JPWO2013031615A1 - Hybrid car battery system and hybrid car equipped with this battery system - Google Patents

Hybrid car battery system and hybrid car equipped with this battery system Download PDF

Info

Publication number
JPWO2013031615A1
JPWO2013031615A1 JP2013531242A JP2013531242A JPWO2013031615A1 JP WO2013031615 A1 JPWO2013031615 A1 JP WO2013031615A1 JP 2013531242 A JP2013531242 A JP 2013531242A JP 2013531242 A JP2013531242 A JP 2013531242A JP WO2013031615 A1 JPWO2013031615 A1 JP WO2013031615A1
Authority
JP
Japan
Prior art keywords
battery
traveling
temperature
electrical
charging current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013531242A
Other languages
Japanese (ja)
Inventor
公彦 古川
公彦 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013531242A priority Critical patent/JPWO2013031615A1/en
Publication of JPWO2013031615A1 publication Critical patent/JPWO2013031615A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】走行用バッテリで電装用バッテリを充電して、電装用バッテリの過放電状態における車両の走行を実現しながら、極低温状態における走行用バッテリの寿命低下を防止する。【解決手段】ハイブリッドカーのバッテリシステムは、車両を走行させるモータ11に電力を供給する走行用バッテリ1と、この走行用バッテリ1の電圧を降圧するDC/DCコンバータ3と、このDC/DCコンバータ3で降圧された電圧で充電される電装用バッテリ2と、走行用バッテリ1による電装用バッテリ2の充電を制御するコントロール回路4と、走行用バッテリ1の温度又は周囲温度を検出する温度センサ5とを備えている。コントロール回路4は、走行用バッテリ1で電装用バッテリ2を充電する充電電流を、温度センサ5の検出温度が設定温度よりも低い状態において、設定温度よりも高い状態の充電電流よりも小さく制御している。【選択図】図1A battery for traveling is charged with a battery for traveling to realize traveling of the vehicle in an overdischarged state of the battery for electrical equipment, while preventing a decrease in the life of the traveling battery in an extremely low temperature state. A battery system for a hybrid car includes a traveling battery 1 that supplies electric power to a motor 11 that travels the vehicle, a DC / DC converter 3 that steps down the voltage of the traveling battery 1, and the DC / DC converter. 3, a control circuit 4 that controls charging of the electrical battery 2 by the traveling battery 1, and a temperature sensor 5 that detects the temperature or ambient temperature of the traveling battery 1. And. The control circuit 4 controls the charging current for charging the electrical battery 2 with the battery 1 for traveling when the temperature detected by the temperature sensor 5 is lower than the set temperature, and smaller than the charge current in the state higher than the set temperature. ing. [Selection] Figure 1

Description

本発明は、ハイブリッドカーに搭載されるバッテリシステムに関し、とくに、車両を走行させる高電圧の走行用バッテリでもって、低電圧の電装用バッテリを充電するハイブリッドカーのバッテリシステム及びこのバッテリシステムを備えるハイブリッドカーに関する。   The present invention relates to a battery system mounted on a hybrid car, and more particularly, a battery system for a hybrid car that charges a low-voltage electrical battery with a high-voltage traveling battery that travels the vehicle, and a hybrid including the battery system. Car related.

ハイブリッドカーのバッテリシステムは、車両を走行させるモータに電力を供給する高電圧の走行用バッテリと、低電圧の電装用バッテリとを備えている。走行用バッテリは、出力電圧を200V〜300Vとするニッケル水素電池、リチウムイオン電池、リチウムポリマー電池等が使用される。電装用バッテリには12Vの鉛バッテリが使用される。電装用バッテリは、走行用バッテリの充電を制御する回路や車両の電装品に電力を供給する。   The battery system of a hybrid car includes a high-voltage traveling battery that supplies electric power to a motor that drives the vehicle, and a low-voltage electrical battery. A nickel-metal hydride battery, a lithium ion battery, a lithium polymer battery, or the like with an output voltage of 200 V to 300 V is used as the traveling battery. A 12V lead battery is used as the electrical battery. The battery for electrical equipment supplies power to a circuit for controlling charging of the battery for traveling and electrical equipment for the vehicle.

このバッテリシステムがハイブリッドカーに搭載されて、電装用バッテリをエンジンで回転される発電機で充電することなく、走行用バッテリの出力電圧を降圧して電装用バッテリを充電する方式が開発されている。(特許文献1参照)   A system has been developed in which this battery system is mounted on a hybrid car and the electric battery is charged by stepping down the output voltage of the traveling battery without charging the electric battery with a generator rotated by the engine. . (See Patent Document 1)

このバッテリシステムは、電装用バッテリの発電機に代わって、走行用バッテリの出力電圧を降圧するDC/DCコンバータを備えている。発電機に代わって電装用バッテリを充電するDC/DCコンバータは、電装用バッテリをより好ましい状態で充電できる。それは、DC/DCコンバータを制御することで、電装用バッテリの充電電流を精密にコントロールできるからである。さらに、このバッテリシステムは、ハイブリッドカーに搭載されて、電装用バッテリの電力効率を高くできる特徴もある。それは、電装用バッテリの発電機が、ほとんどの状態において相当に軽い負荷で充電されて、総合的な発電効率が相当に低くなるのに対して、DC/DCコンバータの電力変換効率が高く、また走行用バッテリの充電効率も高くできるからである。   This battery system includes a DC / DC converter that steps down the output voltage of the traveling battery, instead of the electric battery generator. A DC / DC converter that charges an electrical battery in place of the generator can charge the electrical battery in a more preferable state. This is because the charging current of the battery for electrical equipment can be precisely controlled by controlling the DC / DC converter. Furthermore, this battery system is mounted on a hybrid car and has a feature that the power efficiency of the battery for electrical equipment can be increased. This is because the power generation efficiency of the DC / DC converter is high, while the generator of the electrical battery is charged with a considerably light load in most states, and the overall power generation efficiency is considerably low. This is because the charging efficiency of the traveling battery can also be increased.

特開2010−36594号公報JP 2010-36594 A

さらに、特許文献1のバッテリシステムは、車両を走行させない状態が続いて電装用バッテリが過放電された状態となっても、走行用バッテリで電装用バッテリを充電できる。このため、電装用バッテリが過放電された状態となっても、走行用バッテリで電装用バッテリを充電して、走行できる状態にできる。ハイブリッドカーは、走行用バッテリと電装用バッテリの何れかが過放電されると走行できなくなる。ハイブリッドカーのエンジンを始動できなくなるからである。ハイブリッドカーは、電装用バッテリが過放電されると、スタートさせるエンジンを回転できなくなるが、それは、電装用バッテリが過放電されると、スタートさせるための電気回路を動作できなくなるからである。このため、車両が相当に長い期間使用されない状態が続いて、電装用バッテリが過放電された状態になると、ハイブリッドカーにあっては、エンジンを始動できなくなるが、この状態において、走行用バッテリで電装用バッテリを充電することで、エンジンを始動して、走行できる状態にできる。   Furthermore, the battery system of Patent Document 1 can charge the electrical battery with the traveling battery even when the vehicle is not traveling and the electrical battery is overdischarged. For this reason, even if it becomes the state by which the battery for electrical equipment was over-discharged, the battery for electrical equipment can be charged with the battery for traveling, and it can be made into the state which can drive | work. The hybrid car cannot travel if either the traveling battery or the electrical battery is overdischarged. This is because the hybrid car engine cannot be started. The hybrid car cannot start the engine to be started if the electric battery is overdischarged, because the electric circuit for starting cannot be operated if the electric battery is overdischarged. For this reason, if the vehicle is not used for a considerable period of time and the electrical battery is overdischarged, the hybrid car cannot start the engine. By charging the battery for electrical equipment, the engine can be started and can be driven.

ところが、車両が極寒の地方で使用される状態において、走行用バッテリで電装用バッテリを充電すると、走行用バッテリの放電特性が低下する状態で電装用バッテリを充電することになって、走行用バッテリの寿命を著しく低下させる原因となる。とくに、リチウムイオン電池やリチウムポリマー電池は極低温において放電特性が相当に低下することから、この傾向が甚だしくなる欠点がある。この欠点は、極低温の状態においては、走行用バッテリによる電装用バッテリの充電を禁止して解消できる。しかしながら、走行用バッテリによる電装用バッテリの充電を禁止すると、電装用バッテリが過放電された状態になると、エンジンが始動できなかったり、走行用バッテリの充放電をコントロールできなくなって、車両を全く使用できなくなる欠点がある。   However, in a state where the vehicle is used in an extremely cold region, when the electrical battery is charged with the traveling battery, the electrical battery is charged in a state where the discharge characteristics of the traveling battery are deteriorated. Cause a significant decrease in the lifespan of the product. In particular, lithium ion batteries and lithium polymer batteries have a drawback that this tendency becomes significant because the discharge characteristics are considerably lowered at extremely low temperatures. This drawback can be solved by prohibiting charging of the battery for electrical equipment by the battery for traveling in the extremely low temperature state. However, if charging of the battery for electrical equipment by the battery for traveling is prohibited, if the battery for electrical equipment is over-discharged, the engine cannot be started or charging / discharging of the battery for traveling cannot be controlled, and the vehicle is not used at all. There is a drawback that can not be done.

本発明は、この欠点を解決することを目的に開発されたものである。本発明の重要な目的は、走行用バッテリで電装用バッテリを充電して、電装用バッテリの過放電状態における車両の走行を実現しながら、極低温状態における走行用バッテリの寿命低下を防止できるハイブリッドカーのバッテリシステムとこのバッテリシステムを備えるハイブリッドカーを提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to provide a hybrid capable of charging a battery for electrical equipment with a battery for traveling and realizing traveling of the vehicle in an overdischarged state of the battery for electrical equipment while preventing a decrease in the life of the battery for traveling in an extremely low temperature state. The object is to provide a car battery system and a hybrid car including the battery system.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明のハイブリッドカーのバッテリシステムは、車両を走行させるモータに電力を供給する走行用バッテリと、この走行用バッテリの電圧を降圧するDC/DCコンバータと、このDC/DCコンバータで降圧された電圧で充電される電装用バッテリと、走行用バッテリによる電装用バッテリの充電を制御するコントロール回路と、走行用バッテリの温度又は周囲温度を検出する温度センサとを備えている。コントロール回路は、走行用バッテリで電装用バッテリを充電する充電電流を、温度センサの検出温度が設定温度よりも低い状態において、設定温度よりも高い状態の充電電流よりも小さく制御している。   A battery system for a hybrid car according to the present invention includes a traveling battery that supplies power to a motor that travels a vehicle, a DC / DC converter that steps down the voltage of the traveling battery, and a voltage that is stepped down by the DC / DC converter. And a control circuit for controlling charging of the battery for electrical equipment by the battery for traveling, and a temperature sensor for detecting the temperature or ambient temperature of the battery for traveling. The control circuit controls the charging current for charging the electrical battery with the traveling battery to be smaller than the charging current in a state where the temperature detected by the temperature sensor is lower than the set temperature.

以上のバッテリシステムは、走行用バッテリで電装用バッテリを充電することで、電装用バッテリの過放電状態における車両の走行を実現しながら、極低温状態における走行用バッテリの寿命低下を防止できる特徴がある。それは、走行用バッテリの電気特性が低下する低温状態で、走行用バッテリで電装用バッテリを充電する電流を小さくして、走行用バッテリの放電電流を小さく制限するからである。   The battery system described above is characterized by charging the electrical battery with the traveling battery to prevent the traveling battery from deteriorating in an extremely low temperature state while realizing the traveling of the vehicle in the overdischarged state of the electrical battery. is there. This is because, in a low temperature state where the electric characteristics of the traveling battery deteriorate, the current for charging the electrical battery with the traveling battery is reduced, and the discharge current of the traveling battery is limited to be small.

本発明のハイブリッドカーのバッテリシステムは、走行用バッテリを、リチウムイオン電池又はリチウムポリマー電池とすることができる。
以上のバッテリシステムは、走行用バッテリをリチウムイオン電池やリチウムポリマー電池とすることで、重量に対する充放電容量を大きくしながら、これ等の走行用バッテリの低温における電気特性の低下を有効に防止できる。
In the battery system of the hybrid car of the present invention, the traveling battery can be a lithium ion battery or a lithium polymer battery.
The above battery system can effectively prevent a decrease in electrical characteristics at low temperatures of these traveling batteries while increasing the charge / discharge capacity with respect to weight by using the traveling battery as a lithium ion battery or a lithium polymer battery. .

本発明のハイブリッドカーのバッテリシステムは、コントロール回路が、走行用バッテリによる電装用バッテリの充電電流を減少させる設定温度を記憶し、この設定温度を−10℃ないし−35℃とすることができる。
以上のバッテリシステムは、−10℃ないし−35℃と極低温における走行用バッテリの劣化を防止しながら、走行用バッテリで電装用バッテリを充電できる特徴がある。
In the battery system of the hybrid car of the present invention, the control circuit stores a set temperature for reducing the charging current of the electric battery by the traveling battery, and the set temperature can be set to −10 ° C. to −35 ° C.
The battery system described above is characterized in that the battery for electrical equipment can be charged with the battery for traveling while preventing deterioration of the battery for traveling at an extremely low temperature of -10 ° C to -35 ° C.

本発明のハイブリッドカーのバッテリシステムは、コントロール回路が、温度センサの検出温度が設定温度よりも低温状態と、検出温度が設定温度よりも常温状態における電装用バッテリの充電電流を記憶し、低温状態における電装用バッテリの充電電流を、常温状態の充電電流の1/10ないし1/2とすることができる。
以上のバッテリシステムは、低温状態における電装用バッテリの充電電流を制限することで、走行用バッテリの放電電流を1/10〜1/2と相当に小さくするので、走行用バッテリの低温状態における劣化を防止しながら、走行用バッテリで電装用バッテリを充電できる。
In the battery system of the hybrid car of the present invention, the control circuit stores the charging current of the battery for electrical equipment when the detected temperature of the temperature sensor is lower than the set temperature and when the detected temperature is normal temperature than the set temperature. The charging current of the electrical battery in can be set to 1/10 to 1/2 of the charging current at room temperature.
The battery system described above limits the charging current of the battery for electrical equipment in a low temperature state, so that the discharge current of the battery for traveling is considerably reduced to 1/10 to 1/2. The battery for electrical equipment can be charged with the battery for traveling while preventing the above.

本発明のハイブリッドカーのバッテリシステムは、コントロール回路が、温度センサの検出温度に対する電装用バッテリの充電電流をルックアップテーブルとして記憶し、ルックアップテーブルに記憶される検出温度に対応して電装用バッテリの充電電流をコントロールすることができる。
以上のバッテリシステムは、コントロール回路に記憶されるルックアップテーブルにしたがって、検出温度に対する電装用バッテリの充電電流を制限するので、低温状態において電装用バッテリの充電電流、すなわち走行用バッテリの放電電流を正確にコントロールして、走行用バッテリの劣化を有効に防止できる。
In the battery system of the hybrid car of the present invention, the control circuit stores the charging current of the electric battery with respect to the detected temperature of the temperature sensor as a lookup table, and the electric battery is corresponding to the detected temperature stored in the lookup table. The charging current can be controlled.
The above battery system limits the charging current of the electric battery with respect to the detected temperature in accordance with the lookup table stored in the control circuit, so the charging current of the electric battery, that is, the discharging current of the traveling battery is reduced at low temperatures. Accurate control can effectively prevent deterioration of the battery for traveling.

本発明のハイブリッドカーのバッテリシステムは、コントロール回路が、温度センサの検出温度に対する電装用バッテリの充電電流を関数として記憶し、記憶される関数に基づいて電装用バッテリの充電電流をコントロールすることができる。
以上のバッテリシステムは、コントロール回路に記憶される関数に基づいて、検出温度に対する電装用バッテリの充電電流を制限するので、低温状態において電装用バッテリの充電電流、すなわち走行用バッテリの放電電流を正確にコントロールして、走行用バッテリの劣化を有効に防止できる。
In the battery system of the hybrid car of the present invention, the control circuit stores the charging current of the electric battery with respect to the temperature detected by the temperature sensor as a function, and controls the charging current of the electric battery based on the stored function. it can.
The above battery system limits the charging current of the electric battery with respect to the detected temperature based on the function stored in the control circuit, so that the charging current of the electric battery, that is, the discharging current of the traveling battery can be accurately measured in a low temperature state. It is possible to effectively prevent deterioration of the traveling battery.

本発明のハイブリッドカーのバッテリシステムは、コントロール回路が、走行用バッテリの放電電流をコントロールして、電装用バッテリの充電電流を制御することができる。
以上のバッテリシステムは、走行用バッテリの放電電流をコントロールして、電装用バッテリの充電電流をコントロールするので、低温状態においては、走行用バッテリを有効に保護して電装用バッテリを充電できる。このため、低温状態における走行用バッテリの劣化を有効に防止しながら、これで電装用バッテリを充電できる。
In the battery system of the hybrid car of the present invention, the control circuit can control the charging current of the battery for electrical equipment by controlling the discharging current of the battery for traveling.
Since the above battery system controls the discharge current of the battery for traveling and controls the charging current of the battery for electrical equipment, the battery for electrical equipment can be charged while effectively protecting the battery for traveling in a low temperature state. For this reason, the battery for electrical equipment can be charged with this while effectively preventing deterioration of the battery for traveling in a low temperature state.

本発明のハイブリッドカーは、上記のいずれかのバッテリシステムを備えることができる。   The hybrid car of the present invention can include any one of the battery systems described above.

本発明の一実施例にかかるバッテリシステムのブロック図である。It is a block diagram of the battery system concerning one Example of this invention. 図1に示すバッテリシステムを搭載するハイブリッド自動車の一例を示すブロック図である。It is a block diagram which shows an example of the hybrid vehicle carrying the battery system shown in FIG.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するためのハイブリッドカーのバッテリシステム及びこのバッテリシステムを備えるハイブリッドカーを例示するものであって、本発明はバッテリシステムとハイブリッドカーを以下のものに特定しない。さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a hybrid car battery system for embodying the technical idea of the present invention and a hybrid car including the battery system. The present invention includes a battery system and a hybrid car. Not specified below. Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

本発明のバッテリシステムは、ハイブリッドカーに搭載される。このバッテリシステムは、車両を走行させるモータ11に電力を供給する走行用バッテリ1と、走行用バッテリ1の電圧を降圧するDC/DCコンバータ3と、このDC/DCコンバータ3で降圧された電圧で充電される電装用バッテリ2と、走行用バッテリ1による電装用バッテリ2の充電を制御するコントロール回路4と、走行用バッテリ1の温度又は周囲温度を検出する温度センサ5とを備える。   The battery system of the present invention is mounted on a hybrid car. This battery system includes a traveling battery 1 that supplies electric power to a motor 11 that travels a vehicle, a DC / DC converter 3 that steps down the voltage of the traveling battery 1, and a voltage that is stepped down by the DC / DC converter 3. An electric battery 2 to be charged, a control circuit 4 that controls charging of the electric battery 2 by the traveling battery 1, and a temperature sensor 5 that detects the temperature or ambient temperature of the traveling battery 1 are provided.

図1に示すように、ハイブリッドカーは、エンジン13で駆動され、さらに、回生制動で駆動される発電機12を備えており、この発電機12で走行用バッテリ1を充電する。   As shown in FIG. 1, the hybrid car includes a generator 12 that is driven by an engine 13 and that is further driven by regenerative braking. The generator 12 charges the traveling battery 1.

走行用バッテリ1は、100V〜300Vの高電圧バッテリで、リチウムイオン電池、リチウムポリマー電池、ニッケル水素電池などの充電できる複数の二次電池6を直列に接続して出力電圧を高くしている。さらに、走行用バッテリは、複数の二次電池を並列して容量を大きくすることもできる。走行用バッテリ1は、DC/ACインバータ10を介して車両を走行させるモータ11に電力を供給する。DC/ACインバータ10は、コントロールユニット14に制御されて、モータ11に供給する電力、すなわち走行用バッテリ1の放電電流をコントロールして、車両を走行させる。コントロールユニット14は、アクセル、ブレーキなどの入力される情報でDC/ACインバータ10を制御して、走行用バッテリ1からモータ11に供給する電力をコントロールする。   The traveling battery 1 is a high voltage battery of 100 V to 300 V, and a plurality of rechargeable secondary batteries 6 such as lithium ion batteries, lithium polymer batteries, and nickel hydride batteries are connected in series to increase the output voltage. Further, the traveling battery can be increased in capacity by paralleling a plurality of secondary batteries. The traveling battery 1 supplies electric power to a motor 11 that causes the vehicle to travel through a DC / AC inverter 10. The DC / AC inverter 10 is controlled by the control unit 14 to control the electric power supplied to the motor 11, that is, the discharge current of the traveling battery 1, thereby causing the vehicle to travel. The control unit 14 controls the DC / AC inverter 10 based on input information such as an accelerator and a brake, and controls the power supplied from the traveling battery 1 to the motor 11.

さらに、ハイブリッドカーに搭載される走行用バッテリ1は、車両を走行させるエンジン13、あるいは充電専用のエンジン13に駆動される発電機12で充電される。コントロールユニット14は、走行用バッテリ1の充電と放電をコントロールして、所定の残容量、たとえば、50±20%の範囲に保持される。   Furthermore, the battery 1 for driving | running | working mounted in a hybrid car is charged with the generator 12 driven by the engine 13 which drives a vehicle, or the engine 13 only for charge. The control unit 14 controls the charging and discharging of the traveling battery 1 and is held within a predetermined remaining capacity, for example, in the range of 50 ± 20%.

電装用バッテリ2は12Vの鉛バッテリで、車両に搭載している電装品に電力を供給し、さらに、走行用バッテリ1の充放電をコントロールするコントロールユニット14やコントロール回路4の電源回路に電力を供給する。   The electric battery 2 is a 12V lead battery that supplies electric power to electric components mounted on the vehicle, and further supplies electric power to the control unit 14 that controls charging / discharging of the traveling battery 1 and the power circuit of the control circuit 4. Supply.

DC/DCコンバータ3は、走行用バッテリ1の直流電圧を、電装用バッテリ2を充電する電圧に降圧して、走行用バッテリ1で電装用バッテリ2を充電する。コントロール回路4は、DC/DCコンバータ3の出力をコントロールして、電装用バッテリ2を一定の電圧範囲に保持する。ただし、コントロール回路4は、車両を走行させるときにオンに切り換えられるメインスイッチ、すなわちイグニッションスイッチ15をオンとする状態で、電装用バッテリ2の電圧を一定の電圧範囲に保持する。したがって、コントロール回路4は、電装用バッテリ2の電圧を検出する電圧検出回路(図示せず)を備えている。このコントロール回路4は、電圧検出回路で検出される電装用バッテリ2の検出電圧を一定の電圧範囲とするようにDC/DCコンバータ3を制御して、走行用バッテリ1で電装用バッテリ2を充電する。電装用バッテリ2は放電されると電圧が低下するので、充電して電圧を上昇させて、一定の電圧範囲に制御する。コントロール回路4は、DC/DCコンバータ3を制御して、走行用バッテリ1で電装用バッテリ2を充電する充電電流をコントロールして、電装用バッテリ2を一定の電圧範囲に保持する。   The DC / DC converter 3 steps down the DC voltage of the traveling battery 1 to a voltage that charges the electrical battery 2 and charges the electrical battery 2 with the traveling battery 1. The control circuit 4 controls the output of the DC / DC converter 3 to keep the electrical battery 2 in a certain voltage range. However, the control circuit 4 keeps the voltage of the electrical battery 2 in a certain voltage range in a state where the main switch that is turned on when the vehicle is running, that is, the ignition switch 15 is turned on. Therefore, the control circuit 4 includes a voltage detection circuit (not shown) that detects the voltage of the electrical equipment battery 2. The control circuit 4 controls the DC / DC converter 3 so that the detection voltage of the electrical equipment battery 2 detected by the voltage detection circuit is in a certain voltage range, and charges the electrical equipment battery 2 with the traveling battery 1. To do. When the battery 2 for electrical equipment is discharged, the voltage drops. Therefore, the battery 2 is charged to increase the voltage and is controlled within a certain voltage range. The control circuit 4 controls the DC / DC converter 3 to control the charging current for charging the electrical battery 2 with the traveling battery 1 to keep the electrical battery 2 in a certain voltage range.

さらに、コントロール回路4は、車両に搭載しているコントロールユニット14からの信号でDC/DCコンバータ3をコントロールして、電装用バッテリ2を一定の電圧範囲とすることもできる。このコントロール回路4は、たとえば、車両のブレーキが踏まれて回生制動されるときに、走行用バッテリ1で電装用バッテリ2を充電する。   Furthermore, the control circuit 4 can also control the DC / DC converter 3 with a signal from the control unit 14 mounted on the vehicle, so that the electrical battery 2 can be in a certain voltage range. The control circuit 4 charges the electrical battery 2 with the traveling battery 1 when, for example, the brake of the vehicle is depressed and regenerative braking is performed.

コントロール回路4は、走行用バッテリ1の温度や周囲温度によっても、走行用バッテリ1で電装用バッテリ2を充電する電流をコントロールする。このことを実現するために、走行用バッテリ1の温度、又は周囲温度を検出する温度センサ5を備えている。温度センサ5は、好ましくは走行用バッテリ1の温度を検出する。ただ、周囲温度が低下しても走行用バッテリ1の温度が低下するので、周囲温度を検出して走行用バッテリ1の充電電流をコントロールすることもできる。   The control circuit 4 also controls the current for charging the electrical battery 2 with the traveling battery 1 depending on the temperature of the traveling battery 1 and the ambient temperature. In order to realize this, a temperature sensor 5 for detecting the temperature of the traveling battery 1 or the ambient temperature is provided. The temperature sensor 5 preferably detects the temperature of the traveling battery 1. However, even if the ambient temperature decreases, the temperature of the traveling battery 1 decreases, so that the ambient temperature can be detected to control the charging current of the traveling battery 1.

コントロール回路4は、温度センサ5の検出温度によって、走行用バッテリ1で電装用バッテリ2を充電する充電電流、すなわち、走行用バッテリ1の放電電流を制御する。このコントロール回路4は、温度センサ5の検出温度が設定温度よりも低い状態において、設定温度よりも高い状態よりも電装用バッテリ2の充電電流を小さく制限する。温度が低い状態で電気特性が低下している走行用バッテリ1を保護するためである。   The control circuit 4 controls the charging current for charging the electrical battery 2 with the traveling battery 1, that is, the discharging current of the traveling battery 1, according to the temperature detected by the temperature sensor 5. The control circuit 4 limits the charging current of the electrical battery 2 to be smaller in a state where the temperature detected by the temperature sensor 5 is lower than the set temperature than in a state where the temperature is higher than the set temperature. This is to protect the traveling battery 1 whose electrical characteristics are degraded in a low temperature state.

コントロール回路4は、設定温度の上下で走行用バッテリ1で電装用バッテリ2を充電する充電電流を切り換えて、たとえば、検出温度が設定温度よりも低い状態において走行用バッテリ1で電装用バッテリ2を充電する充電電流を、設定温度よりも高い状態の充電電流よりも小さくするように制限する。このコントロール回路4は、たとえば、設定温度を−30℃として、検出温度がこの設定温度よりも低い低温状態で、走行用バッテリ1による電装用バッテリ2の充電電流を、検出温度が設定温度よりも高い常温状態の充電電流よりも小さくする。常温状態における電装用バッテリ2の充電電流は、大きくして速やかに電装用バッテリ2を充電でき、低温状態における電装用バッテリ2の充電電流は、小さくして低温状態における走行用バッテリ1の劣化を少なくできる。したがって、低温状態における電装用バッテリ2の充電電流は、走行用バッテリ1の劣化を防止しながら電装用バッテリ2をできるかぎり速やかに充電できるように、好ましくは、常温状態における充電電流の1/10〜1/2とする。   The control circuit 4 switches the charging current for charging the electrical battery 2 with the traveling battery 1 above and below the set temperature. For example, when the detected temperature is lower than the set temperature, the control circuit 4 sets the electrical battery 2 with the traveling battery 1. The charging current to be charged is limited to be smaller than the charging current in a state higher than the set temperature. For example, the control circuit 4 sets the set temperature to −30 ° C., and detects the charging current of the electric battery 2 by the traveling battery 1 in a low temperature state where the detected temperature is lower than the set temperature. Make it smaller than the charging current at high room temperature. The charging current of the electrical battery 2 in the normal temperature state can be increased to quickly charge the electrical battery 2, and the charging current of the electrical battery 2 in the low temperature state can be reduced to reduce the deterioration of the traveling battery 1 in the low temperature state. Less. Therefore, the charging current of the electrical battery 2 in the low temperature state is preferably 1/10 of the charging current in the normal temperature state so that the electrical battery 2 can be charged as quickly as possible while preventing the traveling battery 1 from deteriorating. ˜½.

コントロール回路4は、走行用バッテリ1で電装用バッテリ2を充電する充電電流を、走行用バッテリ1の電圧によって変化させることもできる。たとえば、走行用バッテリ1の電圧が低い状態での充電電流を、電圧が高い状態での充電電流よりも小さくすることができる。この場合、コントロール回路4は、電池の電圧が低い状態における充電電流の最大値を、検出温度で特定される充電電流よりも小さく制限する。電圧が低下して電気特性の低下した走行用バッテリ1の劣化を防止するためである。   The control circuit 4 can also change the charging current for charging the electrical battery 2 with the traveling battery 1 according to the voltage of the traveling battery 1. For example, the charging current when the voltage of the traveling battery 1 is low can be made smaller than the charging current when the voltage is high. In this case, the control circuit 4 limits the maximum value of the charging current when the battery voltage is low to be smaller than the charging current specified by the detected temperature. This is for preventing the deterioration of the traveling battery 1 whose voltage is lowered and the electrical characteristics are lowered.

以上のように電装用バッテリ2の充電電流を検出温度で設定するコントロール回路4は、最も簡単に充電電流を制御できる。だたし、コントロール回路4は複数の設定温度を記憶し、設定温度の上下で充電電流を変化させることで、検出温度が低い状態で走行用バッテリ1による電装用バッテリ2の充電電流を小さくすることもできる。   As described above, the control circuit 4 that sets the charging current of the electrical equipment battery 2 based on the detected temperature can most easily control the charging current. However, the control circuit 4 stores a plurality of set temperatures, and changes the charging current above and below the set temperatures, thereby reducing the charging current of the electrical battery 2 by the traveling battery 1 with the detected temperature being low. You can also.

コントロール回路4は、以上のように検出温度で電装用バッテリ2の充電電流をコントロールするために、温度センサ5の検出温度に対する電装用バッテリ2の充電電流をルックアップテーブルとして記憶し、あるいは関数として記憶している。このコントロール回路4は、ルックアップテーブルに記憶され、あるいは関数として記憶している検出温度に対応して電装用バッテリ2の充電電流をコントロールする。   In order to control the charging current of the electrical battery 2 at the detected temperature as described above, the control circuit 4 stores the charging current of the electrical battery 2 with respect to the detected temperature of the temperature sensor 5 as a lookup table or as a function. I remember it. The control circuit 4 controls the charging current of the electrical battery 2 corresponding to the detected temperature stored in the lookup table or stored as a function.

車両に搭載されるバッテリシステムは、車両のメインスイッチであるイグニッションスイッチ15がオンに切り換えられている状態で、走行用バッテリ1で電装用バッテリ2を充電して、電装用バッテリ2を一定の電圧範囲に保持する。電装用バッテリ2は、イグニッションスイッチ15がオンに切り換えられて、走行用バッテリ1で充電できる状態で一定の電圧範囲に保持される。イグニッションスイッチ15をオフに切り換えて、車両を走行させない状態で、電装用バッテリ2は走行用バッテリ1で充電されなくなる。したがって、イグニッションスイッチ15をオフに切り換えた後における電装用バッテリ2の電圧は、イグニッションスイッチ15をオンに切り換えている状態よりも低くなる。イグニッションスイッチ15をオフとする状態、すなわち車両が使用されない状態において、電装用バッテリ2の電圧は、自己放電によって、さらに、車両に搭載している電装機器が消費しているわずかな電力消費によって次第に低下する。したがって、車両が長期間使用されず、さらに電装用バッテリ2が充分に充電されていない状態で、あるいは又、電装用バッテリ2が劣化して充電容量が低下している状態においては、イグニッションスイッチ15をオンに切り換えた直後で電装用バッテリ2の電圧が相当に低下している。イグニッションスイッチ15をオンに切り換えた状態で、電装用バッテリ2が過放電された状態となって、コントロールユニット14などの電源に電力供給できない状態にあると、車両を走行できなくなるので、コントロール回路4は、走行用バッテリ1で電装用バッテリ2を充電する。このとき、温度センサ5の検出温度が設定温度よりも高い状態にあると、コントロール回路4は常温状態と判定して、走行用バッテリ1で電装用バッテリ2を所定の電流で充電する。しかしながら、検出温度が設定温度よりも低い状態にあると、コントロール回路4は走行用バッテリ1による電装用バッテリ2の充電電流を小さく制限して、走行用バッテリ1の劣化を防止する。低温で電気特性の低下している走行用バッテリ1を保護しながら、電装用バッテリ2を充電するためである。走行用バッテリ1で電装用バッテリ2が充電されると、電装用バッテリ2からコントロールユニット14の電源に電力を供給できる状態となって、走行用バッテリ1でエンジン13を始動できる状態となる。エンジン13を始動して、走行用バッテリ1が充電される状態になると、走行用バッテリ1は発電機12で充電される状態となり、この状態の走行用バッテリ1で電装用バッテリ2も充電されて一定の電圧範囲に保持される。   A battery system mounted on a vehicle charges the electrical battery 2 with the traveling battery 1 in a state where the ignition switch 15 that is the main switch of the vehicle is turned on, and the electrical battery 2 is kept at a constant voltage. Keep in range. The electrical battery 2 is held in a certain voltage range in a state where the ignition switch 15 is turned on and the battery 1 can be charged. When the ignition switch 15 is switched off and the vehicle is not traveling, the electrical battery 2 is no longer charged by the traveling battery 1. Accordingly, the voltage of the electrical battery 2 after the ignition switch 15 is switched off is lower than in the state where the ignition switch 15 is switched on. In a state where the ignition switch 15 is turned off, that is, in a state where the vehicle is not used, the voltage of the electrical battery 2 is gradually increased by self-discharge and further by a slight power consumption consumed by the electrical equipment mounted on the vehicle. descend. Therefore, when the vehicle is not used for a long time and the electric battery 2 is not sufficiently charged, or when the electric battery 2 is deteriorated and the charging capacity is reduced, the ignition switch 15 Immediately after the switch is turned on, the voltage of the electrical equipment battery 2 is considerably reduced. When the ignition switch 15 is turned on, the electric battery 2 is over-discharged, and if the power cannot be supplied to the power source of the control unit 14 or the like, the vehicle cannot run, so the control circuit 4 Charges the electrical battery 2 with the traveling battery 1. At this time, if the temperature detected by the temperature sensor 5 is higher than the set temperature, the control circuit 4 determines that the temperature is normal and charges the electrical battery 2 with the traveling battery 1 with a predetermined current. However, when the detected temperature is lower than the set temperature, the control circuit 4 limits the charging current of the electrical battery 2 by the traveling battery 1 to prevent the traveling battery 1 from deteriorating. This is for charging the battery 2 for electrical equipment while protecting the battery 1 for traveling whose electrical characteristics are lowered at low temperatures. When the electric battery 2 is charged by the traveling battery 1, power can be supplied from the electric battery 2 to the power source of the control unit 14, and the engine 13 can be started by the traveling battery 1. When the engine 13 is started and the traveling battery 1 is charged, the traveling battery 1 is charged by the generator 12, and the electrical battery 2 is also charged by the traveling battery 1 in this state. It is held in a certain voltage range.

以上のバッテリシステムは、エンジンとモータの両方で走行するハイブリッド自動車用の電源として利用できる。図2は、ハイブリッド自動車にバッテリシステム100を搭載する例を示す。この図に示すバッテリシステム100を搭載した車両HVは、車両HVを走行させるエンジン13及び走行用のモータ11と、モータ11に電力を供給するバッテリシステム100と、バッテリシステム100の電池を充電する発電機12とを備えている。バッテリシステム100は、DC/ACインバータ10を介してモータ11と発電機12に接続している。車両HVは、バッテリシステム100の電池を充放電しながらモータ11とエンジン13の両方で走行する。モータ11は、エンジン効率の悪い領域、たとえば加速時や低速走行時に駆動されて車両を走行させる。モータ11は、バッテリシステム100から電力が供給されて駆動する。発電機12は、エンジン13で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、バッテリシステム100の電池を充電する。   The above battery system can be used as a power source for a hybrid vehicle that runs on both the engine and the motor. FIG. 2 shows an example in which the battery system 100 is mounted on a hybrid vehicle. A vehicle HV equipped with the battery system 100 shown in this figure includes an engine 13 for traveling the vehicle HV, a motor 11 for traveling, a battery system 100 for supplying electric power to the motor 11, and power generation for charging a battery of the battery system 100. Machine 12. The battery system 100 is connected to a motor 11 and a generator 12 via a DC / AC inverter 10. The vehicle HV travels by both the motor 11 and the engine 13 while charging / discharging the battery of the battery system 100. The motor 11 is driven to drive the vehicle when the engine efficiency is low, for example, when accelerating or traveling at a low speed. The motor 11 is driven by power supplied from the battery system 100. The generator 12 is driven by the engine 13 or driven by regenerative braking when braking the vehicle, and charges the battery of the battery system 100.

100…バッテリシステム
1…走行用バッテリ
2…電装用バッテリ
3…DC/DCコンバータ
4…コントロール回路
5…温度センサ
6…二次電池
10…DC/ACインバータ
11…モータ
12…発電機
13…エンジン
14…コントロールユニット
15…イグニッションスイッチ
HV…車両
DESCRIPTION OF SYMBOLS 100 ... Battery system 1 ... Battery for driving | running | working 2 ... Battery for electrical equipment 3 ... DC / DC converter 4 ... Control circuit 5 ... Temperature sensor 6 ... Secondary battery 10 ... DC / AC inverter 11 ... Motor 12 ... Generator 13 ... Engine 14 ... Control unit 15 ... Ignition switch HV ... Vehicle

Claims (8)

車両を走行させるモータに電力を供給する走行用バッテリと、この走行用バッテリの電圧を降圧するDC/DCコンバータと、このDC/DCコンバータで降圧された電圧で充電される電装用バッテリと、走行用バッテリによる電装用バッテリの充電を制御するコントロール回路と、前記電装用バッテリの温度又は周囲温度を検出する温度センサとを備え、
前記コントロール回路が、走行用バッテリで電装用バッテリを充電する充電電流を、温度センサの検出温度が設定温度よりも低い状態において、設定温度よりも高い状態の充電電流よりも小さく制御するハイブリッドカーのバッテリシステム。
A traveling battery that supplies power to a motor that travels the vehicle, a DC / DC converter that steps down the voltage of the traveling battery, an electrical battery that is charged with a voltage stepped down by the DC / DC converter, and a traveling A control circuit for controlling the charging of the battery for electrical equipment by the battery for electrical use, and a temperature sensor for detecting the temperature or ambient temperature of the battery for electrical equipment,
In the hybrid car in which the control circuit controls the charging current for charging the electric battery with the traveling battery to be smaller than the charging current in the state higher than the set temperature in the state where the temperature detected by the temperature sensor is lower than the set temperature. Battery system.
前記走行用バッテリがリチウムイオン電池又はリチウムポリマー電池である請求項1に記載されるハイブリッドカーのバッテリシステム。   The hybrid car battery system according to claim 1, wherein the battery for traveling is a lithium ion battery or a lithium polymer battery. 前記コントロール回路が、走行用バッテリによる電装用バッテリの充電電流を減少させる設定温度を記憶しており、この設定温度を−10℃ないし−35℃としている請求項1又は2に記載されるハイブリッドカーのバッテリシステム。   3. The hybrid car according to claim 1, wherein the control circuit stores a set temperature for reducing a charging current of the electric battery by the running battery, and the set temperature is set to −10 ° C. to −35 ° C. 3. Battery system. 前記コントロール回路が、温度センサの検出温度が設定温度よりも低温状態と、検出温度が設定温度よりも常温状態における電装用バッテリの充電電流を記憶しており、低温状態における電装用バッテリの充電電流を、常温状態の充電電流の1/10ないし1/2としている請求項1ないし3のいずれかに記載されるハイブリッドカーのバッテリシステム。   The control circuit stores the charging current of the electrical battery when the detected temperature of the temperature sensor is lower than the set temperature, and when the detected temperature is normal temperature than the set temperature, and the charging current of the electrical battery when the temperature is low The hybrid car battery system according to any one of claims 1 to 3, wherein the charging current is 1/10 to 1/2 of a charging current in a room temperature state. 前記コントロール回路が、温度センサの検出温度に対する電装用バッテリの充電電流をルックアップテーブルとして記憶しており、ルックアップテーブルに記憶される検出温度に対応して電装用バッテリの充電電流をコントロールする請求項1ないし4のいずれかに記載されるハイブリッドカーのバッテリシステム。   The control circuit stores, as a lookup table, a charging current of the electrical battery with respect to a temperature detected by the temperature sensor, and controls the charging current of the electrical battery in accordance with the detected temperature stored in the lookup table. Item 5. A hybrid car battery system according to any one of Items 1 to 4. 前記コントロール回路が、温度センサの検出温度に対する電装用バッテリの充電電流を関数として記憶しており、記憶される関数に基づいて電装用バッテリの充電電流をコントロールする請求項1ないし4のいずれかに記載されるハイブリッドカーのバッテリシステム。   5. The control circuit according to claim 1, wherein the control circuit stores a charging current of the electric battery as a function with respect to a temperature detected by the temperature sensor, and controls the charging current of the electric battery based on the stored function. The hybrid car battery system described. 前記コントロール回路が、走行用バッテリの放電電流をコントロールして、電装用バッテリの充電電流を制御する請求項1ないし6のいずれかに記載されるハイブリッドカーのバッテリシステム。   The battery system for a hybrid car according to any one of claims 1 to 6, wherein the control circuit controls a discharge current of the battery for traveling to control a charging current of the battery for electrical equipment. 請求項1ないし7のいずれかに記載のバッテリシステムを備えるハイブリッドカー。   A hybrid car comprising the battery system according to claim 1.
JP2013531242A 2011-09-02 2012-08-22 Hybrid car battery system and hybrid car equipped with this battery system Pending JPWO2013031615A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531242A JPWO2013031615A1 (en) 2011-09-02 2012-08-22 Hybrid car battery system and hybrid car equipped with this battery system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011191432 2011-09-02
JP2011191432 2011-09-02
JP2013531242A JPWO2013031615A1 (en) 2011-09-02 2012-08-22 Hybrid car battery system and hybrid car equipped with this battery system

Publications (1)

Publication Number Publication Date
JPWO2013031615A1 true JPWO2013031615A1 (en) 2015-03-23

Family

ID=47756107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013531242A Pending JPWO2013031615A1 (en) 2011-09-02 2012-08-22 Hybrid car battery system and hybrid car equipped with this battery system

Country Status (2)

Country Link
JP (1) JPWO2013031615A1 (en)
WO (1) WO2013031615A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6701722B2 (en) * 2015-12-24 2020-05-27 いすゞ自動車株式会社 Hybrid vehicle and control method thereof
JP6391604B2 (en) * 2016-01-26 2018-09-19 本田技研工業株式会社 Power supply system
CN111823951A (en) * 2020-06-29 2020-10-27 永安行科技股份有限公司 Power battery system of moped and continuous energy supply control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074874A (en) * 2004-08-31 2006-03-16 Sony Corp Circuit for charging and electronic apparatus
JP2007082375A (en) * 2005-09-16 2007-03-29 Toyota Motor Corp Power supply device for vehicles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125326A (en) * 2000-10-12 2002-04-26 Honda Motor Co Ltd Battery charge control method
JP2010036594A (en) * 2008-07-31 2010-02-18 Toyota Motor Corp Hybrid automobile
JP4808242B2 (en) * 2008-11-27 2011-11-02 本田技研工業株式会社 Vehicle power supply

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074874A (en) * 2004-08-31 2006-03-16 Sony Corp Circuit for charging and electronic apparatus
JP2007082375A (en) * 2005-09-16 2007-03-29 Toyota Motor Corp Power supply device for vehicles

Also Published As

Publication number Publication date
WO2013031615A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
US8436585B2 (en) Power supply device
US9385543B2 (en) Hybrid storage cell, vehicle and power storage unit employing same, smart grid vehicle system employing vehicle, and power supply network system employing power storage unit
JP5862631B2 (en) Power storage system
US10252623B2 (en) Charge/discharge system
JP5577775B2 (en) Electric vehicle power supply
US9895982B2 (en) Vehicle driving system and method
US10315522B2 (en) Charge/discharge system
JP5796457B2 (en) Battery system and battery system control method
US9834100B2 (en) Charge/discharge system
US20130249493A1 (en) Vehicle and method of controlling the same
CN103367824A (en) Battery pack charging system and method of controlling same
JP2012011896A (en) Power supply device for hybrid car
JP2010057291A (en) Power supply for vehicle
JP2011069720A (en) Power supply device for vehicle and vehicle to which power supply device is mounted
KR20120012654A (en) Electric vehicle and method for controlling the same
JP6305930B2 (en) Vehicle power supply for regenerative braking
JP2015180140A (en) Power supply system for vehicle
JP2011010482A (en) Vehicle driving system
WO2013031615A1 (en) Battery system for hybrid car and hybrid car equipped with this battery system
KR20170025605A (en) Power conversion control method of for using high voltage vehicle
JP2017112734A (en) Battery control system
JP2011168226A (en) Control device for series hybrid vehicle
JP5783051B2 (en) Secondary battery and secondary battery remaining capacity calculation device
JP2014057415A (en) Electric power unit for vehicle and electric vehicle equipped with the same
JP6485871B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220