CN, a halogen group, an alkyl group, or may be substituted with an alkyl group .X 1 is a single bond, -COO-, —OCO—, —N═N—, —C═C—, —C≡C—, or C 6 H 4 —, wherein l1 represents an integer of 1 to 12, and m1 represents an integer of 1 to 3. , N1 represents an integer of 1 to 12. In formula (2), A 2 , B 2 and D 1 are each independently Represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or NH—CO—, and Y 2 represents a benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring. , And at least one group selected from the group consisting of cyclic hydrocarbons having 5 to 8 carbon atoms, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —C═C (CN) 2. , -C = CH-CN, a halogen group, an alkyl group, or an alkyloxy group, X 2 represents a single bond, -COO-, -OCO-, -N = N-, -C = C- , —C≡C— or C 6 H 4 —, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, l2 represents an integer of 1 to 12, and m2 represents 1 to 3. Represents an integer, and n2 represents an integer of 1 to 12. In formula (3), A 3 represents a single bond, —O—. , —CH 2 —, —COO—, —OCO—, —CONH—, or NH—CO—, wherein X 3 is a single bond, —COO—, —OCO—, —N═N—, —C═C -, - C≡C-, or C 6 H 4 - represents, R 2 is .l3 represents a hydrogen atom, or an alkyl group having 1 to 6 carbon atoms is an integer of 1 to 12, m3 is from 1 to 3 In the formula (4), 14 represents an integer of 1 to 12. In the formula (5), A 4 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, -CONH-, or an NH-CO-, X 4 represents -COO-, Y 3 is at least one group selected from the group consisting of a benzene ring, a naphthalene ring, and biphenyl ring, attached thereto Each independently represents —NO 2 , —CN, —C═C (CN) 2 , —C═CH—CN, a halogen group, It may be substituted with a kill group or an alkyloxy group. l5 represents an integer of 1 to 12, and m4 represents an integer of 1 to 3. In Formula (6), A 5 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or NH—CO—, and R 3 represents a hydrogen atom, —NO 2 , -CN, -C = C (CN) 2 , -C = CH-CN, a halogen group, an alkyl group having 1 to 6 carbon atoms, and an alkyloxy group having 1 to 6 carbon atoms. Represents a group of species. l6 represents an integer of 1 to 12. -NO 2 each independently hydrogen atom bonded to the benzene ring in formula (6), -CN, -C = C (CN) 2, -C = CH-CN, a halogen group, an alkyl group, or an alkyl group May be substituted. In Formula (7), A 6 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or NH—CO—, and B 3 represents a single bond, —COO—. , —OCO—, —N═N—, —C═C—, —C≡C—, or C 6 H 4 —. W 1 is at least one group selected from the group consisting of a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, and a cyclic hydrocarbon having 5 to 8 carbon atoms, and the hydrogen atoms bonded thereto are each Independently, it may be substituted with —NO 2 , —CN, —C═C (CN) 2 , —C═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. l7 represents an integer of 1 to 12, and m5 and m6 each represents an integer of 1 to 3. )
請求項1〜10のいずれか1項に記載の液晶配向膜の製造方法により製造された液晶配向膜。   The liquid crystal aligning film manufactured by the manufacturing method of the liquid crystal aligning film of any one of Claims 1-10. 請求項11に記載の液晶配向膜を有する液晶表示素子。   The liquid crystal display element which has a liquid crystal aligning film of Claim 11.
JP2013547217A 2011-11-29 2012-11-29 Method for producing liquid crystal alignment film Active JP6150731B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011260180 2011-11-29
JP2011260180 2011-11-29
PCT/JP2012/080977 WO2013081066A1 (en) 2011-11-29 2012-11-29 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017021523A Division JP2017090934A (en) 2011-11-29 2017-02-08 Method of manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2013081066A1 true JPWO2013081066A1 (en) 2015-04-27
JP6150731B2 JP6150731B2 (en) 2017-06-21

Family

ID=48535514

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013547217A Active JP6150731B2 (en) 2011-11-29 2012-11-29 Method for producing liquid crystal alignment film
JP2017021523A Pending JP2017090934A (en) 2011-11-29 2017-02-08 Method of manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017021523A Pending JP2017090934A (en) 2011-11-29 2017-02-08 Method of manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Country Status (4)

Country Link
JP (2) JP6150731B2 (en)
KR (2) KR102157012B1 (en)
TW (1) TWI593710B (en)
WO (1) WO2013081066A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017497A1 (en) * 2012-07-24 2014-01-30 日産化学工業株式会社 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal aligning agent
JP2014206715A (en) * 2013-03-19 2014-10-30 日産化学工業株式会社 Method for manufacturing substrate having liquid crystal aligning film for in-plane switching liquid crystal display element
JP6502006B2 (en) * 2013-06-25 2019-04-17 日産化学株式会社 Method of manufacturing substrate having liquid crystal alignment film for transverse electric field drive type liquid crystal display device
JPWO2015002292A1 (en) * 2013-07-04 2017-02-23 日産化学工業株式会社 Polarized UV anisotropy material
CN105518521B (en) * 2013-07-05 2020-04-10 日产化学工业株式会社 Polymer composition and liquid crystal alignment film for in-plane switching liquid crystal display element
KR102290811B1 (en) * 2013-07-24 2021-08-17 닛산 가가쿠 가부시키가이샤 Polymer, polymer composition, and liquid crystal alignment film for horizontal-electric-field drive-type liquid crystal display element
KR102277348B1 (en) * 2013-07-31 2021-07-13 닛산 가가쿠 가부시키가이샤 Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
KR102204768B1 (en) * 2013-08-22 2021-01-18 닛산 가가쿠 가부시키가이샤 Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element
JP6509132B2 (en) * 2014-01-30 2019-05-08 公立大学法人兵庫県立大学 Photoreactive liquid crystal composition, display device, optical device, method of manufacturing display device, method of manufacturing optical device
KR102267878B1 (en) * 2014-04-09 2021-06-21 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
US9708535B2 (en) 2014-06-02 2017-07-18 Dic Corporation Liquid crystal alignment layer
US9810950B2 (en) 2014-07-30 2017-11-07 Sharp Kabushiki Kaisha Method for producing liquid crystal display device with favorable voltage holding ratio reliability and reduced image sticking
TWI695847B (en) * 2014-08-05 2020-06-11 日商日產化學工業股份有限公司 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
JP6518934B2 (en) * 2014-09-19 2019-05-29 林テレンプ株式会社 Method for producing liquid crystal polymer film
JP6660144B2 (en) * 2015-10-23 2020-03-04 株式会社ブイ・テクノロジー Light irradiation device
JP6828360B2 (en) * 2016-01-07 2021-02-10 Jsr株式会社 A liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal element, and a method for manufacturing a liquid crystal alignment film and a liquid crystal element.
CN109923449B (en) * 2016-08-31 2021-12-21 日产化学株式会社 Phase difference film having water vapor barrier property and method for producing same
JP2018109788A (en) * 2018-03-16 2018-07-12 日産化学工業株式会社 Method for manufacturing substrate having liquid crystal orientation film for lateral electric field-driven liquid crystal display element
US11561507B2 (en) 2018-04-17 2023-01-24 Meta Platforms Technologies, Llc Methods for three-dimensional arrangement of anisotropic molecules, patterned anisotropic films, and optical elements therewith

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304215A (en) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP2008276149A (en) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
TWI406061B (en) * 2005-11-10 2013-08-21 Dainippon Ink & Chemicals Composition for photoalignment film, optically anisotropic body and method of producing same
KR100913605B1 (en) * 2007-12-07 2009-08-26 제일모직주식회사 Photoalignment agent of liquid crystal, photoalignment film of liquid crystal including the same, and liquid crystal display including the same
TWI495648B (en) * 2010-07-28 2015-08-11 Osaka Organic Chemical Ind Ltd Copolymerized (meth) acrylate polymer, photo-alignment film and phase difference film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304215A (en) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP2008276149A (en) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOBUHIRO KAWATSUKI ET AL.: "Molecular-Oriented Photoalignment Layer for Liquid Crystals", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 46, no. 1, JPN6014034640, 10 January 2007 (2007-01-10), pages 339 - 341, ISSN: 0003415522 *
NOBUHIRO KAWATSUKI: "Photoalignment and Photoinduced Molecular Reorientation of Photosensitive Materials", CHEMISTRY LETTERS, vol. 40, no. 6, JPN6014034641, 11 May 2011 (2011-05-11), pages 548 - 554, XP055929338, ISSN: 0003415523, DOI: 10.1246/cl.2011.548 *

Also Published As

Publication number Publication date
CN103959152A (en) 2014-07-30
KR20140105446A (en) 2014-09-01
JP2017090934A (en) 2017-05-25
WO2013081066A1 (en) 2013-06-06
KR102012533B1 (en) 2019-08-20
TW201341413A (en) 2013-10-16
KR20190099085A (en) 2019-08-23
TWI593710B (en) 2017-08-01
KR102157012B1 (en) 2020-09-16
JP6150731B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP6150731B2 (en) Method for producing liquid crystal alignment film
JP6586438B2 (en) Polymer suitable for highly efficient liquid crystal alignment film using light
TWI706981B (en) Polymer composition, method for manufacturing substrate with liquid crystal alignment film, transverse electric field drive type liquid crystal display element, method for manufacturing liquid crystal display element, and liquid crystal alignment film for transverse electric field drive type liquid crystal display element
TWI628231B (en) Manufacturing method of substrate with liquid crystal alignment film for lateral electric field drive type liquid crystal display element
KR20150067217A (en) Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
TWI620757B (en) Manufacturing method of transverse electric field driving type liquid crystal display element
TWI706028B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6523169B2 (en) Polymer, polymer composition and liquid crystal alignment film for horizontal electric field drive type liquid crystal display device
JP2007232934A (en) Photo-alignment material
KR20160016915A (en) Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
WO2014185411A1 (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
JP6872315B2 (en) Liquid crystal alignment film for polymer composition and transverse electric field drive type liquid crystal display element
WO2016021570A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20160007635A (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
CN103959152B (en) The manufacture method of liquid crystal orientation film, liquid crystal orientation film and liquid crystal display cells
WO2017061542A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R150 Certificate of patent or registration of utility model

Ref document number: 6150731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250