WO2014017497A1 - Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal aligning agent - Google Patents

Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal aligning agent Download PDF

Info

Publication number
WO2014017497A1
WO2014017497A1 PCT/JP2013/069939 JP2013069939W WO2014017497A1 WO 2014017497 A1 WO2014017497 A1 WO 2014017497A1 JP 2013069939 W JP2013069939 W JP 2013069939W WO 2014017497 A1 WO2014017497 A1 WO 2014017497A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
side chain
integer
coo
Prior art date
Application number
PCT/JP2013/069939
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 後藤
隆之 根木
喜弘 川月
瑞穂 近藤
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020157004092A priority Critical patent/KR102058769B1/en
Priority to CN201380049349.8A priority patent/CN104937480B/en
Priority to JP2014526945A priority patent/JP6268089B2/en
Publication of WO2014017497A1 publication Critical patent/WO2014017497A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/148Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133726Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films made of a mesogenic material

Definitions

  • the present invention relates to a polymer and a liquid crystal aligning agent suitable for a method for producing a highly efficient liquid crystal aligning film using light, and a liquid crystal aligning film and a liquid crystal display element.
  • the liquid crystal display element is known as a light, thin and low power consumption display device, and has been remarkably developed in recent years.
  • the liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
  • the liquid crystal alignment film is a constituent member of the liquid crystal display element, and is formed on a surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
  • the liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate.
  • alignment control ability is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
  • the rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction).
  • This is a method of aligning liquid crystals. Since this rubbing method can easily and relatively realize a liquid crystal alignment state, it has been used in the manufacturing process of a conventional liquid crystal display element.
  • an organic film used for the liquid crystal alignment film a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.
  • Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.
  • a decomposition type photo-alignment method is known as a main photo-alignment method.
  • the polyimide film is irradiated with polarized ultraviolet light, and anisotropic decomposition is caused by utilizing the polarization direction dependence of the ultraviolet absorption of the molecular structure. Then, the liquid crystal is aligned by the polyimide remaining without being decomposed (see, for example, Patent Document 1).
  • photocrosslinking type and photoisomerization type photo-alignment methods are also known.
  • polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light. Then, the liquid crystal is aligned in a direction orthogonal to the polarization direction (see, for example, Non-Patent Document 1).
  • the alignment treatment method of the liquid crystal alignment film by the photo-alignment method uses a reaction by light such as a photocrosslinking reaction or a photoisomerization reaction. Therefore, the material used for forming the liquid crystal alignment film is required to have photoreactivity that enables it.
  • a reaction by light such as a photocrosslinking reaction or a photoisomerization reaction.
  • the material used for forming the liquid crystal alignment film is required to have photoreactivity that enables it.
  • Non-Patent Document 1 described above polyvinyl cinnamate is used as the material of the liquid crystal alignment film.
  • the liquid crystal alignment film is required to have excellent reliability as described above. Therefore, as described above, a polyimide organic film having excellent reliability such as heat resistance and electrical characteristics has been used for the liquid crystal alignment film by the conventional rubbing treatment. Therefore, the liquid crystal alignment film by the photo-alignment method is required to satisfy both photoreactivity and reliability.
  • a technique for obtaining a highly reliable polymer material such as an acrylic-siloxane hybrid material in which an acrylic polymer and a siloxane polymer are separately polymerized and mixed is known ( For example, see Patent Documents 5 to 9).
  • Patent Documents 5 to 9 for example, see Patent Documents 5 to 9.
  • the introduction of such highly reliable hybrid materials has not progressed.
  • Japanese Unexamined Patent Publication No. 2007-304215 Japanese Unexamined Patent Publication No. 2007-232934 Japanese Unexamined Patent Publication No. 2008-276149 Japanese Unexamined Patent Publication No. 7-243173 Japanese Unexamined Patent Publication No. 9-208642 Japanese Laid-Open Patent Publication No. 4-261454 Japanese Unexamined Patent Publication No. 2003-313233 Japanese Unexamined Patent Publication No. 1-168971
  • the photo-alignment method eliminates the rubbing process itself and has a great advantage as compared with the rubbing method that has been industrially used as an alignment treatment method for liquid crystal display elements.
  • an alignment process can be performed on a substrate of a liquid crystal display element having an uneven surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process.
  • the alignment control ability can be controlled by changing the irradiation amount of polarized light in the photo-alignment method.
  • An object of the present invention is to provide a highly efficient liquid crystal alignment film manufacturing method using light, to provide a liquid crystal alignment film, and to provide a liquid crystal display element having the obtained liquid crystal alignment film.
  • Another object of the present invention is to provide a polymer suitable for a method for producing a highly efficient liquid crystal alignment film using light, and a liquid crystal aligning agent containing the polymer.
  • a method for producing a liquid crystal alignment film comprising:
  • step [III] ranges from a temperature 10 ° C. higher than the lower limit of the temperature range in which the side chain polymer film exhibits liquid crystallinity to a temperature 10 ° C. lower than the upper limit of the liquid crystal temperature range.
  • the manufacturing method of the liquid crystal aligning film as described in said (1) which is inside.
  • the side chain polymer film is composed of at least one selected from the group consisting of polyamic acid, polyimide, polyamic acid ester, acrylate, methacrylate, maleimide, ⁇ -methylene- ⁇ -butyrolactone and siloxane.
  • (1) comprising a structure having a main chain and at least one side chain selected from the group consisting of the following formulas (1) to (5), formula (7), and formula (8): A method for producing a liquid crystal alignment film according to any one of (6) to (6).
  • a 1 and B 1 each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • Y 1 represents a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, Independently, it may be substituted with —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group, wherein X 1 is a single bond, — COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —, wherein l1 represents an integer of 1 to 12
  • a 2 , B 2 , and D 1 are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO. -Represents.
  • Y 2 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded thereto are each independently , —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group.
  • X 2 represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • l2 represents an integer of 1 to 12
  • m2 represents an integer of 1 to 3
  • n2 represents an integer of 1 to 12.
  • a 3 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • X 3 represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • l3 represents an integer of 1 to 12
  • m3 represents an integer of 1 to 3.
  • l4 represents an integer of 1 to 12.
  • a 4 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • X 4 represents —COO—.
  • Y 3 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, or a combination thereof, and a hydrogen atom bonded thereto is independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group.
  • l5 represents an integer of 1 to 12
  • m4 represents an integer of 1 to 3.
  • a 5 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms. Or a group consisting of a combination thereof.
  • l6 represents an integer of 1 to 12.
  • the hydrogen atom bonded to the benzene ring in formula (7) is independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyl group. It may be substituted with an oxy group.
  • a 6 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • B 3 represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • W 1 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and each hydrogen atom bonded thereto is independently , —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group.
  • l7 represents an integer of 1 to 12
  • m 5 and m 6 each independently represents an integer of 1 to 3.
  • the side chain type polymer film comprises a polysiloxane (a) having a radical polymerizable group and a monomer (b) having a liquid crystalline and photosensitive group and a radical polymerizable group.
  • the liquid crystalline and photosensitive group of the monomer (b) is at least one selected from the group consisting of azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan and phenylbenzoate.
  • (11) A liquid crystal display device having the liquid crystal alignment film according to (10).
  • polysiloxane (a) is a polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane of the following formula (10).
  • R 13 s1 Si (OR 14 ) s2 (10) (In Formula (10), R 13 represents an alkyl group substituted with an acryl group, a methacryl group, a styryl group, or an aryl group.
  • R 14 represents hydrogen or an alkyl group having 1 to 5 carbon atoms.
  • the liquid crystalline and photosensitive group of the monomer (b) is at least one selected from the group consisting of azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan and phenylbenzoate.
  • the monomer (b) includes a polymerizable group composed of at least one selected from the group consisting of hydrocarbons, acrylates, methacrylates, maleimides and ⁇ -methylene- ⁇ -butyrolactone, and the following formula (1): Any one of the above (12) to (14), which is a monomer having at least one side chain selected from the group consisting of formula (5), formula (7), and formula (8) The polymer described.
  • a 1 and B 1 each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • Y 1 represents a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, Independently, it may be substituted with —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group, wherein X 1 is a single bond, — COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —, wherein l1 represents an integer of 1 to 12
  • a 2 , B 2 , and D 1 are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO. -Represents.
  • Y 2 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded thereto are each independently , —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group.
  • X 2 represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • l2 represents an integer of 1 to 12
  • m2 represents an integer of 1 to 3
  • n2 represents an integer of 1 to 12.
  • a 3 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • X 3 represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • l3 represents an integer of 1 to 12
  • m3 represents an integer of 1 to 3.
  • l4 represents an integer of 1 to 12.
  • a 4 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • X 4 represents —COO—.
  • Y 3 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, or a combination thereof, and a hydrogen atom bonded thereto is independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group.
  • l5 represents an integer of 1 to 12
  • m4 represents an integer of 1 to 3.
  • a 5 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms. Or a group consisting of a combination thereof.
  • l6 represents an integer of 1 to 12.
  • the hydrogen atom bonded to the benzene ring in formula (7) is independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyl group. It may be substituted with an oxy group.
  • a 6 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • B 3 represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • W 1 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and each hydrogen atom bonded thereto is independently , —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group.
  • l7 represents an integer of 1 to 12
  • m 5 and m 6 each independently represents an integer of 1 to 3.
  • the side chain type polymer film of the present invention may be used in combination with a side chain structure having no photoreactivity as long as liquid crystallinity and photoreactivity are not lost.
  • a side chain structure that does not have photoreactivity includes a structure represented by the following formula (6).
  • E 1 represents a single bond, —O—, —CH 2 —, —COO, —OCO—, —CONH—, or —NH—CO—.
  • Z represents a single bond, —COO, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • k1 represents an integer of 1 to 12, and p1 and q1 each independently represents an integer of 0 to 3.
  • R 4 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyloxy group having 1 to 6 carbon atoms, a carboxyl group, or a combination thereof. Represents a group.
  • a liquid crystal alignment film can be obtained by realizing a highly efficient alignment process using light by a method for producing a liquid crystal alignment film that enables a highly efficient alignment process.
  • a liquid crystal display element is obtained.
  • the polymer which can be used suitably for the above liquid crystal aligning films, and the liquid crystal aligning agent containing this polymer are obtained.
  • FIG. 1 It is a figure which illustrates typically the anisotropic introduction process in the manufacturing method of the liquid crystal aligning film of the 1st form of this invention
  • (a) is a figure which shows the state of the side chain type polymer film before polarized light irradiation
  • B is a view showing the state of the side chain polymer film after irradiation with polarized light
  • (c) is a view showing the state of the side chain polymer film after heating
  • (d ) Is a diagram showing a state of the side chain polymer film in which the orientation is fixed by performing a second heat treatment after heating.
  • FIG. 1 It is a figure which illustrates typically the anisotropic introduction process in the manufacturing method of the liquid crystal aligning film of the 1st form of this invention
  • (a) is a figure which shows the state of the side chain type polymer film before polarized light irradiation
  • B is a view showing the state of the side chain polymer film after irradiation with polarized light
  • (c) is a view showing the state of the side chain polymer film after heating
  • (d ) Is a diagram showing a state of the side chain polymer film in which the orientation is fixed by performing a second heat treatment after heating.
  • the method for producing a liquid crystal alignment film of the present invention uses a method in which an alignment treatment is performed by irradiation with polarized light without using a rubbing treatment, using a photosensitive side chain polymer film capable of exhibiting liquid crystallinity.
  • the photosensitive side chain polymer film capable of exhibiting liquid crystallinity includes a polysiloxane (a) having a radical polymerizable group, a monomer having a liquid crystalline and photosensitive group, and a radical polymerizable group ( b) and a polymer obtained by radical polymerization.
  • a step of heating the side chain polymer film is provided to produce a liquid crystal alignment film.
  • a heating process is made into two steps, the 1st heating process and 2nd heating process from which temperature differs. Furthermore, by optimizing the irradiation amount of polarized light and the heating temperature in the first heating step after the polarized light irradiation, highly efficient alignment processing is realized in the liquid crystal alignment film. Thereafter, in the second heating step, the alignment state formed in the liquid crystal alignment film is fixed. As a result, in the present invention, it is possible to achieve high alignment and good alignment control ability in the liquid crystal alignment film. The present invention will be described in detail below.
  • the photosensitive side chain polymer film that can exhibit liquid crystallinity used in the method for producing a liquid crystal alignment film of the present invention is a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, that is, It is a polymer film.
  • bonded with the principal chain of a polymer has photosensitivity, and can raise
  • the photosensitive group bonded to the main chain is not particularly limited, but a structure that causes a crosslinking reaction or photofleece rearrangement in response to light is desirable. In this case, the realized orientation control ability can be stably maintained for a long period of time even when exposed to external stress such as heat.
  • the structure of the photosensitive side chain polymer film that can exhibit liquid crystallinity in a predetermined temperature range used in the method for producing a liquid crystal alignment film of the present invention is not particularly limited as long as it satisfies such characteristics.
  • the side chain structure of the side chain polymer preferably has a rigid mesogen component. In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used for the liquid crystal alignment film.
  • Examples of such a side chain polymer structure include a main chain and a side chain bonded to the main chain, and the side chain is a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, an azobenzene group, or the like.
  • the structure has a mesogenic component and a photosensitive group bonded to the tip, which undergoes a crosslinking reaction or an isomerization reaction in response to light, or a main chain and a side chain bonded to the main chain, and the side chain is
  • a structure having a phenylbenzoate group that also serves as a mesogenic component and undergoes a photo-Fries rearrangement reaction can be obtained.
  • the photosensitive side chain polymer film capable of exhibiting liquid crystallinity used in the method for producing a liquid crystal alignment film of the present invention will be described.
  • photosensitive side chain polymer film capable of exhibiting liquid crystallinity of the present invention include acrylate, methacrylate, maleimide, ⁇ -methylene- ⁇ -butyrolactone, siloxane, itaconate, fumarate, maleate, styrene, vinyl,
  • a 1 and B 1 each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • Y 1 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded to them are independent of each other.
  • —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group may be substituted.
  • X 1 represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • l1 represents an integer of 1 to 12
  • m1 represents an integer of 1 to 3
  • n1 represents an integer of 1 to 12.
  • a 2 , B 2 , and D 1 are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—.
  • Y 2 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded thereto are independent of each other.
  • —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group may be substituted.
  • X 2 represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • l2 represents an integer of 1 to 12
  • m2 represents an integer of 1 to 3
  • n2 represents an integer of 1 to 12.
  • a 3 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • X 3 represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —, and R 2 represents a hydrogen atom or a carbon number.
  • l4 represents an integer of 1 to 12.
  • a 4 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • X 4 represents —COO—.
  • Y 3 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, or a combination thereof, and a hydrogen atom bonded thereto is independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group may be substituted.
  • l5 represents an integer of 1 to 12
  • m4 represents an integer of 1 to 3.
  • a 5 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms. Or a group consisting of a combination thereof.
  • l6 represents an integer of 1 to 12.
  • the hydrogen atom bonded to the benzene ring in formula (7) is independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyl group. It may be substituted with an oxy group.
  • a 6 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • B 3 represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • W 1 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded thereto are independent of each other.
  • —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group may be substituted.
  • l7 represents an integer of 1 to 12
  • m 5 and m 6 each independently represents an integer of 1 to 3.
  • the side chain represented by the above formula (1) to formula (5), formula (7), and formula (8) has a structure having a group such as biphenyl, terphenyl, phenylcyclohexyl, phenylbenzoate, or azobenzene as a mesogenic component Is provided. And at the tip, it has a photosensitive group that undergoes a dimerization reaction in response to light and undergoes a crosslinking reaction, or has a main chain and a side chain bonded thereto, and the side chain also becomes a mesogenic component. And a phenylbenzoate group that undergoes a photo-Fries rearrangement reaction, or at least one group.
  • the photosensitive side-chain polymer film capable of exhibiting liquid crystallinity according to the present invention includes the group consisting of the above formulas (1) to (5), (7), and (8) together with the above-described main chain.
  • a side chain structure having no photoreactivity may be used in combination as long as liquid crystallinity and photoreactivity are not lost.
  • An example of a side chain structure that does not have photoreactivity includes a structure represented by the following formula (6).
  • E 1 represents a single bond, —O—, —CH 2 —, —COO, —OCO—, —CONH—, or —NH—CO—.
  • Z represents a single bond, —COO, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, or C 6 H 4 —.
  • k1 represents an integer of 1 to 12, and p1 and q1 each independently represents an integer of 0 to 3.
  • R 4 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyloxy group having 1 to 6 carbon atoms, a carboxyl group, or a combination thereof. Represents a group.
  • the polysiloxane (a) used as the material for the side chain polymer film is a polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane represented by the following formula (10).
  • R 13 is an alkyl group substituted with an acryl group, a methacryl group, a styryl group, or an aryl group.
  • R 14 represents hydrogen or an alkyl group having 1 to 5 carbon atoms.
  • S1 is 1 or 2
  • S2 is 2 or 3.
  • R 13 of the alkoxysilane represented by the above formula (10) (hereinafter also referred to as a second specific organic group) is at least one selected from the group consisting of an acryl group, a methacryl group, a styryl group, and an aryl group.
  • An alkyl group substituted with The number of substituted hydrogen atoms is one or more, preferably one.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. More preferably, it is 1-10.
  • the alkyl group may be linear or branched, but is more preferably linear.
  • R 14 of the alkoxysilane represented by the above formula (10) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
  • alkoxysilane represented by the said Formula (10) examples include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, 3- Acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, acryloxyethyltrimethoxysilane, acryloxyethyltriethoxysilane, styrylethyltrimethoxysilane, styrylethyltriethoxysilane, 3- (N-styrylmethyl- 2-aminoethylamino) propyltrimethoxysilane.
  • the effects of the present invention are not impaired in the production of the polysiloxane (a) for the purpose of improving the adhesion to the substrate and the affinity with the liquid crystal molecules.
  • the alkoxysilane represented by following formula (11) can also use 1 type or multiple types. Since the alkoxysilane represented by the following formula (11) can impart various characteristics to the polysiloxane, one or more kinds can be selected and used according to the required characteristics.
  • R 18 is a hydrogen atom or a carbon atom having 1 to 10 carbon atoms which may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group. It is a hydrogen group.
  • R 19 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.
  • n is an integer of 0 to 3, preferably 0 to 2.
  • R 18 of the alkoxysilane represented by the above formula (11) is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms (hereinafter also referred to as a third specific organic group).
  • Examples of the third specific organic group include an aliphatic hydrocarbon group; a hydrocarbon group having a ring structure such as an aliphatic ring, an aromatic ring and a heterocyclic ring; a hydrocarbon group having an unsaturated bond; and an oxygen atom, It is a hydrocarbon group having 1 to 6 carbon atoms which may contain a hetero atom such as a nitrogen atom or a sulfur atom, and may have a branched structure.
  • the third specific organic group may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group, or the like.
  • alkoxysilane represented by the above formula (11) are given below, but the invention is not limited thereto.
  • 3- (2-aminoethylaminopropyl) trimethoxysilane 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) triethoxy Silane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3- Mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethyl
  • the alkoxysilane in which n is 0 is tetraalkoxysilane.
  • Tetraalkoxysilane is preferable for obtaining the polysiloxane (a) used in the present invention because it easily condenses with the alkoxysilane represented by the formula (10).
  • tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, or tetrabutoxysilane is more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
  • the alkoxysilane represented by the formula (10) is contained in 1 to 30 mol%, particularly preferably 5 to 20 mol% in the total alkoxysilane used for the production of the polysiloxane (a). preferable.
  • the monomer (b) used for the formation of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity used in the method for producing a liquid crystal alignment film of the present invention is a liquid crystalline and photosensitive group. And a radically polymerizable group.
  • the liquid crystalline and photosensitive group of the monomer (b) is derived from at least one selected from the group consisting of azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan and phenylbenzoate. It is a group.
  • the monomer (b) includes a polymerizable group composed of at least one selected from the group consisting of hydrocarbon, acrylate, methacrylate, maleimide and ⁇ -methylene- ⁇ -butyrolactone, and the above formulas (1) to It is preferable that it is a monomer which has at least 1 sort (s) of side chain selected from the group which consists of (5), Formula (7), and Formula (8).
  • the monomer (b) can be used together with the above-described polysiloxane (a) to form a polymer, and can be used for forming the side chain polymer film of the present invention.
  • the side chain polymer in the side chain polymer film of the present invention comprises the above-described polysiloxane (a) and a monomer (b) having a liquid crystalline and photosensitive group and a radical polymerizable group.
  • a polymer obtained by radical polymerization is included.
  • the polymer is, for example, in a solvent in which a polysiloxane (a), a monomer (b) having a liquid crystalline and photosensitive group and a radical polymerizable group, and a polymerization initiator coexist. It can be obtained by polymerization reaction at a temperature of 50 to 110 ° C.
  • the amount of the monomer (b) used is preferably 0.5 to 50 mol, and more preferably 1 to 10 mol, relative to 1 mol of alkoxysilane when the polysiloxane (a) is obtained.
  • the solvent used is a polysiloxane (a), a monomer (b) having a liquid crystalline and photosensitive group and a radical polymerizable group, and a polymerization initiator added as necessary. If it dissolves etc., it will not be specifically limited.
  • the solvent include, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate.
  • Examples of the polymerization initiator described above include 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis- ( Organic peroxides such as azo compounds such as 4-methoxy-2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, 1,1′-bis- (t-butylperoxy) cyclohexane And hydrogen peroxide.
  • AIBN 2,2′-azobisisobutyronitrile
  • AIBN azobisisobutyronitrile
  • the content of the polymerization initiator is preferably 3 to 50 mol%, more preferably 5 to 30 mol%, relative to 1 mol of the monomer (b) described above.
  • the method for producing a liquid crystal alignment film of the present invention forms a coating film on a substrate using the above-mentioned side chain polymer, and then irradiates polarized ultraviolet rays. Next, high efficiency anisotropy is introduced into the side chain polymer film by performing the first heating, and further fixing by the second heating to provide excellent liquid crystal alignment control ability.
  • the liquid crystal alignment film provided is manufactured.
  • the side chain polymer film is used.
  • a coating film is formed on the substrate using the side chain polymer.
  • the first alignment treatment is performed by irradiating polarized ultraviolet rays, and then the first heating (both the first heat treatment is performed) at a temperature within a range in which the side chain type polymer film exhibits liquid crystallinity.
  • the re-orientation process to be the second alignment process is performed.
  • the second heating (also referred to as second heat treatment) is further performed at a temperature equal to or higher than the temperature of the first heating described above, and the polysiloxane structure portion contained therein Is condensed.
  • the second heat treatment can produce a highly efficient liquid crystal alignment film by fixing the anisotropy introduced into the side chain polymer film by light irradiation and the first heat treatment.
  • a highly reliable liquid crystal alignment film based on a polysiloxane structure can be provided.
  • the method for producing the liquid crystal alignment film of the present invention includes: [I]; a step of forming a photosensitive side chain polymer film exhibiting liquid crystallinity in a predetermined temperature range on a substrate; [II]; a step of irradiating the side chain polymer film obtained in the step [I] with polarized ultraviolet rays; [III] a step of heating the side chain polymer film irradiated with ultraviolet rays polarized in the step [II], and [IV]; a side chain polymer film heated in the step [III] of the step [III]. And further heating at a different temperature from It is comprised.
  • the irradiation with ultraviolet rays in the step [II] is performed by introducing anisotropy into the side chain polymer film.
  • the amount is in the range of 1 to 15% of the ultraviolet irradiation amount that maximizes ⁇ A
  • the side chain type polymer film 1 of the present invention is formed on the substrate.
  • the side chain polymer film 1 formed on the substrate has a structure in which the side chains 2 are randomly arranged.
  • ⁇ A is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of polarized ultraviolet rays in the side chain polymer film of the present invention.
  • the irradiation with ultraviolet rays in the step [II] is performed by introducing anisotropy into the side chain polymer film.
  • the amount is in the range of 15 to 70% of the ultraviolet irradiation amount that maximizes ⁇ A
  • the side chain type polymer film 3 of the present invention is formed on the substrate.
  • the side chain polymer film 3 formed on the substrate has a structure in which the side chains 4 are randomly arranged. According to the random arrangement of the side chain 4 of the side chain polymer film 3, the mesogenic component and the photosensitive group of the side chain 4 are also randomly oriented, and the side chain polymer film 2 is isotropic.
  • the ultraviolet irradiation amount in the step [II] is 1 to the ultraviolet irradiation amount that maximizes ⁇ A.
  • the side chain polymer film 5 is formed on the substrate.
  • the side chain polymer film 5 formed on the substrate has a structure in which the side chains 6 are randomly arranged. According to the random arrangement of the side chain 6 of the side chain polymer film 5, the mesogenic component and the photosensitive group of the side chain 6 are also randomly oriented, and the side chain polymer film 5 is isotropic.
  • the ultraviolet irradiation amount in the step [II] is 1 to the ultraviolet irradiation amount that maximizes ⁇ A.
  • the side chain polymer film 7 is formed on the substrate.
  • the side chain type polymer film 7 of this embodiment formed on the substrate has a structure in which the side chains 8 are randomly arranged. According to the random arrangement of the side chains 8 of the side chain polymer film 7, the mesogenic components and the photosensitive groups of the side chains 8 are also randomly oriented, and the side chain polymer film 7 is isotropic.
  • the ultraviolet ray irradiation amount in the step [II] is within the range of 1 to 15% of the ultraviolet ray irradiation amount that maximizes ⁇ A.
  • the isotropic side chain polymer film 1 is irradiated with polarized ultraviolet rays.
  • the photosensitive group of the side chain 2a having a photosensitive group is preferentially dimerized.
  • the density of the side chain 2a that has undergone photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, the side chain polymer film 1 is provided with very small anisotropy.
  • the ultraviolet ray irradiation amount in the step [II] is within the range of 15 to 70% of the ultraviolet ray irradiation amount that maximizes ⁇ A.
  • the isotropic side chain polymer film 3 is irradiated with polarized ultraviolet rays.
  • the photosensitive group of the side chain 4a having a photosensitive group is preferentially dimerized.
  • a liquid crystal alignment film using a side chain polymer having a structure having an optical fleece rearrangement group represented by the above formula (7) in the second embodiment of the present invention In the case where the ultraviolet irradiation amount in the step [II] is in the range of 1 to 70% of the ultraviolet irradiation amount that maximizes ⁇ A, the isotropic side chain polymer film 5 is Irradiate polarized ultraviolet light. Then, as shown in FIG. 3 (b), among the side chains 6 arranged in a direction parallel to the polarization direction of the ultraviolet light, the photosensitive group of the side chain 6a having a photosensitive group is preferentially subjected to photofleece rearrangement.
  • the density of the side chain 6a subjected to the photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, the side chain type polymer film 5 is given a very small anisotropy.
  • a liquid crystal alignment film using a side chain polymer having a structure having an optical fleece rearrangement group represented by the above formula (8) in the second embodiment of the present invention In the case where the ultraviolet irradiation amount in the step [II] is in the range of 1 to 70% of the ultraviolet irradiation amount that maximizes ⁇ A, the isotropic side chain polymer film 7 is Irradiate polarized ultraviolet light. Then, as shown in FIG. 4B, among the side chains 8 arranged in a direction parallel to the polarization direction of the ultraviolet light, the photosensitive group of the side chain 8a having a photosensitive group preferentially undergoes optical Fleece rearrangement.
  • the ultraviolet irradiation amount in the step [II] is in the range of 1 to 15% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • the side chain polymer film 1 after irradiation with polarized light is heated to a liquid crystal state.
  • the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto.
  • this crosslinking reaction site functions as a plasticizer. Therefore, the liquid crystallinity in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is higher than the liquid crystallinity in the parallel direction, and the side chain 2 containing the mesogenic component is reoriented by self-organizing in the direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the very small anisotropy of the side chain polymer film 1 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the side chain polymer film 1. become.
  • the ultraviolet irradiation amount in the step [II] is within the range of 15 to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • the side chain polymer film 3 after irradiation with polarized light is heated to a liquid crystal state.
  • the amount of the generated crosslinking reaction is different between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto.
  • the side chain 4 containing the mesogenic component is reoriented by self-organizing in a direction parallel to the polarization direction of the irradiated ultraviolet light.
  • the small anisotropy of the side chain polymer film 3 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 3. .
  • a side chain type polymer having a structure having an optical fleece rearrangement group represented by the above formula (7) was used.
  • the ultraviolet irradiation amount in the step [II] is within the range of 1 to 70% of the ultraviolet irradiation amount that maximizes ⁇ A, Heat to liquid crystal state.
  • the amount of the generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet light and the direction perpendicular thereto. Yes.
  • the liquid crystal alignment force of the light fleece rearrangement generated in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is stronger than the liquid crystal alignment force of the side chain before the reaction, it self-organizes in the direction perpendicular to the polarization direction of the irradiated ultraviolet light.
  • the side chain 6 containing the mesogenic component is reoriented.
  • the very small anisotropy of the side chain polymer film 5 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the side chain polymer film 5. It will be.
  • a side chain type polymer having a structure having an optical fleece rearrangement group represented by the above formula (8) was used.
  • the ultraviolet irradiation amount in the step [II] is in the range of 1 to 70% of the ultraviolet irradiation amount that maximizes ⁇ A, Heat to liquid crystal state.
  • the amount of the generated optical fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. Yes.
  • the anchoring force of the optical fleece rearrangement 8 (a) is stronger than that of the side chain 8 before the rearrangement, when a certain amount or more of the optical fleece rearrangement occurs, it is self-assembled in a direction parallel to the polarization direction of the irradiated ultraviolet light.
  • the side chain 8 containing the mesogenic component is reoriented.
  • the small anisotropy of the side chain polymer film 7 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 7. Become.
  • the side chain polymer has a polysiloxane structure derived from the above-described polysiloxane (a). Therefore, the side chain polymer membrane of the present invention has a polysiloxane structure after anisotropy is induced by mesogen self-assembly as shown in FIG. 1 (c) and FIG. 2 (c).
  • the anisotropy can be fixed by performing the second heat treatment at a temperature at which a thermal reaction (crosslinking reaction) caused by the above occurs. That is, the side chain type polymer film of the present invention was induced in the orientation direction of the side chain 2b and the side chain 4b by the second heat treatment as shown in FIG. 1 (d) and FIG. 2 (d).
  • the temperature of the second heat treatment is preferably a temperature at which a thermal reaction of siloxane occurs, and can be, for example, a temperature of 200 ° C. or higher.
  • the side chain type polymer has a polysiloxane structure derived from the above-described polysiloxane (a). Therefore, the side chain type polymer film of the present invention has a polysiloxane structure after anisotropy is induced by mesogen self-assembly as shown in FIG. 3 (c) and FIG. 4 (c).
  • the anisotropy can be fixed by performing the second heat treatment at a temperature at which a thermal reaction (crosslinking reaction) caused by the above occurs. That is, the side chain type polymer film of the present invention is not shown, but the induced large anisotropy can be fixed by the second heat treatment as in the first embodiment.
  • the temperature of the second heat treatment is preferably a temperature at which a thermal reaction of siloxane occurs as in the first embodiment described above, and can be, for example, a temperature of 200 ° C. or higher.
  • the first heat treatment for irradiation and reorientation of polarized ultraviolet rays to the side chain polymer film and the second heat treatment for immobilization are performed.
  • a liquid crystal alignment film having anisotropy introduced with high efficiency can be obtained.
  • the irradiation amount of polarized ultraviolet rays on the side chain polymer film and the heating temperatures in the first heat treatment and the second heat treatment are made to correspond to the respective purposes. To optimize. Thereby, introduction of anisotropy into the side chain type polymer film can be realized with high efficiency.
  • the optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the side chain polymer film of the present invention is that the photopolymerization reaction or photoisomerization reaction of the photosensitive group in the side chain polymer film Or, it corresponds to the irradiation amount of polarized ultraviolet rays that optimizes the amount of photofleece rearrangement reaction.
  • the side chain type polymer film of the present invention when the side chain type polymer film of the present invention is irradiated with polarized ultraviolet rays to the structure having the light fleece rearrangement group, the side chain type becomes excessive when the side chain photosensitive group that undergoes the light fleece rearrangement reaction becomes excessive.
  • the liquid crystallinity of the polymer film will be too low. In that case, the liquid crystallinity of the obtained film is also lowered, which may hinder the progress of self-assembly due to subsequent overheating.
  • the side chain polymer of the present invention when irradiating polarized ultraviolet light to a structure having a photofleece rearrangement group, if the amount of ultraviolet light irradiation is too large, the side chain polymer of the present invention is photodegraded and then self-organized by heating. May interfere with progress.
  • the optimal amount of the side chain photosensitive group that undergoes photocrosslinking reaction, photoisomerization reaction, or photofries rearrangement reaction by irradiation with polarized ultraviolet rays is the side chain type.
  • the amount is preferably 0.1 to 40 mol%, more preferably 0.1 to 20 mol% of the photosensitive group of the polymer film.
  • a suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the side chain polymer film.
  • the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet light and the ultraviolet absorption in the vertical direction after irradiation with polarized ultraviolet light are measured.
  • ⁇ A which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays.
  • ⁇ Amax the maximum value of ⁇ A ( ⁇ Amax) realized in the side chain type polymer film of the present invention and the irradiation amount of polarized ultraviolet rays for realizing it are obtained.
  • a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the irradiation amount of polarized ultraviolet rays that realizes this ⁇ Amax.
  • the irradiation amount of polarized ultraviolet rays to the side chain polymer film is preferably in the range of 1 to 70% of the amount of polarized ultraviolet rays that realizes ⁇ Amax. More preferably, it is in the range of ⁇ 50%.
  • the irradiation amount of polarized ultraviolet light within the range of 1 to 50% of the amount of polarized ultraviolet light that realizes ⁇ Amax is 0% of the entire photosensitive group of the side chain type polymer film. 1 to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.
  • the side chain polymer film is irradiated with polarized ultraviolet rays, and then the side chain polymer film is heated (first heat treatment).
  • the side chain polymer film of the present invention is a polymer film that can exhibit liquid crystallinity in a predetermined temperature range.
  • the first heat treatment after irradiation with polarized ultraviolet rays can be determined based on the temperature at which the liquid crystallinity of the side chain polymer film is developed. That is, the heating temperature of the first heat treatment after irradiation with polarized ultraviolet rays is set to a temperature within a range in which the side chain polymer film of the present invention exhibits liquid crystallinity.
  • the heating temperature after irradiation with polarized ultraviolet rays ranges from a temperature 10 ° C. higher than the lower limit of the temperature range in which the side chain polymer film of the present invention exhibits liquid crystallinity (hereinafter referred to as a liquid crystal temperature range).
  • the temperature is preferably in the range up to 10 ° C. lower than the upper limit.
  • the side-chain polymer film of the present invention is heated after irradiation with polarized ultraviolet rays to be in a liquid crystal state, and is self-organized and reoriented in a direction parallel to or perpendicular to the polarization direction.
  • the small anisotropy of the side chain polymer film induced by the photocrosslinking reaction, photoisomerization reaction, or photofleece rearrangement reaction is amplified by heat.
  • the side chain polymer film is in a liquid crystal state by heating, if the heating temperature is low, the viscosity of the side chain polymer film in the liquid crystal state is high and realignment due to self-assembly is less likely to occur. End up.
  • the heating temperature is in the range from the lower limit of the liquid crystal temperature range of the side chain polymer film of the present invention to a temperature higher by 10 ° C.
  • the anisotropic amplification effect due to heat in the side chain polymer film can be obtained.
  • the side chain polymer film of the present invention exhibits a liquid crystal state by heating, if the heating temperature is high, the state of the side chain polymer film becomes close to an isotropic liquid state, and self-organization This makes it difficult to reorient in one direction.
  • the heating temperature is higher than the temperature lower by 10 ° C. from the upper limit of the liquid crystal temperature range of the side chain polymer film of the present invention, the anisotropic amplification effect due to heat in the side chain polymer film can be obtained. However, it cannot be enough.
  • the heating temperature of the first heat treatment is higher than the temperature lower by 10 ° C. than the upper limit of the liquid crystal temperature range of the side chain polymer film of the present invention, for example, the reaction of siloxane such as 200 ° C. or higher.
  • the thermal reaction of the siloxane portion may proceed before realignment. In that case, it becomes difficult to reorient the side chain polymer film in one direction due to self-organization.
  • the heating temperature is higher than 200 ° C., the anisotropic amplification effect due to heat in the side chain polymer film cannot be made sufficient.
  • the liquid crystal temperature range of the side chain polymer film and the reaction of the siloxane part are realized in order to realize highly efficient anisotropy into the side chain polymer film.
  • a suitable heating temperature is determined based on the temperature range. As described above, the heating temperature after irradiation with polarized ultraviolet rays is lower than the lower limit of the liquid crystal temperature range of the side chain type polymer film by 10 ° C., and is 200 ° C. or lower, which is higher than the upper limit of the liquid crystal temperature range. The temperature is within a range where the upper limit is a temperature 10 ° C lower.
  • the heating temperature after irradiation with polarized ultraviolet rays is set to 110 to 190.
  • the temperature is set to ° C.
  • the method for producing a liquid crystal alignment film of the present invention includes the following steps [1] to [IV] in the following order. Thereby, a liquid crystal alignment film into which anisotropy is introduced can be manufactured with high efficiency.
  • the side chain polymer film of the present invention is formed on a substrate.
  • the substrate is not particularly limited.
  • a transparent substrate such as a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used.
  • a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving a liquid crystal is formed is used from the viewpoint of simplifying the process of manufacturing a liquid crystal display element. Is also possible.
  • an opaque substrate such as a silicon wafer can also be used. In this case, an electrode using a material that reflects light such as aluminum can be used.
  • the side chain polymer film of the present invention is in the form of a solution dissolved in a desired solvent
  • film formation on the substrate is performed by applying the solution-like side chain polymer film.
  • the coating method is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, inkjet method or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), a spray method, and the like, and these may be used depending on the purpose.
  • the solution-like side chain polymer film of the present invention is coated on the substrate, it is 20 to 180 ° C., preferably 40 to 150 ° C., by a heating means such as a hot plate, a heat circulation oven, or an IR (infrared) oven.
  • a heating means such as a hot plate, a heat circulation oven, or an IR (infrared) oven.
  • IR infrared
  • the first alignment treatment is performed by irradiating the side chain polymer film obtained in the step [I] with polarized ultraviolet rays.
  • the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
  • ultraviolet rays to be used ultraviolet rays having a wavelength in the range of 100 to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of the side chain polymer film to be used.
  • ultraviolet rays having a wavelength in the range of 290 to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the irradiation amount of the polarized ultraviolet ray is preferably in the range of 1 to 70% of the amount of the polarized ultraviolet ray that realizes ⁇ Amax of the side chain polymer film of the present invention to be used. More preferably, it is within the range of 50%.
  • the side chain polymer film irradiated with the ultraviolet rays polarized in the step [II] is heated.
  • heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like is used.
  • the heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the side chain polymer film of the present invention is exhibited. That is, the heating temperature in this step is a temperature at which reorientation occurs in the side chain polymer film.
  • the heating temperature in this step after irradiation with polarized ultraviolet rays in step [II] is 200 ° C. or less, with the temperature being 10 ° C. higher than the lower limit of the liquid crystal temperature range in which the side chain polymer film of the present invention exhibits liquid crystallinity. And it is preferable that it is the temperature of the range which makes temperature 10 degreeC lower than the upper limit of a liquid-crystal temperature range an upper limit.
  • the side chain type polymer film of the present invention can exhibit liquid crystallinity, and is preferably set to 60 ° C. or higher and 180 ° C. or lower as a temperature range that does not cause thermal reaction.
  • step [IV] as the second heat treatment, the side chain polymer film heated in step [III] is further heated at a temperature different from the heating temperature in step [III].
  • Step [III] is a temperature at which the side chain polymer film of the present invention is brought into a liquid crystal state, and a temperature within a range that does not cause a thermal reaction of the siloxane portion is selected and heat treatment (first heat treatment ) Has been made. Therefore, in this step, a heating temperature higher than the heating temperature in step [III] is selected, and the heat treatment (second heat treatment) is performed.
  • the heating temperature in this step is a temperature for fixing the reorientation of the side chain polymer film in step [III].
  • heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like can be used as in the step [III].
  • the heating temperature can be determined in consideration of the reaction temperature of the siloxane moiety in the side chain polymer film of the present invention.
  • the heating temperature in this step is preferably 200 ° C. or higher.
  • the method for producing a liquid crystal alignment film of the present invention can realize the introduction of anisotropy into the side chain polymer film with high efficiency. Furthermore, the liquid crystal alignment film of the present invention with high efficiency and high reliability can be manufactured.
  • TEOS Tetraethoxysilane
  • ACPS 3-acryloxypropyltrimethoxysilane (methacrylate monomer)
  • the number average molecular weight and weight average molecular weight of the acrylic copolymer were measured using a GPC apparatus (Shodex (registered trademark) columns KF803L and KF804L) manufactured by JASCO Corporation, and the elution solvent tetrahydrofuran was supplied at a flow rate of 1 mL (milliliter) / min. It was measured under the condition that it was eluted by flowing through (column temperature 40 ° C.).
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • reaction solution was poured into 500 ml of diethyl ether to separate the polymer, and after removing AIBN, the precipitate was separated by filtration to obtain polysiloxane-polymethacrylate hybrid (P6CAS) powder (C).
  • P6CAS polysiloxane-polymethacrylate hybrid
  • NMP and BCS were added to the polysiloxane-polymethacrylate hybrid (P6CBS) (powder (B)) obtained in Synthesis Example 2 and diluted to 4% by mass to obtain a liquid crystal aligning agent (I). Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved.
  • Mn Mn was 35000.
  • siloxane content in hybrid polymer The siloxane content in the polysiloxane-polymethacrylate hybrid (powder (B)) was calculated from GPC. The siloxane content was calculated by comparing the peak ratio of the methacrylate monomer on the GPC chart after radical polymerization with the peak ratio of the polysiloxane-polymethacrylate hybrid. The calculated siloxane-methacrylate ratio in P6CBS was 1: 5 by weight.
  • NMP and BCS were added to the polysiloxane-polymethacrylate hybrid (P6CAS) (powder (C)) obtained in Synthesis Example 3 and diluted to 4% by mass to obtain a liquid crystal aligning agent (II). Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved.
  • Mn was 48000.
  • the siloxane-methacrylate ratio of P6CAS calculated from GPC was 2: 3.5 by weight.
  • Example 3 The liquid crystal alignment treatment agent (I) containing the polysiloxane-polymethacrylate hybrid (P6CBS) obtained in Example 1 was spin-coated on a quartz substrate (length 10 ⁇ width 10 ⁇ thickness 1 (mm)). After drying for 5 minutes on a hot plate at 80 ° C., a coating film with a film thickness of 50 nm was formed to obtain a substrate with a liquid crystal alignment film before the alignment treatment.
  • P6CBS polysiloxane-polymethacrylate hybrid
  • Example 4 The substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3 was used to irradiate polarized ultraviolet rays through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate.
  • the intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 600 mJ.
  • this ultraviolet-irradiated substrate is heated at 150 ° C. for 5 minutes, and the coating film (polymer film) is subjected to a realignment treatment by changing the P6CBS of the coating film to a liquid crystal state.
  • a substrate was obtained.
  • the obtained substrate with a liquid crystal high film was used for measurement of an ultraviolet absorption spectrum (FIG. 5) as described later.
  • Example 5 The substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3 was used to irradiate polarized ultraviolet rays through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate.
  • the intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 600 mJ.
  • substrate was heated at 150 degreeC for 5 minute (s), and the reorientation process was performed to the coating film by making P6CBS of a coating film into a liquid-crystal state.
  • the substrate subjected to the re-orientation treatment was heated to 200 ° C., and baked at that temperature for 15 minutes to cause condensation reaction of siloxane, thereby fixing the orientation. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
  • Example 6 The substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3 was used to irradiate polarized ultraviolet rays through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate.
  • the intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 800 mJ.
  • this ultraviolet-irradiated substrate was heated at 150 ° C. for 5 minutes, and the P6CBS of the coating film was brought into a liquid crystal state, so that the coating film was subjected to a realignment treatment to obtain an alignment-treated substrate with a liquid crystal alignment film.
  • the obtained substrate with a liquid crystal high film was used for measurement of an ultraviolet absorption spectrum (FIG. 6) as described later.
  • Example 7 The substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3 was used to irradiate polarized ultraviolet rays through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate.
  • the intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 800 mJ.
  • substrate was heated at 150 degreeC for 5 minute (s), and the reorientation process was performed to the coating film by making P6CBS of a coating film into a liquid-crystal state.
  • the substrate subjected to the re-orientation treatment was heated to 200 ° C., and baked at that temperature for 15 minutes to cause condensation reaction of siloxane, thereby fixing the orientation. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
  • FIG. 5 is a UV absorption spectrum parallel and perpendicular to the polarized electric field vector of the irradiated UV of the liquid crystal alignment film obtained in Example 4.
  • FIG. 5 the ultraviolet absorption spectrum of the liquid crystal alignment film obtained in Example 4 (shown as “parallel after heating” and “vertical after heating” in the figure) is shown.
  • the ultraviolet absorption spectra (shown as “parallel after polarized light irradiation” and “perpendicular after polarized light irradiation” in the figure) of the liquid crystal alignment film made (before the heat treatment of Example 4) are shown.
  • Example 4 The difference in ultraviolet absorption spectrum between the parallel direction and the perpendicular direction to the polarization electric field of the polarized ultraviolet light is larger, and the liquid crystal alignment film obtained in Example 4 is realigned by heating after irradiation with polarized ultraviolet light. You can see that it was done.
  • FIG. 6 is an ultraviolet absorption spectrum parallel and perpendicular to the polarized electric field vector of the irradiated ultraviolet rays of the liquid crystal alignment film obtained in Example 6.
  • Example 6 also shows the ultraviolet absorption spectrum of the liquid crystal alignment film obtained in Example 6 (shown as “parallel after heating” and “perpendicular after heating” in the figure). (Before the heat treatment of Example 6) UV absorption spectra of the liquid crystal alignment film (shown as “parallel after polarized light irradiation” and “perpendicular after polarized light irradiation” in the figure) are shown.
  • the polarized electric field of the irradiated polarized ultraviolet light is changed by heating after irradiation with polarized ultraviolet light.
  • the difference between the parallel UV absorption and the UV absorption in the vertical direction is only irradiated with polarized UV light (before the heat treatment in Example 4), and the direction parallel to and perpendicular to the polarization electric field of the irradiated polarized UV light. It can be seen that the liquid crystal alignment film obtained in Example 6 was realigned by heating after irradiation with polarized UV light.
  • Example 9 A liquid crystal alignment film was prepared using the liquid crystal alignment treatment agent (I) obtained in Example 1, and a liquid crystal cell using the liquid crystal alignment film was manufactured.
  • the liquid crystal cell was a parallel aligned liquid crystal cell corresponding to the characteristics of the liquid crystal alignment film.
  • a liquid crystal display element can be constituted by sandwiching the obtained liquid crystal cell between a pair of polarizing plates.
  • a liquid crystal alignment treatment agent (I) is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then a liquid crystal alignment film as a coating film having a thickness of 50 nm. And a substrate with a liquid crystal alignment film before the alignment treatment was obtained.
  • the liquid crystal alignment films formed on the substrate were all excellent in film thickness uniformity, and the liquid crystal alignment treatment agent (I) was found to exhibit excellent coating properties.
  • the obtained substrate with a liquid crystal alignment film before the alignment treatment was used to irradiate polarized ultraviolet rays through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate.
  • the intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 600 mJ.
  • substrate was heated at 150 degreeC for 5 minute (s), and the reorientation process was performed to the coating film by making P6CBS of a coating film into a liquid-crystal state.
  • the substrate subjected to the re-orientation treatment was heated at 250 ° C. and baked at that temperature for 15 minutes to cause a condensation reaction of siloxane, thereby fixing the orientation. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
  • nematic liquid crystal ZLI-4792 manufactured by Merck & Co., Inc.
  • ZLI-4792 nematic liquid crystal
  • Example 10 A liquid crystal cell was produced according to the same method as in Example 9 except that the irradiation amount of polarized ultraviolet rays was 800 mJ.
  • Example 11 Using the liquid crystal cells obtained in Example 9 and Example 10, the alignment state of the liquid crystal was evaluated using a polarizing microscope. That is, a liquid crystal cell was sandwiched between a pair of polarizing plates using a polarizing microscope, and a liquid crystal display element was constructed and evaluated. In any liquid crystal cell, there was no alignment defect, and a good alignment state of the liquid crystal was observed. The evaluation results are summarized in Table 2.
  • a polymer and a liquid crystal aligning agent suitable for producing a highly efficient liquid crystal aligning film using light are provided, and the liquid crystal aligning film and the liquid crystal display element obtained from the liquid crystal aligning agent are lightweight, thin and It can be used as a display device with low power consumption.

Abstract

Provided are a method for manufacturing a liquid crystal alignment film having high light utilization efficiency, a liquid crystal alignment film, and a liquid crystal display element. The liquid crystal aligning agent of the present invention is prepared by polymerizing polysiloxane and a monomer having liquid crystal properties, a photosensitive group, and a radical polymerizable group to obtain a polymer. After a side-chain-type polymer film (1) is obtained from the liquid crystal aligning agent, an aligning process is performed by irradiating polarized ultraviolet rays, then the product is heated, and side chains (2) of the side-chain-type polymer film (1) are realigned. A liquid crystal alignment film is then fabricated by heating the product at a higher temperature to fix the realigned state. The temperature of heating for realignment is 200°C or lower, for example, or another temperature ranging from 10°C higher than the lower limit of the temperature range at which the side-chain-type polymer film (1) exhibits liquid crystal properties to 10°C lower than the upper limit of this temperature range. A liquid crystal display element is manufactured using the resultant liquid crystal alignment film.

Description

液晶配向膜の製造方法、液晶配向膜、液晶表示素子、重合体及び液晶配向剤Method for producing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal alignment agent
 本発明は、光を用いた高効率な液晶配向膜の製造方法に好適な重合体及び液晶配向剤、並びに液晶配向膜及び液晶表示素子に関する。 The present invention relates to a polymer and a liquid crystal aligning agent suitable for a method for producing a highly efficient liquid crystal aligning film using light, and a liquid crystal aligning film and a liquid crystal display element.
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられる等、目覚ましい発展を遂げている。
 液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。このような液晶表示素子では、液晶が基板間で所望の配向状態となるように、有機材料からなる有機膜が液晶配向膜として使用されている。
The liquid crystal display element is known as a light, thin and low power consumption display device, and has been remarkably developed in recent years.
The liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes. In such a liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
 すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。
 また、液晶配向膜には、例えば、液晶を基板に対して平行な方向等、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。
That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, and is formed on a surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
The liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate. In such a liquid crystal alignment film, the ability to control the alignment of liquid crystal (hereinafter referred to as alignment control ability) is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
 配向制御能を付与するための液晶配向膜の配向処理方法としては、従来からラビング法が知られている。ラビング法とは、基板上のポリビニルアルコール、ポリアミド、ポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビングし)、擦った方向(ラビング方向)に液晶を配向させる方法である。このラビング法は、簡便に、比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。そして、液晶配向膜に用いられる有機膜としては、耐熱性等の信頼性や電気的特性に優れたポリイミド系の有機膜が主に選択されてきた。 As a method for aligning a liquid crystal alignment film for imparting alignment control ability, a rubbing method has been conventionally known. The rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction). This is a method of aligning liquid crystals. Since this rubbing method can easily and relatively realize a liquid crystal alignment state, it has been used in the manufacturing process of a conventional liquid crystal display element. As an organic film used for the liquid crystal alignment film, a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.
 しかしながら、ポリイミド等からなる液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。
 そこで、ラビングを行わない液晶配向膜の別の配向処理方法として、光配向法が盛んに検討されている。
However, in the rubbing method in which the surface of the liquid crystal alignment film made of polyimide or the like is rubbed, generation of dust or static electricity may be a problem. In addition, due to the high definition of the liquid crystal surface element in recent years and the unevenness caused by the corresponding electrodes on the substrate and the switching active element for driving the liquid crystal, the surface of the liquid crystal alignment film cannot be uniformly rubbed with a cloth. In some cases, alignment of the liquid crystal could not be realized.
Therefore, a photo-alignment method has been actively studied as another alignment treatment method for a liquid crystal alignment film that is not rubbed.
 光配向法には様々な方法があるが、直線偏光又はコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。
 主な光配向法としては、分解型の光配向法が知られている。例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して、異方的な分解を生じさせる。そして、分解せずに残されたポリイミドにより液晶を配向させるようにする(例えば、特許文献1を参照)。
There are various photo alignment methods. Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.
A decomposition type photo-alignment method is known as a main photo-alignment method. For example, the polyimide film is irradiated with polarized ultraviolet light, and anisotropic decomposition is caused by utilizing the polarization direction dependence of the ultraviolet absorption of the molecular structure. Then, the liquid crystal is aligned by the polyimide remaining without being decomposed (see, for example, Patent Document 1).
 また、光架橋型や光異性化型の光配向法も知られている。例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせる。そして、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献1を参照)。また、アゾベンゼンを側鎖に有する側鎖型高分子を用いた場合、偏光紫外線を照射し、偏光と平行な側鎖のアゾベンゼン部で異性化反応を生じさせ、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献2を参照)。 Further, photocrosslinking type and photoisomerization type photo-alignment methods are also known. For example, polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light. Then, the liquid crystal is aligned in a direction orthogonal to the polarization direction (see, for example, Non-Patent Document 1). In addition, when a side chain polymer having azobenzene in the side chain is used, irradiation with polarized ultraviolet light causes an isomerization reaction at the azobenzene portion of the side chain parallel to the polarized light, and the liquid crystal is aligned in a direction perpendicular to the polarization direction. Align (see Non-Patent Document 2, for example).
 また、近年、光配向法では、光照射処理とともに加熱工程を組み合わせて、液晶配向膜の配向制御能を向上させる技術も検討されている(例えば、特許文献2~4を参照)。 In recent years, in the photo-alignment method, a technique for improving the alignment control ability of the liquid crystal alignment film by combining a light irradiation treatment and a heating process has been studied (see, for example, Patent Documents 2 to 4).
 以上の例のように、光配向法による液晶配向膜の配向処理方法は、光架橋反応や光異性化反応等の光による反応を利用する。したがって、液晶配向膜の形成に用いられる材料には、それを可能とする光反応性が求められる。例えば、上述した非特許文献1では、液晶配向膜の材料にポリビニルシンナメートが用いられている。 As in the above example, the alignment treatment method of the liquid crystal alignment film by the photo-alignment method uses a reaction by light such as a photocrosslinking reaction or a photoisomerization reaction. Therefore, the material used for forming the liquid crystal alignment film is required to have photoreactivity that enables it. For example, in Non-Patent Document 1 described above, polyvinyl cinnamate is used as the material of the liquid crystal alignment film.
 一方で、液晶配向膜には、上述したように、優れた信頼性等が求められる。そのため、従来のラビング処理による液晶配向膜には、上述したように、耐熱性等の信頼性や電気的特性に優れたポリイミド系の有機膜が用いられてきた。したがって、光配向法による液晶配向膜においても、光反応性と信頼性の両立が求められる。
 最近、高分子材料の分野では、例えば、アクリル重合体とシロキサン重合体を、別々にポリマー化して混合したアクリル-シロキサンハイブリッド材料等の高い信頼性の高分子材料を得る技術が知られている(例えば、特許文献5~9を参照)。
 しかしながら、光反応への適用が必須とされる光配向法による液晶配向膜の分野では、そうした高信頼性のハイブリッド材料等の導入は進んでいない。
On the other hand, the liquid crystal alignment film is required to have excellent reliability as described above. Therefore, as described above, a polyimide organic film having excellent reliability such as heat resistance and electrical characteristics has been used for the liquid crystal alignment film by the conventional rubbing treatment. Therefore, the liquid crystal alignment film by the photo-alignment method is required to satisfy both photoreactivity and reliability.
Recently, in the field of polymer materials, for example, a technique for obtaining a highly reliable polymer material such as an acrylic-siloxane hybrid material in which an acrylic polymer and a siloxane polymer are separately polymerized and mixed is known ( For example, see Patent Documents 5 to 9).
However, in the field of liquid crystal alignment films by the photo-alignment method, which must be applied to photoreactions, the introduction of such highly reliable hybrid materials has not progressed.
日本第3893659号明細書Japan No. 3893659 Specification 日本特開2007-304215号公報Japanese Unexamined Patent Publication No. 2007-304215 日本特開2007-232934号公報Japanese Unexamined Patent Publication No. 2007-232934 日本特開2008ー276149号公報Japanese Unexamined Patent Publication No. 2008-276149 日本特開平7-243173号公報Japanese Unexamined Patent Publication No. 7-243173 日本特開平9-208642号公報Japanese Unexamined Patent Publication No. 9-208642 日本特開平4-261454号公報Japanese Laid-Open Patent Publication No. 4-261454 日本特開2003-313233号公報Japanese Unexamined Patent Publication No. 2003-313233 日本特開平1-168971号公報Japanese Unexamined Patent Publication No. 1-168971
 上記のように、光配向法は、液晶表示素子の配向処理方法として従来から工業的に利用されてきたラビング法と比べて、ラビング工程そのものを不要とし、そのため大きな利点を備える。例えば、表面に凹凸のある液晶表示素子の基板に対しても配向処理を施すことができ、工業的な生産プロセスに好適な液晶配向膜の配向処理の方法となる。また、ラビングによって配向制御能がほぼ一定となるラビング法に比べ、光配向法では、偏光した光の照射量を変化させて配向制御能を制御することができる。 As described above, the photo-alignment method eliminates the rubbing process itself and has a great advantage as compared with the rubbing method that has been industrially used as an alignment treatment method for liquid crystal display elements. For example, an alignment process can be performed on a substrate of a liquid crystal display element having an uneven surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process. In addition, compared to the rubbing method in which the alignment control ability is almost constant by rubbing, the alignment control ability can be controlled by changing the irradiation amount of polarized light in the photo-alignment method.
 しかしながら、光配向法では、ラビング法による場合と同程度の配向制御能を実現しようとする場合、大量の偏光した光の照射が必要となって低効率である他、安定な液晶の配向が実現できない場合があった。 However, in the photo-alignment method, in order to achieve the same degree of alignment control ability as in the rubbing method, a large amount of polarized light irradiation is required, which is low efficiency and stable liquid crystal alignment is realized. There were cases where it was not possible.
 例えば、上記した特許文献1に記載の分解型の光配向法では、ポリイミド膜に出力500Wの高圧水銀灯からの紫外光を、60分間照射する必要がある等、長時間かつ大量の紫外線照射が必要となる。また、二量化型や光異性化型の光配向法の場合においても、数J(ジュール)~数十J程度の多くの量の紫外線照射が必要となる場合がある。さらに、光架橋型や光異性化型の光配向法の場合、液晶の配向の熱安定性や光安定性に劣るため、液晶表示素子とした場合に、配向不良や表示焼き付きが発生するといった問題があった。 For example, in the decomposition type photo-alignment method described in Patent Document 1 described above, it is necessary to irradiate a polyimide film with ultraviolet light from a high-pressure mercury lamp with an output of 500 W for 60 minutes. It becomes. Further, even in the case of dimerization type or photoisomerization type photo-alignment methods, a large amount of ultraviolet irradiation of about several J (joule) to several tens of J may be required. Furthermore, in the case of the photo-crosslinking type or photoisomerization type photo-alignment method, since the thermal stability and light stability of the liquid crystal alignment are inferior, there is a problem that alignment failure or display burn-in occurs when a liquid crystal display element is used. was there.
 上述したように、光照射処理とともに加熱工程を組み合わせて、液晶配向膜の配向制御能を向上させる技術も検討されているが、材料の耐熱性に問題があったり、耐熱性が十分な場合は、溶媒溶解性が極端に悪いなどの問題がある。
 また、光反応性と信頼性の両立についても、未だ、十分とされる光配向法用の材料の開発はなされていない。
As described above, a technique for improving the alignment control ability of the liquid crystal alignment film by combining the heating process with the light irradiation treatment has been studied, but there is a problem with the heat resistance of the material or when the heat resistance is sufficient There are problems such as extremely poor solvent solubility.
In addition, regarding the compatibility between photoreactivity and reliability, a sufficient material for photo-alignment method has not been developed yet.
 したがって、光配向法では、配向処理の高効率化や安定な液晶配向の実現が求められており、液晶配向膜に優れた配向制御能を高効率に付与できる、液晶配向膜の製造方法の開発が求められている。そして、その液晶配向膜の製造方法は、高信頼の重合体を用いて実現されることが好ましい。 Therefore, in the photo-alignment method, there is a demand for higher efficiency of alignment treatment and realization of stable liquid crystal alignment, and development of a method for producing a liquid crystal alignment film that can impart excellent alignment control ability to the liquid crystal alignment film with high efficiency. Is required. And it is preferable that the manufacturing method of the liquid crystal aligning film is implement | achieved using a highly reliable polymer.
 本発明は、光を用いた高効率な液晶配向膜の製造方法、及び液晶配向膜の提供と、得られた液晶配向膜を有する液晶表示素子を提供することを目的とする。 An object of the present invention is to provide a highly efficient liquid crystal alignment film manufacturing method using light, to provide a liquid crystal alignment film, and to provide a liquid crystal display element having the obtained liquid crystal alignment film.
 また、本発明は、光を用いた高効率な液晶配向膜の製造方法に好適なる重合体と、その重合体を含む液晶配向剤を提供することを目的とする。 Another object of the present invention is to provide a polymer suitable for a method for producing a highly efficient liquid crystal alignment film using light, and a liquid crystal aligning agent containing the polymer.
 すなわち、本発明は、以下の要旨を有するもので有る。
(1)基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子膜を形成する工程[I]、
   前記側鎖型高分子膜に偏光した紫外線を照射する工程[II]、
   紫外線の照射された前記側鎖型高分子膜を、該側鎖型高分子膜が液晶性を発現する範囲内の温度で加熱する工程[III]、及び
   加熱された前記側鎖高分子膜を、工程[III]の加熱温度以上の温度でさらに加熱する工程[IV]、
を有することを特徴とする液晶配向膜の製造方法。
That is, the present invention has the following gist.
(1) Step [I] of forming a photosensitive side chain polymer film that exhibits liquid crystallinity in a predetermined temperature range on a substrate;
Irradiating the side chain type polymer film with polarized ultraviolet rays [II],
The step [III] of heating the side chain polymer film irradiated with ultraviolet rays at a temperature within a range where the side chain polymer film exhibits liquid crystallinity, and the heated side chain polymer film Step [IV] for further heating at a temperature equal to or higher than the heating temperature in Step [III]
A method for producing a liquid crystal alignment film, comprising:
(2)工程[III]の加熱温度は、前記側鎖型高分子膜が液晶性を発現する温度範囲の下限より10℃高い温度から、その液晶温度範囲の上限より10℃低い温度までの範囲内である、上記(1)に記載の液晶配向膜の製造方法。
(3)工程[III]の加熱温度は、200℃以下の温度である、上記(1)又は(2)に記載の液晶配向膜の製造方法。
(2) The heating temperature in step [III] ranges from a temperature 10 ° C. higher than the lower limit of the temperature range in which the side chain polymer film exhibits liquid crystallinity to a temperature 10 ° C. lower than the upper limit of the liquid crystal temperature range. The manufacturing method of the liquid crystal aligning film as described in said (1) which is inside.
(3) The method for producing a liquid crystal alignment film according to (1) or (2), wherein the heating temperature in the step [III] is a temperature of 200 ° C. or lower.
(4)工程[III]の加熱温度は、前記側鎖型高分子膜の側鎖が再配向する温度である、上記(1)~(3)のいずれかに記載の液晶配向膜の製造方法。
(5)工程[III]の加熱温度は、前記側鎖型高分子膜の側鎖が再配向する温度であり、工程[IV]の加熱温度は、工程[III]による再配向を固定化させる温度である、上記(1)~(4)のいずれかに記載の液晶配向膜の製造方法。 
(4) The method for producing a liquid crystal alignment film according to any one of the above (1) to (3), wherein the heating temperature in the step [III] is a temperature at which the side chain of the side chain polymer film is realigned .
(5) The heating temperature in the step [III] is a temperature at which the side chain of the side chain polymer film is reoriented, and the heating temperature in the step [IV] fixes the reorientation in the step [III]. The method for producing a liquid crystal alignment film according to any one of the above (1) to (4), which is a temperature.
(6)前記液晶性を発現する感光性の側鎖型高分子膜中に含有される感光性基が、アゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン及びフェニルベンゾエートよりなる群から選択される少なくとも1種から誘導される基である、上記(1)~(5)のいずれかに記載の液晶配向膜の製造方法。 (6) The group in which the photosensitive group contained in the photosensitive side chain polymer film exhibiting liquid crystallinity is composed of azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan and phenylbenzoate. 6. The method for producing a liquid crystal alignment film according to any one of (1) to (5), wherein the liquid crystal alignment film is a group derived from at least one selected from the group consisting of:
(7)前記側鎖型高分子膜は、ポリアミック酸、ポリイミド、ポリアミック酸エステル、アクリレート、メタクリレート、マレイミド、α-メチレン-γ-ブチロラクトン及びシロキサンよりなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)~式(5)、式(7)、及び式(8)よりなる群から選択される少なくとも1種の側鎖とを有する構造を含有する、上記(1)~(6)のいずれかに記載の液晶配向膜の製造方法。 (7) The side chain polymer film is composed of at least one selected from the group consisting of polyamic acid, polyimide, polyamic acid ester, acrylate, methacrylate, maleimide, α-methylene-γ-butyrolactone and siloxane. (1) comprising a structure having a main chain and at least one side chain selected from the group consisting of the following formulas (1) to (5), formula (7), and formula (8): A method for producing a liquid crystal alignment film according to any one of (6) to (6).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (式(1)中、A、及びBは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。l1は1~12の整数を表し、m1は1~3の整数を表し、n1は1~12の整数を表す。 (In Formula (1), A 1 and B 1 each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. Y 1 represents a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, Independently, it may be substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group, wherein X 1 is a single bond, — COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —, wherein l1 represents an integer of 1 to 12 and m1 represents 1 to 3 Represents an integer, and n1 represents an integer of 1 to 12.
 式(2)中、A、B、及びDは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Rは水素原子、又は炭素数1~6のアルキル基を表す。l2は1~12の整数を表し、m2は1~3の整数を表し、n2は1~12の整数を表す。 In the formula (2), A 2 , B 2 , and D 1 are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO. -Represents. Y 2 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded thereto are each independently , —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. X 2 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. l2 represents an integer of 1 to 12, m2 represents an integer of 1 to 3, and n2 represents an integer of 1 to 12.
 式(3)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Rは水素原子、又は炭素数1~6のアルキル基を表す。l3は1~12の整数を表し、m3は1~3の整数を表す。
 式(4)中、l4は1~12の整数を表す。
In Formula (3), A 3 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. X 3 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. l3 represents an integer of 1 to 12, and m3 represents an integer of 1 to 3.
In the formula (4), l4 represents an integer of 1 to 12.
 式(5)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Xは-COO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l5は1~12の整数を表し、m4は1~3の整数を表す。 In Formula (5), A 4 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. X 4 represents —COO—. Y 3 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, or a combination thereof, and a hydrogen atom bonded thereto is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. l5 represents an integer of 1 to 12, and m4 represents an integer of 1 to 3.
 式(7)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~6のアルキル基、炭素数1~6のアルキルオキシ基、又はその組み合わせからなる基を表す。l6は1~12の整数を表す。式(7)中のベンゼン環に結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。 In formula (7), A 5 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms. Or a group consisting of a combination thereof. l6 represents an integer of 1 to 12. The hydrogen atom bonded to the benzene ring in formula (7) is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyl group. It may be substituted with an oxy group.
 式(8)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Bは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Wはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l7は1~12の整数を表し、m、及びmは、それぞれ独立に、1~3の整数を表す。) In Formula (8), A 6 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. B 3 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. W 1 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and each hydrogen atom bonded thereto is independently , —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. l7 represents an integer of 1 to 12, and m 5 and m 6 each independently represents an integer of 1 to 3. )
(8)前記側鎖型高分子膜は、ラジカル重合性基を有するポリシロキサン(a)と、液晶性であり、且つ感光性である基及びラジカル重合性基を有するモノマー(b)とを、ラジカル重合させてなる重合体を含む、上記(1)~(7)のいずれかに記載の液晶配向膜の製造方法。 (8) The side chain type polymer film comprises a polysiloxane (a) having a radical polymerizable group and a monomer (b) having a liquid crystalline and photosensitive group and a radical polymerizable group. The method for producing a liquid crystal alignment film according to any one of the above (1) to (7), comprising a polymer obtained by radical polymerization.
(9)前記モノマー(b)の液晶性であり且つ感光性である基は、アゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン及びフェニルベンゾエートよりなる群から選択される少なくとも1種から誘導される基である、上記(8)に記載の液晶配向膜の製造方法。 (9) The liquid crystalline and photosensitive group of the monomer (b) is at least one selected from the group consisting of azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan and phenylbenzoate. The manufacturing method of the liquid crystal aligning film as described in said (8) which is group derived | led-out from.
(10)上記(1)~(9)のいずれかに記載の液晶配向膜の製造方法により製造された液晶配向膜。
(11)上記(10)に記載の液晶配向膜を有する液晶表示素子。
(10) A liquid crystal alignment film manufactured by the method for manufacturing a liquid crystal alignment film according to any one of (1) to (9).
(11) A liquid crystal display device having the liquid crystal alignment film according to (10).
(12)ラジカル重合性基を有するポリシロキサン(a)と、液晶性であり且つ感光性である基及びラジカル重合性基を有するモノマー(b)とをラジカル重合させてなる重合体。 (12) A polymer obtained by radical polymerization of a polysiloxane (a) having a radical polymerizable group and a monomer (b) having a liquid crystalline and photosensitive group and a radical polymerizable group.
(13)前記ポリシロキサン(a)は、下記式(10)のアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、請求項12に記載の重合体。
   R13 s1Si(OR14s2    (10)
 (式(10)中、R13は、アクリル基、メタクリル基、スチリル基、又はアリール基で置換されたアルキル基である。R14は水素、又は炭素数1~5のアルキル基を表す。S1は、1又は2であり、S2は、2又は3である。)
(14)前記モノマー(b)の液晶性であり且つ感光性である基が、アゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン及びフェニルベンゾエートよりなる群から選択される少なくとも1種から誘導される基である、上記(12)又は(13)に記載の重合体。
(13) The polymer according to claim 12, wherein the polysiloxane (a) is a polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane of the following formula (10).
R 13 s1 Si (OR 14 ) s2 (10)
(In Formula (10), R 13 represents an alkyl group substituted with an acryl group, a methacryl group, a styryl group, or an aryl group. R 14 represents hydrogen or an alkyl group having 1 to 5 carbon atoms. S1 Is 1 or 2, and S2 is 2 or 3.)
(14) The liquid crystalline and photosensitive group of the monomer (b) is at least one selected from the group consisting of azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan and phenylbenzoate. The polymer according to (12) or (13) above, which is a group derived from
(15)前記モノマー(b)は、炭化水素、アクリレート、メタクリレート、マレイミド及びα-メチレン-γ-ブチロラクトンよりなる群から選択される少なくとも1種から構成された重合性基と、下記式(1)~式(5)、式(7)、及び式(8)よりなる群から選択される少なくとも1種の側鎖とを有するモノマーである、上記(12)~(14)のいずれか1項に記載の重合体。 (15) The monomer (b) includes a polymerizable group composed of at least one selected from the group consisting of hydrocarbons, acrylates, methacrylates, maleimides and α-methylene-γ-butyrolactone, and the following formula (1): Any one of the above (12) to (14), which is a monomer having at least one side chain selected from the group consisting of formula (5), formula (7), and formula (8) The polymer described.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (式(1)中、A、及びBは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。l1は1~12の整数を表し、m1は1~3の整数を表し、n1は1~12の整数を表す。 (In Formula (1), A 1 and B 1 each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. Y 1 represents a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, Independently, it may be substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group, wherein X 1 is a single bond, — COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —, wherein l1 represents an integer of 1 to 12 and m1 represents 1 to 3 Represents an integer, and n1 represents an integer of 1 to 12.
 式(2)中、A、B、及びDは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Rは水素原子、又は炭素数1~6のアルキル基を表す。l2は1~12の整数を表し、m2は1~3の整数を表し、n2は1~12の整数を表す。 In the formula (2), A 2 , B 2 , and D 1 are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO. -Represents. Y 2 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded thereto are each independently , —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. X 2 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. l2 represents an integer of 1 to 12, m2 represents an integer of 1 to 3, and n2 represents an integer of 1 to 12.
 式(3)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Rは水素原子、又は炭素数1~6のアルキル基を表す。l3は1~12の整数を表し、m3は1~3の整数を表す。
 式(4)中、l4は1~12の整数を表す。
In Formula (3), A 3 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. X 3 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. l3 represents an integer of 1 to 12, and m3 represents an integer of 1 to 3.
In the formula (4), l4 represents an integer of 1 to 12.
 式(5)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Xは-COO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l5は1~12の整数を表し、m4は1~3の整数を表す。 In Formula (5), A 4 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. X 4 represents —COO—. Y 3 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, or a combination thereof, and a hydrogen atom bonded thereto is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. l5 represents an integer of 1 to 12, and m4 represents an integer of 1 to 3.
 式(7)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~6のアルキル基、炭素数1~6のアルキルオキシ基、又はその組み合わせからなる基を表す。l6は1~12の整数を表す。式(7)中のベンゼン環に結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。 In formula (7), A 5 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms. Or a group consisting of a combination thereof. l6 represents an integer of 1 to 12. The hydrogen atom bonded to the benzene ring in formula (7) is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyl group. It may be substituted with an oxy group.
 式(8)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Bは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Wはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l7は1~12の整数を表し、m、及びmは、それぞれ独立に、1~3の整数を表す。) In Formula (8), A 6 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. B 3 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. W 1 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and each hydrogen atom bonded thereto is independently , —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. l7 represents an integer of 1 to 12, and m 5 and m 6 each independently represents an integer of 1 to 3. )
(16)前記モノマー(b)の使用量が、ポリシロキサン(a)を得る際のアルコキシシラン1モルに対して、0.5~50モルである、上記(12)~(15)のいずれか1項に記載の重合体。
(17)上記(12)~(16)のいずれかに記載の重合体を含有する液晶配向剤。
(16) Any one of (12) to (15) above, wherein the amount of the monomer (b) used is 0.5 to 50 mol with respect to 1 mol of alkoxysilane when the polysiloxane (a) is obtained. Item 1. The polymer according to item 1.
(17) A liquid crystal aligning agent containing the polymer according to any one of (12) to (16).
 なお、本発明の側鎖型高分子膜は、液晶性や光反応性を失わない範囲で、光反応性を持たない側鎖構造と併用し、含有する構造としても良い。
光反応性を持たない側鎖構造の例を挙げると、下記式(6)のような構造が挙げられる。
In addition, the side chain type polymer film of the present invention may be used in combination with a side chain structure having no photoreactivity as long as liquid crystallinity and photoreactivity are not lost.
An example of a side chain structure that does not have photoreactivity includes a structure represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(6)中、Eは、単結合、-O-、-CH-、-COO、-OCO-、-CONH-、又は-NH-CO-を表す。
 Zは単結合、-COO、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。
 k1は1~12の整数を表し、p1、及びq1は、それぞれ独立して、0~3の整数を表す。
 Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~6のアルキルオキシ基、カルボキシル基、又は、その組み合わせからなる基を表す。
In the above formula (6), E 1 represents a single bond, —O—, —CH 2 —, —COO, —OCO—, —CONH—, or —NH—CO—.
Z represents a single bond, —COO, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —.
k1 represents an integer of 1 to 12, and p1 and q1 each independently represents an integer of 0 to 3.
R 4 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyloxy group having 1 to 6 carbon atoms, a carboxyl group, or a combination thereof. Represents a group.
 本発明によれば、高効率な配向処理を可能とする液晶配向膜の製造方法により、光を用いた高効率な配向処理を実現して液晶配向膜が得られ、該液晶配向膜を備えた液晶表示素子が得られる。
 さらに、本発明によれば、上記のような液晶配向膜に好適に用いることができる重合体、及び該重合体を含有する液晶配向剤が得られる。
According to the present invention, a liquid crystal alignment film can be obtained by realizing a highly efficient alignment process using light by a method for producing a liquid crystal alignment film that enables a highly efficient alignment process. A liquid crystal display element is obtained.
Furthermore, according to this invention, the polymer which can be used suitably for the above liquid crystal aligning films, and the liquid crystal aligning agent containing this polymer are obtained.
本発明の第1形態の液晶配向膜の製造方法における異方性の導入処理を模式的に説明する図であり、(a)は、偏光照射前の側鎖型高分子膜の状態を示す図であり、(b)は、偏光照射後の側鎖型高分子膜の状態を示す図であり、(c)は、加熱後の側鎖型高分子膜の状態を示す図であり、(d)は加熱後に第2の加熱処理を行って配向を固定化した側鎖型高分子膜の状態を示す図である。It is a figure which illustrates typically the anisotropic introduction process in the manufacturing method of the liquid crystal aligning film of the 1st form of this invention, (a) is a figure which shows the state of the side chain type polymer film before polarized light irradiation (B) is a view showing the state of the side chain polymer film after irradiation with polarized light, (c) is a view showing the state of the side chain polymer film after heating, and (d ) Is a diagram showing a state of the side chain polymer film in which the orientation is fixed by performing a second heat treatment after heating.
本発明の第1形態の液晶配向膜の製造方法における異方性の導入処理を模式的に説明する図であり、(a)は、偏光照射前の側鎖型高分子膜の状態を示す図であり、(b)は、偏光照射後の側鎖型高分子膜の状態を示す図であり、(c)は、加熱後の側鎖型高分子膜の状態を示す図であり、(d)は加熱後に第2の加熱処理を行って配向を固定化した側鎖型高分子膜の状態を示す図である。It is a figure which illustrates typically the anisotropic introduction process in the manufacturing method of the liquid crystal aligning film of the 1st form of this invention, (a) is a figure which shows the state of the side chain type polymer film before polarized light irradiation (B) is a view showing the state of the side chain polymer film after irradiation with polarized light, (c) is a view showing the state of the side chain polymer film after heating, and (d ) Is a diagram showing a state of the side chain polymer film in which the orientation is fixed by performing a second heat treatment after heating.
本発明の第2形態の液晶配向膜の製造方法における異方性の導入処理を模式的に説明する図であり、(a)は、偏光照射前の側鎖型高分子膜の状態を示す図であり、(b)は、偏光照射後の側鎖型高分子膜の状態を示す図であり、(c)は、加熱後の側鎖型高分子膜の状態を示す図である。It is a figure which illustrates typically the anisotropic introduction process in the manufacturing method of the liquid crystal aligning film of the 2nd form of this invention, (a) is a figure which shows the state of the side chain type polymer film before polarized light irradiation (B) is a figure which shows the state of the side chain type polymer film after polarized light irradiation, (c) is a figure which shows the state of the side chain type polymer film after a heating.
本発明の第2形態の液晶配向膜の製造方法における異方性の導入処理を模式的に説明する図であり、(a)は、偏光照射前の側鎖型高分子膜の状態を示す図であり、(b)は、偏光照射後の側鎖型高分子膜の状態を示す図であり、(c)は、加熱後の側鎖型高分子膜の状態を示す図である。It is a figure which illustrates typically the anisotropic introduction process in the manufacturing method of the liquid crystal aligning film of the 2nd form of this invention, (a) is a figure which shows the state of the side chain type polymer film before polarized light irradiation (B) is a figure which shows the state of the side chain type polymer film after polarized light irradiation, (c) is a figure which shows the state of the side chain type polymer film after a heating.
実施例4で得られた液晶配向膜の、照射された紫外線の偏光電界ベクトルに対して平行と垂直の紫外線吸収スペクトルである。It is an ultraviolet absorption spectrum of a liquid crystal aligning film obtained in Example 4 in parallel and perpendicular to the polarized electric field vector of the irradiated ultraviolet light. 実施例6で得られた液晶配向膜の、照射された紫外線の偏光電界ベクトルに対して平行と垂直の紫外線吸収スペクトルである。It is an ultraviolet absorption spectrum parallel and perpendicular | vertical with respect to the polarization | polarized-light electric field vector of the irradiated ultraviolet-ray of the liquid crystal aligning film obtained in Example 6. FIG.
 本発明者は、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
 本発明の液晶配向膜の製造方法は、液晶性を発現し得る感光性の側鎖型高分子膜を用い、ラビング処理を行うこと無く、偏光照射によって配向処理を行う方法を利用する。
 液晶性を発現し得る感光性の側鎖型高分子膜は、ラジカル重合性基を有するポリシロキサン(a)と、液晶性であり且つ感光性である基とラジカル重合性基とを有するモノマー(b)とをラジカル重合させてなる重合体を含んで形成される。
As a result of intensive studies, the inventor has obtained the following knowledge and completed the present invention.
The method for producing a liquid crystal alignment film of the present invention uses a method in which an alignment treatment is performed by irradiation with polarized light without using a rubbing treatment, using a photosensitive side chain polymer film capable of exhibiting liquid crystallinity.
The photosensitive side chain polymer film capable of exhibiting liquid crystallinity includes a polysiloxane (a) having a radical polymerizable group, a monomer having a liquid crystalline and photosensitive group, and a radical polymerizable group ( b) and a polymer obtained by radical polymerization.
 偏光照射の後で、上記側鎖型高分子膜を加熱する工程を設けて液晶配向膜を製造する。このとき、加熱工程を温度の異なる第1の加熱工程と第2の加熱工程との2段階とする。さらに、偏光の照射量と偏光照射後の第1の加熱工程での加熱温度を最適化することにより、液晶配向膜において高効率な配向処理を実現する。その後、第2の加熱工程で、液晶配向膜において形成された配向状態を固定化する。その結果、本発明では、液晶配向膜において、高い効率で、かつ良好な配向制御能の付与を実現することができる。
 以下、本発明について詳しく説明する。
After the irradiation of polarized light, a step of heating the side chain polymer film is provided to produce a liquid crystal alignment film. At this time, a heating process is made into two steps, the 1st heating process and 2nd heating process from which temperature differs. Furthermore, by optimizing the irradiation amount of polarized light and the heating temperature in the first heating step after the polarized light irradiation, highly efficient alignment processing is realized in the liquid crystal alignment film. Thereafter, in the second heating step, the alignment state formed in the liquid crystal alignment film is fixed. As a result, in the present invention, it is possible to achieve high alignment and good alignment control ability in the liquid crystal alignment film.
The present invention will be described in detail below.
<側鎖型高分子(重合体)及び側鎖型高分子膜>
 本発明の液晶配向膜の製造方法において用いる、液晶性を発現し得る感光性の側鎖型高分子膜は、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、すなわち、重合体の膜である。そして、重合体の主鎖に結合する側鎖は感光性を有し、光に感応して架橋反応、異性化反応、又は光フリース転位を起こすことができる。
<Side chain polymer (polymer) and side chain polymer film>
The photosensitive side chain polymer film that can exhibit liquid crystallinity used in the method for producing a liquid crystal alignment film of the present invention is a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, that is, It is a polymer film. And the side chain couple | bonded with the principal chain of a polymer has photosensitivity, and can raise | generate a crosslinking reaction, an isomerization reaction, or a light fleece rearrangement in response to light.
 主鎖に結合する感光性を有する基は特に限定されないが、光に感応して架橋反応、又は光フリース転位を起こす構造が望ましい。この場合、熱等の外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。 The photosensitive group bonded to the main chain is not particularly limited, but a structure that causes a crosslinking reaction or photofleece rearrangement in response to light is desirable. In this case, the realized orientation control ability can be stably maintained for a long period of time even when exposed to external stress such as heat.
 本発明の液晶配向膜の製造方法において用いる、所定の温度範囲で、液晶性を発現し得る感光性の側鎖型高分子膜の構造は、そうした特性を満足するものであれば特に限定されないが、その側鎖型高分子の側鎖構造に剛直なメソゲン成分を有することが好ましい。この場合、その側鎖型高分子を液晶配向膜に用いた際に、安定な液晶配向を得ることができる。
 そのような側鎖型高分子の構造としては、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基等のメソゲン成分と、先端部に結合された、光に感応して架橋反応や異性化反応をする感光性基とを有する構造や、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、且つ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。
The structure of the photosensitive side chain polymer film that can exhibit liquid crystallinity in a predetermined temperature range used in the method for producing a liquid crystal alignment film of the present invention is not particularly limited as long as it satisfies such characteristics. The side chain structure of the side chain polymer preferably has a rigid mesogen component. In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used for the liquid crystal alignment film.
Examples of such a side chain polymer structure include a main chain and a side chain bonded to the main chain, and the side chain is a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, an azobenzene group, or the like. The structure has a mesogenic component and a photosensitive group bonded to the tip, which undergoes a crosslinking reaction or an isomerization reaction in response to light, or a main chain and a side chain bonded to the main chain, and the side chain is A structure having a phenylbenzoate group that also serves as a mesogenic component and undergoes a photo-Fries rearrangement reaction can be obtained.
 尚、以下では、本発明の液晶配向膜の製造方法において用いられる、液晶性を発現し得る感光性の側鎖型高分子膜について、適宜、液晶性を発現し得る感光性の側鎖型高分子膜と称することや、単に、本発明の側鎖型高分子膜と称することがある。 In the following, the photosensitive side chain polymer film capable of exhibiting liquid crystallinity used in the method for producing a liquid crystal alignment film of the present invention will be described. Sometimes referred to as a molecular film, or simply referred to as a side chain polymer film of the present invention.
 本発明の液晶性を発現し得る感光性の側鎖型高分子膜の具体例としては、アクリレート、メタクリレート、マレイミド、α-メチレン-γ-ブチロラクトン、シロキサン、イタコネート、フマレート、マレエート、スチレン、ビニル、マレイミド、ノルボルネン、ポリアミック酸、ポリイミド、ポリウレア、ポリアミド、ポリエーテル、及びポリアミック酸エステルよりなる群から選択される少なくとも1種から構成された主鎖と、下記の式(1)~式(5)、式(7)、及び式(8)よりなる群から選択される少なくとも1種の側鎖とを有する構造を有することが好ましい。 Specific examples of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity of the present invention include acrylate, methacrylate, maleimide, α-methylene-γ-butyrolactone, siloxane, itaconate, fumarate, maleate, styrene, vinyl, A main chain composed of at least one selected from the group consisting of maleimide, norbornene, polyamic acid, polyimide, polyurea, polyamide, polyether, and polyamic acid ester, and the following formulas (1) to (5), It preferably has a structure having at least one type of side chain selected from the group consisting of formula (7) and formula (8).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(1)中、A、及びBは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。
 Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又は、それらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。
 Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。
 l1は1~12の整数を表し、m1は1~3の整数を表し、n1は1~12の整数を表す。
In the above formula (1), A 1 and B 1 each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. To express.
Y 1 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded to them are independent of each other. In addition, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group may be substituted.
X 1 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —.
l1 represents an integer of 1 to 12, m1 represents an integer of 1 to 3, and n1 represents an integer of 1 to 12.
 上記式(2)中、A、B、及びDは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。
 Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又は、それらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。
 Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。
 Rは水素原子、又は炭素数1~6のアルキル基を表す。
 l2は1~12の整数を表し、m2は1~3の整数を表し、n2は1~12の整数を表す。
In the above formula (2), A 2 , B 2 , and D 1 are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—. Represents CO-.
Y 2 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded thereto are independent of each other. In addition, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group may be substituted.
X 2 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —.
R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
l2 represents an integer of 1 to 12, m2 represents an integer of 1 to 3, and n2 represents an integer of 1 to 12.
 上記式(3)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。
 Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表し、Rは水素原子、又は炭素数1~6のアルキル基を表す。
 l3は1~12の整数を表し、m3は1~3の整数を表す。
 上記式(4)中、l4は1~12の整数を表す。
In the above formula (3), A 3 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
X 3 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —, and R 2 represents a hydrogen atom or a carbon number. Represents an alkyl group of 1 to 6;
l3 represents an integer of 1 to 12, and m3 represents an integer of 1 to 3.
In the above formula (4), l4 represents an integer of 1 to 12.
 上記式(5)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。
 Xは-COO-を表す。
 Yはベンゼン環、ナフタレン環、ビフェニル環、又は、それらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。
 l5は1~12の整数を表し、m4は1~3の整数を表す。
In the above formula (5), A 4 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
X 4 represents —COO—.
Y 3 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, or a combination thereof, and a hydrogen atom bonded thereto is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group may be substituted.
l5 represents an integer of 1 to 12, and m4 represents an integer of 1 to 3.
 上記式(7)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。
 Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~6のアルキル基、炭素数1~6のアルキルオキシ基、又は、その組み合わせからなる基を表す。
 l6は1~12の整数を表す。
 式(7)中のベンゼン環に結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。
In the above formula (7), A 5 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms. Or a group consisting of a combination thereof.
l6 represents an integer of 1 to 12.
The hydrogen atom bonded to the benzene ring in formula (7) is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyl group. It may be substituted with an oxy group.
 上記式(8)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。
 Bは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。
 Wはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又は、それらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。
 l7は1~12の整数を表し、m、及びmは、それぞれ独立に、1~3の整数を表す。
In the above formula (8), A 6 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
B 3 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —.
W 1 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded thereto are independent of each other. In addition, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group may be substituted.
l7 represents an integer of 1 to 12, and m 5 and m 6 each independently represents an integer of 1 to 3.
 上記式(1)~式(5)、式(7)、及び式(8)で表される側鎖は、ビフェニル、ターフェニル、フェニルシクロヘキシル、フェニルベンゾエート、アゾベンゼン等の基をメソゲン成分として有する構造を備える。そして、その先端部には、光に感応して二量化反応を起こし、架橋反応をする感光性基を有するか、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有するか、少なくともいずれか一方の基を有する。 The side chain represented by the above formula (1) to formula (5), formula (7), and formula (8) has a structure having a group such as biphenyl, terphenyl, phenylcyclohexyl, phenylbenzoate, or azobenzene as a mesogenic component Is provided. And at the tip, it has a photosensitive group that undergoes a dimerization reaction in response to light and undergoes a crosslinking reaction, or has a main chain and a side chain bonded thereto, and the side chain also becomes a mesogenic component. And a phenylbenzoate group that undergoes a photo-Fries rearrangement reaction, or at least one group.
 本発明の液晶性を発現し得る感光性の側鎖型高分子膜は、上述した主鎖とともに、上記式(1)~式(5)、式(7)、及び式(8)よりなる群から選択される少なくとも1種の側鎖に加え、液晶性や光反応性を失わない範囲で、光反応性を持たない側鎖構造と併用し、含有する構造としても良い。
 光反応性を持たない側鎖構造の例を挙げると、下記式(6)のような構造が挙げられる。
The photosensitive side-chain polymer film capable of exhibiting liquid crystallinity according to the present invention includes the group consisting of the above formulas (1) to (5), (7), and (8) together with the above-described main chain. In addition to at least one type of side chain selected from the above, a side chain structure having no photoreactivity may be used in combination as long as liquid crystallinity and photoreactivity are not lost.
An example of a side chain structure that does not have photoreactivity includes a structure represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(6)中、Eは、単結合、-O-、-CH-、-COO、-OCO-、-CONH-、又は-NH-CO-を表す。
 Zは単結合、-COO、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。
 k1は1~12の整数を表し、p1、及びq1は、それぞれ独立して、0~3の整数を表す。
 Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~6のアルキルオキシ基、カルボキシル基、又は、その組み合わせからなる基を表す。
In the above formula (6), E 1 represents a single bond, —O—, —CH 2 —, —COO, —OCO—, —CONH—, or —NH—CO—.
Z represents a single bond, —COO, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —.
k1 represents an integer of 1 to 12, and p1 and q1 each independently represents an integer of 0 to 3.
R 4 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyloxy group having 1 to 6 carbon atoms, a carboxyl group, or a combination thereof. Represents a group.
<ポリシロキサン(a)>
 本発明の液晶配向膜の製造方法において使用する、液晶性を発現し得る感光性の側鎖型高分子膜の形成に用いられる、ラジカル重合性基を有するポリシロキサン(a)について説明する。
<Polysiloxane (a)>
The polysiloxane (a) having a radical polymerizable group used for forming a photosensitive side chain polymer film capable of exhibiting liquid crystallinity used in the method for producing a liquid crystal alignment film of the present invention will be described.
 側鎖型高分子膜の材料として用いられるポリシロキサン(a)は、下記式(10)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである。
     R13 s1Si(OR14s2    (10)
The polysiloxane (a) used as the material for the side chain polymer film is a polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane represented by the following formula (10).
R 13 s1 Si (OR 14 ) s2 (10)
 上記式(10)中、R13は、アクリル基、メタクリル基、スチリル基、又はアリール基で置換されたアルキル基である。
 R14は水素、又は炭素数1~5のアルキル基を表す。
 S1は、1又は2であり、S2は、2又は3である。
 上記式(10)で表されるアルコキシシランのR13(以下、第二の特定有機基ともいう)は、アクリル基、メタクリル基、スチリル基、及びアリール基よりなる群から選択される少なくとも一つで置換されたアルキル基である。置換されている水素原子は1つ以上であり、好ましくは1つである。
 アルキル基の炭素数は1~30が好ましく、より好ましくは1~20である。更に好ましくは1~10である。アルキル基は、直鎖状でも分岐状でもよいが、直鎖状がより好ましい。
In the above formula (10), R 13 is an alkyl group substituted with an acryl group, a methacryl group, a styryl group, or an aryl group.
R 14 represents hydrogen or an alkyl group having 1 to 5 carbon atoms.
S1 is 1 or 2, and S2 is 2 or 3.
R 13 of the alkoxysilane represented by the above formula (10) (hereinafter also referred to as a second specific organic group) is at least one selected from the group consisting of an acryl group, a methacryl group, a styryl group, and an aryl group. An alkyl group substituted with The number of substituted hydrogen atoms is one or more, preferably one.
The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. More preferably, it is 1-10. The alkyl group may be linear or branched, but is more preferably linear.
 上記式(10)で表されるアルコキシシランのR14は、炭素数1~5のアルキル基であり、好ましくは炭素数1~3であり、特に好ましくは炭素数1~2である。 R 14 of the alkoxysilane represented by the above formula (10) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
 上記式(10)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。
 上記式(10)で表されるアルコキシシランとしては、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、アクリロキシエチルトリエトキシシラン、スチリルエチルトリメトキシシラン、スチリルエチルトリエトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシランである。
Although the specific example of the alkoxysilane represented by the said Formula (10) is given, it is not limited to these.
Examples of the alkoxysilane represented by the above formula (10) include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, 3- Acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, acryloxyethyltrimethoxysilane, acryloxyethyltriethoxysilane, styrylethyltrimethoxysilane, styrylethyltriethoxysilane, 3- (N-styrylmethyl- 2-aminoethylamino) propyltrimethoxysilane.
 ポリシロキサン(a)の製造には、上記式(10)で表されるアルコキシシラン以外に、基板との密着性、液晶分子との親和性等の改善を目的として、本発明の効果を損なわない限りにおいて、下記式(11)で表されるアルコキシシランを一種又は複数種使用することもできる。下記式(11)で表されるアルコキシシランは、ポリシロキサンに種々の特性を付与させることが可能であるため、必要な特性に応じて、一種又は複数種を選択して用いることができる。 In addition to the alkoxysilane represented by the above formula (10), the effects of the present invention are not impaired in the production of the polysiloxane (a) for the purpose of improving the adhesion to the substrate and the affinity with the liquid crystal molecules. As long as it exists, the alkoxysilane represented by following formula (11) can also use 1 type or multiple types. Since the alkoxysilane represented by the following formula (11) can impart various characteristics to the polysiloxane, one or more kinds can be selected and used according to the required characteristics.
     (R18Si(OR194-n     (11) (R 18 ) n Si (OR 19 ) 4-n (11)
 上記式(11)中、R18は、水素原子、又はヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基若しくはウレイド基で置換されていてもよい、炭素数1~10の炭化水素基である。 In the above formula (11), R 18 is a hydrogen atom or a carbon atom having 1 to 10 carbon atoms which may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group. It is a hydrogen group.
 上記式(11)中、R19は炭素数1~5、好ましくは炭素数1~3のアルキル基である。
 上記式(11)中、nは0~3、好ましくは0~2の整数である。
In the above formula (11), R 19 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.
In the above formula (11), n is an integer of 0 to 3, preferably 0 to 2.
 上記式(11)で表されるアルコキシシランのR18は、水素原子又は炭素数が1~10の炭化水素基(以下、第三の特定有機基ともいう)である。 R 18 of the alkoxysilane represented by the above formula (11) is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms (hereinafter also referred to as a third specific organic group).
 第三の特定有機基の例としては、脂肪族炭化水素基;脂肪族環、芳香族環及びヘテロ環のような環構造の炭化水素基;不飽和結合を有する炭化水素基;及び酸素原子、窒素原子、硫黄原子等のヘテロ原子等を含んでいてもよく、分岐構造を有していてもよい、炭素数が1~6の炭化水素基である。加えて、この第三の特定有機基はハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基等で置換されていてもよい。 Examples of the third specific organic group include an aliphatic hydrocarbon group; a hydrocarbon group having a ring structure such as an aliphatic ring, an aromatic ring and a heterocyclic ring; a hydrocarbon group having an unsaturated bond; and an oxygen atom, It is a hydrocarbon group having 1 to 6 carbon atoms which may contain a hetero atom such as a nitrogen atom or a sulfur atom, and may have a branched structure. In addition, the third specific organic group may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group, or the like.
 以下に、上記式(11)で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。3-(2-アミノエチルアミノプロピル)トリメトキシシラン、3-(2-アミノエチルアミノプロピル)トリエトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3―アミノプロピルジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン及びγ-ウレイドプロピルトリプロポキシシラン等が挙げられる。 Specific examples of the alkoxysilane represented by the above formula (11) are given below, but the invention is not limited thereto. 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) triethoxy Silane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3- Mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, diphenyldiet Sisilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane and γ-ureidopropyltripropoxysilane Etc.
 上記式(11)で表されるアルコキシシランにおいて、nが0であるアルコキシシランは、テトラアルコキシシランである。テトラアルコキシシランは、式(10)で表されるアルコキシシランと縮合しやすいので、本発明で用いられるポリシロキサン(a)を得るために好ましい。 In the alkoxysilane represented by the above formula (11), the alkoxysilane in which n is 0 is tetraalkoxysilane. Tetraalkoxysilane is preferable for obtaining the polysiloxane (a) used in the present invention because it easily condenses with the alkoxysilane represented by the formula (10).
 式(11)において、nが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、又はテトラブトキシシランがより好ましく、特に、テトラメトキシシラン又はテトラエトキシシランが好ましい。 In the formula (11), as the alkoxysilane in which n is 0, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, or tetrabutoxysilane is more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
 本発明では、式(10)で表されるアルコキシシランが、ポリシロキサン(a)の製造に使用される全アルコキシシラン中、1~30モル%、特に好ましくは5~20モル%含まれるのが好ましい。 In the present invention, the alkoxysilane represented by the formula (10) is contained in 1 to 30 mol%, particularly preferably 5 to 20 mol% in the total alkoxysilane used for the production of the polysiloxane (a). preferable.
<モノマー(b)>
 本発明の液晶配向膜の製造方法において使用する、液晶性を発現し得る感光性の側鎖型高分子膜の形成の用いられるモノマー(b)は、液晶性であり且つ感光性である基とラジカル重合性基とを有する。
<Monomer (b)>
The monomer (b) used for the formation of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity used in the method for producing a liquid crystal alignment film of the present invention is a liquid crystalline and photosensitive group. And a radically polymerizable group.
 モノマー(b)の液晶性であり且つ感光性である基は、アゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン及びフェニルベンゾエートよりなる群から選択される少なくとも1種から誘導される基である。
 例えば、モノマー(b)は、炭化水素、アクリレート、メタクリレート、マレイミド及びα-メチレン-γ-ブチロラクトンよりなる群から選択される少なくとも1種から構成された重合性基と、上記式(1)~式(5)、式(7)及び式(8)よりなる群から選択される少なくとも1種の側鎖とを有するモノマーであることが好ましい。
The liquid crystalline and photosensitive group of the monomer (b) is derived from at least one selected from the group consisting of azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan and phenylbenzoate. It is a group.
For example, the monomer (b) includes a polymerizable group composed of at least one selected from the group consisting of hydrocarbon, acrylate, methacrylate, maleimide and α-methylene-γ-butyrolactone, and the above formulas (1) to It is preferable that it is a monomer which has at least 1 sort (s) of side chain selected from the group which consists of (5), Formula (7), and Formula (8).
 モノマー(b)は、上述したポリシロキサン(a)とともに用いられて重合体を形成することができ、本発明の側鎖型高分子膜の形成の用いることができる。 The monomer (b) can be used together with the above-described polysiloxane (a) to form a polymer, and can be used for forming the side chain polymer film of the present invention.
<側鎖型高分子の製造>
 本発明の側鎖型高分子膜における側鎖型高分子は、上述したポリシロキサン(a)と、液晶性であり且つ感光性である基とラジカル重合性基とを有するモノマー(b)とをラジカル重合させることにより得られる重合体を含む。
 重合体は、例えば、ポリシロキサン(a)と、液晶性であり且つ感光性である基とラジカル重合性基とを有するモノマー(b)と、重合開始剤等とを共存させた溶剤中において、50~110℃の温度下で重合反応することにより得られる。
 モノマー(b)の使用量は、ポリシロキサン(a)を得る際のアルコキシシラン1モルに対して、0.5~50モルが好ましく、1~10モルがさらに好ましい。
<Manufacture of side chain polymer>
The side chain polymer in the side chain polymer film of the present invention comprises the above-described polysiloxane (a) and a monomer (b) having a liquid crystalline and photosensitive group and a radical polymerizable group. A polymer obtained by radical polymerization is included.
The polymer is, for example, in a solvent in which a polysiloxane (a), a monomer (b) having a liquid crystalline and photosensitive group and a radical polymerizable group, and a polymerization initiator coexist. It can be obtained by polymerization reaction at a temperature of 50 to 110 ° C.
The amount of the monomer (b) used is preferably 0.5 to 50 mol, and more preferably 1 to 10 mol, relative to 1 mol of alkoxysilane when the polysiloxane (a) is obtained.
 重合体を得る際、用いられる溶剤は、ポリシロキサン(a)及び液晶性であり且つ感光性である基とラジカル重合性基とを有するモノマー(b)、必要に応じて添加される重合開始剤等を溶解するものであれば特に限定されない。 When obtaining the polymer, the solvent used is a polysiloxane (a), a monomer (b) having a liquid crystalline and photosensitive group and a radical polymerizable group, and a polymerization initiator added as necessary. If it dissolves etc., it will not be specifically limited.
 溶剤の具体例としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ブタノン、3-メチル-2-ペンタノン、2-ペンタノン、2-ヘプタノン、γ-ブチロラクトン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン等が挙げられる。 Specific examples of the solvent include, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate. , Propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-butanone, 3-methyl-2-pentanone, 2-pentanone, 2-heptanone, γ-butyrolactone, ethyl 2-hydroxypropionate, Ethyl 2-hydroxy-2-methylpropionate, ethoxyacetic acid Chill, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, pyruvate Examples include ethyl, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone and the like.
 上述した重合開始剤としては、例えば、2,2'-アゾビスイソブチロニトリル(AIBN)、2,2'-アゾビス-(2,4-ジメチルバレロニトリル)、2,2'-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルペルオキシド、ラウロイルペルオキシド、t-ブチルペルオキシピバレート、1,1'-ビス-(t-ブチルペルオキシ)シクロヘキサン等の有機過酸化物及び過酸化水素が挙げられる。中でも、例えば、アゾビスイソブチロニトリル(AIBN)が好ましい。 Examples of the polymerization initiator described above include 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis- ( Organic peroxides such as azo compounds such as 4-methoxy-2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, 1,1′-bis- (t-butylperoxy) cyclohexane And hydrogen peroxide. Among them, for example, azobisisobutyronitrile (AIBN) is preferable.
 重合開始剤の含有量は、上述したモノマー(b)の1モルに対して、3~50モル%が好ましく、5~30モル%がさらに好ましい。 The content of the polymerization initiator is preferably 3 to 50 mol%, more preferably 5 to 30 mol%, relative to 1 mol of the monomer (b) described above.
<液晶配向膜の製造方法>
 次に、本発明の液晶配向膜の製造方法について説明する。
<Method for producing liquid crystal alignment film>
Next, the manufacturing method of the liquid crystal aligning film of this invention is demonstrated.
 本発明の液晶配向膜の製造方法は、上述した側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射する。次いで、第1回目の加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、さらに第2回目の加熱によって固定化して、優れた液晶の配向制御能を備えた液晶配向膜を製造する。 The method for producing a liquid crystal alignment film of the present invention forms a coating film on a substrate using the above-mentioned side chain polymer, and then irradiates polarized ultraviolet rays. Next, high efficiency anisotropy is introduced into the side chain polymer film by performing the first heating, and further fixing by the second heating to provide excellent liquid crystal alignment control ability. The liquid crystal alignment film provided is manufactured.
 より詳細には、上述した側鎖型高分子膜の側鎖型高分子における光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、側鎖型高分子膜への高効率な異方性の導入を実現する。
 さらに、本発明の液晶配向膜の製造方法で、側鎖型高分子の光反応性基として光架橋性基を有する構造の場合、その側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射して第1の配向処理を行い、次いで、側鎖型高分子膜が液晶性を発現する範囲内の温度で、第1回目の加熱(第1の加熱処理とも言う。)を行って、第2の配向処理となる再配向処理を行う。
More specifically, by utilizing the principle of molecular reorientation induced by photoreaction and liquid crystallinity in the side chain polymer of the side chain polymer film described above, the side chain polymer film is used. To introduce highly efficient anisotropy into
Further, in the method for producing a liquid crystal alignment film of the present invention, in the case of a structure having a photocrosslinkable group as a photoreactive group of a side chain polymer, a coating film is formed on the substrate using the side chain polymer. After that, the first alignment treatment is performed by irradiating polarized ultraviolet rays, and then the first heating (both the first heat treatment is performed) at a temperature within a range in which the side chain type polymer film exhibits liquid crystallinity. And the re-orientation process to be the second alignment process is performed.
 そして、上記再配向処理を行った後、上述した第1回目の加熱の温度以上の温度で、さらに第2回目の加熱(第2の加熱処理とも言う。)を行い、含有するポリシロキサン構造部分を縮合させる。そして、第2の加熱処理は、光照射と第1の加熱処理によって側鎖型高分子膜中に導入された異方性の固定化を行うことにより、高効率な液晶配向膜の製造を可能とする。併せて、ポリシロキサン構造に基づく高信頼性の液晶配向膜を提供することができる。 Then, after performing the re-orientation treatment, the second heating (also referred to as second heat treatment) is further performed at a temperature equal to or higher than the temperature of the first heating described above, and the polysiloxane structure portion contained therein Is condensed. The second heat treatment can produce a highly efficient liquid crystal alignment film by fixing the anisotropy introduced into the side chain polymer film by light irradiation and the first heat treatment. And In addition, a highly reliable liquid crystal alignment film based on a polysiloxane structure can be provided.
 本発明の液晶配向膜の製造方法は、より具体的には、
 [I];基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子膜を形成する工程、
 [II];工程[I]で得られた側鎖型高分子膜に偏光した紫外線を照射する工程、
 [III]工程[II]で偏光した紫外線の照射された側鎖型高分子膜を加熱する工程、及び
 [IV];工程[III]で加熱された側鎖型高分子膜を、工程[III]と異なる温度でさらに加熱する工程、
を有して構成される。
More specifically, the method for producing the liquid crystal alignment film of the present invention includes:
[I]; a step of forming a photosensitive side chain polymer film exhibiting liquid crystallinity in a predetermined temperature range on a substrate;
[II]; a step of irradiating the side chain polymer film obtained in the step [I] with polarized ultraviolet rays;
[III] a step of heating the side chain polymer film irradiated with ultraviolet rays polarized in the step [II], and [IV]; a side chain polymer film heated in the step [III] of the step [III]. And further heating at a different temperature from
It is comprised.
 以下、光反応性基として光架橋性基を有する構造の側鎖型高分子を用いた本発明を第1形態と称し、光反応性基として光フリース転位基を有する構造の側鎖型高分子を用いた本発明を第2形態と称し、図1(a)~(d)、図2(a)~(d)、図3(a)~(c)、及び、図4(a)~(c)を参照しながら、さらに説明する。 Hereinafter, the present invention using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group is referred to as a first embodiment, and the side chain polymer having a structure having a photofleece rearrangement group as a photoreactive group. The present invention using this is referred to as a second embodiment, and FIGS. 1 (a) to (d), FIGS. 2 (a) to (d), FIGS. 3 (a) to (c), and FIGS. Further description will be given with reference to (c).
 図1(a)~(d)に示す、本発明の第1形態の液晶配向膜の製造方法における、側鎖型高分子膜への異方性の導入処理で、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~15%の範囲内である場合は、先ず、基板上に本発明の側鎖型高分子膜1を形成する。図1(a)に示すように、基板上に形成された側鎖型高分子膜1では、側鎖2がランダムに配列する構造を有する。側鎖型高分子膜1の側鎖2のランダム配列に従い、側鎖2のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜1は等方性である。
 尚、ΔAとは、本発明の側鎖型高分子膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差である。
In the method for producing a liquid crystal alignment film according to the first embodiment of the present invention shown in FIGS. 1 (a) to 1 (d), the irradiation with ultraviolet rays in the step [II] is performed by introducing anisotropy into the side chain polymer film. When the amount is in the range of 1 to 15% of the ultraviolet irradiation amount that maximizes ΔA, first, the side chain type polymer film 1 of the present invention is formed on the substrate. As shown in FIG. 1A, the side chain polymer film 1 formed on the substrate has a structure in which the side chains 2 are randomly arranged. According to the random arrangement of the side chain 2 of the side chain polymer film 1, the mesogenic component and the photosensitive group of the side chain 2 are also randomly oriented, and the side chain polymer film 1 is isotropic.
Here, ΔA is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of polarized ultraviolet rays in the side chain polymer film of the present invention.
 図2(a)~(d)に示す、本発明の第1形態の液晶配向膜の製造方法における、側鎖型高分子膜への異方性の導入処理で、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の15~70%の範囲内である場合は、先ず、基板上に本発明の側鎖型高分子膜3を形成する。図2(a)に示すように、基板上に形成された側鎖型高分子膜3では、側鎖4がランダムに配列する構造を有する。側鎖型高分子膜3の側鎖4のランダム配列に従い、側鎖4のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜2は等方性である。 In the method for producing a liquid crystal alignment film according to the first embodiment of the present invention shown in FIGS. 2 (a) to (d), the irradiation with ultraviolet rays in the step [II] is performed by introducing anisotropy into the side chain polymer film. When the amount is in the range of 15 to 70% of the ultraviolet irradiation amount that maximizes ΔA, first, the side chain type polymer film 3 of the present invention is formed on the substrate. As shown in FIG. 2A, the side chain polymer film 3 formed on the substrate has a structure in which the side chains 4 are randomly arranged. According to the random arrangement of the side chain 4 of the side chain polymer film 3, the mesogenic component and the photosensitive group of the side chain 4 are also randomly oriented, and the side chain polymer film 2 is isotropic.
 図3(a)~(c)に示す、本発明の第2形態の液晶配向膜の製造方法における、側鎖型高分子膜への異方性の導入処理で、上述の式(7)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いた場合において、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~70%の範囲内である場合は、先ず、基板上に側鎖型高分子膜5を形成する。図3(a)に示すように、基板上に形成された側鎖型高分子膜5では、側鎖6がランダムに配列する構造を有する。側鎖型高分子膜5の側鎖6のランダム配列に従い、側鎖6のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜5は等方性である。 In the method for producing a liquid crystal alignment film according to the second embodiment of the present invention shown in FIGS. 3A to 3C, anisotropy is introduced into the side chain polymer film, and the above formula (7) is used. In the case where a liquid crystal alignment film using a side chain type polymer having a structure having a photo-fleece rearrangement group is used, the ultraviolet irradiation amount in the step [II] is 1 to the ultraviolet irradiation amount that maximizes ΔA. When it is within the range of 70%, first, the side chain polymer film 5 is formed on the substrate. As shown in FIG. 3A, the side chain polymer film 5 formed on the substrate has a structure in which the side chains 6 are randomly arranged. According to the random arrangement of the side chain 6 of the side chain polymer film 5, the mesogenic component and the photosensitive group of the side chain 6 are also randomly oriented, and the side chain polymer film 5 is isotropic.
 図4(a)~(c)に示す、本発明の第2形態の液晶配向膜の製造方法における、側鎖型高分子膜への異方性の導入処理で、上述の式(8)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いた場合において、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~70%の範囲内である場合は、先ず、基板上に側鎖型高分子膜7を形成する。図4(a)に示すように、基板上に形成された本実施の形態の側鎖型高分子膜7では、側鎖8がランダムに配列する構造を有する。側鎖型高分子膜7の側鎖8のランダム配列に従い、側鎖8のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜7は等方性である。 In the method for producing a liquid crystal alignment film according to the second embodiment of the present invention shown in FIGS. 4A to 4C, anisotropy is introduced into the side chain polymer film. In the case where a liquid crystal alignment film using a side chain type polymer having a structure having a photo-fleece rearrangement group is used, the ultraviolet irradiation amount in the step [II] is 1 to the ultraviolet irradiation amount that maximizes ΔA. When it is within the range of 70%, first, the side chain polymer film 7 is formed on the substrate. As shown in FIG. 4A, the side chain type polymer film 7 of this embodiment formed on the substrate has a structure in which the side chains 8 are randomly arranged. According to the random arrangement of the side chains 8 of the side chain polymer film 7, the mesogenic components and the photosensitive groups of the side chains 8 are also randomly oriented, and the side chain polymer film 7 is isotropic.
 図1(a)~(d)に示す、本発明の第1形態で、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~15%の範囲内である場合において、この等方性の側鎖型高分子膜1に対し、偏光した紫外線を照射する。すると、図1(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖2のうちの、感光性基を有する側鎖2aの感光性基が、優先的に二量化反応等の光反応を起こす。その結果、光反応をした側鎖2aの密度が照射紫外線の偏光方向で僅かに高くなり、結果として側鎖型高分子膜1に非常に小さな異方性が付与される。 In the first embodiment of the present invention shown in FIGS. 1A to 1D, in the case where the ultraviolet ray irradiation amount in the step [II] is within the range of 1 to 15% of the ultraviolet ray irradiation amount that maximizes ΔA. The isotropic side chain polymer film 1 is irradiated with polarized ultraviolet rays. Then, as shown in FIG. 1 (b), among the side chains 2 arranged in a direction parallel to the polarization direction of ultraviolet rays, the photosensitive group of the side chain 2a having a photosensitive group is preferentially dimerized. Causes a photoreaction such as As a result, the density of the side chain 2a that has undergone photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, the side chain polymer film 1 is provided with very small anisotropy.
 図2(a)~(d)に示す、本発明の第1形態で、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の15~70%の範囲内である場合において、この等方性の側鎖型高分子膜3に対し、偏光した紫外線を照射する。すると、図2(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖4のうちの、感光性基を有する側鎖4aの感光性基が、優先的に二量化反応等の光反応を起こす。その結果、光反応をした側鎖4aの密度が照射紫外線の偏光方向で高くなり、結果として側鎖型高分子膜3に小さな異方性が付与される。 In the first embodiment of the present invention shown in FIGS. 2A to 2D, in the case where the ultraviolet ray irradiation amount in the step [II] is within the range of 15 to 70% of the ultraviolet ray irradiation amount that maximizes ΔA. The isotropic side chain polymer film 3 is irradiated with polarized ultraviolet rays. Then, as shown in FIG. 2 (b), among the side chains 4 arranged in a direction parallel to the polarization direction of the ultraviolet light, the photosensitive group of the side chain 4a having a photosensitive group is preferentially dimerized. Causes a photoreaction such as As a result, the density of the side chain 4a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet rays, and as a result, a small anisotropy is imparted to the side chain type polymer film 3.
 図3(a)~(c)に示す、本発明の第2形態で、上述の式(7)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いて、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~70%の範囲内である場合において、この等方性の側鎖型高分子膜5に対し、偏光した紫外線を照射する。すると、図3(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖6のうちの、感光性基を有する側鎖6aの感光性基が、優先的に光フリース転位等の光反応を起こす。その結果、光反応をした側鎖6aの密度が照射紫外線の偏光方向で僅かに高くなり、結果として側鎖型高分子膜5に非常に小さな異方性が付与される。 3 (a) to 3 (c), a liquid crystal alignment film using a side chain polymer having a structure having an optical fleece rearrangement group represented by the above formula (7) in the second embodiment of the present invention. In the case where the ultraviolet irradiation amount in the step [II] is in the range of 1 to 70% of the ultraviolet irradiation amount that maximizes ΔA, the isotropic side chain polymer film 5 is Irradiate polarized ultraviolet light. Then, as shown in FIG. 3 (b), among the side chains 6 arranged in a direction parallel to the polarization direction of the ultraviolet light, the photosensitive group of the side chain 6a having a photosensitive group is preferentially subjected to photofleece rearrangement. Causes a photoreaction such as As a result, the density of the side chain 6a subjected to the photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, the side chain type polymer film 5 is given a very small anisotropy.
 図4(a)~(c)に示す、本発明の第2形態で、上述の式(8)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いて、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~70%の範囲内である場合において、この等方性の側鎖型高分子膜7に対し、偏光した紫外線を照射する。すると、図4(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖8のうちの、感光性基を有する側鎖8aの感光性基が、優先的に光フリース転位等の光反応を起こす。その結果、光反応をした側鎖8aの密度が照射紫外線の偏光方向で高くなり、結果として側鎖型高分子膜7に小さな異方性が付与される。 4 (a) to 4 (c), a liquid crystal alignment film using a side chain polymer having a structure having an optical fleece rearrangement group represented by the above formula (8) in the second embodiment of the present invention. In the case where the ultraviolet irradiation amount in the step [II] is in the range of 1 to 70% of the ultraviolet irradiation amount that maximizes ΔA, the isotropic side chain polymer film 7 is Irradiate polarized ultraviolet light. Then, as shown in FIG. 4B, among the side chains 8 arranged in a direction parallel to the polarization direction of the ultraviolet light, the photosensitive group of the side chain 8a having a photosensitive group preferentially undergoes optical Fleece rearrangement. Causes a photoreaction such as As a result, the density of the side chain 8 a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, a small anisotropy is imparted to the side chain type polymer film 7.
 次いで、図1(a)~(d)に示す、本発明の第1形態で、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~15%の範囲内である場合において、偏光照射後の側鎖型高分子膜1を加熱し、液晶状態にする。すると、図1(c)に示すように、側鎖型高分子膜1では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた架橋反応の量が異なっている。この場合、照射紫外線の偏光方向と平行方向に生じた架橋反応の量が非常に小さいため、この架橋反応部位は可塑剤としての働きをする。そのため、照射紫外線の偏光方向と垂直方向の液晶性が平行方向の液晶性より高くなり、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖2が再配向する。その結果、光架橋反応で誘起された側鎖型高分子膜1の非常に小さな異方性は、熱によって増幅され、側鎖型高分子膜1において、より大きな異方性が付与されることになる。 Next, in the first embodiment of the present invention shown in FIGS. 1 (a) to 1 (d), the ultraviolet irradiation amount in the step [II] is in the range of 1 to 15% of the ultraviolet irradiation amount that maximizes ΔA. In some cases, the side chain polymer film 1 after irradiation with polarized light is heated to a liquid crystal state. Then, as shown in FIG.1 (c), in the side chain type polymer film 1, the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. In this case, since the amount of the crosslinking reaction generated in the direction parallel to the polarization direction of the irradiated ultraviolet ray is very small, this crosslinking reaction site functions as a plasticizer. Therefore, the liquid crystallinity in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is higher than the liquid crystallinity in the parallel direction, and the side chain 2 containing the mesogenic component is reoriented by self-organizing in the direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the very small anisotropy of the side chain polymer film 1 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the side chain polymer film 1. become.
 同様に、図2(a)~(d)に示す、本発明の第1形態で、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の15~70%の範囲内である場合において、偏光照射後の側鎖型高分子膜3を加熱し、液晶状態にする。すると、図2(c)に示すように、側鎖型高分子膜3では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた架橋反応の量が異なっている。そのため、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖4が再配向する。その結果、光架橋反応で誘起された側鎖型高分子膜3の小さな異方性は、熱によって増幅され、側鎖型高分子膜3において、より大きな異方性が付与されることになる。 Similarly, in the first embodiment of the present invention shown in FIGS. 2 (a) to 2 (d), the ultraviolet irradiation amount in the step [II] is within the range of 15 to 70% of the ultraviolet irradiation amount that maximizes ΔA. In some cases, the side chain polymer film 3 after irradiation with polarized light is heated to a liquid crystal state. Then, as shown in FIG. 2 (c), in the side chain type polymer film 3, the amount of the generated crosslinking reaction is different between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. Therefore, the side chain 4 containing the mesogenic component is reoriented by self-organizing in a direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the small anisotropy of the side chain polymer film 3 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 3. .
 同様に、図3(a)~(c)に示す、本発明の第2形態で、上述の式(7)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いて、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~70%の範囲内である場合において、偏光照射後の側鎖型高分子膜5を加熱し、液晶状態にする。すると、図3(c)に示すように、側鎖型高分子膜5では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた光フリース転位反応の量が異なっている。この場合、照射紫外線の偏光方向と垂直方向に生じた光フリース転位体の液晶配向力が、反応前の側鎖の液晶配向力より強いため、照射紫外線の偏光方向と垂直な方向に自己組織化してメソゲン成分を含む側鎖6が再配向する。その結果、光フリース転位反応で誘起された側鎖型高分子膜5の非常に小さな異方性は、熱によって増幅され、側鎖型高分子膜5において、より大きな異方性が付与されることになる。 Similarly, in the second embodiment of the present invention shown in FIGS. 3 (a) to (c), a side chain type polymer having a structure having an optical fleece rearrangement group represented by the above formula (7) was used. Using the liquid crystal alignment film, when the ultraviolet irradiation amount in the step [II] is within the range of 1 to 70% of the ultraviolet irradiation amount that maximizes ΔA, Heat to liquid crystal state. Then, as shown in FIG. 3 (c), in the side chain type polymer film 5, the amount of the generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet light and the direction perpendicular thereto. Yes. In this case, since the liquid crystal alignment force of the light fleece rearrangement generated in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is stronger than the liquid crystal alignment force of the side chain before the reaction, it self-organizes in the direction perpendicular to the polarization direction of the irradiated ultraviolet light. Thus, the side chain 6 containing the mesogenic component is reoriented. As a result, the very small anisotropy of the side chain polymer film 5 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the side chain polymer film 5. It will be.
 同様に、図4(a)~(c)に示す、本発明の第2形態で、上述の式(8)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いて、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~70%の範囲内である場合において、偏光照射後の側鎖型高分子膜7を加熱し、液晶状態にする。すると、図4(c)に示すように、側鎖型高分子膜7では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた光フリース転位反応の量が異なっている。光フリース転位体8(a)のアンカリング力は転位前の側鎖8より強いため、ある一定量以上の光フリース転位体が生じると、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖8が再配向する。その結果、光フリース転位反応で誘起された側鎖型高分子膜7の小さな異方性は、熱によって増幅され、側鎖型高分子膜7において、より大きな異方性が付与されることになる。 Similarly, in the second embodiment of the present invention shown in FIGS. 4 (a) to (c), a side chain type polymer having a structure having an optical fleece rearrangement group represented by the above formula (8) was used. Using the liquid crystal alignment film, when the ultraviolet irradiation amount in the step [II] is in the range of 1 to 70% of the ultraviolet irradiation amount that maximizes ΔA, Heat to liquid crystal state. Then, as shown in FIG. 4 (c), in the side chain type polymer film 7, the amount of the generated optical fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. Yes. Since the anchoring force of the optical fleece rearrangement 8 (a) is stronger than that of the side chain 8 before the rearrangement, when a certain amount or more of the optical fleece rearrangement occurs, it is self-assembled in a direction parallel to the polarization direction of the irradiated ultraviolet light. The side chain 8 containing the mesogenic component is reoriented. As a result, the small anisotropy of the side chain polymer film 7 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 7. Become.
 さらに、本発明の第1形態において、その側鎖型高分子は、上述したポリシロキサン(a)に由来するポリシロキサン構造を有している。そのため、本発明の側鎖型高分子膜は、図1(c)や図2(c)に示されるような、メソゲンの自己組織化により、異方性が誘起された後、そのポリシロキサン構造に起因する熱反応(架橋反応)が生じる温度で、第2の加熱処理を行うことで、その異方性を固定化することができる。すなわち、本発明の側鎖型高分子膜は、図1(d)や図2(d)に示すように、第2の加熱処理により、側鎖2bや側鎖4bの配向方向に誘起された、大きな異方性を固定化することができる。第2の加熱処理の温度は、シロキサンの熱反応が生じる温度とすることが好ましく、例えば、200℃以上の温度とすることができる。 Furthermore, in the first embodiment of the present invention, the side chain polymer has a polysiloxane structure derived from the above-described polysiloxane (a). Therefore, the side chain polymer membrane of the present invention has a polysiloxane structure after anisotropy is induced by mesogen self-assembly as shown in FIG. 1 (c) and FIG. 2 (c). The anisotropy can be fixed by performing the second heat treatment at a temperature at which a thermal reaction (crosslinking reaction) caused by the above occurs. That is, the side chain type polymer film of the present invention was induced in the orientation direction of the side chain 2b and the side chain 4b by the second heat treatment as shown in FIG. 1 (d) and FIG. 2 (d). , Large anisotropy can be fixed. The temperature of the second heat treatment is preferably a temperature at which a thermal reaction of siloxane occurs, and can be, for example, a temperature of 200 ° C. or higher.
 さらに、本発明の第2形態においても、その側鎖型高分子は、上述したポリシロキサン(a)に由来するポリシロキサン構造を有している。そのため、本発明の側鎖型高分子膜は、図3(c)や図4(c)に示されるような、メソゲンの自己組織化により、異方性が誘起された後、そのポリシロキサン構造に起因する熱反応(架橋反応)が生じる温度で、第2の加熱処理を行うことで、その異方性を固定化することができる。すなわち、本発明の側鎖型高分子膜は、図示されないが、上述の第1形態と同様に、第2の加熱処理により、誘起された大きな異方性を固定化することができる。第2の加熱処理の温度は、上述の第1形態と同様に、シロキサンの熱反応が生じる温度とすることが好ましく、例えば、200℃以上の温度とすることができる。 Furthermore, also in the second embodiment of the present invention, the side chain type polymer has a polysiloxane structure derived from the above-described polysiloxane (a). Therefore, the side chain type polymer film of the present invention has a polysiloxane structure after anisotropy is induced by mesogen self-assembly as shown in FIG. 3 (c) and FIG. 4 (c). The anisotropy can be fixed by performing the second heat treatment at a temperature at which a thermal reaction (crosslinking reaction) caused by the above occurs. That is, the side chain type polymer film of the present invention is not shown, but the induced large anisotropy can be fixed by the second heat treatment as in the first embodiment. The temperature of the second heat treatment is preferably a temperature at which a thermal reaction of siloxane occurs as in the first embodiment described above, and can be, for example, a temperature of 200 ° C. or higher.
 したがって、本発明の液晶配向膜の製造方法では、側鎖型高分子膜への偏光した紫外線の照射と再配向のための第1の加熱処理、さらに、固定化のための第2の加熱処理とを順次行うことにより、高効率に異方性の導入された液晶配向膜を得ることができる。 Therefore, in the method for producing a liquid crystal alignment film of the present invention, the first heat treatment for irradiation and reorientation of polarized ultraviolet rays to the side chain polymer film and the second heat treatment for immobilization are performed. By sequentially performing the above, a liquid crystal alignment film having anisotropy introduced with high efficiency can be obtained.
 また、本発明の液晶配向膜の製造方法では、側鎖型高分子膜への偏光した紫外線の照射量と、第1の加熱処理及び第2の加熱処理における加熱温度をそれぞれの目的に対応させて最適化する。それにより高効率な、側鎖型高分子膜への異方性の導入を実現することができる。 In the method for producing a liquid crystal alignment film of the present invention, the irradiation amount of polarized ultraviolet rays on the side chain polymer film and the heating temperatures in the first heat treatment and the second heat treatment are made to correspond to the respective purposes. To optimize. Thereby, introduction of anisotropy into the side chain type polymer film can be realized with high efficiency.
 本発明の側鎖型高分子膜への高効率な異方性の導入に最適な偏光紫外線の照射量は、その側鎖型高分子膜において、感光性基が光架橋反応や光異性化反応、若しくは光フリース転位反応する量を最適にする偏光紫外線の照射量に対応する。 The optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the side chain polymer film of the present invention is that the photopolymerization reaction or photoisomerization reaction of the photosensitive group in the side chain polymer film Or, it corresponds to the irradiation amount of polarized ultraviolet rays that optimizes the amount of photofleece rearrangement reaction.
 本発明の側鎖型高分子膜に対して偏光した紫外線を照射した結果、光架橋反応や光異性化反応、若しくは光フリース転位反応する側鎖の感光性基が少ないと、十分な光反応量とならない。その場合、その後に加熱しても、十分な自己組織化は進行しない。
 一方、本発明の側鎖型高分子膜で、光架橋性基を有する構造に対して偏光した紫外線を照射した結果、架橋反応する側鎖の感光性基が過剰となると、側鎖での架橋反応が進行しすぎることになる。その場合、得られる膜は剛直になって、その後の加熱による自己組織化の進行の妨げとなることがある。
As a result of irradiating the side-chain polymer film of the present invention with polarized ultraviolet rays, a sufficient amount of photoreaction can be obtained when there are few photogroups in the side chain that undergoes photocrosslinking reaction, photoisomerization reaction, or photofleece rearrangement reaction. Not. In that case, sufficient self-organization does not proceed even after heating.
On the other hand, when the side chain type polymer film of the present invention is irradiated with polarized ultraviolet rays to the structure having a photocrosslinkable group, if the photosensitive group of the side chain that undergoes the crosslinking reaction becomes excessive, crosslinking at the side chain is performed. The reaction will proceed too much. In that case, the resulting film may become rigid and hinder the progress of self-assembly by subsequent heating.
 また、本発明の側鎖型高分子膜で、光フリース転位基を有する構造に対して偏光した紫外線を照射した結果、光フリース転位反応する側鎖の感光性基が過剰となると、側鎖型高分子膜の液晶性が低下しすぎることになる。その場合、得られる膜の液晶性も低下し、その後の過熱による自己組織化の進行の妨げとなることがある。
 さらに、光フリース転位基を有する構造に対して偏光した紫外線を照射する場合、紫外線の照射量が多すぎると、本発明の側鎖型高分子が光分解し、その後の加熱による自己組織化の進行の妨げとなることがある。
In addition, when the side chain type polymer film of the present invention is irradiated with polarized ultraviolet rays to the structure having the light fleece rearrangement group, the side chain type becomes excessive when the side chain photosensitive group that undergoes the light fleece rearrangement reaction becomes excessive. The liquid crystallinity of the polymer film will be too low. In that case, the liquid crystallinity of the obtained film is also lowered, which may hinder the progress of self-assembly due to subsequent overheating.
Furthermore, when irradiating polarized ultraviolet light to a structure having a photofleece rearrangement group, if the amount of ultraviolet light irradiation is too large, the side chain polymer of the present invention is photodegraded and then self-organized by heating. May interfere with progress.
 したがって、本発明の側鎖型高分子膜において、偏光紫外線の照射によって側鎖の感光性基が、光架橋反応や光異性化反応、若しくは光フリース転位反応する最適な量は、その側鎖型高分子膜の有する感光性基の0.1~40モル%にすることが好ましく、0.1~20モル%にすることがより好ましい。光反応する側鎖の感光性基の量を、このような範囲にすることにより、その後の加熱処理での自己組織化が効率良く進み、膜中での高効率な異方性の形成が可能となる。 Therefore, in the side chain type polymer film of the present invention, the optimal amount of the side chain photosensitive group that undergoes photocrosslinking reaction, photoisomerization reaction, or photofries rearrangement reaction by irradiation with polarized ultraviolet rays is the side chain type. The amount is preferably 0.1 to 40 mol%, more preferably 0.1 to 20 mol% of the photosensitive group of the polymer film. By making the amount of the photo-reactive side chain photosensitive group within such a range, the self-organization in the subsequent heat treatment proceeds efficiently, and high-efficiency anisotropy can be formed in the film. It becomes.
 本発明の液晶配向膜の製造方法では、偏光した紫外線の照射量の最適化により、側鎖型高分子膜の側鎖における、感光性基の光架橋反応や光異性化反応、若しくは光フリース転位反応の量を最適化する。そして、その後の加熱処理と併せて、高効率な、側鎖型高分子膜への異方性の導入を実現する。その場合、好適な偏光紫外線の量については、側鎖型高分子膜の紫外線吸収の評価に基づいて行うことが可能である。 In the method for producing a liquid crystal alignment film of the present invention, by optimizing the irradiation amount of polarized ultraviolet rays, photocrosslinking reaction or photoisomerization reaction of a photosensitive group or photofleece rearrangement in the side chain of the side chain polymer film Optimize the amount of reaction. In combination with the subsequent heat treatment, high-efficiency introduction of anisotropy into the side chain polymer film is realized. In that case, a suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the side chain polymer film.
 すなわち、本発明の側鎖型高分子膜について、偏光紫外線照射後の、偏光した紫外線の偏光方向と平行な方向の紫外線吸収と、垂直な方向の紫外線吸収とをそれぞれ測定する。紫外線吸収の測定結果から、側鎖型高分子膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価する。そして、本発明の側鎖型高分子膜において実現されるΔAの最大値(ΔAmax)と、それを実現する偏光紫外線の照射量を求める。
 本発明の液晶配向膜の製造方法では、このΔAmaxを実現する偏光紫外線照射量を基準として、液晶配向膜の製造において照射する、好ましい量の偏光した紫外線量を決めることができる。
That is, with respect to the side chain polymer film of the present invention, the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet light and the ultraviolet absorption in the vertical direction after irradiation with polarized ultraviolet light are measured. From the measurement result of ultraviolet absorption, ΔA, which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays, is evaluated. Then, the maximum value of ΔA (ΔAmax) realized in the side chain type polymer film of the present invention and the irradiation amount of polarized ultraviolet rays for realizing it are obtained.
In the method for producing a liquid crystal alignment film according to the present invention, a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the irradiation amount of polarized ultraviolet rays that realizes this ΔAmax.
 本発明の液晶配向膜の製造方法では、側鎖型高分子膜への偏光した紫外線の照射量を、ΔAmaxを実現する偏光紫外線の量の1~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。
 本発明の側鎖型高分子膜において、ΔAmaxを実現する偏光紫外線の量の1~50%の範囲内の偏光紫外線の照射量は、その側鎖型高分子膜の有する感光性基全体の0.1~20モル%を光架橋反応させる偏光紫外線の量に相当する。
In the method for producing a liquid crystal alignment film of the present invention, the irradiation amount of polarized ultraviolet rays to the side chain polymer film is preferably in the range of 1 to 70% of the amount of polarized ultraviolet rays that realizes ΔAmax. More preferably, it is in the range of ˜50%.
In the side chain type polymer film of the present invention, the irradiation amount of polarized ultraviolet light within the range of 1 to 50% of the amount of polarized ultraviolet light that realizes ΔAmax is 0% of the entire photosensitive group of the side chain type polymer film. 1 to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.
 次に、本発明の液晶配向膜の製造方法では、側鎖型高分子膜に偏光した紫外線を照射した後、その側鎖型高分子膜の加熱(第1の加熱処理)を行う。
 本発明の側鎖型高分子膜は、所定の温度範囲で液晶性を発現し得る高分子膜である。
 偏光紫外線照射後の第1の加熱処理は、この側鎖型高分子膜の液晶性を発現させる温度を基準にして決めることができる。すなわち、偏光紫外線照射後の第1の加熱処理の加熱温度は、本発明の側鎖型高分子膜が液晶性を発現する範囲内の温度とする。そして、偏光紫外線照射後の加熱温度は、本発明の側鎖型高分子膜が液晶性を発現する温度範囲(以下、液晶温度範囲と言う。)の下限より10℃高い温度からその液晶温度範囲の上限より10℃低い温度までの範囲の温度であることが好ましい。
Next, in the method for producing a liquid crystal alignment film of the present invention, the side chain polymer film is irradiated with polarized ultraviolet rays, and then the side chain polymer film is heated (first heat treatment).
The side chain polymer film of the present invention is a polymer film that can exhibit liquid crystallinity in a predetermined temperature range.
The first heat treatment after irradiation with polarized ultraviolet rays can be determined based on the temperature at which the liquid crystallinity of the side chain polymer film is developed. That is, the heating temperature of the first heat treatment after irradiation with polarized ultraviolet rays is set to a temperature within a range in which the side chain polymer film of the present invention exhibits liquid crystallinity. The heating temperature after irradiation with polarized ultraviolet rays ranges from a temperature 10 ° C. higher than the lower limit of the temperature range in which the side chain polymer film of the present invention exhibits liquid crystallinity (hereinafter referred to as a liquid crystal temperature range). The temperature is preferably in the range up to 10 ° C. lower than the upper limit.
 本発明の側鎖型高分子膜は、偏光した紫外線の照射後に、加熱され、液晶状態となって、偏光方向と平行、若しくは垂直な方向に自己組織化して再配向する。その結果、光架橋反応や光異性化反応、若しくは光フリース転位反応で誘起された、側鎖型高分子膜の小さな異方性は、熱によって増幅されることになる。しかし、側鎖型高分子膜が加熱により液晶状態を呈している場合でも、加熱温度が低いと、液晶状態の側鎖型高分子膜の粘度は高く、自己組織化による再配向が生じにくくなってしまう。例えば、加熱温度が本発明の側鎖型高分子膜の液晶温度範囲の下限から10℃高い温度までの範囲である場合、側鎖型高分子膜における熱による異方性の増幅効果は得られるものの、それを十分なものとすることができない。 The side-chain polymer film of the present invention is heated after irradiation with polarized ultraviolet rays to be in a liquid crystal state, and is self-organized and reoriented in a direction parallel to or perpendicular to the polarization direction. As a result, the small anisotropy of the side chain polymer film induced by the photocrosslinking reaction, photoisomerization reaction, or photofleece rearrangement reaction is amplified by heat. However, even when the side chain polymer film is in a liquid crystal state by heating, if the heating temperature is low, the viscosity of the side chain polymer film in the liquid crystal state is high and realignment due to self-assembly is less likely to occur. End up. For example, when the heating temperature is in the range from the lower limit of the liquid crystal temperature range of the side chain polymer film of the present invention to a temperature higher by 10 ° C., the anisotropic amplification effect due to heat in the side chain polymer film can be obtained. However, it cannot be enough.
 また、本発明の側鎖型高分子膜が加熱により液晶状態を呈しているとしても、加熱温度が高いと、側鎖型高分子膜の状態が等方性の液体状態に近くなり、自己組織化によって一方向に再配向することが困難になってしまう。例えば、加熱温度が本発明の側鎖型高分子膜の液晶温度範囲の上限から10℃低い温度より高い温度である場合、側鎖型高分子膜における熱による異方性の増幅効果を得られるものの、それを十分なものとすることができない。 Further, even if the side chain polymer film of the present invention exhibits a liquid crystal state by heating, if the heating temperature is high, the state of the side chain polymer film becomes close to an isotropic liquid state, and self-organization This makes it difficult to reorient in one direction. For example, when the heating temperature is higher than the temperature lower by 10 ° C. from the upper limit of the liquid crystal temperature range of the side chain polymer film of the present invention, the anisotropic amplification effect due to heat in the side chain polymer film can be obtained. However, it cannot be enough.
 さらに、第1の加熱処理の加熱温度が、本発明の側鎖型高分子膜の液晶温度範囲の上限から10℃低い温度より高い温度であっても、例えば、200℃以上等、シロキサンの反応温度以上となる場合、再配向前にシロキサン部分の熱反応が進行してしまうことがある。その場合、側鎖型高分子膜は自己組織化によって一方向に再配向することが困難になってしまう。例えば、加熱温度が200℃を超える温度である場合、側鎖型高分子膜における熱による異方性の増幅効果を十分なものとすることができない。 Furthermore, even if the heating temperature of the first heat treatment is higher than the temperature lower by 10 ° C. than the upper limit of the liquid crystal temperature range of the side chain polymer film of the present invention, for example, the reaction of siloxane such as 200 ° C. or higher. When the temperature is higher than the temperature, the thermal reaction of the siloxane portion may proceed before realignment. In that case, it becomes difficult to reorient the side chain polymer film in one direction due to self-organization. For example, when the heating temperature is higher than 200 ° C., the anisotropic amplification effect due to heat in the side chain polymer film cannot be made sufficient.
 以上より、本発明の液晶配向膜の製造方法では、側鎖型高分子膜への高効率な異方性の導入を実現するため、側鎖型高分子膜の液晶温度範囲及びシロキサン部分の反応温度範囲を基準として好適な加熱温度を定める。上述したように、偏光紫外線照射後の加熱の温度を、その側鎖型高分子膜の液晶温度範囲の下限より10℃高い温度を下限とし、200℃以下であって、液晶温度範囲の上限より10℃低い温度を上限とする範囲内の温度とする。したがって、例えば、本発明の側鎖型高分子膜の液晶温度範囲が100℃~200℃であり、シロキサン部分が200℃より高温で反応する場合、偏光紫外線照射後の加熱の温度を110~190℃とすることが望ましい。こうすることにより、側鎖型高分子膜において、より大きな異方性が付与されることになる。 As described above, in the method for producing a liquid crystal alignment film of the present invention, the liquid crystal temperature range of the side chain polymer film and the reaction of the siloxane part are realized in order to realize highly efficient anisotropy into the side chain polymer film. A suitable heating temperature is determined based on the temperature range. As described above, the heating temperature after irradiation with polarized ultraviolet rays is lower than the lower limit of the liquid crystal temperature range of the side chain type polymer film by 10 ° C., and is 200 ° C. or lower, which is higher than the upper limit of the liquid crystal temperature range. The temperature is within a range where the upper limit is a temperature 10 ° C lower. Therefore, for example, when the liquid crystal temperature range of the side chain polymer film of the present invention is 100 ° C. to 200 ° C. and the siloxane portion reacts at a temperature higher than 200 ° C., the heating temperature after irradiation with polarized ultraviolet rays is set to 110 to 190. Desirably, the temperature is set to ° C. By so doing, greater anisotropy is imparted to the side chain polymer film.
 次に、本発明の液晶配向膜の製造方法の各工程について、より具体的に説明する。 Next, each step of the method for producing a liquid crystal alignment film of the present invention will be described more specifically.
 本発明の液晶配向膜の製造方法は、上述したように、以下の[1]~[IV]の工程を以下の順で有する。これにより、高い効率で異方性の導入された液晶配向膜を製造できる。
 [I];基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子膜を形成する工程、
 [II];工程[I]で得られた側鎖型高分子膜に偏光した紫外線を照射する工程、
 [III];工程[II]で偏光した紫外線の照射された側鎖型高分子膜を加熱する工程、及び
 [IV];工程[III]で加熱された側鎖型高分子膜を、工程[III]の加熱温度以上の温度でさらに加熱する工程。
As described above, the method for producing a liquid crystal alignment film of the present invention includes the following steps [1] to [IV] in the following order. Thereby, a liquid crystal alignment film into which anisotropy is introduced can be manufactured with high efficiency.
[I]; a step of forming a photosensitive side chain polymer film exhibiting liquid crystallinity in a predetermined temperature range on a substrate;
[II]; a step of irradiating the side chain polymer film obtained in the step [I] with polarized ultraviolet rays;
[III]; a step of heating the side chain polymer film irradiated with ultraviolet rays polarized in step [II]; and [IV]; a side chain polymer film heated in step [III] of step [III]. A step of further heating at a temperature equal to or higher than the heating temperature of III].
 以下、本発明の液晶配向膜の製造方法の有する[I]~[IV]の各工程について説明する。 Hereinafter, each step [I] to [IV] of the method for producing a liquid crystal alignment film of the present invention will be described.
 工程[I]では、基板上に本発明の側鎖型高分子膜を形成する。
 基板については、特に限定はされないが。例えば、ガラス基板の他、アクリル基板やポリカーボネート基板等のプラスチック基板等の透明基板を用いることができる。得られた液晶配向膜の適用を考慮し、液晶表示素子の製造のプロセスの簡素化の観点から、液晶駆動のためのITO(Indium Tin Oxide:酸化インジウムスズ)電極等が形成された基板を用いるも可能である。また、反射型の液晶表示素子への適用を考慮し、シリコンウェハ等の不透明な基板も使用でき、この場合の電極としてアルミニウム等の光を反射する材料を使用したものも使用できる。
In step [I], the side chain polymer film of the present invention is formed on a substrate.
The substrate is not particularly limited. For example, in addition to a glass substrate, a transparent substrate such as a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used. In consideration of application of the obtained liquid crystal alignment film, a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving a liquid crystal is formed is used from the viewpoint of simplifying the process of manufacturing a liquid crystal display element. Is also possible. In consideration of application to a reflective liquid crystal display element, an opaque substrate such as a silicon wafer can also be used. In this case, an electrode using a material that reflects light such as aluminum can be used.
 本発明の側鎖型高分子膜が所望の溶剤に溶解された溶液状である場合、基板上の膜形成は、その溶液状の側鎖型高分子膜を塗布することにより行う。
 塗布法方は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法等で行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)、スプレー法等があり、目的に応じてこれらを用いてもよい。
When the side chain polymer film of the present invention is in the form of a solution dissolved in a desired solvent, film formation on the substrate is performed by applying the solution-like side chain polymer film.
The coating method is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, inkjet method or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), a spray method, and the like, and these may be used depending on the purpose.
 基板上に溶液状の本発明の側鎖型高分子膜を塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により20~180℃、好ましくは40~150℃で溶媒を蒸発させて、側鎖型高分子膜を得ることができる。
 側鎖型高分子膜の厚みは、厚すぎると液晶配向膜を適用する液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。
After the solution-like side chain polymer film of the present invention is coated on the substrate, it is 20 to 180 ° C., preferably 40 to 150 ° C., by a heating means such as a hot plate, a heat circulation oven, or an IR (infrared) oven. By evaporating the solvent at 0 ° C., a side chain polymer membrane can be obtained.
If the thickness of the side chain polymer film is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element to which the liquid crystal alignment film is applied, and if it is too thin, the reliability of the liquid crystal display element may be lowered. The thickness is 5 to 300 nm, more preferably 10 to 100 nm.
 尚、工程[I]の後、続く工程[II]の前に、側鎖型高分子膜の形成された基板を室温にまで冷却する工程を設けることも可能である。 In addition, it is also possible to provide the process of cooling the board | substrate with which the side chain type polymer film was formed to room temperature after process [I] and before subsequent process [II].
 工程[II]では、工程[I]で得られた側鎖型高分子膜に、偏光した紫外線を照射して第1の配向処理を行う。側鎖型高分子膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。
 使用する紫外線としては、波長100~400nmの範囲の紫外線を使用することがきる。好ましくは、使用する側鎖型高分子膜の種類によりフィルター等を介して最適な波長を選択する。例えば、選択的に光架橋反応を誘起できるように、波長290~400nmの範囲の紫外線を選択して使用することがきる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
In the step [II], the first alignment treatment is performed by irradiating the side chain polymer film obtained in the step [I] with polarized ultraviolet rays. When irradiating the surface of the side chain polymer film with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
As the ultraviolet rays to be used, ultraviolet rays having a wavelength in the range of 100 to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of the side chain polymer film to be used. For example, ultraviolet rays having a wavelength in the range of 290 to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced. As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.
 偏光した紫外線の照射量については、上述したように、使用する本発明の側鎖型高分子膜のΔAmaxを実現する偏光紫外線の量の1~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。 As described above, the irradiation amount of the polarized ultraviolet ray is preferably in the range of 1 to 70% of the amount of the polarized ultraviolet ray that realizes ΔAmax of the side chain polymer film of the present invention to be used. More preferably, it is within the range of 50%.
 工程[III]では、第1の加熱処理として、工程[II]で偏光した紫外線の照射された側鎖型高分子膜を加熱する。加熱処理は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段を用いる。
 加熱の温度については、上述したように、本発明の側鎖型高分子膜の液晶性を発現させる温度を考慮して決めることができる。すなわち、本工程の加熱温度は、前記側鎖型高分子膜で再配向が生じる温度である。
In the step [III], as the first heat treatment, the side chain polymer film irradiated with the ultraviolet rays polarized in the step [II] is heated. For the heat treatment, heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like is used.
As described above, the heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the side chain polymer film of the present invention is exhibited. That is, the heating temperature in this step is a temperature at which reorientation occurs in the side chain polymer film.
 工程[II]での偏光紫外線照射後の本工程の加熱温度は、本発明の側鎖型高分子膜が液晶性を発現する液晶温度範囲の下限より10℃高い温度を下限とし、200℃以下であって、液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。本発明の側鎖型高分子膜が液晶性を示すことができ、さらに、熱反応を生じさせない温度範囲として、60℃以上180℃以下とすることが好ましい。 The heating temperature in this step after irradiation with polarized ultraviolet rays in step [II] is 200 ° C. or less, with the temperature being 10 ° C. higher than the lower limit of the liquid crystal temperature range in which the side chain polymer film of the present invention exhibits liquid crystallinity. And it is preferable that it is the temperature of the range which makes temperature 10 degreeC lower than the upper limit of a liquid-crystal temperature range an upper limit. The side chain type polymer film of the present invention can exhibit liquid crystallinity, and is preferably set to 60 ° C. or higher and 180 ° C. or lower as a temperature range that does not cause thermal reaction.
 工程[IV]では、第2の加熱処理として、工程[III]で加熱された側鎖型高分子膜を、さらに、工程[III]の加熱温度と異なる温度で加熱する。工程[III]は、本発明の側鎖型高分子膜を液晶状態にする温度であって、そのシロキサン部分の熱反応を生じさせない範囲内の温度が選択されて加熱処理(第1の加熱処理)がなされている。したがって、本工程では、工程[III]の加熱温度より高い加熱温度が選択されて、加熱処理(第2の加熱処理)がなされる。本工程の加熱温度は、工程[III]による側鎖型高分子膜の再配向を固定化させる温度である。 In step [IV], as the second heat treatment, the side chain polymer film heated in step [III] is further heated at a temperature different from the heating temperature in step [III]. Step [III] is a temperature at which the side chain polymer film of the present invention is brought into a liquid crystal state, and a temperature within a range that does not cause a thermal reaction of the siloxane portion is selected and heat treatment (first heat treatment ) Has been made. Therefore, in this step, a heating temperature higher than the heating temperature in step [III] is selected, and the heat treatment (second heat treatment) is performed. The heating temperature in this step is a temperature for fixing the reorientation of the side chain polymer film in step [III].
 加熱処理は、工程[III]と同様に、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段を用いることができる。
 加熱温度については、上述したように、本発明の側鎖型高分子膜にけるシロキサン部分の反応温度を考慮して決めることができる。例えば、本工程の加熱温度は、200℃以上とすることが好ましい。また、側鎖型高分子膜の熱劣化の懸念の少ない300℃以下の温度、特に、250℃以下の温度とすることが好ましい。
In the heat treatment, heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like can be used as in the step [III].
As described above, the heating temperature can be determined in consideration of the reaction temperature of the siloxane moiety in the side chain polymer film of the present invention. For example, the heating temperature in this step is preferably 200 ° C. or higher. Moreover, it is preferable to set it as the temperature of 300 degrees C or less with less fear of thermal degradation of a side chain type polymer film, especially the temperature of 250 degrees C or less.
 以上の工程を有することにより、本発明の液晶配向膜の製造方法では、高効率な、側鎖型高分子膜への異方性の導入を実現できる。
 さらに、高効率に高信頼性の本発明の液晶配向膜を製造することができる。
By having the above steps, the method for producing a liquid crystal alignment film of the present invention can realize the introduction of anisotropy into the side chain polymer film with high efficiency.
Furthermore, the liquid crystal alignment film of the present invention with high efficiency and high reliability can be manufactured.
 以下、本発明について、実施例を挙げてより詳細に説明する。尚、本発明はこれらに限定して解釈されるものではない。
 以下の合成例、実施例及び比較例で使用する化合物及び有機溶媒の略号並びに構造を次に示す。
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not construed as being limited to these.
Abbreviations and structures of compounds and organic solvents used in the following synthesis examples, examples and comparative examples are shown below.
 (シランモノマー)
TEOS:テトラエトキシシラン
ACPS:3-アクリロキシプロピルトリメトキシシラン
 (メタクリレートモノマー)
(Silane monomer)
TEOS: Tetraethoxysilane ACPS: 3-acryloxypropyltrimethoxysilane (methacrylate monomer)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (有機溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
 PGME:プロピレングリコールモノメチルエーテル
 (重合開始剤)
 AIBN:アゾビスイソブチロニトリル
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve PGME: Propylene glycol monomethyl ether (polymerization initiator)
AIBN: Azobisisobutyronitrile
<分子量測定>
 アクリル共重合体の数平均分子量及び重量平均分子量は、日本分光社製のGPC装置(Shodex(登録商標)カラムKF803L及びKF804L)を用い、溶出溶媒のテトラヒドロフランを流量1mL(ミリリットル)/分で、カラム中に(カラム温度40℃)流して溶離させるという条件で測定した。尚、下記の数平均分子量(以下、Mnと称す。)及び重量平均分子量(以下、Mwと称す。)は、ポリスチレン換算値にて表した。
<Molecular weight measurement>
The number average molecular weight and weight average molecular weight of the acrylic copolymer were measured using a GPC apparatus (Shodex (registered trademark) columns KF803L and KF804L) manufactured by JASCO Corporation, and the elution solvent tetrahydrofuran was supplied at a flow rate of 1 mL (milliliter) / min. It was measured under the condition that it was eluted by flowing through (column temperature 40 ° C.). The following number average molecular weight (hereinafter referred to as Mn) and weight average molecular weight (hereinafter referred to as Mw) were expressed in terms of polystyrene.
<ポリシロキサンの合成>
<合成例1>
 ポリシロキサン(A):還流管を備えつけた4つ口反応フラスコに、PGME(15.6g)、TEOS(18.8g)、及びACPS(2.3g)を投入し、室温にて10分攪拌した。次いで、この溶液に、PGME(7.8g)、蓚酸(0.1g)、及びHO(5.4g)の混合物を滴下した。滴下後、3時間加熱還流し、その後、室温まで放冷した。冷却後、PGME(50g)にて希釈し、ポリシロキサン(A)溶液を調製した。
<Synthesis of polysiloxane>
<Synthesis Example 1>
Polysiloxane (A): PGME (15.6 g), TEOS (18.8 g), and ACPS (2.3 g) were charged into a four-necked reaction flask equipped with a reflux tube and stirred at room temperature for 10 minutes. . Then, a mixture of PGME (7.8 g), oxalic acid (0.1 g), and H 2 O (5.4 g) was added dropwise to this solution. After the dropwise addition, the mixture was heated to reflux for 3 hours and then allowed to cool to room temperature. After cooling, it was diluted with PGME (50 g) to prepare a polysiloxane (A) solution.
[残存アルコキシシランモノマー測定法]
 調製されたポリシロキサン(A)の溶液中の残存アルコキシシランモノマーを、ガスクロマトグラフィー(以下、GCと称す。)で測定した。
 GC測定は、島津製作所社製のShimadzu GC-14Bを用い、下記の条件で測定した。
[Measurement of residual alkoxysilane monomer]
The residual alkoxysilane monomer in the prepared polysiloxane (A) solution was measured by gas chromatography (hereinafter referred to as GC).
The GC measurement was performed under the following conditions using Shimadzu GC-14B manufactured by Shimadzu Corporation.
 カラム:キャピラリーカラム CBP1-W25-100(長さ25mm、直径0.53mm、肉厚1μm)
 カラム温度:開始温度50℃から15℃/分で昇温して到達温度290℃(保持時間3分)とした。
 サンプル注入量:1μL、インジェクション温度:240℃、検出器温度:290℃、キャリヤーガス:窒素(流量30mL/分)、検出方法:FID法。
Column: Capillary column CBP1-W25-100 (length 25 mm, diameter 0.53 mm, wall thickness 1 μm)
Column temperature: The temperature was raised from a starting temperature of 50 ° C. at 15 ° C./min to reach an ultimate temperature of 290 ° C. (holding time 3 minutes).
Sample injection volume: 1 μL, injection temperature: 240 ° C., detector temperature: 290 ° C., carrier gas: nitrogen (flow rate 30 mL / min), detection method: FID method.
 測定の結果、ポリシロキサン(A)溶液中にアルコキシシランモノマーは検出されなかった。 As a result of the measurement, no alkoxysilane monomer was detected in the polysiloxane (A) solution.
<ポリシロキサン-ポリメタクリレートハイブリッドの合成と液晶配向処理剤の調製>
<合成例2>
 合成例1で得たポリシロキサン(A)1.0gと、M6CB2g(3.9mmol)と、重合開始剤としてAIBN0.08g(0.47mmol)とを20mlのNMPに加え、室温で固体が全て溶解するまで攪拌し、反応系内を窒素で置換した後、徐々に反応温度を上げ、50℃で15h(時間)攪拌することで反応させた。反応終了後、反応溶液を500mlのジエチルエーテルに注ぎポリマーを分離し、AIBNを取り除いた後、沈殿物を濾過分別し、ポリシロキサン-ポリメタクリレートハイブリッド(P6CBS)粉末(B)を得た。
<Synthesis of polysiloxane-polymethacrylate hybrid and preparation of liquid crystal aligning agent>
<Synthesis Example 2>
Add 1.0 g of polysiloxane (A) obtained in Synthesis Example 1, 2 g (3.9 mmol) of M6CB and 0.08 g (0.47 mmol) of AIBN as a polymerization initiator to 20 ml of NMP, and dissolve all solids at room temperature. The reaction system was purged with nitrogen, and then the reaction temperature was gradually raised, followed by stirring at 50 ° C. for 15 hours (hours). After completion of the reaction, the reaction solution was poured into 500 ml of diethyl ether to separate the polymer. After removing AIBN, the precipitate was separated by filtration to obtain a polysiloxane-polymethacrylate hybrid (P6CBS) powder (B).
 このP6CBS粉末(B)を偏光顕微鏡下で昇温しながら観察したところ、60~300℃以上までの温度範囲で液晶性を呈した。その後、引き続きP6CBSを300℃で加熱し続けると、シロキサンの縮合反応が進行し、P6CBSは熱硬化物となり、液晶性は徐々に失われた。このポリシロキサン-ポリメタクリレートハイブリッド(P6CBS)の相転移挙動を表1にまとめた。 When this P6CBS powder (B) was observed while raising the temperature under a polarizing microscope, liquid crystallinity was exhibited in a temperature range of 60 to 300 ° C. or higher. Thereafter, when P6CBS was continuously heated at 300 ° C., the condensation reaction of siloxane proceeded, P6CBS became a thermoset, and the liquid crystallinity was gradually lost. The phase transition behavior of this polysiloxane-polymethacrylate hybrid (P6CBS) is summarized in Table 1.
<合成例3>
 合成例1で得たポリシロキサン(A)2.5gと、M6CA2g(6.0mmol)と、重合開始剤としてAIBN0.13g(0.79mmol)とを22mlのNMPに加え、室温で固体が全て溶解するまで攪拌し、反応系内を窒素で置換した後、徐々に反応温度を上げ、50℃で15h攪拌することで反応させた。反応終了後、反応溶液を500mlのジエチルエーテルに注ぎポリマーを分離し、AIBN取り除いた後、沈殿物を濾過分別し、ポリシロキサン-ポリメタクリレートハイブリッド(P6CAS)粉末(C)を得た。
<Synthesis Example 3>
2.5 g of polysiloxane (A) obtained in Synthesis Example 1, 2 g (6.0 mmol) of M6CA and 0.13 g (0.79 mmol) of AIBN as a polymerization initiator were added to 22 ml of NMP, and all solids were dissolved at room temperature. The reaction system was purged with nitrogen, and then the reaction temperature was gradually raised, and the reaction was carried out by stirring at 50 ° C. for 15 hours. After completion of the reaction, the reaction solution was poured into 500 ml of diethyl ether to separate the polymer, and after removing AIBN, the precipitate was separated by filtration to obtain polysiloxane-polymethacrylate hybrid (P6CAS) powder (C).
 このP6CBS粉末(C)を偏光顕微鏡下で昇温しながら観察したところ、80~190℃で液晶性を呈した。その後、引き続きP6CASを200℃以上まで加熱すると、シロキサンの縮合反応が進行し、P6CASは熱硬化物となり、液晶性は失われた。このポリシロキサン-ポリメタクリレートハイブリッド(P6CAS)の相転移挙動を表1にまとめた。 When this P6CBS powder (C) was observed while raising the temperature under a polarizing microscope, it exhibited liquid crystallinity at 80 to 190 ° C. Subsequently, when P6CAS was continuously heated to 200 ° C. or higher, the condensation reaction of siloxane proceeded, and P6CAS became a thermoset and the liquid crystallinity was lost. The phase transition behavior of this polysiloxane-polymethacrylate hybrid (P6CAS) is summarized in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<実施例1>
 合成例2で得られたポリシロキサン-ポリメタクリレートハイブリッド(P6CBS)(粉末(B))にNMP及びBCSを加えて4質量%に希釈し、液晶配向処理剤(I)を得た。この液晶配向処理剤に濁りや析出等の異常は見られず、樹脂成分は均一に溶解していることが確認された。この液晶配向処理剤をGPCで測定することにより、P6CBSの分子量を測定したところ、Mnは35000であった。
<Example 1>
NMP and BCS were added to the polysiloxane-polymethacrylate hybrid (P6CBS) (powder (B)) obtained in Synthesis Example 2 and diluted to 4% by mass to obtain a liquid crystal aligning agent (I). Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. When the molecular weight of P6CBS was measured by measuring this liquid crystal aligning agent with GPC, Mn was 35000.
[ハイブリッドポリマー中のシロキサン含有量の測定法]
 ポリシロキサン-ポリメタクリレートハイブリッド(粉末(B))中のシロキサン含有量をGPCから算出した。シロキサン含有量はラジカル重合後のGPCチャートのメタクリレートモノマーのピークとポリシロキサン-ポリメタクリレートハイブリッドのピーク比を比較することで算出した。
 算出されたP6CBS中のシロキサン-メタクリレート比は、重量比で1:5であった。
[Measurement method of siloxane content in hybrid polymer]
The siloxane content in the polysiloxane-polymethacrylate hybrid (powder (B)) was calculated from GPC. The siloxane content was calculated by comparing the peak ratio of the methacrylate monomer on the GPC chart after radical polymerization with the peak ratio of the polysiloxane-polymethacrylate hybrid.
The calculated siloxane-methacrylate ratio in P6CBS was 1: 5 by weight.
<実施例2>
 合成例3で得られたポリシロキサン-ポリメタクリレートハイブリッド(P6CAS)(粉末(C))にNMP及びBCSを加えて4質量%に希釈し、液晶配向処理剤(II)を得た。この液晶配向処理剤に濁りや析出等の異常は見られず、樹脂成分は均一に溶解していることが確認された。この液晶配向処理剤をGPCで測定することにより、P6CASの分子量を測定したところ、Mnは48000であった。またGPCから算出されたP6CASのシロキサン-メタクリレート比は、重量比で2:3.5であった。
<Example 2>
NMP and BCS were added to the polysiloxane-polymethacrylate hybrid (P6CAS) (powder (C)) obtained in Synthesis Example 3 and diluted to 4% by mass to obtain a liquid crystal aligning agent (II). Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. When the molecular weight of P6CAS was measured by measuring this liquid crystal aligning agent by GPC, Mn was 48000. The siloxane-methacrylate ratio of P6CAS calculated from GPC was 2: 3.5 by weight.
<液晶配向膜の製造>
<実施例3>
 実施例1で得られたポリシロキサン-ポリメタクリレートハイブリッド(P6CBS)を含有する液晶配向処理剤(I)を用い、石英基板(縦 10×横10×厚さ 1(mm))上にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、膜厚50nmの塗膜を形成し、配向処理前の液晶配向膜付き基板を得た。
<Manufacture of liquid crystal alignment film>
<Example 3>
The liquid crystal alignment treatment agent (I) containing the polysiloxane-polymethacrylate hybrid (P6CBS) obtained in Example 1 was spin-coated on a quartz substrate (length 10 × width 10 × thickness 1 (mm)). After drying for 5 minutes on a hot plate at 80 ° C., a coating film with a film thickness of 50 nm was formed to obtain a substrate with a liquid crystal alignment film before the alignment treatment.
<実施例4>
 実施例3で得られた配向処理前の液晶配向膜付き基板を用い、基板上の液晶配向膜面に対して一定の方向から、偏光板を介して偏光された紫外線を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は600mJとした。その後、この紫外線照射された基板を150℃で5分加熱し、塗膜のP6CBSを液晶状態とすることで塗膜(高分子膜)に再配向処理を施し、配向処理された液晶配向膜付き基板を得た。 得られた液晶高膜付き基板は、後述するように、紫外線吸収スペクトル(図5)の測定に用いた。
<Example 4>
The substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3 was used to irradiate polarized ultraviolet rays through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate. The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 600 mJ. Then, this ultraviolet-irradiated substrate is heated at 150 ° C. for 5 minutes, and the coating film (polymer film) is subjected to a realignment treatment by changing the P6CBS of the coating film to a liquid crystal state. A substrate was obtained. The obtained substrate with a liquid crystal high film was used for measurement of an ultraviolet absorption spectrum (FIG. 5) as described later.
<実施例5>
 実施例3で得られた配向処理前の液晶配向膜付き基板を用い、基板上の液晶配向膜面に対して一定の方向から、偏光板を介して偏光された紫外線を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は600mJとした。その後、この紫外線照射された基板を150℃で5分加熱し、塗膜のP6CBSを液晶状態とすることで塗膜に再配向処理を施した。続いて、再配向処理を施した基板を200℃まで加熱し、その温度で15分間焼成することでシロキサンを縮合反応させ、配向を固定した。こうして、配向処理された液晶配向膜付き基板を得た。
<Example 5>
The substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3 was used to irradiate polarized ultraviolet rays through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate. The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 600 mJ. Then, this ultraviolet-irradiated board | substrate was heated at 150 degreeC for 5 minute (s), and the reorientation process was performed to the coating film by making P6CBS of a coating film into a liquid-crystal state. Subsequently, the substrate subjected to the re-orientation treatment was heated to 200 ° C., and baked at that temperature for 15 minutes to cause condensation reaction of siloxane, thereby fixing the orientation. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
<実施例6>
 実施例3で得られた配向処理前の液晶配向膜付き基板を用い、基板上の液晶配向膜面に対して一定の方向から、偏光板を介して偏光された紫外線を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は800mJとした。その後、この紫外線照射された基板を150℃で5分加熱し、塗膜のP6CBSを液晶状態とすることで塗膜に再配向処理を施し、配向処理された液晶配向膜付き基板を得た。
 得られた液晶高膜付き基板は、後述するように、紫外線吸収スペクトル(図6)の測定に用いた。
<Example 6>
The substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3 was used to irradiate polarized ultraviolet rays through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate. The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 800 mJ. Then, this ultraviolet-irradiated substrate was heated at 150 ° C. for 5 minutes, and the P6CBS of the coating film was brought into a liquid crystal state, so that the coating film was subjected to a realignment treatment to obtain an alignment-treated substrate with a liquid crystal alignment film.
The obtained substrate with a liquid crystal high film was used for measurement of an ultraviolet absorption spectrum (FIG. 6) as described later.
<実施例7>
 実施例3で得られた配向処理前の液晶配向膜付き基板を用い、基板上の液晶配向膜面に対して一定の方向から、偏光板を介して偏光された紫外線を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は800mJとした。その後、この紫外線照射された基板を150℃で5分加熱し、塗膜のP6CBSを液晶状態とすることで塗膜に再配向処理を施した。続いて、再配向処理を施した基板を200℃まで加熱し、その温度で15分間焼成することでシロキサンを縮合反応させ、配向を固定した。こうして、配向処理された液晶配向膜付き基板を得た。
<Example 7>
The substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3 was used to irradiate polarized ultraviolet rays through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate. The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 800 mJ. Then, this ultraviolet-irradiated board | substrate was heated at 150 degreeC for 5 minute (s), and the reorientation process was performed to the coating film by making P6CBS of a coating film into a liquid-crystal state. Subsequently, the substrate subjected to the re-orientation treatment was heated to 200 ° C., and baked at that temperature for 15 minutes to cause condensation reaction of siloxane, thereby fixing the orientation. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
<液晶配向膜の評価>
<実施例8>
 実施例4で得られた配向処理された液晶配向膜付き基板を用い、液晶配向膜の紫外線吸収スペクトルを測定した。
<Evaluation of liquid crystal alignment film>
<Example 8>
Using the alignment-treated substrate with a liquid crystal alignment film obtained in Example 4, the ultraviolet absorption spectrum of the liquid crystal alignment film was measured.
 図5は、実施例4で得られた液晶配向膜の、照射された紫外線の偏光電界ベクトルに対して平行と垂直の紫外線吸収スペクトルである。 FIG. 5 is a UV absorption spectrum parallel and perpendicular to the polarized electric field vector of the irradiated UV of the liquid crystal alignment film obtained in Example 4.
 図5では、実施例4で得られた液晶配向膜の紫外線吸収スペクトル(図中、「加熱後平行」及び「加熱後垂直」として示される。)を示し、比較対象として、偏光紫外線照射のみがなされた(実施例4の加熱処理前)液晶配向膜の紫外線吸収スペクトル(図中、「偏光照射後平行」及び「偏光照射後垂直」として示される。)を示す。 In FIG. 5, the ultraviolet absorption spectrum of the liquid crystal alignment film obtained in Example 4 (shown as “parallel after heating” and “vertical after heating” in the figure) is shown. The ultraviolet absorption spectra (shown as “parallel after polarized light irradiation” and “perpendicular after polarized light irradiation” in the figure) of the liquid crystal alignment film made (before the heat treatment of Example 4) are shown.
 図5に示すように、実施例4の液晶配向膜の紫外線吸収スペクトルと、偏光紫外線照射のみがなされた(実施例4の加熱処理前)基板の紫外吸収スペクトルとを比較すると、実施例4の紫外線吸収スペクトルは、照射された偏光紫外線の偏光電界に対して平行方向と垂直方向の紫外線吸収スペクトルの差が、偏光紫外線照射のみがなされた(実施例4の加熱処理前)基板の、照射された偏光紫外線の偏光電界に対して平行方向と垂直方向の紫外線吸収スペクトルの差よりも大きくなっており、実施例4で得られた液晶配向膜は偏光紫外線照射後の加熱により、再配向処理がなされたことが分かる。 As shown in FIG. 5, when comparing the ultraviolet absorption spectrum of the liquid crystal alignment film of Example 4 with the ultraviolet absorption spectrum of the substrate subjected to only polarized ultraviolet irradiation (before the heat treatment of Example 4), The ultraviolet absorption spectrum was irradiated on the substrate in which the difference between the ultraviolet absorption spectrum in the parallel direction and the vertical direction with respect to the polarization electric field of the irradiated polarized ultraviolet light was only irradiated with the polarized ultraviolet light (before the heat treatment in Example 4). The difference in ultraviolet absorption spectrum between the parallel direction and the perpendicular direction to the polarization electric field of the polarized ultraviolet light is larger, and the liquid crystal alignment film obtained in Example 4 is realigned by heating after irradiation with polarized ultraviolet light. You can see that it was done.
 図6は、実施例6で得られた液晶配向膜の、照射された紫外線の偏光電界ベクトルに対して平行と垂直の紫外線吸収スペクトルである。 FIG. 6 is an ultraviolet absorption spectrum parallel and perpendicular to the polarized electric field vector of the irradiated ultraviolet rays of the liquid crystal alignment film obtained in Example 6.
 図6においても、実施例6で得られた液晶配向膜の紫外線吸収スペクトル(図中、「加熱後平行」及び「加熱後垂直」として示される。)を示し、比較対象として、偏光紫外線照射のみがなされた(実施例6の加熱処理前)液晶配向膜の紫外線吸収スペクトル(図中、「偏光照射後平行」及び「偏光照射後垂直」として示される。)を示す。 6 also shows the ultraviolet absorption spectrum of the liquid crystal alignment film obtained in Example 6 (shown as “parallel after heating” and “perpendicular after heating” in the figure). (Before the heat treatment of Example 6) UV absorption spectra of the liquid crystal alignment film (shown as “parallel after polarized light irradiation” and “perpendicular after polarized light irradiation” in the figure) are shown.
 図6に示すように、実施例6で得られた液晶配向膜でも、実施例4で得られた液晶配向膜と同様に、偏光紫外線照射後の加熱により、照射された偏光紫外線の偏光電界に対して平行の紫外線吸収と垂直方向の紫外線吸収の差が、偏光紫外線照射のみなされた(実施例4の加熱処理前)基板の、照射された偏光紫外線の偏光電界に対して平行方向と垂直方向の紫外線吸収スペクトルの差よりも大きくなっており、実施例6で得られた液晶配向膜は偏光紫外線照射後の加熱により、再配向処理がなされたことが分かる。 As shown in FIG. 6, even in the liquid crystal alignment film obtained in Example 6, as with the liquid crystal alignment film obtained in Example 4, the polarized electric field of the irradiated polarized ultraviolet light is changed by heating after irradiation with polarized ultraviolet light. On the other hand, the difference between the parallel UV absorption and the UV absorption in the vertical direction is only irradiated with polarized UV light (before the heat treatment in Example 4), and the direction parallel to and perpendicular to the polarization electric field of the irradiated polarized UV light. It can be seen that the liquid crystal alignment film obtained in Example 6 was realigned by heating after irradiation with polarized UV light.
<液晶セルの製造>
<実施例9>
 実施例1で得られた液晶配向処理剤(I)を用いて液晶配向膜を作製し、その液晶配向膜を用いた液晶セルを製造した。液晶セルは、液晶配向膜の特性に対応して、平行配向の液晶セルとした。得られた液晶セルを一対の偏光板で挟持することにより液晶表示素子を構成することができる。
<Manufacture of liquid crystal cells>
<Example 9>
A liquid crystal alignment film was prepared using the liquid crystal alignment treatment agent (I) obtained in Example 1, and a liquid crystal cell using the liquid crystal alignment film was manufactured. The liquid crystal cell was a parallel aligned liquid crystal cell corresponding to the characteristics of the liquid crystal alignment film. A liquid crystal display element can be constituted by sandwiching the obtained liquid crystal cell between a pair of polarizing plates.
 液晶セルの製造方法としては、液晶配向処理剤(I)をITO電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、膜厚50nmの塗膜として液晶配向膜を形成し、配向処理前の液晶配向膜付き基板を得た。基板上に形成された液晶配向膜は、いずれも膜厚の均一性に優れ、液晶配向処理剤(I)は優れた塗布性を示すことがわかった。 As a method for producing a liquid crystal cell, a liquid crystal alignment treatment agent (I) is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then a liquid crystal alignment film as a coating film having a thickness of 50 nm. And a substrate with a liquid crystal alignment film before the alignment treatment was obtained. The liquid crystal alignment films formed on the substrate were all excellent in film thickness uniformity, and the liquid crystal alignment treatment agent (I) was found to exhibit excellent coating properties.
 得られた配向処理前の液晶配向膜付き基板を用い、基板上の液晶配向膜面に対して一定の方向から、偏光板を介して偏光された紫外線を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は600mJとした。その後、この紫外線照射された基板を150℃で5分加熱し、塗膜のP6CBSを液晶状態とすることで塗膜に再配向処理を施した。続いて、再配向処理を施した基板を250℃で加熱し、その温度で15分間焼成することでシロキサンを縮合反応させ、配向を固定した。こうして、配向処理された液晶配向膜付き基板を得た。 The obtained substrate with a liquid crystal alignment film before the alignment treatment was used to irradiate polarized ultraviolet rays through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate. The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 600 mJ. Then, this ultraviolet-irradiated board | substrate was heated at 150 degreeC for 5 minute (s), and the reorientation process was performed to the coating film by making P6CBS of a coating film into a liquid-crystal state. Subsequently, the substrate subjected to the re-orientation treatment was heated at 250 ° C. and baked at that temperature for 15 minutes to cause a condensation reaction of siloxane, thereby fixing the orientation. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
 この液晶配向膜付き基板を2枚用意し、一方の液晶配向膜面上に14μmのスペーサを設置した後、この上からシール剤を塗布した。次いで、他方の基板と液晶配向膜面が向き合うようにして貼り合わせた後、シール剤を硬化して空セルを作製した。この空セルに毛細管現象を利用し、液晶の等方相温度以上である105℃で、ネマティック液晶(メルク社製ZLI-4792)を注入して、液晶セルを得た。 Two substrates with this liquid crystal alignment film were prepared, a 14 μm spacer was placed on one liquid crystal alignment film surface, and a sealing agent was applied from above. Subsequently, after bonding together so that the other board | substrate and the liquid crystal aligning film surface might face each other, the sealing compound was hardened and the empty cell was produced. By utilizing capillary action, nematic liquid crystal (ZLI-4792 manufactured by Merck & Co., Inc.) was injected into the empty cell at 105 ° C., which is higher than the isotropic phase temperature of the liquid crystal, to obtain a liquid crystal cell.
<実施例10>
 偏光された紫外線の照射量を800mJとしたこと以外、上述の実施例9と同様の方法に従い液晶セルを製造した。
<Example 10>
A liquid crystal cell was produced according to the same method as in Example 9 except that the irradiation amount of polarized ultraviolet rays was 800 mJ.
<液晶表示素子の評価>
<実施例11>
 実施例9、及び実施例10で得られた液晶セルを用い、偏光顕微鏡を用いた液晶の配向状態の評価を行った。すなわち、偏光顕微鏡を用いて液晶セルを一対の偏光板で挟持し、液晶表示素子を構成して評価を行った。いずれの液晶セルにおいても、配向欠陥はなく、液晶の良好な配向状態が観察された。評価結果は、表2にまとめた。
<Evaluation of liquid crystal display element>
<Example 11>
Using the liquid crystal cells obtained in Example 9 and Example 10, the alignment state of the liquid crystal was evaluated using a polarizing microscope. That is, a liquid crystal cell was sandwiched between a pair of polarizing plates using a polarizing microscope, and a liquid crystal display element was constructed and evaluated. In any liquid crystal cell, there was no alignment defect, and a good alignment state of the liquid crystal was observed. The evaluation results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 本発明においては、光を用いた高効率な液晶配向膜の製造に好適な重合体及び液晶配向剤が提供され、該液晶配向剤から得られる液晶配向膜及び液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして利用が可能である。
 なお、2012年7月24日に出願された日本特許出願2012-163989号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
In the present invention, a polymer and a liquid crystal aligning agent suitable for producing a highly efficient liquid crystal aligning film using light are provided, and the liquid crystal aligning film and the liquid crystal display element obtained from the liquid crystal aligning agent are lightweight, thin and It can be used as a display device with low power consumption.
It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2012-163898 filed on July 24, 2012 is cited here as the disclosure of the specification of the present invention. Incorporated.
 1、3、5、7  側鎖型高分子膜
 2、2a、2b、4、4a、4b、6、6a、8、8a  側鎖
1, 3, 5, 7 Side chain type polymer membrane 2, 2a, 2b, 4, 4a, 4b, 6, 6a, 8, 8a

Claims (17)

  1.  基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子膜を形成する工程[I]、
     前記側鎖型高分子膜に偏光した紫外線を照射する工程[II]、
     紫外線の照射された前記側鎖型高分子膜を、該側鎖型高分子膜が液晶性を発現する範囲内の温度で加熱する工程[III]、及び
     加熱された前記側鎖高分子膜を、工程[III]の加熱温度以上の温度でさらに加熱する工程[IV]、
     を有することを特徴とする液晶配向膜の製造方法。
    Forming a photosensitive side chain polymer film that exhibits liquid crystallinity in a predetermined temperature range on a substrate [I],
    Irradiating the side chain type polymer film with polarized ultraviolet rays [II],
    The step [III] of heating the side chain polymer film irradiated with ultraviolet rays at a temperature within a range where the side chain polymer film exhibits liquid crystallinity, and the heated side chain polymer film Step [IV] for further heating at a temperature equal to or higher than the heating temperature in Step [III]
    A method for producing a liquid crystal alignment film, comprising:
  2.  工程[III]の加熱温度は、前記側鎖型高分子膜が液晶性を発現する温度範囲の下限より10℃高い温度から、その液晶温度範囲の上限より10℃低い温度までの範囲内である、請求項1に記載の液晶配向膜の製造方法。 The heating temperature in the step [III] is in a range from a temperature 10 ° C. higher than the lower limit of the temperature range in which the side chain polymer film exhibits liquid crystallinity to a temperature 10 ° C. lower than the upper limit of the liquid crystal temperature range. The manufacturing method of the liquid crystal aligning film of Claim 1.
  3.  工程[III]の加熱温度は、200℃以下の温度である、請求項1又は2に記載の液晶配向膜の製造方法。 The heating temperature of process [III] is a manufacturing method of the liquid crystal aligning film of Claim 1 or 2 which is the temperature of 200 degrees C or less.
  4.  工程[III]の加熱温度は、前記側鎖型高分子膜の側鎖が再配向する温度である、請求項1~3のいずれか1項に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to any one of claims 1 to 3, wherein the heating temperature in the step [III] is a temperature at which the side chain of the side chain polymer film is reoriented.
  5.  工程[III]の加熱温度は、前記側鎖型高分子膜の側鎖が再配向する温度であり、工程[IV]の加熱温度は、工程[III]による再配向を固定化させる温度である、請求項1~4のいずれか1項に記載の液晶配向膜の製造方法。 The heating temperature in the step [III] is a temperature at which the side chain of the side chain polymer film is reoriented, and the heating temperature in the step [IV] is a temperature for fixing the reorientation in the step [III]. The method for producing a liquid crystal alignment film according to any one of claims 1 to 4.
  6.  前記液晶性を発現する感光性の側鎖型高分子膜中に含有される感光性基が、アゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン及びフェニルベンゾエートよりなる群から選択される少なくとも1種から誘導される基である、請求項1~5のいずれか1項に記載の液晶配向膜の製造方法。 The photosensitive group contained in the photosensitive side chain polymer film exhibiting liquid crystallinity is selected from the group consisting of azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan and phenylbenzoate. 6. The method for producing a liquid crystal alignment film according to claim 1, wherein the liquid crystal alignment film is a group derived from at least one kind.
  7.  前記側鎖型高分子膜は、ポリアミック酸、ポリイミド、ポリアミック酸エステル、アクリレート、メタクリレート、マレイミド、α-メチレン-γ-ブチロラクトン及びシロキサンよりなる群から選択される少なくとも1種から構成された主鎖と、下記の式(1)~式(5)、式(7)、及び式(8)よりなる群から選択される少なくとも1種の側鎖とを有する構造を含有する、請求項1~6のいずれか1項に記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、A、及びBは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。l1は1~12の整数を表し、m1は1~3の整数を表し、n1は1~12の整数を表す。
     式(2)中、A、B、及びDは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Rは水素原子、又は炭素数1~6のアルキル基を表す。l2は1~12の整数を表し、m2は1~3の整数を表し、n2は1~12の整数を表す。
     式(3)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Rは水素原子、又は炭素数1~6のアルキル基を表す。l3は1~12の整数を表し、m3は1~3の整数を表す。
     式(4)中、l4は1~12の整数を表す。
     式(5)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Xは-COO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l5は1~12の整数を表し、m4は1~3の整数を表す。
     式(7)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~6のアルキル基、炭素数1~6のアルキルオキシ基、又はその組み合わせからなる基を表す。l6は1~12の整数を表す。式(7)中のベンゼン環に結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。
     式(8)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Bは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Wはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l7は1~12の整数を表し、m、及びmは、それぞれ独立に、1~3の整数を表す。)
    The side chain polymer film includes a main chain composed of at least one selected from the group consisting of polyamic acid, polyimide, polyamic acid ester, acrylate, methacrylate, maleimide, α-methylene-γ-butyrolactone and siloxane. The structure having at least one side chain selected from the group consisting of the following formulas (1) to (5), (7), and (8): The manufacturing method of the liquid crystal aligning film of any one.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), A 1 and B 1 each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. Y 1 represents a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, Independently, it may be substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group, wherein X 1 is a single bond, — COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —, wherein l1 represents an integer of 1 to 12 and m1 represents 1 to 3 Represents an integer, and n1 represents an integer of 1 to 12.
    In the formula (2), A 2 , B 2 , and D 1 are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO. -Represents. Y 2 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded thereto are each independently , —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. X 2 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. l2 represents an integer of 1 to 12, m2 represents an integer of 1 to 3, and n2 represents an integer of 1 to 12.
    In Formula (3), A 3 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. X 3 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. l3 represents an integer of 1 to 12, and m3 represents an integer of 1 to 3.
    In the formula (4), l4 represents an integer of 1 to 12.
    In Formula (5), A 4 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. X 4 represents —COO—. Y 3 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, or a combination thereof, and a hydrogen atom bonded thereto is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. l5 represents an integer of 1 to 12, and m4 represents an integer of 1 to 3.
    In formula (7), A 5 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms. Or a group consisting of a combination thereof. l6 represents an integer of 1 to 12. The hydrogen atom bonded to the benzene ring in formula (7) is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyl group. It may be substituted with an oxy group.
    In Formula (8), A 6 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. B 3 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. W 1 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and each hydrogen atom bonded thereto is independently , —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. l7 represents an integer of 1 to 12, and m 5 and m 6 each independently represents an integer of 1 to 3. )
  8.  前記側鎖型高分子膜は、ラジカル重合性基を有するポリシロキサン(a)と、液晶性であり、且つ感光性である基及びラジカル重合性基を有するモノマー(b)とを、ラジカル重合させてなる重合体を含む、請求項1~7のいずれか1項に記載の液晶配向膜の製造方法。 The side chain polymer film radically polymerizes a polysiloxane (a) having a radically polymerizable group and a monomer (b) having a liquid crystalline and photosensitive group and a radically polymerizable group. The method for producing a liquid crystal alignment film according to any one of claims 1 to 7, comprising a polymer formed as described above.
  9.  前記モノマー(b)の液晶性であり且つ感光性である基は、アゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン及びフェニルベンゾエートよりなる群から選択される少なくとも1種から誘導される基である、請求項8に記載の液晶配向膜の製造方法。 The liquid crystalline and photosensitive group of the monomer (b) is derived from at least one selected from the group consisting of azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan and phenylbenzoate. The method for producing a liquid crystal alignment film according to claim 8, which is a group.
  10.  請求項1~9のいずれか1項に記載の液晶配向膜の製造方法により製造された液晶配向膜。 A liquid crystal alignment film manufactured by the method for manufacturing a liquid crystal alignment film according to any one of claims 1 to 9.
  11.  請求項10に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 10.
  12.  ラジカル重合性基を有するポリシロキサン(a)と、液晶性であり且つ感光性である基及びラジカル重合性基を有するモノマー(b)とをラジカル重合させてなる重合体。 A polymer obtained by radical polymerization of a polysiloxane (a) having a radical polymerizable group and a monomer (b) having a liquid crystalline and photosensitive group and a radical polymerizable group.
  13.  前記ポリシロキサン(a)は、下記式(10)のアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、請求項12に記載の重合体。
         R13 s1Si(OR14s2    (10)
     (式(10)中、R13は、アクリル基、メタクリル基、スチリル基、又はアリール基で置換されたアルキル基である。R14は水素、又は炭素数1~5のアルキル基を表す。S1は、1又は2であり、S2は、2又は3である。)
    The polymer according to claim 12, wherein the polysiloxane (a) is a polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane of the following formula (10).
    R 13 s1 Si (OR 14 ) s2 (10)
    (In Formula (10), R 13 represents an alkyl group substituted with an acryl group, a methacryl group, a styryl group, or an aryl group. R 14 represents hydrogen or an alkyl group having 1 to 5 carbon atoms. S1 Is 1 or 2, and S2 is 2 or 3.)
  14.   前記モノマー(b)の液晶性であり且つ感光性である基が、アゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン及びフェニルベンゾエートよりなる群から選択される少なくとも1種から誘導される基である、請求項12又は13に記載の重合体。 The liquid crystalline and photosensitive group of the monomer (b) is derived from at least one selected from the group consisting of azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan and phenylbenzoate. The polymer according to claim 12 or 13, which is a group.
  15.  前記モノマー(b)は、アクリレート、メタクリレート、マレイミド及びα-メチレン-γ-ブチロラクトンよりなる群から選択される少なくとも1種から構成された重合性基と、下記式(1)~式(5)、式(7)、及び式(8)よりなる群から選択される少なくとも1種の側鎖とを有するモノマーである、請求項12~14のいずれか1項に記載の重合体。
    Figure JPOXMLDOC01-appb-C000002

     (式(1)中、A、及びBは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。l1は1~12の整数を表し、m1は1~3の整数を表し、n1は1~12の整数を表す。
     式(2)中、A、B、及びDは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Rは水素原子、又は炭素数1~6のアルキル基を表す。l2は1~12の整数を表し、m2は1~3の整数を表し、n2は1~12の整数を表す。
     式(3)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Rは水素原子、又は炭素数1~6のアルキル基を表す。l3は1~12の整数を表し、m3は1~3の整数を表す。
     式(4)中、l4は1~12の整数を表す。
     式(5)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Xは-COO-を表す。Yはベンゼン環、ナフタレン環、ビフェニル環、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l5は1~12の整数を表し、m4は1~3の整数を表す。
     式(7)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~6のアルキル基、炭素数1~6のアルキルオキシ基、又はその組み合わせからなる基を表す。l6は1~12の整数を表す。式(7)中のベンゼン環に結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。
     式(8)中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。Bは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、又はC64-を表す。Wはベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、又はそれらの組み合わせから選ばれる基であり、それらに結合する水素原子は、それぞれ独立に、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い。l7は1~12の整数を表し、m、及びmは、それぞれ独立に、1~3の整数を表す。)
    The monomer (b) includes a polymerizable group composed of at least one selected from the group consisting of acrylate, methacrylate, maleimide and α-methylene-γ-butyrolactone, and the following formulas (1) to (5), The polymer according to any one of claims 12 to 14, which is a monomer having at least one side chain selected from the group consisting of formula (7) and formula (8).
    Figure JPOXMLDOC01-appb-C000002

    (In Formula (1), A 1 and B 1 each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. Y 1 represents a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, Independently, it may be substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group, wherein X 1 is a single bond, — COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —, wherein l1 represents an integer of 1 to 12 and m1 represents 1 to 3 Represents an integer, and n1 represents an integer of 1 to 12.
    In the formula (2), A 2 , B 2 , and D 1 are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO. -Represents. Y 2 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and the hydrogen atoms bonded thereto are each independently , —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. X 2 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. l2 represents an integer of 1 to 12, m2 represents an integer of 1 to 3, and n2 represents an integer of 1 to 12.
    In Formula (3), A 3 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. X 3 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. l3 represents an integer of 1 to 12, and m3 represents an integer of 1 to 3.
    In the formula (4), l4 represents an integer of 1 to 12.
    In Formula (5), A 4 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. X 4 represents —COO—. Y 3 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, or a combination thereof, and a hydrogen atom bonded thereto is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. l5 represents an integer of 1 to 12, and m4 represents an integer of 1 to 3.
    In formula (7), A 5 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms. Or a group consisting of a combination thereof. l6 represents an integer of 1 to 12. The hydrogen atom bonded to the benzene ring in formula (7) is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyl group. It may be substituted with an oxy group.
    In Formula (8), A 6 represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. B 3 represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, or C 6 H 4 —. W 1 is a group selected from a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, or a combination thereof, and each hydrogen atom bonded thereto is independently , —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group. l7 represents an integer of 1 to 12, and m 5 and m 6 each independently represents an integer of 1 to 3. )
  16.  前記モノマー(b)の使用量が、ポリシロキサン(a)を得る際のアルコキシシラン1モルに対して、0.5~50モルである、請求項12~15のいずれか1項に記載の重合体。 The weight according to any one of claims 12 to 15, wherein the amount of the monomer (b) used is 0.5 to 50 moles relative to 1 mole of the alkoxysilane when the polysiloxane (a) is obtained. Coalescence.
  17.  請求項12~16のいずれか1項に記載の重合体を含有する液晶配向剤。 A liquid crystal aligning agent containing the polymer according to any one of claims 12 to 16.
PCT/JP2013/069939 2012-07-24 2013-07-23 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal aligning agent WO2014017497A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157004092A KR102058769B1 (en) 2012-07-24 2013-07-23 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal aligning agent
CN201380049349.8A CN104937480B (en) 2012-07-24 2013-07-23 Manufacture method, liquid crystal orientation film, liquid crystal display cells, polymer and the aligning agent for liquid crystal of liquid crystal orientation film
JP2014526945A JP6268089B2 (en) 2012-07-24 2013-07-23 Method for producing liquid crystal alignment film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012163989 2012-07-24
JP2012-163989 2012-07-24

Publications (1)

Publication Number Publication Date
WO2014017497A1 true WO2014017497A1 (en) 2014-01-30

Family

ID=49997306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069939 WO2014017497A1 (en) 2012-07-24 2013-07-23 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal aligning agent

Country Status (5)

Country Link
JP (2) JP6268089B2 (en)
KR (1) KR102058769B1 (en)
CN (2) CN104937480B (en)
TW (2) TWI617585B (en)
WO (1) WO2014017497A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185413A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
WO2015129889A1 (en) * 2014-02-28 2015-09-03 日産化学工業株式会社 Phase difference material-forming resin composition, orientation material, and phase difference material
WO2015156314A1 (en) * 2014-04-09 2015-10-15 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2016076348A1 (en) * 2014-11-12 2016-05-19 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2016139121A (en) * 2015-01-22 2016-08-04 Jsr株式会社 Production method of liquid crystal alignment film and method for manufacturing liquid crystal element
CN107003577A (en) * 2014-10-08 2017-08-01 日产化学工业株式会社 The driving liquid crystal of transverse electric field represents that element is manufactured with composition with liquid crystal orientation film, used the liquid crystal orientation film and its manufacture method of said composition and the liquid crystal with liquid crystal orientation film to represent element and its manufacture method
CN107924088A (en) * 2015-05-20 2018-04-17 日产化学工业株式会社 Polymer composition, aligning agent for liquid crystal, liquid crystal orientation film, the substrate with the liquid crystal orientation film and the liquid crystal with the liquid crystal orientation film represent element
US11561507B2 (en) 2018-04-17 2023-01-24 Meta Platforms Technologies, Llc Methods for three-dimensional arrangement of anisotropic molecules, patterned anisotropic films, and optical elements therewith

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3163367B1 (en) * 2014-06-25 2019-03-06 Nissan Chemical Corporation Liquid crystal display element
US11112654B2 (en) * 2015-09-30 2021-09-07 Nissan Chemical Industries, Ltd. Liquid crystal display device
KR20170087085A (en) * 2016-01-19 2017-07-28 삼성디스플레이 주식회사 Liquid crystal display device
CN105785612B (en) * 2016-05-13 2020-05-29 深圳市华星光电技术有限公司 Manufacturing method of PSVA liquid crystal panel
KR102030079B1 (en) 2017-06-30 2019-10-08 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film using the same
KR101994430B1 (en) * 2017-06-30 2019-09-24 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film using the same
JP7255484B2 (en) * 2017-08-23 2023-04-11 日本ゼオン株式会社 Polymerizable liquid crystal material, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizing plate, antireflection film, display device, and method for producing polymerizable liquid crystal composition
CN109212838B (en) * 2018-10-10 2021-06-25 苏州华星光电技术有限公司 Optical alignment method and system for improving Gamma passing rate
CN109976018B (en) * 2019-04-10 2020-09-01 深圳市华星光电半导体显示技术有限公司 Display device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276149A (en) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer
WO2009069724A1 (en) * 2007-11-27 2009-06-04 Jsr Corporation Liquid crystal aligning agent, method for forming liquid crystal alignment film, and liquid crystal display device
WO2012014915A1 (en) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film
WO2013081066A1 (en) * 2011-11-29 2013-06-06 日産化学工業株式会社 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119606A (en) * 1984-07-05 1986-01-28 Toagosei Chem Ind Co Ltd Production of actinic energy ray-curable silicone graft polymer
JPH05257134A (en) * 1992-03-13 1993-10-08 Fuji Xerox Co Ltd Liquid crystal-polymer composite film and its production
EP0695770A4 (en) * 1993-04-20 1997-12-17 Sagami Chem Res Copolymer having liquid crystal group in the side chain
US6733958B2 (en) * 2000-08-30 2004-05-11 Dainippon Ink And Chemicals, Inc. Material for photo-alignment layer, photo-alignment layer and method of manufacturing the same
JP2003313233A (en) 2002-04-26 2003-11-06 Toyota Motor Corp Method for producing organic-inorganic complex by sol- gel process
JP2007232934A (en) 2006-02-28 2007-09-13 Hayashi Telempu Co Ltd Photo-alignment material
JP5593611B2 (en) * 2006-03-07 2014-09-24 日産化学工業株式会社 Silicon-based liquid crystal aligning agent, liquid crystal aligning film, and production method thereof
JP2007304215A (en) 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP5099140B2 (en) * 2007-08-24 2012-12-12 東レ株式会社 Photosensitive composition, cured film formed therefrom, and device having cured film
JP5927859B2 (en) * 2011-01-11 2016-06-01 Jsr株式会社 Manufacturing method of liquid crystal display element
JP2013177561A (en) * 2012-02-03 2013-09-09 Jnc Corp Polymer composition having photo-orientable group, liquid crystal oriented film formed from the polymer composition, and liquid crystal display device including retardation film formed from the liquid crystal oriented film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276149A (en) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer
WO2009069724A1 (en) * 2007-11-27 2009-06-04 Jsr Corporation Liquid crystal aligning agent, method for forming liquid crystal alignment film, and liquid crystal display device
WO2012014915A1 (en) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film
WO2013081066A1 (en) * 2011-11-29 2013-06-06 日産化学工業株式会社 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185413A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
WO2015129889A1 (en) * 2014-02-28 2015-09-03 日産化学工業株式会社 Phase difference material-forming resin composition, orientation material, and phase difference material
JP7381420B2 (en) 2014-02-28 2023-11-15 日産化学株式会社 Resin composition for forming retardation material, alignment material and retardation material
TWI757687B (en) * 2014-02-28 2022-03-11 日商日產化學工業股份有限公司 Resin composition for forming retardation material, alignment material and retardation material
CN110256630B (en) * 2014-02-28 2021-09-28 日产化学工业株式会社 Resin composition for forming phase difference material, alignment material, and phase difference material
CN106030355A (en) * 2014-02-28 2016-10-12 日产化学工业株式会社 Phase difference material-forming resin composition, orientation material, and phase difference material
JP2020201502A (en) * 2014-02-28 2020-12-17 日産化学株式会社 Retardation material-forming resin composition, and orientation material, and retardation material
JPWO2015129889A1 (en) * 2014-02-28 2017-03-30 日産化学工業株式会社 Phase difference material forming resin composition, alignment material, and phase difference material
US10590219B2 (en) 2014-02-28 2020-03-17 Nissan Chemical Industries, Ltd. Retardation material-forming resin composition, orientation material, and retardation material
CN110256630A (en) * 2014-02-28 2019-09-20 日产化学工业株式会社 Phase difference material is formed with resin combination, orientation material and phase difference material
CN106030355B (en) * 2014-02-28 2019-06-18 日产化学工业株式会社 Phase difference material is formed with resin combination, orientation material and phase difference material
US10081693B2 (en) 2014-02-28 2018-09-25 Nissan Chemical Industries, Ltd. Retardation material-forming resin composition, orientation material, and retardation material
CN106232733B (en) * 2014-04-09 2018-12-18 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
JPWO2015156314A1 (en) * 2014-04-09 2017-04-13 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN106232733A (en) * 2014-04-09 2016-12-14 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
WO2015156314A1 (en) * 2014-04-09 2015-10-15 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN107003577A (en) * 2014-10-08 2017-08-01 日产化学工业株式会社 The driving liquid crystal of transverse electric field represents that element is manufactured with composition with liquid crystal orientation film, used the liquid crystal orientation film and its manufacture method of said composition and the liquid crystal with liquid crystal orientation film to represent element and its manufacture method
CN107003577B (en) * 2014-10-08 2021-06-25 日产化学工业株式会社 Composition for producing liquid crystal alignment film, liquid crystal alignment film using same, liquid crystal display element, and method for producing same
WO2016076348A1 (en) * 2014-11-12 2016-05-19 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2019139254A (en) * 2015-01-22 2019-08-22 Jsr株式会社 Manufacturing method of liquid crystal alignment film and manufacturing method of liquid crystal element
JP2016139121A (en) * 2015-01-22 2016-08-04 Jsr株式会社 Production method of liquid crystal alignment film and method for manufacturing liquid crystal element
CN107924088A (en) * 2015-05-20 2018-04-17 日产化学工业株式会社 Polymer composition, aligning agent for liquid crystal, liquid crystal orientation film, the substrate with the liquid crystal orientation film and the liquid crystal with the liquid crystal orientation film represent element
CN107924088B (en) * 2015-05-20 2021-10-12 日产化学工业株式会社 Polymer composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
US11561507B2 (en) 2018-04-17 2023-01-24 Meta Platforms Technologies, Llc Methods for three-dimensional arrangement of anisotropic molecules, patterned anisotropic films, and optical elements therewith

Also Published As

Publication number Publication date
JP2017214587A (en) 2017-12-07
CN107200818A (en) 2017-09-26
JPWO2014017497A1 (en) 2016-07-11
TWI597296B (en) 2017-09-01
JP6586438B2 (en) 2019-10-02
TW201722998A (en) 2017-07-01
CN107200818B (en) 2019-11-29
KR102058769B1 (en) 2019-12-23
JP6268089B2 (en) 2018-01-24
TWI617585B (en) 2018-03-11
CN104937480B (en) 2018-01-16
TW201418289A (en) 2014-05-16
KR20150038108A (en) 2015-04-08
CN104937480A (en) 2015-09-23

Similar Documents

Publication Publication Date Title
JP6586438B2 (en) Polymer suitable for highly efficient liquid crystal alignment film using light
WO2013081066A1 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
TWI626266B (en) Manufacturing method of substrate with liquid crystal alignment film for lateral electric field drive type liquid crystal display element
WO2014185412A1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
WO2016002691A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2014206715A (en) Method for manufacturing substrate having liquid crystal aligning film for in-plane switching liquid crystal display element
JP2019039012A (en) Cyanostilbenes
WO2014196590A1 (en) Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
WO2016113931A1 (en) Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
WO2014185411A1 (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
TWI689543B (en) Liquid crystal alignment agent and liquid crystal alignment film using photoreactive hydrogen-bonding polymer liquid crystal
JP6744717B2 (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching type liquid crystal display device
WO2015016301A1 (en) Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
JP6956948B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2016021570A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014185413A1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR20160014691A (en) Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526945

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157004092

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13822488

Country of ref document: EP

Kind code of ref document: A1