JPWO2012147246A1 - Marine power generation system - Google Patents

Marine power generation system Download PDF

Info

Publication number
JPWO2012147246A1
JPWO2012147246A1 JP2013511876A JP2013511876A JPWO2012147246A1 JP WO2012147246 A1 JPWO2012147246 A1 JP WO2012147246A1 JP 2013511876 A JP2013511876 A JP 2013511876A JP 2013511876 A JP2013511876 A JP 2013511876A JP WO2012147246 A1 JPWO2012147246 A1 JP WO2012147246A1
Authority
JP
Japan
Prior art keywords
exhaust
temperature
load
power
supercharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013511876A
Other languages
Japanese (ja)
Other versions
JP5746757B2 (en
Inventor
俊一郎 福田
俊一郎 福田
大井 明
明 大井
謙介 丸山
謙介 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2013511876A priority Critical patent/JP5746757B2/en
Publication of JPWO2012147246A1 publication Critical patent/JPWO2012147246A1/en
Application granted granted Critical
Publication of JP5746757B2 publication Critical patent/JP5746757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/02Driving of auxiliaries from propulsion power plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • F01K15/04Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
    • F01K15/045Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supercharger (AREA)

Abstract

舶用発電システム(100)は、過給機付き主機(1)の排気熱を利用して蒸気を生成する廃熱回収系(3)と、廃熱回収系(3)において生成された蒸気により駆動される蒸気ターボ発電機(4)と、主機(1)の給気又は排気の温度を検出するための温度検出手段(61)と、主機(1)の負荷を検出するための負荷検出手段(62)と、バイパス通路(46)を流れる排気の流量と過給機(2)に送られる排気の流量とを調整するための流量調整手段(47)と、温度及び負荷に応じて、蒸気ターボ発電機(4)が船内需用電力以上の電力を発生可能となるよう流量調整手段(47)を制御する制御手段(50)と、を備える。  The marine power generation system (100) is driven by a waste heat recovery system (3) that generates steam using the exhaust heat of the supercharged main engine (1), and steam generated in the waste heat recovery system (3). A steam turbo generator (4), temperature detection means (61) for detecting the temperature of the supply or exhaust of the main machine (1), and load detection means for detecting the load of the main machine (1) ( 62), flow rate adjusting means (47) for adjusting the flow rate of the exhaust gas flowing through the bypass passage (46) and the flow rate of the exhaust gas sent to the supercharger (2), and the steam turbo according to the temperature and load And a control means (50) for controlling the flow rate adjusting means (47) so that the generator (4) can generate electric power that is greater than or equal to the power required for inboard use.

Description

本発明は、蒸気タービンにより発電機を駆動する舶用発電システムに関し、特に、過給機付き主機の排気熱を利用して蒸気を生成する廃熱回収系を備えた舶用発電システムに関する。  The present invention relates to a marine power generation system in which a generator is driven by a steam turbine, and more particularly to a marine power generation system provided with a waste heat recovery system that generates steam using exhaust heat of a main engine with a supercharger.

大型の船舶は、運航中に必要となる電力を発電する発電システムを搭載している。近年、省エネルギー化に対する要請に応えるため、主機周辺の廃熱を回収して蒸気を生成する廃熱回収系を舶用発電システムに付加し、廃熱回収系で生成された蒸気で蒸気タービンを駆動し、その駆動タービンの出力に基づいて発電機を駆動することがある(例えば、特許文献1参照)。  Large ships are equipped with a power generation system that generates the power required during operation. In recent years, in order to meet the demand for energy saving, a waste heat recovery system that recovers waste heat around the main engine and generates steam is added to the ship power generation system, and the steam turbine is driven by the steam generated in the waste heat recovery system. The generator may be driven based on the output of the driving turbine (see, for example, Patent Document 1).

特開2011−27053号公報JP 2011-27053 A

廃熱回収系による回収熱量は、主機の負荷に応じて変化する。つまり、発電機の発生可能電力は、主機の負荷に応じて変化する。従来、廃熱回収系及び発電機を主機の負荷及び船内需用電力との関係でどのような仕様に設計するのかに関して、概して2つのアプローチがある。  The amount of heat recovered by the waste heat recovery system varies depending on the load on the main engine. That is, the electric power that can be generated by the generator changes according to the load of the main engine. Conventionally, there are generally two approaches as to what specifications to design the waste heat recovery system and the generator in relation to the load of the main engine and the electric power for ship use.

1つ目は、主機が低負荷域で運転されていても発電機が船内需要電力を賄えるだけの電力を発生可能なように、廃熱回収系及び発電機を設計するものである。この場合、主機が常用出力で運転されていれば、発電機が余剰電力を発生する。長期航海に供される船舶では、殆どの期間主機が常用出力で運転されることとなるので、無用な燃料消費が増大するし、システムの全体サイズが船内需用電力との関係で大型となる。  The first is to design the waste heat recovery system and the generator so that the generator can generate enough power to cover the onboard power demand even when the main engine is operating in a low load range. In this case, if the main engine is operated at the normal output, the generator generates surplus power. In ships used for long-term voyages, the main engine is operated at normal power for most of the period, so unnecessary fuel consumption increases, and the overall size of the system becomes large in relation to the power required for inboard ships. .

2つ目は、主機が常用出力で運転されているときに発電機が船内需用電力を賄えるだけの電力を発生するように、廃熱回収系及び発電機を設計するものである。この場合、主機が部分負荷で運転されていれば、発電機が、船内需用電力を賄うだけの電力を発生し得ない。このため、補助ボイラを追い焚きするなど、化石燃料の燃焼を伴って蒸気生成量を嵩上げしなければならない。このように、2つ目のアプローチによっても、発電システムに廃熱回収系を付加したことによる省エネルギー効果を十二分に得ることは難しい。  The second is to design the waste heat recovery system and the generator so that the generator generates enough power to cover the power for shipboard when the main engine is operated at normal output. In this case, if the main engine is operated at a partial load, the generator cannot generate enough power to cover the power for shipboard demand. For this reason, it is necessary to increase the amount of steam generated with the combustion of fossil fuels, such as driving up the auxiliary boiler. Thus, even with the second approach, it is difficult to obtain a sufficient energy saving effect by adding the waste heat recovery system to the power generation system.

そこで本発明は、廃熱回収系を付加した舶用発電システムにおいて、船内需要電力を過不足なく発生可能な状況をなるべく広範なものとし、それにより燃料消費率の悪化を必要最小限に抑えることを目的としている。  In view of this, the present invention aims to make the power generation system for a ship with a waste heat recovery system as wide as possible so that the on-board demand power can be generated without excess or deficiency, thereby minimizing the deterioration of the fuel consumption rate. It is aimed.

本件発明者は、主機の負荷に応じて廃熱回収系による回収熱量が変化するとの知見とともに、主機の給気又は排気の温度に応じて廃熱回収系による回収熱量が変化し、温度及び負荷が同一条件下におかれていても過給機に送られる排気の流量に応じて廃熱回収系による回収熱量が変化するとの知見を得た。そこで、温度及び負荷に応じて過給機に送られる排気の流量を調整することにより、温度及び負荷の変化に関わらず廃熱回収系により回収可能な熱量が略一定に保たれ、それにより発電機の発生可能電力が略一定に保たれ得ると着想した。本件発明者は、このような知見及び着想から、下記の舶用発電システムを発明した。  The inventors have found that the amount of heat recovered by the waste heat recovery system changes according to the load of the main engine, and the amount of heat recovered by the waste heat recovery system changes according to the temperature of the supply air or exhaust of the main machine, and the temperature and load. The knowledge that the amount of heat recovered by the waste heat recovery system changes according to the flow rate of the exhaust gas sent to the supercharger even under the same conditions. Therefore, by adjusting the flow rate of the exhaust gas sent to the turbocharger according to the temperature and load, the amount of heat that can be recovered by the waste heat recovery system is kept substantially constant regardless of changes in temperature and load. The idea was that the power generated by the machine could be kept almost constant. The present inventors have invented the following marine power generation system based on such knowledge and ideas.

すなわち、本発明に係る舶用発電システムは、過給機付き主機の排気熱を利用して蒸気を生成する廃熱回収系と、前記廃熱回収系において生成された蒸気により駆動される発電機と、前記主機の給気又は排気の温度を検出するための温度検出手段と、前記主機の負荷を検出するための負荷検出手段と、前記主機からの排気が流れる排気通路と、前記排気通路に接続され、前記過給機を迂回して排気が流れるバイパス通路と、前記バイパス通路を流れる排気の流量と前記過給機に送られる排気の流量とを調整するための流量調整手段と、前記温度検出手段により検出される温度及び前記負荷検出手段により検出される負荷に応じて、前記発電機が船内需用電力以上の電力を発生するように前記流量調整手段を制御する制御手段と、を備える。  That is, a marine power generation system according to the present invention includes a waste heat recovery system that generates steam using exhaust heat of a supercharged main engine, and a generator that is driven by the steam generated in the waste heat recovery system. A temperature detection means for detecting the temperature of the supply or exhaust of the main machine, a load detection means for detecting a load of the main machine, an exhaust passage through which exhaust from the main machine flows, and a connection to the exhaust passage A bypass passage through which the exhaust gas bypasses the supercharger, a flow rate adjusting means for adjusting a flow rate of the exhaust gas flowing through the bypass passage and a flow rate of the exhaust gas sent to the supercharger, and the temperature detection Control means for controlling the flow rate adjusting means so that the generator generates electric power that is equal to or greater than the power for on-board demand according to the temperature detected by the means and the load detected by the load detecting means.

前記構成によれば、温度と負荷とに応じて、過給機に送られる排気の流量及び過給機を迂回する排気の流量が調整される。そして、廃熱回収系は、発電機が船内需用電力以上の電力を発生するために必要な排気熱の供給を受けることができる。このように、本発明によれば、主機の給気又は排気の温度が変化しても、また、主機の負荷が変化しても、発電機が船内需用電力以上の電力を安定的に発電することができるようになる。したがって、温度及び負荷が変化しても、余剰電力が発生したり補助ボイラを作動させたりする状況が少なくなり、燃料消費率の悪化を好適に抑制することができる。  According to the said structure, according to temperature and load, the flow volume of the exhaust_gas | exhaustion sent to a supercharger and the flow volume of the exhaust gas which bypasses a supercharger are adjusted. And a waste heat recovery system can receive supply of exhaust heat required in order that a generator may generate electric power more than power for inboard use. As described above, according to the present invention, even if the temperature of the supply or exhaust of the main engine changes or the load of the main engine changes, the generator can stably generate electric power that is greater than the power for shipboard use. Will be able to. Therefore, even if the temperature and load change, the situation where surplus power is generated or the auxiliary boiler is operated is reduced, and the deterioration of the fuel consumption rate can be suitably suppressed.

前記温度検出手段は、前記過給機に供給される給気の温度、前記過給機から前記主機に供給される給気の温度、前記主機から前記過給機に供給される排気の温度、又は、前記廃熱回収系の入口における排気の温度を検出してもよい。前記構成によれば、温度に応じた流量調整制御、ひいては発生可能電力の安定化制御を好適に実行することができる。  The temperature detection means includes a temperature of supply air supplied to the supercharger, a temperature of supply air supplied from the supercharger to the main unit, a temperature of exhaust gas supplied from the main unit to the supercharger, Or you may detect the temperature of the exhaust_gas | exhaustion in the inlet_port | entrance of the said waste heat recovery system. According to the said structure, the flow volume adjustment control according to temperature and by extension, stabilization control of generateable electric power can be performed suitably.

また、前記負荷検出手段は、前記主機の出力軸及びそれに連れて回転する回転軸を含む軸動力系の回転数、前記過給機の回転数、前記主機への燃料噴射量、又は、前記主機からの排気の流量を検出してもよい。前記構成によれば、負荷に応じた流量調整制御、ひいては発生可能電力の安定化制御を好適に実行することができる。  Further, the load detecting means includes a rotation speed of a shaft power system including an output shaft of the main machine and a rotation shaft rotating with the output shaft, a rotation speed of the supercharger, a fuel injection amount to the main machine, or the main machine The flow rate of the exhaust from may be detected. According to the said structure, the flow volume adjustment control according to load and by extension, stabilization control of generateable electric power can be performed suitably.

前記流量調整手段は、前記バイパス通路上に開度可変にして設けられた排気バイパス弁を有し、前記制御手段は、温度及び負荷に応じて、前記発電機が船内需用電力以上の電力を発生可能となるよう前記排気バイパス弁の開度を制御してもよい。前記構成によれば、排気バイパス弁の開度を制御するだけで、温度及び負荷に応じた発生可能電力の安定化制御を好適に実行することができる。  The flow rate adjusting means includes an exhaust bypass valve provided on the bypass passage with a variable opening degree, and the control means is configured to allow the generator to generate electric power that is greater than or equal to the power required for inboard ships according to temperature and load. You may control the opening degree of the said exhaust bypass valve so that it may generate | occur | produce. According to the said structure, stabilization control of the electric power which can be generated according to temperature and load can be performed suitably only by controlling the opening degree of an exhaust gas bypass valve.

前記制御手段が、温度及び負荷と、前記発電機が船内需用電力以上の電力を発生するために必要な排気熱を前記廃熱回収系に供給しうる前記排気バイパス弁の開度との関係を規定した制御規則を予め記憶している記憶部を有していてもよい。前記構成によれば、温度及び負荷に応じた発生可能電力の安定化制御を好適に実行することができる。  Relationship between the temperature and load of the control means and the opening degree of the exhaust bypass valve that can supply the exhaust heat necessary for the generator to generate electric power that is greater than the power required for inboard ships to the waste heat recovery system You may have the memory | storage part which memorize | stored the control rule which prescribed | regulated previously. According to the said structure, the stabilization control of the electric power which can be generated according to temperature and load can be performed suitably.

前記制御規則において、常用負荷よりも低負荷域における負荷と、前記排気バイパス弁の開度との関係が規定されていてもよい。前記構成によれば、主機が部分負荷で運転されていても、発電機が船内需用電力以上の電力を発生可能となる。補助ボイラを追い焚きしなくてはならない状況を少なくすることができ、燃料消費率を向上させることができる。  In the control rule, a relationship between a load in a load range lower than a normal load and an opening degree of the exhaust bypass valve may be defined. According to the said structure, even if the main machine is drive | operated by partial load, a generator can generate | occur | produce the electric power more than the power for ship use. It is possible to reduce the situation where the auxiliary boiler has to be relegated and improve the fuel consumption rate.

前記制御手段は、温度が低いほど、前記排気バイパス弁の開度を大きくしてもよい。前記構成によれば、温度の低下により廃熱回収系に供給される排気熱量が小さくなりかけても、過給機を迂回する排気の流量が多くなり、これにより温度低下による排気熱量の減少分が補償される。したがって、温度が低下しても、発電機の発生可能電力が、船内需用電力以上の電力で安定する。  The control means may increase the opening of the exhaust bypass valve as the temperature is lower. According to the above configuration, even when the amount of exhaust heat supplied to the waste heat recovery system becomes smaller due to a decrease in temperature, the flow rate of exhaust gas that bypasses the turbocharger increases, thereby reducing the amount of exhaust heat due to temperature decrease. Is compensated. Therefore, even if the temperature is lowered, the power that can be generated by the generator is stabilized with power that is equal to or greater than the power for shipboard use.

前記制御手段は、負荷が低いほど、前記排気バイパス弁の開度を大きくしてもよい。前記構成によれば、負荷の低下により廃熱回収系に供給される排気熱量が小さくなりかけても、過給機を迂回する排気の流量が多くなり、これにより負荷低下による排気熱量の減少分が補償される。したがって、負荷が低下しても、発電機の発生可能電力が、船内需用電力以上の電力で安定する。  The control means may increase the opening of the exhaust bypass valve as the load is lower. According to the above configuration, even when the amount of exhaust heat supplied to the waste heat recovery system becomes smaller due to a decrease in load, the flow rate of exhaust gas that bypasses the turbocharger increases, thereby reducing the amount of exhaust heat due to the decrease in load. Is compensated. Therefore, even if the load is reduced, the power that can be generated by the generator is stabilized with power that is equal to or greater than the power for shipboard use.

前記過給機付き主機が、第1主機及び第2主機で構成され、前記流量調整手段が、前記第1主機及び前記第2主機それぞれに対応して設けられた第1流量調整手段及び第2流量調整手段で構成され、前記制御手段は、前記第1主機の排気熱を利用して得られる発生可能電力が前記船内需用電力の半分となり、前記第2主機の排気熱を利用して得られる発生可能電力が前記船内需用電力の半分となるように、前記第1流量調整手段及び前記第2流量調整手段を制御してもよい。前記構成によれば、いわゆる2機2軸型の船舶に舶用発電システムを搭載することができ、当該船舶の燃料消費率の悪化を良好に抑制することができる。  The supercharger-equipped main machine is composed of a first main machine and a second main machine, and the flow rate adjusting means is provided in correspondence with the first main machine and the second main machine, respectively. The flow rate adjusting means is configured, and the control means obtains the electric power that can be generated by using the exhaust heat of the first main engine by half of the electric power for inboard use, and uses the exhaust heat of the second main engine. The first flow rate adjusting means and the second flow rate adjusting means may be controlled such that the generated power that can be generated is half of the power for on-board demand. According to the said structure, a marine power generation system can be mounted in what is called a 2 machine 2 axis type ship, and the deterioration of the fuel consumption rate of the said ship can be suppressed favorably.

前記制御手段は、前記第1主機の排気熱を利用して得られる発生可能電力が前記船内需用電力の半分に満たないときに、前記第2主機の排気熱を利用して得られる発生可能電力を前記船内需用電力の半分の値から増大補正するように、前記第2流量調整手段を制御してもよい。前記構成によれば、主機における発生可能電力が目標とする値(例えば、船内需用電力の半分)を下回っても、他方の主機における発生可能電力を目標とする値(例えば、船内需用電力の半分)から増大させ、それにより当該一方の発生可能電力の不足分を補うことができる。このため、発電機の発電によって極力船内需用電力を賄いきることができるので、燃料消費率の悪化を良好に抑制することができる。  The control means is capable of generating using the exhaust heat of the second main machine when the generated power obtained using the exhaust heat of the first main machine is less than half of the power for on-board demand. The second flow rate adjusting means may be controlled so that the electric power is corrected to increase from half the value of the on-board demand electric power. According to the above configuration, even if the power that can be generated in the main engine falls below a target value (for example, half of the power for onboard demand), the value that can be generated on the other main engine (for example, power for inboard shipping). Half of the power), thereby making up for the shortage of the one possible power generation. For this reason, since it is possible to cover the electric power for inboard use as much as possible by the power generation of the generator, it is possible to favorably suppress the deterioration of the fuel consumption rate.

本発明によれば、廃熱回収系を付加した舶用発電システムにおいて、船内需要電力を過不足なく発生可能な状況をなるべく広範なものとし、それにより燃料消費率の悪化を必要最小限に抑えることができる。本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。  According to the present invention, in a marine power generation system to which a waste heat recovery system is added, the situation where the onboard demand power can be generated without excess or deficiency is made as wide as possible, thereby suppressing the deterioration of the fuel consumption rate to the minimum necessary. Can do. The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of the preferred embodiments with reference to the accompanying drawings.

本発明の第1実施形態に係る舶用発電システムの全体構成を示す概念図である。1 is a conceptual diagram illustrating an overall configuration of a marine power generation system according to a first embodiment of the present invention. 図1に示す舶用発電システムの過給機周辺の構成及び制御系の構成を示す概念図である。It is a conceptual diagram which shows the structure of the supercharger periphery of the marine power generation system shown in FIG. 1, and the structure of a control system. 図2に示す制御マップ記憶部に記憶されている制御マップの一例を模式的に示すグラフである。It is a graph which shows typically an example of the control map memorized by the control map storage part shown in FIG. 図2に示すコントローラにより実行される制御の処理内容の一例を示すフローチャートである。It is a flowchart which shows an example of the processing content of the control performed by the controller shown in FIG. 本発明の第2実施形態に係る舶用発電システムの全体構成を示す概念図である。It is a conceptual diagram which shows the whole structure of the ship electric power generation system which concerns on 2nd Embodiment of this invention. 図5に示す舶用発電システムの過給機周辺の構成及び制御系の構成を示す概念図である。It is a conceptual diagram which shows the structure of the supercharger periphery of the marine power generation system shown in FIG. 5, and the structure of a control system. 図6に示す制御マップ記憶部に記憶されている制御マップの一例を模式的に示すグラフである。It is a graph which shows typically an example of the control map memorized by the control map storage part shown in FIG. 図6に示すコントローラにより実行される制御の処理内容の一例を示すフローチャートである。It is a flowchart which shows an example of the processing content of the control performed by the controller shown in FIG.

以下、図面を参照しながら本発明の実施形態について説明する。同一又は対応する要素には全ての図を通じて同一の符号を付し、その重複する詳細な説明を省略する。図1は、本発明の実施形態に係る舶用発電システム100の全体構成を示す概念図である。図1に示す舶用発電システム100は、舶用ディーゼルエンジンを主機1とした船舶に搭載されている。主機1には、排気により駆動される過給機2が備え付けられている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same or corresponding elements are denoted by the same reference numerals throughout all the drawings, and the detailed description thereof is omitted. FIG. 1 is a conceptual diagram showing the overall configuration of a marine power generation system 100 according to an embodiment of the present invention. A marine power generation system 100 shown in FIG. 1 is mounted on a marine vessel having a marine diesel engine as a main engine 1. The main machine 1 is provided with a supercharger 2 driven by exhaust.

舶用発電システム100は、廃熱回収系3及び蒸気ターボ発電機4を備えている。廃熱回収系3は、主機1の廃熱を回収し、蒸気を生成する。この廃熱には、主として主機1の排気熱が含まれ、他に主機1の給気又は掃気の熱も含まれる。蒸気ターボ発電機4は、廃熱回収系3で生成された蒸気により駆動される蒸気タービン5と、蒸気タービン5により駆動されて交流電力を発電する発電機6とを備えている。  The marine power generation system 100 includes a waste heat recovery system 3 and a steam turbo generator 4. The waste heat recovery system 3 recovers the waste heat of the main machine 1 and generates steam. This waste heat mainly includes the exhaust heat of the main machine 1, and also includes the heat of supply or scavenging of the main machine 1. The steam turbo generator 4 includes a steam turbine 5 driven by steam generated in the waste heat recovery system 3 and a generator 6 driven by the steam turbine 5 to generate AC power.

廃熱回収系3は、主として、排ガスエコノマイザ10、復水器21、給水系統22、給水加熱器23a,23b、高圧ドラム(高圧汽水分離器)24、中圧ドラム(中圧汽水分離器)25、低圧ドラム(低圧汽水分離器)26、高圧循環水系統27、蒸気系統28、中圧循環水系統29、中圧混気系統30、低圧循環水系統31、低圧蒸発器32及び低圧混気系統33を備えている。  The waste heat recovery system 3 mainly includes an exhaust gas economizer 10, a condenser 21, a feed water system 22, a feed water heater 23 a and 23 b, a high pressure drum (high pressure steam separator) 24, and an intermediate pressure drum (medium pressure steam separator) 25. , Low pressure drum (low pressure steam separator) 26, high pressure circulating water system 27, steam system 28, medium pressure circulating water system 29, medium pressure mixed water system 30, low pressure circulating water system 31, low pressure evaporator 32 and low pressure mixed gas system 33 is provided.

排ガスエコノマイザ10は、過給機2と排気出口との間に介在しており、主機1の排気系の一部を構成している。排気系は、排ガスエコノマイザ10を迂回するバイパス管7を備えている。排ガスエコノマイザ10の入口部及びバイパス管7の入口部は、第1ダンパ8及び第2ダンパ9によりそれぞれ開閉される。第1ダンパ8及び第2ダンパ9の動作を制御することにより、排ガスエコノマイザ10に供給される排気の流量及び熱量を調整することができる。  The exhaust gas economizer 10 is interposed between the supercharger 2 and the exhaust outlet, and constitutes a part of the exhaust system of the main engine 1. The exhaust system includes a bypass pipe 7 that bypasses the exhaust gas economizer 10. The inlet part of the exhaust gas economizer 10 and the inlet part of the bypass pipe 7 are opened and closed by the first damper 8 and the second damper 9, respectively. By controlling the operation of the first damper 8 and the second damper 9, the flow rate and heat quantity of the exhaust gas supplied to the exhaust gas economizer 10 can be adjusted.

排ガスエコノマイザ10は、上流側から順に入口管11、高圧蒸発器12、中間管13、中圧蒸発器14及び出口管15を備えている。入口管11は、排気を高圧蒸発器12に導く。中間管13は、高圧蒸発器12における熱交換後の排気を中圧蒸発器14に導く。出口管15は、中圧蒸発器14における熱交換後の排気を排気出口に導く。  The exhaust gas economizer 10 includes an inlet pipe 11, a high-pressure evaporator 12, an intermediate pipe 13, an intermediate-pressure evaporator 14, and an outlet pipe 15 in order from the upstream side. The inlet pipe 11 guides the exhaust to the high pressure evaporator 12. The intermediate pipe 13 guides the exhaust gas after heat exchange in the high-pressure evaporator 12 to the intermediate-pressure evaporator 14. The outlet pipe 15 guides the exhaust gas after the heat exchange in the intermediate pressure evaporator 14 to the exhaust outlet.

復水器21は、蒸気タービン5の蒸気出口5aと接続され、蒸気出口5aから流出した蒸気を凝縮させる。給水系統22は、復水器21を各ドラム24〜26に接続しており、復水器21で生成された復水を給水として各ドラム24〜26まで送る。給水系統22は、復水器21から延びるライン21aと、ライン22aから分岐したライン22b,22c,22dとを有している。ライン22b,22c,22dは、高圧ドラム24、中圧ドラム25及び低圧ドラム26にそれぞれ接続されている。第1給水加熱器23a及び第2給水加熱器23bは、ライン22a及びライン22bにそれぞれ設けられている。第1給水加熱器23aは、各ドラム24〜26に送られる給水と主機1の掃気との間で熱交換させ、それにより当該給水を加熱して当該掃気を冷却する。第2給水加熱器23bは、高圧ドラム24に送られる給水と主機1の給気との間で熱交換させ、それにより当該給水を加熱して当該給気を冷却する。各ドラム24〜26は、給水を循環水として貯留し且つ循環水より得た蒸気を貯留する。  The condenser 21 is connected to the steam outlet 5a of the steam turbine 5, and condenses the steam flowing out from the steam outlet 5a. The water supply system 22 connects the condenser 21 to each drum 24-26, and sends the condensate produced | generated by the condenser 21 to each drum 24-26 as water supply. The water supply system 22 has a line 21a extending from the condenser 21 and lines 22b, 22c, and 22d branched from the line 22a. The lines 22b, 22c, and 22d are connected to the high-pressure drum 24, the intermediate-pressure drum 25, and the low-pressure drum 26, respectively. The 1st feed water heater 23a and the 2nd feed water heater 23b are provided in line 22a and line 22b, respectively. The first feed water heater 23a exchanges heat between the feed water sent to each of the drums 24 to 26 and the scavenging of the main machine 1, thereby heating the feed water and cooling the scavenging. The second feed water heater 23b exchanges heat between the feed water sent to the high-pressure drum 24 and the feed air of the main machine 1, thereby heating the feed water and cooling the feed air. Each of the drums 24 to 26 stores feed water as circulating water and stores steam obtained from the circulating water.

高圧循環水系統27は、高圧ドラム24を高圧蒸発器12に接続するライン27aと、高圧蒸発器12を高圧ドラム24に接続するライン27bとを有する。蒸気系統28は、高圧ドラム24を蒸気タービン5の蒸気入口5bに接続する。ライン27a上のポンプが動作すると、高圧ドラム24内の循環水がライン27aに沿って高圧蒸発器12へと送られ、送られた循環水が高圧蒸発器12内で排気との熱交換により蒸気となる。循環水は気液混合状態でライン27bを介して高圧ドラム24に戻され、戻された循環水は高圧ドラム24内で蒸気と液体とに分離される。高圧ドラム24内の蒸気は、蒸気系統28を介して蒸気入口5bに供給される。中圧循環水系統29は、中圧ドラム25を中圧蒸発器14に接続するライン29aと、中圧蒸発器14を中圧ドラム25に接続するライン29bとを有する。中圧混気系統30は、中圧ドラム25を蒸気タービン5の中圧混気入口5cに接続する。ライン29a上のポンプが動作すると、中圧ドラム25内の循環水がライン29aを介して中圧蒸発器14へと送られ、送られた循環水が中圧蒸発器14で排気との熱交換により蒸気となる。循環水は気液混合状態でライン29bを介して中圧ドラム25内に戻され、戻された循環水は中圧ドラム25内で蒸気と液体とに分離される。中圧ドラム25内の蒸気は、中圧混気系統30を介して中圧混気入口5cに供給される。低圧循環水系統31は、低圧ドラム26を低圧蒸発器32に接続するライン31aと、低圧蒸発器32を低圧ドラム26に接続するライン31bとを有する。低圧混気系統33は、低圧ドラム26を蒸気タービン5の低圧混気入口5dに接続する。ライン31a上のポンプが動作すると、低圧ドラム26内の循環水がライン31aを介して低圧蒸発器32へと送られる。本実施形態では、給気を冷却するためのエアクーラが低圧蒸発器32に適用されており、送られた循環水は低圧蒸発器32内で給気との熱交換により蒸気となる。循環水は気液混合状態でライン31bを介して低圧ドラム26内に戻され、戻された循環水は低圧ドラム26内で蒸気と液体とに分離される。低圧ドラム26内の蒸気は、低圧混気系統33を介して低圧混気入口5dに供給される。  The high-pressure circulating water system 27 includes a line 27 a that connects the high-pressure drum 24 to the high-pressure evaporator 12 and a line 27 b that connects the high-pressure evaporator 12 to the high-pressure drum 24. The steam system 28 connects the high-pressure drum 24 to the steam inlet 5 b of the steam turbine 5. When the pump on the line 27a is operated, the circulating water in the high-pressure drum 24 is sent to the high-pressure evaporator 12 along the line 27a, and the sent circulating water is steamed by heat exchange with the exhaust gas in the high-pressure evaporator 12. It becomes. The circulating water is returned to the high-pressure drum 24 through the line 27 b in a gas-liquid mixed state, and the returned circulating water is separated into vapor and liquid in the high-pressure drum 24. The steam in the high-pressure drum 24 is supplied to the steam inlet 5b through the steam system 28. The intermediate pressure circulating water system 29 includes a line 29 a that connects the intermediate pressure drum 25 to the intermediate pressure evaporator 14, and a line 29 b that connects the intermediate pressure evaporator 14 to the intermediate pressure drum 25. The intermediate pressure mixture system 30 connects the intermediate pressure drum 25 to the intermediate pressure mixture inlet 5 c of the steam turbine 5. When the pump on the line 29a operates, the circulating water in the intermediate pressure drum 25 is sent to the intermediate pressure evaporator 14 via the line 29a, and the sent circulating water exchanges heat with the exhaust gas in the intermediate pressure evaporator 14. It becomes steam. The circulating water is returned to the intermediate pressure drum 25 through the line 29b in a gas-liquid mixed state, and the returned circulating water is separated into vapor and liquid in the intermediate pressure drum 25. The steam in the intermediate pressure drum 25 is supplied to the intermediate pressure mixture inlet 5 c via the intermediate pressure mixture system 30. The low-pressure circulating water system 31 includes a line 31 a that connects the low-pressure drum 26 to the low-pressure evaporator 32, and a line 31 b that connects the low-pressure evaporator 32 to the low-pressure drum 26. The low-pressure mixture system 33 connects the low-pressure drum 26 to the low-pressure mixture inlet 5 d of the steam turbine 5. When the pump on the line 31a operates, the circulating water in the low pressure drum 26 is sent to the low pressure evaporator 32 via the line 31a. In the present embodiment, an air cooler for cooling the supply air is applied to the low-pressure evaporator 32, and the circulating water that is sent becomes steam by heat exchange with the supply air in the low-pressure evaporator 32. The circulating water is returned to the low-pressure drum 26 through the line 31 b in a gas-liquid mixed state, and the returned circulating water is separated into steam and liquid in the low-pressure drum 26. The steam in the low-pressure drum 26 is supplied to the low-pressure mixture inlet 5d through the low-pressure mixture system 33.

蒸気タービン5は、複数の動翼を有した多段式の蒸気タービンである。蒸気タービン5は、蒸気入口5b、中圧混気入口5c及び低圧混気入口5dに供給された蒸気及び混気により動翼を回転させ、これにより出力軸に回転出力を発生させる。発電機6は、蒸気タービン5の出力、すなわち、蒸気タービン5に供給される蒸気及び混気の流量や圧力に応じて交流電力を発電する。  The steam turbine 5 is a multistage steam turbine having a plurality of moving blades. The steam turbine 5 rotates a moving blade by steam and mixed gas supplied to the steam inlet 5b, the medium pressure mixed gas inlet 5c, and the low pressure mixed gas inlet 5d, thereby generating a rotation output on the output shaft. The generator 6 generates AC power according to the output of the steam turbine 5, that is, the flow rate and pressure of the steam and mixed gas supplied to the steam turbine 5.

なお、蒸気系統28は、高圧ドラム24側の上流ライン28aと、蒸気タービン5側の下流ライン28bとを備えている。上流ライン28aと下流ライン28bとの間には過熱器35が介在している。蒸気系統28は、過熱器35を迂回して上流ライン28a及び下流ライン28bを接続するバイパスライン28cを更に備えている。廃熱回収系3は、高圧ドラム24からの蒸気が蒸気入口5bに送られるまでに過熱器35を経由するか否かを制御する弁ユニット34を備えている。弁ユニット34は、バイパスライン28cを介した蒸気の通流を許容又は阻止する第1開閉弁34aと、過熱器35を介した蒸気の通流を許容又は阻止する第2開閉弁34bと、過熱器35を通流した蒸気を部分的に逃がすための逃がし弁34cとを備えている。過熱器35は、排ガスエコノマイザ10の入口管11内に設けられている。蒸気が過熱器35を経由するときには、蒸気を排気との熱交換により過熱することができ、それにより蒸気タービン5の出力を大きくすることができる。また、低圧混気系統32は、入口弁36を備えている。入口弁36の開度に応じて、低圧混気入口5dに供給される混気の流量が調整される。入口弁36が低圧混気入口5dに供給される混気の流量を大きくするよう動作したときには、蒸気タービン5の出力を大きくすることができる。  The steam system 28 includes an upstream line 28a on the high pressure drum 24 side and a downstream line 28b on the steam turbine 5 side. A superheater 35 is interposed between the upstream line 28a and the downstream line 28b. The steam system 28 further includes a bypass line 28c that bypasses the superheater 35 and connects the upstream line 28a and the downstream line 28b. The waste heat recovery system 3 includes a valve unit 34 that controls whether or not the steam from the high-pressure drum 24 passes through the superheater 35 before being sent to the steam inlet 5b. The valve unit 34 includes a first opening / closing valve 34a that allows or blocks the flow of steam through the bypass line 28c, a second opening / closing valve 34b that allows or blocks the flow of steam through the superheater 35, and an overheating. And a relief valve 34c for partially escaping the steam flowing through the vessel 35. The superheater 35 is provided in the inlet pipe 11 of the exhaust gas economizer 10. When the steam passes through the superheater 35, the steam can be superheated by heat exchange with the exhaust, and thereby the output of the steam turbine 5 can be increased. Further, the low-pressure mixed system 32 includes an inlet valve 36. In accordance with the opening degree of the inlet valve 36, the flow rate of the air-fuel mixture supplied to the low-pressure air-fuel mixture inlet 5d is adjusted. When the inlet valve 36 operates to increase the flow rate of the air-fuel mixture supplied to the low-pressure air-fuel mixture inlet 5d, the output of the steam turbine 5 can be increased.

また、高圧ドラム24は、補助ボイラ24aを備えている。補助ボイラ24aは、化石燃料の燃焼により生ずる熱で高圧ドラム24内の循環水を加熱し、それにより高圧ドラム24内で蒸気を発生することができる。この補助ボイラ24aの追い焚きによっても、蒸気タービン5の出力を大きくすることができる。中圧ドラム25及び低圧ドラム25は、加熱器25a,26aをそれぞれ備えている。各加熱器25a,26aは、蒸気系統28を介して高圧ドラム24からの蒸気の供給を受け(図1中米印参照)、それによりドラム25,26内の循環水を加熱することができる。  The high-pressure drum 24 includes an auxiliary boiler 24a. The auxiliary boiler 24 a can heat the circulating water in the high-pressure drum 24 with heat generated by the combustion of fossil fuel, and thereby generate steam in the high-pressure drum 24. The output of the steam turbine 5 can also be increased by the reheating of the auxiliary boiler 24a. The intermediate pressure drum 25 and the low pressure drum 25 are provided with heaters 25a and 26a, respectively. Each heater 25a, 26a receives the supply of steam from the high-pressure drum 24 via the steam system 28 (see the US mark in FIG. 1), and thereby can heat the circulating water in the drums 25, 26.

以下の説明では、補助ボイラ24aの追い焚きに頼らず、回収された廃熱のみに基づいて生成された蒸気により発生した蒸気タービン5の出力を「廃熱による蒸気タービン5の出力」と称したり、当該廃熱による蒸気タービン5の出力に基づいて発電機6を駆動したときに蒸気ターボ発電機4が発生し得る電力を、「廃熱による蒸気ターボ発電機4の発生可能電力」と称したりする場合がある。  In the following description, the output of the steam turbine 5 generated by the steam generated based only on the recovered waste heat without depending on the reheating of the auxiliary boiler 24a is referred to as “the output of the steam turbine 5 by the waste heat”. The electric power that can be generated by the steam turbo generator 4 when the generator 6 is driven based on the output of the steam turbine 5 due to the waste heat is referred to as “power that can be generated by the steam turbo generator 4 due to waste heat”. There is a case.

舶用発電システム1は、コントローラ50を備えている。コントローラ50は、弁ユニット34、入口弁36、第1ダンパ8及び第2ダンパ9などの動作を制御し、運転状態に応じて廃熱による蒸気ターボ発電機4の発生可能電力を制御する。特に、本実施形態に係るコントローラ50は、過給機2を迂回して排気が流れるバイパス通路46上に設けられた排気バイパス弁48の動作を制御する。コントローラ50は、排気バイパス弁48の制御を通じて、過給機2に送られる排気の流量と過給機2を迂回する排気の流量とを運転状態に応じて制御し、排ガスエコノマイザ10に供給される排気の温度及び熱量を調整する。これにより、運転状態に変化が生じても、廃熱による蒸気ターボ発電機4の発生可能電力が船内需用電力又はそれよりも高い値で安定的に維持されるようになる。ここで言う「船内需用電力」は、船舶の航行中に必要とされる電力量であり、船舶の航行中に常時必要とされる電力量(いわゆる連続電力)に一時的に必要となる電力量を加算した電力量である。なお、一時的に必要となる電力量は、船舶に搭載された冷凍装置のコンプレッサを起動するときなどに発生する。  The marine power generation system 1 includes a controller 50. The controller 50 controls the operation of the valve unit 34, the inlet valve 36, the first damper 8, the second damper 9, and the like, and controls the power that can be generated by the steam turbo generator 4 due to waste heat according to the operating state. In particular, the controller 50 according to the present embodiment controls the operation of the exhaust bypass valve 48 provided on the bypass passage 46 that bypasses the supercharger 2 and flows exhaust. The controller 50 controls the flow rate of the exhaust gas sent to the supercharger 2 and the flow rate of the exhaust gas bypassing the supercharger 2 through the control of the exhaust gas bypass valve 48 according to the operating state, and is supplied to the exhaust gas economizer 10. Adjust exhaust temperature and heat. Thereby, even if a change occurs in the operation state, the electric power that can be generated by the steam turbo generator 4 due to waste heat is stably maintained at the in-board demand electric power or a higher value. “In-vessel power demand” as used herein refers to the amount of power required during the navigation of the ship, and the power required temporarily during the navigation of the ship (so-called continuous power). It is the amount of electric power obtained by adding the amount. Note that the temporarily required power amount is generated when starting a compressor of a refrigeration apparatus mounted on a ship.

図2は、図1に示す舶用発電システム100の過給機周辺の構成及び制御系の構成を示す概念図である。図2に示すように、主機1には、給気通路41及び排気通路42が接続されている。給気通路41は、吸気口より取り入れられた後に過給機2で過給された給気を主機1の燃焼室(図示せず)に送るための通路である。排気通路42は、主機1の燃焼室(図示せず)からの排気が流れる通路である。過給機2は、排気通路42上に設けられたタービン43と、給気通路41上に設けられたコンプレッサ44と、タービン43及びコンプレッサ44を接続して一体的に回転させるロータ45とを備えている。  FIG. 2 is a conceptual diagram showing the configuration around the supercharger and the configuration of the control system of the marine power generation system 100 shown in FIG. As shown in FIG. 2, an air supply passage 41 and an exhaust passage 42 are connected to the main engine 1. The air supply passage 41 is a passage for sending the air supplied from the intake port and supercharged by the supercharger 2 to a combustion chamber (not shown) of the main engine 1. The exhaust passage 42 is a passage through which exhaust from a combustion chamber (not shown) of the main engine 1 flows. The supercharger 2 includes a turbine 43 provided on the exhaust passage 42, a compressor 44 provided on the air supply passage 41, and a rotor 45 that connects the turbine 43 and the compressor 44 to rotate integrally. ing.

前述したバイパス通路46は、過給機2を迂回するようにして排気通路42に接続されている。つまり、バイパス通路46の上流端部は、排気通路42のうちタービン43よりも上流側に接続されている。バイパス通路46の下流端部は、排気通路42のうちタービン43よりも下流側であって、排ガスエコノマイザ10に向かう通路とバイパス管7に向かう通路との分岐点よりも上流側に接続されている。このため、バイパス通路46では、過給機2を迂回して排気が流れ、その排気が排ガスエコノマイザ10に供給されうる。  The bypass passage 46 described above is connected to the exhaust passage 42 so as to bypass the supercharger 2. That is, the upstream end portion of the bypass passage 46 is connected to the upstream side of the turbine 43 in the exhaust passage 42. The downstream end of the bypass passage 46 is connected to the downstream side of the turbine 43 in the exhaust passage 42 and upstream of the branch point between the passage toward the exhaust gas economizer 10 and the passage toward the bypass pipe 7. . For this reason, in the bypass passage 46, the exhaust flows around the supercharger 2, and the exhaust can be supplied to the exhaust gas economizer 10.

バイパス通路46には、バイパス通路46を流れる排気の流量と、過給機2に送られる排気の流量とを調整するための流量調整手段47が設けられている。別の言い方をすれば、流量調整手段47は、主機1からの排気の全流量に対するバイパス通路46を流れる排気の流量の割合を調整する。以下、この割合を「過給機バイパス率」と称して説明する。  The bypass passage 46 is provided with a flow rate adjusting means 47 for adjusting the flow rate of the exhaust gas flowing through the bypass passage 46 and the flow rate of the exhaust gas sent to the supercharger 2. In other words, the flow rate adjusting means 47 adjusts the ratio of the flow rate of the exhaust gas flowing through the bypass passage 46 to the total flow rate of the exhaust gas from the main engine 1. Hereinafter, this ratio will be referred to as “supercharger bypass rate”.

流量調整手段47は、バイパス通路46上に開度可変に設けられた排気バイパス弁48と、バイパス通路46上に設けられたオリフィス49とを備えている。排気バイパス弁48の開度が大きくなると、過給機バイパス率が増大する。つまり、排気バイパス弁48の開度を調整することによって、バイパス通路46を流れる排気の流量が調整され、過給機2に送られる排気の流量が受動的に調整される。オリフィス49は、過給機バイパス率が或る値を超えるのを制限する要素であり、過給機バイパス率のリミッタとして機能する。これにより、排気が過給機2に適切に送られ、主機1の出力が不所望に低下するのを防ぐことができる。なお、図2では、オリフィス49が、排気バイパス弁48の下流側に配置されているが、排気バイパス弁48の上流側に配置されていてもよい。  The flow rate adjusting means 47 includes an exhaust bypass valve 48 provided on the bypass passage 46 so as to have a variable opening, and an orifice 49 provided on the bypass passage 46. When the opening degree of the exhaust bypass valve 48 increases, the supercharger bypass rate increases. That is, by adjusting the opening degree of the exhaust bypass valve 48, the flow rate of the exhaust gas flowing through the bypass passage 46 is adjusted, and the flow rate of the exhaust gas sent to the supercharger 2 is passively adjusted. The orifice 49 is a factor that restricts the supercharger bypass rate from exceeding a certain value, and functions as a limiter for the supercharger bypass rate. Thereby, exhaust can be appropriately sent to the supercharger 2, and the output of the main engine 1 can be prevented from undesirably decreasing. In FIG. 2, the orifice 49 is disposed on the downstream side of the exhaust bypass valve 48, but may be disposed on the upstream side of the exhaust bypass valve 48.

コントローラ50は、CPU、ROM、RAM及び入出力インターフェイスを主体として構成されたマイクロコンピュータである。コントローラ50の入力側は、温度センサ61及び過給機回転数センサ62と接続されている。温度センサ61は、給気通路41に沿って過給機2に向かって流れている給気の温度を検出する。過給機回転数センサ62は、過給機2の回転数を検出する。コントローラ50の出力側は、前述したとおり、排気バイパス弁48、第1ダンパ8、第2ダンパ9及び補助ボイラ24aと接続されている。コントローラ50のROMは、制御プログラムを記憶している。コントローラ50のCPUは、ROMに予め記憶される制御プログラムを実行し、主機1の給気の温度及び主機1の負荷に応じて、排気バイパス弁48、第1ダンパ8、第2ダンパ9及び補助ボイラ24aを操作し、それにより過給機バイパス率及び蒸気ターボ発電機4により発生される電力を制御する。  The controller 50 is a microcomputer mainly composed of a CPU, a ROM, a RAM, and an input / output interface. The input side of the controller 50 is connected to a temperature sensor 61 and a supercharger rotation speed sensor 62. The temperature sensor 61 detects the temperature of the supply air flowing toward the supercharger 2 along the supply passage 41. The supercharger rotational speed sensor 62 detects the rotational speed of the supercharger 2. As described above, the output side of the controller 50 is connected to the exhaust bypass valve 48, the first damper 8, the second damper 9, and the auxiliary boiler 24a. The ROM of the controller 50 stores a control program. The CPU of the controller 50 executes a control program stored in advance in the ROM, and the exhaust bypass valve 48, the first damper 8, the second damper 9, and the auxiliary depending on the temperature of the supply air of the main machine 1 and the load of the main machine 1. The boiler 24a is operated, thereby controlling the supercharger bypass rate and the electric power generated by the steam turbo generator 4.

コントローラ50は、このような制御を実行する機能部として、温度測定部51、負荷測定部52、制御マップ記憶部53、バイパス率算出部54、バイパス弁制御部55、ダンパ制御部56及び補助ボイラ制御部57を有している。  The controller 50 includes a temperature measurement unit 51, a load measurement unit 52, a control map storage unit 53, a bypass rate calculation unit 54, a bypass valve control unit 55, a damper control unit 56, and an auxiliary boiler as functional units that execute such control. A control unit 57 is provided.

温度測定部51は、温度センサ61からの入力に応じて主機1の給気の温度を測定する。負荷測定部52は、過給機回転数センサ62からの入力に応じて主機1の負荷を測定する。負荷測定部52により測定される負荷の測定値は、例えば、定格負荷を100%とした百分率である。制御マップ記憶部53は、主機1の給気の温度及び主機の負荷と、廃熱による蒸気ターボ発電機4の発生可能電力が船内需用電力以上の値である目標発生電力となるために必要とされる過給機バイパス率との間の対応関係を規定した制御マップ65(図3参照)を記憶している。バイパス率算出部54は、温度測定部51により測定された主機1の給気の温度と、負荷測定部52により測定された主機1の負荷とに応じて、過給機バイパス率の算出値を導出する。バイパス弁制御部55は、過給機バイパス率の算出値に応じて排気バイパス弁48を制御する。ダンパ制御部56は、過給機バイパス率の算出値に応じて第1ダンパ8及び第2ダンパ9を制御する。補助ボイラ制御部57は、過給機バイパス率の算出値に応じて補助ボイラ24aを制御する。  The temperature measuring unit 51 measures the temperature of the supply air of the main machine 1 according to the input from the temperature sensor 61. The load measuring unit 52 measures the load of the main engine 1 according to the input from the supercharger rotation speed sensor 62. The load measurement value measured by the load measurement unit 52 is, for example, a percentage with the rated load being 100%. The control map storage unit 53 is necessary so that the supply air temperature of the main engine 1 and the load of the main engine, and the electric power that can be generated by the steam turbo generator 4 due to waste heat become a target generated electric power that is a value that is equal to or greater than the electric power for shipboard demand The control map 65 (refer FIG. 3) which prescribed | regulated the corresponding relationship between the supercharger bypass rate made into it is memorize | stored. The bypass rate calculation unit 54 calculates the calculated value of the supercharger bypass rate according to the temperature of the supply air of the main unit 1 measured by the temperature measurement unit 51 and the load of the main unit 1 measured by the load measurement unit 52. To derive. The bypass valve control unit 55 controls the exhaust bypass valve 48 according to the calculated value of the supercharger bypass rate. The damper control unit 56 controls the first damper 8 and the second damper 9 according to the calculated value of the turbocharger bypass rate. The auxiliary boiler control unit 57 controls the auxiliary boiler 24a according to the calculated value of the supercharger bypass rate.

図3は、図2に示す制御マップ記憶部に記憶される制御マップ65の一例を模式的に示すグラフである。図3の下側は、制御マップ65を模式的に示すグラフである。図3の上側は、制御マップ65がどのようにして導出されるのかを説明するためのグラフである。何れのグラフも二次元直交座標系に表されており、何れのグラフの横軸も、定格負荷を100%とした主機負荷の百分率である。制御マップ65の縦軸は、図3右側に示すように過給機バイパス率である。説明用グラフの縦軸は、図3左側に示すように、蒸気ターボ発電機4の発生可能電力である。細線は、給気の温度TがT1である場合、破線は、給気の温度TがT2である場合、太線は、給気の温度TがT3である場合をそれぞれ表わしており、T1、T2及びT3は、関係:T1<T2<T3 を満たす。なお、T1は、例えば、国際標準規格に準拠した摂氏25度であってもよい。菱形状のプロット(◆)が通過する線は、過給機バイパス率が0%である場合、丸形状のプロット(●)が通過する線は、過給機バイパス率が最大値である場合をそれぞれ表わしている。前述のとおり、最大値は、オリフィス49の仕様に応じて機械的に決められる。正方形状のプロット(■)が通過する線、三角形状のプロット(▲)が通過する線及びクロス状のプロット(×)が通過する線は、過給機バイパス率が0%から最大値の間の値をとる場合をそれぞれ表わしている。  FIG. 3 is a graph schematically showing an example of the control map 65 stored in the control map storage unit shown in FIG. The lower side of FIG. 3 is a graph schematically showing the control map 65. The upper side of FIG. 3 is a graph for explaining how the control map 65 is derived. Each graph is represented in a two-dimensional orthogonal coordinate system, and the horizontal axis of each graph is a percentage of the main engine load with the rated load being 100%. The vertical axis of the control map 65 is the turbocharger bypass rate as shown on the right side of FIG. The vertical axis of the explanatory graph is the electric power that can be generated by the steam turbo generator 4 as shown on the left side of FIG. The thin line represents the case where the supply air temperature T is T1, the broken line represents the case where the supply air temperature T is T2, and the thick line represents the case where the supply air temperature T is T3. T1, T2 And T3 satisfy the relationship: T1 <T2 <T3. Note that T1 may be, for example, 25 degrees Celsius based on the international standard. The line through which the diamond-shaped plot (♦) passes is when the turbocharger bypass rate is 0%, and the line through which the round plot (●) passes is when the turbocharger bypass rate is the maximum value. Each represents. As described above, the maximum value is mechanically determined according to the specification of the orifice 49. The line through which the square plot (■) passes, the line through which the triangular plot (▲) passes, and the line through which the cross plot (x) passes are between the supercharger bypass rate of 0% and the maximum value The case of taking the value of is shown respectively.

図3上側に示した説明用グラフを参照して、運転状態の変化に応じた蒸気ターボ発電機4の発生可能電力の変化について説明する。説明用グラフを構成する複数線のうち任意の一つを参照すればわかるとおり、同一温度且つ同一過給機バイパス率条件下においては、負荷が高いほど、蒸気ターボ発電機4の発生可能電力が高くなる。主機1の負荷が高いほど、排気の流量が増え、その分廃熱回収系3で回収可能な熱量が増えるからである。説明用グラフを構成する線同士を対比すればわかるとおり、負荷の変化に応じた蒸気ターボ発電機4の発生可能電力の変化の傾向は、温度及び過給機バイパス率への依存性が低く、温度及び過給機バイパス率に関わらず概ね同一である。  With reference to the explanatory graph shown on the upper side of FIG. 3, the change in the electric power that can be generated by the steam turbo generator 4 according to the change in the operation state will be described. As can be seen by referring to any one of the plurality of lines constituting the explanatory graph, the higher the load, the more the electric power that can be generated by the steam turbo generator 4 under the same temperature and the same turbocharger bypass rate conditions. Get higher. This is because the higher the load on the main engine 1, the higher the flow rate of the exhaust gas, and the corresponding amount of heat that can be recovered by the waste heat recovery system 3. As can be seen by comparing the lines constituting the explanatory graph, the tendency of the change in the power that can be generated by the steam turbo generator 4 according to the change in the load is less dependent on the temperature and the turbocharger bypass rate. It is almost the same regardless of temperature and turbocharger bypass rate.

説明用グラフを構成する複数線のうち同一形状のプロットが通過する線同士を対比すればわかるとおり、同一負荷且つ同一過給機パイパス率条件下においては、給気の温度が高いほど、蒸気ターボ発電機4の発生可能電力が高くなる。排ガスエコノマイザ10に供給される排気の温度及び熱量は、給気の温度に依存するからであると考えられる。説明用グラフを構成する複数線のうち同一線種の線同士を対比すればわかるとおり、同一温度且つ同一負荷条件下においては、過給機バイパス率が高いほど、蒸気ターボ発電機4の発生可能電力は高くなる。過給機2を経由するよりも過給機2を迂回したほうが、排ガスエコノマイザ10に供給されるまでの排気の熱損失が小さくなるからであると考えられる。  As can be seen by comparing lines through which the same shape plot passes among the plurality of lines constituting the explanatory graph, under the same load and the same turbocharger bypass rate conditions, the higher the temperature of the supply air, the higher the steam turbo. The electric power that can be generated by the generator 4 increases. This is probably because the temperature and amount of heat of the exhaust gas supplied to the exhaust gas economizer 10 depend on the temperature of the supply air. As can be seen by comparing lines of the same line type among a plurality of lines constituting the explanatory graph, the higher the turbocharger bypass rate, the more the turbo turbo generator 4 can be generated under the same temperature and the same load condition. The power becomes high. It is considered that the heat loss of the exhaust gas until it is supplied to the exhaust gas economizer 10 is smaller when the turbocharger 2 is bypassed than when the turbocharger 2 is routed.

従来から一般に、廃熱回収系を付加した舶用発電システムにおいて、蒸気ターボ発電機4の定格出力は船内需用電力よりも高い値に設定される。そして、主機1が常用出力(80〜90%負荷)で運転されており且つ給気の温度が所定温度(例えば、国際標準規格に準拠した摂氏25度)である場合に、廃熱による蒸気ターボ発電機4の発生可能電力が船内需用電力を賄いきれるようにして、廃熱回収系3及び蒸気ターボ発電機4の仕様が設計される。従来、主機1が常用出力未満で運転されていれば、廃熱による蒸気ターボ発電機4の発生可能電力が船内需用電力を賄いきれなくなり、補助ボイラ24aを即座に追い焚きする必要が生じている。また、主機1が常用出力で運転されているような場合、給気の温度が上記所定温度よりも大きくなれば、蒸気ターボ発電機4が余剰電力を発生する。このように、運転状態が変化したときに、廃熱による蒸気ターボ発電機4の発生可能電力が変化してしまい、船内需用電力に対する過不足が生じやすい。  Conventionally, in general, in a marine power generation system to which a waste heat recovery system is added, the rated output of the steam turbo generator 4 is set to a value higher than the electric power for ship use. When the main engine 1 is operated at a normal output (80 to 90% load) and the temperature of the supply air is a predetermined temperature (for example, 25 degrees Celsius according to the international standard), the steam turbo due to waste heat is used. The specifications of the waste heat recovery system 3 and the steam turbo-generator 4 are designed so that the electric power that can be generated by the generator 4 can cover the power required for shipboard. Conventionally, if the main engine 1 is operated at less than the normal output, the power that can be generated by the steam turbo generator 4 due to waste heat cannot cover the power for onboard demand, and the auxiliary boiler 24a needs to be replenished immediately. Yes. Further, when the main engine 1 is operated at a normal output, the steam turbo generator 4 generates surplus power if the temperature of the supply air becomes higher than the predetermined temperature. In this way, when the operating state changes, the power that can be generated by the steam turbo generator 4 due to waste heat changes, and the power for shipboard demand tends to be excessive or insufficient.

これに対し、本実施形態によれば、負荷のみならず、温度及び過給機バイパス率も廃熱による蒸気ターボ発電機4の発生可能電力に影響を与える因子であるとの知見に基づき、温度及び負荷が変化したときに過給機バイパス率がどのように変化すれば廃熱による蒸気ターボ発電機4の発生可能電力が船内需用電力以上の目標発生電力となるのかを示す対応関係を導出し、導出された対応関係を規定する制御マップ65を制御マップ記憶部53に予め記憶させている。  On the other hand, according to the present embodiment, not only the load but also the temperature and the turbocharger bypass rate are based on the knowledge that the power that can be generated by the steam turbo generator 4 due to waste heat is a factor that affects the temperature. And a correspondence relationship showing how the supercharger bypass rate changes when the load changes and the power that can be generated by the steam turbo-generator 4 due to waste heat becomes the target generated power that is greater than or equal to the power demanded in the ship. The control map 65 that defines the derived correspondence relationship is stored in the control map storage unit 53 in advance.

この対応関係を導出する手順の一例とともに、この対応関係がどのようなものであるかについて説明する。まず、図3上側に示す線図を得る。つまり、温度及び過給機バイパス率を固定し、負荷に対する廃熱による蒸気ターボ発電機4の発生可能電力を解析する。この解析は、温度及び過給機バイパス率の値を変えて複数回行われる。解析は、数値シミュレーションにより算出されたデータに基づくものでもよいし、実機から取得されたデータに基づくものでもよい。解析の結果、横軸に負荷をとり縦軸に廃熱による蒸気ターボ発電機4の発生可能電力をとった二次元直交座標系において、複数の右肩上がりの線を得ることができる(図3上側参照)。勿論、得られた線のトレンドや位置は、主機1、過給機2、廃熱回収系3及び蒸気ターボ発電機4の仕様に応じて変わる。  An example of the procedure for deriving this correspondence will be described along with what this correspondence is. First, the diagram shown on the upper side of FIG. 3 is obtained. That is, the temperature and the turbocharger bypass rate are fixed, and the power that can be generated by the steam turbo generator 4 due to waste heat with respect to the load is analyzed. This analysis is performed multiple times with different values of temperature and turbocharger bypass rate. The analysis may be based on data calculated by numerical simulation, or may be based on data acquired from an actual machine. As a result of the analysis, in the two-dimensional orthogonal coordinate system in which the horizontal axis represents the load and the vertical axis represents the power that can be generated by the steam turbogenerator 4 due to waste heat, a plurality of rising lines can be obtained (FIG. 3). See above). Of course, the trend and position of the obtained line vary depending on the specifications of the main engine 1, the supercharger 2, the waste heat recovery system 3, and the steam turbo generator 4.

そして、得られた線の各々に関し、目標発生電力を得るための負荷の値を導出する。その後、横軸に負荷をとり縦軸に過給機バイパス率をとった二次元直交座標系において、導出された負荷の値に対する過給機バイパス率をプロットする(図3下側参照)。そして、同一温度条件下のプロットを用いて、負荷に対する過給機バイパス率の対応関係を導出する。この対応関係は、右肩下がりの直線に近似して表すことができる。つまり、温度を固定した状況下で、過給機パイパス率が負荷の変化に応じて概ね線形に変化すると、蒸気ターボ発電機4の発生可能電力が目標発生電力で維持される。異なる温度条件同士を対比すると、近似直線の傾きは略同一である(図3下側参照)。つまり、或る温度条件下での近似直線を横軸方向に平行移動させるだけで、別の温度条件下での負荷と過給機バイパス率との間の対応関係を導出することができる。したがって、幾つかの温度条件下における近似直線を導出しておけば、廃熱による蒸気ターボ発電機4の発生可能電力を目標発生電力で維持するために必要な過給機バイパス率を負荷及び温度に応じて求めるための式(1)を下記のとおり導出することができる。  Then, for each of the obtained lines, a load value for obtaining the target generated power is derived. Then, the supercharger bypass rate is plotted against the derived load value in a two-dimensional orthogonal coordinate system with the horizontal axis representing the load and the vertical axis representing the supercharger bypass rate (see the lower side of FIG. 3). And the correspondence of the supercharger bypass rate with respect to load is derived | led-out using the plot under the same temperature conditions. This correspondence can be expressed by approximating a straight line with a downward slope. That is, when the turbocharger bypass rate changes approximately linearly according to the load change under the condition where the temperature is fixed, the power that can be generated by the steam turbo generator 4 is maintained at the target generated power. When different temperature conditions are compared, the slopes of the approximate lines are substantially the same (see the lower side of FIG. 3). That is, the correspondence relationship between the load and the supercharger bypass rate under another temperature condition can be derived by simply translating the approximate straight line under a certain temperature condition in the horizontal axis direction. Therefore, if approximate straight lines are derived under some temperature conditions, the supercharger bypass rate necessary for maintaining the power that can be generated by the steam turbo-generator 4 due to waste heat at the target generated power is determined by the load and temperature. Equation (1) can be derived according to the following.

Y=aX+f(T) …(1)
ここで、aは近似直線の傾き、Tは温度、Xは負荷、Yは過給機バイパス率である。f(T)は、近似直線の補正項であり、温度に応じた近似直線の横軸方向の平行移動量を傾きaを加味して考慮したものとなっている。上記式(1)に従えば、負荷X及び温度Tが決まると、廃熱による蒸気ターボ発電機4の発生可能電力を目標発生電力に維持するために必要な過給機バイパス率Yを導き出すことができる。傾きaは負の値であるので、負荷が低いほど、過給機バイパス率Yは大きくなる。また、温度Tが低いほど、過給機バイパス率Yは大きくなる。ただし、過給機バイパス率Yは、ゼロ未満の値をとり得ず、また、オリフィス49により規定される最大値MAXよりも大きい値をとり得ない。そこでコントローラ50は、過給機バイパス率Yの算出値に応じて、排気バイパス弁48、ダンパ8,9及び補助ボイラ24aを下記のとおり制御する。
Y = aX + f (T) (1)
Here, a is the slope of the approximate line, T is the temperature, X is the load, and Y is the turbocharger bypass rate. f (T) is a correction term of the approximate line, and takes into account the parallel movement amount of the approximate line in the horizontal axis direction according to the temperature, taking the inclination a into consideration. If the load X and the temperature T are determined according to the above formula (1), the supercharger bypass rate Y necessary for maintaining the power that can be generated by the steam turbo generator 4 due to waste heat at the target generated power is derived. Can do. Since the slope a is a negative value, the supercharger bypass rate Y increases as the load decreases. Further, the lower the temperature T, the larger the supercharger bypass rate Y. However, the supercharger bypass rate Y cannot take a value less than zero, and cannot take a value larger than the maximum value MAX defined by the orifice 49. Therefore, the controller 50 controls the exhaust bypass valve 48, the dampers 8, 9 and the auxiliary boiler 24a as follows according to the calculated value of the supercharger bypass rate Y.

図4は、図2に示すコントローラ50により実行される制御の処理内容の一例を示すフローチャートである。図4に示す処理は、航行中に所定の周期で繰り返し実行される。図4に示すように、まず、温度センサ61からの入力に応じて温度測定部51が温度Tを測定する(ステップS1)。次に、過給機回転数センサ62からの入力に応じて、負荷測定部52が主機1の負荷を測定する(ステップS2)。次に、バイパス率算出部54が、温度測定部51により測定された温度と、負荷測定部52により測定された負荷とに応じて、制御マップ記憶部53に記憶されている制御マップ65を参照して、廃熱による蒸気ターボ発電機4の発生可能電力が目標発生電力となるために必要な過給機バイパス率Yを算出する(ステップS3)。次に、バイパス率算出部54が、過給機バイパス率の算出値が、オリフィスにより規定される最大値MAXよりも大きいか否か、及び、ゼロ未満であるか否かを判断する(ステップS4,S5)。  FIG. 4 is a flowchart showing an example of the processing contents of the control executed by the controller 50 shown in FIG. The process shown in FIG. 4 is repeatedly executed at a predetermined cycle during navigation. As shown in FIG. 4, first, the temperature measurement unit 51 measures the temperature T in response to an input from the temperature sensor 61 (step S1). Next, the load measuring unit 52 measures the load of the main machine 1 in accordance with the input from the supercharger rotation speed sensor 62 (step S2). Next, the bypass rate calculation unit 54 refers to the control map 65 stored in the control map storage unit 53 according to the temperature measured by the temperature measurement unit 51 and the load measured by the load measurement unit 52. Then, the supercharger bypass rate Y necessary for the electric power that can be generated by the steam turbo generator 4 due to waste heat to be the target generated electric power is calculated (step S3). Next, the bypass rate calculation unit 54 determines whether or not the calculated value of the turbocharger bypass rate is greater than the maximum value MAX defined by the orifice and is less than zero (step S4). , S5).

算出値がゼロ以上であり且つ最大値MAX以下であれば(S4:NO,S5:NO)、バイパス弁制御部55が、過給機バイパス率の算出値に応じた排気バイパス弁48の開度を算出し、算出された値となるよう排気バイパス弁48の開度を制御する(ステップS6)。  If the calculated value is greater than or equal to zero and less than or equal to the maximum value MAX (S4: NO, S5: NO), the bypass valve control unit 55 opens the exhaust bypass valve 48 according to the calculated value of the turbocharger bypass rate. And the opening degree of the exhaust bypass valve 48 is controlled so as to be the calculated value (step S6).

このように、本実施形態に係る舶用発電システム100によれば、式(1)に従って算出された過給機バイパス率Yの算出値が、ゼロ以上であり且つ最大値MAX以下を満たす運転状態においては、廃熱による蒸気ターボ発電機4の発生可能電力を目標発生電力に維持することができる。この条件を満たす運転状態においては、蒸気ターボ発電機4の発生可能電力が船内需用電力に対し過剰に大きくなることもないので、無用な燃料消費率の悪化を抑制することができる。そして、本実施形態では、温度TがT1、T2又はT3である3つの条件の何れにおいても、過給機バイパス率Yが最大値MAXをとるときの主機1の負荷が、常用出力での負荷XN未満となっている(図3参照)。このように、補助ボイラ24aの追い焚きを実施せずとも蒸気ターボ発電機4の発生可能電力が船内需用電力を賄える運転領域を常用出力XNよりも低負荷側に拡大することができ、燃料消費率の悪化を良好に抑制することができる。  Thus, according to the marine power generation system 100 according to the present embodiment, the calculated value of the turbocharger bypass rate Y calculated according to the equation (1) is not less than zero and satisfies the maximum value MAX or less. Can maintain the power that can be generated by the steam turbo-generator 4 due to waste heat at the target generated power. In an operating state that satisfies this condition, the electric power that can be generated by the steam turbo generator 4 does not become excessively larger than the electric power for on-board demand, so that it is possible to suppress unnecessary deterioration of the fuel consumption rate. In this embodiment, the load on the main engine 1 when the turbocharger bypass rate Y takes the maximum value MAX is the load at the normal output under any of the three conditions where the temperature T is T1, T2 or T3. It is less than XN (see FIG. 3). In this way, the operating range in which the power that can be generated by the steam turbo-generator 4 can cover the power for on-board demand can be expanded to a lower load side than the regular output XN without refueling the auxiliary boiler 24a. The deterioration of the consumption rate can be suppressed satisfactorily.

算出値Yがゼロ未満であれば(S5:YES)、バイパス弁制御部55が、排気バイパス弁48の開度を全閉とする(ステップS7)。これにより、過給機バイパス率がゼロとなる。しかし、このままであれば、廃熱による蒸気ターボ発電機4の発生可能電力が船内需用電力を超える。そこで、ダンパ制御部57が、算出値Yとゼロとの偏差に応じて、ダンパ8,9を制御する(ステップS8)。例えば、偏差が大きいときほど、第2ダンパ9の開度が大きくなるように及び/又は第1ダンパ8の開度が小さくなるようにして、第1ダンパ8及び第2ダンパ9を制御する。これにより、蒸気ターボ発電機4が余剰電力を発生するのを回避することができる。なお、図3には、算出値Yがゼロ未満になる運転領域の一例を、P1,P2で表わしている。P1は、温度がT3である場合において、過給機バイパス率Yの算出値がゼロ未満となる負荷の範囲を表わし、P2は、温度がT2である場合において、過給機バイパス率Yの算出値がゼロ未満となる負荷の範囲を表す。  If the calculated value Y is less than zero (S5: YES), the bypass valve control unit 55 fully closes the opening degree of the exhaust bypass valve 48 (step S7). Thereby, the supercharger bypass rate becomes zero. However, if it remains as it is, the power that can be generated by the steam turbo generator 4 due to waste heat exceeds the power for on-board demand. Therefore, the damper control unit 57 controls the dampers 8 and 9 according to the deviation between the calculated value Y and zero (step S8). For example, as the deviation is larger, the first damper 8 and the second damper 9 are controlled such that the opening degree of the second damper 9 becomes larger and / or the opening degree of the first damper 8 becomes smaller. Thereby, it is possible to avoid the steam turbo generator 4 from generating surplus power. In FIG. 3, examples of operation regions where the calculated value Y is less than zero are represented by P1 and P2. P1 represents a load range where the calculated value of the turbocharger bypass rate Y is less than zero when the temperature is T3, and P2 is a calculation of the turbocharger bypass rate Y when the temperature is T2. Represents the range of loads where the value is less than zero.

算出値Yが最大値MAXよりも大きければ(S4:YES)、バイパス弁制御部55が、排気バイパス弁48の開度を全開に制御する(ステップS9)。これにより、過給機バイパス率は、オリフィス49により規定される最大値MAXになる。しかし、このままでは、廃熱による蒸気ターボ発電機4の発生可能電力が船内需用電力を賄いきれなくなる。そこで、補助ボイラ制御部46が、電力の不足分を補うため、補助ボイラ24aの追い焚きを実施する(ステップS10)。補助ボイラ24aが発生する熱量は、算出値と最大値との偏差に応じて決められていてもよい。このようにすることで、補助ボイラ24aを追い焚きしたときに、船内需用電力を超える余剰電力が発生するのをなるべく抑制することができ、無駄な燃料消費を良好に抑制することができる。なお、図3には、算出値Yが最大値MAXよりも大きくなる運転領域の一例を、Q1,Q2で表わしている。Q1は、温度がT1である場合において、過給機バイパス率Yの算出値が最大値MAXよりも大きくなる負荷の範囲を表わし、Q2は、温度がT2である場合において、過給機バイパス率Yの算出値が最大値MAXよりも大きくなる負荷の範囲を表す。  If the calculated value Y is larger than the maximum value MAX (S4: YES), the bypass valve control unit 55 controls the opening degree of the exhaust bypass valve 48 to be fully opened (step S9). Thereby, the supercharger bypass rate becomes the maximum value MAX defined by the orifice 49. However, in this state, the power that can be generated by the steam turbo generator 4 due to waste heat cannot cover the power for on-board demand. Therefore, the auxiliary boiler control unit 46 replenishes the auxiliary boiler 24a in order to compensate for the shortage of electric power (step S10). The amount of heat generated by the auxiliary boiler 24a may be determined according to the deviation between the calculated value and the maximum value. By doing in this way, when the auxiliary boiler 24a is retreated, it is possible to suppress as much as possible the generation of surplus power exceeding the power for on-board demand, and wasteful fuel consumption can be suppressed satisfactorily. In FIG. 3, an example of the operation region where the calculated value Y is larger than the maximum value MAX is represented by Q1 and Q2. Q1 represents a load range in which the calculated value of the turbocharger bypass rate Y is greater than the maximum value MAX when the temperature is T1, and Q2 is the turbocharger bypass rate when the temperature is T2. This represents a load range in which the calculated value of Y is greater than the maximum value MAX.

このように本実施形態によれば、廃熱による蒸気ターボ発電機の発生可能電力が船内需用電力以上の値で維持される運転領域を拡大することができ、燃料消費率の悪化を良好に抑制することができる。  As described above, according to the present embodiment, it is possible to expand the operating range in which the power that can be generated by the steam turbo generator due to waste heat is maintained at a value that is greater than or equal to the power for shipboard use, and the deterioration of the fuel consumption rate is improved. Can be suppressed.

図3下側に示される制御マップ65を表すグラフは、図3上側に示すグラフをベースにして作成されることができ、図3上側のグラフのトレンド及び位置は、主機1、過給機2、廃熱回収系3及び蒸気ターボ発電機4の仕様に応じて変わる。言い換えれば、主機1及び過給機2の仕様が決まれば、図3下側に示すグラフが上記作用効果を良好に発揮するようなものとなるように、廃熱回収系3及び蒸気ターボ発電機4の仕様を調整することができる。すなわち、図3下側に示す制御マップ65の最適化を第一義的なものとする設計コンセプトの下、最適化された制御マップ65に基づいて廃熱回収系3及び蒸気ターボ発電機4の仕様を逆算的に設計することが可能になる。このように、制御マップ65は、廃熱回収系3及び蒸気ターボ発電機4の設計を支援するためのツールとしても非常に有用である。  The graph representing the control map 65 shown on the lower side of FIG. 3 can be created based on the graph shown on the upper side of FIG. 3. The trend and position of the graph on the upper side of FIG. Depending on the specifications of the waste heat recovery system 3 and the steam turbo generator 4. In other words, if the specifications of the main engine 1 and the supercharger 2 are determined, the waste heat recovery system 3 and the steam turbo generator are set so that the graph shown in the lower part of FIG. 4 specifications can be adjusted. That is, based on the optimized control map 65 based on the design concept that makes optimization of the control map 65 shown at the bottom of FIG. 3 primary, the waste heat recovery system 3 and the steam turbo generator 4 It becomes possible to design the specifications in reverse calculation. Thus, the control map 65 is also very useful as a tool for supporting the design of the waste heat recovery system 3 and the steam turbo generator 4.

給気の温度は、船舶の使用状況に大きく依存する。そこで、高緯度帯を航行する機会が多いと見込まれている船舶においては、給気の温度が低くても蒸気ターボ発電機4が船内需用電力を賄えるように、図3下側に示されるグラフが左側にシフトしていることが好ましい。逆に、低緯度帯を航行する機会が多いと見込まれている船舶においては、給気の温度が低下する機会が少ないので、図3下側に示されるグラフを右側にシフトさせることができる。このようにして図3下側の制御マップ65の仕様を決めたうえで、廃熱回収系3及び蒸気ターボ発電機4の仕様を逆算的に設計することも可能になる。よって、搭載対象の船舶に想定される使用状況に応じて、舶用発電システム100の仕様を容易に最適設計可能になる。  The temperature of the supply air largely depends on the use situation of the ship. Therefore, in a ship that is expected to have many opportunities to navigate in the high latitude band, a graph shown in the lower part of FIG. 3 so that the steam turbo generator 4 can cover the power for on-board demand even when the temperature of the supply air is low. Is preferably shifted to the left. Conversely, in a ship that is expected to have many opportunities to navigate in the low-latitude zone, there are few opportunities for the temperature of the supply air to decrease, so the graph shown in the lower part of FIG. 3 can be shifted to the right. In this way, it is possible to design the specifications of the waste heat recovery system 3 and the steam turbo generator 4 in reverse calculation after determining the specifications of the control map 65 on the lower side of FIG. Therefore, the specification of the marine power generation system 100 can be easily and optimally designed according to the usage situation assumed for the ship to be mounted.

このように、蒸気ターボ発電機4が船内需用電力を賄う運転領域が低負荷側に拡大可能になることと、主機1及び過給機2の仕様と最適な制御マップ65とを決めれば廃熱回収系3及び蒸気ターボ発電機4の仕様を逆算的に最適設計可能になることとに照らして、従前は廃熱回収系を付加した舶用発電システムを搭載することが困難であると見られていた比較的小型の船舶にも、かかる舶用発電システムを適用しやすくなる。これにより、船舶業界における省エネルギー化を広く推進することができる。  As described above, the operation range in which the steam turbo generator 4 covers the power for inboard ships can be expanded to the low load side, and the specifications of the main engine 1 and the supercharger 2 and the optimum control map 65 are eliminated. In light of the fact that the specifications of the heat recovery system 3 and the steam turbo-generator 4 can be optimally calculated in reverse calculation, it has been difficult to install a marine power generation system with a waste heat recovery system. Such a ship power generation system can be easily applied to a relatively small ship. Thereby, energy saving in the marine industry can be widely promoted.

図5は、本発明の第2実施形態に係る舶用発電システム200の全体構成を示す概念図である。本実施形態は、いわゆる2機2軸型の推進システムを搭載した船舶に好適に適用される。以下では、一方の主機1Aに対応する構成要素の名称に序数「第1」を付すと共に当該構成要素の参照符号に「A」を付す場合がある。他方の主機1Bに対応する構成要素の名称に序数「第2」を付すと共に当該構成要素の参照符号に「B」を付す場合がある。  FIG. 5 is a conceptual diagram showing an overall configuration of a marine power generation system 200 according to the second embodiment of the present invention. This embodiment is suitably applied to a ship equipped with a so-called two-machine two-axis propulsion system. Hereinafter, the ordinal number “first” may be added to the name of the component corresponding to one main machine 1A, and “A” may be added to the reference number of the component. In some cases, an ordinal number “second” is added to the name of the component corresponding to the other main engine 1B, and “B” is added to the reference number of the component.

図5に示すように、本実施形態に係る発電システム200は、2機の主機1A,1Bを備える船舶に搭載され、廃熱回収系203及び蒸気ターボ発電機204を備えている。蒸気ターボ発電機204は、第1実施形態のものと概ね同様であり、廃熱回収系203で生成された蒸気により駆動される1台の蒸気タービン205と、当該蒸気タービン205により駆動されて交流電力を発電する1台の発電機206とを備える。2機の主機1A,1Bそれぞれに、過給機2A,2Bと排気系とが設けられている。各排気系は、第1実施形態の排気系と同様にして、排ガスエコノマイザ10A,10B、バイパス管7A,7B、排気通路42A,42B及びバイパス通路46A,46Bを備えている。各排ガスエコノマイザ10A,10Bは、第1実施形態と同様にして、入口管11A,11B、高圧蒸発器12A,12B、中間管13A,13B、中圧蒸発器14A,14B及び出口管15A,15Bを備えている。  As shown in FIG. 5, the power generation system 200 according to the present embodiment is mounted on a ship including two main engines 1 </ b> A and 1 </ b> B, and includes a waste heat recovery system 203 and a steam turbo generator 204. The steam turbo generator 204 is substantially the same as that of the first embodiment, and one steam turbine 205 driven by the steam generated in the waste heat recovery system 203, and the steam turbine 205 driven by the steam turbine 205 is AC. And one generator 206 that generates electric power. Two main engines 1A and 1B are provided with superchargers 2A and 2B and an exhaust system, respectively. Each exhaust system includes exhaust gas economizers 10A and 10B, bypass pipes 7A and 7B, exhaust passages 42A and 42B, and bypass passages 46A and 46B in the same manner as the exhaust system of the first embodiment. Each exhaust gas economizer 10A, 10B has an inlet pipe 11A, 11B, a high pressure evaporator 12A, 12B, an intermediate pipe 13A, 13B, an intermediate pressure evaporator 14A, 14B, and an outlet pipe 15A, 15B, as in the first embodiment. I have.

廃熱回収系203は、排ガスエコノマイザ10A,10B、高圧ドラム(高圧汽水分離器)224、中圧ドラム225、高圧循環水系統227、蒸気系統228、中圧循環水系統229、中圧混気系統230を備えている。説明便宜のため図5では図示を省略するが、廃熱回収系203は、第1実施形態と同様にして、復水器、給水系統、給水加熱器、低圧ドラム、低圧循環水系統及び低圧混気系統を備えている。高圧ドラム224は、第1実施形態のものと概ね同様であり、補助ボイラ224aを備える。中圧ドラム225も第1実施形態のものと概ね同様である。  The waste heat recovery system 203 includes exhaust gas economizers 10A and 10B, a high pressure drum (high pressure steam separator) 224, an intermediate pressure drum 225, a high pressure circulating water system 227, a steam system 228, an intermediate pressure circulating water system 229, and an intermediate pressure mixed gas system. 230 is provided. Although not shown in FIG. 5 for convenience of explanation, the waste heat recovery system 203 is similar to the first embodiment in that the condenser, the feed water system, the feed water heater, the low pressure drum, the low pressure circulating water system, and the low pressure mixing system. It has a qi system. The high-pressure drum 224 is substantially the same as that of the first embodiment, and includes an auxiliary boiler 224a. The intermediate pressure drum 225 is substantially the same as that of the first embodiment.

高圧循環水系統227は、高圧ドラム224を第1排ガスエコノマイザ10Aの第1高圧蒸発器12Aに接続するライン227aと、第1高圧蒸発器12Aを高圧ドラム224に接続するライン227bと、ライン227aから分岐して第2排ガスエコノマイザ10Bの第2高圧蒸発器12Bに接続するライン227cと、第2高圧蒸発器12Bを高圧ドラム224に接続するライン227dとを有している。このように、高圧ドラム224の高圧循環水系統227は、第1高圧蒸発器12A及び第2高圧蒸発器12Bを高圧ドラム224に並列接続している。  The high-pressure circulating water system 227 includes a line 227a that connects the high-pressure drum 224 to the first high-pressure evaporator 12A of the first exhaust gas economizer 10A, a line 227b that connects the first high-pressure evaporator 12A to the high-pressure drum 224, and a line 227a. It has a line 227c that branches and connects to the second high-pressure evaporator 12B of the second exhaust gas economizer 10B, and a line 227d that connects the second high-pressure evaporator 12B to the high-pressure drum 224. As described above, the high-pressure circulating water system 227 of the high-pressure drum 224 connects the first high-pressure evaporator 12A and the second high-pressure evaporator 12B to the high-pressure drum 224 in parallel.

蒸気系統228は、高圧ドラム224から延びるライン228aと、ライン228aから分岐したライン228bと、ライン228a,228bが集合して成るライン228cとを有し、ライン228cが蒸気タービン205の蒸気入口に接続されている。ライン228a,228bにはそれぞれ、第1過熱器35A及び第2過熱器35Bが接続されている。  The steam system 228 includes a line 228 a extending from the high-pressure drum 224, a line 228 b branched from the line 228 a, and a line 228 c formed by a combination of the lines 228 a and 228 b, and the line 228 c is connected to the steam inlet of the steam turbine 205. Has been. A first superheater 35A and a second superheater 35B are connected to the lines 228a and 228b, respectively.

ライン227a上のポンプが動作すると、高圧ドラム224内の循環水の一部がライン227aを介して第1高圧蒸発器12Aへと送られ、送られた循環水は第1高圧蒸発器12A内で排ガスとの熱交換により蒸気となる。循環水は気液混合状態でライン227bを介して高圧ドラム224に戻される。また、高圧ドラム224内の循環水の一部がライン227cを介して第2高圧蒸発器12Bへと送られ、送られた循環水は第2高圧蒸発器12B内で排ガスとの熱交換により蒸気となる。循環水は気液混合状態でライン227dを介して高圧ドラム224に戻される。高圧ドラム224内の蒸気の一部は、ライン228a及びライン228cを経由して蒸気タービン205の蒸気入口に供給される。また、高圧ドラム224内の蒸気の一部は、ライン228b及びライン228cを経由して蒸気タービン205の蒸気入口に供給される。  When the pump on the line 227a is operated, a part of the circulating water in the high-pressure drum 224 is sent to the first high-pressure evaporator 12A via the line 227a, and the sent circulating water is sent in the first high-pressure evaporator 12A. It becomes steam by heat exchange with exhaust gas. The circulating water is returned to the high-pressure drum 224 through the line 227b in a gas-liquid mixed state. In addition, a part of the circulating water in the high-pressure drum 224 is sent to the second high-pressure evaporator 12B via the line 227c, and the sent circulating water is vaporized by heat exchange with the exhaust gas in the second high-pressure evaporator 12B. It becomes. The circulating water is returned to the high-pressure drum 224 via the line 227d in a gas-liquid mixed state. A part of the steam in the high-pressure drum 224 is supplied to the steam inlet of the steam turbine 205 via the line 228a and the line 228c. A part of the steam in the high-pressure drum 224 is supplied to the steam inlet of the steam turbine 205 via the line 228b and the line 228c.

中圧循環水系統229は、中圧ドラム225を第1排ガスエコノマイザ10Aの第1中圧蒸発器14Aに接続するライン229aと、第1低圧蒸発器14Aを中圧ドラム225に接続するライン229bと、ライン229aから分岐して第2排ガスエコノマイザ10Bの第2中圧蒸発器14Bに接続するライン229cと、第2中圧蒸発器14Bを中圧ドラム225に接続するライン229dとを有している。このように、中圧循環水系統229は、第1中圧蒸発器14A及び第2中圧蒸発器14Bを中圧ドラム225に並列接続している。ライン229a上のポンプが動作すると、高圧循環水系統227と同様にして、中圧ドラム225内の循環水が第1中圧蒸発器14A又は第2中圧蒸発器14Bで蒸気になり、循環水が気液混合状態で中圧ドラム225に戻る。中圧混気系統230は、第1実施形態のものと概ね同様である。中圧ドラム225内の蒸気は、中圧混気系統230を介して蒸気タービン205の中圧混気入口に供給される。  The intermediate pressure circulating water system 229 includes a line 229a that connects the intermediate pressure drum 225 to the first intermediate pressure evaporator 14A of the first exhaust gas economizer 10A, and a line 229b that connects the first low pressure evaporator 14A to the intermediate pressure drum 225. , A line 229c branched from the line 229a and connected to the second intermediate pressure evaporator 14B of the second exhaust gas economizer 10B, and a line 229d connecting the second intermediate pressure evaporator 14B to the intermediate pressure drum 225. . Thus, the intermediate pressure circulating water system 229 connects the first intermediate pressure evaporator 14A and the second intermediate pressure evaporator 14B to the intermediate pressure drum 225 in parallel. When the pump on the line 229a operates, the circulating water in the intermediate pressure drum 225 becomes steam in the first intermediate pressure evaporator 14A or the second intermediate pressure evaporator 14B in the same manner as the high pressure circulating water system 227, and the circulating water Returns to the intermediate pressure drum 225 in a gas-liquid mixed state. The medium pressure mixed system 230 is substantially the same as that of the first embodiment. The steam in the intermediate pressure drum 225 is supplied to the intermediate pressure mixture inlet of the steam turbine 205 through the intermediate pressure mixture system 230.

このように本実施形態においては、2機の主機1A,1Bからの排気熱が2つの排ガスエコノマイザ10A,10Bによって個別に回収される。そして、2つの排ガスエコノマイザ10A,10Bが、高圧循環水系統227を介して単一の高圧ドラム224に並列接続され、中圧循環水系統229を介して単一の中圧ドラム225に並列接続されている。この構成により、2つの排ガスエコノマイザ10A,10bに個別に高圧ドラム224及び中圧ドラム225のセットを設ける場合と比較して、廃熱回収系203の構成をコンパクトにすることができる。なお、図示省略するが、低圧循環水系統も、各主機1A,1Bに個別に設けられた2つの低圧蒸発器を低圧ドラムに並列接続しており、同様の作用効果を奏する。  Thus, in the present embodiment, the exhaust heat from the two main engines 1A and 1B is individually recovered by the two exhaust gas economizers 10A and 10B. Two exhaust gas economizers 10A and 10B are connected in parallel to a single high-pressure drum 224 via a high-pressure circulating water system 227, and are connected in parallel to a single medium-pressure drum 225 via an intermediate-pressure circulating water system 229. ing. With this configuration, the configuration of the waste heat recovery system 203 can be made compact as compared with the case where the set of the high-pressure drum 224 and the intermediate-pressure drum 225 is individually provided in the two exhaust gas economizers 10A and 10b. Although not shown in the figure, the low-pressure circulating water system also has two low-pressure evaporators individually provided in the main machines 1A and 1B connected in parallel to the low-pressure drum, and has the same effect.

図6は、図5に示す舶用発電システム200の過給機2A,2B周辺の構成及び制御系の構成を示す概念図である。図6に示すように、2機の主機1A,1Bそれぞれに、給気通路41A,41B及び排気通路42A,42Bが接続されている。各過給機2A,2Bは、排気通路42A,42B上に設けられたタービン43A,43Bと、給気通路41A,41B上に設けられたコンプレッサ44A,44Bと、タービン43A,43B及びコンプレッサ44A,44Bを接続して一体的に回転させるロータ45A,45Bとを備えている。各排気通路42A,42Bに、バイパス通路46A,46Bが接続されている。各バイパス通路46A,46Bに、流量調整手段47A,47Bが設けられ、各流量調整手段47A,47Bは、排気バイパス弁48A,48Bとオリフィス49A,49Bとを備えている。  FIG. 6 is a conceptual diagram showing the configuration around the superchargers 2A and 2B and the configuration of the control system of the marine power generation system 200 shown in FIG. As shown in FIG. 6, air supply passages 41A and 41B and exhaust passages 42A and 42B are connected to the two main engines 1A and 1B, respectively. Each of the superchargers 2A and 2B includes turbines 43A and 43B provided on the exhaust passages 42A and 42B, compressors 44A and 44B provided on the supply passages 41A and 41B, turbines 43A and 43B, and compressors 44A, And rotors 45A and 45B that connect 44B and rotate integrally. Bypass passages 46A and 46B are connected to the exhaust passages 42A and 42B, respectively. The bypass passages 46A and 46B are provided with flow rate adjusting means 47A and 47B, and each of the flow rate adjusting means 47A and 47B includes exhaust bypass valves 48A and 48B and orifices 49A and 49B.

コントローラ250の入力側は、第1温度センサ61A、第2温度センサ61B、第1過給機回転数センサ62A及び第2過給機回転数センサ62Bに接続されている。第1温度センサ61Aは、第1過給機2Aに向かう給気の温度を検出し、第2温度センサ61Bは、第2過給機2Bに向かう給気の温度を検出する。第1過給機回転数センサ62Aは、第1過給機2Aの回転数を検出し、第2過給機回転数センサ62Bは、第2過給機2Bの回転数を検出する。コントローラ250の出力側は、第1排気バイパス弁48A、第2排気バイパス弁48B、補助ボイラ224a(図5参照)などに接続されている。コントローラ250の出力側は、第1排ガスエコノマイザ10Aに対応するダンパ8A、第1パイパス管7Aに対応するダンパ9A、第2排ガスエコノマイザ10Bに対応するダンパ8B、第2バイパス管7Bに対応するダンパ9Bにも接続されている。  The input side of the controller 250 is connected to the first temperature sensor 61A, the second temperature sensor 61B, the first supercharger rotation speed sensor 62A, and the second supercharger rotation speed sensor 62B. The first temperature sensor 61A detects the temperature of air supply toward the first supercharger 2A, and the second temperature sensor 61B detects the temperature of air supply toward the second supercharger 2B. The first supercharger rotational speed sensor 62A detects the rotational speed of the first supercharger 2A, and the second supercharger rotational speed sensor 62B detects the rotational speed of the second supercharger 2B. The output side of the controller 250 is connected to the first exhaust bypass valve 48A, the second exhaust bypass valve 48B, the auxiliary boiler 224a (see FIG. 5), and the like. The output side of the controller 250 includes a damper 8A corresponding to the first exhaust gas economizer 10A, a damper 9A corresponding to the first bypass pipe 7A, a damper 8B corresponding to the second exhaust gas economizer 10B, and a damper 9B corresponding to the second bypass pipe 7B. Also connected to.

コントローラ250は、各主機1A,1Bの給気の温度及び各主機1A,1Bの負荷に応じて、第1排気バイパス弁48A及び第2排気バイパス弁48Bを制御し、それにより過給機バイパス率や蒸気ターボ発電機204により発生される電力を制御する。コントローラ250は、このような制御を実行する機能部として、第1実施形態と同様にして、温度測定部251、負荷測定部252、制御マップ記憶部253、バイパス率算出部254、バイパス弁制御部255、ダンパ制御部256及び補助ボイラ制御部257を有している。  The controller 250 controls the first exhaust bypass valve 48A and the second exhaust bypass valve 48B according to the temperature of the supply air of each main machine 1A, 1B and the load of each main machine 1A, 1B, and thereby the supercharger bypass rate. And the electric power generated by the steam turbo generator 204 is controlled. As a functional unit that executes such control, the controller 250 is a temperature measuring unit 251, a load measuring unit 252, a control map storage unit 253, a bypass rate calculating unit 254, and a bypass valve control unit, as in the first embodiment. 255, a damper control unit 256, and an auxiliary boiler control unit 257.

図7は、図6に示す制御マップ記憶部253に記憶される制御マップ265の一例を模式的に示すグラフである。バイパス率算出部254は、図7に示す制御マップ265を参照し、温度及び負荷に応じて、2機の主機1A,1Bごと(2つの排気バイパス弁48A,48Bごと)に過給機バイパス率を算出する。この制御マップ265を参照することで、コントローラ250は、第1主機1Aからの廃熱による発生可能電力(以下、第1発生可能電力)が船内需用電力の半分に相当し、第2主機1Bからの廃熱による発生可能電力(以下、第2発生可能電力)が船内需用電力の半分に相当するように、排気バイパス弁48A,48Bの開度を制御する。つまり、本実施形態では、2つの排気バイパス弁48A,48Bの開度が、共通の制御マップ265を用いながらも独立して制御され、それにより、各主機1A,1Bの廃熱による発生可能電力を船内需用電力Wdの半分ずつに分けるようにし、2機全体としての廃熱による発生可能電力を船内需用電力Wdにする。  FIG. 7 is a graph schematically showing an example of the control map 265 stored in the control map storage unit 253 shown in FIG. The bypass rate calculation unit 254 refers to the control map 265 shown in FIG. 7 and determines the turbocharger bypass rate for each of the two main engines 1A and 1B (for each of the two exhaust bypass valves 48A and 48B) according to the temperature and load. Is calculated. By referring to the control map 265, the controller 250 can generate electric power that can be generated by waste heat from the first main machine 1A (hereinafter referred to as first electric power that can be generated) corresponding to half of the electric power for ship use, and the second main machine 1B. The opening degree of the exhaust bypass valves 48A and 48B is controlled so that the electric power that can be generated by the waste heat from the engine (hereinafter, the second electric power that can be generated) corresponds to half of the electric power for shipboard. That is, in the present embodiment, the opening degrees of the two exhaust bypass valves 48A and 48B are independently controlled while using the common control map 265, whereby the electric power that can be generated by the waste heat of the main engines 1A and 1B. Is divided into half of the onboard demand electric power Wd, and the electric power that can be generated by the waste heat of the two aircraft as a whole is used as the onboard demand electric power Wd.

図8は、図6に示すコントローラ250により実行される制御内容を示すフローチャートである。図8に示す処理は、航行中に所定の周期で繰り返し実行される。図8に示すように、まず、温度測定部251が、第1温度センサ61Aからの入力に応じて第1過給機2Aに対応した給気温度T1を測定し、第2温度センサ61Bからの入力に応じて第2過給機2Bに対応した給気温度T2を測定する(ステップS101)。次に、負荷測定部252が、第1過給機回転数センサ62Aからの入力に応じて第1主機1Aの負荷X1を測定し、第2過給機回転数センサ62Bからの入力に応じて第2主機1Bの負荷X2を測定する(ステップS102)。  FIG. 8 is a flowchart showing the control contents executed by the controller 250 shown in FIG. The process shown in FIG. 8 is repeatedly executed at a predetermined cycle during navigation. As shown in FIG. 8, first, the temperature measurement unit 251 measures the supply air temperature T1 corresponding to the first supercharger 2A in response to the input from the first temperature sensor 61A, and the second temperature sensor 61B In response to the input, the supply air temperature T2 corresponding to the second supercharger 2B is measured (step S101). Next, the load measuring unit 252 measures the load X1 of the first main engine 1A according to the input from the first supercharger rotation speed sensor 62A, and according to the input from the second supercharger rotation speed sensor 62B. The load X2 of the second main machine 1B is measured (step S102).

次に、バイパス率算出部254が、制御マップ265を参照して、給気温度T1及び負荷X1に応じて第1発生可能電力W1を船内需用電力Wdの半分以上とするために必要な第1過給機パイパス率Y1を算出する(ステップS103)。また、バイパス率算出部254が、制御マップ256を参照して、給気温度T2及び負荷X2に応じて第2発生可能電力W2を船内需用電力Wdの半分以上とするために必要な第2過給機バイパス率Y2を算出する(ステップS103)。  Next, the bypass rate calculation unit 254 refers to the control map 265, and refers to the control map 265. The first required power W1 is set to be equal to or more than half of the onboard demand power Wd according to the supply air temperature T1 and the load X1. One turbocharger bypass rate Y1 is calculated (step S103). Further, the bypass rate calculation unit 254 refers to the control map 256, and the second necessary power for making the second generateable power W2 more than half of the onboard demand power Wd according to the supply air temperature T2 and the load X2. A supercharger bypass rate Y2 is calculated (step S103).

次に、バイパス率算出部254が、第1発生可能電力W1と第2発生可能電力W2との和が船内需用電力Wdに達しているか否かを判断する(ステップS104)。達していれば(S104:YES)、補助ボイラ224aやディーゼル発電機等の補機を停め、第1過給機バイパス率Y1及び第2過給機パイパス率Y2がステップS103で得た値にそれぞれなるように、第1排気バイパス弁48A及び第2排気バイパス弁48Bをそれぞれ駆動する(ステップS105)。これにより、2機の主機1A,1Bからの廃熱による発生可能電力が船内需用電力を賄うことができる。  Next, the bypass rate calculation unit 254 determines whether or not the sum of the first generateable power W1 and the second generateable power W2 has reached the shipboard demand power Wd (step S104). If it has reached (S104: YES), auxiliary machinery such as the auxiliary boiler 224a and the diesel generator is stopped, and the first supercharger bypass rate Y1 and the second supercharger bypass rate Y2 are the values obtained in step S103, respectively. Thus, the first exhaust bypass valve 48A and the second exhaust bypass valve 48B are each driven (step S105). Thereby, the electric power which can be generated by the waste heat from the two main engines 1A and 1B can cover the electric power for onboard use.

達していなければ(S104:NO)、第1発生可能電力W1が船内需用電力Wdの半分未満であり且つ第2発生可能電力W2が船内需用電力Wdの半分未満であるのか否かを判断する(ステップS106)。また、いずれか一方のみが半分未満であれば(S106:YES)、それが第1発生可能電力W1であるのか第2発生可能電力W2であるのかを判断する(ステップS107)。  If not reached (S104: NO), it is determined whether or not the first possible power W1 is less than half of the onboard demand power Wd and the second possible power W2 is less than half of the onboard demand power Wd. (Step S106). If only one of them is less than half (S106: YES), it is determined whether it is the first generateable power W1 or the second generateable power W2 (step S107).

なお、第1発生可能電力W1が船内需用電力Wdの半分未満である場合には、第1過給機バイパス率Y1はオリフィス49Aによって規定される最大値MAXに達しているにも関わらず、第1発生可能電力W1が船内需用電力Wdの半分を賄いきれないことを意味する。よって、第1発生可能電力W1が船内需用電力Wdの半分を賄いきれない場合には、既に、第1排気バイパス弁48Aの開度を増やす余地が残っていない。第2発生可能電力W2についても同様のことが言える。  Note that, when the first possible power W1 is less than half of the onboard demand power Wd, the first supercharger bypass rate Y1 has reached the maximum value MAX defined by the orifice 49A, This means that the first generateable power W1 cannot cover half of the onboard demand power Wd. Therefore, when the first possible electric power W1 cannot cover half of the onboard demand electric power Wd, there is already no room for increasing the opening of the first exhaust bypass valve 48A. The same can be said for the second possible electric power W2.

第1発生可能電力W1が船内需用電力Wdの半分未満であり且つ第2発生可能電力W2が船内需用電力Wdの半分未満であれば(S106:YES)、2機の主機1A,1B全体としての廃熱による発生可能電力が船内需用電力Wdを賄いきれないので、不足分を補うため補機を駆動する(ステップS108)。  If the first generateable power W1 is less than half of the onboard demand power Wd and the second generateable power W2 is less than half of the onboard demand power Wd (S106: YES), the two main engines 1A and 1B as a whole Since the electric power that can be generated due to the waste heat cannot cover the power Wd for shipboard, the auxiliary machine is driven to compensate for the shortage (step S108).

第1発生可能電力W1が船内需用電力Wdの半分未満である一方で第2発生可能電力W2が船内需用電力Wdの半分に達していれば(S106:NO,S107:YES)、第2過給機バイパス率Y2を、ステップS103で得られた値から増大させる(ステップS109)。これにより、第2発生可能電力W2が船内需要電力Wdの半分の値から増大し、それにより第1発生可能電力W1の不足分を補うことができる。次に、第1発生可能電力W1と、増大補正後の第2発生可能電力W2との和が船内需用電力Wdに達したか否かを判断する(ステップS110)。達していれば、ステップS105に進み、補機を止めた状態で蒸気ターボ発電機を駆動する。達していなければ、第2過給機バイパス率Y2が最大値MAXに達したか否か(すなわち、第2発生可能電力W2を増大させる余地がもう残っていないか否か)を判断する(ステップS111)。最大値MAXに達していなければ(S111:NO)、ステップS109に戻って、第2過給機バイパス率Y2を更に増大させ、処理を繰り返す。最大値MAXに達していれば(S111:YES)、ステップS108に進み、補機を駆動して不足分を補う。  If the first generateable power W1 is less than half of the onboard demand power Wd and the second generateable power W2 reaches half of the onboard demand power Wd (S106: NO, S107: YES), the second The supercharger bypass rate Y2 is increased from the value obtained in step S103 (step S109). As a result, the second generateable power W2 increases from a half value of the onboard demand power Wd, thereby making up for the shortage of the first generateable power W1. Next, it is determined whether or not the sum of the first generateable power W1 and the second generateable power W2 after the increase correction has reached the shipboard demand power Wd (step S110). If it has reached, the process proceeds to step S105, and the steam turbo generator is driven with the auxiliary machine stopped. If not, it is determined whether or not the second supercharger bypass rate Y2 has reached the maximum value MAX (that is, whether or not there is still room for increasing the second possible electric power W2) (step). S111). If the maximum value MAX has not been reached (S111: NO), the process returns to step S109, the second supercharger bypass rate Y2 is further increased, and the process is repeated. If the maximum value MAX has been reached (S111: YES), the process proceeds to step S108, and the accessory is driven to compensate for the shortage.

第2発生可能電力W1が船内需用電力Wdの半分未満である一方で第1発生可能電力W2が船内需用電力Wdの半分に達していれば(S106:NO,S107:NO)、前述同様の処理が、第1過給機バイパス率と第2過給機バイパス率とを入れ替えて行われる(ステップS112〜114)。すなわち、第1発生可能電力W1の増大補正(第1過給機バイパス率Y1の拡大補正)によって第2発生可能電力W2の不足分を極力補う。第1発生可能電力W1が最大限増大補正されてもなお、第1発生可能電力W1と第2発生可能電力W2との和が船内需用電力Wdに満たない場合には(S114:NO)、補機を駆動することによってその不足分が補われるようにする。  If the second generateable power W1 is less than half of the onboard demand power Wd while the first generateable power W2 reaches half of the onboard demand power Wd (S106: NO, S107: NO), the same as described above. This process is performed by switching the first supercharger bypass rate and the second supercharger bypass rate (steps S112 to S114). That is, the shortage of the second generateable power W2 is compensated as much as possible by increasing correction of the first generateable power W1 (enlargement correction of the first supercharger bypass rate Y1). If the sum of the first possible power W1 and the second possible power W2 is less than the ship demand power Wd even when the first possible power W1 is corrected to increase to the maximum (S114: NO), The shortage is made up by driving the auxiliary equipment.

このように本実施形態によれば、一方の主機からの廃熱による発生可能電力が目標とする値(船内需用電力の半分)を下回っても、他方の主機からの廃熱による発生可能電力を目標とする値(船内需用電力の半分)から増大させ、それにより、前記一方の発生可能電力の不足分を補うことができる。このため、補機をなるべく停止させた状態にして蒸気ターボ発電機204が船内需用電力を賄いきることができるので、燃料消費率の悪化を良好に抑制することができる。  As described above, according to the present embodiment, even if the power that can be generated by waste heat from one main machine is lower than the target value (half of the power for inboard use), the power that can be generated by waste heat from the other main machine. Can be increased from the target value (half of the onboard power demand), thereby making up for the shortage of the one possible power generation. For this reason, since the steam turbo generator 204 can cover the power for on-board demand with the auxiliary machine stopped as much as possible, the deterioration of the fuel consumption rate can be satisfactorily suppressed.

上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する好適な態様を当業者に教示する目的で提供されたものである。本発明の趣旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。例えば、温度センサは、過給機2に供給される給気の温度を検出するものに限定されず、過給機2から主機1に供給される給気の温度、主機1から過給機2に供給される排気の温度、又は、廃熱回収系3の入口(排ガスエコノマイザ10の入口)における排気の温度を検出するものであってもよい。主機1の負荷は、過給機の回転数に基づいて測定されるものに限定されず、主機1の出力軸及びそれに連れて回転する回転軸を含む軸動力系の回転数、主機1への燃料噴射量、主機1からの排気の流量に基づいて測定されてもよい。  From the foregoing description, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Accordingly, the foregoing description is to be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the preferred mode of carrying out the invention. The details of the structure and / or function can be substantially changed without departing from the spirit of the invention. For example, the temperature sensor is not limited to the one that detects the temperature of the supply air supplied to the supercharger 2, but the temperature of the supply air supplied from the supercharger 2 to the main unit 1, Or the temperature of the exhaust gas at the inlet of the waste heat recovery system 3 (inlet of the exhaust gas economizer 10) may be detected. The load of the main machine 1 is not limited to that measured based on the rotation speed of the supercharger, but the rotation speed of the shaft power system including the output shaft of the main machine 1 and the rotation shaft rotating with the output shaft, It may be measured based on the fuel injection amount and the flow rate of exhaust from the main engine 1.

制御マップ65は、温度及び負荷に対する過給機バイパス率の対応関係を規定する制御規則であればどのような形態であってもよく、図3に示すように直交座標系に示されるグラフ又は当該グラフを表す演算式に限定されず、ルックアップテーブルのような形態であってもよい。  The control map 65 may be in any form as long as it is a control rule that defines the correspondence relationship between the turbocharger bypass rate with respect to temperature and load, as shown in FIG. It is not limited to an arithmetic expression representing a graph, but may be a form such as a lookup table.

本発明は、廃熱回収系を付加した舶用発電システムにおいて、船内需要電力を過不足なく発生可能な状況をなるべく広範なものとし、それにより燃料消費率の悪化を必要最小限に抑えることができるとの作用効果を奏し、過給機付き主機を搭載した船舶に広く利用することができる。  In the marine power generation system to which the waste heat recovery system is added, the present invention can make the situation where the onboard demand power can be generated without excess or deficiency as much as possible, thereby suppressing the deterioration of the fuel consumption rate to the minimum necessary. And can be widely used for ships equipped with a supercharged main engine.

100 舶用発電システム
1 主機
2 過給機
3 廃熱回収系
4 蒸気ターボ発電機
41 給気通路
46 バイパス通路
47 流量調整手段
48 排気バイパス弁
50 コントローラ
51 温度測定部
52 負荷測定部
53 制御マップ記憶部
61 温度センサ
62 過給機回転数センサ
65 制御マップ
DESCRIPTION OF SYMBOLS 100 Marine power generation system 1 Main engine 2 Supercharger 3 Waste heat recovery system 4 Steam turbo generator 41 Supply passage 46 Bypass passage 47 Flow rate adjusting means 48 Exhaust bypass valve 50 Controller 51 Temperature measurement section 52 Load measurement section 53 Control map storage section 61 Temperature sensor 62 Turbocharger speed sensor 65 Control map

復水器21は、蒸気タービン5の蒸気出口5aと接続され、蒸気出口5aから流出した蒸気を凝縮させる。給水系統22は、復水器21を各ドラム24〜26に接続しており、復水器21で生成された復水を給水として各ドラム24〜26まで送る。給水系統22は、復水器21から延びるライン22aと、ライン22aから分岐したライン22b,22c,22dとを有している。ライン22b,22c,22dは、高圧ドラム24、中圧ドラム25及び低圧ドラム26にそれぞれ接続されている。第1給水加熱器23a及び第2給水加熱器23bは、ライン22a及びライン22bにそれぞれ設けられている。第1給水加熱器23aは、各ドラム24〜26に送られる給水と主機1の掃気との間で熱交換させ、それにより当該給水を加熱して当該掃気を冷却する。第2給水加熱器23bは、高圧ドラム24に送られる給水と主機1の給気との間で熱交換させ、それにより当該給水を加熱して当該給気を冷却する。各ドラム24〜26は、給水を循環水として貯留し且つ循環水より得た蒸気を貯留する。 The condenser 21 is connected to the steam outlet 5a of the steam turbine 5, and condenses the steam flowing out from the steam outlet 5a. The water supply system 22 connects the condenser 21 to each drum 24-26, and sends the condensate produced | generated by the condenser 21 to each drum 24-26 as water supply. The water supply system 22 has a line 22a extending from the condenser 21 and lines 22b, 22c, and 22d branched from the line 22a. The lines 22b, 22c, and 22d are connected to the high-pressure drum 24, the intermediate-pressure drum 25, and the low-pressure drum 26, respectively. The 1st feed water heater 23a and the 2nd feed water heater 23b are provided in line 22a and line 22b, respectively. The first feed water heater 23a exchanges heat between the feed water sent to each of the drums 24 to 26 and the scavenging of the main machine 1, thereby heating the feed water and cooling the scavenging. The second feed water heater 23b exchanges heat between the feed water sent to the high-pressure drum 24 and the feed air of the main machine 1, thereby heating the feed water and cooling the feed air. Each of the drums 24 to 26 stores feed water as circulating water and stores steam obtained from the circulating water.

なお、蒸気系統28は、高圧ドラム24側の上流ライン28aと、蒸気タービン5側の下流ライン28bとを備えている。上流ライン28aと下流ライン28bとの間には過熱器35が介在している。蒸気系統28は、過熱器35を迂回して上流ライン28a及び下流ライン28bを接続するバイパスライン28cを更に備えている。廃熱回収系3は、高圧ドラム24からの蒸気が蒸気入口5bに送られるまでに過熱器35を経由するか否かを制御する弁ユニット34を備えている。弁ユニット34は、バイパスライン28cを介した蒸気の通流を許容又は阻止する第1開閉弁34aと、過熱器35を介した蒸気の通流を許容又は阻止する第2開閉弁34bと、過熱器35を通流した蒸気を部分的に逃がすための逃がし弁34cとを備えている。過熱器35は、排ガスエコノマイザ10の入口管11内に設けられている。蒸気が過熱器35を経由するときには、蒸気を排気との熱交換により過熱することができ、それにより蒸気タービン5の出力を大きくすることができる。また、低圧混気系統33は、入口弁36を備えている。入口弁36の開度に応じて、低圧混気入口5dに供給される混気の流量が調整される。入口弁36が低圧混気入口5dに供給される混気の流量を大きくするよう動作したときには、蒸気タービン5の出力を大きくすることができる。 The steam system 28 includes an upstream line 28a on the high pressure drum 24 side and a downstream line 28b on the steam turbine 5 side. A superheater 35 is interposed between the upstream line 28a and the downstream line 28b. The steam system 28 further includes a bypass line 28c that bypasses the superheater 35 and connects the upstream line 28a and the downstream line 28b. The waste heat recovery system 3 includes a valve unit 34 that controls whether or not the steam from the high-pressure drum 24 passes through the superheater 35 before being sent to the steam inlet 5b. The valve unit 34 includes a first opening / closing valve 34a that allows or blocks the flow of steam through the bypass line 28c, a second opening / closing valve 34b that allows or blocks the flow of steam through the superheater 35, and an overheating. And a relief valve 34c for partially escaping the steam flowing through the vessel 35. The superheater 35 is provided in the inlet pipe 11 of the exhaust gas economizer 10. When the steam passes through the superheater 35, the steam can be superheated by heat exchange with the exhaust, and thereby the output of the steam turbine 5 can be increased. Further, the low pressure mixed system 33 includes an inlet valve 36. In accordance with the opening degree of the inlet valve 36, the flow rate of the air-fuel mixture supplied to the low-pressure air-fuel mixture inlet 5d is adjusted. When the inlet valve 36 operates to increase the flow rate of the air-fuel mixture supplied to the low-pressure air-fuel mixture inlet 5d, the output of the steam turbine 5 can be increased.

Claims (10)

過給機付き主機の排気熱を利用して蒸気を生成する廃熱回収系と、
前記廃熱回収系において生成された蒸気により駆動される発電機と、
前記主機の給気又は排気の温度を検出するための温度検出手段と、
前記主機の負荷を検出するための負荷検出手段と、
前記主機からの排気が流れる排気通路と、
前記排気通路に接続され、前記過給機を迂回して排気が流れるバイパス通路と、
前記バイパス通路を流れる排気の流量と前記過給機に送られる排気の流量とを調整するための流量調整手段と、
前記温度検出手段により検出される温度及び前記負荷検出手段により検出される負荷に応じて、前記発電機が船内需用電力以上の電力を発生可能となるよう、前記流量調整手段を制御する制御手段と、を備える舶用発電システム。
A waste heat recovery system that generates steam using the exhaust heat of the main engine with a turbocharger;
A generator driven by steam generated in the waste heat recovery system;
Temperature detection means for detecting the temperature of the supply or exhaust of the main engine;
Load detecting means for detecting the load of the main machine;
An exhaust passage through which exhaust from the main engine flows;
A bypass passage connected to the exhaust passage and through which the exhaust gas bypasses the supercharger;
Flow rate adjusting means for adjusting the flow rate of the exhaust gas flowing through the bypass passage and the flow rate of the exhaust gas sent to the supercharger;
Control means for controlling the flow rate adjusting means so that the generator can generate electric power that is equal to or greater than the power required for inboard use according to the temperature detected by the temperature detecting means and the load detected by the load detecting means. And a marine power generation system.
前記温度検出手段は、前記過給機に供給される給気の温度、前記過給機から前記主機に供給される給気の温度、前記主機から前記過給機に供給される排気の温度、又は、前記廃熱回収系の入口における排気の温度を検出する、請求項1に記載の舶用発電システム。  The temperature detection means includes a temperature of supply air supplied to the supercharger, a temperature of supply air supplied from the supercharger to the main unit, a temperature of exhaust gas supplied from the main unit to the supercharger, The marine power generation system according to claim 1, wherein the temperature of the exhaust gas at the inlet of the waste heat recovery system is detected. 前記負荷検出手段は、前記主機の出力軸及びそれに連れて回転する回転軸を含む軸動力系の回転数、前記過給機の回転数、前記主機への燃料噴射量、又は、前記主機からの排気の流量を検出する、請求項1に記載の舶用発電システム。  The load detection means includes a rotation speed of a shaft power system including an output shaft of the main machine and a rotation shaft that rotates with the output shaft, a rotation speed of the supercharger, a fuel injection amount to the main machine, or from the main machine. The marine power generation system according to claim 1, wherein the flow rate of exhaust gas is detected. 前記流量調整手段は、前記バイパス通路上に開度可変にして設けられた排気バイパス弁を有し、
前記制御手段は、温度及び負荷に応じて、前記発電機が船内需用電力以上の電力を発生可能となるよう前記排気バイパス弁の開度を制御する、請求項1に記載の舶用発電システム。
The flow rate adjusting means has an exhaust bypass valve provided on the bypass passage with a variable opening.
2. The marine power generation system according to claim 1, wherein the control means controls the opening degree of the exhaust bypass valve so that the generator can generate electric power that is greater than or equal to electric power for ship use according to temperature and load.
前記制御手段が、温度及び負荷と、前記発電機が船内需用電力以上の電力を発生するために必要な排気熱を前記廃熱回収系に供給しうる前記排気バイパス弁の開度との関係を規定した制御規則を予め記憶している記憶部を有している、請求項4に記載の舶用発電システム。  Relationship between the temperature and load of the control means and the opening degree of the exhaust bypass valve that can supply the exhaust heat necessary for the generator to generate electric power that is greater than the power required for inboard ships to the waste heat recovery system The marine power generation system according to claim 4, further comprising a storage unit that preliminarily stores a control rule that defines 前記制御規則において、常用出力よりも低負荷域における負荷と、前記排気バイパス弁の開度との関係が規定されている、請求項5に記載の舶用発電システム。  The marine power generation system according to claim 5, wherein the control rule defines a relationship between a load in a load region lower than a normal output and an opening degree of the exhaust bypass valve. 前記制御手段は、温度が低いほど、前記排気バイパス弁の開度を大きくする、請求項4に記載の舶用発電システム。  The marine power generation system according to claim 4, wherein the control means increases the opening of the exhaust bypass valve as the temperature is lower. 前記制御手段は、負荷が低いほど、前記排気バイパス弁の開度を大きくする、請求項4に記載の舶用発電システム。  The marine power generation system according to claim 4, wherein the control means increases the opening of the exhaust bypass valve as the load is lower. 前記過給機付き主機が、第1主機及び第2主機で構成され、前記流量調整手段が前記第1主機及び前記第2主機それぞれに対応して設けられた、第1流量調整手段及び第2流量調整手段で構成され、
前記制御手段は、前記第1主機の排気熱を利用して得られる発生可能電力が前記船内需用電力の半分となり、前記第2主機の排気熱を利用して得られる発生可能電力が前記船内需用電力の半分となるように、前記第1流量調整手段及び前記第2流量調整手段を制御する、請求項1に記載の舶用発電システム。
The supercharger-equipped main machine is composed of a first main machine and a second main machine, and the flow rate adjusting means is provided corresponding to each of the first main machine and the second main machine. It consists of flow rate adjustment means,
The control means is configured such that the electric power that can be generated using the exhaust heat of the first main engine is half of the electric power for onboard use, and the electric power that can be obtained using the exhaust heat of the second main apparatus is 2. The marine power generation system according to claim 1, wherein the first flow rate adjusting unit and the second flow rate adjusting unit are controlled so as to be half of electric power for demand.
前記制御手段は、前記第1主機の排気熱を利用して得られる発生可能電力が前記船内需用電力の半分に満たないときに、前記第2主機の排気熱を利用して得られる発生可能電力を前記船内需用電力の半分の値から増大補正するように、前記第2流量調整手段を制御する、請求項9に記載の舶用発電システム。  The control means is capable of generating using the exhaust heat of the second main machine when the generated power obtained using the exhaust heat of the first main machine is less than half of the power for on-board demand. 10. The marine power generation system according to claim 9, wherein the second flow rate adjusting unit is controlled so that electric power is corrected to increase from a value half of the electric power for inboard use.
JP2013511876A 2011-04-25 2012-02-06 Marine power generation system Active JP5746757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013511876A JP5746757B2 (en) 2011-04-25 2012-02-06 Marine power generation system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011097143 2011-04-25
JP2011097143 2011-04-25
JP2013511876A JP5746757B2 (en) 2011-04-25 2012-02-06 Marine power generation system
PCT/JP2012/000762 WO2012147246A1 (en) 2011-04-25 2012-02-06 Vessel's power generation system

Publications (2)

Publication Number Publication Date
JPWO2012147246A1 true JPWO2012147246A1 (en) 2014-07-28
JP5746757B2 JP5746757B2 (en) 2015-07-08

Family

ID=47071782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013511876A Active JP5746757B2 (en) 2011-04-25 2012-02-06 Marine power generation system

Country Status (4)

Country Link
JP (1) JP5746757B2 (en)
KR (1) KR101485283B1 (en)
CN (1) CN103459786B (en)
WO (1) WO2012147246A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5916598B2 (en) * 2012-12-20 2016-05-11 三菱重工業株式会社 Power system
CN104806333A (en) * 2015-04-30 2015-07-29 天津大学 Ship engine waste heat power generation comprehensive utilization method
US9771824B2 (en) * 2015-09-22 2017-09-26 General Electric Company Method and system for an electric and steam supply system
JP6335859B2 (en) * 2015-09-29 2018-05-30 株式会社神戸製鋼所 Thermal energy recovery system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125706A (en) * 1983-12-09 1985-07-05 Hitachi Zosen Corp Method of controlling exhaust gas of internal- combustion engine
JPS61232319A (en) * 1985-04-05 1986-10-16 Hitachi Zosen Corp Automatic controller for exhaust-gas temperature raising equipment for exhaust gas economizer
JPH0343533U (en) * 1989-09-05 1991-04-24
JPH10176556A (en) * 1996-12-18 1998-06-30 Tokyo Gas Co Ltd Method for controlling output or engine speed of stationary internal combustion engine
CN201321918Y (en) * 2008-12-25 2009-10-07 上海交通大学 Heat power and cold cogeneration device for waste heat utilization of large-scale marine diesel engine
JP5138643B2 (en) * 2009-07-28 2013-02-06 三菱重工業株式会社 Turbine generator, turbine generator control method, control device, and ship equipped with the turbine generator
JP5155977B2 (en) * 2009-09-30 2013-03-06 三菱重工業株式会社 Power generation system control device, power generation system, and power generation system control method

Also Published As

Publication number Publication date
KR101485283B1 (en) 2015-01-21
CN103459786A (en) 2013-12-18
WO2012147246A1 (en) 2012-11-01
CN103459786B (en) 2015-08-26
KR20130139345A (en) 2013-12-20
JP5746757B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
KR101183505B1 (en) Control device for waste heat recovery system
KR101422990B1 (en) Power plant facility, ship provided with same, and method for operating power plant facility
JP5155977B2 (en) Power generation system control device, power generation system, and power generation system control method
JP5746757B2 (en) Marine power generation system
JP2015503059A (en) Gas component control in gas turbine generators using flue gas recirculation.
JP6195299B2 (en) Waste heat recovery system, ship and waste heat recovery method
CN103781997B (en) For regulating the method for heat-energy utilizing device in internal-combustion engine
EP2913486A1 (en) Power generation method and turbine generator
CN108026790A (en) Waste heat recovery plant, internal-combustion engine system and ship and waste recovery method
JP5976498B2 (en) INTERNAL COMBUSTION ENGINE SYSTEM, SHIP HAVING THE SAME, AND METHOD FOR OPERATING INTERNAL COMBUSTION ENGINE SYSTEM
US20240093639A1 (en) Gas turbine plant, and method for supplying fuel to same
EP2762802B1 (en) Chilled water system and method of operating chilled water system
KR101982962B1 (en) Control device for power generation system, power generation system, and power generation method
JP4868944B2 (en) Combined gas power generation system and method using gas hydrate
KR20150065895A (en) Exhaust heat recovery system and exhaust heat recovery method
KR101965122B1 (en) Electricity generation system and electricity generation system control method
KR101613227B1 (en) Apparatus and method for power production using waste heat in a ship
CN206545526U (en) A kind of steam turbine variable pressure operation control set for adjusting
JP2019094802A (en) Exhaust heat recovery system of marine engine, and control method of exhaust heat recovery system of marine engine
CN106640227A (en) Variable-pressure operation regulation control method and device of steam turbine
CN113359442A (en) Coal-water ratio control method and system
EP3047129A1 (en) Method of controlling emissions of a gas turbine plant and gas turbine plant
JP5675932B2 (en) Power generation method, turbine generator, turbine generator control method, control apparatus, and ship equipped with the turbine generator
CN220815770U (en) Industrial steam supply thermodynamic system for deep peak regulation of coal-fired steam turbine generator unit
JP7150498B2 (en) POWER GENERATION SYSTEM AND ITS CONTROL DEVICE AND CONTROL METHOD

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150508

R150 Certificate of patent or registration of utility model

Ref document number: 5746757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250