JPWO2012114462A1 - Air conditioning and hot water supply system and control method for air conditioning and hot water supply system - Google Patents

Air conditioning and hot water supply system and control method for air conditioning and hot water supply system Download PDF

Info

Publication number
JPWO2012114462A1
JPWO2012114462A1 JP2013500758A JP2013500758A JPWO2012114462A1 JP WO2012114462 A1 JPWO2012114462 A1 JP WO2012114462A1 JP 2013500758 A JP2013500758 A JP 2013500758A JP 2013500758 A JP2013500758 A JP 2013500758A JP WO2012114462 A1 JPWO2012114462 A1 JP WO2012114462A1
Authority
JP
Japan
Prior art keywords
hot water
water supply
refrigerant
air
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013500758A
Other languages
Japanese (ja)
Other versions
JP5492347B2 (en
Inventor
陽子 國眼
陽子 國眼
小谷 正直
正直 小谷
麻理 内田
麻理 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5492347B2 publication Critical patent/JP5492347B2/en
Publication of JPWO2012114462A1 publication Critical patent/JPWO2012114462A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system

Abstract

二元冷凍サイクルが形成されている多熱源の空調給湯システムであって、不使用熱交換器の冷媒を好適に回収して使用熱交換器で利用できる空調給湯システム及び空調給湯システムの制御方法を提供するため、中間熱交換器(23)を不使用とし空調用熱源側熱交換器(24)及び給湯用熱源側熱交換器(44)を使用する第1状態での第1運転と、空調用熱源側熱交換器(24)及び給湯用熱源側熱交換器(44)を不使用とし中間熱交換器(23)を使用する第2状態での第2運転の切り替え時に、中間熱交換器(23)及び空調用熱源側熱交換器(24)への空調用冷媒の流入を遮断して空調用圧縮機(21)で空調用冷媒を回収する空調用冷媒回収運転と、中間熱交換器(23)及び給湯用熱源側熱交換器(44)への給湯用冷媒の流入を遮断して給湯用圧縮機(41)で給湯用冷媒を回収する給湯用冷媒回収運転と、の少なくとも一方が実行される空調給湯システムとする。An air-conditioning hot-water supply system for a multi-heat source in which a dual refrigeration cycle is formed, and an air-conditioning hot-water supply system that can suitably recover refrigerant from an unused heat exchanger and use it in a used heat exchanger, and a control method for the air-conditioning hot-water supply system In order to provide the first operation in the first state in which the intermediate heat exchanger (23) is not used and the heat source side heat exchanger (24) for air conditioning and the heat source side heat exchanger (44) for hot water supply are used, air conditioning When switching the second operation in the second state in which the heat source side heat exchanger (24) and the hot water supply heat source side heat exchanger (44) are not used and the intermediate heat exchanger (23) is used, the intermediate heat exchanger (23) and an air conditioning refrigerant recovery operation for shutting off the inflow of the air conditioning refrigerant to the air conditioning heat source side heat exchanger (24) and recovering the air conditioning refrigerant by the air conditioning compressor (21), and an intermediate heat exchanger (23) and the hot water supply refrigerant to the hot water supply heat source side heat exchanger (44). A refrigerant recovery operation for hot water supply to recover the hot water supply refrigerant in the hot water supply compressor (41) by blocking the entrance to the air-conditioning hot-water supply system in which at least one is performed the.

Description

本発明は、空調用冷媒回路と給湯用冷媒回路が、中間熱交換器を介して互いに熱交換可能に接続されて空調サイクルと給湯サイクルの二元冷凍サイクルが形成されている多熱源の空調給湯システム及び空調給湯システムの制御方法に関する。   The present invention relates to a multi-heat source air-conditioning hot water supply system in which an air conditioning refrigerant circuit and a hot water supply refrigerant circuit are connected to each other via an intermediate heat exchanger so as to be able to exchange heat with each other to form a dual refrigeration cycle of an air conditioning cycle and a hot water supply cycle. The present invention relates to a control method for an air conditioning and hot water supply system.

空調用冷媒回路と給湯用冷媒回路が、中間熱交換器を介して互いに熱交換可能に接続されて、空調サイクルと給湯サイクルを備える多熱源の空調給湯システムは、多くの熱源と熱交換するため、従来のルームエアコンやヒートポンプ給湯機よりも多くの熱交換器を備えて構成される。
このような空調給湯システムには、空調サイクルの空調運転(冷房運転、暖房運転)と給湯サイクルの給湯運転をそれぞれ単独で運転する単独運転と、空調サイクルの空調運転(冷房運転)で発生する排熱を給湯サイクルの給湯運転に利用する排熱回収運転とで使用される熱交換器(使用熱交換器)が切り替えられるように構成されたものがある。
しかしながら、このような空調給湯システムは多くの熱交換器を備えるため、必要となる冷媒の量(冷媒封入量)が増える場合がある。
冷媒は地球温暖化を促進する物質の1つであるため冷媒封入量の増量は好ましくなく、冷媒封入量の削減が求められている。
The refrigerant circuit for air conditioning and the refrigerant circuit for hot water supply are connected to each other via an intermediate heat exchanger so as to be able to exchange heat with each other, and the multi-heat source air conditioning hot water supply system including the air conditioning cycle and the hot water supply cycle exchanges heat with many heat sources. It is configured with more heat exchangers than conventional room air conditioners and heat pump water heaters.
In such an air conditioning hot water supply system, an air conditioning operation (cooling operation, heating operation) of an air conditioning cycle and a hot water supply operation of a hot water supply cycle are independently operated, and an exhaust generated in an air conditioning operation (cooling operation) of the air conditioning cycle. Some heat exchangers (used heat exchangers) that are used in the exhaust heat recovery operation that uses heat for the hot water supply operation of the hot water supply cycle can be switched.
However, since such an air-conditioning hot-water supply system includes many heat exchangers, the amount of necessary refrigerant (the amount of refrigerant enclosed) may increase.
Since the refrigerant is one of the substances that promote global warming, it is not preferable to increase the amount of refrigerant enclosed, and a reduction in the amount of refrigerant enclosed is required.

例えば、特許文献1には、停止している室内機(熱交換器)から冷媒を回収できるマルチエアコンシステムが開示されている。
特許文献1に開示されるマルチエアコンシステムは、複数の室内機(熱交換器)を備えて構成される。そして、停止している室内機に対応する冷媒流量調整弁の弁開度を、当該室内機の設定馬力に応じた弁開度に所定時間に亘って設定し、所定時間経過後は流量調整弁の弁開度を元に戻す。この構成によって、停止している室内機に貯まっている冷媒を回収できる。そして、停止している室内機から回収した冷媒を運転している室内機の冷媒として利用することで冷媒封入量を削減できる。
したがって、特許文献1に開示される技術を多熱源の空調給湯システムに適用すると、使用しない熱交換器(不使用熱交換器)から冷媒を回収して使用する熱交換器(使用熱交換器)に流通させることができ、冷媒封入量を削減できる。
For example, Patent Literature 1 discloses a multi-air conditioner system that can recover a refrigerant from a stopped indoor unit (heat exchanger).
The multi air conditioner system disclosed in Patent Document 1 is configured to include a plurality of indoor units (heat exchangers). Then, the valve opening degree of the refrigerant flow rate adjustment valve corresponding to the stopped indoor unit is set to a valve opening degree corresponding to the set horsepower of the indoor unit over a predetermined time, and after the predetermined time has elapsed, the flow rate adjustment valve Return the valve opening to. With this configuration, the refrigerant stored in the stopped indoor unit can be recovered. And the refrigerant | coolant enclosure amount can be reduced by utilizing the refrigerant | coolant collect | recovered from the indoor unit which has stopped as a refrigerant | coolant of the indoor unit which is drive | operating.
Therefore, when the technique disclosed in Patent Document 1 is applied to an air-conditioning hot-water supply system with multiple heat sources, a heat exchanger (used heat exchanger) that recovers and uses a refrigerant from an unused heat exchanger (unused heat exchanger). It is possible to reduce the amount of refrigerant enclosed.

特開平2−13760号公報JP-A-2-13760

ところで、空調サイクルと給湯サイクルを備える多熱源の空調給湯システムは、利用する熱源の状態に応じて単独運転と排熱回収運転が切り替わり、それに応じて不使用熱交換器と使用熱交換器が切り替わるため、不使用熱交換器と使用熱交換器が頻繁に切り替えられる場合がある。例えば、熱源が空調装置の排熱の場合は空調装置に要求される空調能力の変化に応じて単独運転と排熱回収運転が切り替わる。また、熱源として太陽熱を利用する場合は日射量の変化に応じて単独運転と排熱回収運転が切り替わる。このように、単独運転と排熱回収運転が頻繁に切り替わる場合、不使用熱交換器から冷媒を回収する運転(冷媒回収運転)が速やかに終了されることが要求される。また、頻繁に冷媒回収運転が実行されることになるため、冷媒回収運転が空調給湯システムに与える負荷を軽減することが要求される。
しかしながら、特許文献1に開示されるマルチエアコンシステムは、冷媒が回収されたことを判定することなく、所定時間に亘って流量調整弁の弁開度を大きくしている。このため、不使用熱交換器から冷媒が回収されたことを速やかに判定できず、冷媒回収運転が速やかに終了できないという問題がある。
By the way, an air-conditioning hot-water supply system of a multi-heat source provided with an air-conditioning cycle and a hot water supply cycle switches between an independent operation and an exhaust heat recovery operation according to the state of the heat source to be used, and an unused heat exchanger and a used heat exchanger are switched accordingly. Therefore, the unused heat exchanger and the used heat exchanger may be frequently switched. For example, when the heat source is exhaust heat of the air conditioner, the single operation and the exhaust heat recovery operation are switched according to a change in the air conditioning capacity required of the air conditioner. Moreover, when using solar heat as a heat source, the independent operation and the exhaust heat recovery operation are switched according to the change in the amount of solar radiation. As described above, when the single operation and the exhaust heat recovery operation are frequently switched, the operation of recovering the refrigerant from the unused heat exchanger (refrigerant recovery operation) is required to be promptly terminated. Further, since the refrigerant recovery operation is frequently executed, it is required to reduce the load that the refrigerant recovery operation gives to the air conditioning hot water supply system.
However, the multi air conditioner system disclosed in Patent Document 1 increases the valve opening degree of the flow rate adjustment valve over a predetermined time without determining that the refrigerant has been recovered. For this reason, there is a problem that it is impossible to quickly determine that the refrigerant has been recovered from the unused heat exchanger, and the refrigerant recovery operation cannot be completed quickly.

多熱源の空調給湯システムの各サイクル(空調サイクル、給湯サイクル)には複数の熱交換器が並列に配設されている。そして、各熱交換器は異なる熱源と熱交換するように構成されるため、冷媒は各熱交換器で異なった温度の熱源と熱交換する。例えば、使用時に蒸発器として動作する不使用熱交換器が接している熱源の温度が、稼動しているもう一方の使用熱交換器(蒸発器)の熱源の温度より低い場合に、不使用熱交換器に冷媒を貯留させると、冷媒と熱源との温度差は、不使用熱交換器のほうが使用熱交換器よりも小さくなり、不使用熱交換器に貯留される冷媒の蒸発(気化)が促進されなくなる。結果として、より多くの冷媒が不使用熱交換器に貯留されることになり、当該サイクルにおける冷媒流量が不足してサイクルの動作に不具合を生じさせる。
特許文献1に開示されるマルチエアコンシステムは、複数の熱交換器の熱源が全て同じ(大気)であって熱交換器間での吸熱量の違いによって生じる圧力は小さい。このため、使用熱交換器の稼働中に不使用熱交換器の冷媒を回収するように構成されており、各熱交換器が接する熱源間の温度差を考慮しない制御となっている。
この点を鑑みると、多熱源の空調給湯システムの冷媒回収に、特許文献1に開示される技術をそのまま適用することは困難である。
A plurality of heat exchangers are arranged in parallel in each cycle (air conditioning cycle, hot water supply cycle) of the air conditioning and hot water supply system of a multi-heat source. Since each heat exchanger is configured to exchange heat with a different heat source, the refrigerant exchanges heat with a heat source having a different temperature in each heat exchanger. For example, when the temperature of the heat source that is in contact with the unused heat exchanger that operates as an evaporator during use is lower than the temperature of the heat source of the other used heat exchanger (evaporator) that is operating, the unused heat When the refrigerant is stored in the exchanger, the temperature difference between the refrigerant and the heat source is smaller in the unused heat exchanger than in the used heat exchanger, and the evaporation (vaporization) of the refrigerant stored in the unused heat exchanger is reduced. It will not be promoted. As a result, more refrigerant is stored in the unused heat exchanger, and the refrigerant flow rate in the cycle is insufficient, causing a malfunction in the cycle operation.
In the multi-air conditioner system disclosed in Patent Document 1, the heat sources of the plurality of heat exchangers are all the same (atmosphere), and the pressure generated by the difference in the amount of heat absorbed between the heat exchangers is small. For this reason, it is comprised so that the refrigerant | coolant of an unused heat exchanger may be collect | recovered during operation | use of a use heat exchanger, and it is control which does not consider the temperature difference between the heat sources which each heat exchanger contacts.
In view of this point, it is difficult to apply the technique disclosed in Patent Document 1 as it is to refrigerant recovery of an air-conditioning hot-water supply system with multiple heat sources.

そこで本発明は、二元冷凍サイクルが形成されている多熱源の空調給湯システムであって、不使用熱交換器の冷媒を好適に回収して使用熱交換器で利用できる空調給湯システム及び空調給湯システムの制御方法を提供することを課題とする。   Accordingly, the present invention is an air-conditioning hot-water supply system for a multi-heat source in which a dual refrigeration cycle is formed, and an air-conditioning hot-water supply system and an air-conditioning hot-water supply that can suitably recover the refrigerant of an unused heat exchanger and use it in the used heat exchanger It is an object to provide a system control method.

前記課題を解決するため本発明は、空調用冷媒が循環して空調サイクルを形成する空調用冷媒回路と、給湯用冷媒が循環して給湯サイクルを形成する給湯用冷媒回路と、制御装置とを備えるとともに、前記空調用冷媒回路において前記空調用冷媒と大気との間で熱交換する空調用熱源側熱交換器と並列に、かつ、前記給湯用冷媒回路において前記給湯用冷媒と大気との間で熱交換する給湯用熱源側熱交換器と並列に、接続されて前記空調用冷媒と前記給湯用冷媒との間で熱交換する中間熱交換器とを備え、前記制御装置は、前記空調サイクルでの冷房運転と、前記給湯サイクルでの給湯運転とを同時に実行する場合に、前記中間熱交換器を不使用として前記空調用熱源側熱交換器及び前記給湯用熱源側熱交換器を使用して運転する第1運転と、前記中間熱交換器を使用して前記空調用熱源側熱交換器及び前記給湯用熱源側熱交換器の使用と不使用を運転状態に応じて選択して運転する第2運転とを、所定の条件に基づいて切り替えるように制御する空調給湯システムとする。そして、前記制御装置は、前記第1運転と前記第2運転の切り替え時に、空調用冷媒遮断手段によって、前記中間熱交換器及び前記空調用熱源側熱交換器への前記空調用冷媒の流入を遮断するとともに、前記空調用冷媒回路に備わる空調用圧縮機を運転して前記中間熱交換器及び前記空調用熱源側熱交換器から前記空調用冷媒を回収する空調用冷媒回収運転と、給湯用冷媒遮断手段によって、前記中間熱交換器及び前記給湯用熱源側熱交換器への前記給湯用冷媒の流入を遮断するとともに、前記給湯用冷媒回路に備わる給湯用圧縮機を運転して前記中間熱交換器及び前記給湯用熱源側熱交換器から前記給湯用冷媒を回収する給湯用冷媒回収運転と、の少なくとも一方を実行することを特徴とする。   In order to solve the above problems, the present invention provides an air conditioning refrigerant circuit in which an air conditioning refrigerant circulates to form an air conditioning cycle, a hot water supply refrigerant circuit in which a hot water supply refrigerant circulates to form a hot water supply cycle, and a control device. And in parallel with the air-conditioning heat source side heat exchanger for exchanging heat between the air-conditioning refrigerant and the atmosphere in the air-conditioning refrigerant circuit, and between the hot-water supply refrigerant and the atmosphere in the hot-water supply refrigerant circuit An intermediate heat exchanger connected in parallel with the hot water supply heat source side heat exchanger for exchanging heat at the air conditioner and exchanging heat between the air conditioning refrigerant and the hot water supply refrigerant, and the control device includes the air conditioning cycle When performing the cooling operation at the same time and the hot water supply operation in the hot water supply cycle, the intermediate heat exchanger is not used and the heat source side heat exchanger for air conditioning and the heat source side heat exchanger for hot water supply are used. With the first driving A second operation in which the intermediate heat exchanger is used to select and use the heat source side heat exchanger for air conditioning and the heat source side heat exchanger for hot water supply according to the operating state, Let it be an air-conditioning hot-water supply system controlled to switch based on conditions. The control device causes the air-conditioning refrigerant to flow into the intermediate heat exchanger and the air-conditioning heat source side heat exchanger by the air-conditioning refrigerant shut-off means when switching between the first operation and the second operation. Air conditioning refrigerant recovery operation for shutting off and operating the air conditioning compressor provided in the air conditioning refrigerant circuit to recover the air conditioning refrigerant from the intermediate heat exchanger and the heat source side heat exchanger, and for hot water supply The refrigerant shut-off means shuts off the flow of the hot water supply refrigerant into the intermediate heat exchanger and the hot water supply heat source side heat exchanger, and operates the hot water compressor provided in the hot water supply refrigerant circuit to operate the intermediate heat. At least one of a hot water supply refrigerant recovery operation for recovering the hot water supply refrigerant from the exchanger and the hot water supply heat source side heat exchanger is performed.

本発明によると、二元冷凍サイクルによって形成される多熱源の空調給湯システムであって、空調用冷媒回路および給湯用冷媒回路の循環冷媒量を好適な状態に保持して運転する空調給湯システムの制御方法を提供できる。   According to the present invention, there is provided an air conditioning and hot water supply system of a multi-heat source formed by a dual refrigeration cycle, wherein the air conditioning refrigerant circuit and the circulating refrigerant amount of the hot water supply refrigerant circuit are maintained in a suitable state and operated. A control method can be provided.

本実施形態に係る空調給湯システムの系統図である。It is a distribution diagram of an air-conditioning hot-water supply system concerning this embodiment. 空調給湯システムの運転モードを示す図である。It is a figure which shows the operation mode of an air-conditioning hot-water supply system. 冷房・給湯単独運転時の空調給湯システムを示す図である。It is a figure which shows the air-conditioning hot-water supply system at the time of air_conditioning | cooling / hot-water supply independent operation. 排熱回収運転時の空調給湯システムを示す図である。It is a figure showing an air-conditioning hot-water supply system at the time of exhaust heat recovery operation. 冷房・給湯単独運転の手順を示すフローチャートである。It is a flowchart which shows the procedure of air_conditioning | cooling / hot-water supply independent operation. (a)は第1空調用冷媒回収運転の手順を示すフローチャート、(b)は第1給湯用冷媒回収運転の手順を示すフローチャートである。(A) is a flowchart which shows the procedure of the 1st air-conditioning refrigerant | coolant collection | recovery driving | operation, (b) is a flowchart which shows the procedure of the 1st hot water supply refrigerant | coolant collection | recovery driving | operation. 排熱回収運転の手順を示すフローチャートである。It is a flowchart which shows the procedure of an exhaust heat recovery driving | operation. (a)は第2空調用冷媒回収運転の手順を示すフローチャート、(b)は第2給湯用冷媒回収運転の手順を示すフローチャートである。(A) is a flowchart which shows the procedure of the refrigerant | coolant recovery driving | operation for 2nd air conditioning, (b) is a flowchart which shows the procedure of the refrigerant | coolant recovery driving | operation for 2nd hot water supply.

以下、本発明の実施形態について、適宜図を参照して詳細に説明する。
図1に示すように、本実施形態に係る空調給湯システム100は、空調用圧縮機21を駆動して冷房運転と暖房運転とを切り替えて運転を行う空調用冷媒回路5と、給湯用圧縮機41を駆動して給湯運転を行う給湯用冷媒回路6と、空調用冷媒回路5と熱交換して、住宅60の室内の空調を行う空調用冷温水循環回路8と、給湯用冷媒回路6と熱交換して給湯を行う給湯流路9と、各運転を制御する制御装置1aとを備え、空調用冷媒回路5と給湯用冷媒回路6とを中間熱交換器23を介して熱的に接続させて、二元冷凍サイクルを構築するシステムである。
以下、冷房運転及び暖房運転とは、空調用冷媒回路5を含んで構成される空調サイクルの冷房運転及び暖房運転を示す。また、給湯運転とは給湯用冷媒回路6を含んで構成される給湯サイクルの給湯運転を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1, an air conditioning and hot water supply system 100 according to the present embodiment includes an air conditioning refrigerant circuit 5 that drives an air conditioning compressor 21 to switch between a cooling operation and a heating operation, and a hot water supply compressor. The hot water supply refrigerant circuit 6 that drives the hot water supply 41 by driving 41, the air conditioning refrigerant circuit 5 that exchanges heat with the air conditioning cold / hot water circulation circuit 8 that performs the air conditioning of the interior of the house 60, the hot water supply refrigerant circuit 6 and the heat A hot water supply passage 9 for supplying hot water by exchanging and a control device 1a for controlling each operation are provided, and the refrigerant circuit 5 for air conditioning and the refrigerant circuit 6 for hot water supply are thermally connected via an intermediate heat exchanger 23. This is a system for constructing a dual refrigeration cycle.
Hereinafter, the cooling operation and the heating operation indicate a cooling operation and a heating operation of an air conditioning cycle including the air conditioning refrigerant circuit 5. The hot water supply operation refers to a hot water supply operation of a hot water supply cycle including the hot water supply refrigerant circuit 6.

この空調給湯システム100は、住宅60の屋外に配置されるヒートポンプユニット1と室内に配置される室内ユニット2を含んで構成される。
ヒートポンプユニット1には、空調用冷媒回路5、給湯用冷媒回路6、空調用冷温水循環回路8、給湯流路9、及び制御装置1aが組み込まれている。
また、室内ユニット2には、住宅60の室内空気と空調用冷温水循環回路8を流れる冷温水との間で熱交換を行う室内熱交換器61が備わっている。
This air conditioning and hot water supply system 100 includes a heat pump unit 1 disposed outside a house 60 and an indoor unit 2 disposed indoors.
The heat pump unit 1 includes an air conditioning refrigerant circuit 5, a hot water supply refrigerant circuit 6, an air conditioning cold / hot water circulation circuit 8, a hot water supply passage 9, and a control device 1a.
The indoor unit 2 includes an indoor heat exchanger 61 that exchanges heat between the indoor air of the house 60 and the cold / hot water flowing through the cold / hot water circulation circuit 8 for air conditioning.

空調用冷媒回路5は、空調用の冷媒(以下空調用冷媒)が循環することによって冷凍サイクル(空調サイクル)が形成される回路であり、空調用冷媒を圧縮する空調用圧縮機21、空調用冷媒の流路を切り替える四方弁(空調用流路切替弁)22、給湯用冷媒回路6を循環する冷媒(以下給湯用冷媒)と空調用冷媒との間で熱交換を行う中間熱交換器23、空調用冷媒タンク26、空調用冷媒を減圧する空調用膨張弁27、及び空調用冷温水循環回路8を循環する空調用冷温水と空調用冷媒回路5を循環する空調用冷媒との間で熱交換を行う空調用利用側熱交換器28が冷媒配管で環状に接続された空調用冷媒メイン回路5aに、空調用室外ファン25によって送風される大気と空調用冷媒との間で熱交換を行う空調用熱源側熱交換器24が接続された構成となっている。   The air-conditioning refrigerant circuit 5 is a circuit in which a refrigeration cycle (air-conditioning cycle) is formed by circulating air-conditioning refrigerant (hereinafter referred to as air-conditioning refrigerant). The air-conditioning compressor 21 compresses the air-conditioning refrigerant. A four-way valve (air conditioning flow path switching valve) 22 for switching the refrigerant flow path, and an intermediate heat exchanger 23 for exchanging heat between the refrigerant circulating in the hot water supply refrigerant circuit 6 (hereinafter referred to as hot water supply refrigerant) and the air conditioning refrigerant. Heat between the air conditioning refrigerant tank 26, the air conditioning expansion valve 27 for decompressing the air conditioning refrigerant, and the air conditioning cold / hot water circulating in the air conditioning cold / hot water circulation circuit 8 and the air conditioning refrigerant circulating in the air conditioning refrigerant circuit 5. The air conditioning refrigerant main circuit 5a, in which the air conditioning use-side heat exchanger 28 for exchanging is connected in a ring shape with a refrigerant pipe, exchanges heat between the air blown by the air conditioning outdoor fan 25 and the air conditioning refrigerant. The heat source side heat exchanger 24 for air conditioning And it has a connection configuration.

なお、図1では、空調用冷媒回路5を循環する空調用冷媒と空調用冷温水循環回路8を循環する空調用冷温水が熱交換し、空調用冷温水と住宅60の室内空気が室内熱交換器61で熱交換する構成としたが、空調用冷温水循環回路8を備えず、空調用冷媒と住宅60の室内空気が直接熱交換する構成であってもよい。   In FIG. 1, the air-conditioning refrigerant circulating in the air-conditioning refrigerant circuit 5 and the air-conditioning cold / hot water circulating in the air-conditioning cold / hot water circulation circuit 8 exchange heat, and the air-conditioning cold / warm water and indoor air in the house 60 exchange indoor heat. However, the air-conditioning refrigerant and the indoor air of the house 60 may directly exchange heat without using the air-conditioning cold / hot water circulation circuit 8.

空調用冷媒回路5をより詳細に説明すると、空調用熱源側熱交換器24は、空調用冷媒メイン回路5aの四方弁22と空調用膨張弁27との間に設けられており、四方弁22と空調用膨張弁27に対して、中間熱交換器23が並列になるように接続されている。
空調用熱源側熱交換器24の出入口には、それぞれ空調用冷媒の流量を制御する第1制御弁35c、及び第2制御弁35dが空調熱交換器用制御弁として配設されている。
なお、第1制御弁35c及び第2制御弁35dは、閉弁したときに空調用冷媒の流通を遮断し、空調用熱源側熱交換器24への空調用冷媒の流入を遮断するように構成されていることが好ましい。
符号24aは、冷房運転時に空調用熱源側熱交換器24への空調用冷媒の入口となる冷房時空調用冷媒入口(第1空調用冷媒入口)、符号24bは、冷房運転時に空調用熱源側熱交換器24からの空調用冷媒の出口となる冷房時空調用冷媒出口(第1空調用冷媒出口)を示す。
因みに、空調サイクルでの暖房運転時は、空調用熱源側熱交換器24における空調用冷媒の出入口は逆になる。
具体的には、空調サイクルでの暖房運転時、空調用熱源側熱交換器24では冷房時空調用冷媒出口24bが空調用冷媒の入口となり、冷房時空調用冷媒入口24aが空調用冷媒の出口となる。
なお、空調用冷媒回路5を循環する空調用冷媒には、R410a、R134a、HFO1234yf、HFO1234ze、CO、プロパンの中から使用条件に適した冷媒が用いられる。
The air-conditioning refrigerant circuit 5 will be described in more detail. The air-conditioning heat source side heat exchanger 24 is provided between the four-way valve 22 and the air-conditioning expansion valve 27 of the air-conditioning refrigerant main circuit 5a. The intermediate heat exchanger 23 is connected in parallel to the air conditioning expansion valve 27.
A first control valve 35c and a second control valve 35d for controlling the flow rate of the air-conditioning refrigerant are provided as control valves for the air-conditioning heat exchanger, respectively, at the entrance / exit of the air-conditioning heat source side heat exchanger 24.
The first control valve 35c and the second control valve 35d are configured to block the flow of the air conditioning refrigerant when closed, and block the flow of the air conditioning refrigerant into the heat source side heat exchanger 24 for air conditioning. It is preferable that
Reference numeral 24a denotes a cooling air-conditioning refrigerant inlet (first air-conditioning refrigerant inlet) that serves as an inlet for the air-conditioning refrigerant to the air-conditioning heat source side heat exchanger 24 during the cooling operation, and reference numeral 24b denotes an air-conditioning heat source side during the cooling operation. An air conditioning refrigerant outlet (first air conditioning refrigerant outlet) serving as an outlet for air conditioning refrigerant from the heat exchanger 24 is shown.
Incidentally, at the time of heating operation in the air conditioning cycle, the air conditioning refrigerant outlet / inlet in the air conditioning heat source side heat exchanger 24 is reversed.
Specifically, during the heating operation in the air conditioning cycle, in the air conditioning heat source side heat exchanger 24, the air conditioning refrigerant outlet 24b serves as an air conditioning refrigerant inlet, and the air conditioning refrigerant inlet 24a serves as an air conditioning refrigerant outlet. It becomes.
Note that the air conditioning refrigerant circulating in the air conditioning refrigerant circuit 5, R410a, R134a, HFO1234yf, HFO1234ze, CO 2, the refrigerant suitable for use condition from the propane used.

次に、前記した空調用冷媒回路5に備わる各機器について説明する。
空調用圧縮機21は、容量制御が可能な可変容量型の圧縮機が好ましい。このような圧縮機として、ピストン式、ロータリー式、スクロール式、スクリュー式、遠心式のものが採用可能である。
Next, each device provided in the above-described air conditioning refrigerant circuit 5 will be described.
The air conditioning compressor 21 is preferably a variable capacity compressor capable of capacity control. As such a compressor, a piston type, a rotary type, a scroll type, a screw type, or a centrifugal type can be adopted.

空調用利用側熱交換器28には、図示しないが、空調用冷媒が流通する空調用伝熱管と水もしくはブライン等の不凍液(空調用利用側の熱搬送媒体)が流れる空調用冷温水伝熱管とが熱的に接触するように構成されたものや、プレート式熱交換器等が利用可能である。
空調用冷媒タンク26は、空調用冷媒回路5の流路の切替によって変化する空調用冷媒の循環量を調整する受液器として機能する。
空調用膨張弁27は、減圧装置として作用するとともに、閉弁したときに空調用冷媒の流通を遮断する空調用冷媒遮断手段としても機能し、中間熱交換器23及び空調用熱源側熱交換器24への空調用冷媒の流入(具体的には、後記する冷房時空調用冷媒出口23b,24bからの空調用冷媒の流入)を遮断するように構成されていることが好ましい。
Although not shown in the drawing, the air-conditioning use-side heat exchanger 28 is an air-conditioning heat transfer pipe through which air-conditioning refrigerant flows and an air-conditioning cold / hot water heat-transfer pipe through which an antifreeze liquid such as water or brine (a heat transfer medium on the air-conditioning use side) flows. And a plate type heat exchanger can be used.
The air conditioning refrigerant tank 26 functions as a liquid receiver that adjusts the circulation amount of the air conditioning refrigerant that is changed by switching the flow path of the air conditioning refrigerant circuit 5.
The air conditioning expansion valve 27 functions as a decompression device and also functions as an air conditioning refrigerant shut-off means that shuts off the flow of the air conditioning refrigerant when the valve is closed. The intermediate heat exchanger 23 and the air conditioning heat source side heat exchanger It is preferable that the air-conditioning refrigerant flow into the air-conditioning refrigerant 24 (specifically, the air-conditioning refrigerant inflow from the cooling air-conditioning refrigerant outlets 23b and 24b described later) is blocked.

空調用冷温水循環回路8は、空調用冷媒回路5を循環する冷媒と熱交換する水(空調用利用側の熱搬送媒体)が流通する回路であり、四方弁53と空調用冷温水循環ポンプ52と住宅60に設置された室内熱交換器61とを、開閉弁54aを有する空調用冷温水配管55aで接続し、室内熱交換器61と四方弁53とを、開閉弁54bを有する空調用冷温水配管55bで接続し、四方弁53と空調用利用側熱交換器28とを空調用冷温水配管55cで接続して、環状に形成された回路である。この空調用冷温水循環回路8内を流れる水(冷水又は温水)は、室内熱交換器61を介して住宅60の室内空気と熱交換し、住宅60内を冷房又は暖房する。ここで、空調用冷温水循環回路8内を流れる空調用利用側の熱搬送媒体として、水の代わりにエチレングリコールなどのブラインを用いてもよい。ブラインを用いると寒冷地でも適用できる。   The air-conditioning cold / hot water circulation circuit 8 is a circuit through which water (heat transfer medium on the air-conditioning use side) that exchanges heat with the refrigerant circulating in the air-conditioning refrigerant circuit 5 flows, and the four-way valve 53, the air-conditioning cold / hot water circulation pump 52, The indoor heat exchanger 61 installed in the house 60 is connected by an air conditioning cold / hot water pipe 55a having an opening / closing valve 54a, and the indoor heat exchanger 61 and the four-way valve 53 are connected by an air conditioning cold / hot water having an opening / closing valve 54b. It is a circuit formed in an annular shape by connecting with a pipe 55b and connecting the four-way valve 53 and the air-conditioning use side heat exchanger 28 with an air-conditioning cold / hot water pipe 55c. The water (cold water or hot water) flowing through the cold / hot water circulation circuit 8 for air conditioning exchanges heat with the indoor air of the house 60 via the indoor heat exchanger 61 to cool or heat the house 60. Here, a brine such as ethylene glycol may be used in place of water as the heat transfer medium on the air conditioning use side that flows in the cold / hot water circulation circuit 8 for air conditioning. When brine is used, it can be applied even in cold regions.

なお、以下の説明において、空調用冷温水循環回路8を流通する水として「冷水」又は「温水」という語を使用するが、「冷水」は、冷房運転時に空調用冷温水循環回路8を流通する水を示し、「温水」は暖房運転時に空調用冷温水循環回路8を流通する水を示す。   In the following description, the term “cold water” or “warm water” is used as the water flowing through the air-conditioning cold / hot water circulation circuit 8, and “cold water” refers to water flowing through the air-conditioning cold / hot water circulation circuit 8 during cooling operation. “Warm water” indicates water flowing through the cold / hot water circulation circuit 8 for air conditioning during heating operation.

給湯用冷媒回路6は、給湯用冷媒が循環することによって冷凍サイクル(給湯サイクル)を形成する回路であって、給湯用冷媒を圧縮する給湯用圧縮機41、給湯流路9を流通する水(給湯)と給湯用冷媒との間で熱交換を行う給湯用利用側熱交換器42、給湯用冷媒の量を調整する受液器として機能する給湯用冷媒タンク46、給湯用冷媒を減圧する給湯用膨張弁43、及び空調用冷媒回路5を循環する空調用冷媒と給湯用冷媒との間で熱交換を行う中間熱交換器23を冷媒配管で環状に接続した給湯用冷媒メイン回路6aに、給湯用室外ファン45によって送風される大気と給湯用冷媒との間で熱交換を行う給湯用熱源側熱交換器44が接続された構成となっている。   The hot water supply refrigerant circuit 6 forms a refrigeration cycle (hot water supply cycle) by circulating hot water supply refrigerant. The hot water supply compressor 41 compresses the hot water supply refrigerant and the water flowing through the hot water supply passage 9 ( Hot water use side heat exchanger 42 that exchanges heat between the hot water supply and the hot water supply refrigerant, a hot water supply refrigerant tank 46 that functions as a liquid receiver that adjusts the amount of the hot water supply refrigerant, and a hot water supply that depressurizes the hot water supply refrigerant A hot water supply refrigerant main circuit 6a in which an intermediate heat exchanger 23 that performs heat exchange between the expansion valve 43 and the air conditioning refrigerant circulating in the air conditioning refrigerant circuit 5 and the hot water supply refrigerant is connected in a ring shape with a refrigerant pipe, A hot water supply heat source side heat exchanger 44 that performs heat exchange between the air blown by the hot water supply outdoor fan 45 and the hot water supply refrigerant is connected.

給湯用冷媒回路6をより詳細に説明すると、給湯用熱源側熱交換器44は、給湯用冷媒メイン回路6aの給湯用膨張弁43と給湯用圧縮機41の間の位置に、中間熱交換器23と並列になるように冷媒配管によって接続され、給湯用熱源側熱交換器44の出入口には、それぞれ給湯用冷媒の流量を制御する第3制御弁49a及び第4制御弁49cが給湯熱交換器用制御弁として配設されている。
なお、第3制御弁49a及び第4制御弁49cは、閉弁したときに給湯用冷媒の流通を遮断し、給湯用熱源側熱交換器44への給湯用冷媒の流入を遮断するように構成されていることが好ましい。
さらに、給湯用膨張弁43は、閉弁したときに給湯用冷媒の流通を遮断する給湯用冷媒遮断手段として機能し、中間熱交換器23及び給湯用熱源側熱交換器44への給湯用冷媒の流入(具体的には、後記する給湯用冷媒入口23c,44aからの給湯用冷媒の流入)を遮断するように構成されていることが好ましい。
本実施形態において、給湯用熱源側熱交換器44にはフィンチューブ式熱交換器が用いられている。また、符号44aは給湯用冷媒入口(第1給湯用冷媒入口)、符号44bは給湯用冷媒出口(第1給湯用冷媒出口)を示す。
なお、給湯用冷媒回路6を循環する給湯用冷媒には、R410a、R134a、HFO1234yf、HFO1234ze、CO、プロパンの中から使用条件に適した冷媒が用いられる。
The hot-water supply refrigerant circuit 6 will be described in more detail. The third control valve 49a and the fourth control valve 49c for controlling the flow rate of the hot water supply refrigerant are respectively connected to the hot water supply heat source side heat exchanger 44 by a refrigerant pipe so as to be in parallel with the hot water supply heat exchanger 44. It is arranged as a dexterous control valve.
The third control valve 49a and the fourth control valve 49c are configured to block the flow of the hot water supply refrigerant when the valve is closed, and block the inflow of the hot water supply refrigerant to the hot water supply heat source side heat exchanger 44. It is preferable that
Further, the hot water supply expansion valve 43 functions as a hot water supply refrigerant shut-off means that shuts off the flow of the hot water supply refrigerant when the valve is closed, and serves as a hot water supply refrigerant to the intermediate heat exchanger 23 and the hot water supply heat source side heat exchanger 44. It is preferable to be configured to block the inflow of water (specifically, the inflow of hot water supply refrigerant from the hot water supply refrigerant inlets 23c and 44a described later).
In the present embodiment, a finned tube heat exchanger is used for the hot water supply heat source side heat exchanger 44. Reference numeral 44a denotes a hot water supply refrigerant inlet (first hot water supply refrigerant inlet), and reference numeral 44b denotes a hot water supply refrigerant outlet (first hot water supply refrigerant outlet).
Note that the hot water supply refrigerant circulating in the hot water supply refrigerant circuit 6, R410a, R134a, HFO1234yf, HFO1234ze, CO 2, the refrigerant suitable for use condition from the propane used.

次に、前記した給湯用冷媒回路6に備わる各機器について説明する。
給湯用圧縮機41は、空調用圧縮機21と同様にインバータ制御によって容量制御が可能で、低速から高速まで回転速度が可変であることが好ましい。
給湯用利用側熱交換器42は、図示しないが、給湯流路9に供給される水が流通する給湯用水伝熱管と、給湯用冷媒が流通する給湯用冷媒伝熱管とが熱的に接触するように構成されたものが利用可能である。
給湯用膨張弁43は、弁開度の調整によって給湯用冷媒の圧力を所定の圧力まで減圧することができる。
Next, each device provided in the hot water supply refrigerant circuit 6 will be described.
The hot water supply compressor 41 is capable of capacity control by inverter control similarly to the air conditioning compressor 21 and preferably has a variable rotational speed from a low speed to a high speed.
Although not shown, the hot water use side heat exchanger 42 is in thermal contact with a hot water supply water heat transfer pipe through which water supplied to the hot water supply passage 9 flows and a hot water supply refrigerant heat transfer pipe through which hot water supply refrigerant flows. Those configured in this way are available.
The hot water supply expansion valve 43 can reduce the pressure of the hot water supply refrigerant to a predetermined pressure by adjusting the valve opening.

中間熱交換器23の出入口には、それぞれ開閉弁35a,35bが空調熱交換器用開閉弁として備わっている。
なお、中間熱交換器23の符号23aは、冷房運転時に空調用冷媒の入口となる冷房時空調用冷媒入口(第2空調用冷媒入口)、符号23bは、冷房運転時に空調用冷媒の出口となる冷房時空調用冷媒出口(第2空調用冷媒出口)を示す。
また、中間熱交換器23において、給湯運転時に給湯用冷媒の入口となる給湯用冷媒入口(第2給湯用冷媒入口)23cに開閉弁49bが配設され、給湯用冷媒の出口となる給湯用冷媒出口(第2給湯用冷媒出口)23dに開閉弁49dが配設される。
因みに、空調サイクルでの暖房運転時は、中間熱交換器23における空調用冷媒の出入口は逆になる。
具体的に、空調サイクルでの暖房運転時、中間熱交換器23では冷房時空調用冷媒出口23cが空調用冷媒の入口となり、冷房時空調用冷媒入口23dが空調用冷媒の出口となる。
On / off ports of the intermediate heat exchanger 23 are provided with on / off valves 35a and 35b as air conditioning heat exchanger on / off valves, respectively.
Reference numeral 23a of the intermediate heat exchanger 23 is an air conditioning refrigerant inlet (second air conditioning refrigerant inlet) that serves as an air conditioning refrigerant inlet during the cooling operation, and reference numeral 23b is an air conditioning refrigerant outlet during the cooling operation. The air-conditioning refrigerant outlet (second air-conditioning refrigerant outlet) is shown.
In the intermediate heat exchanger 23, an on-off valve 49b is disposed at a hot water supply refrigerant inlet (second hot water supply refrigerant inlet) 23c that serves as an inlet for hot water supply refrigerant during hot water supply operation, and serves as an outlet for hot water supply refrigerant. An on-off valve 49d is provided at the refrigerant outlet (second hot water supply refrigerant outlet) 23d.
Incidentally, at the time of the heating operation in the air conditioning cycle, the inlet / outlet of the air conditioning refrigerant in the intermediate heat exchanger 23 is reversed.
Specifically, during the heating operation in the air conditioning cycle, in the intermediate heat exchanger 23, the cooling air conditioning refrigerant outlet 23c serves as an air conditioning refrigerant inlet, and the cooling air conditioning refrigerant inlet 23d serves as an air conditioning refrigerant outlet.

給湯流路9は、給湯用利用側の熱搬送媒体としての水が流通する流路であり、給湯用利用側熱交換器42の水側入口42aと給水口78を給湯用配管72で接続し、給湯用利用側熱交換器42の水側出口42bと給湯口79を給湯用配管73で接続して形成された流路である。給湯用配管73には、貯湯タンク70が備わり、給水口78から供給された水は、給湯用利用側熱交換器42で給湯用冷媒と熱交換して加熱され、湯になった後に貯湯タンク70に貯湯される。
そして、貯湯タンク70に貯湯された湯は、給湯口79から給湯負荷側(浴槽、洗面所、台所等)へ給湯される。また、貯湯タンク70の底部には、ドレン配管71aとドレン弁71bが設けられている。ドレン弁71bは通常は閉弁しており、制御装置1aからの指令に基づいて開弁し、貯湯タンク70内に貯湯されている湯がドレン配管71aを流通して外部に排出されるように構成される。なお、給湯流路9には、水や湯の流量を検知する流量センサ(図示せず)が備わっている。
The hot water supply passage 9 is a passage through which water as a heat transfer medium on the use side for hot water supply circulates, and connects the water side inlet 42 a and the water supply port 78 of the use side heat exchanger 42 for hot water supply with a hot water supply pipe 72. The flow path is formed by connecting the water-side outlet 42 b of the hot-water supply-use heat exchanger 42 and the hot-water supply port 79 with a hot-water supply pipe 73. The hot water supply pipe 73 is provided with a hot water storage tank 70, and the water supplied from the water supply port 78 is heated by exchanging heat with the hot water supply refrigerant in the hot water supply use side heat exchanger 42, and becomes hot water. Hot water is stored in 70.
The hot water stored in the hot water storage tank 70 is supplied from the hot water supply port 79 to the hot water supply load side (tub, washroom, kitchen, etc.). A drain pipe 71 a and a drain valve 71 b are provided at the bottom of the hot water storage tank 70. The drain valve 71b is normally closed, and is opened based on a command from the control device 1a so that the hot water stored in the hot water storage tank 70 flows through the drain pipe 71a and is discharged to the outside. Composed. The hot water supply passage 9 is provided with a flow rate sensor (not shown) for detecting the flow rate of water or hot water.

また、本実施形態に係る空調給湯システム100は、複数の温度センサTH1〜TH23を備えている。具体的に、給湯流路9を流通する水や湯の温度を測定するため、給湯用利用側熱交換器42の水側入口42aに温度センサTH2が備わり、さらに、給水口78に温度センサTH1がそれぞれ備わっている。
また、空調用冷温水循環回路8を流通する冷温水の温度を測定するため、暖房運転時における空調用利用側熱交換器28の水の入口(暖房時水側入口28a)に温度センサTH4が、暖房運転時における空調用利用側熱交換器28の水の出口(暖房時水側出口28b)に温度センサTH3が、室内熱交換器61の冷媒出口61bに温度センサTH5が、それぞれ備わっている。なお、符号61aは、室内熱交換器61の冷媒入口である。
Moreover, the air conditioning and hot water supply system 100 according to the present embodiment includes a plurality of temperature sensors TH1 to TH23. Specifically, in order to measure the temperature of the water or hot water flowing through the hot water supply passage 9, the temperature sensor TH2 is provided at the water side inlet 42a of the hot water use side heat exchanger 42, and the temperature sensor TH1 is further provided at the water supply port 78. Each is equipped.
Further, in order to measure the temperature of the cold / hot water flowing through the air-conditioning cold / hot water circulation circuit 8, a temperature sensor TH4 is provided at the water inlet (heating-time water-side inlet 28a) of the air-conditioning use-side heat exchanger 28 during heating operation. A temperature sensor TH3 is provided at the water outlet (water heating side outlet 28b) of the air conditioning use-side heat exchanger 28 during heating operation, and a temperature sensor TH5 is provided at the refrigerant outlet 61b of the indoor heat exchanger 61. Reference numeral 61 a is a refrigerant inlet of the indoor heat exchanger 61.

また、給湯用冷媒回路6を流通する給湯用冷媒の温度を測定するために、給湯用圧縮機41の吸込口41aと吐出口41bに温度センサTH6、TH7がそれぞれ備わり、給湯用膨張弁43の出口に温度センサTH8が備わっている。さらに、給湯用熱源側熱交換器44の給湯用冷媒入口44aに温度センサTH22(給湯用温度測定手段)、給湯用冷媒出口44bに温度センサTH9(給湯用温度測定手段)、中間熱交換器23の給湯用冷媒入口23cに温度センサTH23(給湯用温度測定手段)、給湯用冷媒出口23dに温度センサTH10(給湯用温度測定手段)がそれぞれ備わっている。
給湯用温度測定手段である温度センサTH9、TH10、TH22、及びTH23は、例えば、冷媒配管の外壁面に取り付けられるように配設されるサーミスタであり、冷媒配管内の給湯用冷媒の温度を冷媒配管を介して測定する。そして、温度センサTH9が測定する温度を給湯用冷媒出口44bの温度、温度センサTH22が測定する温度を給湯用冷媒入口44aの温度、温度センサTH10が測定する温度を給湯用冷媒出口23dの温度、温度センサTH23が測定する温度を給湯用冷媒入口23cの温度とする。
Further, in order to measure the temperature of the hot water supply refrigerant flowing through the hot water supply refrigerant circuit 6, temperature sensors TH 6 and TH 7 are respectively provided in the suction port 41 a and the discharge port 41 b of the hot water supply compressor 41, and the hot water supply expansion valve 43 A temperature sensor TH8 is provided at the outlet. Furthermore, a temperature sensor TH22 (hot water supply temperature measurement means) is provided at the hot water supply refrigerant inlet 44a of the hot water supply side heat exchanger 44, a temperature sensor TH9 (hot water supply temperature measurement means) is provided at the hot water supply refrigerant outlet 44b, and the intermediate heat exchanger 23. The hot water supply refrigerant inlet 23c is provided with a temperature sensor TH23 (hot water supply temperature measurement means), and the hot water supply refrigerant outlet 23d is provided with a temperature sensor TH10 (hot water supply temperature measurement means).
The temperature sensors TH9, TH10, TH22, and TH23, which are temperature measuring means for hot water supply, are, for example, thermistors disposed so as to be attached to the outer wall surface of the refrigerant pipe, and the temperature of the hot water supply refrigerant in the refrigerant pipe is set as the refrigerant. Measure through piping. The temperature measured by the temperature sensor TH9 is the temperature of the hot water supply refrigerant outlet 44b, the temperature measured by the temperature sensor TH22 is the temperature of the hot water supply refrigerant inlet 44a, the temperature measured by the temperature sensor TH10 is the temperature of the hot water supply refrigerant outlet 23d, The temperature measured by the temperature sensor TH23 is defined as the temperature of the hot water supply refrigerant inlet 23c.

また、空調用冷媒回路5を流通する空調用冷媒の温度を測定するために、空調用圧縮機21の吸込口21aと吐出口21bに温度センサTH11、TH12がそれぞれ備わり、中間熱交換器23の冷房時空調用冷媒入口23aに温度センサTH13(空調用温度測定手段)、冷房時空調用冷媒出口23bに温度センサTH14(空調用温度測定手段)がそれぞれ備わっている。さらに、冷房運転時における空調用膨張弁27の出口に温度センサTH17、空調用熱源側熱交換器24の冷房時空調用冷媒入口24aに温度センサTH15(空調用温度測定手段)、冷房時空調用冷媒出口24bに温度センサTH16(空調用温度測定手段)、冷房運転時における空調用利用側熱交換器28の空調用冷媒出口となる冷房時空調用冷媒出口28dに温度センサTH18が、それぞれ備わっている。
空調用温度測定手段である温度センサTH13、TH14、TH15、及びTH16は、例えば、冷媒配管の外壁面に取り付けられるように配設されるサーミスタであり、冷媒配管内の空調用冷媒の温度を冷媒配管を介して測定する。そして、温度センサTH13が測定する温度を冷房時空調用冷媒入口23aの温度、温度センサTH14が測定する温度を冷房時空調用冷媒出口23bの温度、温度センサTH15が測定する温度を冷房時空調用冷媒入口24aの温度、温度センサTH16が測定する温度を冷房時空調用冷媒出口24bの温度とする。
なお、符号28cは、冷房運転時に空調用利用側熱交換器28への空調用冷媒の入口となる冷房時空調用冷媒入口を示す。
Further, in order to measure the temperature of the air conditioning refrigerant flowing through the air conditioning refrigerant circuit 5, temperature sensors TH 11 and TH 12 are respectively provided in the suction port 21 a and the discharge port 21 b of the air conditioning compressor 21, and the intermediate heat exchanger 23 The air conditioning refrigerant inlet 23a is provided with a temperature sensor TH13 (air conditioning temperature measuring means), and the air conditioning refrigerant outlet 23b is provided with a temperature sensor TH14 (air conditioning temperature measuring means). Further, the temperature sensor TH17 is provided at the outlet of the air conditioning expansion valve 27 during the cooling operation, the temperature sensor TH15 (air conditioning temperature measuring means) is provided at the cooling air conditioning refrigerant inlet 24a of the heat source side heat exchanger 24, and the air conditioning is used during cooling. A temperature sensor TH16 (air-conditioning temperature measuring means) is provided at the refrigerant outlet 24b, and a temperature sensor TH18 is provided at the air-conditioning refrigerant outlet 28d serving as the air-conditioning refrigerant outlet of the air-conditioning use-side heat exchanger 28 during the cooling operation. Yes.
The temperature sensors TH13, TH14, TH15, and TH16, which are air conditioning temperature measuring means, are, for example, thermistors arranged so as to be attached to the outer wall surface of the refrigerant pipe, and the temperature of the air conditioning refrigerant in the refrigerant pipe is set as the refrigerant. Measure through piping. The temperature measured by the temperature sensor TH13 is the temperature of the cooling air conditioning refrigerant inlet 23a, the temperature measured by the temperature sensor TH14 is the temperature of the cooling air conditioning refrigerant outlet 23b, and the temperature measured by the temperature sensor TH15 is the temperature for cooling air conditioning. The temperature of the refrigerant inlet 24a and the temperature measured by the temperature sensor TH16 are set as the temperature of the air conditioning refrigerant outlet 24b.
Reference numeral 28c denotes a cooling air-conditioning refrigerant inlet that serves as an inlet of the air-conditioning refrigerant to the air-conditioning use-side heat exchanger 28 during the cooling operation.

また、本実施形態に係る空調給湯システム100には、外気温度を測定する外気温度測定手段としての温度センサTH19、住宅60の室内温度を測定する温度センサTH20、及び貯湯タンク70内に貯湯された湯の温度を測定する温度センサTH21も備わっている。   Further, in the air conditioning and hot water supply system 100 according to the present embodiment, the temperature sensor TH19 as an outside air temperature measuring unit that measures the outside air temperature, the temperature sensor TH20 that measures the indoor temperature of the house 60, and the hot water stored in the hot water storage tank 70 are stored. A temperature sensor TH21 for measuring the temperature of the hot water is also provided.

さらに、空調用圧縮機21には回転速度を検出する回転速度検知センサRAが備わり、給湯用圧縮機41には回転速度を検出する回転速度検知センサRHが備わっている。
また、空調用膨張弁27には弁開度を検出する弁開度検知センサPAが備わり、給湯用膨張弁43には弁開度を検出する弁開度検知センサPHが備わっている。
Further, the air conditioning compressor 21 is provided with a rotation speed detection sensor RA for detecting the rotation speed, and the hot water supply compressor 41 is provided with a rotation speed detection sensor RH for detecting the rotation speed.
The air conditioning expansion valve 27 is provided with a valve opening degree detection sensor PA for detecting the valve opening degree, and the hot water supply expansion valve 43 is provided with a valve opening degree detection sensor PH for detecting the valve opening degree.

制御装置1aは、リモコン(図示せず)からの指令信号、温度センサTH1〜TH23、回転速度検知センサRA,RH、弁開度検知センサPA,PHからの検知信号が入力されるように構成される。そして、制御装置1aは、これらの入力信号に基づいて空調用圧縮機21及び給湯用圧縮機41の運転や停止、四方弁22や53の切替え、空調用膨張弁27及び給湯用膨張弁43弁開度の設定、第1制御弁35c、第2制御弁35d、第3制御弁49a、第4制御弁49cの弁開度の設定、空調用冷温水循環ポンプ52の駆動や停止、開閉弁35a,35b,49b,49d,54a,54bの開閉、その他の空調給湯システム100の運転に必要な制御を実行する。   The control device 1a is configured such that command signals from a remote controller (not shown), temperature sensors TH1 to TH23, rotational speed detection sensors RA and RH, and detection signals from valve opening degree detection sensors PA and PH are input. The Based on these input signals, the control device 1a starts and stops the air conditioning compressor 21 and the hot water supply compressor 41, switches between the four-way valves 22 and 53, the air conditioning expansion valve 27, and the hot water supply expansion valve 43. Setting of opening, setting of valve opening of first control valve 35c, second control valve 35d, third control valve 49a, fourth control valve 49c, driving or stopping of air-conditioning cold / hot water circulation pump 52, open / close valve 35a, The control required for opening and closing of 35b, 49b, 49d, 54a, 54b and other operations of the air conditioning and hot water supply system 100 is executed.

例えば、本実施形態に係る空調給湯システム100では、空調サイクルの冷房運転と、給湯サイクルの給湯運転を単独で行う「冷房・給湯単独運転(第1運転)」と、中間熱交換器23を介して空調用冷媒回路5を流通する空調用冷媒と給湯用冷媒回路6を流通する給湯用冷媒とで熱交換を行いながら、空調サイクルの冷房運転と給湯サイクルの給湯運転を行う「排熱回収運転(第2運転)」が可能である。   For example, in the air conditioning and hot water supply system 100 according to the present embodiment, the cooling operation of the air conditioning cycle, the “cooling / hot water supply independent operation (first operation)” for performing the hot water supply operation of the hot water supply cycle alone, and the intermediate heat exchanger 23 are used. “Exhaust heat recovery operation for performing cooling operation of the air conditioning cycle and hot water supply operation of the hot water supply cycle while exchanging heat between the air conditioning refrigerant flowing through the air conditioning refrigerant circuit 5 and the hot water supply refrigerant flowing through the hot water supply refrigerant circuit 6. (Second operation) "is possible.

冷房・給湯単独運転(第1運転)時、空調給湯システム100は図2に示す「冷房・給湯単独運転モード」に設定される。すなわち、給湯サイクルにおいて、給湯用圧縮機41が運転され、給湯用利用側熱交換器42が凝結器として使用され、給湯用熱源側熱交換器44が蒸発器として使用され、中間熱交換器23は不使用とされる。空調サイクルでは、空調用圧縮機21が運転され、空調用利用側熱交換器28が蒸発器として使用され、空調用熱源側熱交換器24が凝縮器として使用され、中間熱交換器23は不使用とされる。そして「冷房・給湯単独運転モード」に設定された空調給湯システム100の状態を第1状態と称する。
このように空調給湯システム100が「冷房・給湯単独運転モード」に設定され、空調給湯システム100が第1状態になると、中間熱交換器23が使用されない熱交換器(以下、不使用熱交換器)となり、その他の熱交換器(給湯用利用側熱交換器42、給湯用熱源側熱交換器44、空調用利用側熱交換器28、及び空調用熱源側熱交換器24)が使用される熱交換器(以下、使用熱交換器)となる。
At the time of cooling / hot water supply independent operation (first operation), the air conditioning and hot water supply system 100 is set to the “cooling / hot water supply independent operation mode” shown in FIG. That is, in the hot water supply cycle, the hot water supply compressor 41 is operated, the hot water supply use side heat exchanger 42 is used as a condenser, the hot water supply heat source side heat exchanger 44 is used as an evaporator, and the intermediate heat exchanger 23. Is not used. In the air conditioning cycle, the air conditioning compressor 21 is operated, the air conditioning use side heat exchanger 28 is used as an evaporator, the air conditioning heat source side heat exchanger 24 is used as a condenser, and the intermediate heat exchanger 23 is not used. It is used. The state of the air conditioning and hot water supply system 100 set to the “cooling / hot water supply independent operation mode” is referred to as a first state.
In this way, when the air conditioning and hot water supply system 100 is set to the “cooling / hot water supply single operation mode” and the air conditioning and hot water supply system 100 is in the first state, the heat exchanger in which the intermediate heat exchanger 23 is not used (hereinafter referred to as an unused heat exchanger). And other heat exchangers (hot water supply use side heat exchanger 42, hot water supply heat source side heat exchanger 44, air conditioning use side heat exchanger 28, and air conditioning heat source side heat exchanger 24) are used. It becomes a heat exchanger (hereinafter, used heat exchanger).

一方、排熱回収運転(第2運転)時、空調給湯システム100は、図2に示す「排熱回収運転モード」に設定される。すなわち、給湯サイクルにおいて給湯用圧縮機41が運転され、給湯用利用側熱交換器42が凝縮器として使用され、給湯用熱源側熱交換器44は不使用とされ、中間熱交換器23が蒸発器として使用される。空調サイクルでは、空調用圧縮機21が運転され、空調用利用側熱交換器28が蒸発器として使用され、空調用熱源側熱交換器24は不使用とされ、中間熱交換器23が凝縮器として使用される。そして「排熱回収運転モード」に設定された空調給湯システム100の状態を第2状態と称する。
このように空調給湯システム100が「排熱回収運転モード」に設定され、空調給湯システム100が第2状態になると、空調用熱源側熱交換器24、及び給湯用熱源側熱交換器44が不使用熱交換器となり、その他の熱交換器(中間熱交換器23、給湯用利用側熱交換器42、及び空調用利用側熱交換器28)が使用熱交換器となる。
以上のように、「冷房・給湯単独運転モード」に設定された第1状態は、空調給湯システム100が冷房・給湯単独運転(第1運転)するための状態であり、「排熱回収運転モード」に設定された第2状態は、空調給湯システム100が排熱回収運転(第2運転)するための状態である。
On the other hand, during the exhaust heat recovery operation (second operation), the air conditioning hot water supply system 100 is set to the “exhaust heat recovery operation mode” shown in FIG. That is, the hot water supply compressor 41 is operated in the hot water supply cycle, the hot water supply use side heat exchanger 42 is used as a condenser, the hot water supply heat source side heat exchanger 44 is not used, and the intermediate heat exchanger 23 is evaporated. Used as a vessel. In the air conditioning cycle, the air conditioning compressor 21 is operated, the air conditioning use side heat exchanger 28 is used as an evaporator, the air conditioning heat source side heat exchanger 24 is not used, and the intermediate heat exchanger 23 is a condenser. Used as. The state of the air conditioning and hot water supply system 100 set to the “exhaust heat recovery operation mode” is referred to as a second state.
Thus, when the air conditioning hot water supply system 100 is set to the “exhaust heat recovery operation mode” and the air conditioning hot water supply system 100 enters the second state, the air conditioning heat source side heat exchanger 24 and the hot water supply heat source side heat exchanger 44 are disabled. Other heat exchangers (the intermediate heat exchanger 23, the hot water use side heat exchanger 42, and the air conditioning use side heat exchanger 28) are used heat exchangers.
As described above, the first state set to the “cooling / hot water supply single operation mode” is a state for the air conditioning / hot water supply system 100 to perform the cooling / hot water supply single operation (first operation). The second state set to “” is a state for the air conditioning and hot water supply system 100 to perform the exhaust heat recovery operation (second operation).

図3及び図4を参照して、冷房・給湯単独運転及び排熱回収運転における冷媒(空調用冷媒、給湯用冷媒)の流れ及び空調用冷温水循環回路8を流通する水(熱搬送媒体)の流れを説明する。
なお、図3、図4において、熱交換器(中間熱交換器23、空調用利用側熱交換器28、空調用熱源側熱交換器24、給湯用利用側熱交換器42、給湯用熱源側熱交換器44)に付された太矢印は熱の流れを示しており、各回路(空調用冷媒回路5、給湯用冷媒回路6、空調用冷温水循環回路8、給湯流路9)に付された矢印は、冷媒(空調用冷媒、給湯用冷媒)または流体(水、湯)が各回路を流通する方向を示している。また、白色の開閉弁(35a,35b,49b,49d)及び白色の流量制御弁(第1制御弁35c、第2制御弁35d、第3制御弁49a、第4制御弁49c)は開弁した状態、黒色の開閉弁及び黒色の流量制御弁は閉弁した状態を示している。また、四方弁(22,53)においては、実線で示された円弧が冷媒及び流体の流路を示している。また、室外ファン(空調用室外ファン25、給湯用室外ファン45)は、白色の場合は運転中であることを示し、黒色の場合は停止中であることを示している。そして、破線で示される熱交換器(中間熱交換器23、空調用熱源側熱交換器24、給湯用熱源側熱交換器44)は、不使用の熱交換器、すなわち、冷媒が流通しない熱交換器(不使用熱交換器)を示し、実線で示される熱交換器は使用される熱交換器、すなわち、冷媒が流通する熱交換器(使用熱交換器)を示している。
Referring to FIG. 3 and FIG. 4, the flow of the refrigerant (air conditioning refrigerant, hot water supply refrigerant) and the water (heat transfer medium) flowing through the air conditioning cold / hot water circulation circuit 8 in the cooling / hot water supply independent operation and the exhaust heat recovery operation are referred to. The flow will be described.
3 and 4, the heat exchanger (intermediate heat exchanger 23, air-conditioning use side heat exchanger 28, air-conditioning heat source side heat exchanger 24, hot water supply use side heat exchanger 42, hot water supply heat source side. The thick arrows attached to the heat exchanger 44) indicate the flow of heat, and are attached to each circuit (air conditioning refrigerant circuit 5, hot water supply refrigerant circuit 6, air conditioning cold / hot water circulation circuit 8, hot water supply flow path 9). The arrows indicate the direction in which refrigerant (air conditioning refrigerant, hot water supply refrigerant) or fluid (water, hot water) flows through each circuit. The white on-off valves (35a, 35b, 49b, 49d) and the white flow control valves (first control valve 35c, second control valve 35d, third control valve 49a, fourth control valve 49c) are opened. The state, the black on-off valve, and the black flow control valve indicate a closed state. In the four-way valve (22, 53), the arc indicated by the solid line indicates the refrigerant and fluid flow paths. Further, the outdoor fans (air conditioning outdoor fan 25 and hot water supply outdoor fan 45) are in operation when white, and are stopped when black. The heat exchangers (intermediate heat exchanger 23, air-conditioning heat source side heat exchanger 24, hot water supply heat source side heat exchanger 44) indicated by broken lines are heat exchangers that are not used, that is, heat that does not circulate refrigerant. A heat exchanger indicated by a solid line indicates a heat exchanger to be used, that is, a heat exchanger in which refrigerant flows (used heat exchanger).

図3を参照して、冷房・給湯単独運転における冷媒(空調用冷媒、給湯用冷媒)の流れ及び空調用冷温水循環回路8を流通する水(熱搬送媒体)の流れについて説明する。
空調給湯システム100を冷房・給湯単独運転するとき制御装置1aは、空調給湯システム100を「冷房・給湯単独運転モード」に設定して第1状態とする。すなわち、制御装置1aは、空調用圧縮機21の吐出口21bから吐出された高温高圧のガス冷媒が空調用熱源側熱交換器24に流入するとともに、空調用利用側熱交換器28を流通した空調用冷媒が空調用圧縮機21の吸込口21aに流入するように四方弁22を切り替える。
さらに、制御装置1aは、第1制御弁35c及び第2制御弁35dを開弁するとともに空調用室外ファン25を運転し、第3制御弁49a及び第4制御弁49cを開弁するとともに給湯用室外ファン45を運転する。
また、制御装置1aは、開閉弁35a,35b,49b,49dを閉弁する。
このように、冷房・給湯単独運転は、第1状態で実行される。
なお、「冷房・給湯単独運転モード」では、空調熱交換器用開閉弁である開閉弁35a,35bが閉弁することによって中間熱交換器23への空調用冷媒の流入が遮断され、給湯熱交換器用開閉弁である開閉弁49b,49dが閉弁することによって中間熱交換器23への給湯用冷媒の流入が遮断されて、中間熱交換器23を不使用とすることができる。
さらに、空調熱交換器用制御弁である第1制御弁35c及び第2制御弁35dが開弁することによって空調用熱源側熱交換器24を使用することができ、給湯熱交換器用制御弁である第3制御弁49a及び第4制御弁49cが開弁することによって給湯用熱源側熱交換器44を使用することができる。
中間熱交換器23を不使用とするとき、制御装置1aは冷媒(空調用冷媒、給湯用冷媒)を中間熱交換器23から回収するが、冷媒の回収についての詳細は後記する。
With reference to FIG. 3, the flow of the refrigerant (air conditioning refrigerant, hot water supply refrigerant) and the flow of water (heat transfer medium) flowing through the air conditioning cold / hot water circulation circuit 8 in the cooling / hot water supply single operation will be described.
When the air-conditioning / hot-water supply system 100 is operated in a cooling / hot-water supply single operation, the control device 1a sets the air-conditioning / hot-water supply system 100 to the “cooling / hot-water supply single operation mode” and sets the first state. That is, the control device 1 a flows the high-temperature and high-pressure gas refrigerant discharged from the discharge port 21 b of the air-conditioning compressor 21 into the air-conditioning heat source side heat exchanger 24 and also flows through the air-conditioning use-side heat exchanger 28. The four-way valve 22 is switched so that the air conditioning refrigerant flows into the suction port 21a of the air conditioning compressor 21.
Further, the control device 1a opens the first control valve 35c and the second control valve 35d, operates the air-conditioning outdoor fan 25, opens the third control valve 49a and the fourth control valve 49c, and supplies hot water. The outdoor fan 45 is operated.
Further, the control device 1a closes the on-off valves 35a, 35b, 49b, and 49d.
Thus, the cooling / hot water supply single operation is executed in the first state.
In the “cooling / hot water supply independent operation mode”, the on / off valves 35a and 35b, which are air conditioner heat exchanger on / off valves, are closed to shut off the flow of air conditioning refrigerant into the intermediate heat exchanger 23, thereby exchanging hot water supply heat. By closing the on-off valves 49b and 49d, which are the on-off valves for the appliance, the inflow of the hot water supply refrigerant to the intermediate heat exchanger 23 is blocked, and the intermediate heat exchanger 23 can be made unused.
Further, the first control valve 35c and the second control valve 35d, which are air conditioning heat exchanger control valves, are opened so that the heat source side heat exchanger 24 for air conditioning can be used, which is a hot water supply heat exchanger control valve. When the third control valve 49a and the fourth control valve 49c are opened, the hot water supply heat source side heat exchanger 44 can be used.
When the intermediate heat exchanger 23 is not used, the control device 1a recovers the refrigerant (air conditioning refrigerant, hot water supply refrigerant) from the intermediate heat exchanger 23. Details of the refrigerant recovery will be described later.

空調用圧縮機21から吐出された高温高圧のガス冷媒は、四方弁22を通って空調用熱源側熱交換器24に流入する。空調用熱源側熱交換器24内を流れる高温高圧のガス冷媒は、空調用室外ファン25から送られてくる大気へ放熱して凝縮し、液化する。この高圧の液冷媒は、空調用冷媒タンク26を流れた後に所定の開度に調節された空調用膨張弁27で減圧、膨張し、低温低圧の気液二相冷媒となり、空調用利用側熱交換器28に流入する。空調用利用側熱交換器28内を流れる気液二相冷媒は、空調用冷温水循環回路8内を流れる相対的に高温の冷水から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って空調用圧縮機21の吸込口21aに流入し、空調用圧縮機21により再び圧縮されて高温高圧のガス冷媒となる。   The high-temperature and high-pressure gas refrigerant discharged from the air-conditioning compressor 21 passes through the four-way valve 22 and flows into the air-conditioning heat source side heat exchanger 24. The high-temperature and high-pressure gas refrigerant flowing in the air-conditioning heat source side heat exchanger 24 dissipates heat to the atmosphere sent from the air-conditioning outdoor fan 25 and condenses and liquefies. This high-pressure liquid refrigerant flows through the air-conditioning refrigerant tank 26 and then is decompressed and expanded by the air-conditioning expansion valve 27 adjusted to a predetermined opening degree to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. It flows into the exchanger 28. The gas-liquid two-phase refrigerant flowing in the air-conditioning use-side heat exchanger 28 absorbs heat from the relatively high-temperature cold water flowing in the air-conditioning cold / hot water circulation circuit 8 and evaporates to become a low-pressure gas refrigerant. This low-pressure gas refrigerant flows into the suction port 21a of the air-conditioning compressor 21 through the four-way valve 22, and is compressed again by the air-conditioning compressor 21 to become a high-temperature and high-pressure gas refrigerant.

空調用冷温水循環回路8では、空調用利用側熱交換器28を流れる空調用冷媒に放熱した冷水が、空調用冷温水循環ポンプ52によって空調用冷温水配管55aを流通し、室内熱交換器61に流入する。室内熱交換器61では、空調用冷温水循環回路8内の冷水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却される。つまり、住宅60内の室内が冷房される。このとき、室内熱交換器61を流通する冷水は、住宅60内の空気から吸熱して昇温される。この昇温された冷水は、空調用冷温水循環ポンプ52によって空調用冷温水配管55b,55cを流れ、再び空調用利用側熱交換器28を流通する間に空調用冷媒回路5を流通する空調用冷媒と熱交換して冷却される。   In the cold / hot water circulation circuit 8 for air conditioning, the cold water radiated to the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 is circulated through the air-conditioning cold / hot water pipe 55 a by the air-conditioning cold / hot water circulation pump 52, to the indoor heat exchanger 61. Inflow. In the indoor heat exchanger 61, heat exchange is performed between the cold water in the cold / hot water circulation circuit 8 for air conditioning and the high-temperature air in the house 60, and the air in the house 60 is cooled. That is, the room in the house 60 is cooled. At this time, the cold water flowing through the indoor heat exchanger 61 is heated by absorbing heat from the air in the house 60. The raised cold water flows through the air conditioning cold / hot water pipes 55b and 55c by the air conditioning cold / hot water circulation pump 52, and again flows through the air conditioning refrigerant circuit 5 while flowing through the air conditioning use-side heat exchanger 28. It is cooled by exchanging heat with the refrigerant.

一方、給湯用冷媒回路6では、給湯用圧縮機41で圧縮され高温高圧となったガス冷媒は、給湯用利用側熱交換器42に流入する。給湯用利用側熱交換器42内を流通する高温高圧のガス冷媒は、給湯流路9内を流通する水へ放熱して凝縮し、液化する。そして、液化した高圧の液冷媒は、給湯用冷媒タンク46を流通した後に所定の開度に調整された給湯用膨張弁43で減圧、膨張し、低温低圧の気液二相冷媒となる。この気液二相冷媒は、給湯用熱源側熱交換器44を流通する間に、給湯用室外ファン45によって送られてくる大気から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、給湯用圧縮機41の吸込口41aに流入し、給湯用圧縮機41によって再び圧縮されて高温高圧のガス冷媒となる。   On the other hand, in the hot water supply refrigerant circuit 6, the gas refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 41 flows into the hot water use side heat exchanger 42. The high-temperature and high-pressure gas refrigerant that circulates in the hot water use side heat exchanger 42 dissipates heat to the water that circulates in the hot water supply passage 9 and condenses and liquefies. The liquefied high-pressure liquid refrigerant is decompressed and expanded by the hot-water supply expansion valve 43 adjusted to a predetermined opening after flowing through the hot-water supply refrigerant tank 46 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. While flowing through the hot water supply heat source side heat exchanger 44, the gas-liquid two-phase refrigerant absorbs heat from the atmosphere sent by the hot water supply outdoor fan 45 and evaporates to become a low-pressure gas refrigerant. This low-pressure gas refrigerant flows into the suction port 41a of the hot water supply compressor 41 and is compressed again by the hot water supply compressor 41 to become a high-temperature and high-pressure gas refrigerant.

給湯流路9では、吸水口78に流入した水は、給湯用配管72内を流通して給湯用利用側熱交換器42に導かれる。給湯用利用側熱交換器42に流入した水は、給湯用利用側熱交換器42で給湯用冷媒回路6を流通する給湯用冷媒から吸熱して、高温の水(湯)となる。この湯は、給湯用配管73を流通して貯湯タンク70に貯湯され、利用者の要求に応じて給湯口79から給湯される。
この「冷房・給湯単独運転モード」では、開閉弁35a,35b,49b,49dが閉弁し、中間熱交換器23に冷媒(空調用冷媒、給湯用冷媒)が流入する流路が閉鎖され、空調用冷媒と給湯用冷媒の間で熱交換は行われない。
In the hot water supply channel 9, the water flowing into the water inlet 78 flows through the hot water supply pipe 72 and is guided to the hot water use side heat exchanger 42. The water flowing into the hot water supply use side heat exchanger 42 absorbs heat from the hot water supply refrigerant flowing through the hot water supply refrigerant circuit 6 in the hot water supply use side heat exchanger 42 to become high-temperature water (hot water). This hot water is circulated through the hot water supply pipe 73 and stored in the hot water storage tank 70, and hot water is supplied from the hot water supply port 79 according to the user's request.
In the “cooling / hot water supply independent operation mode”, the on-off valves 35a, 35b, 49b, and 49d are closed, and the flow path through which the refrigerant (air conditioning refrigerant, hot water supply refrigerant) flows into the intermediate heat exchanger 23 is closed. Heat exchange is not performed between the air conditioning refrigerant and the hot water supply refrigerant.

次に、図4を参照して、排熱回収運転における冷媒(空調用冷媒、給湯用冷媒)の流れ及び空調用冷温水循環回路8を流通する水(熱搬送媒体)の流れについて説明する。
空調給湯システム100を排熱回収運転するとき制御装置1aは、空調給湯システム100を「排熱回収運転モード」に設定して第2状態とする。すなわち、制御装置1aは、空調用圧縮機21の吐出口21bから吐出された高温高圧のガス冷媒が中間熱交換器23に流入するとともに、空調用利用側熱交換器28を流通した空調用冷媒が空調用圧縮機21の吸込口21aに流入するように四方弁22を切り替える。
さらに、制御装置1aは、第1制御弁35c及び第2制御弁35dを閉弁するとともに空調用室外ファン25を停止し、第3制御弁49a及び第4制御弁49cを閉弁するとともに給湯用室外ファン45を停止する。
さらに、制御装置1aは、開閉弁35a,35b,49b,49dを開弁する。
このように、排熱回収運転は、第2状態で実行される。
なお、「排熱回収運転モード」では、空調熱交換器用開閉弁である開閉弁35a,35bが開弁することによって中間熱交換器23へ空調用冷媒が流入可能となり、給湯熱交換器用開閉弁である開閉弁49b,49dが開弁することによって中間熱交換器23へ給湯用冷媒が流入可能になって、中間熱交換器23を使用することができる。
さらに、空調熱交換器用制御弁である第1制御弁35c及び第2制御弁35dが閉弁することによって空調用熱源側熱交換器24への空調用冷媒の流入が遮断されて空調用熱源側熱交換器24を不使用とすることができ、給湯熱交換器用制御弁である第3制御弁49a及び第4制御弁49cが閉弁することによって給湯用熱源側熱交換器44への給湯用冷媒の流入が遮断されて給湯用熱源側熱交換器44を不使用とすることができる。
空調用熱源側熱交換器24及び給湯用熱源側熱交換器44を不使用とするとき、制御装置1aは冷媒(空調用冷媒、給湯用冷媒)を各熱交換器から回収するが、冷媒の回収についての詳細は後記する。
Next, with reference to FIG. 4, the flow of the refrigerant (air conditioning refrigerant, hot water supply refrigerant) and the flow of water (heat carrier medium) flowing through the air conditioning cold / hot water circulation circuit 8 in the exhaust heat recovery operation will be described.
When the exhaust heat recovery operation of the air conditioning hot water supply system 100 is performed, the control device 1a sets the air conditioning hot water supply system 100 to the “exhaust heat recovery operation mode” to enter the second state. That is, the control device 1a is configured such that the high-temperature and high-pressure gas refrigerant discharged from the discharge port 21b of the air-conditioning compressor 21 flows into the intermediate heat exchanger 23 and flows through the air-conditioning use-side heat exchanger 28. Switches the four-way valve 22 so as to flow into the suction port 21a of the air conditioning compressor 21.
Further, the control device 1a closes the first control valve 35c and the second control valve 35d, stops the air-conditioning outdoor fan 25, closes the third control valve 49a and the fourth control valve 49c, and supplies hot water. The outdoor fan 45 is stopped.
Further, the control device 1a opens the on-off valves 35a, 35b, 49b, 49d.
Thus, the exhaust heat recovery operation is executed in the second state.
In the “exhaust heat recovery operation mode”, the on / off valves 35a and 35b, which are air conditioner heat exchanger on / off valves, are opened so that the air conditioning refrigerant can flow into the intermediate heat exchanger 23, and the hot water supply heat exchanger on / off valve is opened. When the on-off valves 49b and 49d are opened, the hot water supply refrigerant can flow into the intermediate heat exchanger 23, and the intermediate heat exchanger 23 can be used.
Further, when the first control valve 35c and the second control valve 35d, which are control valves for the air conditioning heat exchanger, are closed, the inflow of the air conditioning refrigerant to the air conditioning heat source side heat exchanger 24 is blocked, and the air conditioning heat source side The heat exchanger 24 can be disabled, and the third control valve 49a and the fourth control valve 49c, which are control valves for the hot water supply heat exchanger, are closed to supply hot water to the heat source side heat exchanger 44 for hot water supply. The inflow of the refrigerant is blocked, and the hot water supply heat source side heat exchanger 44 can be made unusable.
When the air-conditioning heat source side heat exchanger 24 and the hot water supply heat source side heat exchanger 44 are not used, the control device 1a collects the refrigerant (air conditioning refrigerant, hot water supply refrigerant) from each heat exchanger. Details on the collection will be described later.

空調用圧縮機21から吐出された高温高圧のガス冷媒は中間熱交換器23に流入し、低温の給湯用冷媒へ放熱して凝縮して液化する。この高圧の液冷媒は、空調用タンク26を流れた後に所定の開度で開弁している空調用膨張弁27で減圧、膨張し、低温低圧の気液二相冷媒となり、空調用利用側熱交換器28に流入する。空調用利用側熱交換器28内を流れる気液二相冷媒は、空調用冷温水循環回路8を流通する相対的に高温の冷水から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は四方弁22を経由して空調用圧縮機21の吸込口21aに流入し、空調用圧縮機21によって再度圧縮されて高温高圧のガス冷媒となる。   The high-temperature and high-pressure gas refrigerant discharged from the air conditioning compressor 21 flows into the intermediate heat exchanger 23, dissipates heat to the low-temperature hot water supply refrigerant, and is condensed and liquefied. This high-pressure liquid refrigerant is decompressed and expanded by an air-conditioning expansion valve 27 that is opened at a predetermined opening after flowing through the air-conditioning tank 26 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. It flows into the heat exchanger 28. The gas-liquid two-phase refrigerant flowing in the air-conditioning use-side heat exchanger 28 absorbs heat from the relatively high-temperature cold water flowing through the air-conditioning cold / hot water circulation circuit 8 and evaporates to become a low-pressure gas refrigerant. This low-pressure gas refrigerant flows into the suction port 21a of the air-conditioning compressor 21 via the four-way valve 22, and is compressed again by the air-conditioning compressor 21 to become a high-temperature and high-pressure gas refrigerant.

空調用冷温水循環回路8では、空調用利用側熱交換器28を流れる空調用冷媒に放熱した冷水が空調用冷温水循環ポンプ52によって空調用冷温水配管55aを流通し、室内熱交換器61に流入する。室内熱交換器61では、空調用冷温水循環回路8内の冷水と住宅60の室内の高温の空気とで熱交換が行われ、住宅60の空気が冷却される。つまり、住宅60の室内が冷房される。このとき、室内熱交換器61を流れる冷水は、住宅60の室内の空気から吸熱して昇温する。この昇温された冷水は空調用冷温水ポンプ52によって空調用冷温水配管55b,55cを流通し、再度、空調用利用側熱交換器28で空調用冷媒に放熱して冷却される。   In the cold / hot water circulation circuit 8 for air conditioning, the cold water radiated to the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 is circulated through the air-conditioning cold / hot water pipe 55 a by the air-conditioning cold / hot water circulation pump 52 and flows into the indoor heat exchanger 61. To do. In the indoor heat exchanger 61, heat is exchanged between the cold water in the cold / hot water circulation circuit 8 for air conditioning and the hot air in the room of the house 60, and the air in the house 60 is cooled. That is, the room of the house 60 is cooled. At this time, the cold water flowing through the indoor heat exchanger 61 absorbs heat from the indoor air of the house 60 and rises in temperature. The heated cold water flows through the air conditioning cold / hot water pipes 55b and 55c by the air conditioning cold / hot water pump 52, and is again radiated to the air conditioning refrigerant by the air conditioning use side heat exchanger 28 and cooled.

給湯用冷媒回路6では、給湯用圧縮機41で圧縮され高温高圧となったガス冷媒が給湯用利用側熱交換器42に流入する。給湯用利用側熱交換器42内を流れる高温高圧のガス冷媒は、給湯流路9内を流れる水に放熱して凝縮し、液化する。そして、液化した高圧の液冷媒は、給湯用冷媒タンク46を流れた後に所定の開度で開弁している給湯用膨張弁43で減圧、膨張して低温低圧の気液二相冷媒となる。この気液二相冷媒は、中間熱交換器23を流れる間に、中間熱交換器23を流れる高温の空調用冷媒から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、給湯用圧縮機41の吸込口41aに流入し、給湯用圧縮機41によって再度圧縮されて高温高圧のガス冷媒となる。   In the hot water supply refrigerant circuit 6, the gas refrigerant compressed by the hot water supply compressor 41 and having a high temperature and high pressure flows into the hot water supply use side heat exchanger 42. The high-temperature and high-pressure gas refrigerant flowing in the hot water use side heat exchanger 42 dissipates heat to the water flowing in the hot water supply passage 9 and condenses and liquefies. The liquefied high-pressure liquid refrigerant flows through the hot water supply refrigerant tank 46, and then is decompressed and expanded by the hot water supply expansion valve 43 opened at a predetermined opening degree to become a low-temperature low-pressure gas-liquid two-phase refrigerant. . While flowing through the intermediate heat exchanger 23, the gas-liquid two-phase refrigerant absorbs heat from the high-temperature air-conditioning refrigerant flowing through the intermediate heat exchanger 23 and evaporates to become a low-pressure gas refrigerant. This low-pressure gas refrigerant flows into the suction port 41a of the hot water supply compressor 41 and is compressed again by the hot water supply compressor 41 to become a high-temperature high-pressure gas refrigerant.

給湯流路9では、給水口78に流入した水が給湯用配管72内を流通して給湯用利用側熱交換器42に流入する。そして、給湯用利用側熱交換器42で、給湯用冷媒回路6を流通する給湯用冷媒から吸熱して、高温の水(湯)となる。この湯は、給湯用配管73を流通して貯湯タンク70に貯湯され、利用者の要求に応じて給湯口79から給湯される。   In the hot water supply passage 9, the water flowing into the water supply port 78 flows through the hot water supply pipe 72 and flows into the hot water use side heat exchanger 42. Then, the hot water supply side heat exchanger 42 absorbs heat from the hot water supply refrigerant flowing through the hot water supply refrigerant circuit 6 and becomes high-temperature water (hot water). This hot water is circulated through the hot water supply pipe 73 and stored in the hot water storage tank 70, and hot water is supplied from the hot water supply port 79 according to the user's request.

以上のように、本実施形態に係る制御装置1aは、冷房・給湯単独運転と排熱回収運転を適宜切り替え可能に構成される。
なお、本実施形態において、制御装置1aは、給湯サイクルでの給湯運転と、空調サイクルでの冷房運転と、を同時に実行する場合、給湯用配管72を流通する水が必要とする熱量(この熱量は給湯用冷媒回路6の吸熱量に相当し、以下、給湯吸熱量と称する)と、空調用冷媒回路5を流通する空調用冷媒からの放熱量(この熱量は空調用冷媒回路5の放熱量に相当し、以下、空調放熱量と称する)と、が等しいとき排熱回収運転を実行し、給湯吸熱量と空調放熱量が等しくないとき冷房・給湯単独運転を実行する。
換言すると、本実施形態に係る制御装置1aは、給湯吸熱量と空調放熱量の大きさを所定の条件として、排熱回収運転と冷房・給湯単独運転を切り替える。
As described above, the control device 1a according to the present embodiment is configured to be able to appropriately switch between the cooling / hot water supply single operation and the exhaust heat recovery operation.
In the present embodiment, when the controller 1a performs the hot water supply operation in the hot water supply cycle and the cooling operation in the air conditioning cycle at the same time, the amount of heat required for the water flowing through the hot water supply pipe 72 (this heat amount). Corresponds to the amount of heat absorbed by the hot water supply refrigerant circuit 6 and is hereinafter referred to as hot water supply heat absorption amount) and the amount of heat released from the air conditioning refrigerant flowing through the air conditioning refrigerant circuit 5 (this amount of heat is the amount of heat released from the air conditioning refrigerant circuit 5). (Hereinafter referred to as air conditioning heat radiation amount), the exhaust heat recovery operation is executed, and when the hot water supply heat absorption amount and the air conditioning heat radiation amount are not equal, the cooling / hot water single operation is executed.
In other words, the control device 1a according to the present embodiment switches between the exhaust heat recovery operation and the cooling / hot water supply single operation with the hot water heat absorption amount and the air conditioning heat radiation amount as predetermined conditions.

そして、冷房・給湯単独運転のとき、給湯用冷媒回路6の給湯用冷媒は、給湯用熱源側熱交換器44のみを流通し、排熱回収運転のとき、給湯用冷媒回路6の給湯用冷媒は、中間熱交換器23のみを流通する。つまり、冷房・給湯単独運転時、給湯用冷媒は中間熱交換器23を流通せず、排熱回収運転時、給湯用冷媒は給湯用熱源側熱交換器44を流通しない。したがって、給湯用冷媒回路6においては、冷房・給湯単独運転時は中間熱交換器23を流通する流量に相当する給湯用冷媒が余剰になり、排熱回収運転時は給湯用熱源側熱交換器44を流通する流量に相当する給湯用冷媒が余剰になる。
同様に、空調用冷媒回路5においては、冷房・給湯単独運転時は中間熱交換器23を流通する流量に相当する空調用冷媒が余剰になり、排熱回収運転時は空調用熱源側熱交換器24を流通する流量に相当する空調用冷媒が余剰になる。
In the cooling / hot water supply single operation, the hot water supply refrigerant in the hot water supply refrigerant circuit 6 flows only through the hot water supply heat source side heat exchanger 44, and in the exhaust heat recovery operation, the hot water supply refrigerant in the hot water supply refrigerant circuit 6 is used. Circulates only the intermediate heat exchanger 23. That is, during the cooling / hot water supply single operation, the hot water supply refrigerant does not flow through the intermediate heat exchanger 23, and during the exhaust heat recovery operation, the hot water supply refrigerant does not flow through the hot water supply heat source side heat exchanger 44. Accordingly, in the hot water supply refrigerant circuit 6, the hot water supply refrigerant corresponding to the flow rate flowing through the intermediate heat exchanger 23 becomes excessive during the cooling / hot water supply independent operation, and during the exhaust heat recovery operation, the hot water supply heat source side heat exchanger is used. The hot water supply refrigerant corresponding to the flow rate flowing through 44 becomes redundant.
Similarly, in the air-conditioning refrigerant circuit 5, the air-conditioning refrigerant corresponding to the flow rate through the intermediate heat exchanger 23 becomes excessive during the cooling / hot water supply single operation, and the air-conditioning heat source side heat exchange during the exhaust heat recovery operation. The air-conditioning refrigerant corresponding to the flow rate flowing through the vessel 24 becomes redundant.

そこで、冷房・給湯単独運転から排熱回収運転に切り替わるとき、冷房・給湯単独運転時に給湯用熱源側熱交換器44を流通する給湯用冷媒を一時回収し、回収した給湯用冷媒を排熱回収運転時に中間熱交換器23に流通させることによって、給湯用冷媒回路6における給湯用冷媒の封入量を適正な値にして運転することができる。
同様に、冷房・給湯単独運転から排熱回収運転に切り替わるとき、冷房・給湯単独運転時に空調用熱源側熱交換器24を流通する空調用冷媒を一時回収し、回収した空調用冷媒を、排熱回収運転時に中間熱交換器23に流通させることによって、空調用冷媒回路5における空調用冷媒の封入量を適正な値にして運転することができる。
この場合、排熱回収運転から冷房・給湯単独運転に切り替わるときは、排熱回収運転時に中間熱交換器23を流通する給湯用冷媒を一時回収し、回収した給湯用冷媒を冷房・給湯単独運転時に給湯用熱源側熱交換器44に流通させるとともに、排熱回収運転時に中間熱交換器23を流通する空調用冷媒を一時回収し、回収した空調用冷媒を冷房・給湯単独運転時に空調用熱源側熱交換器24に流通させる構成とすればよい。
Therefore, when the cooling / hot water supply single operation is switched to the exhaust heat recovery operation, the hot water supply refrigerant circulating through the hot water supply heat source side heat exchanger 44 during the cooling / hot water supply single operation is temporarily recovered, and the recovered hot water supply refrigerant is exhausted. By circulating the heat to the intermediate heat exchanger 23 during operation, the operation can be performed with an appropriate amount of the hot water supply refrigerant in the hot water supply refrigerant circuit 6.
Similarly, when the cooling / hot water supply single operation is switched to the exhaust heat recovery operation, the air conditioning refrigerant circulating through the air-conditioning heat source side heat exchanger 24 during the cooling / hot water supply single operation is temporarily recovered, and the recovered air conditioning refrigerant is discharged. By circulating it through the intermediate heat exchanger 23 during the heat recovery operation, the air conditioning refrigerant circuit 5 can be operated with an appropriate amount of the air conditioning refrigerant enclosed in the air conditioning refrigerant circuit 5.
In this case, when switching from the exhaust heat recovery operation to the cooling / hot water single operation, the hot water supply refrigerant flowing through the intermediate heat exchanger 23 is temporarily recovered during the exhaust heat recovery operation, and the recovered hot water supply refrigerant is used for the cooling / hot water single operation. In some cases, the hot air supply heat source side heat exchanger 44 is circulated, the air conditioning refrigerant flowing through the intermediate heat exchanger 23 is temporarily recovered during the exhaust heat recovery operation, and the recovered air conditioning refrigerant is used as the air conditioning heat source during the cooling / hot water supply single operation. What is necessary is just to set it as the structure distribute | circulated to the side heat exchanger 24. FIG.

図5〜8を参照して、本実施形態に係る制御装置1aが、空調給湯システム100の冷房・給湯単独運転と排熱回収運転を切り替えるときの手順を説明する(適宜図1〜4参照)。
制御装置1aは、例えば、利用者が操作するリモコン(図示せず)からの指令信号によって、給湯運転時に冷房運転を開始すると、図5に示すように、冷房・給湯単独運転を実行する。制御装置1aは、冷房・給湯単独運転をスタートすると、中間熱交換器23の出入口(冷房時空調用冷媒入口23a、冷房時空調用冷媒出口23b、給湯用冷媒入口23c、給湯用冷媒出口23d)に配設される開閉弁35a,35b,49b,49dの全てを閉弁し、さらに、空調用熱源側熱交換器24の出入口(冷房時空調用冷媒入口24a、冷房時空調用冷媒出口24b)に配設される第1制御弁35c及び第2制御弁35d、給湯用熱源側熱交換器44の出入口(給湯用冷媒入口44a、給湯用冷媒出口44b)に配設される第3制御弁49a及び第4制御弁49cを開弁する。また、空調用圧縮機21の吐出口21bから吐出された空調用冷媒が空調用熱源側熱交換器24に流入するとともに、空調用利用側熱交換器28を流通した空調用冷媒が空調用圧縮機21の吸込口21aに流入するように四方弁22を切り替える(ステップS1)。そして、各種データの受信処理を行う(ステップS2)。具体的に、制御装置1aは、給湯サイクルにおける目標湯温(沸き上げ温度)、目標湯量(流量)、及び給水口78から給水される水の水温(給水温度)を示すデータを受信する。また、空調サイクルにおける目標温度(設定室温)、目標風量、及び室内温度を示すデータを受信する。
給湯サイクルの目標湯温及び目標湯量を示すデータは、利用者が操作するリモコンから制御装置1aに入力されるデータであり、給水温度を示すデータは温度センサTH1から入力されるデータである。
また、空調サイクルの目標温度及び目標風量を示すデータは、利用者が操作するリモコンから制御装置1aに入力されるデータであり、室内温度を示すデータは温度センサTH20から入力されるデータである。
With reference to FIGS. 5-8, the procedure when the control apparatus 1a which concerns on this embodiment switches the air_conditioning | cooling hot-water supply system 100 cooling / hot-water supply independent operation and waste heat recovery operation is demonstrated (refer FIGS. 1-4 suitably). .
For example, when a cooling operation is started during a hot water supply operation by a command signal from a remote controller (not shown) operated by a user, the control device 1a performs a cooling / hot water supply single operation as shown in FIG. When the control device 1a starts the cooling / hot water single operation, the inlet / outlet of the intermediate heat exchanger 23 (cooling air conditioning refrigerant inlet 23a, cooling air conditioning refrigerant outlet 23b, hot water supply refrigerant inlet 23c, hot water supply refrigerant outlet 23d). All of the on-off valves 35a, 35b, 49b, 49d disposed in the valve are closed, and the inlet / outlet of the heat source side heat exchanger 24 for air conditioning (cooling air conditioning refrigerant inlet 24a, cooling air conditioning refrigerant outlet 24b) The first control valve 35c and the second control valve 35d, and the third control valve 49a disposed at the inlet / outlet of the hot water supply heat source side heat exchanger 44 (hot water supply refrigerant inlet 44a, hot water supply refrigerant outlet 44b). The fourth control valve 49c is opened. In addition, the air-conditioning refrigerant discharged from the discharge port 21b of the air-conditioning compressor 21 flows into the air-conditioning heat source side heat exchanger 24, and the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 is compressed by the air-conditioning. The four-way valve 22 is switched so as to flow into the suction port 21a of the machine 21 (step S1). Then, various data reception processing is performed (step S2). Specifically, the control device 1a receives data indicating the target hot water temperature (boiling temperature), the target hot water amount (flow rate), and the water temperature (water supply temperature) of water supplied from the water supply port 78 in the hot water supply cycle. In addition, data indicating the target temperature (set room temperature), the target air volume, and the room temperature in the air conditioning cycle is received.
Data indicating the target hot water temperature and target hot water volume of the hot water supply cycle is data input to the control device 1a from a remote controller operated by the user, and data indicating the hot water temperature is data input from the temperature sensor TH1.
The data indicating the target temperature and target air volume of the air conditioning cycle is data input to the control device 1a from the remote controller operated by the user, and the data indicating the room temperature is data input from the temperature sensor TH20.

制御装置1aは、ステップS2で受信した各データに基づいた演算処理を実行する(ステップS3)。具体的に制御装置1aは、給湯サイクルにおける目標給湯能力「Qh」、給湯用圧縮機41の目標回転速度、給湯用圧縮機41の目標吐出温度「Td」、及び給湯用圧縮機41の入力「Whcomp」を演算する。
さらに、制御装置1aは、空調サイクルにおける目標空調能力「Qc」、空調用圧縮機21の目標回転速度、空調用冷媒の目標蒸発温度「Te」、及び空調用圧縮機21の入力「Wccomp」を演算する。
さらに、制御装置1aは、給湯サイクルの目標給湯能力「Qh」と給湯用圧縮機41の入力「Whcomp」との差から給湯吸熱量を演算するとともに、空調サイクルの目標空調能力「Qc」と空調用圧縮機21の入力「Wccomp」との和から空調放熱量を演算する(ステップS4)。
The control device 1a executes arithmetic processing based on each data received in step S2 (step S3). Specifically, the control device 1a sets the target hot water supply capacity “Qh” in the hot water supply cycle, the target rotation speed of the hot water supply compressor 41, the target discharge temperature “Td” of the hot water supply compressor 41, and the input “ Whcomp "is calculated.
Further, the control device 1a sets the target air conditioning capacity “Qc” in the air conditioning cycle, the target rotational speed of the air conditioning compressor 21, the target evaporation temperature “Te” of the air conditioning refrigerant, and the input “Wccomp” of the air conditioning compressor 21. Calculate.
Further, the control device 1a calculates the amount of heat absorbed by the hot water supply from the difference between the target hot water supply capacity “Qh” of the hot water supply cycle and the input “Whcomp” of the hot water supply compressor 41, and the target air conditioning capacity “Qc” of the air conditioning cycle and the air conditioning. The air conditioning heat radiation amount is calculated from the sum of the input “Wccomp” of the compressor 21 (step S4).

そして、制御装置1aは、ステップS3での演算結果に従って給湯サイクル及び空調サイクルを運転する。具体的に制御装置1aは、給湯サイクルにおいて、ステップS3で演算した目標回転速度で給湯用圧縮機41を運転し、空調サイクルにおいて、ステップS3で演算した目標回転速度で空調用圧縮機21を運転する。さらに、制御装置1aは、給湯サイクルにおける給湯用冷媒の吐出温度が目標吐出温度「Td」となるように給湯用膨張弁43の弁開度と給湯用室外ファン45の回転速度を設定し、空調サイクルにおける空調用冷媒の蒸発温度が目標蒸発温度「Te」となるように空調用膨張弁27の弁開度と空調用室外ファン25の回転速度を設定する(ステップS5)。
例えば、目標吐出温度と給湯用膨張弁43の弁開度と給湯用室外ファン45の回転速度の関係を示すマップを予め決定し、制御装置1aが、演算した目標吐出温度「Td」に基づいて当該マップを参照することによって給湯用膨張弁43の弁開度と給湯用室外ファン45の回転速度を設定する構成とすればよい。
また、目標蒸発温度と空調用膨張弁27の弁開度と空調用室外ファン25の回転速度の関係を示すマップを予め決定し、制御装置1aが、演算した目標蒸発温度「Te」に基づいて当該マップを参照することによって空調用膨張弁27の弁開度と空調用室外ファン25の回転速度を設定する構成とすればよい。
And control device 1a operates a hot-water supply cycle and an air-conditioning cycle according to a calculation result in Step S3. Specifically, the control device 1a operates the hot water supply compressor 41 at the target rotational speed calculated in step S3 in the hot water supply cycle, and operates the air conditioning compressor 21 at the target rotational speed calculated in step S3 in the air conditioning cycle. To do. Further, the control device 1a sets the valve opening degree of the hot water supply expansion valve 43 and the rotation speed of the hot water supply outdoor fan 45 so that the discharge temperature of the hot water supply refrigerant in the hot water supply cycle becomes the target discharge temperature “Td”, and air conditioning. The valve opening degree of the air conditioning expansion valve 27 and the rotational speed of the air conditioning outdoor fan 25 are set so that the evaporation temperature of the air conditioning refrigerant in the cycle becomes the target evaporation temperature “Te” (step S5).
For example, a map indicating the relationship between the target discharge temperature, the valve opening degree of the hot water supply expansion valve 43 and the rotational speed of the hot water supply outdoor fan 45 is determined in advance, and the control device 1a is based on the calculated target discharge temperature “Td”. The valve opening degree of the hot water supply expansion valve 43 and the rotational speed of the hot water supply outdoor fan 45 may be set by referring to the map.
Further, a map indicating the relationship between the target evaporation temperature, the valve opening degree of the air conditioning expansion valve 27 and the rotational speed of the air conditioning outdoor fan 25 is determined in advance, and the control device 1a is based on the calculated target evaporation temperature “Te”. By referring to the map, the valve opening degree of the air conditioning expansion valve 27 and the rotational speed of the air conditioning outdoor fan 25 may be set.

そして、制御装置1aは、ステップS4で演算した給湯吸熱量と空調放熱量を比較し(ステップS6)、給湯吸熱量と空調放熱量が等しいか否かを判定する。なお、ステップS6において制御装置1aは、給湯吸熱量と空調放熱量の差が予め設定される範囲内にあるときに、給湯吸熱量と空調放熱量が等しいと判定する。
そして、給湯吸熱量と空調放熱量が等しくないときは(ステップS6→No)、手順をステップS2に戻して、冷房・給湯単独運転を継続する。
一方、給湯吸熱量と空調放熱量が等しいとき(ステップS6→Yes)、制御装置1aは排熱回収運転に切り替える。
このとき、本実施形態の制御装置1aは、手順をステップS7に進めて冷媒回収運転(第1冷媒回収運転)を実行した後に、空調給湯システム100を排熱回収運転に切り替えるように構成される。
ここでの冷媒回収運転(第1冷媒回収運転)は、空調給湯システム100が「冷房・給湯単独運転モード」に設定されて、第1状態で冷房・給湯単独運転(第1運転)されるときに、空調用熱源側熱交換器24を流通する空調用冷媒を一時回収し、回収した空調用冷媒を中間熱交換器23に流通させるための空調用冷媒回収運転(第1空調用冷媒回収運転)と、冷房・給湯単独運転時に給湯用熱源側熱交換器44を流通する給湯用冷媒を一時回収し、回収した給湯用冷媒を中間熱交換器23に流通させるための給湯用冷媒回収運転(第1給湯用冷媒回収運転)と、を含んでいる。図6を参照して、第1冷媒回収運転(第1空調用冷媒回収運転、第1給湯用冷媒回収運転)の手順を説明する。
なお、第1冷媒回収運転時は、空調サイクルにおける第1空調用冷媒回収運転と、給湯サイクルにおける第1給湯用冷媒回収運転が同時に実行され、第1空調用冷媒回収運転と第1給湯用冷媒回収運転が共に終了したときに、制御装置1aは、第1冷媒回収運転が終了したとする。
Then, the control device 1a compares the hot water supply heat absorption amount calculated in step S4 with the air conditioning heat dissipation amount (step S6), and determines whether the hot water supply heat absorption amount and the air conditioning heat dissipation amount are equal. In step S6, control device 1a determines that the hot water supply heat absorption amount and the air conditioning heat radiation amount are equal when the difference between the hot water heat absorption amount and the air conditioning heat radiation amount is within a preset range.
When the hot water supply heat absorption amount and the air conditioning heat dissipation amount are not equal (step S6 → No), the procedure is returned to step S2, and the cooling / hot water supply single operation is continued.
On the other hand, when the hot water supply heat absorption amount is equal to the air conditioning heat dissipation amount (step S6 → Yes), the control device 1a switches to the exhaust heat recovery operation.
At this time, the control device 1a of the present embodiment is configured to switch the air conditioning hot water supply system 100 to the exhaust heat recovery operation after the procedure proceeds to step S7 and the refrigerant recovery operation (first refrigerant recovery operation) is executed. .
Here, the refrigerant recovery operation (first refrigerant recovery operation) is performed when the air conditioning and hot water supply system 100 is set to the “cooling / hot water supply single operation mode” and the cooling / hot water supply single operation (first operation) is performed in the first state. The air-conditioning refrigerant recovery operation (first air-conditioning refrigerant recovery operation) for temporarily recovering the air-conditioning refrigerant flowing through the air-conditioning heat source side heat exchanger 24 and distributing the recovered air-conditioning refrigerant to the intermediate heat exchanger 23 ) And a hot water supply refrigerant recovery operation for temporarily recovering the hot water supply refrigerant flowing through the hot water supply heat source side heat exchanger 44 during the cooling / hot water supply single operation and distributing the recovered hot water supply refrigerant to the intermediate heat exchanger 23 ( 1st hot water supply refrigerant recovery operation). The procedure of the first refrigerant recovery operation (first air conditioning refrigerant recovery operation, first hot water supply refrigerant recovery operation) will be described with reference to FIG.
During the first refrigerant recovery operation, the first air-conditioning refrigerant recovery operation in the air-conditioning cycle and the first hot-water supply refrigerant recovery operation in the hot-water supply cycle are executed simultaneously, and the first air-conditioning refrigerant recovery operation and the first hot-water supply refrigerant It is assumed that the controller 1a finishes the first refrigerant recovery operation when the recovery operation ends.

図6の(a)は、第1空調用冷媒回収運転の手順を示している。すなわち、図5のステップS7での手順のうち、空調サイクルにおける具体的な手順を示している。第1空調用冷媒回収運転を開始すると、制御装置1aは、空調用膨張弁27を閉弁し、中間熱交換器23の冷房時空調用冷媒入口23aに配設される開閉弁35aを開弁する。さらに、制御装置1aは、中間熱交換器23又は空調用熱源側熱交換器24を流通した空調用冷媒が空調用圧縮機21の吸込口21aに流入するように四方弁22を切り替える(ステップS701a)。このとき、空調用熱源側熱交換器24の冷房時空調用冷媒入口24aに配設される第1制御弁35c及び冷房時空調用冷媒出口24bに配設される第2制御弁35dは開弁した状態にある。したがって、空調用熱源側熱交換器24は、液体の空調用冷媒が封じられる状態(液封)になることがない。また、空調用膨張弁27の閉弁によって、空調用熱源側熱交換器24の冷房時空調用冷媒出口24b及び中間熱交換器23の冷房時空調用冷媒出口23bへの空調用冷媒の流入が遮断される。なお、ステップS701aは、制御装置1aが空調用膨張弁27の替わりに第2制御弁35dを閉弁する構成であってもよい。この構成であっても、空調用熱源側熱交換器24の冷房時空調用冷媒出口24b及び中間熱交換器23の冷房時空調用冷媒出口23bへの空調用冷媒の流入を遮断できる。
また、四方弁22の切り替えと、開閉弁35a及び第1制御弁35cの開弁によって、中間熱交換器23の冷房時空調用冷媒入口23a及び空調用熱源側熱交換器24の冷房時空調用冷媒入口24aと、空調用圧縮機21の吸込口21aとを、連通させることができ、中間熱交換器23及び空調用熱源側熱交換器24に残存する空調用冷媒を空調用圧縮機21で吸引できる。
FIG. 6A shows the procedure of the first air-conditioning refrigerant recovery operation. That is, a specific procedure in the air conditioning cycle is shown in the procedure in step S7 of FIG. When the first air-conditioning refrigerant recovery operation is started, the control device 1a closes the air-conditioning expansion valve 27 and opens the on-off valve 35a disposed at the air-conditioning refrigerant inlet 23a of the intermediate heat exchanger 23. To do. Furthermore, the control device 1a switches the four-way valve 22 so that the air-conditioning refrigerant flowing through the intermediate heat exchanger 23 or the air-conditioning heat source side heat exchanger 24 flows into the suction port 21a of the air-conditioning compressor 21 (step S701a). ). At this time, the first control valve 35c disposed at the air conditioning refrigerant inlet 24a for cooling and the second control valve 35d disposed at the air conditioning refrigerant outlet 24b of the air conditioning heat source side heat exchanger 24 are opened. Is in a state. Therefore, the air-conditioning heat source side heat exchanger 24 does not enter a state (liquid seal) in which the liquid air-conditioning refrigerant is sealed. Further, by closing the air-conditioning expansion valve 27, the air-conditioning refrigerant flows into the air-conditioning refrigerant outlet 24b of the air-conditioning heat source side heat exchanger 24 and the air-conditioning refrigerant outlet 23b of the intermediate heat exchanger 23. Blocked. Note that step S701a may be configured such that the control device 1a closes the second control valve 35d instead of the air conditioning expansion valve 27. Even with this configuration, the inflow of the air conditioning refrigerant to the cooling air conditioning refrigerant outlet 24b of the air conditioning heat source side heat exchanger 24 and the cooling air conditioning refrigerant outlet 23b of the intermediate heat exchanger 23 can be blocked.
Further, by switching the four-way valve 22 and opening the on-off valve 35a and the first control valve 35c, the air conditioning refrigerant inlet 23a of the intermediate heat exchanger 23 and the air conditioning heat source side heat exchanger 24 are used for air conditioning during cooling. The refrigerant inlet 24a and the suction port 21a of the air conditioning compressor 21 can communicate with each other, and the air conditioning refrigerant remaining in the intermediate heat exchanger 23 and the heat source side heat exchanger 24 is transferred to the air conditioning compressor 21 by the air conditioning compressor 21. Can suck.

そして、制御装置1aは空調用圧縮機21の運転(空調用冷媒の圧縮)を継続し、空調用熱源側熱交換器24の冷房時空調用冷媒入口24aの温度と、冷房時空調用冷媒出口24bの温度を演算する(ステップS702a)。
具体的に、制御装置1aは、空調用熱源側熱交換器24の冷房時空調用冷媒入口24aに備わる温度センサTH15から受信するデータに基づいて、冷房時空調用冷媒入口24aの温度を演算し、空調用熱源側熱交換器24の冷房時空調用冷媒出口24b側に備わる温度センサTH16から受信するデータに基づいて、冷房時空調用冷媒出口24bの温度を演算する。
冷房・給湯単独運転時の空調用熱源側熱交換器24において、冷房時空調用冷媒入口24aには外気温度より高温のガス冷媒が存在するため、冷房時空調用冷媒入口24aの温度は外気温度より高くなる。また冷房時空調用冷媒出口24bには大気に放熱して液化した液冷媒が存在するため、冷房時空調用冷媒出口24bの温度は外気温度に近い温度となる。このように、冷房・給湯単独運転時は、冷房時空調用冷媒入口24aと冷房時空調用冷媒出口24bに温度差が生じる。
この状態で空調用圧縮機21が運転されることによって、空調用熱源側熱交換器24内から空調用冷媒回収されると、冷房時空調用冷媒入口24aは高温の空調用冷媒が無くなり、冷房時空調用冷媒入口24aの温度は外気温度に近くなる。同様に、冷房時空調用冷媒出口24bは空調用冷媒がなくなり、冷房時空調用冷媒出口24bの温度は外気温度に近くなる。したがって、冷房時空調用冷媒入口24aと冷房時空調用冷媒出口24bの温度差が無くなる。
The control device 1a continues the operation of the air conditioning compressor 21 (compression of the air conditioning refrigerant), the temperature of the cooling air conditioning refrigerant inlet 24a of the air conditioning heat source side heat exchanger 24, and the cooling air conditioning refrigerant outlet. The temperature of 24b is calculated (step S702a).
Specifically, the control device 1a calculates the temperature of the cooling air conditioning refrigerant inlet 24a based on data received from the temperature sensor TH15 provided in the cooling air conditioning refrigerant inlet 24a of the air conditioning heat source side heat exchanger 24. Based on the data received from the temperature sensor TH16 provided on the air conditioning refrigerant outlet 24b side of the air conditioning heat source side heat exchanger 24, the temperature of the air conditioning refrigerant outlet 24b is calculated.
In the air-conditioning heat source side heat exchanger 24 during the cooling / hot water supply single operation, since the gas refrigerant having a temperature higher than the outside air temperature exists in the air-conditioning refrigerant inlet 24a during the cooling, the temperature of the air-conditioning refrigerant inlet 24a during the cooling is the outside air temperature. Get higher. In addition, since there is a liquid refrigerant that is liquefied by releasing heat to the atmosphere at the air conditioning refrigerant outlet 24b during cooling, the temperature of the air conditioning refrigerant outlet 24b during cooling is close to the outside air temperature. Thus, during cooling / hot water supply single operation, there is a temperature difference between the cooling air conditioning refrigerant inlet 24a and the cooling air conditioning refrigerant outlet 24b.
When the air-conditioning compressor 21 is operated in this state and the air-conditioning refrigerant is recovered from the air-conditioning heat source side heat exchanger 24, the air-conditioning refrigerant inlet 24a at the time of cooling loses high-temperature air-conditioning refrigerant. The temperature of the refrigerant inlet 24a for the time air conditioning is close to the outside air temperature. Similarly, the cooling air-conditioning refrigerant outlet 24b runs out of air-conditioning refrigerant, and the temperature of the cooling air-conditioning refrigerant outlet 24b becomes close to the outside air temperature. Therefore, the temperature difference between the cooling air conditioning refrigerant inlet 24a and the cooling air conditioning refrigerant outlet 24b is eliminated.

そこで、制御装置1aは、冷房時空調用冷媒入口24aと冷房時空調用冷媒出口24bの温度差が所定温度差(例えば、5℃)以下になるまで待機し(ステップS703a→No)、冷房時空調用冷媒入口24aと冷房時空調用冷媒出口24bの温度差が前記した所定温度差以下になったとき(ステップS703a→Yes)、空調用熱源側熱交換器24内から空調用冷媒が回収されたと判定し、第1空調用冷媒回収運転の終了を決定する。そして、制御装置1aは、第1制御弁35c及び第2制御弁35dを閉弁する。
ここでいう所定温度差は、空調用熱源側熱交換器24から空調用冷媒が回収されたとみなせる温度差であって前記した5℃に限定される値ではなく、空調用熱源側熱交換器24に残留した空調用冷媒の相変化に起因する温度差ではないと判断できる値であればよい。
第1制御弁35c及び第2制御弁35dの閉弁によって、空調用熱源側熱交換器24への空調用冷媒の流入が遮断された状態が維持される。
さらに、空調用圧縮機21の吐出口21bから吐出された高温高圧のガス冷媒が中間熱交換器23に流入するとともに、空調用利用側熱交換器28を流通した空調用冷媒が空調用圧縮機21の吸込口21aに流入するように四方弁22を切り替える。そして、空調用膨張弁27を開弁する(ステップS704a)。
以上のステップS701aからステップS704aの手順で、空調用冷媒回路5における空調用冷媒が空調用熱源側熱交換器24から回収される。
Therefore, the control device 1a waits until the temperature difference between the cooling air-conditioning refrigerant inlet 24a and the cooling air-conditioning refrigerant outlet 24b is equal to or lower than a predetermined temperature difference (for example, 5 ° C.) (step S703a → No). When the temperature difference between the air conditioning refrigerant inlet 24a and the cooling air conditioning refrigerant outlet 24b is equal to or less than the predetermined temperature difference (step S703a → Yes), the air conditioning refrigerant is recovered from the air conditioning heat source side heat exchanger 24. And the end of the first air-conditioning refrigerant recovery operation is determined. Then, the control device 1a closes the first control valve 35c and the second control valve 35d.
The predetermined temperature difference here is a temperature difference at which it can be considered that the air-conditioning refrigerant is recovered from the air-conditioning heat source side heat exchanger 24, and is not limited to the above-described 5 ° C., but is the air-conditioning heat source side heat exchanger 24. Any value can be used as long as it is not a temperature difference caused by the phase change of the air-conditioning refrigerant remaining in the tank.
By closing the first control valve 35c and the second control valve 35d, the state where the inflow of the air-conditioning refrigerant to the air-conditioning heat source side heat exchanger 24 is maintained is maintained.
Further, the high-temperature and high-pressure gas refrigerant discharged from the discharge port 21b of the air-conditioning compressor 21 flows into the intermediate heat exchanger 23, and the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 is the air-conditioning compressor. The four-way valve 22 is switched so as to flow into the suction port 21a. Then, the air conditioning expansion valve 27 is opened (step S704a).
The air-conditioning refrigerant in the air-conditioning refrigerant circuit 5 is recovered from the air-conditioning heat source side heat exchanger 24 by the procedure from step S701a to step S704a.

また、図6の(b)は、第1給湯用冷媒回収運転の手順を示している。すなわち、図5のステップS7での手順のうち、給湯サイクルにおける具体的な手順を示している。第1給湯用冷媒回収運転を開始すると、制御装置1aは、給湯用膨張弁43を閉弁し、中間熱交換器23の給湯用冷媒出口23dに配設される開閉弁49dを開弁する(ステップS701b)。このとき、給湯用熱源側熱交換器44の給湯用冷媒入口44aに配設される第3制御弁49a及び給湯用冷媒出口44bに配設される第4制御弁49cは開弁した状態にある。したがって、給湯用熱源側熱交換器44は、液体の給湯用冷媒が封じられる状態(液封)になることがない。また、給湯用膨張弁43の閉弁によって、給湯用熱源側熱交換器44の給湯用冷媒入口44a及び中間熱交換器23の給湯用冷媒入口23cへの給湯用冷媒の流入が遮断される。なお、ステップS701bは、制御装置1aが給湯用膨張弁43の替わりに第3制御弁49aを閉弁する構成であってもよい。この構成であっても、給湯用熱源側熱交換器44の給湯用冷媒入口44a及び中間熱交換器23の給湯用冷媒入口23cへの給湯用冷媒の流入を遮断できる。
また、開閉弁49d及び第4制御弁49cの開弁によって、中間熱交換器23の給湯用冷媒出口23d及び給湯用熱源側熱交換器44の給湯用冷媒出口44bと、給湯用圧縮機41の吸込口41aと、を連通させることができ、中間熱交換器23及び給湯用熱源側熱交換器44に残存する給湯用冷媒を給湯用圧縮機41で吸引できる。
FIG. 6B shows the procedure of the first hot water supply refrigerant recovery operation. That is, a specific procedure in the hot water supply cycle is shown in the procedure in step S7 of FIG. When the first hot water supply refrigerant recovery operation is started, the control device 1a closes the hot water supply expansion valve 43 and opens the on-off valve 49d disposed at the hot water supply refrigerant outlet 23d of the intermediate heat exchanger 23 ( Step S701b). At this time, the third control valve 49a provided at the hot water supply refrigerant inlet 44a of the hot water supply heat source side heat exchanger 44 and the fourth control valve 49c provided at the hot water supply refrigerant outlet 44b are in an opened state. . Therefore, the hot water supply heat source side heat exchanger 44 does not enter a state (liquid seal) in which the liquid hot water supply refrigerant is sealed. In addition, by closing the hot water supply expansion valve 43, the flow of hot water supply refrigerant into the hot water supply refrigerant inlet 44a of the hot water supply heat source side heat exchanger 44 and the hot water supply refrigerant inlet 23c of the intermediate heat exchanger 23 is blocked. Step S701b may be configured such that the control device 1a closes the third control valve 49a instead of the hot water supply expansion valve 43. Even with this configuration, it is possible to block the flow of the hot water supply refrigerant into the hot water supply refrigerant inlet 44 a of the hot water supply heat source side heat exchanger 44 and the hot water supply refrigerant inlet 23 c of the intermediate heat exchanger 23.
Further, by opening the on-off valve 49d and the fourth control valve 49c, the hot water supply refrigerant outlet 23d of the intermediate heat exchanger 23, the hot water supply refrigerant outlet 44b of the hot water supply heat source side heat exchanger 44, and the hot water supply compressor 41 The suction port 41 a can be communicated with, and the hot water supply refrigerant remaining in the intermediate heat exchanger 23 and the hot water supply heat source side heat exchanger 44 can be sucked by the hot water supply compressor 41.

そして、制御装置1aは給湯用圧縮機41の運転(給湯用冷媒の圧縮)を継続し、給湯用熱源側熱交換器44の給湯用冷媒入口44aの温度と、給湯用冷媒出口44bの温度を演算する(ステップS702b)。
具体的に、制御装置1aは、給湯用熱源側熱交換器44の給湯用冷媒入口44a側に備わる温度センサTH22から受信するデータに基づいて、給湯用冷媒入口44aの温度を演算し、給湯用熱源側熱交換器44の給湯用冷媒出口44bに備わる温度センサTH9から受信するデータに基づいて、給湯用冷媒出口44bの温度を演算する。
冷房・給湯単独運転時の給湯用熱源側熱交換器44において、給湯用冷媒入口44aには外気温度より低温の気液二相冷媒が存在するため、給湯用冷媒入口44aの温度は外気温度より低くなる。また給湯用冷媒出口44bには大気から吸熱して気化したガス冷媒が存在するため、給湯用冷媒出口44bの温度は外気温度に近い温度となる。このように、冷房・給湯単独運転時は、給湯用冷媒入口44aと給湯用冷媒出口44bに温度差が生じる。
この状態で給湯用圧縮機41が運転されて、給湯用熱源側熱交換器44内から給湯用冷媒が回収されると、給湯用冷媒入口44aは低温の給湯用冷媒が無くなり、給湯用冷媒入口44aの温度は外気温度に近くなる。同様に、給湯用冷媒出口44bは給湯用冷媒がなくなり、給湯用冷媒出口44bの温度は外気温度に近くなる。したがって、給湯用冷媒入口44aと給湯用冷媒出口44bの温度差が無くなる。
Then, the control device 1a continues the operation of the hot water supply compressor 41 (compression of the hot water supply refrigerant), and determines the temperature of the hot water supply refrigerant inlet 44a and the temperature of the hot water supply refrigerant outlet 44b of the hot water supply heat source side heat exchanger 44. Calculation is performed (step S702b).
Specifically, the control device 1a calculates the temperature of the hot water supply refrigerant inlet 44a based on data received from the temperature sensor TH22 provided on the hot water supply refrigerant inlet 44a side of the hot water supply heat source side heat exchanger 44, and supplies the hot water supply Based on the data received from the temperature sensor TH9 provided in the hot water supply refrigerant outlet 44b of the heat source side heat exchanger 44, the temperature of the hot water supply refrigerant outlet 44b is calculated.
In the hot water supply heat source side heat exchanger 44 during the cooling / hot water supply single operation, the hot water supply refrigerant inlet 44a includes a gas-liquid two-phase refrigerant having a temperature lower than the outside air temperature. Lower. Further, since there is a gas refrigerant that has absorbed and vaporized from the atmosphere at the hot water supply refrigerant outlet 44b, the temperature of the hot water supply refrigerant outlet 44b is close to the outside air temperature. Thus, during cooling / hot water supply single operation, a temperature difference occurs between the hot water supply refrigerant inlet 44a and the hot water supply refrigerant outlet 44b.
When the hot water supply compressor 41 is operated in this state and the hot water supply refrigerant is recovered from the hot water supply heat source side heat exchanger 44, the low temperature hot water supply refrigerant disappears in the hot water supply refrigerant inlet 44a. The temperature of 44a is close to the outside air temperature. Similarly, the hot water supply refrigerant outlet 44b runs out of hot water supply refrigerant, and the temperature of the hot water supply refrigerant outlet 44b becomes close to the outside air temperature. Therefore, the temperature difference between the hot water supply refrigerant inlet 44a and the hot water supply refrigerant outlet 44b is eliminated.

そこで、制御装置1aは、給湯用冷媒入口44aと給湯用冷媒出口44bの温度差が所定温度差(例えば、5℃)以下になるまで待機し(ステップS703b→No)、給湯用冷媒入口44aと給湯用冷媒出口44bの温度差が前記した所定温度差以下になったとき(ステップS703b→Yes)、給湯用熱源側熱交換器44内から給湯用冷媒が回収されたと判定し、第1給湯用冷媒回収運転の終了を決定する。ここでいう所定温度差は、給湯用熱源側熱交換器44から給湯用冷媒が回収されたとみなせる温度差であって前記した5℃に限定される値ではなく、給湯用熱源側熱交換器44に残留した給湯用冷媒の相変化に起因する温度差ではないと判断できる値であればよい。例えば事前の実験計測等によって予め設定される温度差であることが好ましい。そして、制御装置1aは、第3制御弁49a及び第4制御弁49cを閉弁し、さらに、給湯用膨張弁43を開弁する(ステップS704b)。
第3制御弁49a及び第4制御弁49cの閉弁によって、給湯用熱源側熱交換器44への給湯用冷媒の流入が遮断された状態が維持される。
以上のステップS701bからステップS704bの手順で、給湯用冷媒回路6における給湯用冷媒が給湯用熱源側熱交換器44から回収される。
そして制御装置1aは、第1空調用冷媒回収運転と第1給湯用冷媒回収運転がともに終了したとき、図5のステップS7に示す第1冷媒回収運転を終了して、手順を図5のステップS8に進め、排熱回収運転を実行する。
Therefore, the control device 1a waits until the temperature difference between the hot water supply refrigerant inlet 44a and the hot water supply refrigerant outlet 44b is equal to or less than a predetermined temperature difference (for example, 5 ° C.) (step S703b → No). When the temperature difference of the hot water supply refrigerant outlet 44b is equal to or smaller than the above-described predetermined temperature difference (step S703b → Yes), it is determined that the hot water supply refrigerant has been recovered from the hot water supply heat source side heat exchanger 44, and the first hot water supply The end of the refrigerant recovery operation is determined. The predetermined temperature difference here is a temperature difference that can be considered that the hot water supply refrigerant has been recovered from the hot water supply heat source side heat exchanger 44, and is not limited to the above-described 5 ° C., but is a hot water supply heat source side heat exchanger 44. Any value can be used as long as it is not a temperature difference caused by the phase change of the hot water supply refrigerant remaining in the tank. For example, the temperature difference is preferably set in advance by a prior experimental measurement or the like. Then, the control device 1a closes the third control valve 49a and the fourth control valve 49c, and further opens the hot water supply expansion valve 43 (step S704b).
By closing the third control valve 49a and the fourth control valve 49c, the state where the flow of the hot water supply refrigerant to the hot water supply heat source side heat exchanger 44 is blocked is maintained.
The hot water supply refrigerant in the hot water supply refrigerant circuit 6 is recovered from the hot water supply heat source side heat exchanger 44 by the procedure from step S701b to step S704b.
Then, when both the first air conditioning refrigerant recovery operation and the first hot water supply refrigerant recovery operation are completed, the control device 1a ends the first refrigerant recovery operation shown in step S7 of FIG. Proceeding to S8, exhaust heat recovery operation is executed.

図7を参照して、本実施形態に係る排熱回収運転の手順(図5におけるステップS8の具体的な手順)を説明する。
なお、中間熱交換器23の冷房時空調用冷媒入口23aに配設される開閉弁35a、及び冷房時空調用冷媒出口23bに配設される開閉弁35bは、第1冷媒回収運転によって開弁している。
排熱回収運転をスタートすると制御装置1aは、各種データの受信処理を行う(ステップS801)。具体的に、制御装置1aは、給湯サイクルにおける目標湯温(沸き上げ温度)、目標湯量(流量)、及び給水口78から給水される水の水温(給水温度)を示すデータを受信する。また、空調サイクルにおける目標温度(設定室温)、目標風量、及び室内温度を示すデータを受信する。この処理は、図5のステップS2と同等の処理である。
制御装置1aは、ステップS801で受信した各データに基づいた演算処理を実行する(ステップS802)。具体的に制御装置1aは、給湯サイクルにおける目標給湯能力「Qh」、給湯用圧縮機41の目標回転速度、給湯用圧縮機41の目標吐出温度「Td」、及び給湯用圧縮機41の入力「Whcomp」を演算する。
さらに、制御装置1aは、空調サイクルにおける目標空調能力「Qc」、空調用圧縮機21の目標回転速度、空調用冷媒の目標蒸発温度「Te」、及び空調用圧縮機21の入力「Wccomp」を演算する。この処理は、図5のステップS3と同等の処理である。
そして、制御装置1aは給湯用室外ファン45を停止する(ステップS803)。さらに、空調用室外ファン25を停止する(ステップS804)。
つまり、制御装置1aは、冷房運転される空調サイクルの空調用冷媒回路5を流通する空調用冷媒と給湯運転される給湯サイクルの給湯用冷媒回路6を流通する給湯用冷媒が中間熱交換器23で熱交換するように、空調給湯システム100を図2に示す「排熱回収運転モード」に設定して第2状態とする。
With reference to FIG. 7, the procedure of the exhaust heat recovery operation according to the present embodiment (the specific procedure of step S8 in FIG. 5) will be described.
The on-off valve 35a disposed at the air conditioning refrigerant inlet 23a and the on-off valve 35b disposed at the air conditioning refrigerant outlet 23b of the intermediate heat exchanger 23 are opened by the first refrigerant recovery operation. doing.
When the exhaust heat recovery operation is started, the control device 1a performs various data reception processing (step S801). Specifically, the control device 1a receives data indicating the target hot water temperature (boiling temperature), the target hot water amount (flow rate), and the water temperature (water supply temperature) of water supplied from the water supply port 78 in the hot water supply cycle. In addition, data indicating the target temperature (set room temperature), the target air volume, and the room temperature in the air conditioning cycle is received. This process is equivalent to step S2 in FIG.
The control device 1a executes arithmetic processing based on each data received in step S801 (step S802). Specifically, the control device 1a sets the target hot water supply capacity “Qh” in the hot water supply cycle, the target rotation speed of the hot water supply compressor 41, the target discharge temperature “Td” of the hot water supply compressor 41, and the input “ Whcomp "is calculated.
Further, the control device 1a sets the target air conditioning capacity “Qc” in the air conditioning cycle, the target rotational speed of the air conditioning compressor 21, the target evaporation temperature “Te” of the air conditioning refrigerant, and the input “Wccomp” of the air conditioning compressor 21. Calculate. This process is equivalent to step S3 in FIG.
And the control apparatus 1a stops the hot water supply outdoor fan 45 (step S803). Further, the air conditioning outdoor fan 25 is stopped (step S804).
That is, in the control device 1a, the intermediate heat exchanger 23 includes an air-conditioning refrigerant that flows through the air-conditioning refrigerant circuit 5 of the air-conditioning cycle that is operated for cooling and a hot-water supply refrigerant that flows through the hot-water supply refrigerant circuit 6 of the hot-water supply cycle that is operated for hot water supply. The air conditioning and hot water supply system 100 is set to the “waste heat recovery operation mode” shown in FIG.

そして、制御装置1aは、ステップS802での演算結果に従って給湯サイクル及び空調サイクルを運転する。具体的に制御装置1aは、給湯サイクルにおいて、ステップS802で演算した目標回転速度で給湯用圧縮機41を運転し、さらに、給湯サイクルにおける給湯用冷媒の吐出温度がステップS802で演算した目標吐出温度「Td」となるように給湯用膨張弁43の弁開度を設定する(ステップS805)。
例えば、目標吐出温度と給湯用膨張弁43の弁開度の関係を示すマップを予め決定し、制御装置1aが、演算した目標吐出温度「Td」に基づいて当該マップを参照することによって給湯用膨張弁43の弁開度を設定する構成とすればよい。
そして、制御装置1aは、空調サイクルにおいて、演算した目標回転速度で空調用圧縮機21を運転し、さらに、空調サイクルにおける空調用冷媒の蒸発温度がステップS802で演算した目標蒸発温度「Te」となるように空調用膨張弁27の弁開度を設定する(ステップS806)。
例えば、目標蒸発温度と空調用膨張弁27の弁開度の関係を示すマップを予め決定し、制御装置1aが、演算した目標蒸発温度「Te」に基づいて当該マップを参照することによって空調用膨張弁27の弁開度を設定する構成とすればよい。
And control device 1a operates a hot-water supply cycle and an air-conditioning cycle according to a calculation result in Step S802. Specifically, the control device 1a operates the hot water supply compressor 41 at the target rotational speed calculated in step S802 in the hot water supply cycle, and the discharge temperature of the hot water supply refrigerant in the hot water supply cycle is calculated in step S802. The valve opening degree of the hot water supply expansion valve 43 is set to be “Td” (step S805).
For example, a map indicating the relationship between the target discharge temperature and the valve opening of the hot water supply expansion valve 43 is determined in advance, and the controller 1a refers to the map based on the calculated target discharge temperature “Td”. What is necessary is just to set it as the structure which sets the valve opening degree of the expansion valve 43. FIG.
Then, the control device 1a operates the air conditioning compressor 21 at the calculated target rotational speed in the air conditioning cycle, and the evaporation temperature of the air conditioning refrigerant in the air conditioning cycle is equal to the target evaporation temperature “Te” calculated in step S802. The valve opening degree of the air conditioning expansion valve 27 is set so as to be (step S806).
For example, a map indicating the relationship between the target evaporation temperature and the valve opening degree of the air conditioning expansion valve 27 is determined in advance, and the control device 1a refers to the calculated map based on the calculated target evaporation temperature “Te”. What is necessary is just to set it as the structure which sets the valve opening degree of the expansion valve 27. FIG.

さらに、制御装置1aは、図5に示すステップS4と同じ手順で給湯吸熱量と空調放熱量を演算し(ステップS807)、給湯吸熱量と空調放熱量が等しいか否かを判定する(ステップS808)。なお、ステップS808において制御装置1aは、給湯吸熱量と空調放熱量の差が予め設定される範囲内にあるときに、給湯吸熱量と空調放熱量が等しいと判定する。
給湯吸熱量と空調放熱量が等しい間(ステップS808→Yes)、制御装置1aは手順をステップS801に戻して排熱回収運転を継続する。この構成によって、例えば、空調用室外ファン25及び給湯用室外ファン45の動力を削減することができ、空調給湯システム100を省エネルギで運転できる。
一方、給湯吸熱量と空調放熱量が等しくない場合(ステップS808→No)、制御装置1aは冷房・給湯単独運転に切り替える。このとき制御装置1aは、手順をステップS809に進め、空調用冷媒回路5における中間熱交換器23の空調用冷媒と、給湯用冷媒回路6における中間熱交換器23の給湯用冷媒を回収するために冷媒回収運転(第2冷媒回収運転)を実行する。
ここでの冷媒回収運転(第2冷媒回収運転)は、空調給湯システム100が「排熱回収運転モード」に設定されて、第2状態で排熱回収運転(第2運転)されるときに中間熱交換器23を流通する空調用冷媒を一時回収し、回収した空調用冷媒を空調用熱源側熱交換器24に流通させるための第2空調用冷媒回収運転と、排熱回収運転されるときに中間熱交換器23を流通する給湯用冷媒を一時回収し、回収した給湯用冷媒を給湯用熱源側熱交換器44に流通させるための第2給湯用冷媒回収運転と、を含んでいる。図8を参照して、第2冷媒回収運転(第2空調用冷媒回収運転、第2給湯用冷媒回収運転)の手順を説明する。
なお、第2冷媒回収運転時は、空調サイクルにおける第2空調用冷媒回収運転と、給湯サイクルにおける第2給湯用冷媒回収運転が同時に実行され、第2空調用冷媒回収運転と第2給湯用冷媒回収運転が共に終了したときに、制御装置1aは、第2冷媒回収運転が終了したとする。
Furthermore, the control device 1a calculates the hot water supply heat absorption amount and the air conditioning heat dissipation amount in the same procedure as step S4 shown in FIG. 5 (step S807), and determines whether the hot water supply heat absorption amount and the air conditioning heat dissipation amount are equal (step S808). ). In step S808, the control device 1a determines that the hot water supply heat absorption amount and the air conditioning heat radiation amount are equal when the difference between the hot water heat absorption amount and the air conditioning heat radiation amount is within a preset range.
While the hot water supply heat absorption amount is equal to the air conditioning heat dissipation amount (step S808 → Yes), the control device 1a returns the procedure to step S801 and continues the exhaust heat recovery operation. With this configuration, for example, power of the air conditioning outdoor fan 25 and the hot water supply outdoor fan 45 can be reduced, and the air conditioning hot water supply system 100 can be operated with energy saving.
On the other hand, when the hot water supply heat absorption amount and the air conditioning heat dissipation amount are not equal (step S808 → No), the control device 1a switches to the cooling / hot water supply single operation. At this time, the control device 1a advances the procedure to step S809, and collects the air conditioning refrigerant of the intermediate heat exchanger 23 in the air conditioning refrigerant circuit 5 and the hot water supply refrigerant of the intermediate heat exchanger 23 in the hot water supply refrigerant circuit 6. Then, the refrigerant recovery operation (second refrigerant recovery operation) is executed.
The refrigerant recovery operation (second refrigerant recovery operation) here is intermediate when the air-conditioning hot water supply system 100 is set to the “exhaust heat recovery operation mode” and the exhaust heat recovery operation (second operation) is performed in the second state. When the air-conditioning refrigerant circulating through the heat exchanger 23 is temporarily recovered and the recovered air-conditioning refrigerant is distributed to the air-conditioning heat source side heat exchanger 24 and the exhaust heat recovery operation. And a second hot water supply refrigerant recovery operation for temporarily recovering the hot water supply refrigerant flowing through the intermediate heat exchanger 23 and distributing the recovered hot water supply refrigerant to the hot water supply heat source side heat exchanger 44. With reference to FIG. 8, the procedure of the second refrigerant recovery operation (second air conditioning refrigerant recovery operation, second hot water supply refrigerant recovery operation) will be described.
During the second refrigerant recovery operation, the second air-conditioning refrigerant recovery operation in the air-conditioning cycle and the second hot-water supply refrigerant recovery operation in the hot-water supply cycle are executed simultaneously, and the second air-conditioning refrigerant recovery operation and the second hot-water supply refrigerant are performed. When the recovery operation is completed, the control device 1a assumes that the second refrigerant recovery operation is completed.

図8の(a)は、第2空調用冷媒回収運転の手順を示している。すなわち、図7のステップS809での手順のうち、空調サイクルにおける具体的な手順を示している。第2空調用冷媒回収運転を開始すると、制御装置1aは、空調用膨張弁27を閉弁し、空調用熱源側熱交換器24の冷房時空調用冷媒入口24aに配設される第1制御弁35cを開弁する。さらに、制御装置1aは、中間熱交換器23又は空調用熱源側熱交換器24を流通した空調用冷媒が空調用圧縮機21の吸込口21aに流入するように四方弁22を切り替える(ステップS890a)。このとき、中間熱交換器23の出入口(冷房時空調用冷媒入口23a、冷房時空調用冷媒出口23b)に配設される開閉弁35a,35bは開弁した状態にある。したがって、中間熱交換器23は、液体の空調用冷媒が封じられる状態(液封)になることがない。また、空調用膨張弁27の閉弁によって、中間熱交換器23の冷房時空調用冷媒出口23bへの空調用冷媒の流入が遮断される。なお、ステップS890aは、制御装置1aが空調用膨張弁27の替わりに、中間熱交換器23の冷房時空調用冷媒出口23bに配設される開閉弁35bを閉弁する構成であってもよい。この構成であっても、中間熱交換器23の冷房時空調用冷媒出口23bへの空調用冷媒の流入を遮断できる。
また、四方弁22の切り替えと、開閉弁35a及び第1制御弁35cの開弁によって、中間熱交換器23の冷房時空調用冷媒入口23a及び空調用熱源側熱交換器24の冷房時空調用冷媒入口24aと、空調用圧縮機21の吸込口21aと、を連通させることができ、中間熱交換器23及び空調用熱源側熱交換器24に残存する空調用冷媒を空調用圧縮機21で吸引できる。
FIG. 8A shows the procedure of the second air-conditioning refrigerant recovery operation. That is, a specific procedure in the air conditioning cycle is shown in the procedure in step S809 of FIG. When the second air-conditioning refrigerant recovery operation is started, the control device 1a closes the air-conditioning expansion valve 27, and the first control disposed at the air-conditioning refrigerant inlet 24a of the air-conditioning heat source side heat exchanger 24. The valve 35c is opened. Further, the control device 1a switches the four-way valve 22 so that the air-conditioning refrigerant flowing through the intermediate heat exchanger 23 or the air-conditioning heat source side heat exchanger 24 flows into the suction port 21a of the air-conditioning compressor 21 (step S890a). ). At this time, the on-off valves 35a and 35b disposed at the inlet / outlet of the intermediate heat exchanger 23 (the air conditioning refrigerant inlet 23a for cooling and the refrigerant outlet 23b for air conditioning during cooling) are in an opened state. Therefore, the intermediate heat exchanger 23 does not enter a state (liquid seal) in which the liquid air-conditioning refrigerant is sealed. In addition, by closing the air conditioning expansion valve 27, the flow of the air conditioning refrigerant to the cooling air conditioning refrigerant outlet 23b of the intermediate heat exchanger 23 is blocked. Note that step S890a may be configured such that the control device 1a closes the on-off valve 35b disposed in the air conditioning refrigerant outlet 23b of the intermediate heat exchanger 23 in place of the air conditioning expansion valve 27. . Even with this configuration, the inflow of the air conditioning refrigerant to the cooling air conditioning refrigerant outlet 23b of the intermediate heat exchanger 23 can be blocked.
Further, by switching the four-way valve 22 and opening the on-off valve 35a and the first control valve 35c, the air conditioning refrigerant inlet 23a of the intermediate heat exchanger 23 and the air conditioning heat source side heat exchanger 24 are used for air conditioning during cooling. The refrigerant inlet 24a and the suction port 21a of the air conditioning compressor 21 can communicate with each other, and the air conditioning refrigerant remaining in the intermediate heat exchanger 23 and the heat source side heat exchanger 24 is transferred to the air conditioning compressor 21 by the air conditioning compressor 21. Can suck.

そして、制御装置1aは空調用圧縮機21の運転(空調用冷媒の圧縮)を継続し、中間熱交換器23の冷房時空調用冷媒入口23aの温度と、冷房時空調用冷媒出口23bの温度を演算する(ステップS891a)。
具体的に、制御装置1aは、中間熱交換器23の冷房時空調用冷媒入口23a側に備わる温度センサTH13から受信するデータに基づいて、冷房時空調用冷媒入口23aの温度を演算し、中間熱交換器23の冷房時空調用冷媒出口23bに備わる温度センサTH14から受信するデータに基づいて、冷房時空調用冷媒出口23bの温度を演算する。
排熱回収運転時の中間熱交換器23において、冷房時空調用冷媒入口23aには外気温度より高温のガス冷媒が存在し、冷房時空調用冷媒出口23bには給湯用冷媒に放熱して凝縮した低温の液冷媒が存在するため、冷房時空調用冷媒入口23aと冷房時空調用冷媒出口23bに温度差が生じる。
この状態で空調用圧縮機21が運転されて、中間熱交換器23内から空調用冷媒が回収されると、冷房時空調用冷媒入口23aは高温の空調用冷媒が無くなり、冷房時空調用冷媒入口23aの温度は外気温度に近い温度になる。同様に、冷房時空調用冷媒出口23bは凝縮した空調用冷媒が無くなり、冷房時空調用冷媒出口23bの温度が外気温度に近い温度になる。したがって、冷房時空調用冷媒入口23aと冷房時空調用冷媒出口23bの温度差が無くなる。
The control device 1a continues the operation of the air conditioning compressor 21 (compression of the air conditioning refrigerant), and the temperature of the cooling air conditioning refrigerant inlet 23a of the intermediate heat exchanger 23 and the temperature of the cooling air conditioning refrigerant outlet 23b. Is calculated (step S891a).
Specifically, the control device 1a calculates the temperature of the cooling air conditioning refrigerant inlet 23a based on data received from the temperature sensor TH13 provided on the cooling air conditioning refrigerant inlet 23a side of the intermediate heat exchanger 23, Based on the data received from the temperature sensor TH14 provided in the cooling air conditioning refrigerant outlet 23b of the heat exchanger 23, the temperature of the cooling air conditioning refrigerant outlet 23b is calculated.
In the intermediate heat exchanger 23 during the exhaust heat recovery operation, there is a gas refrigerant having a temperature higher than the outside air temperature at the cooling air conditioning refrigerant inlet 23a, and the cooling air conditioning refrigerant outlet 23b dissipates heat to the hot water supply refrigerant and condenses. Therefore, there is a temperature difference between the cooling air-conditioning refrigerant inlet 23a and the cooling air-conditioning refrigerant outlet 23b.
When the air-conditioning compressor 21 is operated in this state and the air-conditioning refrigerant is recovered from the intermediate heat exchanger 23, the air-conditioning refrigerant inlet 23a disappears from the high-temperature air-conditioning refrigerant. The temperature of the inlet 23a is close to the outside air temperature. Similarly, the air conditioning refrigerant outlet 23b for cooling is free of condensed air conditioning refrigerant, and the temperature of the air conditioning refrigerant outlet 23b for cooling is close to the outside air temperature. Therefore, the temperature difference between the cooling air conditioning refrigerant inlet 23a and the cooling air conditioning refrigerant outlet 23b is eliminated.

そこで、制御装置1aは、中間熱交換器23の冷房時空調用冷媒入口23aと冷房時空調用冷媒出口23bの温度差が所定温度差(例えば、5℃)以下になるまで待機し(ステップS892a→No)、冷房時空調用冷媒入口23aと冷房時空調用冷媒出口23bの温度差が前記した所定温度差以下になったとき(ステップS892a→Yes)、中間熱交換器23内から空調用冷媒が回収されたと判定し、第2空調用冷媒回収運転の終了を決定する。そして、制御装置1aは、空調用膨張弁27を開弁して(ステップS893a)、第2空調用冷媒回収運転を終了する。
ここでいう所定温度差は、中間熱交換器23から空調用冷媒が回収されたとみなせる温度差であって前記した5℃に限定される値ではなく、中間熱交換器23に残留した空調用冷媒の相変化に起因する温度差ではないと判断できる値であればよい。
以上のステップS890aからステップS893aの手順で、空調用冷媒回路5における中間熱交換器23の空調用冷媒が回収される。
Therefore, the control device 1a waits until the temperature difference between the cooling air conditioning refrigerant inlet 23a and the cooling air conditioning refrigerant outlet 23b of the intermediate heat exchanger 23 is equal to or lower than a predetermined temperature difference (for example, 5 ° C.) (step S892a). → No), when the temperature difference between the cooling air-conditioning refrigerant inlet 23a and the cooling air-conditioning refrigerant outlet 23b is equal to or less than the predetermined temperature difference described above (step S892a → Yes), the air-conditioning refrigerant from the intermediate heat exchanger 23 Is determined to be recovered, and the end of the second air-conditioning refrigerant recovery operation is determined. Then, the control device 1a opens the air conditioning expansion valve 27 (step S893a), and ends the second air conditioning refrigerant recovery operation.
The predetermined temperature difference here is a temperature difference that can be considered that the air-conditioning refrigerant has been recovered from the intermediate heat exchanger 23 and is not limited to the above-described 5 ° C., but the air-conditioning refrigerant remaining in the intermediate heat exchanger 23 Any value can be used as long as it is not a temperature difference caused by the phase change.
The air-conditioning refrigerant of the intermediate heat exchanger 23 in the air-conditioning refrigerant circuit 5 is recovered by the procedure from step S890a to step S893a.

図8の(b)は、第2給湯用冷媒回収運転の手順を示している。すなわち、図7のステップS809での手順のうち、給湯サイクルにおける具体的な手順を示している。
第2給湯用冷媒回収運転を開始すると、制御装置1aは、給湯用膨張弁43を閉弁し、さらに、給湯用熱源側熱交換器44の給湯用冷媒出口44bに配設される第4制御弁49cを開弁する(ステップS890b)。このとき、中間熱交換器23の出入口(給湯用冷媒入口23c、給湯用冷媒出口23d)に配設される開閉弁49b,49dは開弁した状態にある。したがって、中間熱交換器23は、液体の給湯用冷媒が封じられる状態(液封)になることがない。また、給湯用膨張弁43の閉弁によって、中間熱交換器23の給湯用冷媒入口23cへの給湯用冷媒の流入が遮断される。なお、ステップS890bは、制御装置1aが給湯用膨張弁43の替わりに、中間熱交換器23の給湯用冷媒入口23cに配設される開閉弁49bを閉弁する構成であってもよい。この構成であっても、中間熱交換器23の給湯用冷媒入口23cへの給湯用冷媒の流入を遮断できる。
また、開閉弁49d及び第4制御弁49cの開弁によって、中間熱交換器23の給湯用冷媒出口23d及び給湯用熱源側熱交換器44の給湯用冷媒出口44bと、給湯用圧縮機41の吸込口41aと、を連通させることができ、中間熱交換器23及び給湯用熱源側熱交換器44に残存する給湯用冷媒を給湯用圧縮機41で吸引できる。
FIG. 8B shows the procedure of the second hot water supply refrigerant recovery operation. That is, a specific procedure in the hot water supply cycle is shown in the procedure in step S809 in FIG.
When the second hot water supply refrigerant recovery operation is started, the control device 1a closes the hot water supply expansion valve 43, and further includes a fourth control disposed at the hot water supply refrigerant outlet 44b of the hot water supply heat source side heat exchanger 44. The valve 49c is opened (step S890b). At this time, the on-off valves 49b and 49d disposed at the inlet / outlet of the intermediate heat exchanger 23 (the hot water supply refrigerant inlet 23c and the hot water supply refrigerant outlet 23d) are open. Therefore, the intermediate heat exchanger 23 does not enter a state (liquid seal) in which the liquid hot water supply refrigerant is sealed. Further, the hot water supply expansion valve 43 is closed to block the flow of the hot water supply refrigerant into the hot water supply refrigerant inlet 23c of the intermediate heat exchanger 23. Note that step S890b may be configured such that the control device 1a closes the on-off valve 49b provided at the hot water supply refrigerant inlet 23c of the intermediate heat exchanger 23 instead of the hot water supply expansion valve 43. Even with this configuration, the inflow of hot water supply refrigerant to the hot water supply refrigerant inlet 23c of the intermediate heat exchanger 23 can be blocked.
Further, by opening the on-off valve 49d and the fourth control valve 49c, the hot water supply refrigerant outlet 23d of the intermediate heat exchanger 23, the hot water supply refrigerant outlet 44b of the hot water supply heat source side heat exchanger 44, and the hot water supply compressor 41 The suction port 41 a can be communicated with, and the hot water supply refrigerant remaining in the intermediate heat exchanger 23 and the hot water supply heat source side heat exchanger 44 can be sucked by the hot water supply compressor 41.

そして、制御装置1aは給湯用圧縮機41の運転(給湯用冷媒の圧縮)を継続し、中間熱交換器23の給湯用冷媒入口23cの温度と、給湯用冷媒出口23dの温度を演算する(ステップS891b)。
具体的に、制御装置1aは、中間熱交換器23の給湯用冷媒入口23c側に備わる温度センサTH23から受信するデータに基づいて、給湯用冷媒入口23cの温度を演算する。さらに、制御装置1aは、中間熱交換器23の給湯用冷媒出口23dに備わる温度センサTH10から受信するデータに基づいて、給湯用冷媒出口23dの温度を演算する。
排熱回収運転時の中間熱交換器23において、給湯用冷媒入口23cには外気温度より低温の気液二相冷媒が存在し、給湯用冷媒出口23dには空調用冷媒から吸熱して気化した高温のガス冷媒が存在するため、給湯用冷媒入口23cと給湯用冷媒出口23dに温度差が生じる。
この状態で給湯用圧縮機41が運転されて、中間熱交換器23内から給湯用冷媒が回収されると、給湯用冷媒入口23cは低温の給湯用冷媒が無くなり、給湯用冷媒入口23cの温度は外気温度に近い温度になる。同様に、給湯用冷媒出口23dは高温の給湯用冷媒が無くなり、給湯用冷媒出口23dの温度は外気温度に近い温度になる。したがって、給湯用冷媒入口23cと給湯用冷媒出口23dの温度差が無くなる。
Then, the control device 1a continues the operation of the hot water supply compressor 41 (compression of the hot water supply refrigerant), and calculates the temperature of the hot water supply refrigerant inlet 23c and the temperature of the hot water supply refrigerant outlet 23d of the intermediate heat exchanger 23 ( Step S891b).
Specifically, the control device 1a calculates the temperature of the hot water supply refrigerant inlet 23c based on data received from the temperature sensor TH23 provided on the hot water supply refrigerant inlet 23c side of the intermediate heat exchanger 23. Furthermore, the control device 1a calculates the temperature of the hot water supply refrigerant outlet 23d based on data received from the temperature sensor TH10 provided in the hot water supply refrigerant outlet 23d of the intermediate heat exchanger 23.
In the intermediate heat exchanger 23 during the exhaust heat recovery operation, a gas-liquid two-phase refrigerant having a temperature lower than the outside air temperature exists at the hot water supply refrigerant inlet 23c, and heat is absorbed from the air conditioning refrigerant at the hot water supply refrigerant outlet 23d and vaporized. Since a high-temperature gas refrigerant exists, a temperature difference occurs between the hot water supply refrigerant inlet 23c and the hot water supply refrigerant outlet 23d.
When the hot water supply compressor 41 is operated in this state and the hot water supply refrigerant is recovered from the intermediate heat exchanger 23, the hot water supply refrigerant inlet 23c disappears, and the temperature of the hot water supply refrigerant inlet 23c disappears. Becomes a temperature close to the outside air temperature. Similarly, the hot water supply refrigerant outlet 23d runs out of hot water supply refrigerant, and the temperature of the hot water supply refrigerant outlet 23d becomes close to the outside air temperature. Therefore, the temperature difference between the hot water supply refrigerant inlet 23c and the hot water supply refrigerant outlet 23d is eliminated.

そこで、制御装置1aは、中間熱交換器23の給湯用冷媒入口23cと給湯用冷媒出口23dの温度差が所定温度差(例えば、5℃)以下になるまで待機し(ステップS892b→No)、給湯用冷媒入口23cと給湯用冷媒出口23dの温度差が前記した所定温度差以下になったとき(ステップS892b→Yes)、中間熱交換器23内から給湯用冷媒が回収されたと判定し、第2給湯用冷媒回収運転の終了を決定する。ここでいう所定温度差は、中間熱交換器23から給湯用冷媒が回収されたとみなせる温度差であって前記した5℃に限定される値ではなく、中間熱交換器23に残留した給湯用冷媒の相変化に起因する温度差ではないと判断できる値であればよい。そして、制御装置1aは、給湯用膨張弁43を開弁して(ステップS893b)、第2給湯用冷媒回収運転を終了する。
以上のステップS890bからステップS893bの手順で、給湯用冷媒回路6における中間熱交換器23の給湯用冷媒が回収される。
そして制御装置1aは、第2空調用冷媒回収運転と第2給湯用冷媒回収運転がともに終了したときに、図7のステップS809に示す第2冷媒回収運転が終了したとし、手順を図5に示すステップS1に戻して、冷房・給湯単独運転を実行する。
Therefore, the control device 1a waits until the temperature difference between the hot water supply refrigerant inlet 23c and the hot water supply refrigerant outlet 23d of the intermediate heat exchanger 23 becomes a predetermined temperature difference (for example, 5 ° C.) or less (step S892b → No). When the temperature difference between the hot water supply refrigerant inlet 23c and the hot water supply refrigerant outlet 23d is equal to or less than the predetermined temperature difference (step S892b → Yes), it is determined that the hot water supply refrigerant has been recovered from the intermediate heat exchanger 23; The end of the hot water supply refrigerant recovery operation is determined. The predetermined temperature difference here is a temperature difference that can be regarded as the recovery of the hot water supply refrigerant from the intermediate heat exchanger 23, and is not limited to the above-described 5 ° C., but the hot water supply refrigerant remaining in the intermediate heat exchanger 23 Any value can be used as long as it is not a temperature difference caused by the phase change. Then, the control device 1a opens the hot water supply expansion valve 43 (step S893b), and ends the second hot water supply refrigerant recovery operation.
The hot water supply refrigerant of the intermediate heat exchanger 23 in the hot water supply refrigerant circuit 6 is recovered by the procedure from step S890b to step S893b.
Then, when both the second air conditioning refrigerant recovery operation and the second hot water supply refrigerant recovery operation are completed, the control device 1a assumes that the second refrigerant recovery operation shown in step S809 of FIG. Returning to step S1 shown, the cooling / hot water supply single operation is executed.

このように、本実施形態に係る空調給湯システム100(図1参照)は、空調サイクルの冷房運転と、給湯サイクルの給湯運転を単独で行う冷房・給湯単独運転と、中間熱交換器23を介して空調用冷媒回路5を流通する空調用冷媒と給湯用冷媒回路6を流通する給湯用冷媒とで熱交換を行いながら、空調サイクルの冷房運転と給湯サイクルの給湯運転を行う排熱回収運転と、を給湯吸熱量と空調放熱量に応じて切り替えて運転可能である。
そして、冷房・給湯単独運転と排熱回収運転の切替時に、空調用冷媒回路5及び給湯用冷媒回路6で冷媒回収運転(第1冷媒回収運転、第2冷媒回収運転)を実行することを特徴とする。
As described above, the air conditioning and hot water supply system 100 (see FIG. 1) according to the present embodiment includes the cooling operation of the air conditioning cycle, the cooling and hot water supply single operation that performs the hot water supply operation of the hot water supply cycle alone, and the intermediate heat exchanger 23. Exhaust heat recovery operation for performing cooling operation of the air conditioning cycle and hot water supply operation of the hot water supply cycle while exchanging heat between the air conditioning refrigerant flowing through the air conditioning refrigerant circuit 5 and the hot water supply refrigerant flowing through the hot water supply refrigerant circuit 6. Can be switched according to the amount of heat absorbed by the hot water supply and the amount of heat released from the air conditioning.
The refrigerant recovery operation (first refrigerant recovery operation, second refrigerant recovery operation) is executed by the air conditioning refrigerant circuit 5 and the hot water supply refrigerant circuit 6 when switching between the cooling / hot water supply single operation and the exhaust heat recovery operation. And

この構成によると、例えば空調給湯システム100(図1参照)が、冷房・給湯単独運転から排熱回収運転に切り替わる時、給湯用冷媒回路6(図1参照)においては、常に、給湯用熱源側熱交換器44(図1参照)を給湯用冷媒が回収された状態にすることができる。
そして、制御装置1a(図1参照)は、給湯用熱源側熱交換器44の出入口(給湯用冷媒入口44a、給湯用冷媒出口44b)及び中間熱交換器23の出入口(給湯用冷媒入口23c、給湯用冷媒出口23d)の温度差によって速やかに給湯用冷媒が回収されたことを判定でき、給湯用熱源側熱交換器44の出入口に備わる流量制御弁(第3制御弁49a、第4制御弁49c)を速やかに閉弁できる。したがって、給湯用熱源側熱交換器44の内部から給湯用冷媒が回収された状態のまま給湯用圧縮機44(図1参照)が運転される状態を短縮することができ、給湯用圧縮機44に過度の負荷がかかることを好適に防止できる。
また、空調用冷媒回路5(図1参照)においては、常に、空調用熱源側熱交換器24(図1参照)を空調用冷媒が回収された状態にすることができ、さらに、空調用冷媒が回収されたことを、空調用熱源側熱交換器24の出入口(冷房時空調用入口24a、冷房時空調用冷媒出口24b)及び中間熱交換器23の出入口(冷房時空調用入口23a、冷房時空調用冷媒出口23b)の温度差によって速やかに判定できて、空調用圧縮機21(図1参照)に過度の負荷がかかることを好適に防止できる。
According to this configuration, for example, when the air conditioning and hot water supply system 100 (see FIG. 1) switches from the cooling / hot water supply single operation to the exhaust heat recovery operation, the hot water supply refrigerant circuit 6 (see FIG. 1) always has the hot water supply heat source side. The heat exchanger 44 (see FIG. 1) can be brought into a state where the hot water supply refrigerant is recovered.
The control device 1a (see FIG. 1) includes an inlet / outlet (hot water supply refrigerant inlet 44a, hot water supply refrigerant outlet 44b) of the hot water supply heat source side heat exchanger 44 and an inlet / outlet of the intermediate heat exchanger 23 (hot water supply refrigerant inlet 23c, It is possible to quickly determine that the hot water supply refrigerant has been recovered based on the temperature difference of the hot water supply refrigerant outlet 23d), and the flow rate control valves (third control valve 49a, fourth control valve) provided at the inlet / outlet of the hot water supply heat source side heat exchanger 44. 49c) can be quickly closed. Therefore, the hot water supply compressor 44 (see FIG. 1) can be shortened while the hot water supply refrigerant is recovered from the hot water supply heat source side heat exchanger 44, and the hot water supply compressor 44 can be shortened. It is possible to suitably prevent an excessive load from being applied.
In the air conditioning refrigerant circuit 5 (see FIG. 1), the air conditioning heat source side heat exchanger 24 (see FIG. 1) can always be in a state where the air conditioning refrigerant is recovered. Is collected, the inlet / outlet of the air-conditioning heat source side heat exchanger 24 (cooling air-conditioning inlet 24a, cooling air-conditioning refrigerant outlet 24b) and the intermediate heat exchanger 23 (air-conditioning inlet 23a, cooling) It is possible to quickly determine the temperature difference of the refrigerant outlet for air conditioning 23b), and to appropriately prevent an excessive load from being applied to the air conditioning compressor 21 (see FIG. 1).

例えば、冷房・給湯単独運転から排熱回収運転に切り替わる時の給湯用熱源側熱交換器44における給湯用冷媒の残存量は、冷媒の状態(液体、気体、気液二相)に応じて変化し、液体の場合には多量の給湯用冷媒が給湯用熱源側熱交換器44に残存する。
このことによって、排熱回収運転時の給湯用冷媒回路6における給湯用冷媒の流通量が少なくなる。つまり、給湯用熱源側熱交換器44における給湯用冷媒の状態に応じて、排熱回収運転時の給湯用冷媒回路6における給湯用冷媒の流通量が変化する。したがって、排熱回収運転ごとに給湯用冷媒の流量が異なる場合があり、ひいては、排熱回収運転の安定性が低下する要因となる。
同様のことは、空調用冷媒回路5(図1参照)においても発生する。
また、排熱回収運転から冷房・給湯単独運転に切り替わる時にも発生し、冷房・給湯単独運転の安定性が低下する要因となる。
For example, when the cooling / hot water supply single operation is switched to the exhaust heat recovery operation, the remaining amount of the hot water supply refrigerant in the hot water supply heat source side heat exchanger 44 varies depending on the state of the refrigerant (liquid, gas, gas-liquid two phases). However, in the case of liquid, a large amount of hot water supply refrigerant remains in the hot water supply heat source side heat exchanger 44.
As a result, the circulation amount of the hot water supply refrigerant in the hot water supply refrigerant circuit 6 during the exhaust heat recovery operation is reduced. That is, according to the state of the hot water supply refrigerant in the hot water supply heat source side heat exchanger 44, the circulation amount of the hot water supply refrigerant in the hot water supply refrigerant circuit 6 during the exhaust heat recovery operation changes. Therefore, the flow rate of the hot water supply refrigerant may be different for each exhaust heat recovery operation, and as a result, the stability of the exhaust heat recovery operation decreases.
The same thing occurs also in the air conditioning refrigerant circuit 5 (see FIG. 1).
It also occurs when the exhaust heat recovery operation is switched to the cooling / hot water single operation, which causes a decrease in the stability of the cooling / hot water single operation.

本実施形態に係る空調給湯システム100(図1参照)は、前記したように冷房・給湯単独運転から排熱回収運転に切り替わる時に、給湯用冷媒回収運転(第1給湯用冷媒回収運転、第2給湯用冷媒回収運転)によって給湯用熱源側熱交換器44の給湯用冷媒を回収することができ、排熱回収運転時の給湯用冷媒回路6における給湯用冷媒の流通量を常に一定にすることができる。したがって、排熱回収運転の安定性を向上できる。
同様に、排熱回収運転時における空調用冷媒回路5における空調用冷媒の流通量を常に一定にすることができ、排熱回収運転の安定性をさらに向上できる。
また、冷房・給湯単独運転時における給湯用冷媒回路6の給湯用冷媒の流通量と空調用冷媒回路5の空調用冷媒の流通量も常に一定にすることができ、冷房・給湯単独運転の安定性も向上できる。
The air conditioning and hot water supply system 100 according to the present embodiment (see FIG. 1), when switching from the cooling / hot water single operation to the exhaust heat recovery operation as described above, the hot water supply refrigerant recovery operation (the first hot water supply refrigerant recovery operation, the second The hot water supply refrigerant in the hot water supply heat source side heat exchanger 44 can be recovered by the hot water supply refrigerant recovery operation), and the circulation amount of the hot water supply refrigerant in the hot water supply refrigerant circuit 6 during the exhaust heat recovery operation is always constant. Can do. Therefore, the stability of the exhaust heat recovery operation can be improved.
Similarly, the flow rate of the air-conditioning refrigerant in the air-conditioning refrigerant circuit 5 during the exhaust heat recovery operation can always be made constant, and the stability of the exhaust heat recovery operation can be further improved.
In addition, the flow rate of the hot water supply refrigerant in the hot water supply refrigerant circuit 6 and the flow rate of the air conditioning refrigerant in the air conditioning refrigerant circuit 5 during cooling and hot water supply independent operation can always be made constant, so that the cooling and hot water supply independent operation is stable. Can also be improved.

また、空調用冷媒回路5(図1参照)においては、冷房・給湯単独運転時に中間熱交換器23を使用せず、排熱回収運転時に空調用熱源側熱交換器24を使用しない。本実施形態に係る空調給湯システム100(図1参照)は、使用しない熱交換器(不使用熱交換器)の空調用冷媒を回収し、使用する熱交換器(使用熱交換器)で利用する構成であることから、空調用冷媒を回収しない場合に不使用熱交換器に残存する量の空調用冷媒を削減できる。したがって、空調用冷媒回路5の空調用冷媒封入量を削減できる。
同様に、給湯用冷媒回路6の給湯用冷媒封入量を削減できる。
空調用冷媒及び給湯用冷媒は地球温暖化を促進する物質の一つであり、その封入量(使用量)を削減することは、地球温暖化の抑制に寄与することになる。
つまり、本実施形態に係る空調給湯システム100(図1参照)は、冷房・給湯単独運転と排熱回収運転の切り替え時に冷媒回収運転(第1冷媒回収運転、第2冷媒回収運転)を実行することによって冷媒(空調用冷媒、給湯用冷媒)の使用量を削減し、地球温暖化の抑制に寄与する。
In the air conditioning refrigerant circuit 5 (see FIG. 1), the intermediate heat exchanger 23 is not used during the cooling / hot water supply single operation, and the air conditioning heat source side heat exchanger 24 is not used during the exhaust heat recovery operation. The air-conditioning hot-water supply system 100 (refer FIG. 1) which concerns on this embodiment collect | recovers the air-conditioning refrigerant | coolants of the heat exchanger (unused heat exchanger) which is not used, and utilizes it with the used heat exchanger (use heat exchanger). Since it is a structure, when the refrigerant | coolant for air conditioning is not collect | recovered, the quantity of the refrigerant | coolant for air conditioning which remains in an unused heat exchanger can be reduced. Therefore, the amount of air-conditioning refrigerant enclosed in the air-conditioning refrigerant circuit 5 can be reduced.
Similarly, the amount of hot water supply refrigerant enclosed in the hot water supply refrigerant circuit 6 can be reduced.
Air-conditioning refrigerants and hot water supply refrigerants are one of the substances that promote global warming, and reducing the amount enclosed (use) contributes to the suppression of global warming.
That is, the air conditioning and hot water supply system 100 (see FIG. 1) according to the present embodiment executes the refrigerant recovery operation (first refrigerant recovery operation, second refrigerant recovery operation) when switching between the cooling / hot water supply single operation and the exhaust heat recovery operation. As a result, the amount of refrigerant (air-conditioning refrigerant, hot water supply refrigerant) used is reduced, which contributes to the suppression of global warming.

また、冷房・給湯単独運転と排熱回収運転は、給湯吸熱量と空調放熱量の変化に応じて切り替わるため、例えば、吸水口78(図1参照)から供給される水の温度、貯湯タンク70(図1参照)に貯湯される湯の温度(設定温度)、住宅60の設定温度、外気温度等の変化に応じて、冷房・給湯単独運転と排熱回収運転が頻繁に切り替わる場合がある。
また、図示はしないが、太陽熱集熱器を備え、太陽熱を熱源として利用する構成の場合は、日射量の変化に応じて給湯吸熱量と空調放熱量が変化するため、冷房・給湯単独運転と排熱回収運転がさらに頻繁に切り替わる。
このため、冷房・給湯単独運転と排熱回収運転が速やかに切り替わることが好ましく、そのためには、冷媒回収運転(第1冷媒回収運転、第2冷媒回収運転)が速やかに実行されることが好ましい。
本実施形態に係る空調給湯システム100(図1参照)は、空調用膨張弁27(図1参照)及び給湯用膨張弁43(図1参照)の閉弁、第1制御弁35c(図1参照)、第4制御弁49c(図1参照)、開閉弁35a(図1参照)及び開閉弁49d(図1参照)の開弁という弁の開閉動作のみで冷媒回収運転することができ、その他の設定等が不必要であるため速やかに冷媒回収運転できる。さらに、中間熱交換器23(図1参照)、空調用熱源側熱交換器24(図1参照)、及び給湯用熱源側熱交換器44(図1参照)の出入口の温度を演算するだけで容易に冷媒(空調用冷媒、給湯用冷媒)の回収の終了を判定することができ、この点でも速やかに冷媒回収運転を実行できる。
In addition, since the cooling / hot water supply independent operation and the exhaust heat recovery operation are switched according to changes in the hot water supply heat absorption amount and the air conditioning heat dissipation amount, for example, the temperature of the water supplied from the water inlet 78 (see FIG. 1), the hot water storage tank 70 Depending on changes in the temperature (set temperature) of hot water stored in (see FIG. 1), the set temperature of the house 60, the outside air temperature, etc., the cooling / hot water supply independent operation and the exhaust heat recovery operation may be frequently switched.
Although not shown, in the case of a configuration that includes a solar heat collector and uses solar heat as a heat source, the hot water supply heat absorption amount and the air conditioning heat dissipation amount change according to the change in the amount of solar radiation. Waste heat recovery operation switches more frequently.
For this reason, it is preferable that the cooling / hot water supply single operation and the exhaust heat recovery operation are switched quickly, and for this purpose, it is preferable that the refrigerant recovery operation (the first refrigerant recovery operation and the second refrigerant recovery operation) be executed quickly. .
The air conditioning and hot water supply system 100 (see FIG. 1) according to the present embodiment is configured such that the air conditioning expansion valve 27 (see FIG. 1) and the hot water supply expansion valve 43 (see FIG. 1) are closed, and the first control valve 35c (see FIG. 1). ), The refrigerant recovery operation can be performed only by the opening / closing operation of the fourth control valve 49c (see FIG. 1), the on-off valve 35a (see FIG. 1) and the on-off valve 49d (see FIG. 1). Since setting or the like is unnecessary, the refrigerant recovery operation can be performed quickly. Furthermore, it is only necessary to calculate the temperatures at the entrances and exits of the intermediate heat exchanger 23 (see FIG. 1), the heat source side heat exchanger 24 (see FIG. 1), and the hot water supply heat source side heat exchanger 44 (see FIG. 1). The end of recovery of the refrigerant (air-conditioning refrigerant, hot water supply refrigerant) can be easily determined, and the refrigerant recovery operation can be executed quickly in this respect as well.

また、中間熱交換器23、空調用熱源側熱交換器24、及び給湯用熱源側熱交換器44の出入口の温度を演算するだけで容易に冷媒(空調用冷媒、給湯用冷媒)の回収の終了を判定することができるため、中間熱交換器23や空調用熱源側熱交換器24の内部から空調用冷媒が回収された状態での空調用圧縮機21(図1参照)の運転時間、及び、中間熱交換器23や給湯用熱源側熱交換器44の内部から給湯用冷媒が回収された状態での給湯用圧縮機41(図1参照)の運転時間を短縮できる。
熱交換器(中間熱交換器23、空調用熱源側熱交換器24、給湯用熱源側熱交換器44)の内部から冷媒(空調用冷媒、給湯用冷媒)が回収された状態で圧縮機(空調用圧縮機21、給湯用圧縮機41)が運転されると、圧縮機や熱交換器に過度の負担がかかるため、このような運転は短いほうがよい。本実施形態においては、熱交換器の出入口の温度に基づいて、当該熱交換器から冷媒が回収されたことを速やかに判定することができ、圧縮機に過度の負担がかかる状態での運転時間を短くできる。
そして、熱交換器(中間熱交換器23、空調用熱源側熱交換器24、給湯用熱源側熱交換器44)の出入口の温度の演算には、予め配設されている温度センサを利用することができる。したがって、冷媒回収運転(第1冷媒回収運転、第2冷媒回収運転)のための部材(センサ等)を配設する必要がなく、簡単な構成の空調給湯システム100(図1参照)とすることができる。
In addition, the refrigerant (air conditioning refrigerant, hot water supply refrigerant) can be easily recovered simply by calculating the temperatures at the inlet and outlet of the intermediate heat exchanger 23, the air conditioning heat source side heat exchanger 24, and the hot water supply heat source side heat exchanger 44. Since the end can be determined, the operating time of the air conditioning compressor 21 (see FIG. 1) in a state in which the air conditioning refrigerant is recovered from the inside of the intermediate heat exchanger 23 and the air conditioning heat source side heat exchanger 24, And the operating time of the hot water supply compressor 41 (refer FIG. 1) in the state by which the hot water supply refrigerant | coolant was collect | recovered from the inside of the intermediate heat exchanger 23 and the hot water supply heat source side heat exchanger 44 can be shortened.
The compressor (air conditioning refrigerant, hot water supply refrigerant) is recovered from the inside of the heat exchanger (intermediate heat exchanger 23, air conditioning heat source side heat exchanger 24, hot water supply heat source side heat exchanger 44). When the air conditioning compressor 21 and the hot water supply compressor 41) are operated, an excessive load is applied to the compressor and the heat exchanger. In this embodiment, based on the temperature at the inlet / outlet of the heat exchanger, it is possible to quickly determine that the refrigerant has been recovered from the heat exchanger, and the operation time in a state where an excessive burden is placed on the compressor Can be shortened.
And the temperature sensor previously arrange | positioned is used for the calculation of the temperature of the entrance / exit of a heat exchanger (intermediate heat exchanger 23, the heat source side heat exchanger 24 for air conditioning, and the heat source side heat exchanger 44 for hot water supply). be able to. Therefore, it is not necessary to provide a member (sensor or the like) for the refrigerant recovery operation (first refrigerant recovery operation, second refrigerant recovery operation), and the air-conditioning hot water supply system 100 (see FIG. 1) having a simple configuration is provided. Can do.

なお、前記したように、本実施形態に係る空調給湯システム100(図1参照)は、不使用熱交換器の冷媒を回収し、使用熱交換器の冷媒として冷媒回路を流通させる構成であり、例えば、排熱回収運転時の給湯用冷媒回路6(図1参照)においては、不使用熱交換器となる給湯用熱源側熱交換器44(図1参照)の給湯用冷媒を回収し、使用熱交換器となる中間熱交換器23(図1参照)の給湯用冷媒として給湯用冷媒回路6を流通させる。
そして、例えば、中間熱交換器23を流通する給湯用冷媒の流量が、給湯用熱源側熱交換器44を流通する給湯用冷媒の流量より少なく構成される場合がある。この場合、給湯用熱源側熱交換器44から回収した給湯用冷媒の全てが給湯用冷媒回路6に流通すると、過剰な量の給湯用冷媒が流通することになる。
したがって、冷房・給湯単独運転から排熱回収運転への切り替え時に実行される冷媒回収運転(第1冷媒回収運転)で、余剰となる給湯用冷媒を給湯用熱源側熱交換器44で保管する構成としてもよい。
例えば、図6の(b)に示す第1給湯用冷媒回収運転において、制御装置1a(図1参照)がステップS703bで給湯用熱源側熱交換器44から給湯用冷媒が回収されたことを判定した後(ステップS703b→Yes)、所定時間に亘って給湯用膨張弁43(図1参照)を開弁し、開閉弁49b(図1参照)を閉弁する構成とすれば、所定量の給湯用冷媒を給湯用熱源側熱交換器44に流入させることができる。その後、制御装置1aが第3制御弁49a(図1参照)及び第4制御弁49c(図1参照)を閉弁することで、所定量の給湯用冷媒を給湯用熱源側熱交換器44で保管できる。
As described above, the air conditioning and hot water supply system 100 (see FIG. 1) according to the present embodiment is configured to collect the refrigerant of the unused heat exchanger and distribute the refrigerant circuit as the refrigerant of the used heat exchanger. For example, in the hot water supply refrigerant circuit 6 (see FIG. 1) during the exhaust heat recovery operation, the hot water supply refrigerant of the hot water supply heat source side heat exchanger 44 (see FIG. 1), which becomes an unused heat exchanger, is recovered and used. The hot water supply refrigerant circuit 6 is circulated as the hot water supply refrigerant of the intermediate heat exchanger 23 (see FIG. 1) serving as a heat exchanger.
For example, the flow rate of the hot water supply refrigerant flowing through the intermediate heat exchanger 23 may be configured to be smaller than the flow rate of the hot water supply refrigerant flowing through the hot water supply heat source side heat exchanger 44. In this case, if all of the hot water supply refrigerant recovered from the hot water supply heat source side heat exchanger 44 flows into the hot water supply refrigerant circuit 6, an excessive amount of hot water supply refrigerant flows.
Therefore, in the refrigerant recovery operation (first refrigerant recovery operation) executed when switching from the cooling / hot water supply single operation to the exhaust heat recovery operation, the surplus hot water supply refrigerant is stored in the hot water supply heat source side heat exchanger 44. It is good.
For example, in the first hot water supply refrigerant recovery operation shown in FIG. 6B, the controller 1a (see FIG. 1) determines that the hot water supply refrigerant has been recovered from the hot water supply heat source side heat exchanger 44 in step S703b. (Step S703b → Yes), if a configuration for opening the hot water supply expansion valve 43 (see FIG. 1) and closing the on-off valve 49b (see FIG. 1) over a predetermined time, a predetermined amount of hot water supply is provided. The refrigerant for cooling can flow into the heat source side heat exchanger 44 for hot water supply. Thereafter, the control device 1a closes the third control valve 49a (see FIG. 1) and the fourth control valve 49c (see FIG. 1), so that a predetermined amount of hot water supply refrigerant is supplied to the hot water supply heat source side heat exchanger 44. Can be stored.

給湯用熱源側熱交換器44(図1参照)での給湯用冷媒の保管量は、給湯用冷媒回路6(図1参照)の給湯用冷媒の封入量、給湯用熱源側熱交換器44における給湯用冷媒の流量、中間熱交換器23(図1参照)における給湯用冷媒の流量に応じて適宜決定される量である。また、給湯用膨張弁43を開弁し、開閉弁49bを閉弁する所定時間は、給湯用熱源側熱交換器44への給湯用冷媒の単位時間当たりの流入量と、給湯用冷媒の保管量に応じて適宜決定される時間である。
そして、給湯用熱源側熱交換器44への給湯用冷媒の単位時間当たりの流入量は、給湯用圧縮機41の回転速度、給湯用膨張弁43及び第3制御弁49aの弁開度等によって決定される。したがって、開閉弁49bを閉弁する所定時間は、給湯用圧縮機41の回転速度、給湯用膨張弁43及び第3制御弁49aの弁開度等に基づいて容易に決定可能である。
本実施形態の空調給湯システム100(図1参照)は、給湯用熱源側熱交換器44の給湯用冷媒が全て回収された状態から、余剰な給湯用冷媒を給湯用熱源側熱交換器44に流入させるため、給湯用熱源側熱交換器44での給湯用冷媒の保管量を正確に管理できる。
つまり、給湯用熱源側熱交換器44における給湯用冷媒の残存量がゼロの状態から、所定時間に亘って給湯用冷媒を給湯用熱源側熱交換器44に流入させることができるため、給湯用冷媒の単位時間当たりの流入量と所定時間に応じ、正確な量の給湯用冷媒を給湯用熱源側熱交換器44に流入させて保管できる。
したがって、例えば、余剰な給湯用冷媒より多くの量の給湯用冷媒が給湯用熱源側熱交換器44に流入することがなく、ひいては、排熱回収運転時に給湯用冷媒回路6を流通する給湯用冷媒の流量が不足することを防止できる。
同様に、空調用冷媒回路5においても空調用冷媒を空調用熱源側熱交換器24に保管することができ、排熱回収運転時に空調用冷媒回路5を流通する空調用冷媒の流量が不足することを防止できる。
The storage amount of the hot water supply refrigerant in the hot water supply heat source side heat exchanger 44 (see FIG. 1) is the amount of the hot water supply refrigerant enclosed in the hot water supply refrigerant circuit 6 (see FIG. 1), the hot water supply heat source side heat exchanger 44 This amount is determined as appropriate according to the flow rate of the hot water supply refrigerant and the flow rate of the hot water supply refrigerant in the intermediate heat exchanger 23 (see FIG. 1). The predetermined time for opening the hot water supply expansion valve 43 and closing the on-off valve 49b is the amount of flow of hot water supply refrigerant into the hot water supply heat source side heat exchanger 44 per unit time and storage of the hot water supply refrigerant. The time is determined appropriately according to the amount.
The inflow amount of the hot water supply refrigerant to the hot water supply heat source side heat exchanger 44 per unit time depends on the rotational speed of the hot water supply compressor 41, the valve opening degrees of the hot water supply expansion valve 43 and the third control valve 49a, and the like. It is determined. Therefore, the predetermined time for closing the on-off valve 49b can be easily determined based on the rotation speed of the hot water supply compressor 41, the valve opening degrees of the hot water supply expansion valve 43, the third control valve 49a, and the like.
The air-conditioning hot water supply system 100 (see FIG. 1) of the present embodiment is configured so that surplus hot water supply refrigerant is transferred to the hot water supply heat source side heat exchanger 44 from the state where all of the hot water supply refrigerant in the hot water supply heat source side heat exchanger 44 has been recovered. Therefore, the storage amount of the hot water supply refrigerant in the hot water supply heat source side heat exchanger 44 can be accurately managed.
That is, since the remaining amount of the hot water supply refrigerant in the hot water supply heat source side heat exchanger 44 is zero, the hot water supply refrigerant can flow into the hot water supply heat source side heat exchanger 44 over a predetermined time. An accurate amount of hot water supply refrigerant can be made to flow into the hot water supply heat source side heat exchanger 44 in accordance with the amount of refrigerant flowing in per unit time and for a predetermined time.
Therefore, for example, a larger amount of hot water supply refrigerant than surplus hot water supply refrigerant does not flow into the hot water supply heat source side heat exchanger 44, and consequently, for hot water supply that circulates through the hot water supply refrigerant circuit 6 during the exhaust heat recovery operation. It can be prevented that the flow rate of the refrigerant is insufficient.
Similarly, in the air conditioning refrigerant circuit 5, the air conditioning refrigerant can be stored in the air conditioning heat source side heat exchanger 24, and the flow rate of the air conditioning refrigerant flowing through the air conditioning refrigerant circuit 5 is insufficient during the exhaust heat recovery operation. Can be prevented.

本実施形態に係る空調給湯システム100(図1参照)は、以上のように構成されるが、発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。   The air conditioning and hot water supply system 100 (see FIG. 1) according to the present embodiment is configured as described above, but the design can be changed as appropriate without departing from the spirit of the invention.

例えば、本実施形態に係る空調給湯システム100(図1参照)は、給湯用冷媒回収運転(第1給湯用冷媒回収運転、第2給湯用冷媒回収運転)と空調用冷媒回収運転(第1空調用冷媒回収運転、第2空調用冷媒回収運転)を実行するように構成されているが、給湯用冷媒回収運転と空調用冷媒回収運転のいずれか一方を実行する構成であってもよい。
また、本実施形態に係る空調給湯システム100は、給湯吸熱量と空調放熱量が等しくない場合に冷房・給湯単独運転するように構成されているが、例えば、空調放熱量が給湯吸熱量より多い場合、空調放熱量のうち給湯吸熱量より多い熱量を空調用熱源側熱交換器24(図1参照)で放熱する構成であってもよい。
具体的に、空調放熱量が給湯吸熱量より多い場合、制御装置1a(図1参照)は、空調サイクルにおいて、第1制御弁35c(図1参照)及び第2制御弁35d(図1参照)を開弁して空調用熱源側熱交換器24に空調用冷媒の一部を流通させ、さらに、空調用室外ファン25(図1参照)を運転する。空調サイクルにおける空調用冷媒は、中間熱交換器23(図1参照)と空調用熱源側熱交換器24に流通し、中間熱交換器23で給湯用冷媒に放熱するとともに、空調用熱源側熱交換器24で大気に放熱する。
この構成の場合も、空調放熱量と給湯吸熱量が等しくなって排熱回収運転に切り替えるときに、空調用冷媒回収運転で空調用冷媒を回収することで、排熱回収運転の安定性を向上できる。
For example, the air conditioning and hot water supply system 100 according to the present embodiment (see FIG. 1) includes a hot water supply refrigerant recovery operation (first hot water supply refrigerant recovery operation, second hot water supply refrigerant recovery operation) and an air conditioning refrigerant recovery operation (first air conditioning). However, it may be configured to execute one of the hot water supply refrigerant recovery operation and the air conditioning refrigerant recovery operation.
In addition, the air conditioning and hot water supply system 100 according to the present embodiment is configured so that the cooling and hot water supply is independently operated when the hot water supply heat absorption amount and the air conditioning heat dissipation amount are not equal. In such a case, a configuration may be employed in which a heat quantity greater than the hot water supply heat absorption quantity among the air conditioning heat radiation quantity is radiated by the air conditioning heat source side heat exchanger 24 (see FIG. 1).
Specifically, when the air conditioning heat dissipation amount is larger than the hot water supply heat absorption amount, the control device 1a (see FIG. 1), in the air conditioning cycle, the first control valve 35c (see FIG. 1) and the second control valve 35d (see FIG. 1). Is opened to allow a part of the air-conditioning refrigerant to flow through the air-conditioning heat source side heat exchanger 24, and the air-conditioning outdoor fan 25 (see FIG. 1) is operated. The air-conditioning refrigerant in the air-conditioning cycle flows to the intermediate heat exchanger 23 (see FIG. 1) and the air-conditioning heat source side heat exchanger 24, dissipates heat to the hot water supply refrigerant in the intermediate heat exchanger 23, and the air-conditioning heat source side heat. The exchanger 24 radiates heat to the atmosphere.
Also in this configuration, when switching to exhaust heat recovery operation when the air conditioning heat dissipation amount and hot water supply heat absorption amount are equal, the air conditioning refrigerant recovery operation improves the stability of the exhaust heat recovery operation. it can.

また、本実施形態に係る空調給湯システム100では、圧縮機(空調用圧縮機21、給湯用圧縮機41)が運転されるときの回転速度によって熱交換器(空調用熱源側熱交換器24、給湯用熱源側熱交換器44、中間熱交換器23)から冷媒(空調用冷媒、給湯用冷媒)を回収する速度を変えることができる。つまり、圧縮機の回転速度が高いほど速やかに熱交換器から冷媒を回収できる。したがって、圧縮機の回転速度を調整することによって、冷媒回収運転(第1冷媒回収運転、第2冷媒回収運転)に要する時間を調整できる。
具体的には、高い回転速度で圧縮機を運転することによって、冷媒回収運転に要する時間を短縮できる。
In the air conditioning and hot water supply system 100 according to the present embodiment, the heat exchanger (air conditioning heat source side heat exchanger 24, The speed at which the refrigerant (air conditioning refrigerant, hot water supply refrigerant) is recovered from the hot water supply heat source side heat exchanger 44 and the intermediate heat exchanger 23) can be changed. That is, the higher the rotational speed of the compressor, the faster the refrigerant can be recovered from the heat exchanger. Therefore, the time required for the refrigerant recovery operation (the first refrigerant recovery operation and the second refrigerant recovery operation) can be adjusted by adjusting the rotation speed of the compressor.
Specifically, the time required for the refrigerant recovery operation can be shortened by operating the compressor at a high rotational speed.

また、例えば、給湯用冷媒回収運転(第1給湯用冷媒回収運転、第2給湯用冷媒回収運転)において、制御装置1aは、給湯用熱源側熱交換器44(図1参照)の給湯用冷媒入口44aと給湯用冷媒出口44bの温度差に基づいて給湯用冷媒回収運転の終了を決定しているが、以下のように変形することも可能である(以下適宜図1〜4参照)。   Further, for example, in the hot water supply refrigerant recovery operation (first hot water supply refrigerant recovery operation, second hot water supply refrigerant recovery operation), the control device 1a uses the hot water supply heat source side heat exchanger 44 (see FIG. 1). Although the end of the hot water supply refrigerant recovery operation is determined based on the temperature difference between the inlet 44a and the hot water supply refrigerant outlet 44b, it can be modified as follows (see FIGS. 1 to 4 as appropriate).

《変形例1》
冷房・給湯単独運転時の給湯用熱源側熱交換器44において、給湯用冷媒入口44aには給湯用膨張弁43を流通した低温低圧の給湯用冷媒(気液二相冷媒)が存在し、その温度は外気温度より低温である。この状態から給湯用冷媒が回収されると、給湯用冷媒入口44aの給湯用冷媒が無くなった時点で給湯用冷媒入口44aの温度が上昇し、外気温度に近い温度となる。換言すると、給湯用冷媒入口44aの温度が外気温度に近い温度まで上昇し、給湯用冷媒入口44aの温度と外気温度の温度差が小さくなったとき、給湯用熱源側熱交換器44内から給湯用冷媒が回収された状態になったと判定できる。
そこで、例えば図6の(b)のステップS702bにおいて、制御装置1aは給湯用熱源側熱交換器44の給湯用冷媒出口44bの温度の替わりに、温度センサTH19からの受信データに基づいて外気温度を演算する構成とする。さらに、ステップS703bにおいて、制御装置1aは、給湯用冷媒入口44aの温度と外気温度の温度差があらかじめ設定される所定の外気温差(例えば、15℃)未満になるまで給湯用冷媒入口44aの温度が上昇したときに、給湯用熱源側熱交換器44内から給湯用冷媒が回収された状態になったと判定して第1給湯用冷媒回収運転の終了を決定する構成としてもよい。
なお、給湯用冷媒入口44aの温度に替えて、給湯用冷媒出口44bの温度と外気温度の温度差が前記した外気温差未満になったときに、制御装置1aが、給湯用熱源側熱交換器44内から給湯用冷媒が回収されたことを判定する構成としてもよい。
また、中間熱交換器23から給湯用冷媒を回収する第2給湯用冷媒回収運転時に、制御装置1aが、給湯用冷媒入口23cの温度と外気温度の温度差が前記した外気温差未満になったときに、中間熱交換器23内から給湯用冷媒が回収されたことを判定する構成としてもよいし、給湯用冷媒出口23dの温度と外気温度の温度差が前記した外気温差未満になったときに、中間熱交換器23内から給湯用冷媒が回収されたことを判定する構成としてもよい。
すなわち、制御装置1aは、給湯用熱源側熱交換器44の給湯用冷媒入口44aの温度と外気温度の温度差、給湯用冷媒出口44bの温度と外気温度の温度差、中間熱交換器23の給湯用冷媒入口23cの温度と外気温度の温度差、給湯用冷媒出口23dの温度と外気温度の温度差、の少なくとも1つに基づいて、給湯用冷媒回収運転(第1給湯用冷媒回収運転、第2給湯用冷媒回収運転)の終了を決定する構成にすることができる。
このような構成であっても、温度センサ以外の部材(センサ等)を配設する必要がなく、簡単な構成の空調給湯システム100とすることができる。
<< Modification 1 >>
In the hot water supply heat source side heat exchanger 44 during single operation of cooling and hot water supply, there is a low temperature and low pressure hot water supply refrigerant (gas-liquid two-phase refrigerant) flowing through the hot water supply expansion valve 43 at the hot water supply refrigerant inlet 44a. The temperature is lower than the outside air temperature. When the hot water supply refrigerant is recovered from this state, when the hot water supply refrigerant at the hot water supply refrigerant inlet 44a runs out, the temperature of the hot water supply refrigerant inlet 44a rises to a temperature close to the outside air temperature. In other words, when the temperature of the hot water supply refrigerant inlet 44a rises to a temperature close to the outside air temperature and the temperature difference between the hot water supply refrigerant inlet 44a and the outside air temperature becomes small, the hot water supply from the heat source side heat exchanger for hot water supply 44 is supplied. It can be determined that the refrigerant for use has been recovered.
Therefore, for example, in step S702b of FIG. 6B, the control device 1a determines the outside air temperature based on the received data from the temperature sensor TH19 instead of the temperature of the hot water supply refrigerant outlet 44b of the hot water supply heat source side heat exchanger 44. Is configured to calculate. Furthermore, in step S703b, the control device 1a sets the temperature of the hot water supply refrigerant inlet 44a until the temperature difference between the temperature of the hot water supply refrigerant inlet 44a and the outside air temperature becomes less than a predetermined outside air temperature difference (for example, 15 ° C.). When the temperature rises, it may be determined that the hot water supply refrigerant has been recovered from the hot water supply heat source side heat exchanger 44 and the end of the first hot water supply refrigerant recovery operation is determined.
In addition, instead of the temperature of the hot water supply refrigerant inlet 44a, when the temperature difference between the temperature of the hot water supply refrigerant outlet 44b and the outside air temperature becomes less than the above-described difference between the outside air temperatures, the control device 1a performs heat exchange on the heat source side for hot water supply The configuration may be such that it is determined that the hot water supply refrigerant has been recovered from within the vessel 44.
Further, during the second hot water supply refrigerant recovery operation for recovering the hot water supply refrigerant from the intermediate heat exchanger 23, the control device 1a causes the temperature difference between the temperature of the hot water supply refrigerant inlet 23c and the outside air temperature to be less than the above described outside air temperature difference. It is good also as a structure which determines that the hot water supply refrigerant | coolant was collect | recovered from the inside heat exchanger 23, and the temperature difference of the hot water supply refrigerant | coolant exit 23d and external temperature becomes less than the above-mentioned external air temperature difference. It is good also as a structure which determines that the refrigerant | coolant for hot water supply was collect | recovered from the inside of the intermediate heat exchanger 23.
That is, the control device 1a determines the temperature difference between the hot water supply refrigerant inlet 44a and the outside air temperature of the hot water supply heat source side heat exchanger 44, the temperature difference between the hot water supply refrigerant outlet 44b and the outside air temperature, and the intermediate heat exchanger 23. Based on at least one of the temperature difference between the temperature of the hot water supply refrigerant inlet 23c and the outside air temperature, and the temperature difference between the temperature of the hot water supply refrigerant outlet 23d and the outside air temperature, the hot water supply refrigerant recovery operation (first hot water supply refrigerant recovery operation, The end of the second hot water supply refrigerant recovery operation) can be determined.
Even if it is such a structure, it is not necessary to arrange | position members (sensor etc.) other than a temperature sensor, and it can be set as the air-conditioning hot-water supply system 100 of a simple structure.

なお、この変形例1を空調用冷媒回収運転(第1空調用冷媒回収運転、第2空調用冷媒回収運転)に適用することも可能である。
第1空調用冷媒回収運転に適用した場合、制御装置1aは、図6の(a)のステップS702aにおいて、空調用熱源側熱交換器24の冷房時空調用冷媒出口24bの温度の替わりに外気温度を演算し、さらに、ステップS703aにおいて、冷房時空調用冷媒入口24aの温度と外気温度の温度差が前記した所定の外気温差未満になったときに、空調用熱源側熱交換器24内から空調用冷媒が回収されたと判定して第1空調用冷媒回収運転の終了を決定する。
なお、冷房時空調用冷媒入口24aの温度に替えて、冷房時空調用冷媒出口24bの温度と外気温度の温度差が前記した外気温差未満になったときに、制御装置1aが、空調用熱源側熱交換器24内から空調用冷媒が回収されたと判定する構成としてもよい。
また、中間熱交換器23から空調用冷媒を回収する第2空調用冷媒回収運転時に、制御装置1aが、冷房時空調用冷媒入口23aの温度と外気温度の温度差が前記した外気温差未満になったときに、中間熱交換器23内から空調用冷媒が回収されたことを判定する構成としてもよいし、冷房時空調用冷媒出口23bの温度と外気温度の温度差が前記した外気温差未満になったときに、中間熱交換器23内から空調用冷媒が回収されたことを判定する構成としてもよい。
すなわち、制御装置1aは、空調用熱源側熱交換器24の冷房時空調用冷媒入口24aの温度と外気温度の温度差、冷房時空調用冷媒出口24bの温度と外気温度の温度差、中間熱交換器23の冷房時空調用冷媒入口23aの温度と外気温度の温度差、冷房時空調用冷媒出口23bの温度と外気温度の温度差、の少なくとも1つに基づいて、空調用冷媒回収運転(第1空調用冷媒回収運転、第2空調用冷媒回収運転)の終了を決定する構成にすることができる。
Note that the first modification can also be applied to the air conditioning refrigerant recovery operation (first air conditioning refrigerant recovery operation, second air conditioning refrigerant recovery operation).
When applied to the first air-conditioning refrigerant recovery operation, the control device 1a uses the outside air instead of the temperature of the cooling air-conditioning refrigerant outlet 24b of the air-conditioning heat source side heat exchanger 24 in step S702a of FIG. In step S703a, when the temperature difference between the cooling air-conditioning refrigerant inlet 24a and the outside air temperature is less than the predetermined outside air temperature difference, the air-conditioning heat source side heat exchanger 24 It is determined that the air-conditioning refrigerant has been recovered, and the end of the first air-conditioning refrigerant recovery operation is determined.
In addition, instead of the temperature of the cooling air conditioning refrigerant inlet 24a, when the temperature difference between the cooling air conditioning refrigerant outlet 24b and the outside air temperature becomes less than the above-mentioned outside air temperature difference, the control device 1a It is good also as a structure which determines with the refrigerant | coolant for an air conditioning having been collect | recovered from the heat source side heat exchanger 24 inside.
Further, during the second air-conditioning refrigerant recovery operation for recovering the air-conditioning refrigerant from the intermediate heat exchanger 23, the control device 1a causes the temperature difference between the cooling air-conditioning refrigerant inlet 23a and the outside air temperature to be less than the above-described outside air temperature difference. It is good also as a structure which determines that the air-conditioning refrigerant | coolant was collect | recovered from the inside heat exchanger 23 when it becomes, and the temperature difference of the temperature of the air-conditioning refrigerant | coolant exit 23b at the time of air_conditioning | cooling and external temperature is mentioned above outside temperature It may be configured to determine that the air-conditioning refrigerant has been recovered from the intermediate heat exchanger 23 when the difference is less than the difference.
That is, the control device 1a determines the temperature difference between the cooling air-conditioning refrigerant inlet 24a and the outside air temperature of the air-conditioning heat source side heat exchanger 24, the temperature difference between the cooling air-conditioning refrigerant outlet 24b and the outside air temperature, and intermediate heat. Based on at least one of the temperature difference between the cooling air-conditioning refrigerant inlet 23a and the outside air temperature of the exchanger 23 and the temperature difference between the cooling air-conditioning refrigerant outlet 23b and the outside air temperature, the air-conditioning refrigerant recovery operation ( It can be set as the structure which determines completion | finish of the refrigerant | coolant collection | recovery driving | operation for 1st air conditioning, and the refrigerant | coolant collection | recovery operation for 2nd air conditioning.

《変形例2》
また、変形例1において、給湯用冷媒入口44aの給湯用冷媒が無くなった時点で給湯用冷媒入口44aの温度が上昇するが、その温度の上昇率に基づいて制御装置1aが給湯用熱源側熱交換器44内から給湯用冷媒が回収されたことを判定する構成としてもよい。
給湯用冷媒入口44aの温度は給湯用冷媒が無くなると急速に上昇することから、給湯用冷媒入口44aの温度上昇率が大きいとき、制御装置1aは給湯用冷媒入口44aに給湯用冷媒が無くなって給湯用熱源側熱交換器44の内部の給湯用冷媒が回収されたと判定できる。
そこで、例えば図6の(b)のステップS702bにおいて、制御装置1aは給湯用熱源側熱交換器44の給湯用冷媒入口44aの温度のみを演算する構成とする。さらに、ステップS703bにおいて、制御装置1aは、ステップS702bで演算した給湯用冷媒入口44aの温度と、所定の単位時間(例えば、1秒)前にステップS702bを実行したときに演算した給湯用冷媒入口44aの温度とから、給湯用冷媒入口44aの温度の単位時間あたりの温度上昇率を演算する構成とする。
そして、制御装置1aは、給湯用冷媒入口44aの温度上昇率が予め設定される所定上昇率(例えば、0.5℃/秒)より大きくなったときに、給湯用熱源側熱交換器44内から給湯用冷媒が回収された状態になったと判定して第1給湯用冷媒回収運転の終了を決定する構成としてもよい。
<< Modification 2 >>
In the first modification, the temperature of the hot water supply refrigerant inlet 44a rises when the hot water supply refrigerant at the hot water supply refrigerant inlet 44a runs out. Based on the rate of temperature increase, the control device 1a performs heat supply side heat source heat supply. It may be configured to determine that the hot water supply refrigerant has been collected from the exchanger 44.
Since the temperature of the hot water supply refrigerant inlet 44a rapidly rises when there is no hot water supply refrigerant, the controller 1a has no hot water supply refrigerant at the hot water supply refrigerant inlet 44a when the temperature increase rate of the hot water supply refrigerant inlet 44a is large. It can be determined that the hot water supply refrigerant inside the hot water supply heat source side heat exchanger 44 has been recovered.
Therefore, for example, in step S702b of FIG. 6B, the control device 1a is configured to calculate only the temperature of the hot water supply refrigerant inlet 44a of the hot water supply heat source side heat exchanger 44. Further, in step S703b, the control device 1a calculates the temperature of the hot water supply refrigerant inlet 44a calculated in step S702b and the hot water supply refrigerant inlet calculated when executing step S702b a predetermined unit time (for example, 1 second). The temperature increase rate per unit time of the temperature of the hot water supply refrigerant inlet 44a is calculated from the temperature of 44a.
Then, when the temperature increase rate of the hot water supply refrigerant inlet 44a becomes larger than a predetermined increase rate (for example, 0.5 ° C./second), the control device 1a includes the hot water supply heat source side heat exchanger 44. It is good also as a structure which determines that it was in the state by which the hot water supply refrigerant | coolant was collect | recovered from, and complete | finished the 1st hot water supply refrigerant | coolant collection driving | operation.

なお、給湯用冷媒入口44aの温度に替えて、給湯用熱源側熱交換器44の給湯用冷媒出口44bの温度上昇率が前記した所定上昇率より大きくなったときに、制御装置1aが、給湯用熱源側熱交換器44内から給湯用冷媒が回収されたことを判定する構成としてもよい。
また、中間熱交換器23から給湯用冷媒を回収する第2給湯用冷媒回収運転時に、制御装置1aが、中間熱交換器23の給湯用冷媒入口23cの温度上昇率が前記した所定上昇率より大きくなったときに、中間熱交換器23内から給湯用冷媒が回収されたことを判定する構成としてもよいし、中間熱交換器23の給湯用冷媒出口23dの温度上昇率が前記した所定上昇率より大きくなったときに、中間熱交換器23内から給湯用冷媒が回収されたことを判定する構成としてもよい。
すなわち、制御装置1aは、給湯用熱源側熱交換器44の給湯用冷媒入口44aの温度上昇率、給湯用冷媒出口44bの温度上昇率、中間熱交換器23の給湯用冷媒入口23cの温度上昇率、給湯用冷媒出口23dの温度上昇率、の1つ、またはこれらの組合せに基づいて、給湯用冷媒回収運転(第1給湯用冷媒回収運転、第2給湯用冷媒回収運転)の終了を決定する構成にすることができる。
このような構成であっても、温度センサ以外の部材(センサ等)を配設する必要がなく、簡単な構成の空調給湯システム100とすることができる。
When the temperature rise rate of the hot water supply refrigerant outlet 44b of the hot water supply heat source side heat exchanger 44 becomes higher than the above-mentioned predetermined rate of increase instead of the temperature of the hot water supply refrigerant inlet 44a, the control device 1a It may be configured to determine that the hot water supply refrigerant has been recovered from the heat source side heat exchanger 44.
Further, during the second hot water supply refrigerant recovery operation for recovering the hot water supply refrigerant from the intermediate heat exchanger 23, the control device 1a causes the temperature increase rate of the hot water supply refrigerant inlet 23c of the intermediate heat exchanger 23 to be higher than the predetermined increase rate described above. It may be configured that it is determined that the hot water supply refrigerant has been recovered from the intermediate heat exchanger 23 when the temperature increases, and the temperature increase rate of the hot water supply refrigerant outlet 23d of the intermediate heat exchanger 23 increases as described above. It may be configured to determine that the hot water supply refrigerant has been recovered from the intermediate heat exchanger 23 when the rate becomes larger than the rate.
That is, the control device 1a determines the temperature increase rate of the hot water supply refrigerant inlet 44a of the hot water supply side heat exchanger 44, the temperature increase rate of the hot water supply refrigerant outlet 44b, and the temperature increase of the hot water supply refrigerant inlet 23c of the intermediate heat exchanger 23. The end of the hot water supply refrigerant recovery operation (first hot water supply refrigerant recovery operation, second hot water supply refrigerant recovery operation) is determined based on one of the rate, the temperature rise rate of the hot water supply refrigerant outlet 23d, or a combination thereof. Can be configured.
Even if it is such a structure, it is not necessary to arrange | position members (sensor etc.) other than a temperature sensor, and it can be set as the air-conditioning hot-water supply system 100 of a simple structure.

なお、この変形例2を空調用冷媒回収運転(第1空調用冷媒回収運転、第2空調用冷媒回収運転)に適用することも可能である。
第1空調用冷媒回収運転に適用した場合、制御装置1aは、図6の(a)のステップS702aにおいて、空調用熱源側熱交換器24の冷房時空調用冷媒入口24aの温度のみを演算する構成とする。さらに、ステップS703aにおいて、制御装置1aは、ステップS702aで演算した冷房時空調用冷媒入口24aの温度と、例えば1秒などの所定の単位時間前にステップS702aを実行したときに演算した冷房時空調用冷媒入口24aの温度とから、冷房時空調用冷媒入口24aの温度の単位時間あたりの温度上昇率を演算する構成とする。そして、制御装置1aは、冷房時空調用冷媒入口24aの温度上昇率が、予め設定される前記した所定上昇率より大きくなったときに、空調用熱源側熱交換器24内から空調用冷媒が回収されたことを判定して第1空調用冷媒回収運転の終了を決定する構成としてもよい。
なお、冷房時空調用冷媒入口24aの温度に替えて、空調用熱源側熱交換器24の冷房時空調用冷媒出口24bの温度上昇率が前記した所定上昇率より大きくなったときに、制御装置1aが、空調用熱源側熱交換器24内から空調用冷媒が回収されたことを判定する構成としてもよい。、
また、中間熱交換器23から空調用冷媒を回収する第2空調用冷媒回収運転時に、制御装置1aが、中間熱交換器23の冷房時空調用冷媒入口23aの温度上昇率が前記した所定上昇率より大きくなったときに、中間熱交換器23内から空調用冷媒が回収されたことを判定する構成としてもよいし、中間熱交換器23の冷房時空調用冷媒出口23bの温度上昇率が前記した所定上昇率より大きくなったときに、中間熱交換器23内から空調用冷媒が回収されたことを判定する構成としてもよい。
すなわち、制御装置1aは、空調用熱源側熱交換器24の冷房時空調用冷媒入口24aの温度上昇率、冷房時空調用冷媒出口24bの温度上昇率、中間熱交換器23の冷房時空調用冷媒入口23aの温度上昇率、冷房時空調用冷媒出口23bの温度上昇率、の1つ、またはこれらの組合せに基づいて、空調用冷媒回収運転(第1空調用冷媒回収運転、第2空調用冷媒回収運転)の終了を決定する構成にすることができる。
It is also possible to apply this modified example 2 to the air conditioning refrigerant recovery operation (first air conditioning refrigerant recovery operation, second air conditioning refrigerant recovery operation).
When applied to the first air-conditioning refrigerant recovery operation, the control device 1a calculates only the temperature of the cooling air-conditioning refrigerant inlet 24a of the air-conditioning heat source side heat exchanger 24 in step S702a of FIG. The configuration. Furthermore, in step S703a, the control device 1a calculates the temperature of the cooling air conditioning refrigerant inlet 24a calculated in step S702a and the cooling air conditioning calculated when executing step S702a before a predetermined unit time such as 1 second, for example. The temperature increase rate per unit time of the temperature of the cooling air conditioning refrigerant inlet 24a is calculated from the temperature of the refrigerant inlet 24a. Then, when the temperature increase rate of the air conditioning refrigerant inlet 24a during cooling becomes larger than the predetermined increase rate set in advance, the control device 1a receives the air conditioning refrigerant from the heat source side heat exchanger 24 for air conditioning. It is good also as a structure which determines having collect | recovered and complete | finishes the 1st air-conditioning refrigerant | coolant collection | recovery driving | operation.
When the temperature rise rate of the air conditioning refrigerant outlet 24b of the air conditioning heat source side heat exchanger 24 becomes larger than the above-mentioned predetermined rate of increase instead of the temperature of the air conditioning refrigerant inlet 24a, the control device 1a is good also as a structure which determines with the refrigerant | coolant for an air conditioning having been collect | recovered from the heat source side heat exchanger 24 for an air conditioning. ,
Further, during the second air conditioning refrigerant recovery operation for recovering the air conditioning refrigerant from the intermediate heat exchanger 23, the controller 1a causes the temperature increase rate of the cooling air conditioning refrigerant inlet 23a of the intermediate heat exchanger 23 to increase as described above. It is good also as a structure which determines that the refrigerant | coolant for air-conditioning was collect | recovered from the inside of the intermediate heat exchanger 23 when it becomes larger than a rate, and the temperature increase rate of the air-conditioning refrigerant | coolant outlet 23b at the time of the air conditioning of the intermediate heat exchanger 23 A configuration may be adopted in which it is determined that the air-conditioning refrigerant has been recovered from the intermediate heat exchanger 23 when the rate of increase is greater than the predetermined increase rate.
In other words, the control device 1a uses the temperature increase rate of the air conditioning refrigerant inlet 24a of the air conditioning heat source side heat exchanger 24, the temperature increase rate of the cooling air conditioning refrigerant outlet 24b, and the air conditioning air conditioning of the intermediate heat exchanger 23 for cooling. Based on one of the temperature rise rate of the refrigerant inlet 23a, the temperature rise rate of the air conditioning refrigerant outlet 23b, or a combination thereof, the air conditioning refrigerant recovery operation (first air conditioning refrigerant recovery operation, second air conditioning use) It can be configured to determine the end of the refrigerant recovery operation.

1a 制御装置
5 空調用冷媒回路
6 給湯用冷媒回路
21 空調用圧縮機
23 中間熱交換器
23a 冷房時空調用冷媒入口(第2空調用冷媒入口)
23b 冷房時空調用冷媒出口(第2空調用冷媒出口)
23c 給湯用冷媒入口(第2給湯用冷媒入口)
23d 給湯用冷媒出口(第2給湯用冷媒出口)
24 空調用熱源側熱交換器
24a 冷房時空調用冷媒入口(第1空調用冷媒入口)
24b 冷房時空調用冷媒出口(第1空調用冷媒出口)
27 空調用膨張弁(空調用冷媒遮断手段)
35a,35b 開閉弁(空調熱交換器用開閉弁)
35c 第1制御弁(空調熱交換器用制御弁)
35d 第2制御弁(空調熱交換器用制御弁)
41 給湯用圧縮機
43 給湯用膨張弁(給湯用冷媒遮断手段)
44 給湯用熱源側熱交換器
44a 給湯用冷媒入口(第1給湯用冷媒入口)
44b 給湯用冷媒出口(第1給湯用冷媒出口)
49a 第3制御弁(給湯熱交換器用制御弁)
49b,49d 開閉弁(給湯熱交換器用開閉弁)
49c 第4制御弁(給湯熱交換器用制御弁)
100 空調給湯システム
TH9、TH10、TH22、TH23 温度センサ(空調用温度測定手段)
TH13、TH14、TH15、TH16 温度センサ(給湯用温度測定手段)
TH19 温度センサ(外気温度測定手段)
DESCRIPTION OF SYMBOLS 1a Control apparatus 5 Air-conditioning refrigerant circuit 6 Hot-water supply refrigerant circuit 21 Air-conditioning compressor 23 Intermediate heat exchanger 23a Cooling air-conditioning refrigerant inlet (second air-conditioning refrigerant inlet)
23b Cooling air-conditioning refrigerant outlet (second air-conditioning refrigerant outlet)
23c Hot water supply refrigerant inlet (second hot water supply refrigerant inlet)
23d Hot water supply refrigerant outlet (second hot water supply refrigerant outlet)
24 Heat source side heat exchanger for air conditioning 24a Air conditioning refrigerant inlet for cooling (first air conditioning refrigerant inlet)
24b Cooling air conditioning refrigerant outlet (first air conditioning refrigerant outlet)
27 Expansion valve for air conditioning (refrigerant shut-off means for air conditioning)
35a, 35b open / close valve (open / close valve for air conditioning heat exchanger)
35c 1st control valve (control valve for air conditioning heat exchanger)
35d Second control valve (control valve for air conditioning heat exchanger)
41 Hot-water supply compressor 43 Hot-water supply expansion valve (hot-water supply refrigerant shut-off means)
44 Heat source side heat exchanger for hot water supply 44a Hot water supply refrigerant inlet (first hot water supply refrigerant inlet)
44b Hot water supply refrigerant outlet (first hot water supply refrigerant outlet)
49a Third control valve (control valve for hot water supply heat exchanger)
49b, 49d On-off valve (on-off valve for hot water heat exchanger)
49c 4th control valve (control valve for hot water supply heat exchanger)
100 Air conditioning hot water supply system TH9, TH10, TH22, TH23 Temperature sensor (temperature measuring means for air conditioning)
TH13, TH14, TH15, TH16 Temperature sensor (temperature measuring means for hot water supply)
TH19 temperature sensor (outside temperature measuring means)

Claims (9)

空調用冷媒が循環して空調サイクルを形成する空調用冷媒回路と、給湯用冷媒が循環して給湯サイクルを形成する給湯用冷媒回路と、制御装置と、を備えるとともに、
前記空調用冷媒回路において前記空調用冷媒と大気との間で熱交換する空調用熱源側熱交換器と並列に、かつ、前記給湯用冷媒回路において前記給湯用冷媒と大気との間で熱交換する給湯用熱源側熱交換器と並列に、接続されて前記空調用冷媒と前記給湯用冷媒との間で熱交換する中間熱交換器を備え、
前記制御装置は、
前記空調サイクルでの冷房運転と、前記給湯サイクルでの給湯運転と、を同時に実行する場合に、
前記中間熱交換器を不使用として前記空調用熱源側熱交換器及び前記給湯用熱源側熱交換器を使用する第1状態で実行する第1運転と、
前記空調用熱源側熱交換器及び前記給湯用熱源側熱交換器を不使用として前記中間熱交換器を使用する第2状態で実行する第2運転と、を所定の条件に基づいて切り替えるように制御する空調給湯システムであって、
前記制御装置は、
前記第1運転と前記第2運転の切り替え時に、
空調用冷媒遮断手段によって、前記中間熱交換器及び前記空調用熱源側熱交換器への前記空調用冷媒の流入を遮断するとともに、前記空調用冷媒回路に備わる空調用圧縮機を運転して前記中間熱交換器及び前記空調用熱源側熱交換器から前記空調用冷媒を回収する空調用冷媒回収運転と、
給湯用冷媒遮断手段によって、前記中間熱交換器及び前記給湯用熱源側熱交換器への前記給湯用冷媒の流入を遮断するとともに、前記給湯用冷媒回路に備わる給湯用圧縮機を運転して前記中間熱交換器及び前記給湯用熱源側熱交換器から前記給湯用冷媒を回収する給湯用冷媒回収運転と、の少なくとも一方を実行することを特徴とする空調給湯システム。
An air conditioning refrigerant circuit in which an air conditioning refrigerant circulates to form an air conditioning cycle, a hot water supply refrigerant to circulate to form a hot water supply cycle, and a control device,
Heat exchange between the air-conditioning heat source side heat exchanger in the air-conditioning refrigerant circuit and the air in parallel with the air-conditioning heat source side heat exchanger and heat exchange between the hot-water supply refrigerant and the air in the hot-water supply refrigerant circuit An intermediate heat exchanger connected in parallel with the heat source side heat exchanger for hot water supply to exchange heat between the refrigerant for air conditioning and the refrigerant for hot water supply,
The control device includes:
When performing the cooling operation in the air conditioning cycle and the hot water supply operation in the hot water supply cycle at the same time,
A first operation to be performed in a first state in which the intermediate heat exchanger is not used and the heat source side heat exchanger for air conditioning and the heat source side heat exchanger for hot water supply are used;
The second operation executed in the second state in which the intermediate heat exchanger is used without using the heat source side heat exchanger for air conditioning and the heat source side heat exchanger for hot water supply is switched based on a predetermined condition. An air conditioning hot water supply system to be controlled,
The control device includes:
When switching between the first operation and the second operation,
The air conditioning refrigerant shut-off means shuts off the inflow of the air conditioning refrigerant to the intermediate heat exchanger and the air conditioning heat source side heat exchanger, and operates the air conditioning compressor provided in the air conditioning refrigerant circuit to An air conditioning refrigerant recovery operation for recovering the air conditioning refrigerant from the intermediate heat exchanger and the air conditioning heat source side heat exchanger;
The hot water supply refrigerant shut-off means shuts off the flow of the hot water supply refrigerant to the intermediate heat exchanger and the hot water supply heat source side heat exchanger, and operates the hot water supply compressor provided in the hot water supply refrigerant circuit to An air conditioning and hot water supply system that performs at least one of a hot water supply refrigerant recovery operation for recovering the hot water supply refrigerant from an intermediate heat exchanger and the hot water supply heat source side heat exchanger.
前記空調サイクルでの冷房運転時に前記空調用熱源側熱交換器への前記空調用冷媒の入口となる第1空調用冷媒入口、前記冷房運転時に前記空調用熱源側熱交換器からの前記空調用冷媒の出口となる第1空調用冷媒出口、前記冷房運転時に前記中間熱交換器への前記空調用冷媒の入口となる第2空調用冷媒入口、及び前記冷房運転時に前記中間熱交換器からの前記空調用冷媒の出口となる第2空調用冷媒出口の温度を測定する空調用温度測定手段を備え、
前記制御装置は、前記空調用冷媒回収運転を実行する場合、
前記第1空調用冷媒入口と前記第1空調用冷媒出口の温度差と、前記第2空調用冷媒入口と前記第2空調用冷媒出口の温度差と、の少なくとも一方、
または、前記第1空調用冷媒入口の温度上昇率と、前記第1空調用冷媒出口の温度上昇率と、前記第2空調用冷媒入口の温度上昇率と、前記第2空調用冷媒出口の温度上昇率と、のうちの少なくとも1つ、
に基づいて前記空調用冷媒回収運転の終了を決定することを特徴とする請求の範囲第1項に記載の空調給湯システム。
A first air-conditioning refrigerant inlet serving as an inlet for the air-conditioning refrigerant to the air-conditioning heat source-side heat exchanger during the cooling operation in the air-conditioning cycle; and the air-conditioning from the air-conditioning heat source-side heat exchanger during the cooling operation. From the first air conditioning refrigerant outlet serving as a refrigerant outlet, the second air conditioning refrigerant inlet serving as the air conditioning refrigerant inlet to the intermediate heat exchanger during the cooling operation, and the intermediate heat exchanger from the intermediate heat exchanger during the cooling operation Air-conditioning temperature measuring means for measuring the temperature of the second air-conditioning refrigerant outlet serving as the outlet of the air-conditioning refrigerant;
When the control device executes the refrigerant recovery operation for air conditioning,
At least one of a temperature difference between the first air-conditioning refrigerant inlet and the first air-conditioning refrigerant outlet and a temperature difference between the second air-conditioning refrigerant inlet and the second air-conditioning refrigerant outlet;
Alternatively, the temperature rise rate of the first air conditioning refrigerant inlet, the temperature rise rate of the first air conditioning refrigerant outlet, the temperature rise rate of the second air conditioning refrigerant inlet, and the temperature of the second air conditioning refrigerant outlet At least one of the rate of increase,
The air conditioning hot water supply system according to claim 1, wherein the end of the air conditioning refrigerant recovery operation is determined based on the air conditioning.
前記空調サイクルでの冷房運転時に前記空調用熱源側熱交換器への前記空調用冷媒の入口となる第1空調用冷媒入口、前記冷房運転時に前記空調用熱源側熱交換器からの前記空調用冷媒の出口となる第1空調用冷媒出口、前記冷房運転時に前記中間熱交換器への前記空調用冷媒の入口となる第2空調用冷媒入口、及び前記冷房運転時に前記中間熱交換器からの前記空調用冷媒の出口となる第2空調用冷媒出口の温度を測定する空調用温度測定手段と、外気温度を測定する外気温度測定手段と、を備え、
前記制御装置は、前記空調用冷媒回収運転を実行する場合、
前記第1空調用冷媒入口の温度と外気温度の温度差と、前記第1空調用冷媒出口の温度と外気温度の温度差と、前記第2空調用冷媒入口の温度と外気温度の温度差と、前記第2空調用冷媒出口の温度と外気温度の温度差と、のうちの少なくとも1つに基づいて前記空調用冷媒回収運転の終了を決定することを特徴とする請求の範囲第1項に記載の空調給湯システム。
A first air-conditioning refrigerant inlet that serves as an inlet for the air-conditioning refrigerant to the air-conditioning heat source side heat exchanger during the cooling operation in the air-conditioning cycle; From the first air conditioning refrigerant outlet serving as a refrigerant outlet, the second air conditioning refrigerant inlet serving as the air conditioning refrigerant inlet to the intermediate heat exchanger during the cooling operation, and the intermediate heat exchanger from the intermediate heat exchanger during the cooling operation Air-conditioning temperature measuring means for measuring the temperature of the second air-conditioning refrigerant outlet serving as the outlet of the air-conditioning refrigerant, and outside air temperature measuring means for measuring the outside air temperature,
When the control device executes the refrigerant recovery operation for air conditioning,
The temperature difference between the temperature of the first air conditioning refrigerant inlet and the outside air temperature, the temperature difference between the first air conditioning refrigerant outlet and the outside air temperature, and the temperature difference between the temperature of the second air conditioning refrigerant inlet and the outside air temperature The end of the air-conditioning refrigerant recovery operation is determined based on at least one of a temperature difference between the temperature of the second air-conditioning refrigerant outlet and the outside air temperature. The air conditioning hot water supply system described.
前記給湯サイクルでの給湯運転時に前記給湯用熱源側熱交換器への前記給湯用冷媒の入口となる第1給湯用冷媒入口、前記給湯運転時に前記給湯用熱源側熱交換器からの前記給湯用冷媒の出口となる第1給湯用冷媒出口、前記給湯運転時に前記中間熱交換器への前記給湯用冷媒の入口となる第2給湯用冷媒入口、及び前記給湯運転時に前記中間熱交換器からの前記給湯用冷媒の出口となる第2給湯用冷媒出口の温度を測定する給湯用温度測定手段を備え、
前記制御装置は、前記給湯用冷媒回収運転を実行する場合、
前記第1給湯用冷媒入口と前記第1給湯用冷媒出口の温度差と、前記第2給湯用冷媒入口と前記第2給湯用冷媒出口の温度差と、の少なくとも一方、
または、前記第1給湯用冷媒入口の温度上昇率と、前記第1給湯用冷媒出口の温度上昇率と、前記第2給湯用冷媒入口の温度上昇率と、前記第2給湯用冷媒出口の温度上昇率と、のうちの少なくとも1つ、
に基づいて前記給湯用冷媒回収運転の終了を決定することを特徴とする請求の範囲第1項乃至請求の範囲第3項のいずれか1項に記載の空調給湯システム。
A first hot water supply refrigerant inlet serving as an inlet of the hot water supply refrigerant to the hot water supply heat source side heat exchanger during the hot water supply operation in the hot water supply cycle, and for the hot water supply from the hot water supply heat source side heat exchanger during the hot water supply operation A first hot water supply refrigerant outlet serving as a refrigerant outlet, a second hot water supply refrigerant inlet serving as an inlet for the hot water supply refrigerant to the intermediate heat exchanger during the hot water operation, and an intermediate heat exchanger from the intermediate heat exchanger during the hot water operation Hot water supply temperature measuring means for measuring the temperature of the second hot water supply refrigerant outlet serving as the outlet of the hot water supply refrigerant;
When the controller performs the hot water supply refrigerant recovery operation,
At least one of a temperature difference between the first hot water supply refrigerant inlet and the first hot water supply refrigerant outlet and a temperature difference between the second hot water supply refrigerant inlet and the second hot water supply refrigerant outlet;
Alternatively, the temperature increase rate of the first hot water supply refrigerant inlet, the temperature increase rate of the first hot water supply refrigerant outlet, the temperature increase rate of the second hot water supply refrigerant inlet, and the temperature of the second hot water supply refrigerant outlet At least one of the rate of increase,
The air conditioning hot water supply system according to any one of claims 1 to 3, wherein the end of the hot water supply refrigerant recovery operation is determined based on the above.
前記給湯サイクルでの給湯運転時に前記給湯用熱源側熱交換器への前記給湯用冷媒の入口となる第1給湯用冷媒入口、前記給湯運転時に前記給湯用熱源側熱交換器からの前記給湯用冷媒の出口となる第1給湯用冷媒出口、前記給湯運転時に前記中間熱交換器への前記給湯用冷媒の入口となる第2給湯用冷媒入口、及び前記給湯運転時に前記中間熱交換器からの前記給湯用冷媒の出口となる第2給湯用冷媒出口の温度を測定する給湯用温度測定手段と、外気温度を測定する外気温度測定手段と、を備え、
前記制御装置は、前記給湯用冷媒回収運転を実行する場合、
前記第1給湯用冷媒入口の温度と外気温度の温度差と、前記第1給湯用冷媒出口の温度と外気温度の温度差と、前記第2給湯用冷媒入口の温度と外気温度の温度差と、前記第2給湯用冷媒出口の温度と外気温度の温度差と、のうちの少なくとも1つに基づいて前記給湯用冷媒回収運転の終了を決定することを特徴とする請求の範囲第1項乃至請求の範囲第3項のいずれか1項に記載の空調給湯システム。
A first hot water supply refrigerant inlet serving as an inlet of the hot water supply refrigerant to the hot water supply heat source side heat exchanger during the hot water supply operation in the hot water supply cycle, and for the hot water supply from the hot water supply heat source side heat exchanger during the hot water supply operation A first hot water supply refrigerant outlet serving as a refrigerant outlet, a second hot water supply refrigerant inlet serving as an inlet for the hot water supply refrigerant to the intermediate heat exchanger during the hot water operation, and an intermediate heat exchanger from the intermediate heat exchanger during the hot water operation Hot water supply temperature measurement means for measuring the temperature of the second hot water supply refrigerant outlet serving as the outlet of the hot water supply refrigerant, and outside air temperature measurement means for measuring the outside air temperature,
When the controller performs the hot water supply refrigerant recovery operation,
The temperature difference between the temperature of the first hot water supply refrigerant inlet and the outside air temperature, the temperature difference between the temperature of the first hot water supply refrigerant outlet and the outside air temperature, the temperature difference between the temperature of the second hot water supply refrigerant inlet and the outside air temperature, The end of the hot water supply refrigerant recovery operation is determined based on at least one of the temperature difference between the temperature of the second hot water supply refrigerant outlet and the outside air temperature. The air conditioning hot water supply system according to any one of claims 3 to 4.
前記制御装置は、
前記空調サイクルでの冷房運転と、前記給湯サイクルでの給湯運転と、を同時に実行する場合に、前記空調用冷媒回路における空調放熱量と前記給湯用冷媒回路における給湯吸熱量とを演算し、
前記空調放熱量と前記給湯吸熱量が等しいときは、前記第2状態で前記第2運転を実行して、前記中間熱交換器で前記給湯用冷媒と前記空調用冷媒との間で熱交換し、
前記空調放熱量と前記給湯吸熱量が等しくないときは、前記第1状態で前記第1運転を実行して、前記空調用熱源側熱交換器で大気と前記空調用冷媒との間で熱交換するとともに、前記給湯用熱源側熱交換器で大気と前記給湯用冷媒との間で熱交換することを特徴とする請求の範囲第1項乃至請求の範囲第3項のいずれか1項に記載の空調給湯システム。
The control device includes:
When performing the cooling operation in the air conditioning cycle and the hot water supply operation in the hot water supply cycle at the same time, the air conditioning heat radiation amount in the air conditioning refrigerant circuit and the hot water supply heat absorption amount in the hot water refrigerant circuit are calculated,
When the air-conditioning heat dissipation amount and the hot water supply heat absorption amount are equal, the second operation is executed in the second state, and heat is exchanged between the hot water supply refrigerant and the air conditioning refrigerant in the intermediate heat exchanger. ,
When the air-conditioning heat dissipation amount and the hot water supply heat absorption amount are not equal, the first operation is executed in the first state, and heat exchange is performed between the atmosphere and the air-conditioning refrigerant in the air-conditioning heat source side heat exchanger. And heat exchange between the atmosphere and the hot water supply refrigerant in the hot water supply heat source side heat exchanger. Air conditioning and hot water supply system.
前記制御装置は、
前記空調サイクルでの冷房運転と、前記給湯サイクルでの給湯運転と、を同時に実行する場合に、前記空調用冷媒回路における空調放熱量と前記給湯用冷媒回路における給湯吸熱量とを演算し、
前記空調放熱量と前記給湯吸熱量が等しいときは、前記第2状態で前記第2運転を実行して、前記中間熱交換器で前記給湯用冷媒と前記空調用冷媒との間で熱交換し、
前記空調放熱量と前記給湯吸熱量が等しくないときは、前記第1状態で前記第1運転を実行して、前記空調用熱源側熱交換器で大気と前記空調用冷媒との間で熱交換するとともに、前記給湯用熱源側熱交換器で大気と前記給湯用冷媒との間で熱交換することを特徴とする請求の範囲第4項に記載の空調給湯システム。
The control device includes:
When performing the cooling operation in the air conditioning cycle and the hot water supply operation in the hot water supply cycle at the same time, the air conditioning heat radiation amount in the air conditioning refrigerant circuit and the hot water supply heat absorption amount in the hot water refrigerant circuit are calculated,
When the air-conditioning heat dissipation amount and the hot water supply heat absorption amount are equal, the second operation is executed in the second state, and heat is exchanged between the hot water supply refrigerant and the air conditioning refrigerant in the intermediate heat exchanger. ,
When the air-conditioning heat dissipation amount and the hot water supply heat absorption amount are not equal, the first operation is executed in the first state, and heat exchange is performed between the atmosphere and the air-conditioning refrigerant in the air-conditioning heat source side heat exchanger. In addition, the air-conditioning hot water supply system according to claim 4, wherein heat is exchanged between the atmosphere and the hot water supply refrigerant by the hot water supply heat source side heat exchanger.
前記制御装置は、
前記空調サイクルでの冷房運転と、前記給湯サイクルでの給湯運転と、を同時に実行する場合に、前記空調用冷媒回路における空調放熱量と前記給湯用冷媒回路における給湯吸熱量とを演算し、
前記空調放熱量と前記給湯吸熱量が等しいときは、前記第2状態で前記第2運転を実行して、前記中間熱交換器で前記給湯用冷媒と前記空調用冷媒との間で熱交換し、
前記空調放熱量と前記給湯吸熱量が等しくないときは、前記第1状態で前記第1運転を実行して、前記空調用熱源側熱交換器で大気と前記空調用冷媒との間で熱交換するとともに、前記給湯用熱源側熱交換器で大気と前記給湯用冷媒との間で熱交換することを特徴とする請求の範囲第5項に記載の空調給湯システム。
The control device includes:
When performing the cooling operation in the air conditioning cycle and the hot water supply operation in the hot water supply cycle at the same time, the air conditioning heat radiation amount in the air conditioning refrigerant circuit and the hot water supply heat absorption amount in the hot water refrigerant circuit are calculated,
When the air-conditioning heat dissipation amount and the hot water supply heat absorption amount are equal, the second operation is executed in the second state, and heat is exchanged between the hot water supply refrigerant and the air conditioning refrigerant in the intermediate heat exchanger. ,
When the air-conditioning heat dissipation amount and the hot water supply heat absorption amount are not equal, the first operation is executed in the first state, and heat exchange is performed between the atmosphere and the air-conditioning refrigerant in the air-conditioning heat source side heat exchanger. The air-conditioning hot water supply system according to claim 5, wherein heat is exchanged between the atmosphere and the hot water supply refrigerant by the hot water supply heat source side heat exchanger.
空調用冷媒が循環して空調サイクルを形成する空調用冷媒回路と、給湯用冷媒が循環して給湯サイクルを形成する給湯用冷媒回路と、制御装置と、を備えるとともに、
前記空調用冷媒回路において前記空調用冷媒と大気との間で熱交換する空調用熱源側熱交換器と並列に、かつ、前記給湯用冷媒回路において前記給湯用冷媒と大気との間で熱交換する給湯用熱源側熱交換器と並列に、接続されて前記空調用冷媒と前記給湯用冷媒との間で熱交換する中間熱交換器を備えてなる空調給湯システムの制御方法であって、
前記制御装置が、前記空調サイクルでの冷房運転と、前記給湯サイクルでの給湯運転と、を同時に実行する場合に、
前記空調用冷媒回路における空調放熱量と、前記給湯用冷媒回路における給湯吸熱量を演算するステップと、
前記空調放熱量と前記給湯吸熱量を比較するステップと、
前記空調放熱量と前記給湯量が等しくないときに、前記中間熱交換器を不使用として前記空調用熱源側熱交換器及び前記給湯用熱源側熱交換器を使用する第1状態で第1運転を実行するステップと、
前記空調放熱量と前記給湯量が等しいときに、前記空調用熱源側熱交換器及び前記給湯用熱源側熱交換器を不使用として前記中間熱交換器を使用する第2状態で第2運転を実行するステップとを、有し、
さらに、前記第1運転と前記第2運転の切り替え時に、
空調用冷媒遮断手段で前記中間熱交換器及び前記空調用熱源側熱交換器への前記空調用冷媒の流入を遮断するステップ、及び前記空調用冷媒回路に備わる空調用圧縮機を運転して前記中間熱交換器及び前記空調用熱源側熱交換器から前記空調用冷媒を回収するステップを含んでなる空調用冷媒回収運転と、
給湯用冷媒遮断手段で前記中間熱交換器及び前記給湯用熱源側熱交換器への前記給湯用冷媒の流入を遮断するステップ、及び前記給湯用冷媒回路に備わる給湯用圧縮機を運転して前記中間熱交換器及び前記給湯用熱源側熱交換器から前記給湯用冷媒を回収するステップを含んでなる給湯用冷媒回収運転と、
の少なくとも一方を実行するステップを有することを特徴とする空調給湯システムの制御方法。
An air conditioning refrigerant circuit in which an air conditioning refrigerant circulates to form an air conditioning cycle, a hot water supply refrigerant to circulate to form a hot water supply cycle, and a control device,
Heat exchange between the air-conditioning heat source side heat exchanger in the air-conditioning refrigerant circuit and the air in parallel with the air-conditioning heat source side heat exchanger and heat exchange between the hot-water supply refrigerant and the air in the hot-water supply refrigerant circuit A control method for an air conditioning and hot water supply system comprising an intermediate heat exchanger that is connected in parallel with the hot water supply heat source side heat exchanger to exchange heat between the air conditioning refrigerant and the hot water supply refrigerant,
When the control device performs a cooling operation in the air conditioning cycle and a hot water supply operation in the hot water supply cycle at the same time,
Calculating an air-conditioning heat dissipation amount in the air-conditioning refrigerant circuit, and a hot-water supply heat absorption amount in the hot-water supply refrigerant circuit;
Comparing the air conditioning heat dissipation amount and the hot water supply heat absorption amount;
When the air-conditioning heat dissipation amount and the hot water supply amount are not equal, the first operation is performed in the first state in which the intermediate heat exchanger is not used and the air-conditioning heat source side heat exchanger and the hot water supply heat source side heat exchanger are used. A step of performing
When the air-conditioning heat dissipation amount and the hot-water supply amount are equal, the second operation is performed in the second state in which the intermediate heat exchanger is used without using the air-conditioning heat source side heat exchanger and the hot water supply heat source side heat exchanger. And performing the steps
Furthermore, at the time of switching between the first operation and the second operation,
Shutting off the inflow of the air conditioning refrigerant to the intermediate heat exchanger and the heat source side heat exchanger by the air conditioning refrigerant shut-off means, and operating the air conditioning compressor provided in the air conditioning refrigerant circuit, An air conditioning refrigerant recovery operation comprising a step of recovering the air conditioning refrigerant from an intermediate heat exchanger and the air conditioning heat source side heat exchanger;
Shutting off the flow of the hot water supply refrigerant into the intermediate heat exchanger and the hot water source heat exchanger with the hot water supply refrigerant shut-off means, and operating the hot water supply compressor provided in the hot water supply refrigerant circuit A hot water supply refrigerant recovery operation comprising a step of recovering the hot water supply refrigerant from an intermediate heat exchanger and the hot water supply heat source side heat exchanger;
A method for controlling an air conditioning and hot water supply system comprising the step of executing at least one of the following.
JP2013500758A 2011-02-22 2011-02-22 Air conditioning and hot water supply system and control method for air conditioning and hot water supply system Expired - Fee Related JP5492347B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053864 WO2012114462A1 (en) 2011-02-22 2011-02-22 Air conditioning/hot water supply system and control method for air conditioning/hot water supply system

Publications (2)

Publication Number Publication Date
JP5492347B2 JP5492347B2 (en) 2014-05-14
JPWO2012114462A1 true JPWO2012114462A1 (en) 2014-07-07

Family

ID=46720282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013500758A Expired - Fee Related JP5492347B2 (en) 2011-02-22 2011-02-22 Air conditioning and hot water supply system and control method for air conditioning and hot water supply system

Country Status (2)

Country Link
JP (1) JP5492347B2 (en)
WO (1) WO2012114462A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163624A (en) * 2013-02-27 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
KR101692243B1 (en) * 2015-08-11 2017-01-04 주식회사 경동나비엔 Heat pump with cascade refrigerating cycle
CN113587501A (en) * 2021-07-27 2021-11-02 吴水清 Automatic pressure-stabilizing throttling device with protection function, air conditioner hot water type refrigerant circulating system and control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101771A (en) * 1984-10-23 1986-05-20 三菱電機株式会社 Heat pump type air-conditioning hot-water supply machine
JP2553738B2 (en) * 1990-05-25 1996-11-13 松下電器産業株式会社 Heat pump system and its control method
JP2004218943A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Air conditioning and water heater
JP2005299935A (en) * 2004-04-06 2005-10-27 Fujitsu General Ltd Air conditioner
WO2010082324A1 (en) * 2009-01-15 2010-07-22 三菱電機株式会社 Complex system for air conditioning and hot water supplying

Also Published As

Publication number Publication date
JP5492347B2 (en) 2014-05-14
WO2012114462A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
US9903601B2 (en) Air-conditioning apparatus
JP5774225B2 (en) Air conditioner
JP5228023B2 (en) Refrigeration cycle equipment
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP5572711B2 (en) Air conditioning and hot water supply system
JP5373964B2 (en) Air conditioning and hot water supply system
US9140459B2 (en) Heat pump device
JP5455521B2 (en) Air conditioning and hot water supply system
JP5674822B2 (en) Air conditioner
JP5121747B2 (en) Geothermal heat pump device
JP2006283989A (en) Cooling/heating system
JP2012067937A (en) Air conditioning and hot-water supply device
JP5748850B2 (en) Air conditioner
JP5629367B2 (en) Air conditioning and hot water supply system
US8959940B2 (en) Refrigeration cycle apparatus
JP5492347B2 (en) Air conditioning and hot water supply system and control method for air conditioning and hot water supply system
JP5996089B2 (en) Air conditioner
WO2013080497A1 (en) Refrigeration cycle device and hot water generating apparatus comprising same
JP2008175402A (en) Operating method of refrigerating cycle device
KR101653567B1 (en) A Duality Cold Cycle Heatpump System Recovering Heat
JP2013117373A (en) Refrigeration cycle device and refrigeration cycle control method
KR20120043905A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5492347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees