WO2011118771A1 - Charge/discharge system - Google Patents

Charge/discharge system Download PDF

Info

Publication number
WO2011118771A1
WO2011118771A1 PCT/JP2011/057359 JP2011057359W WO2011118771A1 WO 2011118771 A1 WO2011118771 A1 WO 2011118771A1 JP 2011057359 W JP2011057359 W JP 2011057359W WO 2011118771 A1 WO2011118771 A1 WO 2011118771A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
charge
discharge
voltage
Prior art date
Application number
PCT/JP2011/057359
Other languages
French (fr)
Japanese (ja)
Inventor
健仁 井家
総一 酒井
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011118771A1 publication Critical patent/WO2011118771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a charge / discharge system, and more particularly, to a charge / discharge system including a storage battery capable of storing electric power generated by a power generation device.
  • the output of the power generation device using renewable energy may change rapidly depending on the weather.
  • Such an abrupt change in the output of the power generation apparatus has a significant adverse effect on the frequency stability of the interconnected power system.
  • This adverse effect becomes more prominent as more consumers have power generation devices that use renewable energy. For this reason, when the number of customers who have power generation devices that use renewable energy increases in the future, it is necessary to maintain the stability of the power system by suppressing the rapid change in the output of the power generation devices. Will arise.
  • a power generation system including a storage battery capable of storing the power generated by the power generation device using renewable energy has been proposed.
  • Such a power generation system is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-27797.
  • JP 2009-27797 A includes a solar cell, an inverter (power output unit) connected to the solar cell via a bus, and a power storage unit connected to the bus via a charge / discharge unit.
  • a power generation system is disclosed.
  • the power generated by the power generation device is smaller than the desired amount of power, the power generated by the power generation device and the power stored in the power storage unit are combined. The power is output to the power system via the power output unit.
  • a general power output unit often has a maximum power tracking control function that tracks the maximum power value by changing the voltage, and the power output unit having such a maximum power tracking control function is not provided.
  • the power output unit may malfunction.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a charge / discharge system capable of suppressing malfunction of the power output unit.
  • a charging / discharging system includes a storage battery that is connected to a power generation device and stores power generated by the power generation device, and power that discharges power stored in the storage battery.
  • a discharge power conversion unit for conversion a power output unit connected to the discharge power conversion unit and the power system, and outputting power supplied by the discharge power conversion unit to the power system, and output from the discharge power conversion unit to the power output unit
  • a control unit that controls the output power so that the power changes according to the voltage and has an output characteristic having a peak power.
  • the control unit controls the power output from the discharge power conversion unit to the power output unit so that the power changes according to the voltage and has an output characteristic having a peak power. Since the power output from the power conversion unit has peak power, maximum power tracking control in which the power output unit tracks the maximum value of power by changing the voltage can be appropriately performed. As a result, the power output from the discharge power conversion unit does not have peak power, and the power output unit can be prevented from malfunctioning, unlike when the power is constant even when the voltage is changed. Therefore, the power generation device is connected to the power system via the power output unit, and a storage battery and a control unit are added later to a grid-connected power generation system that does not have a storage battery, thereby facilitating the charge / discharge system according to the present invention. Can be configured.
  • the solar power generation system 1 is connected to a power generation device 2 including a solar battery that generates power using sunlight, a power storage device 3 capable of storing electric power generated by the power generation device 2, and a power system 50.
  • the power output unit 4 includes an inverter that outputs the power stored in the power storage device 3 to the power system 50, and the charge / discharge control unit 5 that controls charging / discharging of the power storage device 3.
  • a load 60 is connected to the AC side bus connecting the power output unit 4 and the power system 50.
  • the power storage device 3 includes a storage battery 31 connected in series to the DC side buses 6 a and 6 b and a charge / discharge unit 32 that charges and discharges the storage battery 31.
  • a secondary battery for example, a Li-ion storage battery, a Ni-MH storage battery, etc.
  • the voltage of the storage battery 31 is about 48V.
  • the charging / discharging unit 32 includes a DC-DC converter 33 provided between the power generation device 2 and the storage battery 31 and connected to the DC side bus 6a.
  • the DC-DC converter 33 steps down the voltage supplied from the power generator 2 to the DC side bus 6a to a voltage suitable for charging the storage battery 31, thereby supplying power from the DC side bus 6a to the storage battery 31 side. It has a function to supply.
  • the DC-DC converter 33 is an example of the “charging power conversion unit” in the present invention.
  • the DC-DC converter 33 performs so-called MPPT (Maximum Power Point Tracking) control.
  • the MPPT control function is a function that automatically adjusts the operating voltage of the power generator 2 so that the power generated by the power generator 2 is maximized. Specifically, in the power-voltage characteristics (PV characteristics) of the solar cell shown in FIG. 2, for example, when the operating voltage is V1 and the generated power is operating at point A of P1, the operating voltage is changed from V1. If the generated power P2 at the voltage V2 is greater than P1 (P1 ⁇ P2) by changing to V2, the operating voltage of the power generator 2 is set to V2 (point B).
  • PV characteristics power-voltage characteristics
  • the MPPT control function monitors the increase / decrease in the generated power and controls the power generator 2 to operate at the maximum power point.
  • a diode (not shown) is provided between the power generator 2 and the DC-DC converter 33 to prevent the current from flowing backward toward the normal power generator 2.
  • the charging / discharging unit 32 includes a DC-DC converter 34 provided between the power output unit 4 and the storage battery 31 and connected to the DC side bus 6b.
  • the DC-DC converter 34 is not connected to the power generator 2 (DC side bus 6a). That is, a path for supplying power from the power generation device 2 to the power storage device 3 (DC-DC converter 33) and a path for outputting power from the DC-DC converter 34 to the power output unit 4 are sandwiched between the power storage devices 3. It is separated. Therefore, DC side bus 6a and DC side bus 6b are also separated with power storage device 3 interposed therebetween.
  • the DC-DC converter 34 boosts the voltage of the power supplied from the storage battery 31 to the DC side bus 6b to near the voltage of the DC side bus 6b, thereby supplying power from the storage battery 31 side to the DC side bus 6b. Has the function of discharging.
  • the DC-DC converter 34 is an example of the “discharge power conversion unit” in the present invention.
  • the charge / discharge control unit 5 is connected to a DC-DC converter 33, a DC-DC converter 34, and a generated power detection unit 7 described later. Then, the charge / discharge control unit 5 performs charge / discharge control of the storage battery 31 by controlling the DC-DC converter 33 and the DC-DC converter 34. Specifically, the charge / discharge control unit 5 charges the storage battery 31 without outputting the power generated by the power generation device 2 to the power output unit 4, and sets output power to be described later from the storage battery 31 to the power output unit 4. It is comprised so that it may output to.
  • the charge / discharge control unit 5 is an example of the “control unit” in the present invention.
  • the charging / discharging control unit 5 is configured so that the output from the DC-DC converter 34 has a voltage-power characteristic (PV characteristic) as indicated by a solid line in FIG.
  • the DC converter 34 is configured to be controlled.
  • the power output unit 4 has an MPPT control function, like the DC-DC converter 33 described above. That is, in the power-voltage characteristic (PV characteristic) of the output of the DC-DC converter 34 shown in FIG. 3, the voltage (Vop) that maximizes the power output from the DC-DC converter 34 is searched. ing.
  • the charge / discharge control unit 5 increases the voltage with respect to the output power of the DC-DC converter 34, reaches a maximum value at the voltage (Vop), and then decreases with the voltage.
  • the power output unit 4 can easily perform the MPPT control. Note that the PV characteristics shown in FIG. 3 are adjusted so as to have a substantially symmetric shape with respect to a straight line passing through a voltage (Vop) at which the output power becomes maximum.
  • the power output output from the DC-DC converter 34 is performed.
  • the duty ratio of the pulse signal (the ratio between the pulse High and Low in one cycle) is changed according to the voltage.
  • the power increases as the voltage increases, and the maximum power is obtained at the voltage (Vop).
  • the PV characteristic of the output power from the DC-DC converter 34 is configured such that the maximum power point can be changed by the control from the charge / discharge control unit 5.
  • a diode (not shown) is provided between the power output unit 4 and the DC-DC converter 34 to prevent a current from flowing backward toward the DC-DC converter 34.
  • a generated power detection unit 7 that detects the generated power of the power generation device 2 is provided. Based on the detection result of the generated power detection unit 7, the charge / discharge control unit 5 can acquire the generated power of the power generation device 2 at predetermined detection time intervals (for example, 30 seconds or less). For example, the charge / discharge control unit 5 acquires the generated power data of the power generation device 2 every 30 seconds.
  • the generated power detection time interval needs to be set to an appropriate value in consideration of the fluctuation cycle of the generated power of the power generator 2 and the like.
  • the detection time interval is set to be shorter than the lower limit cycle of the fluctuation cycle that can be handled by the load frequency control (LFC).
  • the charge / discharge control unit 5 acquires the output power of the power output unit 4 to recognize the difference between the power actually output from the power output unit 4 to the power system 50 and the generated power of the power generation device 2.
  • the charge / discharge of the charge / discharge unit 32 can be feedback controlled.
  • the storage battery 31 is charged once instead of outputting the generated power of the power generation device 2 to the power system 50 as it is.
  • the charge / discharge control unit 5 is configured to preset output power from the storage battery 31 and perform power smoothing control. Specifically, when the generated power of the power generation device 2 is larger than the preset output power (set output power), the storage battery 31 is charged with the power corresponding to the excess, and the generated power of the power generation device 2 Is smaller than the preset output power, control is performed so that the power corresponding to the shortage is supplemented from the storage battery 31.
  • the generated power of the power generator 2 is input / output to the storage battery 31 in small increments, the capacity of the storage battery 31 is reduced unlike the case of using the storage battery 31 for the purpose of peak cutting of power as in the past. Is possible.
  • step S ⁇ b> 1 shown in FIG. 4 the generated power P ⁇ b> 1 of the power generation device 2 at a certain time is detected by the generated power detection unit 7 and taken into the charge / discharge control unit 5.
  • step S2 the generated power P1 of the power generator 2 is charged to the storage battery 31 via the DC bus 6a and the DC-DC converter 33.
  • the DC-DC converter 33 steps down the voltage supplied from the power generator 2 to the DC side bus 6a to a voltage suitable for charging the storage battery 31. That is, the generated power P ⁇ b> 1 generated in the power generation device 2 is not supplied to the power output unit 4 but is charged in the storage battery 31.
  • step S3 the preset set output power P2 is output from the storage battery 31 to the power output unit 4 via the DC-DC converter 34.
  • the DC-DC converter 34 boosts the voltage of the power supplied from the storage battery 31 to the DC side bus 6b to near the voltage of the DC side bus 6b.
  • the generated power P1 is similarly charged in the storage battery 31, and the set output power P2 is output to the power output unit 4.
  • the generated power P1 and the set output power P2 are equal, there is no change in the power charged in the storage battery 31.
  • the generated power P1 of the power generation device 2 varies from moment to moment due to the weather or the like, and the operations of Step S1 to Step S3 are repeated until the operation of the photovoltaic power generation system 1 is completed.
  • the solar power generation system 1 of the first embodiment can obtain the following effects by the above configuration.
  • the charge / discharge control unit 5 changes the power output from the DC-DC converter 34 to the power output unit 4 so that the power changes according to the voltage and has the peak power. Since the power output from the DC-DC converter 34 has a peak power, the power output unit 4 changes the voltage to follow the maximum power value ( MPPT) control can be performed appropriately. Thus, unlike the case where the power output from the DC-DC converter 34 does not have peak power and the power is constant even when the voltage is changed, the power output unit 4 can be prevented from malfunctioning. it can.
  • the power storage device 3 and the charge / discharge control unit 5 are added later to a grid-connected power generation system in which the power generation device 2 is connected to the power system 50 via the power output unit 4 and does not have the power storage device 3.
  • the power generation system according to the present invention can be easily configured.
  • the power output unit 4 is configured such that maximum power follow-up control is performed so that the power output from the DC-DC converter 34 is maximized, and charging / discharging is performed.
  • the control unit 5 causes the power output from the DC-DC converter 34 to the power output unit 4 so that the power output unit 4 can easily perform the maximum power tracking control.
  • the charge / discharge control unit 5 can easily perform the maximum power follow-up control by the power output unit 4 so that the output characteristic of the power output from the DC-DC converter 34 is improved. Therefore, the maximum power tracking control can be appropriately performed using the conventional power output unit 4 having the maximum power tracking control function.
  • the charge / discharge control unit 5 performs PWM control on the power output from the DC-DC converter 34 and is output from the DC-DC converter 34 to the power output unit 4.
  • the duty ratio of the pulse signal for power control High and Low of the pulse in one cycle
  • the power (current) output from the DC-DC converter 34 can be changed, so that the power output from the DC-DC converter 34 to the power output unit 4 can be easily changed.
  • the output can be controlled so that the power changes according to the voltage and the output characteristic has the peak power.
  • the direct current side bus 6b provided separately from the direct current side bus 6a. It is connected to the power output unit 4 and configured to output power from the DC-DC converter 34 to the power output unit 4 via the DC bus 6b, so that power can be supplied from the power generator 2 to the power storage device 3.
  • the charge / discharge control unit 5 is substantially symmetric with respect to the straight line through which the power output from the DC-DC converter 34 to the power output unit 4 passes the voltage corresponding to the peak power.
  • the power output from the DC-DC converter 34 is controlled by controlling the output power to have a proper output characteristic. Since the same operation is performed before and after the voltage corresponding to the peak power, the operation for controlling the power output from the DC-DC converter 34 can be easily performed.
  • the configuration of the solar power generation system 1a according to the second embodiment will be described with reference to FIG.
  • the DC side bus 6a charged with the power generated by the power generation device 2 and the DC side bus 6b discharged with the power output unit 4 are separated with the power storage device 3 interposed therebetween.
  • the power generation device 2 and the power output unit 4 are directly electrically connected by the DC side bus 6c.
  • Other parts are the same as those in the first embodiment.
  • the power generation device 2 and the power output unit 4 are directly electrically connected via the DC side bus 6c.
  • the storage battery 31 is connected in parallel to the DC side bus 6c. Between the power generation device 2 and the storage battery 31, the voltage supplied from the power generation device 2 to the DC side bus 6 c is stepped down to a voltage suitable for charging the storage battery 31, whereby the storage battery is connected from the DC side bus 6 c side.
  • a DC-DC converter 33a having a function of supplying power to the 31 side is provided.
  • a DC-DC converter 34a having a function of discharging electric power is provided on the bus 6c side.
  • the DC-DC converters 33a and 34a are examples of the “charge power conversion unit” and the “discharge power conversion unit” of the present invention, respectively.
  • the DC-DC converter 33a adjusts the power input to the DC-DC converter 33a so as to change according to the voltage and to have a peak power characteristic (see FIG. 13).
  • the input characteristic (PV characteristic) of the electric power input to the DC-DC converter 33a is a PV characteristic approximate to the output characteristic (see FIG. 12) of the electric power generated by the power generator 2. That is, the power gradually increases with the voltage, and the power suddenly decreases with the voltage after the voltage at which the output power becomes maximum.
  • the DC-DC converter 34a also changes the power output from the DC-DC converter 34a to the power output unit 4 according to the voltage and has a PV characteristic having peak power. It is adjusted so that it may become (refer FIG. 18). As a result, the power output unit 4 can easily perform MPPT control.
  • step S ⁇ b> 11 shown in FIG. 8 the generated power P ⁇ b> 1 of the power generation device 2 at a certain time is detected by the generated power detection unit 7 and taken into the charge / discharge control unit 5.
  • the charge / discharge control unit 5 calculates the target output power P2 by the moving average method using the average value of the 40 generated power data included in the past 20 minutes.
  • the moving average method is a calculation method in which the target output power at a certain point in time is an average value of the generated power of the power generation device 2 in the past period from that point.
  • Past generated power data is sequentially stored in the memory 5a.
  • a period for acquiring generated power data used for calculation of target output power is referred to as a sampling period.
  • the sampling period is a range between the lower limit period T2 and the upper limit period T1 of the load fluctuation period corresponding to the load frequency control (LFC), particularly in the range from the second half (near the long period) to the period exceeding T1, which does not extend for a long time. It is preferable to do.
  • a specific value of the sampling period is, for example, a period of about 10 minutes or more and about 30 minutes or less in a power system having a “load fluctuation magnitude—fluctuation period” characteristic as shown in FIG.
  • the sampling period is about 20 minutes. In this case, since the charge / discharge control unit 5 acquires the generated power data of the power generator 2 approximately every 30 seconds, the average value of the 40 generated power data included in the past 20 minutes is calculated as the target output power. is doing.
  • the target output power is calculated from the generated power of the past power generator 2, and the discharge of the storage battery 31 is controlled so that the discharge amount of the storage battery 31 becomes the target output power.
  • Charge / discharge control which is control for outputting electric power to the electric power system 50, is performed. That is, as shown in FIG. 10, when the generated power of the power generation device 2 is larger than the target output power, the charge / discharge control unit 5 charges the storage battery 31 with the power corresponding to the excess amount and reduces the shortage amount.
  • it is configured to suppress adverse effects on the power system 50 due to fluctuations in the generated power of the power generation device 2 due to the presence or absence of clouds or the like.
  • step S13 it is determined whether or not the generated power P1 of the power generator 2 is larger than the target output power P2.
  • the process proceeds to step S14, and the power corresponding to the target output power P2 as shown in FIG. Is output from the power generator 2 to the power output unit 4 via the DC bus 6c. Further, the process proceeds to step S15, and the storage battery 31 is charged with the power (P1-P2) corresponding to the difference between the generated power P1 of the power generator 2 and the target output power P2 via the DC-DC converter 33a.
  • the power generated by the power generation device 2 has a PV characteristic in which the power changes according to the voltage and has peak power, as shown in FIG.
  • the electric power input from the electric power generating apparatus 2 is PWM-controlled, and as shown in FIG. 13, the characteristic approximated to the output characteristic of the electric power generated by the electric power generating apparatus 2 (the electric power changes according to the voltage). And a characteristic having a peak power).
  • the PV characteristic the characteristic obtained by subtracting the PV characteristic shown in FIG. 13 from the PV characteristic shown in FIG. 12
  • the PV characteristic approximated to the output characteristic of the power generated by the power generation device 2 is obtained.
  • the shape of the PV characteristic also changes depending on the weather as shown by the solid line, the dotted line, and the one-dot chain line in FIG.
  • the DC-DC converter according to the comparative example is configured such that the power input to the DC-DC converter is substantially constant regardless of the voltage.
  • the PV characteristics as shown in FIG. 16 are obtained. That is, there is a region where the power is negative in the region where the voltage is low and the region where the voltage is high. In a region where the voltage is high, there is a region where the power is negative and the voltage is almost constant regardless of the voltage. In a region where the electric power is substantially constant regardless of the voltage, it becomes difficult for the power output unit 4 to find a point where the electric power is maximum, and malfunction may occur.
  • step S16 the generated power P1 of the power generator 2 and the target output power P2 are equal. It is determined whether or not. If it is determined in step S16 that the generated power P1 of the power generator 2 and the target output power P2 are not equal (that is, the generated power P1 of the power generator 2 is smaller than the target output power P2), step S16 is performed. Proceeding to S17, as shown in FIG. 17, all the generated power P1 of the power generator 2 is output to the power output unit 4 via the DC side bus 6c.
  • step S18 the process proceeds to step S18, and the power (P2-P1) corresponding to the difference between the target output power P2 and the generated power P1 of the power generator 2 is discharged to the power output unit 4 via the DC-DC converter 34a.
  • the electric power discharged from the storage battery 31 is a PV characteristic approximating the electric power generated by the power generation device 2 (PV having a peak electric power as the electric power changes depending on the voltage).
  • the DC-DC converter 34a As a result, the PV characteristics when the power output from the power generator 2 to the power output section 4 and the power discharged from the storage battery 31 to the power output section 4 are combined (the PV characteristics shown in FIG. 12).
  • the characteristic obtained by adding up the PV characteristics shown in FIG. 18 has a peak power as the power changes according to the voltage.
  • the electric power generated by the power generation apparatus 2 changes from moment to moment depending on the weather and the like, and the shape of the PV characteristic of the electric power output from the storage battery 31 to the electric power output unit 4 is also shown by the solid line, dotted line, As shown by the one-dot chain line, it varies depending on the weather. As a result, as shown in FIG. 19, the combined power of the power generated by the power generation device 2 and the power discharged from the storage battery 31 is also changed according to the weather and output.
  • the DC-DC converter according to the comparative example is configured such that the power discharged from the DC-DC converter to the power output unit is substantially constant regardless of the voltage.
  • the PV characteristics as shown in FIG. 21 are obtained.
  • the region where the voltage is high there is a region where the power is almost constant regardless of the voltage.
  • the power output unit 4 it becomes difficult for the power output unit 4 to find a point where the electric power is maximum, and malfunction may occur.
  • the electrical storage apparatus 3 is connected to the direct current
  • the unit 5 to control the power output from the DC-DC converter 34a to the power output unit 4 so as to have an output characteristic approximate to the output characteristic of the power generated by the power generation device 2, Since the output characteristics of the power generated by the power generated by the power generator 2 and the power discharged from the DC-DC converter 34a approximate the output characteristics of the power generated by the power generator 2, the maximum power A conventional power output unit 4 having a tracking control function can be used.
  • the solar power generation system 1a of the second embodiment can obtain the following effects by the above configuration.
  • the charge / discharge control unit 5 performs PWM control of the DC-DC converter 33a, even when the power charged in the power storage device 3 is subtracted from the power generated by the power generation device 2, the power output unit Since the output characteristic of the power output to 4 approximates the output characteristic of the power generated by the power generator 2, the conventional power output unit 4 having the maximum power tracking control function can be used.
  • the power input to the DC-DC converter 33a ( Current) can be controlled such that the power changes according to the voltage and the input characteristic has a peak power.
  • the present invention is not limited to this, and a voltage other than 48V may be used.
  • the present invention is not limited to the specific values such as the sampling period and the bus voltage described in the above embodiment, and can be appropriately changed.
  • the output characteristic of the power input to the DC-DC converter is adjusted by changing the duty ratio of the power input to the DC-DC converter.
  • the present invention is not limited to this, and the output characteristics of the power input to the DC-DC converter may be adjusted by a method other than the method of changing the duty ratio of the power.
  • the input characteristics of the power input to the DC-DC converter may be adjusted by providing a resistor in the DC-DC converter and adjusting the magnitude of the current input to the DC-DC converter.
  • the PV characteristics of the power input to the DC-DC converter 34 are substantially symmetrical with respect to a straight line passing through the voltage (Vop) at which the output power is maximized (see FIG. 3).
  • the present invention is not limited to this example, and the PV characteristics of the power input to the DC-DC converter 34 are represented by the P ⁇ of the power generated by the power generator.
  • the PV characteristic may be approximated to the V characteristic (see FIG. 12).

Abstract

Disclosed is a charge/discharge system provided with the following: a storage battery for storing power generated by a power generator, a discharge power conversion unit — for converting power — that discharges stored power, a power output unit for outputting power, supplied by the discharge power conversion unit, to the power system, and a control unit for controlling power that is output from the discharge power conversion unit to the power output unit in a manner such that the power changes according to voltage and the output characteristics have a power peak.

Description

充放電システムCharge / discharge system
 本発明は、充放電システムに関し、特に、発電装置により発電された電力を蓄電可能な蓄電池を備えた充放電システムに関する。 The present invention relates to a charge / discharge system, and more particularly, to a charge / discharge system including a storage battery capable of storing electric power generated by a power generation device.
 近年、変電所からの交流電力の供給を受ける各需要家(たとえば、住宅や工場など)に、風力や太陽光などの再生可能エネルギーを利用した発電装置(太陽電池など)が設けられるケースが増加している。このような発電装置は、変電所の配下に設けられる電力系統に接続され、発電装置により発電された電力は、需要家内の電力消費装置側に出力される。また、需要家内の電力消費装置により消費されずに余った電力は、電力系統に出力される。この需要家から電力系統に向かう電力の流れは、「逆潮流」と呼ばれ、需要家から電力系統に出力される電力は「逆潮流電力」と呼ばれる。 In recent years, an increasing number of customers (for example, houses and factories) receiving AC power from substations are provided with power generation devices (solar cells, etc.) that use renewable energy such as wind power and solar power. is doing. Such a power generator is connected to a power system provided under the substation, and the power generated by the power generator is output to the power consuming device in the consumer. Further, surplus power that is not consumed by the power consuming device in the consumer is output to the power system. The flow of power from the consumer to the power system is called “reverse power flow”, and the power output from the customer to the power system is called “reverse power flow”.
 ここで、電力会社等の電力供給者には、電力の安定供給の義務が課されており、逆潮流電力分も含めた電力系統全体における周波数や電圧を一定に保つ必要がある。 Here, power suppliers such as electric power companies are obligated to stably supply power, and it is necessary to keep the frequency and voltage of the entire power system including the reverse power flow constant.
 しかし、再生可能エネルギーを利用した発電装置の出力は、天候などに応じて急激に変化することがある。このような発電装置の出力の急激な変化は、連系している電力系統の周波数の安定度に大きな悪影響を与えてしまう。この悪影響は、再生可能エネルギーを利用した発電装置を有する需要家が増えるほど顕著になってくる。このため、今後、再生可能エネルギーを利用した発電装置を有する需要家がさらに増えてきた場合には、発電装置の出力の急激な変化を抑制することにより、電力系統の安定度を維持する必要が生じてくる。 However, the output of the power generation device using renewable energy may change rapidly depending on the weather. Such an abrupt change in the output of the power generation apparatus has a significant adverse effect on the frequency stability of the interconnected power system. This adverse effect becomes more prominent as more consumers have power generation devices that use renewable energy. For this reason, when the number of customers who have power generation devices that use renewable energy increases in the future, it is necessary to maintain the stability of the power system by suppressing the rapid change in the output of the power generation devices. Will arise.
 そこで、従来、このような発電装置の出力の急激な変化を抑制するために、再生可能エネルギーを利用した発電装置により発電された電力を蓄電可能な蓄電池を備えた発電システムが提案されている。このような発電システムは、たとえば、特開2009-27797号公報に開示されている。 Therefore, conventionally, in order to suppress such a rapid change in the output of the power generation device, a power generation system including a storage battery capable of storing the power generated by the power generation device using renewable energy has been proposed. Such a power generation system is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-27797.
 上記特開2009-27797号公報には、太陽電池と、母線を介して太陽電池に接続されるインバータ(電力出力部)と、母線に充放電部を介して接続された電力貯蔵部とを備えた発電システムが開示されている。上記特開2009-27797号公報では、発電装置によって発電された電力が所望の電力量よりも小さい場合には、発電装置によって発電された電力と電力貯蔵部に蓄電されていた電力とが合わせられて、電力出力部を介して電力系統に出力されるように構成されている。これにより、電力系統への出力電力の変動を抑制することが可能であるので、電力系統の周波数などへの悪影響を抑制することが可能である。 JP 2009-27797 A includes a solar cell, an inverter (power output unit) connected to the solar cell via a bus, and a power storage unit connected to the bus via a charge / discharge unit. A power generation system is disclosed. In the above Japanese Patent Application Laid-Open No. 2009-27797, when the power generated by the power generation device is smaller than the desired amount of power, the power generated by the power generation device and the power stored in the power storage unit are combined. The power is output to the power system via the power output unit. Thereby, since it is possible to suppress the fluctuation | variation of the output electric power to an electric power grid | system, it is possible to suppress the bad influence to the frequency etc. of an electric power grid | system.
特開2009-27797号公報JP 2009-27797 A
 しかしながら、一般的な電力出力部は、電圧を変化させて電力の最大値を追従する最大電力追従制御機能を有している場合が多く、このような最大電力追従制御機能を有する電力出力部を上記特開2009-27797号公報のような充放電部からの電力特性が調整されていない構成に適用した場合には、電力出力部が誤動作する場合があるという問題点がある。 However, a general power output unit often has a maximum power tracking control function that tracks the maximum power value by changing the voltage, and the power output unit having such a maximum power tracking control function is not provided. When applied to a configuration in which the power characteristics from the charging / discharging unit are not adjusted as described in JP 2009-27797 A, there is a problem in that the power output unit may malfunction.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、電力出力部の誤動作を抑制することが可能な充放電システムを提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a charge / discharge system capable of suppressing malfunction of the power output unit.
 上記目的を達成するために、この発明の一の局面による充放電システムは、発電装置に接続され、発電装置により発電された電力を蓄電する蓄電池と、蓄電池に蓄電された電力を放電する電力に変換する放電電力変換部と、放電電力変換部および電力系統に接続され、放電電力変換部により供給される電力を電力系統に出力する電力出力部と、放電電力変換部から電力出力部に出力される電力を、電圧に応じて電力が変化するとともにピーク電力を有する出力特性になるように制御する制御部とを備える。 In order to achieve the above object, a charging / discharging system according to one aspect of the present invention includes a storage battery that is connected to a power generation device and stores power generated by the power generation device, and power that discharges power stored in the storage battery. A discharge power conversion unit for conversion, a power output unit connected to the discharge power conversion unit and the power system, and outputting power supplied by the discharge power conversion unit to the power system, and output from the discharge power conversion unit to the power output unit And a control unit that controls the output power so that the power changes according to the voltage and has an output characteristic having a peak power.
 本発明によれば、制御部が、放電電力変換部から電力出力部に出力される電力を、電圧に応じて電力が変化するとともにピーク電力を有する出力特性になるように制御することによって、放電電力変換部から出力される電力がピーク電力を有しているので、電力出力部が電圧を変化させて電力の最大値を追従する最大電力追従制御を適切に行うことができる。これにより、放電電力変換部から出力される電力が、ピーク電力を有さずに、電圧を変化させても電力が一定の場合と異なり、電力出力部が誤動作するのを抑制することができる。したがって、発電装置が電力出力部を介して電力系統に接続され、蓄電池を有さない系統連系の発電システムに、蓄電池および制御部を後から追加して本発明に係わる充放電システムを容易に構成することができる。 According to the present invention, the control unit controls the power output from the discharge power conversion unit to the power output unit so that the power changes according to the voltage and has an output characteristic having a peak power. Since the power output from the power conversion unit has peak power, maximum power tracking control in which the power output unit tracks the maximum value of power by changing the voltage can be appropriately performed. As a result, the power output from the discharge power conversion unit does not have peak power, and the power output unit can be prevented from malfunctioning, unlike when the power is constant even when the voltage is changed. Therefore, the power generation device is connected to the power system via the power output unit, and a storage battery and a control unit are added later to a grid-connected power generation system that does not have a storage battery, thereby facilitating the charge / discharge system according to the present invention. Can be configured.
本発明の第1実施形態による発電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the electric power generation system by 1st Embodiment of this invention. 太陽電池の電力-電圧特性を示す図である。It is a figure which shows the electric power-voltage characteristic of a solar cell. 本発明の第1実施形態によるDC-DCコンバータから出力される電力の電力-電圧特性を示す図である。It is a figure which shows the power-voltage characteristic of the electric power output from the DC-DC converter by 1st Embodiment of this invention. 本発明の第1実施形態による発電システムの制御フローを説明するためのフローチャートである。It is a flowchart for demonstrating the control flow of the electric power generation system by 1st Embodiment of this invention. 本発明の第1実施形態による発電システムの発電電力が設定出力電力よりも大きい場合の動作を示すブロック図である。It is a block diagram which shows operation | movement when the generated electric power of the electric power generation system by 1st Embodiment of this invention is larger than setting output electric power. 本発明の第1実施形態による発電システムの発電電力が設定出力電力よりも小さい場合の動作を示すブロック図である。It is a block diagram which shows operation | movement when the generated electric power of the electric power generation system by 1st Embodiment of this invention is smaller than setting output electric power. 本発明の第2実施形態による発電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the electric power generation system by 2nd Embodiment of this invention. 本発明の第2実施形態による発電システムの制御フローを説明するためのフローチャートである。It is a flowchart for demonstrating the control flow of the electric power generation system by 2nd Embodiment of this invention. 電力系統に出力される負荷変動の大きさと変動周期との関係を説明するための図である。It is a figure for demonstrating the relationship between the magnitude | size of the load fluctuation | variation output to an electric power grid | system, and a fluctuation period. 本発明の第2実施形態による発電システムの発電電力の推移および目標出力電力について説明するための図である。It is a figure for demonstrating transition of the generated electric power and target output electric power of the electric power generation system by 2nd Embodiment of this invention. 本発明の第2実施形態による発電システムの発電電力が目標出力電力よりも大きい場合の動作を示すブロック図である。It is a block diagram which shows operation | movement when the generated electric power of the electric power generation system by 2nd Embodiment of this invention is larger than target output electric power. 本発明の第2実施形態による発電装置の電力-電圧特性を示す図である。It is a figure which shows the electric power-voltage characteristic of the electric power generating apparatus by 2nd Embodiment of this invention. 本発明の第2実施形態による蓄電池に充電される電力の電力-電圧特性を示す図である。It is a figure which shows the power-voltage characteristic of the electric power charged by the storage battery by 2nd Embodiment of this invention. 本発明の第2実施形態による電力出力部に出力される電力の電力-電圧特性を示す図である。It is a figure which shows the power-voltage characteristic of the electric power output to the electric power output part by 2nd Embodiment of this invention. 比較例による蓄電池に充電される電力の電力-電圧特性を示す図である。It is a figure which shows the electric power-voltage characteristic of the electric power charged by the storage battery by a comparative example. 比較例による電力出力部に出力される電力の電力-電圧特性を示す図である。It is a figure which shows the power-voltage characteristic of the electric power output to the electric power output part by a comparative example. 本発明の第2実施形態による発電システムの発電電力が目標出力電力よりも小さい場合の動作を示すブロック図である。It is a block diagram which shows operation | movement when the generated electric power of the electric power generation system by 2nd Embodiment of this invention is smaller than target output electric power. 本発明の第2実施形態による蓄電池からDC-DCコンバータを介して放電される電力の電力-電圧特性を示す図である。It is a figure which shows the power-voltage characteristic of the electric power discharged through the DC-DC converter from the storage battery by 2nd Embodiment of this invention. 本発明の第2実施形態による電力出力部に出力される電力の電力-電圧特性を示す図である。It is a figure which shows the power-voltage characteristic of the electric power output to the electric power output part by 2nd Embodiment of this invention. 比較例による蓄電池からDC-DCコンバータを介して放電される電力の電力-電圧特性を示す図である。It is a figure which shows the power-voltage characteristic of the electric power discharged through the DC-DC converter from the storage battery by a comparative example. 比較例による電力出力部に出力される電力の電力-電圧特性を示す図である。It is a figure which shows the power-voltage characteristic of the electric power output to the electric power output part by a comparative example.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1実施形態)
 まず、図1~図5を参照して、本発明の第1実施形態による発電システム(太陽光発電システム1)の構造を説明する。
(First embodiment)
First, the structure of the power generation system (solar power generation system 1) according to the first embodiment of the present invention will be described with reference to FIGS.
 第1実施形態による太陽光発電システム1は、太陽光を用いて発電する太陽電池からなる発電装置2と、発電装置2により発電された電力を蓄電可能な蓄電装置3と、電力系統50に接続され、蓄電装置3により蓄電された電力を電力系統50に出力するインバータを含む電力出力部4と、蓄電装置3の充放電を制御する充放電制御部5とを備えている。また、電力出力部4と電力系統50とを接続する交流側母線には、負荷60が接続されている。 The solar power generation system 1 according to the first embodiment is connected to a power generation device 2 including a solar battery that generates power using sunlight, a power storage device 3 capable of storing electric power generated by the power generation device 2, and a power system 50. The power output unit 4 includes an inverter that outputs the power stored in the power storage device 3 to the power system 50, and the charge / discharge control unit 5 that controls charging / discharging of the power storage device 3. Further, a load 60 is connected to the AC side bus connecting the power output unit 4 and the power system 50.
 また、蓄電装置3は、直流側母線6aおよび6bに直列的に接続された蓄電池31と、蓄電池31の充放電を行う充放電部32とを含んでいる。蓄電池31としては、自然放電が少なく、充放電効率の高い2次電池(たとえば、Li-ion蓄電池、Ni-MH蓄電池など)が用いられている。また、蓄電池31の電圧は約48Vである。 The power storage device 3 includes a storage battery 31 connected in series to the DC side buses 6 a and 6 b and a charge / discharge unit 32 that charges and discharges the storage battery 31. As the storage battery 31, a secondary battery (for example, a Li-ion storage battery, a Ni-MH storage battery, etc.) that has low spontaneous discharge and high charge / discharge efficiency is used. The voltage of the storage battery 31 is about 48V.
 ここで、第1実施形態では、充放電部32は、発電装置2と蓄電池31との間に設けられ直流側母線6aに接続されるDC-DCコンバータ33を含んでいる。DC-DCコンバータ33は、発電装置2から直流側母線6aに供給された電圧を、蓄電池31を充電するのに適した電圧まで降圧させることにより、直流側母線6a側から蓄電池31側に電力を供給する機能を有する。なお、DC-DCコンバータ33は、本発明の「充電電力変換部」の一例である。 Here, in the first embodiment, the charging / discharging unit 32 includes a DC-DC converter 33 provided between the power generation device 2 and the storage battery 31 and connected to the DC side bus 6a. The DC-DC converter 33 steps down the voltage supplied from the power generator 2 to the DC side bus 6a to a voltage suitable for charging the storage battery 31, thereby supplying power from the DC side bus 6a to the storage battery 31 side. It has a function to supply. The DC-DC converter 33 is an example of the “charging power conversion unit” in the present invention.
 なお、DC-DCコンバータ33では、いわゆるMPPT(Maximum Power Point Tracking:最大電力追従)制御が行われている。MPPT制御機能とは、発電装置2により発電された電力が最大となるように発電装置2の動作電圧を自動的に調整する機能である。具体的には、図2に示す太陽電池の電力-電圧特性(P-V特性)において、たとえば動作電圧がV1で発電電力がP1のA点で動作している場合に、動作電圧をV1からV2に変化させて電圧V2における発電電力P2がP1よりも大きく(P1<P2)なれば、発電装置2の動作電圧をV2(B点)にする。また、動作電圧がV4で発電電力がP1のD点で発電装置2が動作している場合に、動作電圧をV4からV3に変化させて電圧V3における発電電力P2がP1よりも大きく(P1<P2)なれば、動作電圧をV3(C点)にする。このように、MPPT制御機能とは、発電電力の増減を監視して、発電装置2が最大電力点において動作するように制御するものである。また、発電装置2とDC-DCコンバータ33との間には、通常発電装置2に向かって電流が逆流するのを防止するためのダイオード(図示せず)が設けられている。 The DC-DC converter 33 performs so-called MPPT (Maximum Power Point Tracking) control. The MPPT control function is a function that automatically adjusts the operating voltage of the power generator 2 so that the power generated by the power generator 2 is maximized. Specifically, in the power-voltage characteristics (PV characteristics) of the solar cell shown in FIG. 2, for example, when the operating voltage is V1 and the generated power is operating at point A of P1, the operating voltage is changed from V1. If the generated power P2 at the voltage V2 is greater than P1 (P1 <P2) by changing to V2, the operating voltage of the power generator 2 is set to V2 (point B). Further, when the power generation apparatus 2 is operating at a point D where the operating voltage is V4 and the generated power is P1, the operating voltage is changed from V4 to V3, and the generated power P2 at the voltage V3 is larger than P1 (P1 < If P2), the operating voltage is set to V3 (C point). As described above, the MPPT control function monitors the increase / decrease in the generated power and controls the power generator 2 to operate at the maximum power point. In addition, a diode (not shown) is provided between the power generator 2 and the DC-DC converter 33 to prevent the current from flowing backward toward the normal power generator 2.
 また、第1実施形態では、充放電部32は、電力出力部4と蓄電池31との間に設けられ直流側母線6bに接続されるDC-DCコンバータ34を含んでいる。なお、DC-DCコンバータ34は、発電装置2(直流側母線6a)には、接続されていない。つまり、発電装置2から蓄電装置3(DC-DCコンバータ33)に電力を供給する経路と、DC-DCコンバータ34から電力出力部4に電力を出力する経路とが蓄電装置3を間に挟んで分離されている。したがって、直流側母線6aと直流側母線6bとも、蓄電装置3を間に挟んで分離されている。 In the first embodiment, the charging / discharging unit 32 includes a DC-DC converter 34 provided between the power output unit 4 and the storage battery 31 and connected to the DC side bus 6b. The DC-DC converter 34 is not connected to the power generator 2 (DC side bus 6a). That is, a path for supplying power from the power generation device 2 to the power storage device 3 (DC-DC converter 33) and a path for outputting power from the DC-DC converter 34 to the power output unit 4 are sandwiched between the power storage devices 3. It is separated. Therefore, DC side bus 6a and DC side bus 6b are also separated with power storage device 3 interposed therebetween.
 また、DC-DCコンバータ34は、蓄電池31から直流側母線6bに供給される電力の電圧を、直流側母線6bの電圧付近まで昇圧させることにより、蓄電池31側から直流側母線6b側に電力を放電させる機能を有する。なお、DC-DCコンバータ34は、本発明の「放電電力変換部」の一例である。 Further, the DC-DC converter 34 boosts the voltage of the power supplied from the storage battery 31 to the DC side bus 6b to near the voltage of the DC side bus 6b, thereby supplying power from the storage battery 31 side to the DC side bus 6b. Has the function of discharging. The DC-DC converter 34 is an example of the “discharge power conversion unit” in the present invention.
 また、充放電制御部5は、DC-DCコンバータ33と、DC-DCコンバータ34と、後述する発電電力検出部7とに接続されている。そして、充放電制御部5は、DC-DCコンバータ33とDC-DCコンバータ34とを制御することにより、蓄電池31の充放電制御を行う。具体的には、充放電制御部5は、発電装置2によって発電された電力を電力出力部4に出力せずに蓄電池31に充電するとともに、後述する設定出力電力を蓄電池31から電力出力部4に出力するように制御するように構成されている。なお、充放電制御部5は、本発明の「制御部」の一例である。 The charge / discharge control unit 5 is connected to a DC-DC converter 33, a DC-DC converter 34, and a generated power detection unit 7 described later. Then, the charge / discharge control unit 5 performs charge / discharge control of the storage battery 31 by controlling the DC-DC converter 33 and the DC-DC converter 34. Specifically, the charge / discharge control unit 5 charges the storage battery 31 without outputting the power generated by the power generation device 2 to the power output unit 4, and sets output power to be described later from the storage battery 31 to the power output unit 4. It is comprised so that it may output to. The charge / discharge control unit 5 is an example of the “control unit” in the present invention.
 ここで、第1実施形態では、充放電制御部5は、DC-DCコンバータ34からの出力が図3の実線に示すような電圧-電力特性(P-V特性)を有するように、DC-DCコンバータ34を制御するように構成されている。また、電力出力部4は、上記DC-DCコンバータ33と同様に、MPPT制御機能を有している。つまり、図3に示すDC-DCコンバータ34の出力の電力-電圧特性(P-V特性)において、DC-DCコンバータ34から出力される電力が最大となる電圧(Vop)を探すように構成されている。このように、充放電制御部5が、DC-DCコンバータ34の出力電力に関して、電圧の上昇とともに増加して、電圧(Vop)において最大値となった後、電圧の上昇とともに減少するような特性を有するようにDC-DCコンバータ34を制御するので、電力出力部4はMPPT制御を行い易くなっている。なお、図3に示すP-V特性は、出力電力が最大になる電圧(Vop)を通る直線に対して略対称な形状を有するように調整されている。 Here, in the first embodiment, the charging / discharging control unit 5 is configured so that the output from the DC-DC converter 34 has a voltage-power characteristic (PV characteristic) as indicated by a solid line in FIG. The DC converter 34 is configured to be controlled. The power output unit 4 has an MPPT control function, like the DC-DC converter 33 described above. That is, in the power-voltage characteristic (PV characteristic) of the output of the DC-DC converter 34 shown in FIG. 3, the voltage (Vop) that maximizes the power output from the DC-DC converter 34 is searched. ing. As described above, the charge / discharge control unit 5 increases the voltage with respect to the output power of the DC-DC converter 34, reaches a maximum value at the voltage (Vop), and then decreases with the voltage. Since the DC-DC converter 34 is controlled so as to have the power, the power output unit 4 can easily perform the MPPT control. Note that the PV characteristics shown in FIG. 3 are adjusted so as to have a substantially symmetric shape with respect to a straight line passing through a voltage (Vop) at which the output power becomes maximum.
 また、第1実施形態では、図3に示すようなP-V特性の調整方法として、たとえば、PWM(Pulse Width Modulation)制御を行うことによって、DC-DCコンバータ34から出力される電力出力用のパルス信号のデューティ比(1周期でのパルスのHighとLowとの割合)を電圧に応じて変化させている。これにより、電圧が大きくなるにしたがって電力が増加して、電圧(Vop)で最大の電力を得るとともに、Vop以上の電圧では、電圧が大きくなるにしたがって電力が減少するようなP-V特性が得られる。なお、図3の点線に示すように、DC-DCコンバータ34からの出力電力のP-V特性は、充放電制御部5からの制御によって、電力最大点が変化可能に構成されている。 In the first embodiment, as a method for adjusting the PV characteristics as shown in FIG. 3, for example, by performing PWM (Pulse Width Modulation) control, the power output output from the DC-DC converter 34 is performed. The duty ratio of the pulse signal (the ratio between the pulse High and Low in one cycle) is changed according to the voltage. As a result, the power increases as the voltage increases, and the maximum power is obtained at the voltage (Vop). At a voltage higher than Vop, the PV characteristic is such that the power decreases as the voltage increases. can get. 3, the PV characteristic of the output power from the DC-DC converter 34 is configured such that the maximum power point can be changed by the control from the charge / discharge control unit 5.
 なお、電力出力部4とDC-DCコンバータ34との間には、通常DC-DCコンバータ34に向かって電流が逆流するのを防止するためのダイオード(図示せず)が設けられている。 Note that a diode (not shown) is provided between the power output unit 4 and the DC-DC converter 34 to prevent a current from flowing backward toward the DC-DC converter 34.
 また、発電装置2とDC-DCコンバータ33との間には、発電装置2の発電電力を検出する発電電力検出部7が設けられている。充放電制御部5は、発電電力検出部7の検出結果に基づいて、発電装置2の発電電力を所定の検出時間間隔(たとえば、30秒以下)毎に取得することが可能である。たとえば、充放電制御部5は、30秒毎に発電装置2の発電電力データを取得している。なお、この発電電力の検出時間間隔は、発電装置2の発電電力の変動周期などを勘案して適性な値に定める必要がある。ここでは、負荷周波数制御(LFC)により対応可能な変動周期の下限周期よりも短くなるように検出時間間隔を設定している。また、充放電制御部5は、電力出力部4の出力電力を取得することにより、実際に電力出力部4から電力系統50に出力された電力と発電装置2の発電電力との差を認識することにより、充放電部32の充放電をフィードバック制御することが可能である。 In addition, between the power generation device 2 and the DC-DC converter 33, a generated power detection unit 7 that detects the generated power of the power generation device 2 is provided. Based on the detection result of the generated power detection unit 7, the charge / discharge control unit 5 can acquire the generated power of the power generation device 2 at predetermined detection time intervals (for example, 30 seconds or less). For example, the charge / discharge control unit 5 acquires the generated power data of the power generation device 2 every 30 seconds. Note that the generated power detection time interval needs to be set to an appropriate value in consideration of the fluctuation cycle of the generated power of the power generator 2 and the like. Here, the detection time interval is set to be shorter than the lower limit cycle of the fluctuation cycle that can be handled by the load frequency control (LFC). Further, the charge / discharge control unit 5 acquires the output power of the power output unit 4 to recognize the difference between the power actually output from the power output unit 4 to the power system 50 and the generated power of the power generation device 2. Thus, the charge / discharge of the charge / discharge unit 32 can be feedback controlled.
 上記のように、第1実施形態では、発電装置2の発電電力をそのまま電力系統50に出力するのではなく、一旦蓄電池31に充電する。また、充放電制御部5は、蓄電池31からの出力電力を予め設定して、電力の平滑化制御を行うように構成されている。具体的には、発電装置2の発電電力が予め設定された出力電力(設定出力電力)よりも大きい場合には、過剰分に相当する電力を蓄電池31に充電するとともに、発電装置2の発電電力が予め設定された出力電力よりも小さい場合には、不足分に相当する電力を蓄電池31から補うような制御を行う。これにより、蓄電池31には、発電装置2の発電電力が小刻みに入出力されるので、従来のように電力のピークカットの目的で蓄電池31を用いる場合と異なり、蓄電池31の容量を小さくすることが可能となる。 As described above, in the first embodiment, the storage battery 31 is charged once instead of outputting the generated power of the power generation device 2 to the power system 50 as it is. The charge / discharge control unit 5 is configured to preset output power from the storage battery 31 and perform power smoothing control. Specifically, when the generated power of the power generation device 2 is larger than the preset output power (set output power), the storage battery 31 is charged with the power corresponding to the excess, and the generated power of the power generation device 2 Is smaller than the preset output power, control is performed so that the power corresponding to the shortage is supplemented from the storage battery 31. Thereby, since the generated power of the power generator 2 is input / output to the storage battery 31 in small increments, the capacity of the storage battery 31 is reduced unlike the case of using the storage battery 31 for the purpose of peak cutting of power as in the past. Is possible.
 次に、図4~図6を参照して、第1実施形態による太陽光発電システム1の制御フローについて説明する。 Next, a control flow of the solar power generation system 1 according to the first embodiment will be described with reference to FIGS.
 まず、図4に示すステップS1において、ある時刻における発電装置2の発電電力P1が発電電力検出部7により検出され、充放電制御部5に取り込まれる。 First, in step S <b> 1 shown in FIG. 4, the generated power P <b> 1 of the power generation device 2 at a certain time is detected by the generated power detection unit 7 and taken into the charge / discharge control unit 5.
 そして、ステップS2において、図5に示すように、発電装置2の発電電力P1は、直流側母線6aとDC-DCコンバータ33とを介して蓄電池31に充電される。このとき、DC-DCコンバータ33は、発電装置2から直流側母線6aに供給された電圧を、蓄電池31を充電するのに適した電圧まで降圧させる。つまり、発電装置2において発電された発電電力P1は、電力出力部4には供給されずに、全て蓄電池31に充電される。 In step S2, as shown in FIG. 5, the generated power P1 of the power generator 2 is charged to the storage battery 31 via the DC bus 6a and the DC-DC converter 33. At this time, the DC-DC converter 33 steps down the voltage supplied from the power generator 2 to the DC side bus 6a to a voltage suitable for charging the storage battery 31. That is, the generated power P <b> 1 generated in the power generation device 2 is not supplied to the power output unit 4 but is charged in the storage battery 31.
 また、ステップS3において、予め設定されていた設定出力電力P2が蓄電池31からDC-DCコンバータ34を介して電力出力部4に出力される。このとき、DC-DCコンバータ34は、蓄電池31から直流側母線6bに供給される電力の電圧を、直流側母線6bの電圧付近まで昇圧させる。 Also, in step S3, the preset set output power P2 is output from the storage battery 31 to the power output unit 4 via the DC-DC converter 34. At this time, the DC-DC converter 34 boosts the voltage of the power supplied from the storage battery 31 to the DC side bus 6b to near the voltage of the DC side bus 6b.
 そして、図5に示すように、発電装置2の発電電力P1が、設定出力電力P2よりも大きい(P1>P2)場合、発電電力P1が蓄電池31に充電されるとともに、設定出力電力P2が電力出力部4に出力されるので、結果的に発電電力P1と設定出力電力P2との差(P1-P2)に相当する電力が、蓄電池31に充電されることになる。 As shown in FIG. 5, when the generated power P1 of the power generator 2 is larger than the set output power P2 (P1> P2), the generated power P1 is charged in the storage battery 31, and the set output power P2 is the power. As a result, the storage battery 31 is charged with power corresponding to the difference (P1−P2) between the generated power P1 and the set output power P2.
 また、図6に示すように、発電装置2の発電電力P1が、設定出力電力P2よりも小さい(P1<P2)場合、上記発電電力P1が、設定出力電力P2よりも大きい(P1>P2)場合と同様に、発電電力P1が蓄電池31に充電されるとともに、設定出力電力P2が電力出力部4に出力される。その結果、設定出力電力P2と発電電力P1との差(P2-P1)に相当する電力が、蓄電池31から放電されることになる。 As shown in FIG. 6, when the generated power P1 of the power generator 2 is smaller than the set output power P2 (P1 <P2), the generated power P1 is larger than the set output power P2 (P1> P2). Similarly to the case, the generated power P <b> 1 is charged in the storage battery 31, and the set output power P <b> 2 is output to the power output unit 4. As a result, power corresponding to the difference (P2−P1) between the set output power P2 and the generated power P1 is discharged from the storage battery 31.
 なお、発電電力P1と設定出力電力P2とが等しい(P1=P2)場合も同様に、発電電力P1が蓄電池31に充電されるとともに、設定出力電力P2が電力出力部4に出力される。この場合、発電電力P1と設定出力電力P2とが等しいので、蓄電池31に充電された電力の変化はないことになる。また、発電装置2の発電電力P1は、天候などにより時々刻々と変動しており、上記ステップS1~ステップS3の動作は、太陽光発電システム1の動作が終了するまで繰り返し行われる。 In addition, when the generated power P1 and the set output power P2 are equal (P1 = P2), the generated power P1 is similarly charged in the storage battery 31, and the set output power P2 is output to the power output unit 4. In this case, since the generated power P1 and the set output power P2 are equal, there is no change in the power charged in the storage battery 31. Further, the generated power P1 of the power generation device 2 varies from moment to moment due to the weather or the like, and the operations of Step S1 to Step S3 are repeated until the operation of the photovoltaic power generation system 1 is completed.
 第1実施形態の太陽光発電システム1は、上記構成により以下の効果を得ることができる。 The solar power generation system 1 of the first embodiment can obtain the following effects by the above configuration.
 第1実施形態では、上記のように、充放電制御部5が、DC-DCコンバータ34から電力出力部4に出力される電力を、電圧に応じて電力が変化するとともにピーク電力を有する出力特性になるように制御することによって、DC-DCコンバータ34から出力される電力がピーク電力を有しているので、電力出力部4が電圧を変化させて電力の最大値を追従する最大電力追従(MPPT)制御を適切に行うことができる。これにより、DC-DCコンバータ34から出力される電力が、ピーク電力を有さずに、電圧を変化させても電力が一定の場合と異なり、電力出力部4が誤動作するのを抑制することができる。したがって、発電装置2が電力出力部4を介して電力系統50に接続され、蓄電装置3を有さない系統連系の発電システムに、蓄電装置3および充放電制御部5を後から追加して本発明に係わる発電システムを容易に構成することができる。 In the first embodiment, as described above, the charge / discharge control unit 5 changes the power output from the DC-DC converter 34 to the power output unit 4 so that the power changes according to the voltage and has the peak power. Since the power output from the DC-DC converter 34 has a peak power, the power output unit 4 changes the voltage to follow the maximum power value ( MPPT) control can be performed appropriately. Thus, unlike the case where the power output from the DC-DC converter 34 does not have peak power and the power is constant even when the voltage is changed, the power output unit 4 can be prevented from malfunctioning. it can. Therefore, the power storage device 3 and the charge / discharge control unit 5 are added later to a grid-connected power generation system in which the power generation device 2 is connected to the power system 50 via the power output unit 4 and does not have the power storage device 3. The power generation system according to the present invention can be easily configured.
 また、第1実施形態では、上記のように、電力出力部4を、DC-DCコンバータ34から出力される電力が最大となるように最大電力追従制御が行われるように構成して、充放電制御部5を、DC-DCコンバータ34から電力出力部4に出力される電力を、電力出力部4が最大電力追従制御を行い易いように、電圧に応じて電力が変化するとともにピーク電力を有する出力特性になるように制御するように構成することによって、充放電制御部5が、電力出力部4が最大電力追従制御を行い易いように、DC-DCコンバータ34から出力される電力の出力特性を制御しているので、最大電力追従制御機能を有する従来の電力出力部4を用いて適切に最大電力追従制御を行うことができる。 In the first embodiment, as described above, the power output unit 4 is configured such that maximum power follow-up control is performed so that the power output from the DC-DC converter 34 is maximized, and charging / discharging is performed. The control unit 5 causes the power output from the DC-DC converter 34 to the power output unit 4 so that the power output unit 4 can easily perform the maximum power tracking control. By configuring so that the output characteristic is controlled, the charge / discharge control unit 5 can easily perform the maximum power follow-up control by the power output unit 4 so that the output characteristic of the power output from the DC-DC converter 34 is improved. Therefore, the maximum power tracking control can be appropriately performed using the conventional power output unit 4 having the maximum power tracking control function.
 また、第1実施形態では、上記のように、充放電制御部5を、DC-DCコンバータ34から出力される電力をPWM制御することによりDC-DCコンバータ34から電力出力部4に出力される電力を、電圧に応じて電力が変化するとともにピーク電力を有する出力特性になるように制御するように構成することによって、電力制御用のパルス信号のデューティ比(1周期でのパルスのHighとLowとの割合)を変化させることにより、DC-DCコンバータ34から出力される電力(電流)を変化させることができるので、容易に、DC-DCコンバータ34から電力出力部4に出力される電力を、電圧に応じて電力が変化するとともにピーク電力を有する出力特性になるように制御することができる。 In the first embodiment, as described above, the charge / discharge control unit 5 performs PWM control on the power output from the DC-DC converter 34 and is output from the DC-DC converter 34 to the power output unit 4. By configuring the power so that the power changes according to the voltage and has an output characteristic having a peak power, the duty ratio of the pulse signal for power control (High and Low of the pulse in one cycle) The power (current) output from the DC-DC converter 34 can be changed, so that the power output from the DC-DC converter 34 to the power output unit 4 can be easily changed. The output can be controlled so that the power changes according to the voltage and the output characteristic has the peak power.
 また、第1実施形態では、上記のように、蓄電装置3を、直流側母線6aを介して発電装置2に接続するとともに、直流側母線6aと別個に設けられた直流側母線6bを介して電力出力部4に接続しており、直流側母線6bを介してDC-DCコンバータ34から電力出力部4に電力が出力されるように構成することによって、発電装置2から蓄電装置3に電力を供給する経路(直流側母線6a)と、DC-DCコンバータ34から電力出力部4に電力を出力する経路(直流側母線6b)とが蓄電装置3を間に挟んで分離されるので、蓄電装置3に電力を供給する動作と、DC-DCコンバータ34から電力出力部4に放電する動作とが干渉するのを抑制することができる。 Moreover, in 1st Embodiment, while connecting the electrical storage apparatus 3 to the electric power generating apparatus 2 via the direct current side bus 6a as mentioned above, via the direct current side bus 6b provided separately from the direct current side bus 6a. It is connected to the power output unit 4 and configured to output power from the DC-DC converter 34 to the power output unit 4 via the DC bus 6b, so that power can be supplied from the power generator 2 to the power storage device 3. Since the supply path (DC side bus 6a) and the path (DC side bus 6b) for outputting power from the DC-DC converter 34 to the power output unit 4 are separated with the power storage device 3 interposed therebetween, the power storage device 3 and the operation of discharging power from the DC-DC converter 34 to the power output unit 4 can be prevented from interfering with each other.
 また、第1実施形態では、上記のように、充放電制御部5を、DC-DCコンバータ34から電力出力部4に出力される電力がピーク電力に対応する電圧を通る直線に対して略対称な出力特性になるように制御することによって、DC-DCコンバータ34から出力される電力を、非対称な出力特性になるように制御する場合と異なり、DC-DCコンバータ34から出力される電力を制御する動作がピーク電力に対応する電圧の前後で同様な動作になるので、DC-DCコンバータ34から出力される電力を制御する動作を容易に行うことができる。 In the first embodiment, as described above, the charge / discharge control unit 5 is substantially symmetric with respect to the straight line through which the power output from the DC-DC converter 34 to the power output unit 4 passes the voltage corresponding to the peak power. Unlike the case where the power output from the DC-DC converter 34 is controlled to have an asymmetric output characteristic, the power output from the DC-DC converter 34 is controlled by controlling the output power to have a proper output characteristic. Since the same operation is performed before and after the voltage corresponding to the peak power, the operation for controlling the power output from the DC-DC converter 34 can be easily performed.
 (第2実施形態)
 次に、図7を参照して、第2実施形態による太陽光発電システム1aの構成について説明する。この第2実施形態では、発電装置2により発電された電力が充電される直流側母線6aと、電力出力部4に電力が放電される直流側母線6bとが蓄電装置3を間に挟んで分離されていた上記第1実施形態と異なり、発電装置2と電力出力部4とが直流側母線6cにより直接電気的に接続されている例について説明する。なお、その他の部分は、第1実施形態と同様である。
(Second Embodiment)
Next, the configuration of the solar power generation system 1a according to the second embodiment will be described with reference to FIG. In the second embodiment, the DC side bus 6a charged with the power generated by the power generation device 2 and the DC side bus 6b discharged with the power output unit 4 are separated with the power storage device 3 interposed therebetween. Unlike the above-described first embodiment, an example in which the power generation device 2 and the power output unit 4 are directly electrically connected by the DC side bus 6c will be described. Other parts are the same as those in the first embodiment.
 第2実施形態による太陽光発電システム1aでは、図7に示すように、発電装置2と電力出力部4とが直流側母線6cを介して直接電気的に接続されている。また、蓄電池31は、直流側母線6cに並列的に接続されている。発電装置2と蓄電池31との間には、発電装置2から直流側母線6cに供給された電圧を、蓄電池31を充電するのに適した電圧まで降圧させることにより、直流側母線6c側から蓄電池31側に電力を供給する機能を有するDC-DCコンバータ33aが設けられている。また、電力出力部4と蓄電池31との間には、蓄電池31から直流側母線6cに供給される電力の電圧を、直流側母線6cの電圧付近まで昇圧させることにより、蓄電池31側から直流側母線6c側に電力を放電させる機能を有するDC-DCコンバータ34aが設けられている。なお、DC-DCコンバータ33aおよび34aは、それぞれ、本発明の「充電電力変換部」および「放電電力変換部」の一例である。 In the solar power generation system 1a according to the second embodiment, as shown in FIG. 7, the power generation device 2 and the power output unit 4 are directly electrically connected via the DC side bus 6c. The storage battery 31 is connected in parallel to the DC side bus 6c. Between the power generation device 2 and the storage battery 31, the voltage supplied from the power generation device 2 to the DC side bus 6 c is stepped down to a voltage suitable for charging the storage battery 31, whereby the storage battery is connected from the DC side bus 6 c side. A DC-DC converter 33a having a function of supplying power to the 31 side is provided. Moreover, between the electric power output part 4 and the storage battery 31, the voltage of the electric power supplied from the storage battery 31 to the direct current side bus 6c is boosted to the vicinity of the voltage of the direct current side bus 6c, so that the direct current side from the storage battery 31 side is increased. A DC-DC converter 34a having a function of discharging electric power is provided on the bus 6c side. The DC- DC converters 33a and 34a are examples of the “charge power conversion unit” and the “discharge power conversion unit” of the present invention, respectively.
 ここで、第2実施形態では、DC-DCコンバータ33aは、DC-DCコンバータ33aに入力される電力を、電圧に応じて変化するとともにピーク電力を有する特性になるように調整(図13参照)する。また、DC-DCコンバータ33aに入力される電力の入力特性(P-V特性)は、発電装置2により発電される電力の出力特性(図12参照)に近似したP-V特性となる。つまり、電圧とともに電力が徐々に大きくなるとともに、出力電力が最大になる電圧以降で急激に電圧とともに電力が小さくなる。また、DC-DCコンバータ34aも、DC-DCコンバータ33aと同様に、DC-DCコンバータ34aから電力出力部4に出力する電力を、電圧に応じて変化するとともにピーク電力を有するP-V特性になるように調整(図18参照)されている。これにより、電力出力部4はMPPT制御を行い易くなっている。 Here, in the second embodiment, the DC-DC converter 33a adjusts the power input to the DC-DC converter 33a so as to change according to the voltage and to have a peak power characteristic (see FIG. 13). To do. In addition, the input characteristic (PV characteristic) of the electric power input to the DC-DC converter 33a is a PV characteristic approximate to the output characteristic (see FIG. 12) of the electric power generated by the power generator 2. That is, the power gradually increases with the voltage, and the power suddenly decreases with the voltage after the voltage at which the output power becomes maximum. Similarly to the DC-DC converter 33a, the DC-DC converter 34a also changes the power output from the DC-DC converter 34a to the power output unit 4 according to the voltage and has a PV characteristic having peak power. It is adjusted so that it may become (refer FIG. 18). As a result, the power output unit 4 can easily perform MPPT control.
 次に、図8~図21を参照して、第2実施形態による太陽光発電システム1aの制御フローについて説明する。 Next, a control flow of the solar power generation system 1a according to the second embodiment will be described with reference to FIGS.
 まず、図8に示すステップS11において、ある時刻における発電装置2の発電電力P1が発電電力検出部7により検出され、充放電制御部5に取り込まれる。そして、ステップS12において、充放電制御部5によって、過去20分の期間に含まれる40個の発電電力データの平均値を用いて移動平均法により目標出力電力P2が算出される。移動平均法とは、ある時点の目標出力電力を、その時点より過去の期間の発電装置2の発電電力の平均値とする算出方法である。過去の発電電力データはメモリ5aに逐次記憶されている。以下、目標出力電力の算出に用いる発電電力データを取得するための期間をサンプリング期間と呼ぶ。サンプリング期間は、負荷周波数制御(LFC)で対応する負荷の変動周期の下限周期T2~上限周期T1の間、特に後半付近(長周期付近)からT1を超える範囲であまり長時間に渡らない範囲とすることが好ましい。サンプリング期間の具体的な値としては、たとえば、図9に示すような「負荷変動の大きさ-変動周期」特性を有する電力系統においては約10分以上約30分以下の期間であり、たとえば、サンプリング期間を約20分とする。この場合、充放電制御部5は、約30秒置きに発電装置2の発電電力データを取得するので、過去20分の期間に含まれる40個の発電電力データの平均値を目標出力電力として算出している。 First, in step S <b> 11 shown in FIG. 8, the generated power P <b> 1 of the power generation device 2 at a certain time is detected by the generated power detection unit 7 and taken into the charge / discharge control unit 5. In step S12, the charge / discharge control unit 5 calculates the target output power P2 by the moving average method using the average value of the 40 generated power data included in the past 20 minutes. The moving average method is a calculation method in which the target output power at a certain point in time is an average value of the generated power of the power generation device 2 in the past period from that point. Past generated power data is sequentially stored in the memory 5a. Hereinafter, a period for acquiring generated power data used for calculation of target output power is referred to as a sampling period. The sampling period is a range between the lower limit period T2 and the upper limit period T1 of the load fluctuation period corresponding to the load frequency control (LFC), particularly in the range from the second half (near the long period) to the period exceeding T1, which does not extend for a long time. It is preferable to do. A specific value of the sampling period is, for example, a period of about 10 minutes or more and about 30 minutes or less in a power system having a “load fluctuation magnitude—fluctuation period” characteristic as shown in FIG. The sampling period is about 20 minutes. In this case, since the charge / discharge control unit 5 acquires the generated power data of the power generator 2 approximately every 30 seconds, the average value of the 40 generated power data included in the past 20 minutes is calculated as the target output power. is doing.
 上記のように、第2実施形態では、過去の発電装置2の発電電力から目標出力電力を算出し、蓄電池31の放電量が目標出力電力となるように蓄電池31の放電を制御して目標出力電力を電力系統50に出力する制御である充放電制御を行う。すなわち、図10に示すように、充放電制御部5は、発電装置2の発電電力が目標出力電力よりも大きい場合には、過剰分に相当する電力を蓄電池31に充電するとともに、不足分に相当する電力を蓄電池31から補うことによって、雲の有無などによる発電装置2の発電電力の変動に起因する電力系統50への悪影響を抑制するように構成されている。 As described above, in the second embodiment, the target output power is calculated from the generated power of the past power generator 2, and the discharge of the storage battery 31 is controlled so that the discharge amount of the storage battery 31 becomes the target output power. Charge / discharge control, which is control for outputting electric power to the electric power system 50, is performed. That is, as shown in FIG. 10, when the generated power of the power generation device 2 is larger than the target output power, the charge / discharge control unit 5 charges the storage battery 31 with the power corresponding to the excess amount and reduces the shortage amount. By supplementing the corresponding power from the storage battery 31, it is configured to suppress adverse effects on the power system 50 due to fluctuations in the generated power of the power generation device 2 due to the presence or absence of clouds or the like.
 次に、ステップS13において、発電装置2の発電電力P1が目標出力電力P2よりも大きいか否かが判断される。そして、ステップS13において、発電装置2の発電電力P1が目標出力電力P2よりも大きいと判断された場合には、ステップS14に進んで、図11に示すように、目標出力電力P2に相当する電力が、発電装置2から直流側母線6cを介して電力出力部4に出力される。また、ステップS15に進んで、発電装置2の発電電力P1と目標出力電力P2との差に相当する電力(P1-P2)がDC-DCコンバータ33aを介して蓄電池31に充電される。 Next, in step S13, it is determined whether or not the generated power P1 of the power generator 2 is larger than the target output power P2. In step S13, when it is determined that the generated power P1 of the power generator 2 is larger than the target output power P2, the process proceeds to step S14, and the power corresponding to the target output power P2 as shown in FIG. Is output from the power generator 2 to the power output unit 4 via the DC bus 6c. Further, the process proceeds to step S15, and the storage battery 31 is charged with the power (P1-P2) corresponding to the difference between the generated power P1 of the power generator 2 and the target output power P2 via the DC-DC converter 33a.
 なお、発電装置2により発電された電力は、図12に示すように、電圧に応じて電力が変化するとともにピーク電力を有するP-V特性を有する。そして、発電装置2から入力される電力は、PWM制御されることにより、図13に示すように、発電装置2により発電された電力の出力特性に近似した特性(電圧に応じて電力が変化するとともにピーク電力を有する特性)になるように調整される。これにより、発電装置2から電力出力部4に出力される電力のP-V特性(図12に示すP-V特性から図13に示すP-V特性を差し引いた特性)は、図14に示すように、発電装置2により発電された電力の出力特性に近似したP-V特性(電圧に応じて電力が変化するとともにピーク電力を有するP-V特性)となる。 Note that the power generated by the power generation device 2 has a PV characteristic in which the power changes according to the voltage and has peak power, as shown in FIG. And the electric power input from the electric power generating apparatus 2 is PWM-controlled, and as shown in FIG. 13, the characteristic approximated to the output characteristic of the electric power generated by the electric power generating apparatus 2 (the electric power changes according to the voltage). And a characteristic having a peak power). As a result, the PV characteristic (the characteristic obtained by subtracting the PV characteristic shown in FIG. 13 from the PV characteristic shown in FIG. 12) of the power output from the power generator 2 to the power output unit 4 is shown in FIG. As described above, the PV characteristic approximated to the output characteristic of the power generated by the power generation device 2 (the PV characteristic having the peak power and the power changes according to the voltage) is obtained.
 なお、図13の実線、点線、1点鎖線に示すように、発電装置2によって発電される電力は、天候などによって時々刻々変化しており、発電装置2から電力出力部4に出力される電力のP-V特性の形状も、図14の実線、点線、1点鎖線に示すように、天候などによって変化する。 Note that, as indicated by the solid line, the dotted line, and the one-dot chain line in FIG. The shape of the PV characteristic also changes depending on the weather as shown by the solid line, the dotted line, and the one-dot chain line in FIG.
 なお、図15に示すように、比較例によるDC-DCコンバータでは、DC-DCコンバータに入力される電力は、電圧によらず略一定になるように構成されている。これにより、発電装置2により発電された電力(図12参照)から、図15に示す比較例による電力を差し引いた場合には、図16に示すようなP-V特性となる。すなわち、電圧が小さい領域と電圧が大きい領域とには、電力が負の領域が存在する。なお、電圧が大きい領域において、電力が負であるとともに電圧によらず略一定の領域が存在する。この電力が電圧によらず略一定の領域では、電力出力部4が、電力が最大の点を探すのが困難となり、誤作動する可能性がある。 As shown in FIG. 15, the DC-DC converter according to the comparative example is configured such that the power input to the DC-DC converter is substantially constant regardless of the voltage. Thus, when the power according to the comparative example shown in FIG. 15 is subtracted from the power generated by the power generator 2 (see FIG. 12), the PV characteristics as shown in FIG. 16 are obtained. That is, there is a region where the power is negative in the region where the voltage is low and the region where the voltage is high. In a region where the voltage is high, there is a region where the power is negative and the voltage is almost constant regardless of the voltage. In a region where the electric power is substantially constant regardless of the voltage, it becomes difficult for the power output unit 4 to find a point where the electric power is maximum, and malfunction may occur.
 また、ステップS13において、発電装置2の発電電力P1が目標出力電力P2以下であると判断された場合には、ステップS16に進んで、発電装置2の発電電力P1と目標出力電力P2とが等しいか否かが判断される。そして、ステップS16において、発電装置2の発電電力P1と目標出力電力P2とが等しくない(つまり、発電装置2の発電電力P1が目標出力電力P2よりも小さい)と判断された場合には、ステップS17に進んで、図17に示すように、発電装置2の発電電力P1が全て直流側母線6cを介して電力出力部4に出力される。 If it is determined in step S13 that the generated power P1 of the power generator 2 is equal to or less than the target output power P2, the process proceeds to step S16, where the generated power P1 of the power generator 2 and the target output power P2 are equal. It is determined whether or not. If it is determined in step S16 that the generated power P1 of the power generator 2 and the target output power P2 are not equal (that is, the generated power P1 of the power generator 2 is smaller than the target output power P2), step S16 is performed. Proceeding to S17, as shown in FIG. 17, all the generated power P1 of the power generator 2 is output to the power output unit 4 via the DC side bus 6c.
 また、ステップS18に進んで、目標出力電力P2と発電装置2の発電電力P1との差に相当する電力(P2-P1)がDC-DCコンバータ34aを介して電力出力部4に放電される。なお、蓄電池31から放電される電力は、図18に示すように、発電装置2により発電された電力を近似したP-V特性(電圧に応じて電力が変化するとともにピーク電力を有するP-V特性)を有するようにDC-DCコンバータ34aにより調整される。これにより、発電装置2から電力出力部4に出力される電力と、蓄電池31から電力出力部4に放電される電力とが合わさった場合のP-V特性(図12に示すP-V特性と図18に示すP-V特性とを合算した特性)は、図19に示すように、電圧に応じて電力が変化するとともにピーク電力を有する。 Further, the process proceeds to step S18, and the power (P2-P1) corresponding to the difference between the target output power P2 and the generated power P1 of the power generator 2 is discharged to the power output unit 4 via the DC-DC converter 34a. As shown in FIG. 18, the electric power discharged from the storage battery 31 is a PV characteristic approximating the electric power generated by the power generation device 2 (PV having a peak electric power as the electric power changes depending on the voltage). The DC-DC converter 34a. As a result, the PV characteristics when the power output from the power generator 2 to the power output section 4 and the power discharged from the storage battery 31 to the power output section 4 are combined (the PV characteristics shown in FIG. 12). As shown in FIG. 19, the characteristic obtained by adding up the PV characteristics shown in FIG. 18 has a peak power as the power changes according to the voltage.
 なお、発電装置2によって発電される電力は、天候などによって時々刻々変化しており、蓄電池31から電力出力部4に出力される電力のP-V特性の形状も、図18の実線、点線、1点鎖線に示すように、天候などによって変化する。これにより、図19に示すように、発電装置2によって発電される電力と、蓄電池31から放電される電力とが合わさった電力も、天候などに合わせて変化させて出力される。 Note that the electric power generated by the power generation apparatus 2 changes from moment to moment depending on the weather and the like, and the shape of the PV characteristic of the electric power output from the storage battery 31 to the electric power output unit 4 is also shown by the solid line, dotted line, As shown by the one-dot chain line, it varies depending on the weather. As a result, as shown in FIG. 19, the combined power of the power generated by the power generation device 2 and the power discharged from the storage battery 31 is also changed according to the weather and output.
 なお、図20に示すように、比較例によるDC-DCコンバータでは、DC-DCコンバータから電力出力部に放電される電力は、電圧によらず略一定になるように構成されている。これにより、発電装置2により発電された電力(図12参照)と、図20に示す比較例による電力とを合わせた場合には、図21に示すようなP-V特性となる。すなわち、電圧が大きい領域には、電力が電圧によらず略一定の領域が存在する。この電力が電圧によらず略一定の領域では、電力出力部4が、電力が最大の点を探すのが困難となり、誤作動する可能性がある。 As shown in FIG. 20, the DC-DC converter according to the comparative example is configured such that the power discharged from the DC-DC converter to the power output unit is substantially constant regardless of the voltage. Thus, when the power generated by the power generation device 2 (see FIG. 12) and the power according to the comparative example shown in FIG. 20 are combined, the PV characteristics as shown in FIG. 21 are obtained. In other words, in the region where the voltage is high, there is a region where the power is almost constant regardless of the voltage. In a region where the electric power is substantially constant regardless of the voltage, it becomes difficult for the power output unit 4 to find a point where the electric power is maximum, and malfunction may occur.
 また、ステップS16において、発電装置2の発電電力P1と目標出力電力P2とが等しいと判断された場合には、ステップS19に進んで、発電装置2において発電された電力P1(=P2)が電力出力部4に出力される。 If it is determined in step S16 that the generated power P1 of the power generator 2 is equal to the target output power P2, the process proceeds to step S19, where the power P1 (= P2) generated in the power generator 2 is the power. It is output to the output unit 4.
 第2実施形態では、上記のように、発電装置2と電力出力部4とを、直流側母線6cを介して接続するとともに、蓄電装置3を、直流側母線6cに接続して、充放電制御部5を、DC-DCコンバータ34aから電力出力部4に出力される電力を、発電装置2により発電される電力の出力特性に近似した出力特性になるように制御するように構成することによって、発電装置2により発電された電力とDC-DCコンバータ34aから放電される電力とが合わさった電力の出力特性が、発電装置2により発電される電力の出力特性に近似したものになるので、最大電力追従制御機能を有する従来の電力出力部4を用いることができる。 In 2nd Embodiment, while connecting the electric power generating apparatus 2 and the electric power output part 4 via the direct current | flow side bus | bath 6c as mentioned above, the electrical storage apparatus 3 is connected to the direct current | flow side bus | bath 6c, and charge / discharge control is carried out. By configuring the unit 5 to control the power output from the DC-DC converter 34a to the power output unit 4 so as to have an output characteristic approximate to the output characteristic of the power generated by the power generation device 2, Since the output characteristics of the power generated by the power generated by the power generator 2 and the power discharged from the DC-DC converter 34a approximate the output characteristics of the power generated by the power generator 2, the maximum power A conventional power output unit 4 having a tracking control function can be used.
 第2実施形態の太陽光発電システム1aは、上記構成により以下の効果を得ることができる。 The solar power generation system 1a of the second embodiment can obtain the following effects by the above configuration.
 第2実施形態では、充放電制御部5がDC-DCコンバータ33aをPWM制御することにより、発電装置2により発電された電力から蓄電装置3に充電される電力を差し引いた場合でも、電力出力部4に出力される電力の出力特性が、発電装置2により発電される電力の出力特性に近似したものになるので、最大電力追従制御機能を有する従来の電力出力部4を用いることができる。 In the second embodiment, even when the charge / discharge control unit 5 performs PWM control of the DC-DC converter 33a, even when the power charged in the power storage device 3 is subtracted from the power generated by the power generation device 2, the power output unit Since the output characteristic of the power output to 4 approximates the output characteristic of the power generated by the power generator 2, the conventional power output unit 4 having the maximum power tracking control function can be used.
 また、第2実施形態では、電力のデューティ比を変化させることにより、DC-DCコンバータ33aに入力される電流を変化させることができるので、容易に、DC-DCコンバータ33aに入力される電力(電流)を、電圧に応じて電力が変化するとともにピーク電力を有する入力特性になるように制御することができる。 In the second embodiment, since the current input to the DC-DC converter 33a can be changed by changing the duty ratio of the power, the power input to the DC-DC converter 33a ( Current) can be controlled such that the power changes according to the voltage and the input characteristic has a peak power.
 なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.
 たとえば、上記第1および第2実施形態では、発電装置として太陽電池を用いる例について説明したが、本発明はこれに限らず、風力発電装置などの他の再生可能エネルギー発電装置を用いてもよい。 For example, in the first and second embodiments described above, an example in which a solar cell is used as a power generator has been described. However, the present invention is not limited to this, and other renewable energy power generators such as a wind power generator may be used. .
 また、上記第1および第2実施形態では、蓄電池としてLi-ion電池やNi-MH電池を用いる例を示したが、本発明はこれに限らず、他の2次電池を用いてもよい。 In the first and second embodiments, an example in which a Li-ion battery or a Ni-MH battery is used as a storage battery has been described. However, the present invention is not limited to this, and other secondary batteries may be used.
 また、上記第1および第2実施形態では、蓄電池の電圧が48Vである例について説明したが、本発明はこれに限らず、48V以外の電圧にしてもよい。 In the first and second embodiments, the example in which the voltage of the storage battery is 48V has been described. However, the present invention is not limited to this, and a voltage other than 48V may be used.
 また、上記第1および第2実施形態では、需要家内で用いる負荷における消費電力を想定しない場合について説明したが、本発明はこれに限らず、設定出力電力の設定(目標出力電力の算出)において、需要家内で用いられる少なくとも一部の負荷で消費する電力を検出し、その負荷消費電力あるいは負荷消費電力変動量を加味して設定出力電力の設定(目標出力電力の算出)を行ってもよい。 Moreover, although the said 1st and 2nd embodiment demonstrated the case where the power consumption in the load used in a consumer was not assumed, this invention is not limited to this, In setting of setting output power (calculation of target output power) The power consumed by at least a part of the load used in the consumer may be detected, and the set output power may be set (calculation of the target output power) in consideration of the load power consumption or the load power fluctuation amount. .
 また、上記実施形態に記載されたサンプリング期間、母線電圧などの具体的な数値についても、本発明はこれに限られず、適宜変更が可能である。 Further, the present invention is not limited to the specific values such as the sampling period and the bus voltage described in the above embodiment, and can be appropriately changed.
 また、上記第1および第2実施形態では、DC-DCコンバータに入力される電力のデューティ比を変化させることにより、DC-DCコンバータに入力される電力の出力特性を調整する例について説明したが、本発明はこれに限らず、電力のデューティ比を変化させる方法以外の方法によってDC-DCコンバータに入力される電力の出力特性を調整してもよい。たとえば、DC-DCコンバータに抵抗を設けてDC-DCコンバータに入力される電流の大きさを調整することにより、DC-DCコンバータに入力される電力の入力特性を調整してもよい。 In the first and second embodiments, the example in which the output characteristic of the power input to the DC-DC converter is adjusted by changing the duty ratio of the power input to the DC-DC converter has been described. The present invention is not limited to this, and the output characteristics of the power input to the DC-DC converter may be adjusted by a method other than the method of changing the duty ratio of the power. For example, the input characteristics of the power input to the DC-DC converter may be adjusted by providing a resistor in the DC-DC converter and adjusting the magnitude of the current input to the DC-DC converter.
 また、上記第1実施形態では、DC-DCコンバータ34に入力される電力のP-V特性が、出力電力が最大になる電圧(Vop)を通る直線に対して略対称な形状(図3参照)を有するように調整されている例を示したが、本発明はこれに限らず、DC-DCコンバータ34に入力される電力のP-V特性が、発電装置により発電された電力のP-V特性(図12参照)に近似したP-V特性になるようにしてもよい。 In the first embodiment, the PV characteristics of the power input to the DC-DC converter 34 are substantially symmetrical with respect to a straight line passing through the voltage (Vop) at which the output power is maximized (see FIG. 3). However, the present invention is not limited to this example, and the PV characteristics of the power input to the DC-DC converter 34 are represented by the P− of the power generated by the power generator. The PV characteristic may be approximated to the V characteristic (see FIG. 12).

Claims (15)

  1.  発電装置に接続され、前記発電装置により発電された電力を蓄電する蓄電池と、
     前記蓄電池に蓄電された電力を放電する電力に変換する放電電力変換部と、
     前記放電電力変換部および電力系統に接続され、前記放電電力変換部により供給される電力を前記電力系統に出力する電力出力部と、
     前記放電電力変換部から前記電力出力部に出力される電力を、電圧に応じて電力が変化するとともにピーク電力を有する出力特性になるように制御する制御部とを備える、充放電システム。
    A storage battery connected to a power generator and storing the power generated by the power generator;
    A discharge power conversion unit that converts power stored in the storage battery into power to be discharged;
    A power output unit connected to the discharge power conversion unit and the power system, and outputs power supplied by the discharge power conversion unit to the power system;
    A charge / discharge system comprising: a control unit that controls the power output from the discharge power conversion unit to the power output unit so that the power changes according to the voltage and has an output characteristic having a peak power.
  2.  前記電力出力部は、前記制御部による前記放電電力変換部の制御に基づいて最大電力追従制御を行う、請求項1に記載の充放電システム。 The charge / discharge system according to claim 1, wherein the power output unit performs maximum power tracking control based on the control of the discharge power conversion unit by the control unit.
  3.  前記制御部は、前記放電電力変換部から出力される電力をPWM制御することにより、前記放電電力変換部から前記電力出力部に出力される電力を、電圧に応じて電力が変化するとともにピーク電力を有する出力特性になるように制御する、請求項1に記載の充放電システム。 The control unit performs PWM control on the power output from the discharge power conversion unit, thereby changing the power output from the discharge power conversion unit to the power output unit according to the voltage and the peak power The charge / discharge system according to claim 1, wherein the charge / discharge system is controlled to have an output characteristic.
  4.  前記発電装置により発電された電力を前記蓄電池に充電する電力に変換するための充電電力変換部をさらに備え、
     前記制御部は、前記充電電力変換部が、前記発電装置からの出力に対して最大電力追従制御を行うように制御する、請求項1に記載の充放電システム。
    A charge power conversion unit for converting the power generated by the power generation device into power for charging the storage battery;
    The charge / discharge system according to claim 1, wherein the control unit controls the charge power conversion unit to perform maximum power tracking control on an output from the power generation device.
  5.  前記発電装置により発電された電力を検出するための電力検出部をさらに備え、
     前記電力検出部の出力に基づいて、前記充電電力変換部は、最大電力追従制御を行う、請求項4に記載の充放電システム。
    A power detector for detecting the power generated by the power generator;
    The charge / discharge system according to claim 4, wherein the charge power conversion unit performs maximum power tracking control based on an output of the power detection unit.
  6.  前記制御部は、前記放電電力変換部から前記電力出力部に出力される電力を、ピーク電力に対応する電圧を通る直線に対して略対称な出力特性になるように制御する、請求項1に記載の充放電システム。 The said control part controls the electric power output to the said electric power output part from the said discharge electric power conversion part so that it may become a substantially symmetrical output characteristic with respect to the straight line which passes the voltage corresponding to peak electric power. The described charge / discharge system.
  7.  前記制御部は、前記放電電力変換部から前記電力出力部に出力される電力のピーク電力を変化させる、請求項6に記載の充放電システム。 The charge / discharge system according to claim 6, wherein the control unit changes a peak power of power output from the discharge power conversion unit to the power output unit.
  8.  前記発電装置と前記電力出力部とは、母線を介して接続されるとともに、前記蓄電池は、前記母線に接続されており、
     前記制御部は、前記放電電力変換部から前記電力出力部に出力される電力を、前記発電装置により発電される電力の出力特性に近似した出力特性になるように制御する、請求項1に記載の充放電システム。
    The power generation device and the power output unit are connected via a bus, and the storage battery is connected to the bus.
    The said control part controls the electric power output to the said electric power output part from the said discharge electric power conversion part so that it may become the output characteristic approximated to the output characteristic of the electric power generated by the said electric power generating apparatus. Charging and discharging system.
  9.  前記制御部は、前記放電電力変換部から前記電力出力部に出力される電力を、電圧とともに電力が徐々に大きくなるとともに、出力電力が最大になる電圧以降で急激に電圧とともに電力が小さくなる出力特性になるように制御する、請求項8に記載の充放電システム。 The control unit outputs the power output from the discharge power conversion unit to the power output unit. The power gradually increases with the voltage, and the power suddenly decreases with the voltage after the voltage at which the output power becomes maximum. The charge / discharge system according to claim 8, wherein the charge / discharge system is controlled to have characteristics.
  10.  前記制御部は、前記放電電力変換部から前記電力出力部に出力される電力の出力特性が、ピーク電力に対応する電圧よりも小さい電圧領域における電圧に対する電力の上昇度合いと比較して、ピーク電力に対応する電圧よりも大きい電圧領域における電圧に対する電力の下降度合いが大きくなるように制御する、請求項9に記載の充放電システム。 The control unit is configured such that the output power of the power output from the discharge power conversion unit to the power output unit is a peak power compared with a degree of increase in power with respect to a voltage in a voltage region smaller than a voltage corresponding to the peak power. The charge / discharge system according to claim 9, wherein control is performed such that a degree of power decrease with respect to a voltage in a voltage region larger than a voltage corresponding to is increased.
  11.  前記発電装置の発電電力が所定の値以下の場合に、前記発電装置により発電された電力に、前記放電電力変換部から供給される電力が加えられて、前記電力出力部に供給される、請求項8に記載の充放電システム。 The power supplied from the discharge power conversion unit is added to the power generated by the power generation device when the generated power of the power generation device is a predetermined value or less, and is supplied to the power output unit. Item 9. The charge / discharge system according to Item 8.
  12.  前記発電装置により発電された電力を前記蓄電池に充電する電力に変換するための充電電力変換部をさらに含み、
     前記制御部は、前記充電電力変換部に入力される電力を、電圧に応じて電力が変化するとともにピーク電力を有する特性になるように制御する、請求項8に記載の充放電システム。
    A charge power conversion unit for converting the power generated by the power generation device into power for charging the storage battery;
    The charge / discharge system according to claim 8, wherein the control unit controls the power input to the charging power conversion unit so that the power changes according to the voltage and has a characteristic having a peak power.
  13.  前記制御部は、前記充電電力変換部に入力される電力をPWM制御することにより、前記充電電力変換部に入力される電力を、電圧に応じて電力が変化するとともにピーク電力を有する特性になるように制御する、請求項12に記載の充放電システム。 The control unit performs PWM control on the power input to the charging power conversion unit, whereby the power input to the charging power conversion unit has a characteristic in which the power changes according to the voltage and has a peak power. The charge / discharge system according to claim 12, wherein the charge / discharge system is controlled as follows.
  14.  前記制御部は、前記充電電力変換部に入力される電力を、前記発電装置により発電される電力の出力特性に近似した特性になるように制御する、請求項12に記載の充放電システム。 The charge / discharge system according to claim 12, wherein the control unit controls the electric power input to the charging power conversion unit so as to have a characteristic approximate to an output characteristic of electric power generated by the power generation device.
  15.  前記発電装置の発電電力が所定の値以上の場合に、前記発電装置により発電された電力から前記蓄電池に充電される電力が差し引かれて、前記発電装置により発電される電力の出力特性に近似した出力特性を有する電力が、前記電力出力部に出力される、請求項14に記載の充放電システム。 When the generated power of the power generation device is equal to or greater than a predetermined value, the power charged in the storage battery is subtracted from the power generated by the power generation device to approximate the output characteristics of the power generated by the power generation device. The charging / discharging system of Claim 14 with which the electric power which has an output characteristic is output to the said electric power output part.
PCT/JP2011/057359 2010-03-26 2011-03-25 Charge/discharge system WO2011118771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-073045 2010-03-26
JP2010073045 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118771A1 true WO2011118771A1 (en) 2011-09-29

Family

ID=44673311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057359 WO2011118771A1 (en) 2010-03-26 2011-03-25 Charge/discharge system

Country Status (1)

Country Link
WO (1) WO2011118771A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITSP20130001A1 (en) * 2013-04-23 2014-10-24 Dario Ottolini ELECTRONIC POWER IN CURRENT CONTINUOUS SYSTEM THAT CONTROLS AND MANAGES IN INTELLIGENT MANNER THE POWER OF A PHOTOVOLTAIC SYSTEM OF A TYPE CONNECTED TO THE PUBLIC ELECTRICITY NETWORK USING THE CHARGE AND DISCHARGE OF A GROUP OF ELE BATTERIES
EP2822143A4 (en) * 2012-03-02 2015-12-30 Jgc Corp Power supply device, electricity storage device, and electricity storage system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266457A (en) * 1993-03-16 1994-09-22 Kansai Electric Power Co Inc:The Photovoltaic power generating equipment capable of jointly using battery
JP2009207234A (en) * 2008-02-26 2009-09-10 Kawamura Electric Inc Linkage system of hybrid system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266457A (en) * 1993-03-16 1994-09-22 Kansai Electric Power Co Inc:The Photovoltaic power generating equipment capable of jointly using battery
JP2009207234A (en) * 2008-02-26 2009-09-10 Kawamura Electric Inc Linkage system of hybrid system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2822143A4 (en) * 2012-03-02 2015-12-30 Jgc Corp Power supply device, electricity storage device, and electricity storage system
US9641022B2 (en) 2012-03-02 2017-05-02 Jgc Corporation Power supply apparatus, battery apparatus, and battery system
ITSP20130001A1 (en) * 2013-04-23 2014-10-24 Dario Ottolini ELECTRONIC POWER IN CURRENT CONTINUOUS SYSTEM THAT CONTROLS AND MANAGES IN INTELLIGENT MANNER THE POWER OF A PHOTOVOLTAIC SYSTEM OF A TYPE CONNECTED TO THE PUBLIC ELECTRICITY NETWORK USING THE CHARGE AND DISCHARGE OF A GROUP OF ELE BATTERIES

Similar Documents

Publication Publication Date Title
KR101097266B1 (en) Energy storage system and controlling method of the same
US10811900B2 (en) Uninterruptible power supply system and uninterruptible power supply apparatus
US9853452B2 (en) Power control apparatus, power control method, program, and energy management system
JP5929258B2 (en) Power supply system and power supply device
US9148020B2 (en) Method of controlling a battery, computer readable recording medium, electric power generation system and device controlling a battery
EP2365606A1 (en) A battery system
JP5995041B2 (en) Charge control device, solar power generation system, and charge control method
JP5880778B2 (en) Solar power system
KR20130099022A (en) Power conversion system for energy storage system and controlling method of the same
JP5541982B2 (en) DC power distribution system
US20120228950A1 (en) Stabilization system, power supply system, control method of the master management device and program for the master management device
KR102087063B1 (en) Method and apparatus for improved burst mode during power conversion
WO2011122672A1 (en) Power supply system, power supply method, and control program for power supply system
KR20150106694A (en) Energy storage system and method for driving the same
US9502903B2 (en) Energy management systems and methods
Rajesh et al. Implementation of an adaptive control strategy for solar photo voltaic generators in microgrlds with MPPT and energy storage
KR101337576B1 (en) Method and system for state of charge management
Yan et al. Reduced battery usage in a hybrid battery and photovoltaic stand-alone DC microgrid with flexible power point tracking
Kumar et al. Voltage control and power balance in a standalone microgrid supported from solar PV system
WO2011118771A1 (en) Charge/discharge system
Kumar et al. Energy Management of PV-Grid-Integrated Microgrid with Hybrid Energy Storage System
Dalala et al. A new robust control strategy for multistage PV battery chargers
JP5810254B2 (en) Power storage device
WO2011118776A1 (en) Power supply system and power generation system
Choi et al. Control design of coordinated droop control for hybrid AC/DC microgrid considering distributed generation characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP