JPWO2013002302A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JPWO2013002302A1
JPWO2013002302A1 JP2013522923A JP2013522923A JPWO2013002302A1 JP WO2013002302 A1 JPWO2013002302 A1 JP WO2013002302A1 JP 2013522923 A JP2013522923 A JP 2013522923A JP 2013522923 A JP2013522923 A JP 2013522923A JP WO2013002302 A1 JPWO2013002302 A1 JP WO2013002302A1
Authority
JP
Japan
Prior art keywords
power
storage battery
voltage
solar cell
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013522923A
Other languages
Japanese (ja)
Other versions
JP5810254B2 (en
Inventor
俊之 平田
俊之 平田
船越 智英
智英 船越
牧野 康弘
康弘 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013522923A priority Critical patent/JP5810254B2/en
Publication of JPWO2013002302A1 publication Critical patent/JPWO2013002302A1/en
Application granted granted Critical
Publication of JP5810254B2 publication Critical patent/JP5810254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】太陽電池の発電電力を系統への重畳と充電とに適正に分配することができる。
【解決手段】太陽電池1で発電された直流電力を交流電力に変換した後、系統へ重畳するように成した電力変換装置3の太陽電池1と電力変換装置3とをつなぐ電力線に接続され、太陽電池1で発電された直流電力の内予め設定された所定の割合を超えない範囲で太陽電池1で発電された直流電力を昇圧若しくは降圧して蓄電池12へ充電する充電回路とを備えるものである。
【選択図】図1
Power generated by a solar cell can be appropriately distributed to superimposition on a system and charging.
The DC power generated by the solar cell 1 is converted into AC power, and then connected to the power line connecting the solar cell 1 and the power conversion device 3 of the power conversion device 3 superimposed on the system, A charging circuit for charging the storage battery 12 by stepping up or down the DC power generated by the solar cell 1 within a range not exceeding a predetermined ratio of the DC power generated by the solar cell 1 is there.
[Selection] Figure 1

Description

本発明は、太陽電池で発電された電力を系統に連系させる電力変換装置と共に用いられる蓄電装置に関するものである。   The present invention relates to a power storage device that is used together with a power conversion device that links power generated by a solar battery to a system.

近年、太陽電池で発電されて直流電力を交流電力に変換して系統に重畳する電力変換装置が用いられているが、この電力変換装置では太陽電池が発電を行っていない夜間には交流電力を出力することができず、特に夜間に停電が起きた場合には全く電力供給がなされなくなるものであった。   In recent years, power conversion devices that are generated by solar cells and convert DC power to AC power and superimpose on the system are used. In this power conversion device, AC power is generated at night when the solar cells are not generating power. The power could not be output, and especially when a power failure occurred at night, no power was supplied.

このような問題に対応したものとしては、たとえば特許文献1に記載されたようなものがあった。この特許文献1に記載されたものは蓄電池を設け、昼間は太陽電池で発電された電力を蓄電池へ充電し、夜間は系統の電力で蓄電池を充電するものであり、夜間の出力や昼間の出力に対応したものであった。   As a solution to such a problem, there has been one described in Patent Document 1, for example. The one described in Patent Document 1 is provided with a storage battery, in which the power generated by the solar battery is charged to the storage battery in the daytime, and the storage battery is charged with the power of the system at night time. It corresponded to.

特許第3181423号公報Japanese Patent No. 3181423

従来の電力変換装置では、蓄電池は充電と放電等を短期間で繰り返すことを前提として構成されている。すなわち、昼間充電して夜間に放電する、または夜間に充電して昼間の電力ピークカットとして放電するものであった。   In the conventional power converter, the storage battery is configured on the premise that charging and discharging are repeated in a short period of time. That is, it was charged at daytime and discharged at night, or charged at night and discharged as a daytime power peak cut.

停電時の対策として蓄電池を用いる場合、いつ起こるか分からない停電に対して常に蓄電池は満充電に近い状態、若しくは所定以上の蓄電量を維持しておく必要があるが、蓄電池は自己放電をするため蓄電池の残存容量に応じて間欠的に充電を行う必要があり、この追加充電の都度、太陽電池の発電出力がすべて蓄電動作に用いられて系統連系装置への出力の供給が停止するものであった。   When using a storage battery as a countermeasure in the event of a power failure, it is necessary to always maintain the storage battery close to full charge or a predetermined amount of power storage for a power failure that does not know when it occurs, but the storage battery self-discharges Therefore, it is necessary to charge intermittently according to the remaining capacity of the storage battery, and every time this additional charging is performed, all the power generation output of the solar cell is used for power storage operation and the supply of output to the grid interconnection device is stopped Met.

このような問題に対して、太陽電池の発電力を系統へ重畳させながら蓄電池への充電も同時に行える蓄電装置を提供するものである。例えば、系統に対する交流負荷である空気調和機で冷房運転を行っている場合は、空気調和機の消費電力は冷房運転においては午後2時〜3時頃に最大を迎える。一方、太陽電池の発電電力もこの2時〜3時頃に最大を迎えるので、太陽電池の発電電力を電力変換装置を介してこの空気調和機に供給できるようにすることで、空気調和機の消費電力が最大になる期間の系統に対する電力の依存度を減らすことができるところのピークカットが行えるが、この期間に蓄電池の充電を行うとこのピークカットの効果が得られなくなるので、蓄電池の充電に用いる太陽電池の発電電力を全体の1部に制御することによってピークカット効果と蓄電池の充電とを両立させた蓄電装置を提供するものである。   In order to solve such a problem, it is an object of the present invention to provide a power storage device that can simultaneously charge a storage battery while superimposing the power generated by the solar battery on the grid. For example, when the cooling operation is performed with an air conditioner that is an AC load on the system, the power consumption of the air conditioner reaches a maximum around 2 to 3 pm in the cooling operation. On the other hand, the generated power of the solar cell reaches its maximum around 2 o'clock to 3 o'clock. Therefore, by allowing the generated power of the solar cell to be supplied to the air conditioner via the power converter, The peak cut can be performed where the power dependency on the system during the period when the power consumption is maximum can be reduced, but if the battery is charged during this period, the effect of this peak cut cannot be obtained. It is intended to provide a power storage device in which the peak cut effect and the charging of the storage battery are made compatible by controlling the generated power of the solar battery used in the above to one part of the whole.

本発明の蓄電装置は、太陽電池で発電された直流電力を交流電力に変換した後、系統へ重畳するように成した電力変換装置の太陽電池と電力変換装置とをつなぐ電力線に接続され、太陽電池で発電された直流電力の内予め設定された所定の割合を超えない範囲で太陽電池で発電された直流電力を昇圧若しくは降圧して蓄電池へ充電する充電回路と、蓄電池の出力を所定の電圧に昇圧して電力線へ供給する昇圧回路4とを備えたものである。   The power storage device of the present invention is connected to a power line connecting the solar cell of the power conversion device and the power conversion device so as to be superimposed on the system after converting the DC power generated by the solar cell into AC power, A charging circuit that boosts or lowers the DC power generated by the solar battery within a range that does not exceed a predetermined ratio of the DC power generated by the battery and charges the storage battery, and outputs the storage battery to a predetermined voltage And a booster circuit 4 that boosts the voltage to the power line.

また、太陽電池で発電された直流電力を交流電力に変換した後、系統へ重畳するように成した電力変換装置の太陽電池と電力変換装置とをつなぐ電力線に接続され、電力変換装置へ供給される直流電力の内予め設定された所定の割合を超えない範囲で太陽電池で発電された直流電力を昇圧若しくは降圧して蓄電池へ充電する充電回路と、蓄電池の出力を所定の電圧に昇圧して前記電力線へ供給する昇圧回路4とを備えたものである。   In addition, after the DC power generated by the solar battery is converted to AC power, it is connected to the power line connecting the solar battery and the power converter of the power converter configured to be superimposed on the system, and supplied to the power converter. A charging circuit that boosts or lowers the DC power generated by the solar battery within a range that does not exceed a predetermined percentage of the DC power that is set in advance and charges the storage battery, and boosts the output of the storage battery to a predetermined voltage. And a booster circuit 4 for supplying power to the power line.

また、太陽電池の出力を交流電力に変換した後、系統へ重畳するように成した電力変換装置の太陽電池と電力変換装置とをつなぐ電力線に接続され、太陽電池で発電された直流電力又は電力変換装置へ供給される直流電力の内予め設定された所定の割合を超えない範囲でこれら直流電力を降圧して蓄電池へ充電する充電回路と、蓄電池の出力を所定の電圧に昇圧して前記電力線へ供給する昇圧回路4とを備え、蓄電池への充電は直流出力が蓄電池の定格電圧より高い所定の電圧を超えている時に行われるものである。   Moreover, after converting the output of a solar cell into alternating current power, it is connected to the power line which connects the solar cell of the power converter device and the power converter device which are superposed on the system, and the direct current power or power generated by the solar cell A charging circuit that steps down the DC power and charges the storage battery within a range that does not exceed a predetermined ratio of the DC power supplied to the converter, and boosts the output of the storage battery to a predetermined voltage. The storage battery is charged when the DC output exceeds a predetermined voltage higher than the rated voltage of the storage battery.

また、蓄電池には鉛蓄電池を用い、複数の鉛電池を組み合わせて得られる定格電圧より所定値高い電圧で定電圧充電を行い、この定電圧充電に要する電力が前記予め設定された所定の割合に相当する電力を上回った際にはこの定電圧充電に用いる電圧を下げるものである。   In addition, a lead storage battery is used as a storage battery, constant voltage charging is performed at a voltage higher than a rated voltage obtained by combining a plurality of lead batteries, and the power required for the constant voltage charging is set at the predetermined ratio set in advance. When the corresponding electric power is exceeded, the voltage used for the constant voltage charging is lowered.

また、所定の割合は10%から20%の範囲であるものである。   The predetermined ratio is in the range of 10% to 20%.

また、蓄電池の放電はスイッチ操作に応じて開始されるものである。   Further, the discharge of the storage battery is started in response to the switch operation.

本発明によれば、蓄電池の充電に用いる電力は太陽電池の発電電力若しくは電力変換装置に供給される直流電力の一部に相当するので、残りの発電電力は系統へ重畳して負荷で利用することができ、例えば、ピークカット効果と蓄電池へ充電とを同時に行うことが可能となるものである。   According to the present invention, the power used for charging the storage battery corresponds to a part of the generated power of the solar battery or the direct-current power supplied to the power converter, so that the remaining generated power is superimposed on the system and used in the load. For example, it becomes possible to simultaneously perform the peak cut effect and charge the storage battery.

本発明の実施例を示す説明図であるIt is explanatory drawing which shows the Example of this invention. 充電時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of charge. 本発明の他の実施例を示す説明図である。It is explanatory drawing which shows the other Example of this invention.

以下、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例を示す説明図であり、太陽電池1で発電された直流電力は配線2を経て直流電力を交流電力へ変換する電力変換装置3へ供給される。太陽電池1は複数の太陽電池セルを直列及び並列に接続して所定の定格電圧及び所定の定格出力が得られるように構成した太陽電池モジュールを複数枚直列及び/又は並列接続したものであり、例えば、定格電圧が300V、出力2.4Kw、出力4.8Kwなどである。   FIG. 1 is an explanatory diagram showing an embodiment of the present invention. DC power generated by a solar cell 1 is supplied to a power conversion device 3 that converts DC power into AC power via a wiring 2. The solar cell 1 is formed by connecting a plurality of solar cell modules connected in series and in parallel to obtain a predetermined rated voltage and a predetermined rated output in series and / or in parallel. For example, the rated voltage is 300 V, the output is 2.4 Kw, the output is 4.8 Kw, and the like.

電力変換装置3は、太陽電池1側から供給される直流電力を昇圧する昇圧回路4とこの昇圧回路4で昇圧された直流電力を系統5と同じ周波数のPWM(パルス幅変調)に基づく疑似正弦波に変換した後、さらにローパスフィルター6を介して交流電力に変換して系統5に重畳させている。ここで太陽電池1の発電電力(昇圧回路4に供給される直流電力)と系統5へ重畳される電力とは等しくなければならない。(但し、変換ロスや動作用の電力は「0」とする。)太陽電池1の発電電力はその電流と電圧の積で求めることができ、系統5への重畳する電力は系統5へ重畳する交流の電流とその系統5との電圧の積で求めることができる。これら両電力を等しくするには、この積(電力)を実質的に固定電圧とみなすことができる系統5の電圧から逆算して求まる電流をこの系統5に供給できる程に直流電力を昇圧回路4で昇圧する。また、太陽電池1の発電電力は日射量に応じて常に変化しておりその日射量に応じた最大発電量も同時に変化し、無負荷の開放状態でその最大発電量に対する開放電圧が太陽電池から得られるが、都度の開放状態を得ることができないので、本制御では系統5へ重畳する電流を意図的に変動させて負荷を接続させた状態のまま太陽電池の発電電力が最大になる昇圧回路4の昇圧比を決めている。   The power conversion device 3 includes a booster circuit 4 that boosts the DC power supplied from the solar cell 1 side, and the pseudo sine based on the DC power boosted by the booster circuit 4 based on PWM (pulse width modulation) having the same frequency as the system 5. After being converted into a wave, it is further converted into AC power via a low-pass filter 6 and superimposed on the system 5. Here, the generated power of the solar cell 1 (DC power supplied to the booster circuit 4) and the power superimposed on the grid 5 must be equal. (However, the conversion loss and the power for operation are assumed to be “0”.) The generated power of the solar cell 1 can be obtained by the product of the current and voltage, and the power superimposed on the system 5 is superimposed on the system 5. It can be obtained by the product of the alternating current and the voltage of the system 5. In order to equalize these two electric powers, the DC power is boosted to such an extent that a current obtained by back-calculating the product (electric power) from the voltage of the system 5 which can be regarded as a substantially fixed voltage can be supplied to the system 5. Press to boost. In addition, the generated power of the solar cell 1 is constantly changing according to the amount of solar radiation, and the maximum amount of power generated according to the amount of solar radiation is also changed at the same time. Although it is obtained, it is impossible to obtain an open state every time, so in this control, the boosting circuit that maximizes the generated power of the solar cell while intentionally changing the current superimposed on the grid 5 and connecting the load A boost ratio of 4 is determined.

このように制御することによって、実質的に太陽電池1を日射量に応じた最大の発電電力を発電する状態に維持することができるものである。   By controlling in this way, the solar cell 1 can be substantially maintained in a state of generating the maximum generated power corresponding to the amount of solar radiation.

尚、昇圧回路4は主にリアクトル、スイッチング素子、ダイオード、コンデンサから非絶縁型のスイッチング電源を構成し、PWMに基づく変換回路には4個のスイッチング素子を単相ブリッジ状に結線したインバータ回路からなっている。ローパスフィルター6はリアクトルとコンデンサとで構成されるL型フィルターを用いている。   The booster circuit 4 is mainly composed of a reactor, a switching element, a diode, and a capacitor to form a non-insulated switching power supply. The PWM conversion circuit includes an inverter circuit in which four switching elements are connected in a single-phase bridge shape. It has become. The low-pass filter 6 uses an L-type filter composed of a reactor and a capacitor.

7は電力変換装置3の制御部であり、前記したような動作の制御や常開接片8a、8bの開閉制御や、切換接片9a、9bの切換えなどを制御する。切換接片9a,9bの切換えによって電力変換装置3の交流出力を系統5へ供給するか自立運転出力コンセント10へ出力するかを切り換えるものである。   A control unit 7 of the power conversion device 3 controls the operation as described above, the open / close control of the normally open contact pieces 8a and 8b, the switching of the switching contact pieces 9a and 9b, and the like. Switching between the switching contacts 9a and 9b switches whether the AC output of the power converter 3 is supplied to the system 5 or output to the independent operation output outlet 10.

蓄電装置11は、例えば鉛タイプの蓄電池12(例えば、ディープサイクルタイプ105Ahを直列に4個、並列に2列で合計8個のバッテリーを組み合わせてDC48Vの定格電圧としている。)を用いているがこれに限るものではなく定格電圧は12Vなど任意の電圧でもよく、1時間当たりの出力は要求に応じ電池を並列に接続する数を変えればよい。またリチウムイオン電池などを使用してもよく畜電池の種類を限定するものではない。   The power storage device 11 uses, for example, a lead-type storage battery 12 (for example, a rated voltage of DC 48 V is obtained by combining four deep cycle types 105Ah in series and a total of eight batteries in two rows in parallel). The rated voltage is not limited to this, and any voltage such as 12V may be used. The output per hour may be changed according to the number of batteries connected in parallel. Moreover, a lithium ion battery etc. may be used and does not limit the kind of livestock battery.

充電回路及び昇圧回路4(放電回路)は4個のスイッチング素子をブリッジ状に結線した単相インバータ回路13、14を2組とトランス15とから構成される双方向の充放電回路を構成している。以下、トランス15の巻き線比は1:1として説明を行うが、巻き線比を変える際はその巻き線比に基づいて昇圧/降圧の際のスッチング素子のON/OFF比を調整する。16は開閉接片であり蓄電装置11へ充電を行う場合及び蓄電装置11から放電を行う場合に接片を閉じるものである。17、18は電流検出器でありそれぞれ太陽電池1の発電電流、電力変換装置へ供給される電流を検出する電流検出器(直流C.T.などの電流検出器)である。尚、接続点Vの電圧を検出することによって、この電流と電圧の積からそれぞれの電力を求めることができる。   The charging circuit and booster circuit 4 (discharging circuit) constitutes a bidirectional charging / discharging circuit composed of two sets of single-phase inverter circuits 13 and 14 in which four switching elements are connected in a bridge shape and a transformer 15. Yes. In the following description, the winding ratio of the transformer 15 is assumed to be 1: 1, but when changing the winding ratio, the ON / OFF ratio of the switching element at the time of step-up / step-down is adjusted based on the winding ratio. An open / close contact 16 closes the contact when the power storage device 11 is charged and when the power storage device 11 is discharged. Reference numerals 17 and 18 denote current detectors, which are current detectors (current detectors such as direct current CT) for detecting the generated current of the solar cell 1 and the current supplied to the power converter, respectively. By detecting the voltage at the connection point V, each power can be obtained from the product of this current and voltage.

蓄電池12へ充電を行う場合は単相インバータ回路13のそれぞれのスイッチング素子をPWMに基づいた信号でON/OFFさせ開閉接片16を介して得られる直流電力を疑似正弦波に変換した後トランス15の1次側(単相インバータ回路13側)へ供給する。PWMは正弦波と搬送波との変調を行うものであり、正弦波の振幅はトランス15の2次側(単相インバータ回路14側)の出力に基づいてフィードバック制御される。正弦波の振幅を変えることによりトランス15の2次側に誘起する正弦波の振幅(電圧)が変化する。この正弦波による交流電力は単相インバータ回路14のスイッチング素子にそれぞれ並列に設けられているダイオードを介して全波整流される。この整流後の直流電力で蓄電池12の充電が行われる。充電制御は蓄電池12への印加電圧Vpと電流Ipとの値を検出し、この印加電圧Vpが蓄電池12の定格電圧より10%程度高い電圧になるようにPWMの正弦波の振幅がフィードバック制御される。例えば、蓄電池12の定格電圧が48Vであれば蓄電池12への印加電圧が52.8Vになるようにフィードバック制御され、また例えば、蓄電池12の定格電圧が12Vであれば、印加電圧は13.2Vにフィードバック制御されるものである。   When the storage battery 12 is charged, each switching element of the single-phase inverter circuit 13 is turned on / off by a signal based on PWM to convert the DC power obtained through the open / close contact piece 16 into a pseudo sine wave, and then the transformer 15. To the primary side (single-phase inverter circuit 13 side). PWM modulates a sine wave and a carrier wave, and the amplitude of the sine wave is feedback-controlled based on the output on the secondary side (single-phase inverter circuit 14 side) of the transformer 15. By changing the amplitude of the sine wave, the amplitude (voltage) of the sine wave induced on the secondary side of the transformer 15 changes. The AC power generated by the sine wave is full-wave rectified via diodes provided in parallel with the switching elements of the single-phase inverter circuit 14. The storage battery 12 is charged with the rectified DC power. The charge control detects the value of the applied voltage Vp and current Ip to the storage battery 12, and the amplitude of the PWM sine wave is feedback-controlled so that the applied voltage Vp is about 10% higher than the rated voltage of the storage battery 12. The For example, if the rated voltage of the storage battery 12 is 48V, feedback control is performed so that the applied voltage to the storage battery 12 is 52.8V. For example, if the rated voltage of the storage battery 12 is 12V, the applied voltage is 13.2V. Is feedback-controlled.

この蓄電池12への印加電圧は定格電圧より10%高い電圧に限るものではなく、利用する蓄電池12に対して適した充電用の印加電圧になるように設定すればよい。この充電時の充電電力Ppは印加電圧Vpと電流Ipとの積によって求められる。   The applied voltage to the storage battery 12 is not limited to a voltage that is 10% higher than the rated voltage, and may be set so as to be a charging applied voltage suitable for the storage battery 12 to be used. The charging power Pp at the time of charging is obtained by the product of the applied voltage Vp and the current Ip.

制限電力Psは太陽電池の発電電力、すなわち電流検出器17の検出する電流と接続点Vの電圧との積の10%程度の値に設定されている。尚、この値は10%に限るものではなく太陽電池1の発電電力の大きさに応じて任意に変更してもよく、例えば太陽電池全体の定格発電量に合わせて設定すれば、蓄電池12の充電特性上で満充電に近くなった際に充電に要する電力を加味し、日射量の減った際に系統5へ重畳される電力量の確保を踏まえ、目安として10%〜20%の範囲で設定することができる。   The limit power Ps is set to a value of about 10% of the product of the power generated by the solar cell, that is, the current detected by the current detector 17 and the voltage at the connection point V. Note that this value is not limited to 10%, and may be arbitrarily changed according to the magnitude of the generated power of the solar cell 1. For example, if it is set according to the rated power generation amount of the entire solar cell, the storage battery 12 Taking into account the power required for charging when the charging characteristics are close to full, and ensuring the amount of power superimposed on the grid 5 when the amount of solar radiation decreases, as a guideline, the range is 10% to 20%. Can be set.

日射量が減少し太陽電池1の発電量が減った際は、蓄電池12の充電に用いる電力Ppが制限電力Psを超えないようにPWMへのフィードバック制御に規制をかけるものであり、実質的に蓄電池12への印加電圧Vpを低下させ充電に供する電流Ipを減少させるものである。このように制御することによって日射量の減少で太陽電池の発電量が減った際に、太陽電池の発電電力が蓄電池12の充電に供されて系統5へ重畳される電力がなくなる又は大きく減少し、ピークカット効果を損なう状態を抑制することができるものである。   When the amount of solar radiation decreases and the amount of power generated by the solar cell 1 decreases, the feedback control to PWM is regulated so that the power Pp used for charging the storage battery 12 does not exceed the limit power Ps. The applied voltage Vp to the storage battery 12 is lowered to reduce the current Ip used for charging. By controlling in this way, when the amount of solar cell power generation is reduced due to a decrease in the amount of solar radiation, the power generated by the solar cell is used for charging the storage battery 12 and the power superimposed on the grid 5 is eliminated or greatly reduced. The state which impairs the peak cut effect can be suppressed.

また、制限電力Psは電力変換装置3へ供給される電流(電流検出器18の検出する電流)と接続点Vの電圧との積の値に置き換えてもよいものである。この場合、系統5へ重畳される電力の一部相当分の電力で蓄電池12の充電を行うことになり日射量が減少して太陽電池の発電電力が減少した際には系統5へ重畳される電力の減少に応じて蓄電池12へ供給される電力も減少する。   The limited power Ps may be replaced with a product value of the current supplied to the power converter 3 (current detected by the current detector 18) and the voltage at the connection point V. In this case, when the storage battery 12 is charged with a power equivalent to a part of the power superimposed on the grid 5, the amount of solar radiation is reduced and the generated power of the solar battery is decreased, so that the power is superimposed on the grid 5. As the power decreases, the power supplied to the storage battery 12 also decreases.

尚、19は蓄電装置11のこれらの制御を行う制御部である。   Reference numeral 19 denotes a control unit that performs these controls of the power storage device 11.

図2は充電時の動作を示すフローチャートであり、充電を開始するすると、ステップS1で蓄電池12の充電電圧Vp’を設定する。例えば、蓄電池12の定格電圧の10%高いで電圧を設定する。蓄電池12の定格電圧が48Vであれば、Vp’は52.8Vである。次いでステップS2でVp=Vp’として充電電圧の目標値として制御に用いる電圧Vp(実質的に蓄電池12に印加される電圧)を設定する。ステップS3で制限電力Psを算出する。Psの値は太陽電池1で発電された電力(接続点Vの電圧と電流検出器17の検出する電流との積)の10%の値であり、日射量に応じた太陽電池1の発電電力や電力変換装置3のMPPT動作によって変動する。   FIG. 2 is a flowchart showing the operation at the time of charging. When charging is started, the charging voltage Vp 'of the storage battery 12 is set in step S1. For example, the voltage is set at 10% higher than the rated voltage of the storage battery 12. If the rated voltage of the storage battery 12 is 48V, Vp 'is 52.8V. Next, in step S2, a voltage Vp (substantially applied to the storage battery 12) used for control is set as a target value of the charging voltage with Vp = Vp '. In step S3, the limit power Ps is calculated. The value of Ps is a value of 10% of the power generated by the solar cell 1 (the product of the voltage at the connection point V and the current detected by the current detector 17), and the generated power of the solar cell 1 according to the amount of solar radiation. And fluctuates depending on the MPPT operation of the power converter 3.

ステップS4で充電電力Pv(VpとIpとの積)と制限電力Psとの大小を比較しPv>Psの際は充電電力が制限電力を超えているので、ステップS5で蓄電池12の充電電圧Vpをα減じて補正した充電電圧VpとしてステップS6へ進みこの電圧Vpで蓄電池12の印加電圧を安定化させて充電を行う。すなわち蓄電池12の充電電圧はVp’より低いVpの値になる。この安定化は単相インバータ回路部13側へトランス15の2次側からフィードバック制御を行うものである。   In step S4, the charge power Pv (product of Vp and Ip) is compared with the limit power Ps. When Pv> Ps, the charge power exceeds the limit power, so the charge voltage Vp of the storage battery 12 is determined in step S5. As a charging voltage Vp corrected by subtracting α, the process proceeds to step S6, where the voltage applied to the storage battery 12 is stabilized with this voltage Vp for charging. That is, the charging voltage of the storage battery 12 has a value of Vp lower than Vp ′. This stabilization is to perform feedback control from the secondary side of the transformer 15 to the single-phase inverter circuit unit 13 side.

ステップS4で充電電力が制限電力を超えていなければステップS7へ進み、制御に用いているVpとステップS1で求めたVp’の値との大小を比較する。Vp>Vp’の条件を満たしている時は、蓄電池12への充電電力が制限電力Psを上回ったことがありその後太陽電池の発電量が回復したことであるためステップS8でVpの値にαを加算してVpの値を本来のVp’の値に近づける。その後Vpの値が上昇してステップS7の条件を満たさなくなればステップS9で充電電圧VpをVp’の値に戻すものである。   If the charge power does not exceed the limit power in step S4, the process proceeds to step S7, and the magnitude of Vp used for control and the value of Vp ′ obtained in step S1 is compared. When the condition of Vp> Vp ′ is satisfied, the charge power to the storage battery 12 may have exceeded the limit power Ps, and the power generation amount of the solar battery has been recovered. Are added to bring the value of Vp closer to the original value of Vp ′. After that, if the value of Vp increases and the condition of step S7 is not satisfied, the charging voltage Vp is returned to the value of Vp ′ in step S9.

従って、蓄電池12への充電電圧Vpは常に太陽電池の発電電力の10%の範囲内で行われるものである。ステップS10で蓄電池12の満充電が判断(蓄電池12への充電流Ipが所定電流値以下となった際)されたときはステップS11へ進み充電を終了する。尚、この所定電流値を蓄電池12の自然放電する電流値以下に設定すると、充電動作は終了することなく継続されるものである。   Therefore, the charging voltage Vp to the storage battery 12 is always performed within a range of 10% of the generated power of the solar battery. When it is determined in step S10 that the storage battery 12 is fully charged (when the charging current Ip to the storage battery 12 becomes equal to or less than a predetermined current value), the process proceeds to step S11 and the charging is terminated. If the predetermined current value is set to be equal to or less than the current value of the storage battery 12 that spontaneously discharges, the charging operation is continued without ending.

蓄電池12が放電を行う場合は、単相ブリッジ回路14のスイッチング素子を充電の時と同様にPWM制御で疑似正弦波を生成しトランス15の2次側に出力する。この出力により、トランス15の1次側に誘起した交流電力は単相ブリッジ回路13のスイッチング素子に並列に接続されているダイオードを介して全波整流されコンデンサ、開閉接片16を介して接続点Vに供給される。この接続点Vに供給される直流電力の電圧は例えば300vであり、太陽電池の発電時の開放電圧付近に設定するがこれに限るものではなく、電力変換装置3の入力条件に合わせて設定すればよい。また、接続点Vに供給する直流電力には上限を設定している。この上限の値は蓄電池12の容量に合わせて5時間値などで求まる値としている。蓄電池12の放電電力は蓄電池12の端子電圧Vpと電流Ipとの積で求めることができる。   When the storage battery 12 discharges, a pseudo sine wave is generated by PWM control as in the case of charging the switching element of the single-phase bridge circuit 14 and output to the secondary side of the transformer 15. With this output, the AC power induced on the primary side of the transformer 15 is full-wave rectified via a diode connected in parallel to the switching element of the single-phase bridge circuit 13 and connected via a capacitor and an opening / closing contact 16. V is supplied. The voltage of the DC power supplied to the connection point V is, for example, 300 V, and is set in the vicinity of the open-circuit voltage at the time of power generation by the solar cell, but is not limited to this and should be set according to the input conditions of the power converter 3. That's fine. An upper limit is set for the DC power supplied to the connection point V. This upper limit value is a value obtained by a 5-hour value or the like according to the capacity of the storage battery 12. The discharge power of the storage battery 12 can be determined by the product of the terminal voltage Vp and the current Ip of the storage battery 12.

系統5の停電時などに蓄電池12の放電を行うときは系統5を遮断して電力変換装置3の切換え接片9a、9bを切り替えて交流電力を自立運転用コンセント10へ供給するものである。尚、太陽電池が発電をしている時は、この発電電力と蓄電池12の放電電力との両方を電力変換装置3へ供給させることもできる。   When discharging the storage battery 12 at the time of a power failure of the system 5, the system 5 is shut off and the switching contacts 9 a and 9 b of the power conversion device 3 are switched to supply AC power to the independent operation outlet 10. When the solar cell is generating power, both the generated power and the discharged power of the storage battery 12 can be supplied to the power conversion device 3.

図3は蓄電装置の他の実施例を示す説明図であり、図1に記載の構成と同じものは同一の符号を付して説明は省略する。20、22は直列に接続されたスイッチング素子でありそれぞれ並列にダイオード21、23が接続されている。この直列接続された回路にはコンデンサ24が並列に接続されプラス側が開閉スイッチ16を介して接続点Vに繋がっている。スイッチング素子20とスイッチング素子22との接続点はリアクタ25を介して蓄電池12に繋がっているものである。   FIG. 3 is an explanatory view showing another embodiment of the power storage device. The same components as those shown in FIG. Reference numerals 20 and 22 denote switching elements connected in series, and diodes 21 and 23 are connected in parallel, respectively. In this series-connected circuit, a capacitor 24 is connected in parallel, and the plus side is connected to the connection point V via the open / close switch 16. A connection point between the switching element 20 and the switching element 22 is connected to the storage battery 12 through the reactor 25.

このような回路において、蓄電池12を充電する際は、蓄電池12に印加される充電電圧Vpが電圧Vp’に成るようにスイッチング素子20のon/offが制御される降圧回路を構成している。尚、この時、スイッチング素子22はoff状態のままである。降圧による充電電圧の安定化を行っているので、接続点Vの電圧が所定電圧以上、少なくとも蓄電池12の充電電圧より高い電圧でなければならない。蓄電池12の定格電圧が48Vであり、充電電圧が52.8Vであれば接続点Vの電圧Vは少なくとも60V程度以上が必要であり、図3の蓄電装置では接続点Vの電圧、すなわち太陽電池1の出力電圧が60V以上の際に動作するように図2に示すフローチャート修正すればよい。   In such a circuit, when charging the storage battery 12, a step-down circuit is configured in which the on / off of the switching element 20 is controlled so that the charging voltage Vp applied to the storage battery 12 becomes the voltage Vp ′. At this time, the switching element 22 remains in the off state. Since the charging voltage is stabilized by step-down, the voltage at the connection point V must be a predetermined voltage or higher and at least higher than the charging voltage of the storage battery 12. If the rated voltage of the storage battery 12 is 48V and the charging voltage is 52.8V, the voltage V at the connection point V needs to be at least about 60V. In the power storage device of FIG. The flowchart shown in FIG. 2 may be modified so that it operates when the output voltage of 1 is 60 V or higher.

蓄電池12から放電を行う場合は、スイッチング素子20をoff状態に維持してスイッチング素子22をon/offさせることによってリアクタ25、ダイオード21、コンデンサ24と共に昇圧回路が構成される。汎用の非絶縁型のスイッチング電源に相当する回路を構成するので詳細な説明は省略する。接続点Vに供給する電圧は例えば300Vであり、スイッチング素子22のONデューティを変えるフィードバック制御が行われるものである。   When discharging from the storage battery 12, the booster circuit is configured together with the reactor 25, the diode 21, and the capacitor 24 by maintaining the switching element 20 in the off state and turning the switching element 22 on / off. Since a circuit corresponding to a general-purpose non-insulated switching power supply is configured, detailed description thereof is omitted. The voltage supplied to the connection point V is, for example, 300 V, and feedback control for changing the ON duty of the switching element 22 is performed.

このような充放電回路では、充電時に昇圧をする必要がないため充電回路が簡単になり蓄電装置の小型化、軽量化が可能になるものである。   In such a charge / discharge circuit, it is not necessary to increase the voltage at the time of charging, so that the charging circuit is simplified and the power storage device can be reduced in size and weight.

1 太陽電池
3 電力変換装置
5 系統
11 蓄電装置
12 蓄電池
13、14 単相インバータ回路
15 リアクタ
17、18 電流検出器
DESCRIPTION OF SYMBOLS 1 Solar cell 3 Power converter device 5 System | strain 11 Power storage device 12 Storage battery 13, 14 Single phase inverter circuit 15 Reactor 17, 18 Current detector

Claims (6)

太陽電池で発電された直流電力を交流電力に変換した後、系統へ重畳するように成した電力変換装置の前記太陽電池と電力変換装置とをつなぐ電力線に接続され、前記太陽電池で発電された直流電力の内予め設定された所定の割合を超えない範囲で前記太陽電池で発電された直流電力を昇圧若しくは降圧して蓄電池へ充電する充電回路と、前記蓄電池の出力を所定の電圧に昇圧して前記電力線へ供給する昇圧回路とを備えたことを特徴とする蓄電装置。 After the DC power generated by the solar cell is converted to AC power, it is connected to a power line connecting the solar cell and the power conversion device of the power conversion device configured to be superimposed on the system, and is generated by the solar cell. A charging circuit for boosting or stepping down DC power generated by the solar battery to charge the storage battery within a range not exceeding a predetermined ratio of DC power set in advance, and boosting the output of the storage battery to a predetermined voltage And a step-up circuit that supplies the power line. 太陽電池で発電された直流電力を交流電力に変換した後、系統へ重畳するように成した電力変換装置の前記太陽電池と電力変換装置とをつなぐ電力線に接続され、前記電力変換装置へ供給される直流電力の内予め設定された所定の割合を超えない範囲で前記太陽電池で発電された直流電力を昇圧若しくは降圧して蓄電池へ充電する充電回路と、前記蓄電池の出力を所定の電圧に昇圧して前記電力線へ供給する昇圧回路と、を備えたことを特徴とする蓄電装置。 After the DC power generated by the solar cell is converted to AC power, it is connected to the power line connecting the solar cell and the power converter of the power converter configured to be superimposed on the system, and supplied to the power converter A charging circuit for boosting or stepping down the DC power generated by the solar battery and charging the storage battery within a range not exceeding a predetermined ratio set in advance, and boosting the output of the storage battery to a predetermined voltage And a booster circuit that supplies the power line to the power line. 太陽電池の出力を交流電力に変換した後、系統へ重畳するように成した電力変換装置の前記太陽電池と電力変換装置とをつなぐ電力線に接続され、前記太陽電池で発電された直流電力又は前記電力変換装置へ供給される直流電力の内予め設定された所定の割合を超えない範囲でこれら直流電力を降圧して蓄電池へ充電する充電回路と、前記蓄電池の出力を所定の電圧に昇圧して前記電力線へ供給する昇圧回路とを備え、前記蓄電池への充電は前記直流出力が前記蓄電池の定格電圧より高い所定の電圧を超えている時に行われることを特徴とする蓄電装置。 After converting the output of the solar cell into alternating current power, connected to the power line connecting the solar cell and the power conversion device of the power conversion device configured to be superimposed on the system, the DC power generated by the solar cell or the A charging circuit that steps down the DC power and charges the storage battery within a range that does not exceed a predetermined ratio of DC power supplied to the power converter, and boosts the output of the storage battery to a predetermined voltage. And a booster circuit for supplying power to the power line, wherein the storage battery is charged when the DC output exceeds a predetermined voltage higher than a rated voltage of the storage battery. 前記蓄電池は鉛蓄電池であり、複数の鉛電池を組み合わせて得られる前記定格電圧より所定値高い電圧で定電圧充電を行い、この定電圧充電に要する電力が前記予め設定された所定の割合に相当する電力を上回った際にはこの定電圧充電に用いる電圧を下げることを特徴とする請求項1乃至請求項3に記載の蓄電装置。 The storage battery is a lead storage battery, and constant voltage charging is performed at a voltage higher than the rated voltage obtained by combining a plurality of lead batteries, and the power required for the constant voltage charging corresponds to the predetermined ratio set in advance. The power storage device according to any one of claims 1 to 3, wherein a voltage used for the constant voltage charging is reduced when the power to be exceeded is exceeded. 前記所定の割合は10%から20%の範囲であることを特徴とする請求項1乃至請求項4のいずれかに記載の蓄電装置。 The power storage device according to any one of claims 1 to 4, wherein the predetermined ratio is in a range of 10% to 20%. 蓄電池の放電はスイッチ操作に応じて開始されることを特徴とする請求項1乃至請求項5のいずれかに記載の蓄電装置。 The power storage device according to any one of claims 1 to 5, wherein discharging of the storage battery is started in response to a switch operation.
JP2013522923A 2011-06-30 2012-06-28 Power storage device Expired - Fee Related JP5810254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522923A JP5810254B2 (en) 2011-06-30 2012-06-28 Power storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011145718 2011-06-30
JP2011145718 2011-06-30
JP2013522923A JP5810254B2 (en) 2011-06-30 2012-06-28 Power storage device
PCT/JP2012/066476 WO2013002302A1 (en) 2011-06-30 2012-06-28 Storage device

Publications (2)

Publication Number Publication Date
JPWO2013002302A1 true JPWO2013002302A1 (en) 2015-02-23
JP5810254B2 JP5810254B2 (en) 2015-11-11

Family

ID=47424189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522923A Expired - Fee Related JP5810254B2 (en) 2011-06-30 2012-06-28 Power storage device

Country Status (2)

Country Link
JP (1) JP5810254B2 (en)
WO (1) WO2013002302A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2933895B2 (en) 2014-04-14 2021-11-03 AmbiBox GmbH Control method and system with an inverter, a direct current source and a further direct current source or a direct current sink
JP2017051083A (en) * 2015-09-02 2017-03-09 清水建設株式会社 Power generation system, power generation method and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110153098A1 (en) * 2009-12-21 2011-06-23 Hitachi, Ltd. Renewable electricity generation system, electric power measurement device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110153098A1 (en) * 2009-12-21 2011-06-23 Hitachi, Ltd. Renewable electricity generation system, electric power measurement device and method

Also Published As

Publication number Publication date
WO2013002302A1 (en) 2013-01-03
JP5810254B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP2011200096A (en) Power storage system
US8704493B2 (en) Battery system
US8907522B2 (en) Grid-connected power storage system and method for controlling grid-connected power storage system
JP5208374B2 (en) Grid interconnection power conditioner and grid interconnection power system
US10811900B2 (en) Uninterruptible power supply system and uninterruptible power supply apparatus
WO2012115098A1 (en) Electricity storage system
JP5929258B2 (en) Power supply system and power supply device
JP5541982B2 (en) DC power distribution system
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP2012161189A (en) Solar battery power charge and discharge control method to storage battery
KR101764651B1 (en) Power applying apparatus and method for controlling connecting photovoltaic power generating apparatus
Parsekar et al. A novel strategy for battery placement in standalone solar photovoltaic converter system
JP5810254B2 (en) Power storage device
KR101851921B1 (en) The Solar Power Grid-connected Power Supply
CN114402525A (en) Photovoltaic optimizer power system supplying power from photovoltaic devices
WO2011118771A1 (en) Charge/discharge system
US11279238B2 (en) Method for controlling power conversion device, and power conversion device
JP5895135B2 (en) Current collection box
US11916511B1 (en) Solar-battery integrated DC system
WO2011118776A1 (en) Power supply system and power generation system
Puhan et al. Design and Modelling of a PV Based Electric Vehicle Charging System
Parihar et al. Least Component Count Off-Grid Solar Photovoltaic Scheme for Rural Household Application
Hong et al. Residential battery energy storage system with 3kWh Li-ion battery pack
JP2017175689A (en) Power conversion apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5810254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees