JPWO2012099261A1 - Polyester carbonate copolymer and process for producing the same - Google Patents

Polyester carbonate copolymer and process for producing the same Download PDF

Info

Publication number
JPWO2012099261A1
JPWO2012099261A1 JP2012553794A JP2012553794A JPWO2012099261A1 JP WO2012099261 A1 JPWO2012099261 A1 JP WO2012099261A1 JP 2012553794 A JP2012553794 A JP 2012553794A JP 2012553794 A JP2012553794 A JP 2012553794A JP WO2012099261 A1 JPWO2012099261 A1 JP WO2012099261A1
Authority
JP
Japan
Prior art keywords
mol
polyester carbonate
carbonate copolymer
acid
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012553794A
Other languages
Japanese (ja)
Other versions
JP5719854B2 (en
Inventor
和徳 布目
和徳 布目
学 松井
学 松井
丹藤 和志
和志 丹藤
輝幸 重松
輝幸 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2012553794A priority Critical patent/JP5719854B2/en
Publication of JPWO2012099261A1 publication Critical patent/JPWO2012099261A1/en
Application granted granted Critical
Publication of JP5719854B2 publication Critical patent/JP5719854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

本発明の目的は、光学特性が良好で、さらに、色相および成形性に優れるポリエステルカーボネート共重合体を提供することにある。本発明は、下記式(I)で表される単位および下記式(II)で表される単位を含有し、ポリマー全末端中に対するフェニル末端の割合が30モル%以下であるポリエステルカーボネート共重合体である。(式(II)中Yは、フェニレン基またはナフタレンジイル基である。)An object of the present invention is to provide a polyester carbonate copolymer having good optical properties and excellent in hue and moldability. The present invention includes a polyester carbonate copolymer containing a unit represented by the following formula (I) and a unit represented by the following formula (II), wherein the proportion of phenyl ends relative to all the ends of the polymer is 30 mol% or less. It is. (In formula (II), Y represents a phenylene group or a naphthalenediyl group.)

Description

本発明は、成形性が良好かつ成形時の着色が極めて小さいポリエステルカーボネート共重合体およびその製造方法に関する。   The present invention relates to a polyester carbonate copolymer having good moldability and extremely small coloring during molding, and a method for producing the same.

非晶性エンジニアリングプラスチックに、芳香族ジオール、芳香族ジカルボン酸およびカーボネート前駆体に由来する芳香族ポリエステルカーボネートがある。芳香族ポリエステルカーボネートは、耐熱性、透明性、耐衝撃性等に優れることから、レンズやライトカバー等に利用されている。
例えば、芳香族ジオールとして2,2−ビス(4−ヒドロキシフェニル)プロパン(以下ビスフェノールAと略すことがある)、芳香族ジカルボン酸としてテレフタル酸やイソフタル酸よりなる非晶性芳香族ポリエステルカーボネートは、ビスフェノールAを主成分とするポリカーボネートよりも高い熱変形温度を示すとともに、優れた透明性を示し比較的バランスの取れた特性を有していることから、各種の用途に用いられている。
これらポリエステルカーボネートを製造する方法は種々知られているが、その一般的な方法は、エステル交換法により芳香族ジオール類、炭酸ジエステルおよび芳香族ジカルボン酸ジエステル類を溶融状態で重合する溶融重縮合法がある。この溶融重縮合法は溶媒を使用せず、基本的にハロゲン系の原料を使用しないという特徴を有するが、高温で反応するために得られるポリマーの着色が大きいという問題を有する。このような溶融重縮合法の問題点を解決するため、特許文献1には、生成した全芳香族ポリエステルカーボネート中の末端を制御する方法が開示されている。該公報によれば、得られるポリエステルカーボネート樹脂は耐熱性に優れ、着色が少ないことが記載されている。しかしながら、該樹脂は原料として芳香族性水酸基を有するジオールを使用しているため、末端芳香族性水酸基が少なからず存在してしまい、上記着色問題を完全に解決できていない。
一方、特許文献2には、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンと芳香族ジカルボン酸からなるポリエステルカーボネート樹脂が開示されている。該公報によれば、得られるポリエステルカーボネート樹脂は良好な光学特性を示すことが記載されている。しかしながら、具体的にその実施例で示されたポリエステルカーボネート樹脂はポリマー分子末端中のフェニル末端の割合が多いため、成形や製膜等の加工時にフェニル末端が分解しフェノールが発生することがあった。また、使用するTi触媒量が少ないため、反応時間が極めて長いことがあった。これらの理由により、ガス発生が多く成形不良が起こったり、成形品の色相が悪化したりするという課題があった。
特開2003−231742号公報 特開平10−87800号公報
Amorphous engineering plastics include aromatic polyester carbonates derived from aromatic diols, aromatic dicarboxylic acids and carbonate precursors. Aromatic polyester carbonates are used in lenses, light covers and the like because they are excellent in heat resistance, transparency, impact resistance and the like.
For example, an amorphous aromatic polyester carbonate composed of 2,2-bis (4-hydroxyphenyl) propane (hereinafter sometimes abbreviated as bisphenol A) as an aromatic diol and terephthalic acid or isophthalic acid as an aromatic dicarboxylic acid, Since it has a higher heat distortion temperature than polycarbonate mainly composed of bisphenol A, it has excellent transparency and a relatively balanced characteristic, it is used in various applications.
Various methods for producing these polyester carbonates are known. The general method is a melt polycondensation method in which aromatic diols, carbonic acid diesters and aromatic dicarboxylic acid diesters are polymerized in a molten state by a transesterification method. There is. This melt polycondensation method has a feature that it does not use a solvent and basically does not use a halogen-based raw material, but has a problem that the resulting polymer is highly colored due to the reaction at a high temperature. In order to solve such problems of the melt polycondensation method, Patent Document 1 discloses a method for controlling the terminal in the produced wholly aromatic polyester carbonate. According to the publication, it is described that the obtained polyester carbonate resin is excellent in heat resistance and less colored. However, since the resin uses a diol having an aromatic hydroxyl group as a raw material, not a few terminal aromatic hydroxyl groups are present, and thus the above coloring problem cannot be completely solved.
On the other hand, Patent Document 2 discloses a polyester carbonate resin composed of 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene and an aromatic dicarboxylic acid. According to the publication, it is described that the obtained polyester carbonate resin exhibits good optical properties. However, the polyester carbonate resin specifically shown in the examples has a high proportion of phenyl ends in the polymer molecule ends, and thus the phenyl ends may be decomposed during processing such as molding and film formation, and phenol may be generated. . Further, since the amount of Ti catalyst used is small, the reaction time may be extremely long. For these reasons, there is a problem that gas generation is large and molding defects occur, or the hue of the molded product deteriorates.
JP 2003-231742 A JP-A-10-87800

本発明の目的は、成形性および色相に優れるポリエステルカーボネート共重合体およびその製造方法を提供することにある。また本発明の目的は、色相に優れた光学部材を低い成形不良率で製造する方法を提供することにある。
本発明者らは上記目的を達成せんとして鋭意研究を重ねた結果、ポリマー分子末端組成を特定の範囲内にし、使用する触媒種と量を厳密に制御することで、成形性および色相に優れるポリエステルカーボネート共重合体が得られることを見出し、本発明に到達した。
すなわち、本発明によれば、以下の発明が提供される。
1. 67〜95モル%の下記式(I)で表される単位および33〜5モル%の下記式(II)で表される単位を含有し、比粘度が0.12〜0.55の範囲にあり、ポリマー全末端に対するフェニル末端の割合が30モル%以下であるポリエステルカーボネート共重合体。

Figure 2012099261
(式(II)中Yは、フェニレン基またはナフタレンジイル基である。)
2. ポリマー全末端に対するフェニル末端の割合が0〜30モル%、ヒドロキシル末端の割合が30〜98モル%、メチルエステル末端の割合が2〜70モル%である前項1に記載のポリエステルカーボネート共重合体。
3. 75〜95モル%の式(I)で表される単位および25〜5モル%の式(II)で表される単位を含有する前項1記載のポリエステルカーボネート共重合体。
4. 比粘度が0.12〜0.30の範囲にある前項1記載のポリエステルカーボネート共重合体。
5. Ti原子をポリエステルカーボネート共重合体の重量を基準として、0.5〜100ppm含む前項1記載のポリエステルカーボネート共重合体。
6. Ti原子をポリエステルカーボネート共重合体の重量を基準として、1.0〜50ppm含む前項1記載のポリエステルカーボネート共重合体。
7. シリンダ温度280℃で、厚さ1mmの成形板を成形した時の成形板のYI値が1.0〜6.0である前項1記載のポリエステルカーボネート共重合体。
8. 下記式(a)で表されるジオール、下記式(b)で表されるジカルボン酸および炭酸ジエステル(c)を反応させポリエステルカーボネート共重合体を製造する方法であって、
Figure 2012099261
(式(b)中Yは、フェニレン基またはナフタレンジイル基である。)
炭酸ジエステル(c)の使用量が下記式(1)を満足し、かつ、チタン化合物をジオールとジカルボンの合計1モル対して、チタン元素として10−5〜10−3モルの比率で用いることを特徴とするポリエステルカーボネート共重合体の製造方法。
1.0≦(C)/{(A)−(B)}≦1.5 (1)
(式中、(A)はジオールの仕込みモル量、(B)はジカルボン酸またはそのエステル形成性誘導体の仕込みモル量、(C)は炭酸ジエステルの仕込みモル量である。)
9. 前項1に記載のポリエステルカーボネート共重合体を含有する樹脂組成物を射出成形することからなる光学部材の製造方法。
10. シリンダ温度260〜300℃、金型温度100〜140℃の範囲で射出成形する前項9記載の製造方法。
11. 成形不良率が10%以下である前項9記載の製造方法。
12. 光学部材がレンズである前項9記載の製造方法。The objective of this invention is providing the polyester carbonate copolymer excellent in a moldability and a hue, and its manufacturing method. Another object of the present invention is to provide a method for producing an optical member excellent in hue at a low molding defect rate.
As a result of intensive research aimed at achieving the above object, the inventors of the present invention have achieved excellent polyester moldability and hue by controlling the polymer species and amount to be used within a specific range of the polymer molecule terminal composition. The inventors have found that a carbonate copolymer can be obtained and have reached the present invention.
That is, according to the present invention, the following inventions are provided.
1. It contains 67 to 95 mol% of the unit represented by the following formula (I) and 33 to 5 mol% of the unit represented by the following formula (II), and the specific viscosity is in the range of 0.12 to 0.55. A polyester carbonate copolymer having a phenyl terminal ratio of 30 mol% or less with respect to all polymer terminals.
Figure 2012099261
(In formula (II), Y represents a phenylene group or a naphthalenediyl group.)
2. 2. The polyester carbonate copolymer according to item 1, wherein the ratio of phenyl terminals to the total terminals of the polymer is 0 to 30 mol%, the ratio of hydroxyl terminals is 30 to 98 mol%, and the ratio of methyl ester terminals is 2 to 70 mol%.
3. 2. The polyester carbonate copolymer according to item 1, which contains 75 to 95 mol% of the unit represented by formula (I) and 25 to 5 mol% of the unit represented by formula (II).
4). 2. The polyester carbonate copolymer according to item 1, wherein the specific viscosity is in the range of 0.12 to 0.30.
5. 2. The polyester carbonate copolymer according to item 1 above, containing 0.5 to 100 ppm of Ti atoms based on the weight of the polyester carbonate copolymer.
6). 2. The polyester carbonate copolymer according to item 1 above, containing 1.0 to 50 ppm of Ti atoms based on the weight of the polyester carbonate copolymer.
7). 2. The polyester carbonate copolymer according to item 1, wherein the molded plate has a YI value of 1.0 to 6.0 when a molded plate having a thickness of 1 mm is formed at a cylinder temperature of 280 ° C.
8). A method for producing a polyester carbonate copolymer by reacting a diol represented by the following formula (a), a dicarboxylic acid represented by the following formula (b) and a carbonic acid diester (c),
Figure 2012099261
(In formula (b), Y represents a phenylene group or a naphthalenediyl group.)
The amount of carbonic acid diester (c) used satisfies the following formula (1), and the titanium compound is used in a ratio of 10 −5 to 10 −3 mol as a titanium element with respect to a total of 1 mol of diol and dicarboxylic acid. A method for producing a polyester carbonate copolymer.
1.0 ≦ (C) / {(A) − (B)} ≦ 1.5 (1)
(In the formula, (A) is the charged molar amount of diol, (B) is the charged molar amount of dicarboxylic acid or its ester-forming derivative, and (C) is the charged molar amount of carbonic acid diester.)
9. A method for producing an optical member comprising injection-molding a resin composition containing the polyester carbonate copolymer according to item 1 above.
10. 10. The manufacturing method according to item 9 above, wherein the injection molding is performed at a cylinder temperature of 260 to 300 ° C. and a mold temperature of 100 to 140 ° C.
11. 10. The method according to item 9, wherein the molding defect rate is 10% or less.
12 10. The manufacturing method according to 9 above, wherein the optical member is a lens.

本発明のポリエステルカーボネート共重合体(以下、共重合体と略することがある)は、下記式(I)で表わされる単位および下記式(II)で表わされる単位を含有する。

Figure 2012099261
上式(II)中Yは、フェニレン基またはナフタレンジイル基である。Yは、1,4−フェニレン基、1、3−フェニレン基または2,6−ナフタレンジイル基であることが好ましい。
本発明の共重合体中の式(I)の単位の含有量は、67〜95モル%、上記式(II)の単位の含有量は、33〜5モル%であると光学特性が特に良好となり好ましい。上記式(I)および(II)の単位の含有量が、上記範囲外である場合、光学特性(特に複屈折)が悪化するため好ましくない。式(I)の単位の含有量は、好ましくは75〜95モル%である。式(II)の単位の含有量は、好ましくは25〜5モル%である。
本発明の共重合体は、フェニル末端、ヒドロキシル末端、メチルエステル末端をポリマー中に少なくとも一つ含有する。本発明の共重合体の全末端に対するフェニル末端の割合は、30モル%以下であり、20モル%以下がより好ましく、10モル%以下がよりいっそう好ましい。フェニル末端の割合が30モル%より大きい場合、得られる共重合体の色相が悪くなること、成形時や製膜時のガス発生が多くなることがあり好ましくない。
本発明の共重合体中のフェニル末端、ヒドロキシル末端、メチルエステル末端の割合は、フェニル末端の割合が0〜30モル%、ヒドロキシル末端が30〜98モル%、メチルエステル末端が2〜70モル%であることが好ましい。フェニル末端の割合が0〜20モル%、ヒドロキシル末端が50〜98モル%、メチルエステル末端が2〜50モル%であることがより好ましい。フェニル末端の割合が0〜10モル%、ヒドロキシル末端が70〜98モル%、メチルエステル末端が2〜30モル%であることがさらに好ましい。ヒドロキシル末端および、メチルエステル末端が上記範囲外のポリマー得る場合、重合時間を極めて多く要し、ポリマー色相が悪化するため好ましくない。
本発明の共重合体の比粘度は、0.12〜0.55の範囲にあることが好ましく、0.12〜0.45の範囲であるとより好ましく、0.12〜0.30の範囲であるとよりいっそう好ましい。比粘度が0.12未満では成形品が脆くなり好ましくない。比粘度が0.55より高くなると、重合時間が長くなり樹脂の色相が悪くなることや溶融粘度が高くなり成形性が悪くなることがあり好ましくない。
本発明の共重合体は、主として9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンをジオール成分として含有する。共重合体の特性を損なわない程度に他のジオール成分を含有していても良い。例えばジオール成分の80モル%以上、さらに90モル%以上が9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンであることが好ましい。上記9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンと併用する他のジオール成分としては例えば、エチレングリコール、ヘキサンジオール等の脂肪族ジオール、トリシクロ[5.2.1.02,6]デカンジメタノール、シクロヘキサン−1,4−ジメタノール、デカリン−2,6−ジメタノール、ノルボルナンジメタノール、ペンタシクロペンタデカンジメタノール、シクロペンタン−1,3−ジメタノール、スピログリコール等の脂環式ジオール、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン(ビスフェノールM)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン(ビスフェノールC)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)、ビスフェノールフルオレン、ビスクレゾールフルオレン等の芳香族ジオール等が挙げられる。これらは単独または二種以上組み合わせて用いてもよい。
本発明の共重合体はジカルボン酸成分として、主としてテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸またはこれらのエステル形成性誘導体を含有する。
ジカルボン酸成分は、得られる共重合体の特性を損なわない程度に他のジカルボン酸成分を含有していても良い。この場合、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸の含有量は、ジカルボン酸成分100モル%に対し、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。
他のジカルボン酸として、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸が挙げられる。また、フタル酸等の単環式芳香族ジカルボン酸や、2,7−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,8−ナフタレンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸等の多環式芳香族ジカルボン酸が挙げられる。また、2,2’−ビフェニルジカルボン酸等のビフェニルジカルボン酸や、1,4−シクロジカルボン酸、2,6−デカリンジカルボン酸等の脂還族ジカルボン酸が挙げられる。これらは単独または二種以上組み合わせて用いてもよい。また、これらの誘導体としては酸クロライドやエステル類が用いられる。
本発明の共重合体は、ポリエステルカーボネート共重合体に対して、Ti原子を0.5〜100ppm含むことが好ましく、1.0〜50ppm含むとより好ましい。Ti原子量が上記範囲内であると、反応制御と色相の両立ができ、特に好ましい。
本発明の共重合体は、シリンダ温度280℃で、厚さ1mmの成形板を成形した時の成形板のYI値が1.0〜6.0であることが好ましい。
(共重合体の製造)
本発明の共重合体を製造する方法としては、ジオール(a)とジカルボン酸(b)とビスアリールカーボネートとのエステル交換反応が好ましく採用される。
本発明の共重合体は、ジオール(a)およびジカルボン酸(b)および炭酸ジエステル(c)を、塩基性化合物触媒もしくはエステル交換触媒もしくはその双方からなる混合触媒の存在下、溶融重縮合法により好適に得ることができる。
溶融重縮合法を回分式の操作で実施する場合、エステル交換反応の進行に伴って反応系の粘度が大きく変化し、また反応で副生するモノヒドロキシ化合物の発生量が大きく変化する等の理由により、2基以上の反応槽を使用することが好ましい。
第1反応槽は未反応の炭酸ジエステル(c)やモノマーと副生するモノヒドロキシ化合物とを分離し、反応系内に未反応の炭酸ジエステル(c)やモノマーを還流するための精留塔を備えた竪型撹拌槽を使用することが好ましい。第1反応槽では、所定量のモノマーを仕込み、窒素置換した後、不活性ガス存在下にジオール(a)とジカルボン酸(b)と炭酸ジエステル(c)とを混合し溶融させる。溶融後、20〜90kPa、好ましくは40〜80kPaの弱減圧下、120〜300℃、好ましくは150〜280℃で反応を行い、副生するモノヒドロキシ化合物を系外に留去させる。常圧で反応を行う場合、反応終了後の残存フェノールが多くなり色相が低下するため好ましくない。また、フェノールの留出速度が遅くなり、反応時間を多く要すため好ましくない。減圧度が20kPaより小さい場合、未反応炭酸ジエステルやモノマーが留去することがあり好ましくない。
第1反応槽から第2反応槽への送液は副生するモノヒドロキシ化合物の留出量が理論留出量の50〜90%、好ましくは60〜80%に到達したところで実施することが好ましい。留出量が50%より小さい場合、未反応の炭酸ジエステル(c)やモノマーが多く、第2反応槽で原料のモルバランス崩れが生じることがあるため好ましくない。留出量が90%より大きい場合、樹脂の粘度が高くなり、送液に長時間を要するため、好ましくない。なお、この際、第1反応槽と第2反応槽との間で異物除去を目的とした濾過を行うこともできる。この様な濾過フィルターとしては10μm以下の目開きを有するフィルターがよく使用される。
上記モノヒドロキシ化合物とは、ジオール(a)と炭酸ジエステルとの反応で副生するフェノールおよびジオール(a)とジカルボン酸(b)との反応で副生するメタノール等のアルキルアルコール類や水である。また、モノヒドロキシ化合物の理論留出量は、仕込んだジオール(a)、ジカルボン酸(b)および炭酸ジエステル(c)が全て反応したときに留出されるモノヒドロキシ化合物の量である。
第2反応槽は竪型や横形の撹拌槽が使用されるが、反応圧力が高真空度となる場合が多く、かつ原料のモルバランスに影響を与えるほどの未反応の炭酸ジエステルが存在しないため、一般に精留塔は設置せず、蒸発物はそのまま系外に取り出される。第2反応槽に使用される撹拌翼は、高粘度で優れた性能を発揮するヘリカルリボン翼やアンカー翼等、反応混合物の表面更新性や発生する気泡を押し潰す能力に優れたものが使用すると良い。第2反応槽では、樹脂の受け入れ後、150〜320℃、好ましくは180〜300℃で減圧度を段階的に変化させ、最終的には1〜500Paとなるまで減圧することにより生成したモノヒドロキシ化合物を系外に留去させつつ縮合反応を行う。
第1反応槽に使用する撹拌機の撹拌速度は、反応混合物の粘度が低いこと、生成したモノヒドロキシ化合物の蒸発のために大きなエネルギーが必要であることから、比較的高速の攪拌速度、例えば、数十〜200rpmであることが多く、第2反応槽に使用する撹拌機の撹拌速度は、反応混合物の粘度が高いことから、第1反応槽よりも低い攪拌速度、例えば、数〜数十rpmであることが好ましい。
第2反応槽で生成したポリエステルカーボネート重合体は第2反応槽の内部を加圧することによって外部にシートまたはストランドとして取り出し、これを水等で冷却し、ペレットとして製品化されることが多い。なお、第2反応槽で反応の途中または反応終了後の加圧前あるいは加圧時に失活剤、酸化防止剤、安定剤、着色剤等の各種添加物を添加しても良い。
触媒として使用する塩基性化合物としては水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ビスフェノールAのナトリウム塩、カリウム塩、リチウム塩、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム等が挙げられる。アルカリ土類金属化合物としては水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム等が挙げられる。
助触媒として使用する含窒素塩基性化合物としてはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン、ジメチルアミノピリジン等が挙げられる。
エステル交換触媒としては亜鉛、スズ、ジルコニウム、鉛、チタン、ゲルマニウム、アンチモン、オスミウム、アルミニウムの塩が挙げられ、例えば、酢酸亜鉛、安息香酸亜鉛、2−エチルヘキサン酸亜鉛、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド、ジルコニウムアセチルアセトナート、オキシ酢酸ジルコニウム、ジルコニウムテトラブトキシド、酢酸鉛(II)、酢酸鉛(IV)、チタンテトラブトキシド(IV)、チタンテトライソプロポキシド、チタン(IV)=テトラキス(2−エチル−1−ヘキサノラート)、酸化チタン、トリス(2,4−ペンタジオネート)アルミニウム(III)等が用いられる。
以上の触媒の中でもチタン化合物が好適に用いられ、チタンテトラブトキシド(IV)、チタン(IV)=テトラキス(2−エチル−1−ヘキサノラート)が特に好ましい。
これらの触媒は単独で用いても、二種以上併用してもよく、これらの重合触媒の使用量はジオール(a)とジカルボン酸(b)の合計1モルに対して、10−9〜10−3モルの比率で用いられる。
これらの触媒のうち、チタン化合物を用いることが特に好ましく、その使用量はジオール(a)とジカルボン酸(b)の合計1モル対して、10−5〜10−3モルの比率で用いると、反応制御と色相の両立ができ、特に好ましい。
本発明の共重合体は、重合反応終了後、熱安定性および加水分解安定性を保持するために、触媒を除去もしくは失活させてもよい。アルカリ金属化合物またはアルカリ土類金属化合物については、一般的に、公知の酸性物質の添加による触媒の失活を行う方法が好適に実施される。これらの失活を行うとしては、具体的には、安息香酸ブチル等のエステル類、p−トルエンスルホン酸等の芳香族スルホン酸類、p−トルエンスルホン酸ブチル、p−トルエンスルホン酸ヘキシル等の芳香族スルホン酸エステル類、亜リン酸、リン酸、ホスホン酸等のリン酸類、亜リン酸トリフェニル、亜リン酸モノフェニル、亜リン酸ジフェニル、亜リン酸ジエチル、亜リン酸ジn−プロピル、亜リン酸ジn−ブチル、亜リン酸ジn−ヘキシル、亜リン酸ジオクチル、亜リン酸モノオクチル等の亜リン酸エステル類、リン酸トリフェニル、リン酸ジフェニル、リン酸モノフェニル、リン酸ジブチル、リン酸ジオクチル、リン酸モノオクチル等のリン酸エステル類、ジフェニルホスホン酸、ジオクチルホスホン酸、ジブチルホスホン酸等のホスホン酸類、フェニルホスホン酸ジエチル等のホスホン酸エステル類、トリフェニルホスフィン、ビス(ジフェニルホスフィノ)エタン等のホスフィン類、ホウ酸、フェニルホウ酸等のホウ酸類、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等の芳香族スルホン酸塩類、ステアリン酸クロライド、塩化ベンゾイル、p−トルエンスルホン酸クロライド等の有機ハロゲン化物、ジメチル硫酸等のアルキル硫酸、塩化ベンジル等の有機ハロゲン化物等が好適に用いられる。これらの失活剤は、触媒量に対して0.01〜50倍モル、好ましくは0.3〜20倍モル使用される。触媒量に対して0.01倍モルより少ないと、失活効果が不充分となり好ましくない。また、触媒量に対して50倍モルより多いと、耐熱性が低下し、成形体が着色しやすくなるため好ましくない。
触媒失活後、ポリマー中の低沸点化合物を0.1〜1mmHgの圧力、200〜320℃の温度で脱揮除去する工程を設けても良い。
本発明の共重合体中に残留するフェノール量は、重合体の重量を基準として1〜100ppm、さらに好ましく1〜50ppm、より好ましくは1〜10ppmが望ましい。これより多いと、高温下において着色や分子量低下を引き起こし、また、例えば成形時等においても着色、シルバーストリーク、発泡、或いは金型汚染等の原因となり優れた成形品を得ることができない。
通常、樹脂中に残存するフェノール量を低減することは困難であるが、本発明の製造方法、すなわち、重合初期段階から減圧しフェノールを留去しながら反応を進めることで重合後期に発生するフェノールを大幅に低減できる。
また、炭酸ジエステルの使用量が下記式(1)を満足するよう調整することで、発生するフェノールを低減でき、樹脂の色相がさらに良くなる。
1.0≦(C)/{(A)−(B)}≦1.5 (1)
(式中、(A)はジオール(a)の仕込みモル量、(B)はジカルボン酸(b)またはそのエステル形成性誘導体の仕込みモル量、(C)は炭酸ジエステル(c)の仕込みモル量である。)
すなわち本発明によれば、下記式(a)で表されるジオール、下記式(b)で表されるジカルボン酸および炭酸ジエステル(c)を反応させポリエステルカーボネート共重合体を製造する方法であって、
Figure 2012099261
Figure 2012099261
(式(b)中Yは、フェニレン基またはナフタレンジイル基である。)
炭酸ジエステル(c)の使用量が下記式(1)を満足し、かつ、チタン化合物をジオールとジカルボンの合計1モル対して、チタン元素として10−5〜10−3モルの比率で用いることを特徴とするポリエステルカーボネート共重合体の製造方法が提供される。
1.0≦(C)/{(A)−(B)}≦1.5 (1)
(式中、(A)はジオールの仕込みモル量、(B)はジカルボン酸またはそのエステル形成性誘導体の仕込みモル量、(C)は炭酸ジエステルの仕込みモル量である。)
(樹脂組成物)
本発明は、本発明共重合体および各種添加剤を含有する樹脂組成物を包含する。本発明の共重合体に各種添加剤を添加する方法としては特に限定されない。例えば、反応生成物である熱可塑性樹脂が溶融状態にある間にこれらを添加してもよいし、一旦熱可塑性樹脂をペレタイズした後、再溶融して添加してもよい。以下各種添加剤について説明する。樹脂組成物は、例えば射出成形法、圧縮成形法、射出圧縮成形法、溶融製膜法、キャスティング法等任意の方法により成形、加工することができる。
各種添加剤として、離型剤、熱安定剤、紫外線吸収剤、ブルーイング剤等が挙げられる。
離型剤としては、その90重量%以上がアルコールと脂肪酸のエステルからなるものが好ましい。アルコールと脂肪酸のエステルとしては、具体的には一価アルコールと脂肪酸のエステルや、多価アルコールと脂肪酸との部分エステルあるいは全エステルが挙げられる。前記一価アルコールと脂肪酸のエステルとは、炭素原子数1〜20の一価アルコールと炭素原子数10〜30の飽和脂肪酸とのエステルが好ましい。また、多価アルコールと脂肪酸との部分エステルあるいは全エステルとは、炭素原子数1〜25の多価アルコールと炭素原子数10〜30の飽和脂肪酸との部分エステルまたは全エステルが好ましい。
具体的に一価アルコールと飽和脂肪酸とエステルとしては、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート等が挙げられる。ステアリルステアレートが好ましい。
多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ビフェニルビフェネ−ト、ソルビタンモノステアレート、2−エチルヘキシルステアレート、ジペンタエリスリトールヘキサステアレート等のジペンタエリスルトールの全エステルまたは部分エステル等が挙げられる。これらのエステルのなかでも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレート、ステアリン酸トリグリセリドとステアリルステアレートの混合物が好ましく用いられる。
離型剤中の前記エステルの量は、離型剤を100重量%とした時、90重量%以上が好ましく、95重量%以上がより好ましい。
離型剤の含有量は、共重合体100重量部に対して0.005〜2.0重量部の範囲が好ましく、0.01〜0.6重量部の範囲がより好ましく、0.02〜0.5重量部の範囲がさらに好ましい。
熱安定剤としては、リン系熱安定剤、硫黄系熱安定剤およびヒンダードフェノール系熱安定剤が挙げられる。
リン系熱安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル等が挙げられる。具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイトおよびビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられる。
なかでも、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイトおよびビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイトが使用される。特に好ましくはビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが使用される。
リン系熱安定剤の含有量は、共重合体100重量部に対して0.001〜0.2重量部が好ましい。
硫黄系熱安定剤としては、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)、ジラウリル−3、3’−チオジプロピオネート、ジミリスチル−3、3’−チオジプロピオネート、ジステアリル−3、3’−チオジプロピオネート等が挙げられる。なかでもペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ミリスチルチオプロピオネート)、ジラウリル−3、3’−チオジプロピオネート、ジミリスチル−3、3’−チオジプロピオネートが好ましい。特に好ましくはペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)である。該チオエーテル系化合物は住友化学工業(株)からスミライザーTP−D(商品名)およびスミライザーTPM(商品名)等として市販されており、容易に利用できる。
硫黄系熱安定剤の含有量は、共重合体100重量部に対して0.001〜0.2重量部が好ましい。
ヒンダードフェノール系熱安定剤としては、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレートおよび3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン等が挙げられる。オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが特に好ましく用いられる。
ヒンダードフェノール系熱安定剤の含有量は、共重合体100重量部に対して0.001〜0.3重量部であることが好ましい。
紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、環状イミノエステル系紫外線吸収剤およびシアノアクリレート系からなる群より選ばれる少なくとも1種の紫外線吸収剤が好ましい。
ベンゾトリアゾール系紫外線吸収剤としては、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ルが挙げられる。これらは単独あるいは2種以上の混合物で用いることができる。
好ましくは、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ルであり、より好ましくは、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]である。
ベンゾフェノン系紫外線吸収剤としては、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン等が挙げられる。
トリアジン系紫外線吸収剤としては、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール、2−(4,6−ビス(2.4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−[(オクチル)オキシ]−フェノール等が挙げられる。
環状イミノエステル系紫外線吸収剤としては、2,2’−ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(1,5−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−メチル−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−ニトロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)および2,2’−(2−クロロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)等が例示される。
なかでも2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)が好適である。特に2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)が好適である。かかる化合物は竹本油脂(株)からCEi−P(商品名)として市販されており、容易に利用できる。
シアノアクリレート系紫外線吸収剤としては、1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼン等が例示される。
紫外線吸収剤の含有量は、共重合体100重量部に対して、好ましくは0.01〜3.0重量部であり、より好ましくは0.02〜1.0重量部であり、さらに好ましくは0.05〜0.8重量部である。かかる配合量の範囲であれば、用途に応じ、共重合体成形体に十分な耐候性を付与することが可能である。
ブルーイング剤としては、バイエル社のマクロレックスバイオレットBおよびマクロレックスブルーRR並びにクラリアント社のポリシンスレンブル−RLS等が挙げられる。ブルーイング剤は、共重合体の黄色味を消すために有効である。特に耐候性を付与した共重合体の場合は、一定量の紫外線吸収剤が配合されているため紫外線吸収剤の作用や色によって成形体が黄色味を帯びやすい現実があり、特にシートやレンズに自然な透明感を付与するためにはブルーイング剤の配合は非常に有効である。ブルーイング剤の配合量は、共重合体に対して好ましくは0.05〜1.5ppmであり、より好ましくは0.1〜1.2ppmである。
(光学部材の製造)
本発明の共重合体を含有する樹脂組成物を射出成形して光学部材を製造することができる。光学部材としてレンズが挙げられる。射出成形は、シリンダ温度260〜300℃、金型温度100〜140℃の範囲で行なうことが好ましい。本発明によれば、射出成形の成形不良率が10%以下となる。The polyester carbonate copolymer of the present invention (hereinafter sometimes abbreviated as a copolymer) contains a unit represented by the following formula (I) and a unit represented by the following formula (II).
Figure 2012099261
In the above formula (II), Y represents a phenylene group or a naphthalenediyl group. Y is preferably a 1,4-phenylene group, a 1,3-phenylene group or a 2,6-naphthalenediyl group.
The optical properties are particularly good when the content of the unit of the formula (I) in the copolymer of the present invention is 67 to 95 mol% and the content of the unit of the formula (II) is 33 to 5 mol%. It is preferable. If the content of the units of the above formulas (I) and (II) is outside the above range, the optical properties (particularly birefringence) deteriorate, which is not preferable. The content of units of the formula (I) is preferably 75 to 95 mol%. The content of the unit of the formula (II) is preferably 25 to 5 mol%.
The copolymer of the present invention contains at least one phenyl end, hydroxyl end, and methyl ester end in the polymer. The ratio of the phenyl terminal with respect to all the terminals of the copolymer of this invention is 30 mol% or less, 20 mol% or less is more preferable, and 10 mol% or less is still more preferable. When the ratio of the phenyl terminal is larger than 30 mol%, the hue of the resulting copolymer may be deteriorated, and gas generation during molding or film formation may be increased.
In the copolymer of the present invention, the proportions of phenyl end, hydroxyl end, and methyl ester end are 0-30 mol% for phenyl end, 30-98 mol% for hydroxyl end, and 2-70 mol% for methyl ester end. It is preferable that It is more preferable that the phenyl terminal ratio is 0 to 20 mol%, the hydroxyl terminal is 50 to 98 mol%, and the methyl ester terminal is 2 to 50 mol%. More preferably, the phenyl terminal ratio is 0 to 10 mol%, the hydroxyl terminal is 70 to 98 mol%, and the methyl ester terminal is 2 to 30 mol%. When a polymer having a hydroxyl terminal and a methyl ester terminal outside the above range is obtained, a very long polymerization time is required, which is not preferable because the polymer hue deteriorates.
The specific viscosity of the copolymer of the present invention is preferably in the range of 0.12 to 0.55, more preferably in the range of 0.12 to 0.45, and in the range of 0.12 to 0.30. Is more preferable. A specific viscosity of less than 0.12 is not preferable because the molded product becomes brittle. If the specific viscosity is higher than 0.55, the polymerization time becomes longer, the hue of the resin becomes worse, the melt viscosity becomes higher and the moldability becomes worse.
The copolymer of the present invention mainly contains 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene as a diol component. Other diol components may be contained to such an extent that the properties of the copolymer are not impaired. For example, it is preferable that 80 mol% or more, and 90 mol% or more of the diol component is 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene. Examples of other diol components used in combination with the 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene include aliphatic diols such as ethylene glycol and hexanediol, and tricyclo [5.2.1.1.02. 6] Alicyclic ring such as decanedimethanol, cyclohexane-1,4-dimethanol, decalin-2,6-dimethanol, norbornane dimethanol, pentacyclopentadecanedimethanol, cyclopentane-1,3-dimethanol, spiroglycol, etc. Formula diol, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene (bisphenol M), 2,2-bis (4- Hydroxy-3-methylphenyl) propane (bisphenol C), 1 1,1-bis (4-hydroxyphenyl) cyclohexane (bisphenol Z), bisphenol fluorene, and aromatic diols such as bis-cresol fluorene and the like. You may use these individually or in combination of 2 or more types.
The copolymer of the present invention mainly contains terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid or ester-forming derivatives thereof as a dicarboxylic acid component.
The dicarboxylic acid component may contain other dicarboxylic acid components to the extent that the properties of the resulting copolymer are not impaired. In this case, the content of terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid is preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol based on 100 mol% of the dicarboxylic acid component. % Or more.
Other dicarboxylic acids include aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, methylmalonic acid, and ethylmalonic acid. In addition, monocyclic aromatic dicarboxylic acids such as phthalic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, anthracene dicarboxylic acid And polycyclic aromatic dicarboxylic acids such as phenanthrene dicarboxylic acid. In addition, biphenyl dicarboxylic acids such as 2,2′-biphenyl dicarboxylic acid, and aliphatic carboxylic dicarboxylic acids such as 1,4-cyclodicarboxylic acid and 2,6-decalin dicarboxylic acid can be used. You may use these individually or in combination of 2 or more types. In addition, acid chlorides and esters are used as these derivatives.
The copolymer of the present invention preferably contains 0.5 to 100 ppm of Ti atoms, more preferably 1.0 to 50 ppm, based on the polyester carbonate copolymer. It is particularly preferable that the Ti atomic weight is within the above range because both reaction control and hue can be achieved.
The copolymer of the present invention preferably has a YI value of 1.0 to 6.0 when a molded plate having a thickness of 1 mm is molded at a cylinder temperature of 280 ° C.
(Manufacture of copolymer)
As a method for producing the copolymer of the present invention, a transesterification reaction of diol (a), dicarboxylic acid (b) and bisaryl carbonate is preferably employed.
The copolymer of the present invention comprises a diol (a), a dicarboxylic acid (b) and a carbonic acid diester (c) prepared by a melt polycondensation method in the presence of a mixed catalyst comprising a basic compound catalyst or a transesterification catalyst or both. It can be suitably obtained.
When the melt polycondensation method is carried out in a batch operation, the viscosity of the reaction system changes greatly as the transesterification proceeds, and the amount of monohydroxy compounds generated as a by-product in the reaction changes significantly. Therefore, it is preferable to use two or more reaction vessels.
The first reaction tank separates unreacted carbonic acid diester (c) and monomer and by-product monohydroxy compound, and a rectifying column for refluxing unreacted carbonic acid diester (c) and monomer in the reaction system. It is preferable to use a vertical stirring tank provided. In the first reaction tank, a predetermined amount of monomer is charged and purged with nitrogen, and then the diol (a), dicarboxylic acid (b), and carbonic acid diester (c) are mixed and melted in the presence of an inert gas. After melting, the reaction is carried out at 120 to 300 ° C., preferably 150 to 280 ° C. under a slightly reduced pressure of 20 to 90 kPa, preferably 40 to 80 kPa, to distill off the by-produced monohydroxy compound out of the system. When the reaction is carried out at normal pressure, the amount of residual phenol after the reaction is increased and the hue is lowered, which is not preferable. Moreover, since the distillation rate of phenol becomes slow and the reaction time is long, it is not preferable. When the degree of vacuum is less than 20 kPa, unreacted carbonic acid diester and monomer may be distilled off, which is not preferable.
The liquid feeding from the first reaction tank to the second reaction tank is preferably performed when the distillate amount of the by-produced monohydroxy compound reaches 50 to 90%, preferably 60 to 80% of the theoretical distillate amount. . When the distillate amount is less than 50%, the amount of unreacted carbonic acid diester (c) and monomer is large, and the molar balance of the raw material may be lost in the second reaction tank, which is not preferable. When the distillate amount is larger than 90%, the viscosity of the resin becomes high, and it takes a long time for liquid feeding, which is not preferable. At this time, filtration for the purpose of removing foreign substances can also be performed between the first reaction tank and the second reaction tank. As such a filtration filter, a filter having an opening of 10 μm or less is often used.
The monohydroxy compounds are phenols by-produced by the reaction of the diol (a) and the carbonic acid diester, alkyl alcohols such as methanol by-produced by the reaction of the diol (a) and the dicarboxylic acid (b), and water. . The theoretical distillation amount of the monohydroxy compound is the amount of the monohydroxy compound distilled when all of the charged diol (a), dicarboxylic acid (b) and carbonic acid diester (c) are reacted.
As the second reaction tank, a vertical or horizontal stirring tank is used, but the reaction pressure is often high vacuum, and there is no unreacted carbonic acid diester that affects the molar balance of the raw material. In general, a rectifying column is not installed, and the evaporated product is taken out of the system as it is. When the stirring blade used in the second reaction tank is excellent in the surface renewability of the reaction mixture and the ability to crush the generated bubbles, such as a helical ribbon blade or an anchor blade that exhibits excellent performance with high viscosity, good. In the second reaction tank, after the resin is received, monohydroxy produced by stepwise changing the degree of vacuum at 150 to 320 ° C., preferably 180 to 300 ° C., and finally reducing the pressure to 1 to 500 Pa. The condensation reaction is carried out while distilling the compound out of the system.
The stirring speed of the stirrer used in the first reaction tank is such that the viscosity of the reaction mixture is low and a large amount of energy is required for evaporation of the produced monohydroxy compound. The stirring speed of the stirrer used in the second reaction tank is often several tens to 200 rpm, and since the viscosity of the reaction mixture is high, the stirring speed is lower than that of the first reaction tank, for example, several to several tens rpm. It is preferable that
In many cases, the polyester carbonate polymer produced in the second reaction tank is taken out as a sheet or a strand by pressurizing the inside of the second reaction tank, cooled with water or the like, and commercialized as pellets. Various additives such as a quenching agent, an antioxidant, a stabilizer, and a coloring agent may be added before or during pressurization during or after the reaction in the second reaction tank.
Basic compounds used as catalysts include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate Sodium stearate, potassium stearate, lithium stearate, sodium salt, potassium salt, lithium salt of bisphenol A, sodium benzoate, potassium benzoate, lithium benzoate and the like. Alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium bicarbonate, barium bicarbonate, magnesium bicarbonate, strontium bicarbonate, calcium carbonate, barium carbonate, magnesium carbonate, strontium carbonate , Calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate and the like.
Nitrogen-containing basic compounds used as promoters include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylamine, triethylamine, dimethylbenzylamine, triphenylamine, dimethylaminopyridine Etc.
Examples of the transesterification catalyst include zinc, tin, zirconium, lead, titanium, germanium, antimony, osmium, and aluminum salts, such as zinc acetate, zinc benzoate, zinc 2-ethylhexanoate, tin (II) chloride, Tin (IV) chloride, tin (II) acetate, tin (IV) acetate, dibutyltin dilaurate, dibutyltin oxide, dibutyltin dimethoxide, zirconium acetylacetonate, zirconium oxyacetate, zirconium tetrabutoxide, lead (II) acetate, lead acetate ( IV), titanium tetrabutoxide (IV), titanium tetraisopropoxide, titanium (IV) = tetrakis (2-ethyl-1-hexanolate), titanium oxide, tris (2,4-pentadionate) aluminum (III), etc. Is used.
Of the above catalysts, titanium compounds are preferably used, and titanium tetrabutoxide (IV) and titanium (IV) = tetrakis (2-ethyl-1-hexanolate) are particularly preferable.
These catalysts may be used alone or in combination of two or more. The amount of these polymerization catalysts used is 10 with respect to a total of 1 mol of the diol (a) and the dicarboxylic acid (b). -9 -10 -3 Used in molar ratios.
Of these catalysts, it is particularly preferable to use a titanium compound, and the amount used is 10 with respect to 1 mol in total of the diol (a) and the dicarboxylic acid (b). -5 -10 -3 When used in a molar ratio, both reaction control and hue can be achieved, which is particularly preferable.
In the copolymer of the present invention, the catalyst may be removed or deactivated after the completion of the polymerization reaction in order to maintain thermal stability and hydrolysis stability. For alkali metal compounds or alkaline earth metal compounds, generally, a method of deactivating a catalyst by adding a known acidic substance is preferably carried out. Specific examples of the deactivation include esters such as butyl benzoate, aromatic sulfonic acids such as p-toluenesulfonic acid, butyl p-toluenesulfonate, hexyl p-toluenesulfonate, and the like. Sulfonic acid esters, phosphoric acids such as phosphorous acid, phosphoric acid, phosphonic acid, triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-propyl phosphite, Phosphorous esters such as di-n-butyl phosphite, di-n-hexyl phosphite, dioctyl phosphite, monooctyl phosphite, triphenyl phosphate, diphenyl phosphate, monophenyl phosphate, phosphoric acid Phosphate esters such as dibutyl, dioctyl phosphate, monooctyl phosphate, diphenylphosphonic acid, dioctylphosphonic acid, dibutylphosphonic acid, etc. Phosphonic acid esters such as phonic acids, diethyl phenylphosphonate, phosphines such as triphenylphosphine and bis (diphenylphosphino) ethane, boric acids such as boric acid and phenylboric acid, tetrabutylphosphonium dodecylbenzenesulfonate, etc. Aromatic sulfonates, stearic acid chloride, benzoyl chloride, organic halides such as p-toluenesulfonic acid chloride, alkylsulfuric acid such as dimethylsulfuric acid, and organic halides such as benzyl chloride are preferably used. These deactivators are used in an amount of 0.01 to 50 times mol, preferably 0.3 to 20 times mol for the amount of catalyst. When the amount is less than 0.01 times the amount of the catalyst, the deactivation effect is insufficient, which is not preferable. Moreover, when it is more than 50 times mole with respect to the amount of catalyst, since heat resistance falls and it becomes easy to color a molded object, it is unpreferable.
After catalyst deactivation, a step of devolatilizing and removing low-boiling compounds in the polymer at a pressure of 0.1 to 1 mmHg and a temperature of 200 to 320 ° C may be provided.
The amount of phenol remaining in the copolymer of the present invention is desirably 1 to 100 ppm, more preferably 1 to 50 ppm, more preferably 1 to 10 ppm based on the weight of the polymer. If it is more than this, coloring and molecular weight reduction will occur at high temperature, and excellent moldings cannot be obtained due to coloring, silver streak, foaming, mold contamination, etc. even during molding.
Usually, it is difficult to reduce the amount of phenol remaining in the resin, but the production method of the present invention, that is, phenol generated in the late stage of polymerization by advancing the reaction while reducing the pressure from the initial stage of polymerization and distilling off the phenol. Can be greatly reduced.
Moreover, by adjusting the usage-amount of carbonic acid diester so that the following formula (1) may be satisfied, the generated phenol can be reduced and the hue of the resin is further improved.
1.0 ≦ (C) / {(A) − (B)} ≦ 1.5 (1)
(Wherein (A) is the charged molar amount of diol (a), (B) is the charged molar amount of dicarboxylic acid (b) or its ester-forming derivative, and (C) is the charged molar amount of carbonic acid diester (c). .)
That is, according to the present invention, a process for producing a polyester carbonate copolymer by reacting a diol represented by the following formula (a), a dicarboxylic acid represented by the following formula (b) and a carbonic acid diester (c). ,
Figure 2012099261
Figure 2012099261
(In formula (b), Y represents a phenylene group or a naphthalenediyl group.)
The amount of carbonic acid diester (c) used satisfies the following formula (1), and the titanium compound is 10 elements as titanium element with respect to a total of 1 mol of diol and dicarboxylic acid. -5 -10 -3 A method for producing a polyester carbonate copolymer is provided, which is used in a molar ratio.
1.0 ≦ (C) / {(A) − (B)} ≦ 1.5 (1)
(In the formula, (A) is the charged molar amount of diol, (B) is the charged molar amount of dicarboxylic acid or its ester-forming derivative, and (C) is the charged molar amount of carbonic acid diester.)
(Resin composition)
The present invention includes a resin composition containing the copolymer of the present invention and various additives. It does not specifically limit as a method of adding various additives to the copolymer of this invention. For example, these may be added while the thermoplastic resin as a reaction product is in a molten state, or may be added after being re-melted after pelletizing the thermoplastic resin. Hereinafter, various additives will be described. The resin composition can be molded and processed by an arbitrary method such as an injection molding method, a compression molding method, an injection compression molding method, a melt film forming method, or a casting method.
Examples of various additives include mold release agents, heat stabilizers, ultraviolet absorbers, and bluing agents.
As a mold release agent, that whose 90 weight% or more consists of ester of alcohol and a fatty acid is preferable. Specific examples of the ester of alcohol and fatty acid include monohydric alcohol and fatty acid ester, partial ester or total ester of polyhydric alcohol and fatty acid. The ester of the monohydric alcohol and the fatty acid is preferably an ester of a monohydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms. The partial ester or total ester of a polyhydric alcohol and a fatty acid is preferably a partial ester or a total ester of a polyhydric alcohol having 1 to 25 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
Specific examples of the monohydric alcohol, saturated fatty acid and ester include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate and the like. Stearyl stearate is preferred.
As partial ester or total ester of polyhydric alcohol and saturated fatty acid, stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbate, behenic acid monoglyceride, pentaerythritol monostearate, pentaerythritol tetrastearate, All or partial esters of dipentaerythritol such as pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenyl biphenate, sorbitan monostearate, 2-ethylhexyl stearate, dipentaerythritol hexastearate, etc. Can be mentioned. Among these esters, stearic acid monoglyceride, stearic acid triglyceride, pentaerythritol tetrastearate, and a mixture of stearic acid triglyceride and stearyl stearate are preferably used.
The amount of the ester in the release agent is preferably 90% by weight or more, and more preferably 95% by weight or more when the release agent is 100% by weight.
The content of the release agent is preferably in the range of 0.005 to 2.0 parts by weight, more preferably in the range of 0.01 to 0.6 parts by weight, with respect to 100 parts by weight of the copolymer. The range of 0.5 part by weight is more preferable.
Examples of the heat stabilizer include a phosphorus heat stabilizer, a sulfur heat stabilizer, and a hindered phenol heat stabilizer.
Examples of phosphorus heat stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, and esters thereof. Specifically, triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, Tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite Phyto, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, bi (Nonylphenyl) pentaerythritol diphosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, distearyl pentaerythritol diphosphite Phosphite, Tributyl phosphate, Triethyl phosphate, Trimethyl phosphate, Triphenyl phosphate, Diphenyl monoorthoxenyl phosphate, Dibutyl phosphate, Dioctyl phosphate, Diisopropyl phosphate, Dimethyl benzenephosphonate, Diethylbenzenephosphonate, Dipropylbenzenephosphonate, Tetrakis (2 , 4-Di-t-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-t-butyl) Phenyl) -4,3′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) Examples include -4-phenyl-phenylphosphonite and bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite.
Among them, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-) tert-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-t-butylphenyl) -4,3 ′ -Biphenylene diphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3'-biphenylene diphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphospho Knight and bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite are used. Particular preference is given to using bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite.
The content of the phosphorus heat stabilizer is preferably 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the copolymer.
As the sulfur-based heat stabilizer, pentaerythritol-tetrakis (3-laurylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3-stearylthiopropionate), Examples include dilauryl-3, 3′-thiodipropionate, dimyristyl-3, 3′-thiodipropionate, distearyl-3, 3′-thiodipropionate. Among them, pentaerythritol-tetrakis (3-laurylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), dilauryl-3, 3′-thiodipropionate, dimyristyl-3, 3′-thio Dipropionate is preferred. Particularly preferred is pentaerythritol-tetrakis (3-laurylthiopropionate). The thioether compounds are commercially available from Sumitomo Chemical Co., Ltd. as Sumilizer TP-D (trade name), Sumilizer TPM (trade name), and the like, and can be easily used.
As for content of a sulfur type heat stabilizer, 0.001-0.2 weight part is preferable with respect to 100 weight part of copolymers.
Examples of the hindered phenol heat stabilizer include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3 5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N-hexamethylene bis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamide) 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate and 3,9-bis {1,1- And dimethyl-2- [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl} -2,4,8,10-tetraoxaspiro (5,5) undecane. . Octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate is particularly preferably used.
The content of the hindered phenol heat stabilizer is preferably 0.001 to 0.3 parts by weight with respect to 100 parts by weight of the copolymer.
Examples of the ultraviolet absorber include at least one ultraviolet absorber selected from the group consisting of benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, triazine ultraviolet absorbers, cyclic imino ester ultraviolet absorbers, and cyanoacrylates. preferable.
Examples of the benzotriazole ultraviolet absorber include 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy- 3,5-dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2'-methylenebis [4- (1,1 , 3,3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- ( 2-hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy- 3,5-di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole 2- (2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2′-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2′-p-phenylenebis (1,3- Benzoxazin-4-one), 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole. These can be used alone or in a mixture of two or more.
Preferably, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3,5-dicumyl) Phenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3,3-tetra Methylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole And more preferably 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2,2′- A Chirenbisu [4- (1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl) phenol].
Examples of benzophenone-based ultraviolet absorbers include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4- Methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydridolate benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2- Methoxyphenyl) methane, 2-hy Examples include droxy-4-n-dodecyloxybenzophenone and 2-hydroxy-4-methoxy-2′-carboxybenzophenone.
Examples of the triazine ultraviolet absorber include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2- (4,6-bis ( And 2.4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-[(octyl) oxy] -phenol.
Examples of cyclic imino ester UV absorbers include 2,2′-bis (3,1-benzoxazin-4-one) and 2,2′-p-phenylenebis (3,1-benzoxazin-4-one). 2,2′-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), 2,2 ′-(1,5-naphthalene) bis (3,1-benzoxazin-4-one) ), 2,2 ′-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2-nitro-p-phenylene) bis (3,1- Benzoxazin-4-one) and 2,2 ′-(2-chloro-p-phenylene) bis (3,1-benzoxazin-4-one) and the like are exemplified.
Among them, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one) And 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one) are preferred. In particular, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one) is preferable. Such a compound is commercially available from Takemoto Yushi Co., Ltd. as CEi-P (trade name) and can be easily used.
As the cyanoacrylate ultraviolet absorber, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenyl) Examples include acryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.
The content of the ultraviolet absorber is preferably 0.01 to 3.0 parts by weight, more preferably 0.02 to 1.0 parts by weight, even more preferably 100 parts by weight of the copolymer. 0.05 to 0.8 part by weight. If it is the range of this compounding quantity, it is possible to provide sufficient weather resistance to a copolymer molded object according to a use.
Examples of the bluing agent include Macrolex Violet B and Macrolex Blue RR manufactured by Bayer and polysynthremble-RLS manufactured by Clariant. The bluing agent is effective for eliminating the yellow color of the copolymer. In particular, in the case of a copolymer imparted with weather resistance, since a certain amount of UV absorber is blended, there is a reality that the molded body tends to be yellowish depending on the action and color of the UV absorber, especially in sheets and lenses. In order to give a natural transparency, blending of a bluing agent is very effective. The blending amount of the bluing agent is preferably 0.05 to 1.5 ppm, more preferably 0.1 to 1.2 ppm based on the copolymer.
(Manufacture of optical members)
An optical member can be produced by injection molding a resin composition containing the copolymer of the present invention. A lens is mentioned as an optical member. The injection molding is preferably performed at a cylinder temperature of 260 to 300 ° C and a mold temperature of 100 to 140 ° C. According to the present invention, the molding defect rate of injection molding is 10% or less.

以下に実施例を挙げて本発明をさらに説明する。なお、評価は下記の方法によった。
(1)比粘度:重合終了後に得られたポリエステルカーボネート共重合体ペレットを120℃で4時間乾燥し、該ペレット0.35gを塩化メチレン50ccに溶解した溶液を測定サンプルとした。測定は20±0.01℃の恒温槽中でオスワルト粘度管の標線間の通過時間を計測し、下記式からその溶液の20℃における比粘度(ηsp)を求めた。
ηsp=(t−t)/t
ここで比粘度のt:ポリマー溶液の標線間通過時間、t:塩化メチレンの標線間通過時間である。
(2)末端比:日本電子社製JNM−AL400のプロトンNMRを用いて測定した。各末端の算出方法は、下記式より求めた。
フェニル末端比:{(a)/((a)+(b)+(c))}×100
ヒドロキシル末端比:{(b)/((a)+(b)+(c))}×100
メチル末端比:{(c)/((a)+(b)+(c))}×100
(a):4.570〜4.520ppmの積分値÷4
(b):3.925〜3.840ppmの積分値÷4
(c):3.960〜3.925ppmの積分値÷6
(3)Ti原子量:所定量の酸化チタンおよびテレフタル酸の混合物をコールドプレスし、厚さ3mmの成形板を作成し、蛍光X線測定により含有するTi原子量の検量線を作成した。また、重合終了後に得られたポリエステルカーボネート共重合体ペレットを熱プレスし、厚さ3mmの成形板を作成し、蛍光X線測定により樹脂中のTi原子量をポリエステルの重量を基準としたときの重量分率として求めた。なお、ppmは、10−4重量%を意味する。
(4)成形性:射出成形機[JSW(株)製J75EIII]により、シリンダ温度280℃で厚さ1mmの成形板を成形し、目視にて表面外観を測定した。成形板の欠点(シルバーや汚れ等)の有無を判定した。5ショット中欠点無しを○、5ショット中欠点1個以上ありを×として評価した。
(5)YI:射出成形機[JSW(株)製J75EIII]により、シリンダ温度280℃で厚さ1mmの成形板を成形し、日本電色(株)製分光色彩計SE−2000を用いて測定した。
実施例1
9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン(以下“BPEF”と省略することがある)143.83重量部、テレフタル酸ジメチル(以下“DMT”と省略することがある)13.98重量部、ジフェニルカーボネート(以下“DPC”と省略することがある)59.98重量部、チタンテトラブトキシド20.42×10−3重量部を精留塔付き撹拌槽(第1反応槽)に投入した。その後、窒素置換を3度行った後、ジャケットを180℃に加熱し、原料を溶融させた。
完全溶解後、20分かけて40kPaまで減圧すると同時に、60℃/hrの速度でジャケットを250℃まで昇温し、エステル交換反応を行った。副生するモノヒドロキシ化合物の留出量が理論留出量の67vol%に到達したところで、窒素加圧により、プレポリマーを第1反応槽から精留塔なしの撹拌槽(第2反応槽)へ送液した。
第2槽において、ジャケットを260℃に保持したまま、20分かけて40kPa、さらに、100分かけて0.13kPaまで減圧し、260℃、0.13kPa以下の条件下で30分重合反応を行った。反応終了後、生成したポリエステルカーボネート共重合体(A)をペレタイズしながら抜き出し、比粘度、Ti原子量、末端比を評価した。得られたポリマーを120℃で4時間真空乾燥した後、得られる樹脂組成物の重量を基準としてビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトを0.10%、グリセリンモノステアレートを0.10%加えて、ベント付きφ30mm単軸押出機を用いてペレット化した。該ペレットを120℃で5時間乾燥後、射出成形にて成形板を成形し、成形性、黄色度(YI)を評価した。評価結果を表1に示した。
実施例2
実施例1のDPCの使用量を64.27重量部、チタンテトラブトキシドの使用量を34.03×10−3重量部とする以外は実施例1と同様にしてポリエステルカーボネート共重合体(B)のペレットおよび、成形板を得た。評価結果を表1に示した。
実施例3
BPEF157.86重量部、2,6−ナフタレンジカルボン酸ジメチル(以下“NDCM”と省略することがある)9.77重量部、DPC71.98重量部、チタンテトラブトキシド13.61×10−3重量部を精留塔付き撹拌槽(第1反応槽)に投入した。その後、窒素置換を3度行った後、ジャケットを180℃に加熱し、原料を溶融させた。
完全溶解後、20分かけて40kPaまで減圧すると同時に、60℃/hrの速度でジャケットを250℃まで昇温し、エステル交換反応を行った。副生するモノヒドロキシ化合物の留出量が理論留出量の65vol%に到達したところで、窒素加圧により、プレポリマーを第1反応槽から精留塔なしの撹拌槽(第2反応槽)へ送液した。
第2槽において、ジャケットを260℃に保持したまま、20分かけて40kPa、さらに、100分かけて0.13kPaまで減圧し、260℃、0.13kPa以下の条件下で30分重合反応を行った。反応終了後、生成したポリエステルカーボネート共重合体(C)をペレタイズしながら抜き出し、比粘度、Ti原子量、末端比を評価した。得られたポリマーを120℃で4時間真空乾燥した後、得られる樹脂組成物の重量を基準としてビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトを0.10%、グリセリンモノステアレートを0.10%加えて、ベント付きφ30mm単軸押出機を用いてペレット化した。該ペレットを120℃で5時間乾燥後、射出成形にて成形板を成形し、成形性、黄色度(YI)を評価した。評価結果を表1に示した。
比較例1
撹拌機付ステンレス製反応釜に9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン24.2部(ジオールの合計モル数に対して50モル%)、ビスフェノールA13.6部、ジメチルテレフタレート8.2部(ジオールとジカルボン酸(b)の合計モル数に対して25モル%)、ジメチルイソフタレート1.7部(ジオールとジカルボン酸(b)の合計モル数に対して5モル%)およびジフェニルカーボネート20.8部を仕込み、これに触媒としてテトラブトキシチタン6×10−5部を加え、200〜220℃で脱メタノールおよび脱フェノールを行った。殆ど留出が終了した後リン酸トリメチル1マイクロリットルおよび0.5%酸化ゲルマニウム水溶液0.1ミリリットルを加え、260〜280℃まで徐々に昇温すると同時に徐々に減圧度を上げて0.1mmHgにした。溶融粘度が十分になった後反応を停止し、ポリエステルカーボネート(D)共重合体46.4部(収率97%)を得た。このポリマーのエステル基の割合は30モル%、比粘度は0.365であった。得られたポリマーを120℃で4時間真空乾燥した後、得られる樹脂組成物の重量を基準としてビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトを0.10%、グリセリンモノステアレートを0.10%加えて、ベント付きφ30mm単軸押出機を用いてペレット化した。該ペレットを120℃で5時間乾燥後、射出成形にて成形板を成形し、成形性、黄色度(YI)を評価した。評価結果を表1に示した。
比較例2
実施例1のDPCの使用量を65.98重量部、チタンテトラブトキシドの使用量を136.13×10−3重量部とする以外は実施例1と同様にしてポリエステルカーボネート共重合体(E)のペレットおよび、成形板を得た。評価結果を表1に示した。
比較例3
実施例1のDPCの使用量を83.12重量部とする以外は、実施例1と同様にしてポリエステルカーボネート共重合体(F)のペレットおよび、成形性を得た。評価結果を表1に示した。

Figure 2012099261
表1中のDPC仕込比は、DPC使用量(モル)/{ジオール(a)使用量(モル)−ジカルボン酸(b)使用量(モル)}、Ti仕込量は、Ti(μモル)/ジオール(a)とジカルボン酸(b)の合計1モルを示す。
実施例1〜3のポリエテルカーボネート共重合体はフェニル末端が極めて少なく、熱分解によるフェノール発生量が極めて少ないため、成形性や色相に優れる。
これに対して、比較例1(共重合体(D))はフェニル末端が多く、熱分解によるフェノールの発生量が多いため、成形性や色相に劣る。比較例2(共重合体(E))は、樹脂中に残存するTi化合物量が多いため、色相に劣る。
比較例3(共重合体(F))は、フェニル末端が多く、熱分解によるフェノール発生量が多いため、成形性や色相が劣る。
得られた共重合体を120℃で4時間真空乾燥した後、得られる樹脂組成物の重量を基準としてビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトを0.10重量%、グリセリンモノステアレートを0.10重量%加えて、ベント付きφ30mm単軸押出機を用いてペレット化した。該ペレットを120℃で5時間乾燥後、表2に示す成形条件にて厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mmのレンズを成形し、20枚連続成形して成形安定性を評価した。
Figure 2012099261
表2から明らかなように、共重合体(D)は流動性が悪く、成形温度や金型温度を上げるとレンズ寸法を得やすくなるが、成形温度を上げると熱分解による成形不良発生する。共重合体(F)は共重合体(A)と同等の流動性を有するが、Ph末端が多いため、成形品の色相悪化や成形不良が発生する。
発明の効果
本発明のポリエステルカーボネート共重合体は、フェニル末端が少なく成形性および色相に優れる。本発明の製造方法によれば、フェニル末端が少なく成形性および色相に優れるポリエステルカーボネート共重合体が得られる。本発明の光学部材の製造方法によれば、色相に優れた光学部材を小さい成形不良率で製造することができる。The following examples further illustrate the present invention. The evaluation was based on the following method.
(1) Specific viscosity: The polyester carbonate copolymer pellet obtained after completion of the polymerization was dried at 120 ° C. for 4 hours, and a solution in which 0.35 g of the pellet was dissolved in 50 cc of methylene chloride was used as a measurement sample. In the measurement, the passage time between the marked lines of the Oswald viscosity tube was measured in a constant temperature bath of 20 ± 0.01 ° C., and the specific viscosity (η sp ) of the solution at 20 ° C. was obtained from the following formula.
η sp = (t 1 −t 0 ) / t 0
Here, the specific viscosity t 1 is the passage time between the marked lines of the polymer solution, and t 0 is the passage time between the marked lines of methylene chloride.
(2) Terminal ratio: Measured using proton NMR of JNM-AL400 manufactured by JEOL Ltd. The calculation method of each terminal was calculated | required from the following formula.
Phenyl terminal ratio: {(a) / ((a) + (b) + (c))} × 100
Hydroxyl end ratio: {(b) / ((a) + (b) + (c))} × 100
Methyl end ratio: {(c) / ((a) + (b) + (c))} × 100
(A): Integrated value of 4.570 to 4.520 ppm ÷ 4
(B): 3.925 to 3.840 ppm integrated value ÷ 4
(C): integrated value of 3.960 to 3.925 ppm ÷ 6
(3) Ti atomic weight: A mixture of a predetermined amount of titanium oxide and terephthalic acid was cold-pressed to prepare a molded plate having a thickness of 3 mm, and a calibration curve for the Ti atomic weight contained by fluorescent X-ray measurement was prepared. Moreover, the polyester carbonate copolymer pellet obtained after completion | finish of superposition | polymerization is hot-pressed, a 3mm-thick molded board is created, and when the amount of Ti atoms in resin is based on the weight of polyester by fluorescent X ray measurement, the weight Obtained as a fraction. In addition, ppm means 10-4 weight%.
(4) Moldability: A molding plate having a thickness of 1 mm was molded at an cylinder temperature of 280 ° C. using an injection molding machine [J75EIII manufactured by JSW Co., Ltd.], and the surface appearance was measured visually. The presence or absence of defects (silver, dirt, etc.) of the molded plate was determined. A case where there was no defect in 5 shots was evaluated as x, and a case where there was one or more defects in 5 shots was evaluated as x.
(5) YI: A molding plate having a thickness of 1 mm was formed at an cylinder temperature of 280 ° C. using an injection molding machine [J75 EIII manufactured by JSW Co., Ltd.] and measured using a spectrocolorimeter SE-2000 manufactured by Nippon Denshoku Co., Ltd. did.
Example 1
9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene (hereinafter abbreviated as “BPEF”) 143.83 parts by weight, dimethyl terephthalate (hereinafter abbreviated as “DMT”) 13.98 parts by weight, diphenyl carbonate (hereinafter may be abbreviated as “DPC”) 59.98 parts by weight, titanium tetrabutoxide 20.42 × 10 −3 parts by weight with a rectifying tower (first reaction tank) ). Then, after performing nitrogen substitution 3 times, the jacket was heated to 180 ° C. to melt the raw material.
After complete dissolution, the pressure was reduced to 40 kPa over 20 minutes, and at the same time, the jacket was heated to 250 ° C. at a rate of 60 ° C./hr to conduct a transesterification reaction. When the distillate amount of the monohydroxy compound produced as a by-product reaches 67 vol% of the theoretical distillate amount, the prepolymer is transferred from the first reaction tank to the stirring tank (second reaction tank) without a rectification tower by nitrogen pressurization. Liquid was sent.
In the second tank, while maintaining the jacket at 260 ° C., the pressure was reduced to 40 kPa over 20 minutes and further to 0.13 kPa over 100 minutes, and the polymerization reaction was performed for 30 minutes under the conditions of 260 ° C. and 0.13 kPa or less. It was. After completion of the reaction, the produced polyester carbonate copolymer (A) was extracted while pelletizing, and the specific viscosity, Ti atomic weight, and terminal ratio were evaluated. The obtained polymer was vacuum-dried at 120 ° C. for 4 hours, and then bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite was added in an amount of 0.00 based on the weight of the obtained resin composition. 10% and 0.10% glycerin monostearate were added and pelletized using a vented φ30 mm single screw extruder. After the pellets were dried at 120 ° C. for 5 hours, a molded plate was formed by injection molding, and the moldability and yellowness (YI) were evaluated. The evaluation results are shown in Table 1.
Example 2
Polyester carbonate copolymer (B) in the same manner as in Example 1 except that the amount of DPC used in Example 1 is 64.27 parts by weight and the amount of titanium tetrabutoxide used is 34.03 × 10 −3 parts by weight. Pellets and molded plates were obtained. The evaluation results are shown in Table 1.
Example 3
BPEF 157.86 parts by weight, dimethyl 2,6-naphthalenedicarboxylate (hereinafter abbreviated as “NDCM”) 9.77 parts by weight, DPC 71.98 parts by weight, titanium tetrabutoxide 13.61 × 10 −3 parts by weight Was put into a stirring tank with a rectification tower (first reaction tank). Then, after performing nitrogen substitution 3 times, the jacket was heated to 180 ° C. to melt the raw material.
After complete dissolution, the pressure was reduced to 40 kPa over 20 minutes, and at the same time, the jacket was heated to 250 ° C. at a rate of 60 ° C./hr to conduct a transesterification reaction. When the distillate of the by-produced monohydroxy compound reaches 65 vol% of the theoretical distillate, the prepolymer is transferred from the first reaction tank to the stirring tank (second reaction tank) without a rectification tower by nitrogen pressurization. Liquid was sent.
In the second tank, while maintaining the jacket at 260 ° C., the pressure was reduced to 40 kPa over 20 minutes and further to 0.13 kPa over 100 minutes, and the polymerization reaction was performed for 30 minutes under the conditions of 260 ° C. and 0.13 kPa or less. It was. After completion of the reaction, the produced polyester carbonate copolymer (C) was extracted while pelletizing, and the specific viscosity, Ti atomic weight, and terminal ratio were evaluated. The obtained polymer was vacuum-dried at 120 ° C. for 4 hours, and then bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite was added in an amount of 0.00 based on the weight of the obtained resin composition. 10% and 0.10% glycerin monostearate were added and pelletized using a vented φ30 mm single screw extruder. After the pellets were dried at 120 ° C. for 5 hours, a molded plate was formed by injection molding, and the moldability and yellowness (YI) were evaluated. The evaluation results are shown in Table 1.
Comparative Example 1
In a stainless steel reaction kettle with a stirrer, 94.2 parts of 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene (50 mol% based on the total number of moles of diol), 13.6 parts of bisphenol A, dimethyl 8.2 parts of terephthalate (25 mol% with respect to the total number of moles of diol and dicarboxylic acid (b)), 1.7 parts of dimethyl isophthalate (5 mol% with respect to the total number of moles of diol and dicarboxylic acid (b)) ) And 20.8 parts of diphenyl carbonate, 6 × 10 −5 parts of tetrabutoxytitanium as a catalyst was added thereto, and methanol removal and phenol removal were performed at 200 to 220 ° C. After almost distilling, 1 microliter of trimethyl phosphate and 0.1 ml of 0.5% germanium oxide aqueous solution were added, and the temperature was gradually raised to 260 to 280 ° C. and at the same time the pressure was gradually increased to 0.1 mmHg. did. After the melt viscosity became sufficient, the reaction was stopped to obtain 46.4 parts (yield 97%) of a polyester carbonate (D) copolymer. The ester group ratio of this polymer was 30 mol%, and the specific viscosity was 0.365. The obtained polymer was vacuum-dried at 120 ° C. for 4 hours, and then bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite was added in an amount of 0.00 based on the weight of the obtained resin composition. 10% and 0.10% glycerin monostearate were added and pelletized using a vented φ30 mm single screw extruder. After the pellets were dried at 120 ° C. for 5 hours, a molded plate was formed by injection molding, and the moldability and yellowness (YI) were evaluated. The evaluation results are shown in Table 1.
Comparative Example 2
Polyester carbonate copolymer (E) in the same manner as in Example 1 except that the amount of DPC used in Example 1 is 65.98 parts by weight and the amount of titanium tetrabutoxide used is 136.13 × 10 −3 parts by weight. Pellets and molded plates were obtained. The evaluation results are shown in Table 1.
Comparative Example 3
A polyester carbonate copolymer (F) pellet and moldability were obtained in the same manner as in Example 1 except that the amount of DPC used in Example 1 was 83.12 parts by weight. The evaluation results are shown in Table 1.
Figure 2012099261
The DPC charge ratio in Table 1 is DPC use amount (mol) / {diol (a) use amount (mol) -dicarboxylic acid (b) use amount (mol)}, Ti charge amount is Ti (μmol) / A total of 1 mol of diol (a) and dicarboxylic acid (b) is shown.
The polyether carbonate copolymers of Examples 1 to 3 are excellent in moldability and hue because the number of phenyl ends is extremely small and the amount of phenol generated by thermal decomposition is extremely small.
On the other hand, since Comparative Example 1 (copolymer (D)) has many phenyl ends and a large amount of phenol is generated by thermal decomposition, it is inferior in moldability and hue. Since Comparative Example 2 (copolymer (E)) has a large amount of Ti compound remaining in the resin, it is inferior in hue.
Since Comparative Example 3 (copolymer (F)) has many phenyl ends and a large amount of phenol generated by thermal decomposition, moldability and hue are inferior.
After the obtained copolymer was vacuum-dried at 120 ° C. for 4 hours, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite was added based on the weight of the resin composition obtained. 0.10% by weight and 0.10% by weight of glycerol monostearate were added, and pelletized using a φ30 mm single screw extruder with a vent. After drying the pellets at 120 ° C. for 5 hours, a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, and a concave curvature radius of 4 mm is molded under the molding conditions shown in Table 2, and 20 sheets are continuously molded to improve molding stability. evaluated.
Figure 2012099261
As is apparent from Table 2, the copolymer (D) has poor fluidity, and it becomes easier to obtain lens dimensions when the molding temperature and the mold temperature are raised. However, when the molding temperature is raised, molding defects occur due to thermal decomposition. The copolymer (F) has a fluidity equivalent to that of the copolymer (A), but has many Ph ends, so that the hue of the molded product is deteriorated and poor molding occurs.
EFFECT OF THE INVENTION The polyester carbonate copolymer of the present invention has few phenyl ends and is excellent in moldability and hue. According to the production method of the present invention, a polyester carbonate copolymer having few phenyl ends and excellent moldability and hue can be obtained. According to the method for producing an optical member of the present invention, an optical member excellent in hue can be produced with a small molding defect rate.

本発明のポリエステルカーボネート共重合体は、成形性や色相に優れるため、カメラレンズ、プロジェンターレンズ、ピックアップレンズ等の各種光学レンズや光ディスク、光学フィルム、プラセル基板、光カード、液晶パネル、ヘッドランプレンズ、OPCバインダー等の光学部材として極めて有用である。   Since the polyester carbonate copolymer of the present invention is excellent in moldability and hue, various optical lenses such as a camera lens, a protractor lens, and a pickup lens, an optical disk, an optical film, a plastic substrate, an optical card, a liquid crystal panel, and a headlamp lens It is extremely useful as an optical member such as an OPC binder.

Claims (12)

67〜95モル%の下記式(I)で表される単位および33〜5モル%の下記式(II)で表される単位を含有し、比粘度が0.12〜0.55の範囲にあり、ポリマー全末端に対するフェニル末端の割合が30モル%以下であるポリエステルカーボネート共重合体。
Figure 2012099261
(式(II)中Yは、フェニレン基またはナフタレンジイル基である。)
It contains 67 to 95 mol% of the unit represented by the following formula (I) and 33 to 5 mol% of the unit represented by the following formula (II), and the specific viscosity is in the range of 0.12 to 0.55. A polyester carbonate copolymer having a phenyl terminal ratio of 30 mol% or less with respect to all polymer terminals.
Figure 2012099261
(In formula (II), Y represents a phenylene group or a naphthalenediyl group.)
ポリマー全末端に対するフェニル末端の割合が0〜30モル%、ヒドロキシル末端の割合が30〜98モル%、メチルエステル末端の割合が2〜70モル%である請求項1に記載のポリエステルカーボネート共重合体。   2. The polyester carbonate copolymer according to claim 1, wherein the proportion of phenyl ends relative to all the polymer ends is 0 to 30 mol%, the proportion of hydroxyl ends is 30 to 98 mol%, and the proportion of methyl ester ends is 2 to 70 mol%. . 75〜95モル%の式(I)で表される単位および25〜5モル%の式(II)で表される単位を含有する請求項1記載のポリエステルカーボネート共重合体。   The polyester carbonate copolymer according to claim 1, comprising 75 to 95 mol% of the unit represented by the formula (I) and 25 to 5 mol% of the unit represented by the formula (II). 比粘度が0.12〜0.30の範囲にある請求項1記載のポリエステルカーボネート共重合体。   The polyester carbonate copolymer according to claim 1, wherein the specific viscosity is in the range of 0.12 to 0.30. Ti原子をポリエステルカーボネート共重合体の重量を基準として、0.5〜100ppm含む請求項1記載のポリエステルカーボネート共重合体。   The polyester carbonate copolymer according to claim 1, comprising 0.5 to 100 ppm of Ti atoms based on the weight of the polyester carbonate copolymer. Ti原子をポリエステルカーボネート共重合体の重量を基準として、1.0〜50ppm含む請求項1記載のポリエステルカーボネート共重合体。   The polyester carbonate copolymer according to claim 1, comprising 1.0 to 50 ppm of Ti atoms based on the weight of the polyester carbonate copolymer. シリンダ温度280℃で、厚さ1mmの成形板を成形した時の成形板のYI値が1.0〜6.0である請求項1記載のポリエステルカーボネート共重合体。   The polyester carbonate copolymer according to claim 1, wherein when the molded plate having a thickness of 1 mm is molded at a cylinder temperature of 280 ° C, the YI value of the molded plate is 1.0 to 6.0. 下記式(a)で表されるジオール、下記式(b)で表されるジカルボン酸および炭酸ジエステル(c)を反応させポリエステルカーボネート共重合体を製造する方法であって、
Figure 2012099261
(式(b)中Yは、フェニレン基またはナフタレンジイル基である。)
炭酸ジエステル(c)の使用量が下記式(1)を満足し、かつ、チタン化合物をジオールとジカルボンの合計1モル対して、チタン元素として10−5〜10−3モルの比率で用いることを特徴とするポリエステルカーボネート共重合体の製造方法。
1.0≦(C)/{(A)−(B)}≦1.5 (1)
(式中、(A)はジオールの仕込みモル量、(B)はジカルボン酸またはそのエステル形成性誘導体の仕込みモル量、(C)は炭酸ジエステルの仕込みモル量である。)
A method for producing a polyester carbonate copolymer by reacting a diol represented by the following formula (a), a dicarboxylic acid represented by the following formula (b) and a carbonic acid diester (c),
Figure 2012099261
(In formula (b), Y represents a phenylene group or a naphthalenediyl group.)
The amount of carbonic acid diester (c) used satisfies the following formula (1), and the titanium compound is used in a ratio of 10 −5 to 10 −3 mol as a titanium element with respect to a total of 1 mol of diol and dicarboxylic acid. A method for producing a polyester carbonate copolymer.
1.0 ≦ (C) / {(A) − (B)} ≦ 1.5 (1)
(In the formula, (A) is the charged molar amount of diol, (B) is the charged molar amount of dicarboxylic acid or its ester-forming derivative, and (C) is the charged molar amount of carbonic acid diester.)
請求項1に記載のポリエステルカーボネート共重合体を含有する樹脂組成物を射出成形することからなる光学部材の製造方法。   The manufacturing method of the optical member which consists of injection-molding the resin composition containing the polyester carbonate copolymer of Claim 1. シリンダ温度260〜300℃、金型温度100〜140℃の範囲で射出成形する請求項9記載の製造方法。   The manufacturing method according to claim 9, wherein the injection molding is performed at a cylinder temperature of 260 to 300 ° C and a mold temperature of 100 to 140 ° C. 成形不良率が10%以下である請求項9記載の製造方法。   The manufacturing method according to claim 9, wherein a molding defect rate is 10% or less. 光学部材がレンズである請求項9記載の製造方法。   The manufacturing method according to claim 9, wherein the optical member is a lens.
JP2012553794A 2011-01-19 2012-01-16 Polyester carbonate copolymer and process for producing the same Active JP5719854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012553794A JP5719854B2 (en) 2011-01-19 2012-01-16 Polyester carbonate copolymer and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011008857 2011-01-19
JP2011008857 2011-01-19
JP2012553794A JP5719854B2 (en) 2011-01-19 2012-01-16 Polyester carbonate copolymer and process for producing the same
PCT/JP2012/051280 WO2012099261A1 (en) 2011-01-19 2012-01-16 Polyester carbonate copolymer and production method therefor

Publications (2)

Publication Number Publication Date
JPWO2012099261A1 true JPWO2012099261A1 (en) 2014-06-30
JP5719854B2 JP5719854B2 (en) 2015-05-20

Family

ID=46515877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012553794A Active JP5719854B2 (en) 2011-01-19 2012-01-16 Polyester carbonate copolymer and process for producing the same

Country Status (4)

Country Link
JP (1) JP5719854B2 (en)
CN (1) CN103328536A (en)
TW (1) TW201242989A (en)
WO (1) WO2012099261A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689486B2 (en) 2014-05-07 2020-06-23 Mitsubishi Gas Chemical Company, Inc. Resin produced by polycondensation, and resin composition
JP6475046B2 (en) * 2015-03-18 2019-02-27 帝人株式会社 Thermoplastic resin film
KR102200878B1 (en) * 2017-11-28 2021-01-11 롯데케미칼 주식회사 Polyester-carbonate copolymer and method for preparing same and molded articl by using same
US11505698B2 (en) 2017-12-28 2022-11-22 Teijin Limited Polyester carbonate and method for producing polyester carbonate
JPWO2023074471A1 (en) * 2021-10-26 2023-05-04

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087800A (en) * 1996-09-10 1998-04-07 Teijin Chem Ltd Polyestercarbonate resin
WO2001092370A1 (en) * 2000-06-01 2001-12-06 Teijin Limited Wholly aromatic polyester carbonate and process for producing the same
JP4739571B2 (en) * 2001-04-18 2011-08-03 帝人化成株式会社 Stretched film
CN101018824B (en) * 2004-07-15 2011-05-04 大阪瓦斯株式会社 Resin composition and molded object thereof
CN102471467B (en) * 2009-07-24 2013-07-17 帝人化成株式会社 Optical lens, and polyester carbonate copolymer for use in optical lenses

Also Published As

Publication number Publication date
WO2012099261A1 (en) 2012-07-26
TW201242989A (en) 2012-11-01
JP5719854B2 (en) 2015-05-20
CN103328536A (en) 2013-09-25

Similar Documents

Publication Publication Date Title
US11370882B2 (en) Resin produced by polycondensation, and resin composition
JP6464227B2 (en) Optical lens comprising polycarbonate copolymer resin composition
JP6739255B2 (en) Thermoplastic resin
JP5011450B2 (en) Polyester carbonate copolymer for optical lens and optical lens
WO2018016516A1 (en) Polycarbonate resin, method for producing same, and optical lens
JP6336261B2 (en) Thermoplastic resin and optical member comprising the same
JP2018002895A (en) Thermoplastic resin
JP2018002894A (en) Thermoplastic resin
JP5808959B2 (en) High refractive index polycarbonate copolymer and optical lens
WO2018008483A1 (en) Thermoplastic resin
JP2019143152A (en) Manufacturing method of thermoplastic resin
JP5719854B2 (en) Polyester carbonate copolymer and process for producing the same
JP5808960B2 (en) Polycarbonate copolymer and optical lens having high refractive index and excellent heat resistance
CN113166390B (en) Thermoplastic resin for lens and lens comprising same
WO2024019028A1 (en) Thermoplastic resin and optical member
JP5808961B2 (en) Polycarbonate copolymer for optical lens and optical lens comprising the polycarbonate
JP6130255B2 (en) Polyester carbonate copolymer
JP2022154123A (en) Polyester resin or polyester carbonate resin, and optical member using the resin
WO2023085340A1 (en) Polycarbonate resin, and optical lens and optical film using same
JP2012145481A (en) Method for testing heat resistance of aliphatic terminal diol and method for producing thermoplastic resin by using the same
EP4130096A1 (en) Resin composition, optical lens containing this, and optical film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5719854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150