JPWO2012029714A1 - Nuclear exhaust gas recombination catalyst and recombiner - Google Patents

Nuclear exhaust gas recombination catalyst and recombiner Download PDF

Info

Publication number
JPWO2012029714A1
JPWO2012029714A1 JP2012531864A JP2012531864A JPWO2012029714A1 JP WO2012029714 A1 JPWO2012029714 A1 JP WO2012029714A1 JP 2012531864 A JP2012531864 A JP 2012531864A JP 2012531864 A JP2012531864 A JP 2012531864A JP WO2012029714 A1 JPWO2012029714 A1 JP WO2012029714A1
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nuclear
weight
recombiner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012531864A
Other languages
Japanese (ja)
Other versions
JP5607742B2 (en
Inventor
菅野 周一
周一 菅野
敏弘 大塚
敏弘 大塚
吉井 泰雄
泰雄 吉井
元浩 会沢
元浩 会沢
西 高志
高志 西
飯塚 秀宏
秀宏 飯塚
塩谷 靖
靖 塩谷
賢中 金
賢中 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Clariant Catalysts Japan KK
Original Assignee
Hitachi GE Nuclear Energy Ltd
Clariant Catalysts Japan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2010/005352 external-priority patent/WO2012029090A1/en
Application filed by Hitachi GE Nuclear Energy Ltd, Clariant Catalysts Japan KK filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2012531864A priority Critical patent/JP5607742B2/en
Publication of JPWO2012029714A1 publication Critical patent/JPWO2012029714A1/en
Application granted granted Critical
Publication of JP5607742B2 publication Critical patent/JP5607742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

本発明は、原子炉から排出される放射性気体廃棄物の処理において、流入する低分子シロキサンによる再結合触媒の性能低下を抑制することを目的とする。そして、本発明は、原子力発電所で原子炉から排出される放射性気体廃棄物に含まれる水蒸気中の水素と酸素とを再結合させる、原子力排ガス再結合触媒において、担体が微細かつ緊密に混在したγ−Al2O3とα−Al2O3との複合相を含むことを特徴とする。An object of the present invention is to suppress the performance degradation of the recombination catalyst due to the low-molecular siloxane that flows in in the treatment of radioactive gas waste discharged from a nuclear reactor. And, the present invention is a nuclear exhaust gas recombination catalyst that recombines hydrogen and oxygen in water vapor contained in radioactive gas waste discharged from a nuclear reactor at a nuclear power plant, and the carrier is finely and closely mixed. It includes a composite phase of γ-Al 2 O 3 and α-Al 2 O 3.

Description

本発明は、原子力発電所で原子炉から排出される放射性気体廃棄物中に含まれるHをHOに変換する原子力排ガス再結合触媒及びその触媒を用いた再結合器に関する。The present invention relates to a recombiner employing nuclear waste gas recombination catalyst and catalyst to convert and H 2 contained in the radioactive gaseous waste discharged from the reactor in a nuclear power plant in H 2 O.

沸騰水型原子力発電プラントにおいて、原子炉内の炉水は、放射線分解により、一部が水素と酸素に分解する。この水素と酸素は、炉水が気化した水蒸気とともに、放射性気体廃棄物として原子炉から排出される。水素と酸素を含む水蒸気は、原子炉の後段の再結合器内に充填された再結合触媒を通り、水素と酸素は、触媒上でHOに再結合する。触媒上での再結合反応を効率良く行わせるために、原子炉と再結合装置との間に空気を添加している。In a boiling water nuclear power plant, reactor water in a nuclear reactor is partially decomposed into hydrogen and oxygen by radiation decomposition. The hydrogen and oxygen are discharged from the reactor as radioactive gas waste together with the water vapor evaporated from the reactor water. The water vapor containing hydrogen and oxygen passes through the recombination catalyst filled in the recombiner at the rear stage of the reactor, and the hydrogen and oxygen recombine with H 2 O on the catalyst. In order to efficiently perform the recombination reaction on the catalyst, air is added between the nuclear reactor and the recombination apparatus.

再結合触媒としては、SiO、Al、TiO、ZrO、Cのなかから選択される少なくとも一つの物質を含有する担体と、Ru、Pd、Pt、Ir、W、Ag、Au、Rh、Reのなかから選択される少なくとも一つの物質からなる触媒が、特許文献1に開示されている。また、α−Al担体にPdを担持した再結合触媒が、特許文献2に開示されている。また、特許文献3には、基材上のAlコートの活性Alが、X線回折によって同定しうる、α―Al及びθ―Alを含み、かつδ−Al、γ―Al、κ―Al、χ―Al、及びρ―Alから選ばれた少なくとも一種を含んだものが記載されているが、対象は炭化水素、一酸化炭素、及び酸化窒素の無害化で、特に自動車排ガスが対象である。The recombination catalyst includes a support containing at least one substance selected from SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , and C, Ru, Pd, Pt, Ir, W, Ag, Au Patent Document 1 discloses a catalyst comprising at least one substance selected from R, Rh, and Re. Patent Document 2 discloses a recombination catalyst in which Pd is supported on an α-Al 2 O 3 support. Patent Document 3 also includes α-Al 2 O 3 and θ-Al 2 O 3 in which active Al 2 O 3 of an Al 2 O 3 coat on a substrate can be identified by X-ray diffraction, and A material containing at least one selected from δ-Al 2 O 3 , γ-Al 2 O 3 , κ-Al 2 O 3 , χ-Al 2 O 3 , and ρ-Al 2 O 3 is described. However, the object is detoxification of hydrocarbons, carbon monoxide, and nitric oxide, especially automobile exhaust gas.

特開2001−56391号公報JP 2001-56391 A 特開平5−38432号公報JP-A-5-38432 特開昭62−241552号公報JP-A-62-241552

近年、原子力発電プラントにおいて、原子炉から排出される放射性気体廃棄物には、原子炉内や原子炉より上流の機器の配管系統などのシーラント材としてシリコーン系弾性体が使用されるようになって、このシーラント材の加水分解成分として、運転条件により排ガス中の低分子シロキサン化合物が含まれ、この低分子シロキサン化合物により再結合装置内に充填された再結合触媒が被毒されることが判明した。その結果、再結合器から排出される排ガス中にHが高濃度で残存することがわかった。また、アルミナ担体は、水蒸気存在下で加熱されると、シンタリングを起こし、比表面積を低下して触媒性能を低下させる。In recent years, in nuclear power plants, silicone-based elastic bodies have been used for radioactive gas waste discharged from nuclear reactors as a sealant material in piping systems of equipment inside the reactor and upstream from the reactor. As a hydrolysis component of this sealant material, it has been found that a low molecular siloxane compound in exhaust gas is included depending on operating conditions, and the recombination catalyst filled in the recombination apparatus is poisoned by this low molecular siloxane compound. . As a result, it was found that H 2 remained at a high concentration in the exhaust gas discharged from the recombiner. In addition, when the alumina support is heated in the presence of water vapor, sintering occurs, and the specific surface area is reduced to lower the catalyst performance.

このため、再結合器からの排ガス中のH濃度の上昇を防ぎ、原子力発電プラントを安全に運転するためには、放射性気体廃棄物に含まれるシロキサン特に低分子シロキサンの被毒を抑制し、また水蒸気によるシンタリングを抑制し、再結合装置の再結合触媒の性能低下を抑制することが新たな課題となっている。For this reason, in order to prevent an increase in the H 2 concentration in the exhaust gas from the recombiner and to safely operate the nuclear power plant, the poisoning of siloxanes, particularly low molecular siloxanes contained in radioactive gas waste, is suppressed, In addition, suppression of sintering by water vapor and suppression of performance degradation of the recombination catalyst of the recombination apparatus are new issues.

本発明は、前記課題を解決するためになされたものであり、再結合器からの排出ガス中のH濃度の異常上昇を起こさずに原子力発電プラントを運転することができる。The present invention has been made to solve the above-described problems, and can operate a nuclear power plant without causing an abnormal increase in the H 2 concentration in the exhaust gas from the recombiner.

本発明は、原子力発電所で原子炉から排出される放射性気体廃棄物に含まれる水蒸気中の水素と酸素とを再結合させる原子力排ガス再結合触媒において、該触媒が担体とその担体に担持された触媒成分を含み、該担体が、γ−Alとα―Alとが混在した複合相からなり、α―Alが主成分である原子力排ガス再結合触媒を提供するものである。上記担体はγ−Alとα―Alに加えて少量の他の結晶構造のAlを含むことができる。The present invention relates to a nuclear exhaust gas recombination catalyst for recombining hydrogen and oxygen in water vapor contained in a radioactive gas waste discharged from a nuclear reactor at a nuclear power plant, wherein the catalyst is supported on the carrier. Provided is a nuclear exhaust gas recombination catalyst comprising a catalyst component, wherein the carrier is composed of a composite phase in which γ-Al 2 O 3 and α-Al 2 O 3 are mixed, and α-Al 2 O 3 is a main component. Is. In addition to γ-Al 2 O 3 and α-Al 2 O 3 , the carrier can contain a small amount of other crystal structures of Al 2 O 3 .

本発明はまた、担体とその担体に担持された触媒成分を含み、該担体が、γ−Alとα―Alとが微細に緊密に混合した複合相からなり、α―Alが主成分で、其のαAlに分散したγ―Alからなる担体を用いた再結合触媒を収容した原子力排ガス再結合器を提供するものである。The present invention also includes a support and a catalyst component supported on the support, and the support comprises a composite phase in which γ-Al 2 O 3 and α-Al 2 O 3 are finely intimately mixed. The present invention provides a nuclear exhaust gas recombiner containing a recombination catalyst using a carrier composed of γ-Al 2 O 3 dispersed in α - Al 2 O 3 , the main component of which is Al 2 O 3 .

本発明により、原子炉から排出される放射性気体廃棄物中の低分子シロキサン化合物による再結合触媒の被毒及び/又は水蒸気による単体のシンタリングが抑制されて、再結合器出口における排ガス中のH濃度が上昇することなく、安全に原子力発電プラントを運転することができる。According to the present invention, poisoning of the recombination catalyst by the low-molecular siloxane compound in the radioactive gas waste discharged from the nuclear reactor and / or simple substance sintering by water vapor is suppressed, and H in the exhaust gas at the recombiner outlet is suppressed. 2 The nuclear power plant can be operated safely without increasing the concentration.

本発明による再結合触媒における各種反応ガス条件での反応管の出口H濃度を示すグラフである。The outlet concentration of H 2 in the reaction tube at various reaction gas conditions in recombination catalyst according to the invention is a graph showing. 本発明による再結合触媒における、低分子シロキサン化合物(D5)流入時の各反応ガス条件での反応管の出口H濃度経時変化を示すグラフである。In recombination catalyst according to the invention, it is a graph showing the outlet concentration of H 2 time course of the reaction tube at each reaction gas conditions in the low molecular weight siloxane compound (D5) flows. 本発明による再結合触媒における、低分子シロキサン化合物(D5)流入時の各反応ガス条件での反応管の出口H濃度経時変化を示すグラフである。In recombination catalyst according to the invention, it is a graph showing the outlet concentration of H 2 time course of the reaction tube at each reaction gas conditions in the low molecular weight siloxane compound (D5) flows. 本発明による再結合触媒における、低分子シロキサン化合物(D5)流入時の各反応ガス条件での反応管の出口H濃度経時変化を示すグラフである。In recombination catalyst according to the invention, it is a graph showing the outlet concentration of H 2 time course of the reaction tube at each reaction gas conditions in the low molecular weight siloxane compound (D5) flows. 比較触媒1及び本発明による触媒の結晶のXRD解析結果を示す。The XRD analysis result of the crystal | crystallization of the comparative catalyst 1 and the catalyst by this invention is shown. 本発明が適用される原子力プラントの排ガス処理システムの概略図である。1 is a schematic view of an exhaust gas treatment system of a nuclear power plant to which the present invention is applied. 本発明が適用される原子力プラントの概略図である。1 is a schematic view of a nuclear power plant to which the present invention is applied. 本発明による再結合触媒における各種反応ガス条件での反応管の出口H濃度を示すグラフである。The outlet concentration of H 2 in the reaction tube at various reaction gas conditions in recombination catalyst according to the invention is a graph showing. 本発明による触媒の結晶のXRD解析結果を示す。The XRD analysis result of the crystal | crystallization of the catalyst by this invention is shown.

以下、本発明の好ましい実施態様のいくつかを説明する。   Hereinafter, some preferred embodiments of the present invention will be described.

(1)前記原子力排ガス再結合触媒において、γ−Alとα―Alの配合割合が、α―Alが75〜99重量%で、γ−Alが1〜25重量%であり、他の結晶構造のAlが5重量%以下(ゼロ%を含む)である再結合触媒。この担体はγ―Alを所定の温度で焼成して、相変化を生じさせてθ―Alを生成する温度領域(ここで全てがθ―Alに変化するのではない。)を経由して、α―Alに変化させるか、α―Alとγ―Alをバインダーとともに混合し、成形して焼成して得る。(1) In the nuclear exhaust gas recombination catalyst, the blending ratio of γ-Al 2 O 3 and α-Al 2 O 3 is such that α-Al 2 O 3 is 75 to 99% by weight and γ-Al 2 O 3 is A recombination catalyst that is 1 to 25% by weight and that Al 2 O 3 of other crystal structures is 5% by weight or less (including zero%). This carrier calcinates γ-Al 2 O 3 at a predetermined temperature and causes a phase change to generate θ-Al 2 O 3 (where all change to θ-Al 2 O 3 Is not changed to α-Al 2 O 3 , or α-Al 2 O 3 and γ-Al 2 O 3 are mixed with a binder, molded and fired.

γ―Alを、1200℃を越える温度で長時間加熱すると、全体がα―Alに変化する可能性が有るが、約1150℃以下の温度で加熱すると、一部がγ―Alのままで、他はα―Alに、少量のθ―Alが混在したAlが形成される。触媒工学講座10元素別触媒便覧((株)地人書館発行)第30頁の記載は、γ―Alを1100℃以上に加熱すると、全体がθ―Alに、1200℃以上で全体がα―Alに相変化すると解釈できるが、実際は1000℃を越える温度でも上記のようにγ―Alが残り、或いは場合によってはθ―Alも、残留することが有ることを発見した。このことが本発明の担体がγ―Alとα―Alの有用な特性を備えつつ、かつ触媒性能にとってはマイナス要因であるバインダーを用いないで、γ―Alとα―Alが混在し、かつ一体化した担体を形成し得るという顕著な効果を有する。When γ-Al 2 O 3 is heated at a temperature exceeding 1200 ° C. for a long time, the whole may be changed to α-Al 2 O 3 , but when heated at a temperature of about 1150 ° C. or less, a part of the γ-Al 2 O 3 is γ Al 2 O 3 is formed by mixing a small amount of θ-Al 2 O 3 in α-Al 2 O 3 with the other being -Al 2 O 3 . Catalyst Engineering Course 10 Elemental Catalyst Manual (published by Jinshokan Co., Ltd.), page 30 shows that when γ-Al 2 O 3 is heated to 1100 ° C or higher, the whole becomes θ-Al 2 O 3 and 1200 ° C. Although the whole can be interpreted as a phase change to α-Al 2 O 3 as described above, actually, γ-Al 2 O 3 remains as described above even at a temperature exceeding 1000 ° C., or in some cases, θ-Al 2 O 3 It was discovered that it may remain. This is because the carrier of the present invention has useful properties of γ-Al 2 O 3 and α-Al 2 O 3 , and without using a binder that is a negative factor for catalyst performance, γ-Al 2 O 3 And α-Al 2 O 3 are mixed, and an integrated support can be formed.

また、本発明の担体は一体のγ―Alの原料を球状、ペレットなどの形態で熱処理のみで相変化させるので、熱処理後のα―Alとγ―Alは微細かつ緊密に混在し、水蒸気が存在してもα―Alがγ―Alのシンタリングを抑制して、触媒性能を低下させることがない。In addition, since the carrier of the present invention changes the phase of the integral γ-Al 2 O 3 raw material in the form of spheres and pellets only by heat treatment, α-Al 2 O 3 and γ-Al 2 O 3 after heat treatment are Even if it is finely and closely mixed, even if water vapor is present, α-Al 2 O 3 suppresses sintering of γ-Al 2 O 3 and does not deteriorate the catalyst performance.

これに対し、α―Alとγ―Alとを混合し、これにバインダーを加えて成形し、焼成し、触媒を担持させてもよいが、元来比表面積が小さいバインダーによりγ―Alの表面が覆われ、触媒性能が損なわれることが懸念される。このような物理的な混合の場合は、γ―Alとα―Alがバインダーにより結合されているので、本発明でいう一体化とは言えないが、γ―Alとα―Alを微細な粒子として混合すれば、加熱によるγ―Alの相変化により製造した(α+γ)Alと類似の特性を得ることができる。On the other hand, α-Al 2 O 3 and γ-Al 2 O 3 may be mixed, and a binder may be added to this to be molded, fired, and supported by a catalyst. Therefore, there is a concern that the surface of γ-Al 2 O 3 is covered and the catalyst performance is impaired. In the case of such physical mixing, since γ-Al 2 O 3 and α-Al 2 O 3 are bonded by a binder, it cannot be said to be integrated in the present invention, but γ-Al 2 O When 3 and α-Al 2 O 3 are mixed as fine particles, characteristics similar to (α + γ) Al 2 O 3 produced by the phase change of γ-Al 2 O 3 by heating can be obtained.

なお、バインダーを用いずに物理的に混合した場合は、強度は低くなる。また、触媒の収率が低くなる。   In addition, when it mixes physically without using a binder, intensity | strength becomes low. Further, the yield of the catalyst is lowered.

本発明で「γ−Alとα―Alが一体化している」とはγ−Alとα―Alがバインダー等を介さないで、焼結又は焼成により直接結合している状態を意味する。これに対しバインダーを用いてγ−Al粉末とα―Alを粉末の粒径を十分小さくして均一に混合して焼成したときは、バインダーを介して結合し、γ−Alとα―Alとの緊密な混合層を得ることができる。In the present invention, “γ-Al 2 O 3 and α-Al 2 O 3 are integrated” means that γ-Al 2 O 3 and α-Al 2 O 3 are sintered or fired without a binder or the like. Means a state of being directly coupled by. On the other hand, when γ-Al 2 O 3 powder and α-Al 2 O 3 are mixed using a binder with a sufficiently small particle size and uniformly mixed and fired, they are bonded via the binder and γ- An intimate mixed layer of Al 2 O 3 and α-Al 2 O 3 can be obtained.

本発明の担体は、γ−Alとα―AlがAl重量の95重量%以上を占め、残部は他の結晶構造たとえばθ―Al及び不可避の不純物からなる。γ−Alとα―Alとは微細に緊密に一体化していることが望ましく、本発明による最も好ましい担体はAl以外のバインダー成分を実質的に含有せず、そのためにバインダー成分の溶出等による弊害を防ぐことができる。しかし、γ−Alとα―Alを微細な粉末として混合して柱状、ペレット状に成型し、焼成してもよい。また、上記混合物を焼成し、粉砕し、この粉末をスラリーとし、それをハニカム又は板状基板に塗布してもよい。In the carrier of the present invention, γ-Al 2 O 3 and α-Al 2 O 3 account for 95% by weight or more of Al 2 O 3 weight, and the balance is other crystal structures such as θ-Al 2 O 3 and inevitable impurities. Consists of. It is desirable that γ-Al 2 O 3 and α-Al 2 O 3 are finely and closely integrated, and the most preferred support according to the present invention is substantially free of binder components other than Al 2 O 3 , Therefore, adverse effects due to elution of the binder component can be prevented. However, γ-Al 2 O 3 and α-Al 2 O 3 may be mixed as a fine powder, molded into a columnar shape or a pellet shape, and fired. Further, the above mixture may be fired and pulverized to make this powder into a slurry, which may be applied to a honeycomb or plate-like substrate.

(2)前記原子力排ガス再結合触媒において、γ−Alとα―Alの配合割合が、α―Alが85〜94重量%で、γ−Alが6〜15重量%、α及びγ以外の結晶構造のAlが5重量%以下である再結合触媒。(2) In the nuclear waste gas recombination catalyst, the mixing ratio of the γ-Al 2 O 3 α- Al 2 O 3 is, alpha-Al 2 O 3 is at 85 to 94 wt%, the gamma-Al 2 O 3 A recombination catalyst comprising 6 to 15% by weight of Al 2 O 3 having a crystal structure other than α and γ of 5% by weight or less.

(3)前記原子力排ガス再結合触媒において、前記触媒成分がPdである再結合触媒。   (3) A recombination catalyst in which the catalyst component is Pd in the nuclear exhaust gas recombination catalyst.

(4)前記原子力排ガス再結合触媒において、前記触媒の比表面積が5m/g以上、好ましくは6〜60m/gである再結合触媒。(4) In the above nuclear exhaust gas recombination catalyst, the specific surface area of the catalyst is 5 m 2 / g or more, recombination catalyst which is preferably 6~60m 2 / g.

(5)前記原子力排ガス再結合触媒において、前記触媒のCO吸着量が2μmol/g以上である再結合触媒。   (5) In the nuclear exhaust gas recombination catalyst, a recombination catalyst in which the CO adsorption amount of the catalyst is 2 μmol / g or more.

(6)原子力排ガス再結合器であって、γ−Alとα―Alの配合割合が、α―Alが75〜99重量%で、γ−Alが1〜25重量%、残部5重量%以下(ゼロ%を含む)の他の結晶構造のAl及び不可避の不純物からなる担体に触媒成分を担持した触媒を用いた再結合器。上記において、重量%はAl3の重量基準である。(6) Nuclear exhaust a recombiner, gamma-Al mixing ratio of 2 O 3 and alpha-Al 2 O 3 is in alpha-Al 2 O 3 is 75 to 99 wt%, gamma-Al 2 O 3 A recombiner using a catalyst in which a catalyst component is supported on a carrier composed of Al 2 O 3 having another crystal structure of 1 to 25% by weight and the balance of 5% by weight or less (including zero%) and other inevitable impurities. In the above,% by weight is based on the weight of Al 2 O 3 .

(7)前記原子力排ガス再結合器において、前記γ−Alとα―Alの配合割合が、α―Alが85〜94重量%で、γ−Alが6〜15重量%、α及びγ以外の結晶構造のAlが5重量%以下である再結合器。(7) In the nuclear exhaust gas recombiner, the mixing ratio of the γ-Al 2 O 3 and α-Al 2 O 3 is, α-Al 2 O 3 is at 85 to 94 wt%, γ-Al 2 O 3 Is a recombiner in which Al 2 O 3 having a crystal structure other than α and γ is 5% by weight or less.

(8)前記原子力排ガス再結合器において、前記γ−Alとα―Alの一部が化学的に結合していることを特徴とする原子力排ガス再結合器。(8) In the nuclear exhaust gas recombiner, the nuclear exhaust gas recombiner is characterized in that a part of the γ-Al 2 O 3 and α-Al 2 O 3 are chemically bonded.

(9)前記原子力排ガス再結合器において、前記触媒成分がPdである再結合器。   (9) In the nuclear exhaust gas recombiner, the recombiner in which the catalyst component is Pd.

α―Al単独からなる担体は、水蒸気雰囲気下で相変化が起こらず、他の相に比べて、比較的に耐久性がある点では長所であるが、担体の表面積が非常に低いために含浸したPdの表面積も低く、前述したようにシロキサン流入時に性能低下が起こりやすい。一方、γ―Al単独からなる担体は、担体の比表面積が高いためにPd表面積も高くできるが、水蒸気雰囲気下ではシンタリングなどにより、表面積の低下や相変化を起こしやすい。The carrier composed of α-Al 2 O 3 alone does not cause a phase change in a water vapor atmosphere and is advantageous in that it is relatively durable compared to other phases, but the surface area of the carrier is very low. Therefore, the surface area of the impregnated Pd is also low, and as described above, the performance is likely to deteriorate when the siloxane flows. On the other hand, a carrier made of γ-Al 2 O 3 alone can have a high Pd surface area because of the high specific surface area of the carrier, but it tends to cause a reduction in surface area or phase change due to sintering in a water vapor atmosphere.

本発明の特に好ましい実施形態においては、α―Alとγ−Alを単に物理的に混合するのではなく、α相とγ相を分子レベルで緊密に混在させることで、α相に囲まれたγ相がシンタリングしにくい状態になり、そのような担体にPdを担持することにより、表面積をある程度、高く保持しつつ、かつ、耐水熱性も付与することができる。α―Alとγ−Alを単に物理的に混合した担体の場合、上記のような効果は期待できない。In a particularly preferred embodiment of the present invention, rather than simply physically mixing α-Al 2 O 3 and γ-Al 2 O 3 , the α phase and the γ phase are closely mixed at the molecular level, The γ phase surrounded by the α phase becomes difficult to sinter, and by supporting Pd on such a carrier, the surface area can be kept high to some extent and the hydrothermal resistance can also be imparted. In the case of a carrier in which α-Al 2 O 3 and γ-Al 2 O 3 are simply physically mixed, the above effects cannot be expected.

なお、α相に囲まれたγ相を形成するため、α―Alは担体の主成分であることが好ましい。即ち、α―Alとγ−Alの組成割合に関して、α―Alの割合が75〜99重量%が好ましく、より好ましくは85〜96重量%である。75重量%以下の場合は、水蒸気雰囲気下でのシンタリングの影響が大きいために表面積の低下や相変化を起こしやすい。99重量%以上の場合は、担持したPdの表面積が十分に大きくならない。In order to form a γ phase surrounded by an α phase, α-Al 2 O 3 is preferably the main component of the support. That is, with respect to the composition ratio of α-Al 2 O 3 and γ-Al 2 O 3 , the proportion of α-Al 2 O 3 is preferably 75 to 99% by weight, more preferably 85 to 96% by weight. In the case of 75% by weight or less, since the influence of sintering under a steam atmosphere is large, the surface area is likely to be reduced and the phase is likely to change. In the case of 99% by weight or more, the surface area of the supported Pd does not become sufficiently large.

図6、7に示すように、水蒸気を主成分とする原子炉8からの放射性気体廃棄物(排ガス)1がタービン9、予熱器7を経由して、排ガス中に含まれる低分子シロキサン化合物が再結合器3の再結合触媒層に流入し、再結合触媒2を被毒すると、触媒性能が低下し、再結合器から排出される排ガス中にHが高濃度で残存する。この排ガスは、復水器10、除湿冷却器11を経て、外部に排出されるが、原子力発電プラントを安全に運転するためには、排ガス中のH濃度の上昇を防ぐ必要がある。このため、低分子シロキサン化合物による触媒の性能低下を抑制する必要がある。また、再結合触媒の担体は、水蒸気存在下でシンタリングを起こし、触媒性能を低下することが確認された。したがって、担体のシンタリングを防ぐことも重要である。As shown in FIGS. 6 and 7, the radioactive gaseous waste (exhaust gas) 1 from the reactor 8 mainly composed of water vapor passes through a turbine 9 and a preheater 7 to form a low molecular siloxane compound contained in the exhaust gas. If the recombination catalyst 2 flows into the recombination catalyst layer of the recombiner 3 and poisons the recombination catalyst 2, the catalyst performance deteriorates, and H 2 remains at a high concentration in the exhaust gas discharged from the recombiner. This exhaust gas is discharged to the outside through the condenser 10 and the dehumidifying cooler 11, but it is necessary to prevent the H 2 concentration in the exhaust gas from increasing in order to operate the nuclear power plant safely. For this reason, it is necessary to suppress the catalyst performance fall by a low molecular siloxane compound. In addition, it was confirmed that the carrier of the recombination catalyst causes sintering in the presence of water vapor and deteriorates the catalyst performance. Therefore, it is also important to prevent carrier sintering.

再結合触媒の温度管理は低分子シロキサンによる被毒を抑制するため重要である。図6は、再結合器下部の温度を測定しながら、予熱器温度を制御し、再結合触媒の温度を管理した例である。上部から下部へアップフロー構造でも同様である。また、再結合触媒の温度を制御する手段として、再結合器下部の温度のほかに、再結合器上部の温度、再結合触媒の内部温度を用いることができる。温度管理が不要の条件であれば、予熱器温度の制御は特に不要である。   Controlling the temperature of the recombination catalyst is important in order to suppress poisoning by low molecular weight siloxane. FIG. 6 is an example in which the temperature of the recombination catalyst is controlled by controlling the preheater temperature while measuring the temperature of the lower part of the recombiner. The same applies to the upflow structure from the top to the bottom. Further, as means for controlling the temperature of the recombination catalyst, in addition to the temperature at the lower part of the recombiner, the temperature at the upper part of the recombiner and the internal temperature of the recombination catalyst can be used. If the temperature management is unnecessary, the preheater temperature control is not particularly required.

詳細に検討した結果、再結合触媒層に流入した低分子シロキサン化合物及び/又は水蒸気の影響を、再結合触媒の担体を改善することで抑制できることがわかった。   As a result of detailed examination, it was found that the influence of the low-molecular siloxane compound and / or water vapor flowing into the recombination catalyst layer can be suppressed by improving the support of the recombination catalyst.

放射性気体廃棄物に含まれる低分子シロキサン化合物としては、ケイ素化合物があり、一例としてシロキサンがある。低分子シロキサンは、−OSi(CH−という基準構造が連続して結合している。特に環状となっている化合物は、前述の基準構造が5つの場合はD5と記載する。通常はD3〜D8程度の化合物が対象となるが、本発明では、基準構造が2つ以下の化合物も低分子シロキサンとして対応可能である。基準構造が2つ以下の化合物では、環状構造を作れないため、直鎖状の構造となり、末端は−OHとなっていると推定される。したがって、本発明で対象とする低分子シロキサン化合物とはD1〜D8である。As a low molecular siloxane compound contained in the radioactive gas waste, there is a silicon compound, and an example is siloxane. The low molecular siloxane has a standard structure of —OSi (CH 3 ) 2 — continuously bonded. In particular, a compound having a cyclic shape is described as D5 when the aforementioned reference structure is five. Usually, a compound of about D3 to D8 is targeted, but in the present invention, a compound having two or less reference structures can also be used as a low molecular siloxane. In a compound having two or less reference structures, a cyclic structure cannot be formed, and thus a linear structure is assumed, and a terminal is assumed to be —OH. Therefore, the low molecular siloxane compounds targeted in the present invention are D1 to D8.

再結合触媒に流入した低分子シロキサン化合物は、触媒活性成分を覆うような形で触媒表面に存在する。このため、本来の反応物質が触媒活性成分上に吸着しにくくなり、触媒の性能が低下する。しかし、触媒比表面積を適切に制御することで、通常の触媒性能も高く維持され、かつ低分子シロキサン化合物の流入時の性能低下を抑制できる。   The low molecular weight siloxane compound that has flowed into the recombination catalyst is present on the surface of the catalyst so as to cover the catalytically active component. For this reason, it becomes difficult for the original reactant to be adsorbed on the catalytically active component, and the performance of the catalyst is lowered. However, by controlling the specific surface area of the catalyst appropriately, the normal catalyst performance can be maintained at a high level, and the performance degradation during the inflow of the low molecular weight siloxane compound can be suppressed.

触媒の比表面積は5m/g以上が望ましい。5m/g以下であると表面に低分子シロキサンが蓄積した場合に触媒活性成分を覆いやすく、性能低下が早い。比表面積は大きければよいが、6〜60m/gが好ましく、使用中の機械的強度の低下の問題もあるため35m/g以下が特に好ましい。The specific surface area of the catalyst is desirably 5 m 2 / g or more. When the molecular weight is 5 m 2 / g or less, when low-molecular siloxane accumulates on the surface, the catalytically active component is easily covered, and the performance is deteriorated quickly. Although the specific surface area should just be large, 6-60 m < 2 > / g is preferable and since there also exists a problem of the fall of the mechanical strength in use, 35 m < 2 > / g or less is especially preferable.

触媒活性成分としてはPd、Ptなどを使用することができる。特にPdはO/H比が大きい条件でも高い再結合性能を示すため好ましい。触媒活性成分は0.1〜1.0重量%で担持するのがよく、望ましくは0.3〜0.8重量%担持するのがよい。Pd, Pt, etc. can be used as the catalytically active component. In particular, Pd is preferable because it exhibits high recombination performance even under conditions where the O 2 / H 2 ratio is large. The catalytically active component is preferably supported at 0.1 to 1.0% by weight, and preferably 0.3 to 0.8% by weight.

触媒活性成分の担体表面露出量も重要である。Pdなどの表面露出量を評価する指標としてCO吸着量がある。CO吸着量が多い場合は担体表面にPdが多く存在していることを示す。一方で、CO吸着量が少ない場合は、担体表面にPdが少ないことを示す。再結合触媒もCO吸着量が少ないと流入低分子シロキサンの影響が出やすくなるため、CO吸着量は2μmol/g以上であることが望ましい。   The amount of the catalyst active component exposed on the support surface is also important. There is a CO adsorption amount as an index for evaluating the surface exposure amount of Pd or the like. A large amount of CO adsorption indicates that a large amount of Pd is present on the surface of the carrier. On the other hand, when the amount of CO adsorption is small, it indicates that Pd is small on the surface of the carrier. If the resorption catalyst also has a small amount of CO adsorption, the influence of the inflowing low molecular weight siloxane is likely to occur. Therefore, the CO adsorption amount is desirably 2 μmol / g or more.

触媒活性成分の表面露出量は、触媒活性成分担持量が等しい場合には比表面積の大きさに依存する。比表面積が小さい場合、触媒活性成分は担体内に埋没したり、粗大な凝集粒子として表面に存在したりするため、低分子シロキサン化合物の流入時に性能低下が起こりやすい。上記の説明のように、本発明は原子炉排気ガス中に低分子シロキサン化合物を含んでいる排ガスの処理に特に好適であるが、排ガスの高温に曝されてもシンタリングを起こしにくく所定の触媒表面積を維持し得るので、低分子シロキサン化合物を含んでいない原子炉排ガスの再結合触媒としても用いることができる。   The surface exposure amount of the catalytic active component depends on the size of the specific surface area when the catalytic active component loading amount is equal. When the specific surface area is small, the catalytically active component is buried in the support or exists on the surface as coarse agglomerated particles, so that the performance is likely to deteriorate when the low molecular siloxane compound flows in. As described above, the present invention is particularly suitable for the treatment of exhaust gas containing a low-molecular-weight siloxane compound in the reactor exhaust gas, but it is difficult to cause sintering even when exposed to high temperature of the exhaust gas. Since the surface area can be maintained, it can also be used as a recombination catalyst for reactor exhaust gas that does not contain a low-molecular siloxane compound.

以下の説明において、本発明によるγ−Alとα−Alとの複合相を(γ+α)Alと表示することがある。(γ+α)Alからなる担体は、強度劣化による触媒性能低下がなく、長時間性能を維持できる。γ−Alは、γ−Alとα−Alが単に物理的に混合しているのではなく、分子レベルで非常に微細かつ緊密に混合又は一部化学的に結合しているものである。このような(γ+α)Alは、たとえば、γ―Alを1000〜1150℃で、30分〜3時間加熱することにより、γ―Alの一部が相変化し、α―Alとなり、α―Alとγ―Alが、非常に微細かつ緊密に分子レベルで混在又は一部化学的に結合していると考えられる。熱処理したγ―AlをXRDにより結晶構造を調べたところ、α―Alとγ―Alが混在していることが確認された。α―Alとγ―Alが分子レベルで微細にかつ緊密に混在している場合には、低分子シロキサン化合物がα―Alとγ―Alの表面に付着、被覆しにくくなり、かつシンタリングを抑制するので、触媒性能を低下させることがない。触媒1〜触媒3の場合は、α―Alとγ―Alが混在しているが、比較触媒1はα―Alのピークのみが観察された。In the following description, the composite phase of γ-Al 2 O 3 and α-Al 2 O 3 according to the present invention may be expressed as (γ + α) Al 2 O 3 . The carrier made of (γ + α) Al 2 O 3 can maintain the performance for a long time without lowering the catalyst performance due to the strength deterioration. γ-Al 2 O 3 is not simply a physical mixture of γ-Al 2 O 3 and α-Al 2 O 3, but very finely and closely mixed or partially chemically at the molecular level. It is what is combined. In such (γ + α) Al 2 O 3 , for example, by heating γ-Al 2 O 3 at 1000 to 1150 ° C. for 30 minutes to 3 hours, a part of γ-Al 2 O 3 undergoes a phase change. Α-Al 2 O 3 , and α-Al 2 O 3 and γ-Al 2 O 3 are considered to be very finely and closely mixed or partially chemically bonded at the molecular level. When the crystal structure of the heat-treated γ-Al 2 O 3 was examined by XRD, it was confirmed that α-Al 2 O 3 and γ-Al 2 O 3 were mixed. When α-Al 2 O 3 and γ-Al 2 O 3 are finely and closely mixed at the molecular level, the low molecular siloxane compound is a surface of α-Al 2 O 3 and γ-Al 2 O 3 . As a result, it is difficult to adhere to and coat the catalyst and suppress sintering, so that the catalyst performance is not deteriorated. In the case of catalyst 1 to catalyst 3, α-Al 2 O 3 and γ-Al 2 O 3 are mixed, but only a peak of α-Al 2 O 3 was observed in comparative catalyst 1.

(α+γ)Alの組成割合は、以下のように推定した。
α―Al表面積=5m/g
γ−Al表面積=230m/g
とした場合の所定の表面積でのα相、γ相の割合を算出すると、
表面積15m/gのAl中、α:γ=0.96:0.04
表面積30m/gのAl中、α:γ=0.87:0.13
となる。したがって、上記のα―Al及びγ−Alで評価した場合、α―Alとγ−Alの量は、87〜96重量%であり、γ−Alの量は4〜13重量%である。
The composition ratio of (α + γ) Al 2 O 3 was estimated as follows.
α-Al 2 O 3 surface area = 5 m 2 / g
γ-Al 2 O 3 surface area = 230 m 2 / g
When the ratio of α phase and γ phase at a predetermined surface area is calculated,
In Al 2 O 3 having a surface area of 15 m 2 / g, α: γ = 0.96: 0.04
In Al 2 O 3 having a surface area of 30 m 2 / g, α: γ = 0.87: 0.13
It becomes. Therefore, when evaluated in the above α-Al 2 O 3 and γ-Al 2 O 3, the amount of the α-Al 2 O 3 γ- Al 2 O 3 is 87-96 wt%, gamma-Al The amount of 2 O 3 is 4 to 13% by weight.

本発明が適用される触媒の形状としては、球状、ペレット状、柱状などがあり、さらにハニカムや板状触媒がある。本発明による担体を作成するにあたり、球状、ペレット状、柱状などに成形したγ―Alを所定の温度で熱処理し、(α+γ)Alを得、その表面に触媒成分を含侵、付着などの方法で担持してもよい。また、触媒成分と(α+γ)Al担体をスラリーや溶液としてウオッシュコートを調整し、ハニカム基体や板状基体に塗布し、次いで(α+γ)Al担体を焼成してから触媒成分を担持してもよい。The shape of the catalyst to which the present invention is applied includes a spherical shape, a pellet shape, and a column shape, and further includes a honeycomb and a plate-shaped catalyst. In preparing the carrier according to the present invention, γ-Al 2 O 3 formed into a spherical shape, a pellet shape, a column shape or the like is heat-treated at a predetermined temperature to obtain (α + γ) Al 2 O 3 , and the catalyst component is contained on the surface thereof. You may carry | support by methods, such as erosion and adhesion. Further, the catalyst component and the (α + γ) Al 2 O 3 carrier are prepared as a slurry or solution to prepare a wash coat, applied to a honeycomb substrate or a plate-like substrate, and then the (α + γ) Al 2 O 3 carrier is baked before the catalyst component. May be supported.

以下、実施例にて本発明を説明するが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

本実施例では、原子炉起動時の処理ガスを調整し、起動模擬試験を実施した。触媒はPdを担持したPd/(γ+α)−Alを用いた。なお、比較のため、比較触媒1としてPd/α−Alも同じ条件で評価した。In this example, the process gas at the time of reactor startup was adjusted and a startup simulation test was performed. As the catalyst, Pd / (γ + α) -Al 2 O 3 supporting Pd was used. For comparison, Pd / α-Al 2 O 3 was also evaluated as the comparative catalyst 1 under the same conditions.

(触媒1の製造)
表面積230m/gで、直径が5から7mmのγ−Alボールを1,150℃で焼成することにより、15m/gである(α+γ)−Alの両者が混在するAl担体を調製した。そのAl担体950gにPdメタルとして4.8gを含むジニトロジアミンパラジウム水溶液410mLをポアフィリング法により含浸し、100℃で2時間、乾燥したのちに400℃で5時間、焼成した。その後、5%のギ酸ソーダ水溶液3Lに焼成物を投入し、液相還元を実施後、100℃での乾燥を6時間行い、触媒1を得た。Pd担持量は0.5%であった。XRD測定したところ、図5に示すように、担体はα相とγ相が共存することを確認した。
(Manufacture of catalyst 1)
By firing γ-Al 2 O 3 balls having a surface area of 230 m 2 / g and a diameter of 5 to 7 mm at 1,150 ° C., both (α + γ) -Al 2 O 3 of 15 m 2 / g are mixed. An Al 2 O 3 support was prepared. The Al 2 O 3 carrier (950 g) was impregnated with 410 mL of dinitrodiamine palladium aqueous solution containing 4.8 g of Pd metal by a pore filling method, dried at 100 ° C. for 2 hours, and then calcined at 400 ° C. for 5 hours. Thereafter, the calcined product was put into 3 L of 5% sodium formate aqueous solution, liquid phase reduction was performed, and then drying at 100 ° C. was performed for 6 hours to obtain Catalyst 1. The amount of Pd supported was 0.5%. As a result of XRD measurement, as shown in FIG. 5, it was confirmed that the carrier coexisted with α phase and γ phase.

本触媒は、日本ベル製BELSORP−miniIIにてN吸着によるBET法で測定した比表面積が14m/g、日本ベル製BELCAT―Aにて測定したCO吸着量が3.9μmol/gである。CO吸着量は担持したPdの分散性を示す指標である。This catalyst has a specific surface area of 14 m 2 / g measured by BET method by N 2 adsorption with BELSORP-miniII manufactured by Nippon Bell, and a CO adsorption amount measured by BELCAT-A manufactured by Nippon Bell is 3.9 μmol / g. . The CO adsorption amount is an index indicating the dispersibility of the supported Pd.

(比較触媒1の製造)
表面積230m/gで、直径が5から7mmのγ−Alボールを1,300℃焼成することにより、5m/gであるα―Al担体を調製した。そのAl担体950gにPdメタルとして4.8gを含むジニトロジアミンパラジウム水溶液410mLをポアフィリング法により含浸し、100℃で2時間、乾燥したのちに400℃で5時間、焼成した。その後、5%のギ酸ソーダ水溶液3Lに焼成物を投入し、液相還元を実施後、100℃での乾燥を6時間行い、比較触媒1を得た。Pd担持量は0.5%であり、XRD測定したところ、図5に示すように、担体はα相であることを確認した。
(Production of comparative catalyst 1)
Surface area 230 m 2 / g, diameter by a γ-Al 2 O 3 balls 7mm firing 1,300 ° C. from 5 to prepare the α-Al 2 O 3 carrier is 5 m 2 / g. The Al 2 O 3 carrier (950 g) was impregnated with 410 mL of dinitrodiamine palladium aqueous solution containing 4.8 g of Pd metal by a pore filling method, dried at 100 ° C. for 2 hours, and then calcined at 400 ° C. for 5 hours. Thereafter, the calcined product was put into 3 L of 5% sodium formate aqueous solution, liquid phase reduction was performed, and then drying at 100 ° C. was performed for 6 hours to obtain Comparative Catalyst 1. The amount of Pd supported was 0.5%, and XRD measurement confirmed that the carrier was an α phase as shown in FIG.

本触媒は、実施例1と同様に測定した比表面積が4.8m/g、CO吸着量が1.7μmol/gである。This catalyst has a specific surface area of 4.8 m 2 / g and a CO adsorption amount of 1.7 μmol / g as measured in the same manner as in Example 1.

(実施例1)
以下の実験においては、水蒸気含有排ガス(モデルガス)中で、本発明による担体を用いた触媒1が排ガス中で触媒性能がどう変わるかを、比較触媒1と比較した。上記反応ガス流量を変えたケース1〜4で触媒1と比較触媒1を用いて水蒸気含有反応ガスを処理した。その結果を図1に示した。
Example 1
In the following experiment, it was compared with the comparative catalyst 1 how the catalyst performance using the carrier according to the present invention changes in the exhaust gas in the steam-containing exhaust gas (model gas). In cases 1 to 4 in which the reaction gas flow rate was changed, the steam-containing reaction gas was treated using the catalyst 1 and the comparative catalyst 1. The results are shown in FIG.

反応ガスには、所定量の純水を水蒸気発生装置にて水蒸気に気化させ、H、O、及び空気を添加したものを用いた。この反応ガスを、再結合触媒層に140℃で流入させた。触媒量と反応ガス量との関係として、(式1)で示される空間速度、(式2)で示される線速度を算出した。As the reaction gas, a gas obtained by evaporating a predetermined amount of pure water into water vapor with a water vapor generator and adding H 2 , O 2 , and air was used. This reaction gas was caused to flow into the recombination catalyst layer at 140 ° C. As the relationship between the catalyst amount and the reaction gas amount, the space velocity represented by (Expression 1) and the linear velocity represented by (Expression 2) were calculated.

空間速度(h−1)=反応ガス量(mL/h)/触媒量(mL) (式1)
線速度(m/s)=反応ガス流量(m/s)/触媒断面積(m) (式2)
反応管には、長さ方向の中央に再結合触媒を充填して再結合触媒層とした。反応管に導入された反応ガスは、再結合触媒層を通過し、出口に到達する。反応ガス条件は、各ガス流量を変えたケース1〜4とした。上記(式2)において、触媒断面積は、反応菅の内径を用いて算出した反応管断面積である。
Space velocity (h −1 ) = reaction gas amount (mL / h) / catalyst amount (mL) (Formula 1)
Linear velocity (m / s) = reaction gas flow rate (m 3 / s) / catalyst cross-sectional area (m 2 ) (Formula 2)
The reaction tube was filled with a recombination catalyst at the center in the length direction to form a recombination catalyst layer. The reaction gas introduced into the reaction tube passes through the recombination catalyst layer and reaches the outlet. The reaction gas conditions were Cases 1 to 4 in which each gas flow rate was changed. In the above (Formula 2), the catalyst cross-sectional area is the cross-sectional area of the reaction tube calculated using the inner diameter of the reaction vessel.

図1から明らかなように、本発明による触媒は、ケース1〜4のいずれにおいても比較触媒1よりも高い触媒性能を維持することが分かる。   As is apparent from FIG. 1, it can be seen that the catalyst according to the present invention maintains higher catalyst performance than Comparative Catalyst 1 in any of Cases 1 to 4.

(ケース1)
純水17.1mL/minを水蒸気発生装置にて水蒸気に気化させ、H175.4mL/minとO87.9mL/minとを混合し、空気を32.0mL/min添加したものを用いた。空間速度は41,129h−1、線速度は0.63m/sとした。
(Case 1)
Pure water 17.1 mL / min is vaporized into water vapor by a water vapor generator, H 2 175.4 mL / min and O 2 87.9 mL / min are mixed, and air is added at 32.0 mL / min. It was. The space velocity was 41,129 h −1 and the linear velocity was 0.63 m / s.

(ケース2)
純水17.2mL/minを水蒸気発生装置にて水蒸気に気化させ、H351.6mL/minとO125.7mL/minとを混合し、空気を64.0mL/min添加したものを用いた。空間速度は41,835h−1、線速度は0.64m/sとした。
(Case 2)
Pure water 17.2mL / min is vaporized into water vapor with a water vapor generator, H 2 351.6mL / min and O 2 125.7mL / min are mixed, and air is added at 64.0mL / min. It was. The space velocity was 41,835 h −1 and the linear velocity was 0.64 m / s.

(ケース3)
純水17.2mL/minを水蒸気発生装置にて水蒸気に気化させ、H528.5mL/minとO264.3mL/minとを混合し、空気を96.1mL/min添加したものを用いた。空間速度は42,498h−1、線速度は0.65m/sとした。
(Case 3)
Pure water 17.2 mL / min is vaporized with a water vapor generator, and H 2 528.5 mL / min and O 2 264.3 mL / min are mixed and air is added 96.1 mL / min. It was. The space velocity was 42,498 h −1 and the linear velocity was 0.65 m / s.

(ケース4)
純水17.3mL/minを水蒸気発生装置にて水蒸気に気化させ、H706.2mL/minとO353.1mL/minとを混合し、空気を128.4mL/min添加したものを用いた。空間速度は43,305h−1、線速度は0.66m/sとした。
(Case 4)
17.3 mL / min of pure water is vaporized into water vapor with a steam generator, H 2 706.2 mL / min and O 2 353.1 mL / min are mixed, and air is added to 128.4 mL / min. It was. The space velocity was 43,305 h −1 and the linear velocity was 0.66 m / s.

再結合触媒層を通過した反応ガス中のH濃度は、氷冷した冷却槽で水蒸気を水に凝縮させた後のガスをPDD(Pulsed Discharge Detector)ガスクロマトグラフ分析計(GLサイエンス株式会社製GC−4000)に導入して測定した。PDD検出器のモードは、HID(Helium Ionization Detector)を使用した。サンプルガス(再結合触媒層を通過した反応ガス)は、ポンプにて100μLを吸引した。ガスクロマトグラフのガス導入口温度は室温、検出器温度は150℃、オーブン温度は50℃とした。カラムは、外径1/8インチφ×長さ2mであり、充填材としてMolecular Sieve 13X−S(60〜80メッシュ)を使用した。キャリアガスは、Heを20mL/minで流した。また、放電ガスとしてHeを30mL/minで流した。The H 2 concentration in the reaction gas that has passed through the recombination catalyst layer is determined by using a PDD (Pulsed Discharge Detector) gas chromatograph analyzer (GC Science Co., Ltd. GC) after condensing water vapor into water in an ice-cooled cooling bath. -4000) and measured. As the mode of the PDD detector, HID (Helium Ionization Detector) was used. 100 μL of sample gas (reactive gas that passed through the recombination catalyst layer) was sucked with a pump. The gas inlet temperature of the gas chromatograph was room temperature, the detector temperature was 150 ° C., and the oven temperature was 50 ° C. The column had an outer diameter of 1/8 inch φ × length of 2 m, and Molecular Sieve 13X-S (60-80 mesh) was used as a packing material. As the carrier gas, He was allowed to flow at 20 mL / min. Moreover, He was flowed at 30 mL / min as discharge gas.

図1に各反応ガス条件に調節して60分後の出口H濃度を示す。実施例1触媒はケース1〜4の条件で引例1触媒よりも出口H濃度が低く、触媒そのものの再結合性能が高いことが分かった。FIG. 1 shows the outlet H 2 concentration after 60 minutes after adjusting to each reaction gas condition. The catalyst of Example 1 was found to have a lower outlet H 2 concentration than the catalyst of Reference 1 under the conditions of Cases 1 to 4, and the recombination performance of the catalyst itself was high.

(実施例2)
低分子シロキサン化合物を反応ガスに添加した場合の再結合性能経時変化を調べた。具体的には、低分子シロキサン化合物を添加した反応ガスを、再結合触媒層を充填した反応管に導入し、反応管の出口でのH濃度を測定した。
(Example 2)
Changes in recombination performance with time when a low molecular siloxane compound was added to the reaction gas were examined. Specifically, the reaction gas to which the low molecular siloxane compound was added was introduced into the reaction tube filled with the recombination catalyst layer, and the H 2 concentration at the outlet of the reaction tube was measured.

再結合触媒を充填した反応管に反応ガスを導入し、反応管の出口のH濃度(出口H濃度)が安定した状態で、シロキサンの一種であるD5を反応管上部から6.47×10−8mol/minで滴下した。反応ガス条件は最も低分子シロキサン化合物の影響が出やすい実施例1に記載のケース1とした。図2において、反応管の出口H濃度の経時変化を示す。図中の反応時間と出口H濃度はD5投入時の反応時間と出口H濃度を基準とした。触媒1は、試験開始210分後の出口H濃度が1.5vol%であったのに対し、比較触媒1は3.7vol%まで上昇しており、触媒1は、出口H濃度上昇を比較触媒1の約1/2に抑制でき、低分子シロキサン化合物に対し高い耐久性を示すことが分かった。The reaction gas was introduced into the reaction tube filled with the recombination catalyst, and D5, which is a kind of siloxane, was introduced from the top of the reaction tube to 6.47 × while the H 2 concentration at the outlet of the reaction tube (outlet H 2 concentration) was stable. The solution was added dropwise at 10 −8 mol / min. The reaction gas conditions were set to Case 1 described in Example 1 where the influence of the low molecular weight siloxane compound is most likely to occur. In FIG. 2, the change with time of the outlet H 2 concentration of the reaction tube is shown. The reaction time and the outlet concentration of H 2 in the figure relative to the reaction time and the outlet concentration of H 2 at D5 is turned on. Catalyst 1 had an outlet H 2 concentration of 210 vol% after 210 minutes from the start of the test, whereas Comparative Catalyst 1 had increased to 3.7 vol%, and Catalyst 1 had an increased outlet H 2 concentration. It can be suppressed to about ½ of the comparative catalyst 1, and it was found that the low-molecular siloxane compound exhibits high durability.

(実施例3)
本実施例では、触媒2を用いて低分子シロキサン化合物を反応ガスに添加した場合の再結合性能経時変化を調べた。
(Example 3)
In this example, the change over time in the recombination performance when a low molecular siloxane compound was added to the reaction gas using the catalyst 2 was examined.

(触媒2の調整)
表面積230m/gで、直径が6から8mmのγ―Alボールを1,100℃で焼成することにより、30m/gであるα−Alとγ−Alの両者が混在する(α+γ)−Al担体を調製した。そのAl担体950gにPdメタルとして4.8gを含むジニトロジアミンパラジウム水溶液410mLをポアフィリング法により含浸し、100℃で2時間、乾燥したのちに400℃で5時間、焼成した。その後、5%のギ酸ソーダ水溶液3Lに焼成物を投入し、液相還元を実施後、100℃での乾燥を6時間行い、触媒2を得た。Pd担持量は0.5%であり、XRD測定したところ、図5に示すように、α相とγ相が共存することを確認した。
(Adjustment of catalyst 2)
By firing γ-Al 2 O 3 balls having a surface area of 230 m 2 / g and a diameter of 6 to 8 mm at 1,100 ° C., α-Al 2 O 3 and γ-Al 2 O 3 that are 30 m 2 / g are obtained. (Α + γ) -Al 2 O 3 support in which both of the above were mixed was prepared. The Al 2 O 3 carrier (950 g) was impregnated with 410 mL of dinitrodiamine palladium aqueous solution containing 4.8 g of Pd metal by a pore filling method, dried at 100 ° C. for 2 hours, and then calcined at 400 ° C. for 5 hours. Thereafter, the calcined product was put into 3 L of 5% sodium formate aqueous solution, liquid phase reduction was performed, and then drying at 100 ° C. was performed for 6 hours to obtain Catalyst 2. The amount of Pd supported was 0.5%, and XRD measurement confirmed that the α phase and the γ phase coexisted as shown in FIG.

本触媒は、実施例1と同様に測定した比表面積が24.0m/g、CO吸着量が8.4μmol/gである。反応ガス条件はケース5とし、D5を反応管上部から2.95×10−7mol/minで滴下した。This catalyst has a specific surface area of 24.0 m 2 / g and a CO adsorption amount of 8.4 μmol / g as measured in the same manner as in Example 1. The reaction gas conditions were Case 5, and D5 was dropped from the upper part of the reaction tube at 2.95 × 10 −7 mol / min.

(ケース5)
純水88.4L/minを水蒸気発生装置にて水蒸気に気化させ、H2.0L/minとO1.01L/minとを混合し、窒素を0.21L/minで添加したものを用いた。空間速度は5344h−1、線速度は0.65Nm/sとした。
(Case 5)
Pure water 88.4 L / min is vaporized into water vapor by a water vapor generator, H 2 2.0 L / min and O 2 1.01 L / min are mixed, and nitrogen is added at 0.21 L / min. Using. The space velocity was 5344 h −1 and the linear velocity was 0.65 Nm / s.

図3に反応管の出口H濃度の経時変化を示す。図中の反応時間と出口H濃度はD5投入時の反応時間と出口H濃度を基準とした。触媒2は、試験時間120時間の間、出口H濃度は0.05vol%以下であり、低分子シロキサン化合物に対し高い耐久性を示すことが分かった。FIG. 3 shows the change with time of the outlet H 2 concentration of the reaction tube. The reaction time and the outlet concentration of H 2 in the figure relative to the reaction time and the outlet concentration of H 2 at D5 is turned on. It was found that the catalyst 2 had an outlet H 2 concentration of 0.05 vol% or less during the test time of 120 hours and exhibited high durability against the low molecular siloxane compound.

(実施例4)
本実施例では、触媒3を用いて、実施例2と同様に低分子シロキサン化合物を反応ガスに添加した場合の再結合性能経時変化を調べた。反応ガス条件はケース1とした。
Example 4
In this example, the change over time in the recombination performance when a low molecular weight siloxane compound was added to the reaction gas using the catalyst 3 was examined in the same manner as in Example 2. The reaction gas conditions were Case 1.

(触媒3の製造)
表面積230m/gで、直径が3から5mmのγ−Alボールを1,100℃焼成することにより、33m/gであるα−Alとγ−Alの両者が混在するAl担体を調製した。そのAl担体1100gにPdメタルとして3.3g含むジニトロジアミンパラジウム水溶液560mLをポアフィリング法により含浸し、100℃で2時間、乾燥したのちに400℃で5時間、焼成した。その後、5%のギ酸ソーダ水溶液3Lに焼成物を投入し、液相還元を実施後、100℃での乾燥を6時間行い、触媒3を得た。Pd担持量は0.3%であり、XRD測定したところ、図5に示すように、α相とγ相が共存することを確認した。
(Manufacture of catalyst 3)
By firing γ-Al 2 O 3 balls having a surface area of 230 m 2 / g and a diameter of 3 to 5 mm at 1,100 ° C., α-Al 2 O 3 and γ-Al 2 O 3 of 33 m 2 / g were obtained. An Al 2 O 3 support in which both were mixed was prepared. The Al 2 O 3 carrier 1100 g was impregnated with 560 mL of dinitrodiamine palladium aqueous solution containing 3.3 g of Pd metal by a pore filling method, dried at 100 ° C. for 2 hours, and then calcined at 400 ° C. for 5 hours. Thereafter, the fired product was put into 3 L of 5% sodium formate aqueous solution, liquid phase reduction was performed, and then drying at 100 ° C. was performed for 6 hours to obtain Catalyst 3. The amount of Pd supported was 0.3%, and XRD measurement confirmed that an α phase and a γ phase coexisted as shown in FIG.

本触媒は、実施例1と同様に測定した比表面積が33.2m/g、CO吸着量が7.0μmol/gである。This catalyst has a specific surface area of 33.2 m 2 / g and a CO adsorption amount of 7.0 μmol / g as measured in the same manner as in Example 1.

図4に反応管の出口H濃度の経時変化を示す。図中の反応時間と出口H濃度はD5投入時の反応時間と出口H濃度を基準とした。触媒3は、試験時間210分の間、出口H濃度は0.05vol%以下であり、低分子シロキサン化合物に対し高い耐久性を示すことが分かった。FIG. 4 shows the change over time in the outlet H 2 concentration of the reaction tube. The reaction time and the outlet concentration of H 2 in the figure relative to the reaction time and the outlet concentration of H 2 at D5 is turned on. It was found that the catalyst 3 had a high outlet port H 2 concentration of 0.05 vol% or less during the test time of 210 minutes, and showed high durability against the low molecular siloxane compound.

(実施例5)
本実施例では、原子炉起動時の処理ガスを調整し、起動模擬試験を実施した。触媒はPdを担持したPd/(γ+α)−Alを用いた。(γ+α)−Alはγ−Alとα−Alを化学的に混合した触媒4と、物理的に混合した触媒5を用いた。
(Example 5)
In this example, the process gas at the time of reactor startup was adjusted and a startup simulation test was performed. As the catalyst, Pd / (γ + α) -Al 2 O 3 supporting Pd was used. As (γ + α) -Al 2 O 3, a catalyst 4 in which γ-Al 2 O 3 and α-Al 2 O 3 were chemically mixed and a catalyst 5 in which physical mixing was performed were used.

(触媒4の製造)
ベーマイト粉体を押し出し機で直径1.6mmの円柱型の触媒に成形し、1100℃で焼成した。得られた成形体の比表面積は、32m/gであった。また、XRDにより結晶構造を調べたところ、α―Alとγ―Alが混在していることが確認された。この成形体100gにPdメタルとして0.50gを含むジニトロジアミンパラジウム水溶液6.92mLをポアフィリング法により含浸し、100℃で2時間乾燥したのちに400℃で4時間焼成した。その後、5%のギ酸ソーダ水溶液3Lに焼成物を投入し、液相還元を実施後、100℃での乾燥を6時間行い、触媒4を得た。
(Manufacture of catalyst 4)
Boehmite powder was formed into a cylindrical catalyst having a diameter of 1.6 mm by an extruder and baked at 1100 ° C. The specific surface area of the obtained molded body was 32 m 2 / g. Further, when the crystal structure was examined by XRD, it was confirmed that α-Al 2 O 3 and γ-Al 2 O 3 were mixed. 100 g of this molded body was impregnated with 6.92 mL of a dinitrodiamine palladium aqueous solution containing 0.50 g of Pd metal by a pore filling method, dried at 100 ° C. for 2 hours, and then fired at 400 ° C. for 4 hours. Thereafter, the calcined product was put into 3 L of 5% sodium formate aqueous solution, liquid phase reduction was performed, and then drying at 100 ° C. was performed for 6 hours to obtain Catalyst 4.

(触媒5の製造)
ベーマイト粉体を600℃及び1200℃で焼成した。それぞれの焼成粉体の比表面積は、189m/gと4m/gであった。また、XRDにより結晶構造を調べたところ、それぞれの焼成粉体は、γ−Alとα−Alの単一相であることが確認された。これらのγ−Alとα−Alを重量ベースで10重量%のγ−Alと85重量%のα−Alにバインダーとしてベーマイト5重量%を物理混合し、押し出し機で直径1.6mmの円柱型に成形した後に600℃で焼成した。この成形体の比表面積は、34m/gであった。この成形体に触媒4と同様の操作を行い、Pd担持操作を行い、触媒5を得た。
(Manufacture of catalyst 5)
Boehmite powder was fired at 600 ° C and 1200 ° C. The specific surface areas of the respective fired powders were 189 m 2 / g and 4 m 2 / g. Moreover, when the crystal structure was investigated by XRD, it was confirmed that each baked powder was a single phase of γ-Al 2 O 3 and α-Al 2 O 3 . These γ-Al 2 O 3 and α-Al 2 O 3 are physically mixed with 10% by weight of γ-Al 2 O 3 and 85% by weight of α-Al 2 O 3 as a binder and 5% by weight of boehmite. Then, it was fired at 600 ° C. after being formed into a cylindrical shape having a diameter of 1.6 mm by an extruder. The specific surface area of this molded body was 34 m 2 / g. The same operation as that of the catalyst 4 was performed on this molded body, and a Pd loading operation was performed, whereby a catalyst 5 was obtained.

触媒4および5ともに、Pd担持量は0.5%であった。XRDにて結晶形態を分析した結果を図9に示す。XRD測定装置として、PANalytical社のX’Pert Proを使用した。触媒4で担体はα相とγ相が共存することを確認した。一方、触媒5はα相が検出され、γ相は明確に認められなかった。これは最終的な比表面積を30m/gとなるよう混合したため、γ−Alの混合割合が少なかったためであるが、後述する比表面積測定結果から、γ−Alが含まれていることは明らかである。なお、比表面積測定装置として、日本ベル製HM Model-1210を使用した。In both catalysts 4 and 5, the amount of Pd supported was 0.5%. The result of analyzing the crystal form by XRD is shown in FIG. X'Pert Pro manufactured by PANalytical was used as the XRD measuring device. With catalyst 4, it was confirmed that the α phase and γ phase coexisted in the carrier. On the other hand, in the catalyst 5, the α phase was detected, and the γ phase was not clearly recognized. This is because the final specific surface area was mixed so as to be 30 m 2 / g, so the mixing ratio of γ-Al 2 O 3 was small, but from the specific surface area measurement result described later, γ-Al 2 O 3 was included. It is clear that As a specific surface area measuring device, HM Model-1210 manufactured by Nippon Bell was used.

本触媒は、実施例1と同様に測定した比表面積が、触媒4は34m/g、触媒5が32m/gである。また、実施例1と同様に測定したCO吸着量が、触媒4は13.2μmol/g、触媒5が6.3μmol/gである。また、チャチロン式硬度計TCD500を用いて、任意に採取した50個の触媒が圧壊する際の強度を測定した。その破壊強度の平均値は、触媒4が286N、触媒5が10N以下であった。The specific surface area of this catalyst as measured in the same manner as in Example 1 is 34 m 2 / g for catalyst 4 and 32 m 2 / g for catalyst 5. Moreover, the CO adsorption amount measured in the same manner as in Example 1 is 13.2 μmol / g for catalyst 4 and 6.3 μmol / g for catalyst 5. Further, the strength at which 50 arbitrarily collected catalysts were crushed was measured using a Chatillon hardness tester TCD500. The average value of the breaking strength was 286 N for catalyst 4 and 10 N or less for catalyst 5.

以下の実験においては、実施例1と同様に、水蒸気含有排ガス(モデルガス)中で、本発明による担体を用いた触媒4及び5の触媒性能がどう変わるかを調べた。   In the following experiment, in the same manner as in Example 1, it was examined how the catalyst performance of the catalysts 4 and 5 using the carrier according to the present invention changed in the steam-containing exhaust gas (model gas).

反応ガスは、純水17.1mL/minを水蒸気発生装置にて水蒸気に気化させ、H175.4mL/minとO87.7mL/minとを混合し、空気を31.9mL/min添加したものを用いた。空間速度は41,236h−1、線速度は0.63m/sとした。As for the reaction gas, pure water 17.1 mL / min is vaporized into water vapor by a water vapor generator, H 2 175.4 mL / min and O 2 87.7 mL / min are mixed, and air is added 31.9 mL / min. What was done was used. The space velocity was 41,236 h −1 and the linear velocity was 0.63 m / s.

再結合触媒層を通過した反応ガス中のH濃度は、実施例1と同様に測定した。The H 2 concentration in the reaction gas that passed through the recombination catalyst layer was measured in the same manner as in Example 1.

図8に試験を開始して60minの出口H濃度変化を示す。反応を開始して60minの間、触媒4は触媒5よりも高い触媒性能を示すことが分かった。FIG. 8 shows the change in outlet H 2 concentration for 60 min after the start of the test. It was found that the catalyst 4 showed higher catalyst performance than the catalyst 5 for 60 minutes after starting the reaction.

本発明は、原子力発電所での放射性気体廃棄物の処理、特に水素ガスの再結合除去に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for the treatment of radioactive gas waste at a nuclear power plant, particularly for recombination removal of hydrogen gas.

1:放射性気体廃棄物,2:再結合器触媒,3:再結合器,4:加熱設備,5:温度測定器,6:制御器,7:予熱器,8:原子炉,9:タービン,10:復水器,11:除湿冷却器 1: radioactive gas waste, 2: recombiner catalyst, 3: recombiner, 4: heating equipment, 5: temperature measuring device, 6: controller, 7: preheater, 8: nuclear reactor, 9: turbine, 10: condenser, 11: dehumidifying cooler

Claims (12)

原子力発電所で原子炉から排出される放射性気体廃棄物に含まれる水蒸気中の水素と酸素とを再結合させる原子力排ガス再結合触媒において、該触媒が担体とその担体に担持された触媒成分を含み、該担体が、γ−Alとα―Alとが混在した複合相からなり、α―Alが主成分であることを特徴とする原子力排ガス再結合触媒。In a nuclear exhaust gas recombination catalyst for recombining hydrogen and oxygen in water vapor contained in radioactive gas waste discharged from a nuclear reactor at a nuclear power plant, the catalyst includes a support and a catalyst component supported on the support. The nuclear exhaust gas recombination catalyst, wherein the carrier is composed of a composite phase in which γ-Al 2 O 3 and α-Al 2 O 3 are mixed, and α-Al 2 O 3 is a main component. 請求項1記載の原子力排ガス再結合触媒において、Alの重量基準で、γ−Alとα―Alの配合割合が、α―Alが75〜99重量%で、γ−Alが1〜25重量%、他の結晶構造が5重量%以下(ゼロ%を含む)及び不可避の不純物であることを特徴とする原子力排ガス再結合触媒。In claim 1 Nuclear exhaust gas recombination catalyst according, based on the weight of Al 2 O 3, the mixing ratio of the γ-Al 2 O 3 and α-Al 2 O 3 is, α-Al 2 O 3 is 75 to 99 weight %, Γ-Al 2 O 3 is 1 to 25% by weight, other crystal structure is 5% by weight or less (including zero%), and unavoidable impurities. 請求項1又は2記載の原子力排ガス再結合触媒において、Alの重量基準で、γ−Alとα―Alの配合割合が、α―Alが85〜94重量%で、γ−Alが6〜15重量%であることを特徴とする原子力排ガス再結合触媒。In nuclear exhaust gas recombination catalyst according to claim 1 or 2, wherein, based on the weight of Al 2 O 3, the mixing ratio of the gamma-Al 2 O 3 and α-Al 2 O 3 is, the α-Al 2 O 3 85~ A nuclear exhaust gas recombination catalyst comprising 94% by weight and 6-15% by weight of γ-Al 2 O 3 . 請求項1〜3のいずれかに記載の原子力排ガス再結合触媒において、γ−Alとα―Alの一部が化学的に結合していることを特徴とする原子力排ガス再結合触媒。The nuclear exhaust gas recombination catalyst according to any one of claims 1 to 3, wherein γ-Al 2 O 3 and a part of α-Al 2 O 3 are chemically bonded. Binding catalyst. 請求項1〜4のいずれかに記載の原子力排ガス再結合触媒において、前記触媒成分がPdであることを特徴とする原子力排ガス再結合触媒。   The nuclear exhaust gas recombination catalyst according to any one of claims 1 to 4, wherein the catalyst component is Pd. 請求項1〜5のいずれかに記載の原子力排ガス再結合触媒において、前記触媒の比表面積が5m/g以上であることを特徴とする原子力排ガス再結合触媒。The nuclear exhaust gas recombination catalyst according to claim 1, wherein the catalyst has a specific surface area of 5 m 2 / g or more. 請求項1〜6のいずれかに記載の原子力排ガス再結合触媒において、前記触媒のCO吸着量が2μmol/g以上であることを特徴とする原子力排ガス再結合触媒。   The nuclear exhaust gas recombination catalyst according to any one of claims 1 to 6, wherein the CO adsorption amount of the catalyst is 2 µmol / g or more. 担体とその担体に担持された触媒成分を含み、該担体が、γ−Alとα―Alとが混在した複合相からなり、α―Alが主成分である再結合触媒を収容したことを特徴とする原子力排ガス再結合器。And a catalyst component supported on the carrier, the carrier comprising a composite phase in which γ-Al 2 O 3 and α-Al 2 O 3 are mixed, and α-Al 2 O 3 being a main component. A nuclear exhaust gas recombiner characterized by containing a recombination catalyst. 請求項8記載の原子力排ガス再結合器において、Alの重量基準で、前記γ−Alとα―Alの配合割合が、α―Alが75〜99重量%で、γ−Alが1〜25重量%、他の結晶構造が5重量%以下(ゼロ%を含む)及び不可避の不純物であることを特徴とする原子力排ガス再結合器。In nuclear exhaust gas recombiner according to claim 8, based on the weight of Al 2 O 3, the mixing ratio of the γ-Al 2 O 3 and α-Al 2 O 3 is, α-Al 2 O 3 is 75 to 99 A nuclear exhaust gas recombiner characterized in that γ-Al 2 O 3 is 1 to 25% by weight, other crystal structure is 5% by weight or less (including zero%), and inevitable impurities. 請求項8又は9に記載の原子力排ガス再結合器において、Alの重量基準で、前記γ−Alとα―Alの配合割合が、α―Alが85〜94重量%で、γ−Alが6〜15重量%であることを特徴とする原子力排ガス再結合器。In nuclear exhaust gas recombiner according to claim 8 or 9, based on the weight of Al 2 O 3, the mixing ratio of the γ-Al 2 O 3 and α-Al 2 O 3 is, the α-Al 2 O 3 A nuclear exhaust gas recombiner comprising 85 to 94% by weight and 6 to 15% by weight of γ-Al 2 O 3 . 請求項8〜10のいずれかに記載の原子力排ガス再結合器において、前記γ−Alとα―Alの一部が化学的に結合していることを特徴とする原子力排ガス再結合器。The nuclear exhaust gas recombiner according to any one of claims 8 to 10, wherein said γ-Al 2 O 3 and a part of α-Al 2 O 3 are chemically bonded. Recombiner. 請求項8〜11のいずれかに記載の原子力排ガス再結合器において、前記触媒成分がPdであることを特徴とする原子力排ガス再結合器。   The nuclear exhaust gas recombiner according to any one of claims 8 to 11, wherein the catalyst component is Pd.
JP2012531864A 2010-08-31 2011-08-29 Nuclear exhaust gas recombination catalyst and recombiner Active JP5607742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012531864A JP5607742B2 (en) 2010-08-31 2011-08-29 Nuclear exhaust gas recombination catalyst and recombiner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2010/005352 2010-08-31
PCT/JP2010/005352 WO2012029090A1 (en) 2010-08-31 2010-08-31 Nuclear waste gas recombination catalyst and recombiner
JP2012531864A JP5607742B2 (en) 2010-08-31 2011-08-29 Nuclear exhaust gas recombination catalyst and recombiner
PCT/JP2011/069456 WO2012029714A1 (en) 2010-08-31 2011-08-29 Recombination catalyst for exhaust gas from nuclear reactor and recombination device

Publications (2)

Publication Number Publication Date
JPWO2012029714A1 true JPWO2012029714A1 (en) 2013-10-28
JP5607742B2 JP5607742B2 (en) 2014-10-15

Family

ID=51840585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012531864A Active JP5607742B2 (en) 2010-08-31 2011-08-29 Nuclear exhaust gas recombination catalyst and recombiner

Country Status (1)

Country Link
JP (1) JP5607742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106297911B (en) * 2016-10-20 2023-10-17 中国船舶集团有限公司第七一八研究所 Hydrogen compound device with sealing structure capable of being opened automatically

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283301A (en) * 1985-10-08 1987-04-16 Hitachi Ltd Oxygen-hydrogen recombiner
JPH064132B2 (en) * 1986-04-11 1994-01-19 キヤタラ−工業株式会社 Integrated catalyst carrier for exhaust gas purification
DE4015228A1 (en) * 1990-05-11 1991-11-14 Siemens Ag DEVICE FOR THE RECOMBINATION OF HYDROGEN AND OXYGEN AND USE OF THE DEVICE
JP2680489B2 (en) * 1991-08-07 1997-11-19 株式会社東芝 Catalyst for recombiners of radioactive gas waste treatment facilities
JP4212222B2 (en) * 1999-06-09 2009-01-21 株式会社東芝 Hydrogen removal device
JP5408819B2 (en) * 2008-01-29 2014-02-05 国立大学法人長岡技術科学大学 Deposition apparatus and deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106297911B (en) * 2016-10-20 2023-10-17 中国船舶集团有限公司第七一八研究所 Hydrogen compound device with sealing structure capable of being opened automatically

Also Published As

Publication number Publication date
JP5607742B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
EP3189894B1 (en) Catalyst for water-hydrogen exchange reaction, method for producing same and apparatus for water-hydrogen exchange reaction
Luo et al. Three-dimensional nitrogen-doped porous carbon anchored CeO 2 quantum dots as an efficient catalyst for formaldehyde oxidation
KR101813297B1 (en) Hydrogen combustion catalyst and method for producing thereof, and method for combusting hydrogen
JP5127672B2 (en) Ammonia decomposition catalyst
Chen et al. Gradient porous Co–Cu–Mn mixed oxides modified ZSM-5 membranes as high efficiency catalyst for the catalytic oxidation of isopropanol
Karwacki et al. Structure–activity relationship of Au/ZrO 2 catalyst on formation of hydroxyl groups and its influence on CO oxidation
JP5410363B2 (en) Hydrogen and oxygen recombination catalyst, recombination equipment and nuclear power plant
WO2011125653A1 (en) Catalyst for decomposing ammonia, method for producing the catalyst and method for producing hydrogen using the catalyst
Ye et al. Preparation and characterization of hydrophobic carbon-supported Pt3M (M= Fe, Co, Ni and Cr) bimetals for H/D isotope separation between hydrogen and water
Dong et al. Study on the synergy effect of MnOx and support on catalytic ozonation of toluene
Levasseur et al. Mesoporous silica SBA-15 modified with copper as an efficient NO2 adsorbent at ambient conditions
JP5564519B2 (en) Method for treating radioactive gas waste, treatment facility, impurity removing material, and method for decomposing and removing siloxane
JP2007222806A (en) Noble metal catalyst and its manufacturing method
Jia et al. Kinetic and activity study of CO oxidation over CuO–MnO x–CeO 2 catalysts
Hao et al. Hierarchically porous silica supported ceria and platinum nanoparticles for catalytic combustion of toluene
WO2012029714A1 (en) Recombination catalyst for exhaust gas from nuclear reactor and recombination device
Wang et al. Destructive sorption of NF3 as a novel greenhouse gas over Al2O3@ Mn2O3 sorbents with high surface area
Gu et al. Preparation of a transition metal-supported TiO2 catalyst and the catalytic oxidative degradation of toluene
Wang et al. Selective catalytic reduction of NO by CO over MOF-based CuOx@ ZIF-67 catalysts and reaction mechanism
Xu et al. De Novo Design of a Pt Nanocatalyst on a Conjugated Microporous Polymer-Coated Honeycomb Carrier for Oxidation of Hydrogen Isotopes
JP5607742B2 (en) Nuclear exhaust gas recombination catalyst and recombiner
Chen et al. Porous stainless-steel fibers supported CuCeFeOx/Zeolite catalysts for the enhanced CO oxidation: Experimental and kinetic studies
Zeng et al. The inhibition effect of oxygen in the calcination atmosphere on the catalytic performance of MnO x–CeO 2 catalysts for NO oxidation
CN115178284A (en) Composite carrier material loaded with platinum nanoparticles and preparation method and application thereof
CN101462059B (en) FT synthetic catalyst containing metal support body, preparation and use thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140828

R150 Certificate of patent or registration of utility model

Ref document number: 5607742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150