JPWO2012029405A1 - Porous metal film, electrode, current collector, electrochemical sensor, power storage device and sliding member using the same, and method for producing porous metal film - Google Patents

Porous metal film, electrode, current collector, electrochemical sensor, power storage device and sliding member using the same, and method for producing porous metal film Download PDF

Info

Publication number
JPWO2012029405A1
JPWO2012029405A1 JP2012531731A JP2012531731A JPWO2012029405A1 JP WO2012029405 A1 JPWO2012029405 A1 JP WO2012029405A1 JP 2012531731 A JP2012531731 A JP 2012531731A JP 2012531731 A JP2012531731 A JP 2012531731A JP WO2012029405 A1 JPWO2012029405 A1 JP WO2012029405A1
Authority
JP
Japan
Prior art keywords
metal film
porous metal
hole
hole portion
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012531731A
Other languages
Japanese (ja)
Other versions
JP5673682B2 (en
Inventor
順一 斉藤
順一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2012531731A priority Critical patent/JP5673682B2/en
Publication of JPWO2012029405A1 publication Critical patent/JPWO2012029405A1/en
Application granted granted Critical
Publication of JP5673682B2 publication Critical patent/JP5673682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

多孔質金属膜を提供する。多孔質金属膜2aには、基材3とは反対側の表面2a1に開口する複数の空孔10が形成されている。複数の空孔10の少なくともひとつ10aは、基材3とは反対側の表面2a1に向かって孔径が段階的にあるいは連続的に大きくなるように設けられている。A porous metal membrane is provided. In the porous metal film 2a, a plurality of pores 10 are formed that open on the surface 2a1 on the opposite side of the substrate 3. At least one of the plurality of holes 10 a is provided such that the hole diameter increases stepwise or continuously toward the surface 2 a 1 on the side opposite to the base 3.

Description

この発明は、多孔質金属膜、電極、集電体、それを用いた電気化学センサ、蓄電デバイス及び摺動部材並びに多孔質金属膜の製造方法に関する。   The present invention relates to a porous metal film, an electrode, a current collector, an electrochemical sensor using the same, an electricity storage device, a sliding member, and a method for producing a porous metal film.

近年、電気化学センサが注目されている。電気化学センサの具体例としては、バイオセンサが挙げられる。バイオセンサの具体例としては、酵素が有する分子識別能力を利用した酵素センサ、微生物を利用した微生物センサやDNAセンサ等が挙げられる。また、電気化学センサの他の具体例としては、電極上でガスを電気分解し、その際の発生電流を検知し有毒ガス等の検知を行うガスセンサ、味覚センサや臭覚センサなどが挙げられる。   In recent years, electrochemical sensors have attracted attention. A specific example of the electrochemical sensor is a biosensor. Specific examples of the biosensor include an enzyme sensor using the molecular discrimination ability of an enzyme, a microorganism sensor using a microorganism, a DNA sensor, and the like. Other specific examples of the electrochemical sensor include a gas sensor, a taste sensor, an odor sensor, and the like that electrolyze a gas on an electrode, detect a generated current at that time, and detect a toxic gas or the like.

電気化学センサは、一般に、検出物質の有無や量などを、電気化学反応を利用して電流や電位等の電気信号として検出する装置である。電気化学センサにおいては、作用電極に多孔質金属膜が広く使用されている。   In general, an electrochemical sensor is a device that detects the presence or absence or amount of a detection substance as an electrical signal such as current or potential by using an electrochemical reaction. In electrochemical sensors, porous metal films are widely used for working electrodes.

例えば下記の特許文献1〜3には、多孔質金属膜の製造方法の一例が記載されている。具体的には、特許文献1には、三次元網状構造を有するウレタン等の樹脂からなる部材に金属めっきを施した後、加熱等により樹脂部分を除去することによって多孔質金属膜を製造する方法が記載されている。   For example, the following Patent Documents 1 to 3 describe an example of a method for producing a porous metal film. Specifically, Patent Document 1 discloses a method for producing a porous metal film by performing metal plating on a member made of a resin such as urethane having a three-dimensional network structure, and then removing the resin portion by heating or the like. Is described.

特許文献2には、金属粉末をエチレングリコールなどの有機成分に分散させて塗布し、焼結する方法ことにより多孔質金属膜を製造する方法が記載されている。   Patent Document 2 describes a method for producing a porous metal film by dispersing metal powder in an organic component such as ethylene glycol, applying it, and sintering it.

特許文献3には、水素ガス、不活性ガス又はそれらの混合ガスの存在下、有機金属錯体を用いて、化学気相蒸着法により製膜することにより多孔質金属膜を製造する方法が記載されている。   Patent Document 3 describes a method for producing a porous metal film by forming a film by chemical vapor deposition using an organometallic complex in the presence of hydrogen gas, an inert gas, or a mixed gas thereof. ing.

なお、多孔質金属膜は、バイオセンサやガスセンサ等における作用電極のみならず、リチウムイオン二次電池などの二次電池や燃料電池などの電極材料としても有用である。   The porous metal film is useful not only as a working electrode in a biosensor or a gas sensor but also as an electrode material for a secondary battery such as a lithium ion secondary battery or a fuel cell.

特開平4−218693号公報JP-A-4-218893 特開平11−271270号公報Japanese Patent Laid-Open No. 11-271270 特開2008−266707号公報JP 2008-266707 A

しかしながら、特許文献1〜3に記載の製造方法により製造された多孔質金属膜では、例えば、多孔質金属膜をセンサの電極等に使用した場合に、センサの感度を十分に高めることが困難であるという問題がある。   However, in the porous metal film manufactured by the manufacturing method described in Patent Documents 1 to 3, it is difficult to sufficiently increase the sensitivity of the sensor when, for example, the porous metal film is used as an electrode of the sensor. There is a problem that there is.

そこで、本発明の目的は、上記のような問題を解決し得る、多孔質金属膜を提供することにある。   Therefore, an object of the present invention is to provide a porous metal film that can solve the above problems.

本発明に係る多孔質金属膜は、基材の上に形成される多孔質金属膜である。本発明に係る多孔質金属膜には、基材とは反対側の表面に開口する複数の空孔が形成されている。複数の空孔の少なくともひとつは、基材とは反対側の表面に向かって孔径が段階的にあるいは連続的に大きくなるように設けられている。   The porous metal film according to the present invention is a porous metal film formed on a substrate. In the porous metal film according to the present invention, a plurality of pores that are open on the surface opposite to the substrate are formed. At least one of the plurality of holes is provided such that the hole diameter increases stepwise or continuously toward the surface opposite to the substrate.

なお、本発明において、「金属膜」には合金からなる合金膜も含まれるものとする。   In the present invention, the “metal film” includes an alloy film made of an alloy.

本発明に係る多孔質金属膜のある特定の局面では、複数の空孔の少なくともひとつは、第1の空孔部と、第2の空孔部とを有する。第2の空孔部は、第1の空孔部よりも基材側に位置している。第2の空孔部は、第1の空孔部よりも小さな孔径を有する。   In a specific aspect of the porous metal film according to the present invention, at least one of the plurality of holes has a first hole part and a second hole part. The second hole portion is located closer to the base material than the first hole portion. The second hole portion has a smaller hole diameter than the first hole portion.

本発明に係る多孔質金属膜の他の特定の局面では、複数の空孔の少なくともひとつは、第2の空孔部を複数有する。複数の第2の空孔部のそれぞれは、第1の空孔部に連通している。   In another specific aspect of the porous metal film according to the present invention, at least one of the plurality of holes has a plurality of second hole portions. Each of the plurality of second hole portions communicates with the first hole portion.

本発明に係る多孔質金属膜の別の特定の局面では、第1の空孔部には、2〜10個の第2の空孔部が連通している。   In another specific aspect of the porous metal film according to the present invention, 2 to 10 second hole portions communicate with the first hole portion.

本発明に係る多孔質金属膜のさらに他の特定の局面では、第1の空孔部の孔径は、1μm〜5μmである。第2の空孔部の孔径は、1μm以下である。   In still another specific aspect of the porous metal film according to the present invention, the pore diameter of the first pore portion is 1 μm to 5 μm. The hole diameter of the second hole portion is 1 μm or less.

本発明に係る多孔質金属膜のさらに別の特定の局面では、第1の空孔部の厚み方向に沿った長さは、第2の空孔部の厚み方向に沿った長さよりも長い。   In still another specific aspect of the porous metal film according to the present invention, the length along the thickness direction of the first hole portion is longer than the length along the thickness direction of the second hole portion.

本発明に係る多孔質金属膜のまた他の特定の局面では、第1の空孔部の厚み方向に沿った長さは、第2の空孔部の厚み方向に沿った長さの5倍以下である。   In still another specific aspect of the porous metal film according to the present invention, the length along the thickness direction of the first hole portion is five times the length along the thickness direction of the second hole portion. It is as follows.

本発明に係る多孔質金属膜のまた別の特定の局面では、第1の空孔部の厚み方向に沿った長さは、1μm〜5μmである。第2の空孔部の厚み方向に沿った長さは、1μm以下である。   In another specific aspect of the porous metal film according to the present invention, the length along the thickness direction of the first pore portion is 1 μm to 5 μm. The length along the thickness direction of the second hole portion is 1 μm or less.

本発明に係る多孔質金属膜のさらにまた他の特定の局面では、複数の空孔の少なくともひとつは、第3の空孔部を有する。第3の空孔部は、第2の空孔部よりも基材側に位置している。第3の空孔部は、第2の空孔部よりも小さな孔径を有する。   In still another specific aspect of the porous metal film according to the present invention, at least one of the plurality of holes has a third hole portion. The third hole portion is located closer to the base material than the second hole portion. The third hole portion has a smaller hole diameter than the second hole portion.

本発明に係る多孔質金属膜のさらにまた別の特定の局面では、各第2の空孔部には、複数の第3の空孔部が連通している。   In still another specific aspect of the porous metal film according to the present invention, a plurality of third hole portions are communicated with each second hole portion.

本発明に係る多孔質金属膜のまたさらに他の特定の局面では、第2の空孔部の厚み方向に沿った長さは、第3の空孔部の厚み方向に沿った長さよりも長い。   In still another specific aspect of the porous metal film according to the present invention, the length along the thickness direction of the second hole portion is longer than the length along the thickness direction of the third hole portion. .

本発明に係る多孔質金属膜のまたさらに別の特定の局面では、複数の空孔は、基材とは反対側の表面から基材側の表面にまで達している。   In still another specific aspect of the porous metal film according to the present invention, the plurality of pores extend from the surface opposite to the substrate to the surface on the substrate side.

本発明に係る多孔質金属膜のさらに異なる他の特定の局面では、基材とは反対側の表面から基材側に向かって延びる有底孔がさらに形成されている。有底孔の孔径は、第1の空孔部の孔径よりも小さい。   In another specific aspect of the porous metal film according to the present invention, a bottomed hole extending from the surface opposite to the substrate toward the substrate is further formed. The hole diameter of the bottomed hole is smaller than the hole diameter of the first hole portion.

本発明に係る多孔質金属膜のさらに異なる別の特定の局面では、第1の空孔部の孔径は、有底孔の孔径の1.4倍〜250倍である。   In still another specific aspect of the porous metal film according to the present invention, the hole diameter of the first hole portion is 1.4 to 250 times the hole diameter of the bottomed hole.

本発明に係る多孔質金属膜のまた異なる他の特定の局面では、第1の空孔部の孔径が10μm〜25μmである。有底孔の孔径が0.1〜7μmである。   In another different specific aspect of the porous metal film according to the present invention, the pore diameter of the first pore portion is 10 μm to 25 μm. The hole diameter of the bottomed hole is 0.1 to 7 μm.

本発明に係る多孔質金属膜のさらにまた異なる他の特定の局面では、多孔質金属膜は、銅及びニッケルの少なくとも一方の金属を主成分としている。   In still another different specific aspect of the porous metal film according to the present invention, the porous metal film is mainly composed of at least one of copper and nickel.

本発明に係る多孔質金属膜のさらにまた異なる別の特定の局面では、多孔質金属膜は、無電解めっき膜または電解めっき膜により構成されている。   In yet another different aspect of the porous metal film according to the present invention, the porous metal film is composed of an electroless plating film or an electrolytic plating film.

ここで、「電解めっき膜」とは、電解めっき法により形成されためっき膜をいう。   Here, “electrolytic plating film” refers to a plating film formed by an electrolytic plating method.

「無電解めっき膜」とは、無電解めっき法により形成されためっき膜をいう。   “Electroless plating film” refers to a plating film formed by an electroless plating method.

本発明に係る電極は、上記本発明に係る多孔質金属膜からなる。   The electrode according to the present invention comprises the porous metal film according to the present invention.

本発明に係る集電体は、上記本発明に係る多孔質金属膜からなる。   The current collector according to the present invention includes the porous metal film according to the present invention.

本発明に係る電気化学センサは、上記本発明に係る多孔質金属膜からなる電極を備えている。   The electrochemical sensor according to the present invention includes an electrode made of the porous metal film according to the present invention.

本発明に係る蓄電デバイスは、セパレータ、集電体及び電極を有する。セパレータ、集電体及び電極の少なくともひとつが上記本発明に係る多孔質金属膜により構成されている。   The electricity storage device according to the present invention includes a separator, a current collector, and an electrode. At least one of the separator, the current collector, and the electrode is composed of the porous metal film according to the present invention.

本発明に係る摺動部材は、第1の部材と、第1の部材に対して摺動する第2の部材とを有する。第1の部材の第2の部材に対する摺動面と、第2の部材の第1の部材に対する摺動面とのうちの少なくとも一方の上に、上記本発明に係る多孔質金属膜が形成されている。   The sliding member according to the present invention includes a first member and a second member that slides with respect to the first member. The porous metal film according to the present invention is formed on at least one of the sliding surface of the first member relative to the second member and the sliding surface of the second member relative to the first member. ing.

本発明に係る多孔質金属膜の製造方法は、上記本発明に係る多孔質金属膜の製造方法に関する。本発明に係る多孔質金属膜の製造方法では、無電解メッキ法または電解めっき法により多孔質金属膜を形成する。   The method for producing a porous metal film according to the present invention relates to the method for producing a porous metal film according to the present invention. In the method for producing a porous metal film according to the present invention, the porous metal film is formed by an electroless plating method or an electrolytic plating method.

本発明によれば、高機能な多孔質金属膜を得ることが可能となる。本発明の多孔質金属膜を電気化学センサの作用電極として使用することによりセンサの感度を高めることができる。本発明の多孔質金属膜を蓄電デバイスや摺動部材に用いることにより、蓄電デバイスや摺動部材を高性能化することができる。   According to the present invention, a highly functional porous metal film can be obtained. By using the porous metal film of the present invention as a working electrode of an electrochemical sensor, the sensitivity of the sensor can be increased. By using the porous metal film of the present invention for an electricity storage device or a sliding member, the performance of the electricity storage device or the sliding member can be improved.

図1は、第1の実施形態に係る多孔質金属膜の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a porous metal film according to the first embodiment. 図2は、実験例1において作製された多孔質金属膜の断面を撮影したSEM写真である。FIG. 2 is an SEM photograph of a cross section of the porous metal film produced in Experimental Example 1. 図3は、第2の実施形態に係る多孔質金属膜の模式的断面図である。FIG. 3 is a schematic cross-sectional view of a porous metal film according to the second embodiment. 図4は、実験例2において作製された多孔質金属膜を上方から撮影したSEM写真である。FIG. 4 is an SEM photograph of the porous metal film produced in Experimental Example 2 taken from above. 図5は、実験例2において作製された多孔質金属膜の断面を撮影したSEM写真である。FIG. 5 is an SEM photograph of a cross section of the porous metal film produced in Experimental Example 2. 図6は、第3の実施形態に係る多孔質金属膜の模式的断面図である。FIG. 6 is a schematic cross-sectional view of a porous metal film according to the third embodiment. 図7は、実験例3において作製された多孔質金属膜を上方から撮影したSEM写真である。FIG. 7 is an SEM photograph of the porous metal film produced in Experimental Example 3 taken from above. 図8は、第4の実施形態に係る酵素センサの模式的分解斜視図である。FIG. 8 is a schematic exploded perspective view of the enzyme sensor according to the fourth embodiment. 図9は、第4の実施形態に係る酵素センサの模式的斜視図である。FIG. 9 is a schematic perspective view of the enzyme sensor according to the fourth embodiment. 図10は、第5の実施形態に係る蓄電デバイスとしてのコイン型非水電解質二次電池の略図的断面図である。FIG. 10 is a schematic cross-sectional view of a coin-type nonaqueous electrolyte secondary battery as an electricity storage device according to the fifth embodiment. 図11は、第6の実施形態に係る摺動部材の模式的断面図である。FIG. 11 is a schematic cross-sectional view of a sliding member according to the sixth embodiment.

以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。   Hereinafter, an example of the preferable form which implemented this invention is demonstrated. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.

また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。   Moreover, in each drawing referred in embodiment etc., the member which has a substantially the same function shall be referred with the same code | symbol. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.

(第1の実施形態)
図1は、第1の実施形態に係る多孔質金属膜の模式的断面図である。図1に示すように、本実施形態の多孔質金属膜2aは、基材3の上に形成されている。多孔質金属膜2aには、複数の空孔10が形成されている。複数の空孔10のそれぞれは、多孔質金属膜2aの基材3とは反対側の表面2a1に開口している。複数の空孔10の少なくともひとつは、多孔質金属膜2aの基材3側の表面2a2にまで達している。すなわち、空孔10の少なくともひとつは、多孔質金属膜2aを厚み方向に貫通する貫通孔である。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of a porous metal film according to the first embodiment. As shown in FIG. 1, the porous metal film 2 a of this embodiment is formed on a base material 3. A plurality of pores 10 are formed in the porous metal film 2a. Each of the plurality of pores 10 opens on the surface 2a1 on the opposite side of the substrate 3 of the porous metal film 2a. At least one of the plurality of pores 10 reaches the surface 2a2 on the substrate 3 side of the porous metal film 2a. That is, at least one of the holes 10 is a through hole that penetrates the porous metal film 2a in the thickness direction.

複数の空孔10の少なくともひとつの空孔10aは、表面2a2側から表面2a1に向かって孔径が段階的にあるいは連続的に大きくなるように設けられている。このため、多孔質金属膜2aは、大きな比表面積を有する。よって、例えば多孔質金属膜2aの表面自体が触媒等として機能する場合には、高い機能を実現することができる。また、多孔質金属膜2aの表面上に機能性物質を付着させて多孔質金属膜2aを使用する場合は、より多くの機能性物質を担持させることができる。従って、高い機能を実現することができる。   At least one hole 10a of the plurality of holes 10 is provided such that the hole diameter increases stepwise or continuously from the surface 2a2 side toward the surface 2a1. For this reason, the porous metal film 2a has a large specific surface area. Therefore, for example, when the surface of the porous metal film 2a itself functions as a catalyst or the like, a high function can be realized. Further, when the porous metal film 2a is used by attaching a functional substance on the surface of the porous metal film 2a, more functional substance can be supported. Therefore, a high function can be realized.

また、本実施形態では、複数の空孔10の少なくともひとつの空孔10aは、表面2a2側から表面2a1に向かって孔径が段階的にあるいは連続的に大きくなるように設けられている。このため、機能性物質等を、多孔質金属膜2aの内部にまで効率よく導入することができる。よって、さらに多くの多くの機能性物質を担持させることができる。従って、より高い機能を実現することができる。   In the present embodiment, at least one of the plurality of holes 10 is provided so that the hole diameter increases stepwise or continuously from the surface 2a2 side toward the surface 2a1. For this reason, a functional substance or the like can be efficiently introduced into the porous metal film 2a. Therefore, a larger number of functional substances can be supported. Therefore, a higher function can be realized.

また、基材3側の孔径が小さく、基材3と多孔質金属膜2aとの接触面積が大きくなるため、基材3と多孔質金属膜2aとの高い密着性を得ることができる。   Moreover, since the hole diameter by the side of the base material 3 is small and the contact area of the base material 3 and the porous metal film 2a becomes large, the high adhesiveness of the base material 3 and the porous metal film 2a can be obtained.

また、複数の空孔10には、表面2a2に達する貫通孔が含まれている。このため、多孔質金属膜2aの表面積をより大きくすることができる。従って、さらに高い機能を実現することができる。   The plurality of holes 10 include a through hole reaching the surface 2a2. For this reason, the surface area of the porous metal film 2a can be increased. Accordingly, higher functions can be realized.

なお、表面2a2側から表面2a1に向かって孔径が段階的にあるいは連続的に大きくなるように設けられている空孔10aは、複数の空孔10の約30%以上であることが好ましく、約50%以上であることが好ましい。この場合、さらに高い機能を実現することができる。複数の空孔10に占める空孔10aの割合が少なすぎると、電気化学センサに応用する場合、検知物質が表層(上層)近辺でトラップされてしまい、下層の小さな孔径の空孔まで効率的に使用することができなくなるため、検知感度の低下を招く場合がある。また、複数の空孔10に占める空孔10aの割合が少なすぎると、電極集電体に応用する場合、多孔質金属膜の内部まで電極活物質を充填することができず、電池特性の良好な二次電池を得ることができなくなる場合がある。複数の空孔10に占める空孔10aの割合が少なすぎると、燃料電池やガスセンサ等の作用電極に使用した場合、ガスが浸透し難くなり、検知感動が低下する場合がある。   In addition, it is preferable that the hole 10a provided so that a hole diameter may become large in steps or continuously toward the surface 2a1 from the surface 2a2 side is about 30% or more of the plurality of holes 10. It is preferable that it is 50% or more. In this case, a higher function can be realized. If the ratio of the holes 10a to the plurality of holes 10 is too small, the detection substance is trapped near the surface layer (upper layer) when applied to an electrochemical sensor, and even the holes with a small hole diameter in the lower layer are efficiently obtained. Since it cannot be used, the detection sensitivity may be lowered. Further, if the ratio of the holes 10a to the plurality of holes 10 is too small, the electrode active material cannot be filled up to the inside of the porous metal film when applied to the electrode current collector, and the battery characteristics are good. A secondary battery may not be obtained. If the ratio of the holes 10a to the plurality of holes 10 is too small, when used for a working electrode such as a fuel cell or a gas sensor, it is difficult for gas to permeate and the detection impression may be reduced.

より高い機能を実現する観点からは、多孔質金属膜2aの幾何体積当たりの表面積が500mm2/mm3〜900mm2/mm3であることが好ましい。From the viewpoint of realizing higher functions, preferably surface area per geometric volume of the porous metal film 2a is 500mm 2 / mm 3 ~900mm 2 / mm 3.

なお、多孔質金属膜の幾何体積当たりの表面積は下記のようにして算出できる。まず、多孔質金属膜の表面積をBET法で測定する。次に、多孔質金属膜の多孔質部分を無視し、多孔性のない膜と仮定して金属膜の寸法から幾何体積を算出する。BET法により測定した表面積を、算出した幾何体積により除算することにより、多孔質金属膜の幾何体積当たりの表面積を算出することができる。   The surface area per geometric volume of the porous metal film can be calculated as follows. First, the surface area of the porous metal film is measured by the BET method. Next, ignoring the porous portion of the porous metal film, assuming that the film is not porous, the geometric volume is calculated from the dimensions of the metal film. By dividing the surface area measured by the BET method by the calculated geometric volume, the surface area per geometric volume of the porous metal film can be calculated.

空孔10aの、基材3側に位置しており、多孔質金属膜2aの膜厚の50%の膜厚を有する下層部10a1における空孔の平均孔径が、空孔10aの、基材3とは反対側に位置しており、多孔質金属膜2aの膜厚の50%の膜厚を有する上層部10a2における空孔の平均孔径よりも小さいことが好ましい。   The average hole diameter of the holes in the lower layer part 10a1 which is located on the substrate 3 side of the hole 10a and has a film thickness of 50% of the film thickness of the porous metal film 2a is the substrate 3 of the hole 10a. It is preferably located smaller than the average pore diameter of the pores in the upper layer portion 10a2 having a thickness of 50% of the thickness of the porous metal film 2a.

下層部10a1の幾何体積当たりの表面積が500mm2/mm3〜3000mm2/mm3であることが好ましい。It is preferable surface area per geometric volume of the lower layer portion 10a1 is 500mm 2 / mm 3 ~3000mm 2 / mm 3.

具体的には、本実施形態では、空孔10aは、第1の空孔部11と、第2の空孔部12と、第3の空孔部13とを有する。第1の空孔部11は、最も表面2a1側に位置している。第1の空孔部11は、表面2a1に開口している。第1の空孔部11の孔径は、1μm〜5μmであることが好ましい。第1の空孔部11の孔径が大きすぎると多孔質金属膜2aの比表面積が小さくなりすぎたり、基材3との密着強度が低くなりすぎたりする場合がある。第1の空孔部11の厚み方向Tに沿った長さは、1μm〜5μmであることが好ましい。第1の空孔部11の厚み方向Tに沿った長さが長すぎると多孔質金属膜2aの比表面積が小さくなると共に、多孔質金属膜2aの強度が低下する場合がある。   Specifically, in the present embodiment, the hole 10 a includes a first hole part 11, a second hole part 12, and a third hole part 13. The first hole 11 is located closest to the surface 2a1. The first hole portion 11 opens in the surface 2a1. It is preferable that the hole diameter of the 1st hole part 11 is 1 micrometer-5 micrometers. If the pore diameter of the first pore portion 11 is too large, the specific surface area of the porous metal film 2a may become too small, or the adhesion strength with the substrate 3 may become too low. The length along the thickness direction T of the first hole 11 is preferably 1 μm to 5 μm. If the length along the thickness direction T of the first pore portion 11 is too long, the specific surface area of the porous metal film 2a may be reduced and the strength of the porous metal film 2a may be reduced.

第2の空孔部12は、第1の空孔部11よりも基材3側(表面2a2側)に位置している。第2の空孔部12は、第1の空孔部11よりも小さな孔径を有する。第2の空孔部12の孔径は、1μm以下であることが好ましい。   The second hole portion 12 is located closer to the base material 3 side (front surface 2a2 side) than the first hole portion 11. The second hole portion 12 has a smaller hole diameter than the first hole portion 11. It is preferable that the hole diameter of the 2nd void | hole part 12 is 1 micrometer or less.

空孔10aには、第2の空孔部12が複数設けられている。複数の第2の空孔部12のそれぞれは、第1の空孔部11に連通している。すなわち、第1の空孔部11は、複数の第2の空孔部12に分岐している。なお、空孔10aが有する第2の空孔部12の数量は、2〜10個であることが好ましい。空孔10aが有する第2の空孔部12の数量が多すぎると、機能性物質等を担持させた場合、目詰まりする場合がある。空孔10aが有する第2の空孔部12の数量が少なすぎると、多孔質金属膜2aが脆くなる場合がある。   A plurality of second hole portions 12 are provided in the hole 10a. Each of the plurality of second hole portions 12 communicates with the first hole portion 11. That is, the first hole portion 11 is branched into a plurality of second hole portions 12. In addition, it is preferable that the quantity of the 2nd hole part 12 which the hole 10a has is 2-10 pieces. If the number of the second hole portions 12 included in the holes 10a is too large, clogging may occur when a functional substance or the like is loaded. If the number of the second hole portions 12 included in the holes 10a is too small, the porous metal film 2a may become brittle.

第2の空孔部12の厚み方向Tに沿った長さは、第1の空孔部11の厚み方向Tに沿った長さよりも短い。すなわち、第1の空孔部11の厚み方向Tに沿った長さは、第2の空孔部12の厚み方向Tに沿った長さよりも長い。第1の空孔部11の厚み方向Tに沿った長さは、第2の空孔部12の厚み方向Tに沿った長さの1倍より大きく5倍以下であることが好ましい。第2の空孔部12の厚み方向Tに沿った長さは、1μm以下であることが好ましい。   The length along the thickness direction T of the second hole portion 12 is shorter than the length along the thickness direction T of the first hole portion 11. That is, the length along the thickness direction T of the first hole portion 11 is longer than the length along the thickness direction T of the second hole portion 12. The length along the thickness direction T of the first hole portion 11 is preferably greater than one and not more than five times the length along the thickness direction T of the second hole portion 12. The length along the thickness direction T of the second hole portion 12 is preferably 1 μm or less.

第3の空孔部13は、第2の空孔部12よりも基材3側(表面2a2側)に位置している。第3の空孔部13は、表面2a2に開口している。第3の空孔部13は、第2の空孔部12よりも小さな孔径を有する。   The third hole portion 13 is located closer to the base material 3 (the surface 2a2 side) than the second hole portion 12. The third hole portion 13 opens on the surface 2a2. The third hole portion 13 has a smaller hole diameter than the second hole portion 12.

空孔10aには、第3の空孔部13が複数設けられている。複数の第2の空孔部12の少なくともひとつには、複数の第3の空孔部13が連通している。すなわち、第2の空孔部12は、複数の第3の空孔部13に分岐している。   A plurality of third hole portions 13 are provided in the hole 10a. The plurality of third hole portions 13 communicate with at least one of the plurality of second hole portions 12. That is, the second hole portion 12 is branched into a plurality of third hole portions 13.

第3の空孔部13の厚み方向Tに沿った長さは、第2の空孔部12の厚み方向Tに沿った長さよりも短い。すなわち、第2の空孔部12の厚み方向Tに沿った長さは、第3の空孔部13の厚み方向Tに沿った長さよりも長い。   The length of the third hole 13 along the thickness direction T is shorter than the length of the second hole 12 along the thickness direction T. That is, the length along the thickness direction T of the second hole portion 12 is longer than the length along the thickness direction T of the third hole portion 13.

このように、本実施形態では、空孔10aが、第1〜第3の空孔部11〜13を有し、第2の空孔部12は、第1の空孔部11よりも孔径が小さく、第3の空孔部13は、第2の空孔部12よりも孔径が小さい。すなわち、空孔10aは、枝分かれ状に形成されている。従って、多孔質金属膜2aの表面積をより大きくできる。また、空孔10aの内部にまで機能性物質をより効率的に充填できるため、より多くの機能性物質を担持させることができる。従って、高い機能を実現することができる。   As described above, in the present embodiment, the hole 10 a includes the first to third hole parts 11 to 13, and the second hole part 12 has a hole diameter larger than that of the first hole part 11. The third hole 13 is smaller and has a smaller hole diameter than the second hole 12. That is, the hole 10a is formed in a branched shape. Therefore, the surface area of the porous metal film 2a can be increased. Further, since the functional substance can be more efficiently filled into the pores 10a, more functional substance can be supported. Therefore, a high function can be realized.

また、孔径の異なる第1〜第3の空孔部11〜13が設けられているため、直径が異なる複数種類のターゲットの捕捉が可能となる。   In addition, since the first to third hole portions 11 to 13 having different hole diameters are provided, it is possible to capture a plurality of types of targets having different diameters.

多孔質金属膜2aの構成材料は特に限定されない。多孔質金属膜2aの好ましい構成材料の具体例としては、ニッケルを主成分とする材料が挙げられる。具体的には、多孔質金属膜2aは、ニッケル、ニッケルを主成分として含む合金により構成されていることが好ましい。ニッケルを主成分として含む合金の具体例としては、ニッケル−リン合金、ニッケル−タングステン−リン合金、ニッケル−モリブデン−リン合金等が挙げられる。   The constituent material of the porous metal film 2a is not particularly limited. As a specific example of a preferable constituent material of the porous metal film 2a, a material containing nickel as a main component can be given. Specifically, the porous metal film 2a is preferably made of nickel or an alloy containing nickel as a main component. Specific examples of the alloy containing nickel as a main component include a nickel-phosphorus alloy, a nickel-tungsten-phosphorus alloy, and a nickel-molybdenum-phosphorus alloy.

なお、多孔質金属膜2aは、例えば電解めっき法または無電解めっき法などのめっき法により形成することができる。すなわち、多孔質金属膜2aは、電解めっき膜または無電解めっき膜により構成することができる。   The porous metal film 2a can be formed by a plating method such as an electrolytic plating method or an electroless plating method. That is, the porous metal film 2a can be constituted by an electrolytic plating film or an electroless plating film.

例えば、ニッケルまたはニッケルを主成分とする合金からなる多孔質金属膜2aを形成する場合は、界面活性剤としてアセチレン基含有ジオール化合物を添加したニッケルめっき浴を用いることにより多孔質金属膜2aを形成することができる。めっき浴における界面活性剤の濃度は、0.1g/L〜10g/Lであることが好ましい。   For example, when the porous metal film 2a made of nickel or an alloy containing nickel as a main component is formed, the porous metal film 2a is formed by using a nickel plating bath to which an acetylene group-containing diol compound is added as a surfactant. can do. The concentration of the surfactant in the plating bath is preferably 0.1 g / L to 10 g / L.

(実施例1)
アルミナ基板を用意し、塩化スズ溶液に浸漬し感受性化処理を行った。次に塩化パラジウム溶液に浸漬することによって、アルミナ基板表面上に無電解めっきにおける還元剤のための触媒となるPd微粒子を付与した。
Example 1
An alumina substrate was prepared and sensitized by dipping in a tin chloride solution. Next, by dipping in a palladium chloride solution, Pd fine particles serving as a catalyst for a reducing agent in electroless plating were imparted on the surface of the alumina substrate.

塩化ニッケル20g/L、ホスフィン酸ナトリウム25g/L、クエン酸ナトリウム15g/L、塩化アンモニウム35g/L、アセチレン基含有ジオール化合物を2g/L添加した無電解Niめっき液にpH10、浴温85℃のめっき条件で浸漬し、上記アルミナ基板上に厚さ10μmの無電解Niめっき膜を形成した。   Nickel chloride 20 g / L, sodium phosphinate 25 g / L, sodium citrate 15 g / L, ammonium chloride 35 g / L, 2 g / L of acetylene group-containing diol compound added to electroless Ni plating solution at pH 10, bath temperature 85 ° C Immersion was performed under plating conditions to form an electroless Ni plating film having a thickness of 10 μm on the alumina substrate.

得られた無電解Niめっき膜の断面を、SEM(走査型電子顕微鏡)にて観察した。その結果を図2に示す。図2の写真から、得られためっき膜は、複数の空孔が形成されている多孔質めっき膜であることが分かる。複数の空孔の少なくともひとつが基材とは反対側の表面に向かって孔径が段階的に大きくなるように設けられていることが分かる。複数の空孔の少なくともひとつは、第1〜第3の空孔部を有する枝分かれ構造を有していることが分かる。   The cross section of the obtained electroless Ni plating film was observed with SEM (scanning electron microscope). The result is shown in FIG. From the photograph of FIG. 2, it can be seen that the obtained plating film is a porous plating film in which a plurality of pores are formed. It can be seen that at least one of the plurality of holes is provided in such a manner that the hole diameter gradually increases toward the surface opposite to the substrate. It can be seen that at least one of the plurality of holes has a branched structure having first to third holes.

得られた多孔質金属膜の厚みは、11μmであった。第1の空孔部の厚み方向に沿った長さは、8μm〜4.6μmであった。第2の空孔部の厚み方向に沿った長さは、1.8μm〜6μmであった。第3の空孔部の厚み方向に沿った長さは、2μm〜1μmであった。多孔質金属膜の断面SEM写真から測定した第1の空孔部の孔径は、3.1μmであった。第2の空孔部の孔径は、2.0μmであった。第3の空孔部の孔径は、0.6μmであった。多孔質金属膜の表面積が2864mm2であった。多孔質金属膜の幾何体積が4.85mm3であった。多孔質金属膜の幾何体積当たりの表面積は、590mm/mmであった。The thickness of the obtained porous metal film was 11 μm. The length along the thickness direction of the first hole portion was 8 μm to 4.6 μm. The length along the thickness direction of the second hole portion was 1.8 μm to 6 μm. The length along the thickness direction of the third hole portion was 2 μm to 1 μm. The pore diameter of the first pore portion measured from the cross-sectional SEM photograph of the porous metal film was 3.1 μm. The hole diameter of the second hole portion was 2.0 μm. The hole diameter of the third hole portion was 0.6 μm. The surface area of the porous metal film was 2864 mm 2 . The geometric volume of the porous metal film was 4.85 mm 3 . The surface area per geometric volume of the porous metal film was 590 mm 2 / mm 3 .

以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。   Hereinafter, other examples of preferred embodiments of the present invention will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.

(第2の実施形態)
図3は、第2の実施形態に係る多孔質金属膜の模式的断面図である。図3に示すように、第2の実施形態の多孔質金属膜2bは、第2及び第3の空孔部12,13のそれぞれが、厚み方向Tと略平行に延びている点においてのみ、第2及び第3の空孔部12,13のそれぞれが、厚み方向Tに対して傾斜した方向に延びている第1の実施形態の多孔質金属膜2aとは異なる。斯かる場合であっても、上記第1の実施形態と同様の効果が得られる。
(Second Embodiment)
FIG. 3 is a schematic cross-sectional view of a porous metal film according to the second embodiment. As shown in FIG. 3, the porous metal film 2b of the second embodiment is only in that each of the second and third pores 12 and 13 extends substantially parallel to the thickness direction T. Each of the second and third pores 12 and 13 is different from the porous metal film 2a of the first embodiment extending in a direction inclined with respect to the thickness direction T. Even in such a case, the same effect as in the first embodiment can be obtained.

なお、ニッケルまたはニッケルを主成分とする合金からなる多孔質金属膜2bを形成する場合は、界面活性剤としてアセチレン基含有ジオール化合物を添加したニッケルめっき浴を用いることにより多孔質金属膜2bを形成することができる。めっき浴における界面活性剤の濃度は、0.1g/L〜10g/Lであることが好ましい。   When forming the porous metal film 2b made of nickel or an alloy containing nickel as a main component, the porous metal film 2b is formed by using a nickel plating bath to which an acetylene group-containing diol compound is added as a surfactant. can do. The concentration of the surfactant in the plating bath is preferably 0.1 g / L to 10 g / L.

(実施例2)
Pd触媒を表面に付与したアルミナ基板を、アセチレン基含有ジオール化合物を1g/Lの含有率で添加したニッケルめっき液(上村工業社製ニムデンKPR−11、pH:6.5,温度:80℃)に浸漬することにより無電解めっきを行うことにより、ニッケルからなる多孔質金属膜を形成した。図4は、実験例2において作製された多孔質金属膜を上方から撮影したSEM写真である。図5は、実験例2において作製された多孔質金属膜の断面を撮影したSEM写真である。
(Example 2)
Nickel plating solution (Nimden KPR-11, manufactured by Uemura Kogyo Co., Ltd., pH: 6.5, temperature: 80 ° C.) in which an alumina substrate provided with a Pd catalyst is added to the surface, and an acetylene group-containing diol compound is added at a content of 1 g / L. A porous metal film made of nickel was formed by performing electroless plating by immersing the film in a metal. FIG. 4 is an SEM photograph of the porous metal film produced in Experimental Example 2 taken from above. FIG. 5 is an SEM photograph of a cross section of the porous metal film produced in Experimental Example 2.

得られた多孔質金属膜の厚みは、7μmであった。第1の空孔部の厚み方向に沿った長さは、5μm〜3.5μmであった。第2の空孔部の厚み方向に沿った長さは、3μm〜0.5μmであった。第3の空孔部の厚み方向に沿った長さは、1.4μm〜0μmであった。多孔質金属膜の断面SEM写真から測定した第1の空孔部の孔径は、8.6μm〜2.1μmであった。第2の空孔部の孔径は、6μm〜2.5μmであった。第3の空孔部の孔径は、1.5μm〜0.5μmであった。多孔質金属膜の表面積が1897mm2であった。多孔質金属膜の幾何体積が1.79mm3であった。多孔質金属膜の幾何体積当たりの表面積は、1061mm/mmであった。The thickness of the obtained porous metal film was 7 μm. The length along the thickness direction of the first hole portion was 5 μm to 3.5 μm. The length along the thickness direction of the second hole portion was 3 μm to 0.5 μm. The length along the thickness direction of the third hole portion was 1.4 μm to 0 μm. The pore diameter of the first pore portion measured from the cross-sectional SEM photograph of the porous metal film was 8.6 μm to 2.1 μm. The hole diameter of the second hole portion was 6 μm to 2.5 μm. The hole diameter of the third hole portion was 1.5 μm to 0.5 μm. The surface area of the porous metal film was 1897 mm 2 . The geometric volume of the porous metal film was 1.79 mm 3 . The surface area per geometric volume of the porous metal film was 1061 mm 2 / mm 3 .

(第3の実施形態)
図6は、第3の実施形態に係る多孔質金属膜の模式的断面図である。図6に示すように、本実施形態の多孔質金属膜2cは、有底孔20を有する点において第2の実施形態の多孔質金属膜2bと異なる。
(Third embodiment)
FIG. 6 is a schematic cross-sectional view of a porous metal film according to the third embodiment. As shown in FIG. 6, the porous metal film 2 c of this embodiment is different from the porous metal film 2 b of the second embodiment in that it has a bottomed hole 20.

有底孔20は、基材3とは反対側の表面2a1から基材3側に向かって延びている。有底孔20は、表面2a2には達していない。有底孔20の孔径は、第1の空孔部11の孔径よりも小さい。このため、上記第1の実施形態において説明した効果に加えて、例えば、これを電気化学センサに用いた場合、大径孔群と小径孔群とで選択的にターゲットを補足することも可能となる。また、摺動部材に用いた場合、研磨くずが大径孔に入っても、小径孔で潤滑オイルを保持することができ、耐久性に優れた摺動部材を実現できるという効果も得られる。   The bottomed hole 20 extends from the surface 2a1 opposite to the base 3 toward the base 3 side. The bottomed hole 20 does not reach the surface 2a2. The hole diameter of the bottomed hole 20 is smaller than the hole diameter of the first hole portion 11. For this reason, in addition to the effects described in the first embodiment, for example, when this is used in an electrochemical sensor, it is possible to selectively supplement a target with a large-diameter hole group and a small-diameter hole group. Become. In addition, when used for a sliding member, even if polishing waste enters the large-diameter hole, the lubricating oil can be held in the small-diameter hole, and an effect that a sliding member having excellent durability can be realized.

なお、第1の空孔部11の孔径は、有底孔20の孔径の1.4倍〜250倍であることが好ましい。本実施形態では、第1の空孔部11の孔径は、10μm〜25μmであることが好ましく、有底孔20の孔径は、0.1μm〜7μmであることが好ましい。   The hole diameter of the first hole portion 11 is preferably 1.4 to 250 times the hole diameter of the bottomed hole 20. In the present embodiment, the hole diameter of the first hole 11 is preferably 10 μm to 25 μm, and the hole diameter of the bottomed hole 20 is preferably 0.1 μm to 7 μm.

なお、ニッケルまたはニッケルを主成分とする合金からなる多孔質金属膜2cを形成する場合は、界面活性剤としてアセチレン基含有ジオール化合物とベタイン系化合物を添加したニッケルめっき浴を用いることにより多孔質金属膜2cを形成することができる。めっき浴における界面活性剤の濃度は、0.1g/L〜10g/Lであることが好ましい。   When forming the porous metal film 2c made of nickel or an alloy containing nickel as a main component, a porous metal film can be obtained by using a nickel plating bath to which an acetylene group-containing diol compound and a betaine compound are added as a surfactant. The film 2c can be formed. The concentration of the surfactant in the plating bath is preferably 0.1 g / L to 10 g / L.

(実施例3)
Pd触媒を表面に付与したアルミナ基板を、アセチレン基含有ジオール化合物を1g/Lと、塩化ニッケルを0.08モル/Lと、次亜リン酸ナトリウムを0.19モル/Lと、クエン酸を0.05モル/Lと、塩化アンモニウムを0.65モル/Lと、両性界面活性剤(ラウリルジメチルアミノサクサンベタイン)1g/Lとを含み、pHが9.5で、浴温が80℃であるめっき浴に浸漬することにより無電解めっきを行うことにより、ニッケルからなる多孔質金属膜を形成した。図7は、実験例3において作製された多孔質金属膜の断面を撮影したSEM写真である。
(Example 3)
An alumina substrate provided with a Pd catalyst on its surface, acetylene group-containing diol compound 1 g / L, nickel chloride 0.08 mol / L, sodium hypophosphite 0.19 mol / L, citric acid 0.05 mol / L, ammonium chloride 0.65 mol / L, amphoteric surfactant (lauryl dimethylamino succin betaine) 1 g / L, pH 9.5, bath temperature 80 ° C. A porous metal film made of nickel was formed by electroless plating by immersing in a certain plating bath. FIG. 7 is an SEM photograph of a cross section of the porous metal film produced in Experimental Example 3.

得られた多孔質金属膜の厚みは、16μmであった。第1の空孔部の厚み方向に沿った長さは、16μm〜7μmであった。第2の空孔部の厚み方向に沿った長さは、8.6μm〜5.7μmであった。第3の空孔部の厚み方向に沿った長さは、0μm〜8.6μmであった。多孔質金属膜の断面SEM写真から測定した第1の空孔部の孔径は、26.7μm〜6.7μmであった。第2の空孔部の孔径は、20μm〜6.7μmであった。第3の空孔部の孔径は、6.7μm〜0μmであった。有底孔の孔径は、およそ0.5μm〜10μmであった。多孔質金属膜の表面積が5586mm2であった。多孔質金属膜の幾何体積が1.79mm3であった。多孔質金属膜の幾何体積当たりの表面積は、3120mm/mmであった。The thickness of the obtained porous metal film was 16 μm. The length along the thickness direction of the first hole portion was 16 μm to 7 μm. The length along the thickness direction of the second hole portion was 8.6 μm to 5.7 μm. The length along the thickness direction of the third hole portion was 0 μm to 8.6 μm. The pore diameter of the first pore portion measured from the cross-sectional SEM photograph of the porous metal film was 26.7 μm to 6.7 μm. The hole diameter of the second hole portion was 20 μm to 6.7 μm. The hole diameter of the third hole portion was 6.7 μm to 0 μm. The hole diameter of the bottomed hole was about 0.5 μm to 10 μm. The surface area of the porous metal film was 5586 mm 2 . The geometric volume of the porous metal film was 1.79 mm 3 . The surface area per geometric volume of the porous metal film was 3120 mm 2 / mm 3 .

(第4の実施形態)
第1〜第3の実施形態の多孔質金属膜2a〜2cは、例えば電気化学センサ、蓄電デバイス、摺動部材などの多種多様な用途に使用可能である。電気化学センサの具体例としては、バイオセンサ、ガスセンサ、臭覚センサ、味覚センサなどが挙げられる。蓄電デバイスの具体例としては、リチウムイオン二次電池や全固体二次電池などの二次電池、燃料電池、電気二重層キャパシタなどが挙げられる。
(Fourth embodiment)
The porous metal films 2a to 2c of the first to third embodiments can be used for various applications such as electrochemical sensors, power storage devices, and sliding members. Specific examples of the electrochemical sensor include a biosensor, a gas sensor, an odor sensor, and a taste sensor. Specific examples of the electricity storage device include secondary batteries such as lithium ion secondary batteries and all solid state secondary batteries, fuel cells, and electric double layer capacitors.

第4の実施形態では、第1〜第3の実施形態の多孔質金属膜2a〜2cを電気化学センサの一種である酵素センサに用いる例について説明する。   In the fourth embodiment, an example in which the porous metal films 2a to 2c of the first to third embodiments are used for an enzyme sensor which is a kind of electrochemical sensor will be described.

図8は、第4の実施形態に係る酵素センサの模式的分解斜視図である。図9は、第4の実施形態に係る酵素センサの模式的斜視図である。   FIG. 8 is a schematic exploded perspective view of the enzyme sensor according to the fourth embodiment. FIG. 9 is a schematic perspective view of the enzyme sensor according to the fourth embodiment.

図8及び図9に示すように、酵素センサ30は、例えば、ポリエチレンテレフタレートからなる絶縁性の基材31の上に形成された作用電極33および参照電極32を有する。作用電極33は、第1〜第3の実施形態の多孔質金属膜2a〜2cにより構成することができる。酵素センサ30では、作用電極33と参照電極32間にまたがるように、親水性高分子と酸化還元酵素とメディエータ(電子受容体)を含む酵素反応層34が配置されている。   As shown in FIGS. 8 and 9, the enzyme sensor 30 includes a working electrode 33 and a reference electrode 32 formed on an insulating base 31 made of, for example, polyethylene terephthalate. The working electrode 33 can be configured by the porous metal films 2a to 2c of the first to third embodiments. In the enzyme sensor 30, an enzyme reaction layer 34 including a hydrophilic polymer, an oxidoreductase, and a mediator (electron acceptor) is disposed so as to span between the working electrode 33 and the reference electrode 32.

この酵素センサの酵素反応層34上に、基質を含む試料液を滴下すると、酵素反応層34が溶解し、基質と酵素が反応して基質が酸化され、これに伴い電子受容体が還元される。酵素反応終了後、この還元された電子受容体を電気化学的に酸化し、このとき得られる酸化電流値から試料液中の基質濃度を求めることができる。このような電気化学センサは、測定対象物である検知物質を基質とする酵素を選択することによって、様々な物質に対する測定が原理的には可能である。例えば、基質をグルコースとする酵素を用いると、グルコースセンサを構成することができる。   When a sample solution containing a substrate is dropped onto the enzyme reaction layer 34 of the enzyme sensor, the enzyme reaction layer 34 is dissolved, the substrate reacts with the enzyme, the substrate is oxidized, and the electron acceptor is reduced accordingly. . After completion of the enzyme reaction, the reduced electron acceptor is electrochemically oxidized, and the substrate concentration in the sample solution can be determined from the oxidation current value obtained at this time. In principle, such an electrochemical sensor can measure various substances by selecting an enzyme that uses a detection substance as a measurement target as a substrate. For example, a glucose sensor can be configured by using an enzyme whose substrate is glucose.

本実施形態では、作用電極33が第1〜第3の実施形態の多孔質金属膜2a〜2cのいずれかにより構成されている。このため、作用電極33と基材31との密着性に優れている。また、作用電極33が検知物質で目詰まりし難い。作用電極33の表層(上層)側に大きな孔径の空孔が存在するため、検知物質が表層(上層)近辺でトラップされずに、下層の小さな孔径の空孔まで到達しやすい。従って、酵素センサ30は、検知感度に優れている。   In the present embodiment, the working electrode 33 is configured by any one of the porous metal films 2a to 2c of the first to third embodiments. For this reason, the adhesion between the working electrode 33 and the substrate 31 is excellent. Further, the working electrode 33 is not easily clogged with the detection substance. Since a hole having a large pore diameter exists on the surface layer (upper layer) side of the working electrode 33, the detection substance is not trapped in the vicinity of the surface layer (upper layer) and easily reaches a hole having a small hole diameter in the lower layer. Therefore, the enzyme sensor 30 is excellent in detection sensitivity.

(第5の実施形態)
第5の実施形態では、第1〜第3の実施形態の多孔質金属膜2a〜2cを蓄電デバイスの一種であるコイン型非水電解質二次電池に用いる例について説明する。
(Fifth embodiment)
In the fifth embodiment, an example in which the porous metal films 2a to 2c of the first to third embodiments are used for a coin-type non-aqueous electrolyte secondary battery which is a kind of power storage device will be described.

図10は、第5の実施形態に係る蓄電デバイスとしてのコイン型非水電解質二次電池の略図的断面図である。図10に示すように、コイン型非水電解質二次電池400は、正極41、負極43、セパレータ45、電解質46とを有する。正極41および負極43は正極集電体42および負極集電体44と接するように配置してある。正極41や負極43等の材料としては一般的なものを使用できる。本実施形態では、負極集電体44が第1〜第3の実施形態の多孔質金属膜2a〜2cのいずれかにより構成されている。負極集電体44は、空孔10の孔径が負極43側に向かって大きくなるように配置されている。   FIG. 10 is a schematic cross-sectional view of a coin-type nonaqueous electrolyte secondary battery as an electricity storage device according to the fifth embodiment. As shown in FIG. 10, the coin-type nonaqueous electrolyte secondary battery 400 includes a positive electrode 41, a negative electrode 43, a separator 45, and an electrolyte 46. The positive electrode 41 and the negative electrode 43 are disposed in contact with the positive electrode current collector 42 and the negative electrode current collector 44. Common materials can be used for the positive electrode 41, the negative electrode 43, and the like. In the present embodiment, the negative electrode current collector 44 is configured by any one of the porous metal films 2a to 2c of the first to third embodiments. The negative electrode current collector 44 is arranged so that the hole diameter of the holes 10 increases toward the negative electrode 43 side.

本実施形態の非水電解質二次電池400では、負極集電体44が第1〜第3の実施形態の多孔質金属膜2a〜2cのいずれかにより構成されている。このため、負極集電体44と負極43との密着性が優れている。また、負極集電体44の内部まで電極活物質が充填できるため充放電特性に優れた二次電池を実現できる。   In the nonaqueous electrolyte secondary battery 400 of the present embodiment, the negative electrode current collector 44 is configured by any one of the porous metal films 2a to 2c of the first to third embodiments. For this reason, the adhesion between the negative electrode current collector 44 and the negative electrode 43 is excellent. Further, since the electrode active material can be filled up to the inside of the negative electrode current collector 44, a secondary battery having excellent charge / discharge characteristics can be realized.

なお、本実施形態では、負極集電体が第1〜第3の実施形態の多孔質金属膜2a〜2cにより構成されている例について説明したが、正極集電体を第1〜第3の実施形態の多孔質金属膜2a〜2cにより構成してもよい。その場合であっても同様の効果が得られる。   In the present embodiment, the example in which the negative electrode current collector is configured by the porous metal films 2a to 2c of the first to third embodiments has been described. However, the positive electrode current collector is the first to third materials. You may comprise by the porous metal film 2a-2c of embodiment. Even in this case, the same effect can be obtained.

(第6の実施形態)
第6の実施形態では、第1〜第3の実施形態の多孔質金属膜2a〜2cを摺動部材に用いる例について説明する。
(Sixth embodiment)
In the sixth embodiment, an example in which the porous metal films 2a to 2c of the first to third embodiments are used as a sliding member will be described.

図11は、第6の実施形態に係る摺動部材の模式的断面図である。図11に示すように、摺動部材50は、ピストン51と、シリンダブロック52とを有する。ピストン51は、シリンダブロック52内に摺動可能に配されている。ピストン51の外周面(摺動面)51aと、シリンダブロック52の内壁面(摺動面)52aとのうちの少なくとも一方の上には、第1〜第3の実施形態の多孔質金属膜2a〜2cからなり、潤滑オイルが含浸している潤滑層53が形成されている。具体的には、本実施形態では、ピストン51の外周面51aの上に潤滑層53が形成されている。潤滑層53は、第1〜第3の実施形態の多孔質金属膜2a〜2cのいずれかにより構成されている。従って、潤滑層53から潤滑オイルが流れ出しにくく、潤滑オイルの保持性に優れている。従って、ピストン51及びシリンダブロック52の摩耗を効果的に抑制することができる。   FIG. 11 is a schematic cross-sectional view of a sliding member according to the sixth embodiment. As shown in FIG. 11, the sliding member 50 includes a piston 51 and a cylinder block 52. The piston 51 is slidably disposed in the cylinder block 52. On at least one of the outer peripheral surface (sliding surface) 51a of the piston 51 and the inner wall surface (sliding surface) 52a of the cylinder block 52, the porous metal film 2a of the first to third embodiments is provided. And a lubricating layer 53 impregnated with lubricating oil is formed. Specifically, in this embodiment, the lubricating layer 53 is formed on the outer peripheral surface 51 a of the piston 51. The lubricating layer 53 is composed of any one of the porous metal films 2a to 2c of the first to third embodiments. Therefore, it is difficult for the lubricating oil to flow out of the lubricating layer 53, and the lubricating oil retainability is excellent. Therefore, wear of the piston 51 and the cylinder block 52 can be effectively suppressed.

2a〜2c…多孔質金属膜
2a1…多孔質金属膜の基材とは反対側の表面
2a2…多孔質金属膜の基材側の表面
3…基材
10、10a…空孔
10a1…下層部
10a2…上層部
11…第1の空孔部
12…第2の空孔部
13…第3の空孔部
20…有底孔
30…酵素センサ
31…基材
32…参照電極
33…作用電極
34…酵素反応層
41…正極
42…正極集電体
43…負極
44…負極集電体
45…セパレータ
46…電解質
50…摺動部材
51…ピストン
51a…外周面
52…シリンダブロック
52a…内壁面
53…潤滑層
400…コイン型非水電解質二次電池
2a to 2c ... porous metal film 2a1 ... surface 2a2 opposite to the substrate of the porous metal film ... surface 3 of the porous metal film on the substrate side ... base material 10, 10a ... pore 10a1 ... lower layer part 10a2 ... upper layer part 11 ... first hole part 12 ... second hole part 13 ... third hole part 20 ... bottomed hole 30 ... enzyme sensor 31 ... base material 32 ... reference electrode 33 ... working electrode 34 ... Enzyme reaction layer 41 ... Positive electrode 42 ... Positive electrode current collector 43 ... Negative electrode 44 ... Negative electrode current collector 45 ... Separator 46 ... Electrolyte 50 ... Sliding member 51 ... Piston 51a ... Outer peripheral surface 52 ... Cylinder block 52a ... Layer 400 ... Coin-type non-aqueous electrolyte secondary battery

Claims (23)

基材の上に形成される多孔質金属膜であって、
前記基材とは反対側の表面に開口する複数の空孔が形成されており、
前記複数の空孔の少なくともひとつは、前記基材とは反対側の表面に向かって孔径が段階的にあるいは連続的に大きくなるように設けられている、多孔質金属膜。
A porous metal film formed on a substrate,
A plurality of holes that are open on the surface opposite to the substrate are formed,
At least one of the plurality of holes is a porous metal film provided so that the hole diameter increases stepwise or continuously toward the surface opposite to the substrate.
前記複数の空孔の少なくともひとつは、第1の空孔部と、前記第1の空孔部よりも前記基材側に位置しており、前記第1の空孔部よりも小さな孔径を有する第2の空孔部とを有する、請求項1に記載の多孔質金属膜。   At least one of the plurality of holes is positioned closer to the base material than the first hole and the first hole, and has a smaller hole diameter than the first hole. The porous metal film according to claim 1, comprising a second void portion. 前記複数の空孔の少なくともひとつは、前記第2の空孔部を複数有し、前記複数の第2の空孔部のそれぞれが前記第1の空孔部に連通している、請求項2に記載の多孔質金属膜。   The at least one of the plurality of holes has a plurality of the second hole portions, and each of the plurality of second hole portions communicates with the first hole portion. 2. A porous metal film according to 1. 前記第1の空孔部には、2〜10個の前記第2の空孔部が連通している、請求項3に記載の多孔質金属膜。   4. The porous metal film according to claim 3, wherein 2 to 10 of the second hole portions communicate with the first hole portion. 前記第1の空孔部の孔径が1μm〜5μmであり、前記第2の空孔部の孔径が1μm以下である、請求項2〜4のいずれか一項に記載の多孔質金属膜。   The porous metal film according to any one of claims 2 to 4, wherein a hole diameter of the first hole portion is 1 µm to 5 µm, and a hole diameter of the second hole portion is 1 µm or less. 前記第1の空孔部の厚み方向に沿った長さは、前記第2の空孔部の厚み方向に沿った長さよりも長い、請求項2〜5のいずれか一項に記載の多孔質金属膜。   The length according to the thickness direction of said 1st void | hole part is longer than the length along the thickness direction of said 2nd void | hole part, The porous as described in any one of Claims 2-5 Metal film. 前記第1の空孔部の厚み方向に沿った長さは、前記第2の空孔部の厚み方向に沿った長さの5倍以下である、請求項6に記載の多孔質金属膜。   The porous metal film according to claim 6, wherein a length along the thickness direction of the first hole portion is not more than five times a length along the thickness direction of the second hole portion. 前記第1の空孔部の厚み方向に沿った長さが1μm〜5μmであり、前記第2の空孔部の厚み方向に沿った長さが1μm以下である、請求項2〜7のいずれか一項に記載の多孔質金属膜。   The length along the thickness direction of the first hole portion is 1 μm to 5 μm, and the length along the thickness direction of the second hole portion is 1 μm or less. The porous metal film according to claim 1. 前記複数の空孔の少なくともひとつは、前記第2の空孔部よりも前記基材側に位置しており、前記第2の空孔部よりも小さな孔径を有する第3の空孔部を有する、請求項2〜8のいずれか一項に記載の多孔質金属膜。   At least one of the plurality of holes has a third hole portion that is located closer to the substrate than the second hole portion and has a smaller hole diameter than the second hole portion. The porous metal film according to any one of claims 2 to 8. 前記各第2の空孔部には、複数の前記第3の空孔部が連通している、請求項9に記載の多孔質金属膜。   The porous metal film according to claim 9, wherein a plurality of the third hole portions communicate with each second hole portion. 前記第2の空孔部の厚み方向に沿った長さは、前記第3の空孔部の厚み方向に沿った長さよりも長い、請求項9または10に記載の多孔質金属膜。   The porous metal film according to claim 9 or 10, wherein a length along the thickness direction of the second hole portion is longer than a length along the thickness direction of the third hole portion. 前記複数の空孔は、前記基材とは反対側の表面から前記基材側の表面にまで達している、請求項1〜11のいずれか一項に記載の多孔質金属膜。   The porous metal film according to any one of claims 1 to 11, wherein the plurality of pores reach from the surface opposite to the base material to the surface on the base material side. 前記基材とは反対側の表面から前記基材側に向かって延びる有底孔がさらに形成されており、
前記有底孔の孔径は、前記第1の空孔部の孔径よりも小さい、請求項12に記載の多孔質金属膜。
A bottomed hole extending from the surface opposite to the substrate toward the substrate is further formed,
The porous metal film according to claim 12, wherein a hole diameter of the bottomed hole is smaller than a hole diameter of the first hole portion.
前記第1の空孔部の孔径は、前記有底孔の孔径の1.4倍〜250倍である、請求項13に記載の多孔質金属膜。   The porous metal film according to claim 13, wherein a hole diameter of the first hole portion is 1.4 to 250 times a hole diameter of the bottomed hole. 前記第1の空孔部の孔径が10μm〜25μmであり、前記有底孔の孔径が0.1〜7μmである、請求項13または14に記載の多孔質金属膜。   The porous metal film according to claim 13 or 14, wherein a hole diameter of the first hole portion is 10 µm to 25 µm, and a hole diameter of the bottomed hole is 0.1 to 7 µm. 銅及びニッケルの少なくとも一方の金属を主成分とする、請求項1〜15のいずれか一項に記載の多孔質金属膜。   The porous metal film according to any one of claims 1 to 15, comprising at least one of copper and nickel as a main component. 無電解めっき膜または電解めっき膜により構成されている、請求項1〜16のいずれか一項に記載の多孔質金属膜。   The porous metal film as described in any one of Claims 1-16 comprised by the electroless-plating film or the electrolytic plating film. 請求項1〜17のいずれか一項に記載された多孔質金属膜からなる電極。   The electrode which consists of a porous metal film as described in any one of Claims 1-17. 請求項1〜17のいずれか一項に記載された多孔質金属膜からなる集電体。   The electrical power collector which consists of a porous metal film as described in any one of Claims 1-17. 請求項1〜17のいずれか一項に記載された多孔質金属膜からなる電極を備える、電気化学センサ。   An electrochemical sensor provided with the electrode which consists of a porous metal film as described in any one of Claims 1-17. セパレータ、集電体及び電極を有し、
前記セパレータ、前記集電体及び前記電極の少なくともひとつが請求項1〜17のいずれか一項に記載された多孔質金属膜により構成されている、蓄電デバイス。
Having a separator, a current collector and an electrode,
An electricity storage device, wherein at least one of the separator, the current collector, and the electrode is formed of the porous metal film according to any one of claims 1 to 17.
第1の部材と、前記第1の部材に対して摺動する第2の部材とを有し、
前記第1の部材の前記第2の部材に対する摺動面と、前記第2の部材の前記第1の部材に対する摺動面とのうちの少なくとも一方の上に、請求項1〜17のいずれか一項に記載された多孔質金属膜が形成されている、摺動部材。
A first member and a second member that slides relative to the first member;
18. At least one of a sliding surface of the first member with respect to the second member and a sliding surface of the second member with respect to the first member, A sliding member in which the porous metal film according to one item is formed.
請求項1〜17のいずれか一項に記載の多孔質金属膜の製造方法であって、
無電解メッキ法または電解めっき法により前記多孔質金属膜を形成する、多孔質金属膜の製造方法。
A method for producing a porous metal film according to any one of claims 1 to 17,
A method for producing a porous metal film, wherein the porous metal film is formed by an electroless plating method or an electrolytic plating method.
JP2012531731A 2010-08-31 2011-07-06 Porous electroless plated film, electrode, current collector, electrochemical sensor, power storage device and sliding member using the same, and method for producing porous electroless plated film Active JP5673682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012531731A JP5673682B2 (en) 2010-08-31 2011-07-06 Porous electroless plated film, electrode, current collector, electrochemical sensor, power storage device and sliding member using the same, and method for producing porous electroless plated film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010193897 2010-08-31
JP2010193897 2010-08-31
JP2012531731A JP5673682B2 (en) 2010-08-31 2011-07-06 Porous electroless plated film, electrode, current collector, electrochemical sensor, power storage device and sliding member using the same, and method for producing porous electroless plated film
PCT/JP2011/065448 WO2012029405A1 (en) 2010-08-31 2011-07-06 Porous metal film, electrode, current collector, electrochemical sensor using same, electric storage device, sliding member, and method for producing porous metal film

Publications (2)

Publication Number Publication Date
JPWO2012029405A1 true JPWO2012029405A1 (en) 2013-10-28
JP5673682B2 JP5673682B2 (en) 2015-02-18

Family

ID=45772516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012531731A Active JP5673682B2 (en) 2010-08-31 2011-07-06 Porous electroless plated film, electrode, current collector, electrochemical sensor, power storage device and sliding member using the same, and method for producing porous electroless plated film

Country Status (2)

Country Link
JP (1) JP5673682B2 (en)
WO (1) WO2012029405A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030595B (en) * 2017-06-09 2023-09-26 清华大学 Biosensor electrode and biosensor
JP7533972B2 (en) 2022-03-25 2024-08-14 株式会社オプトラン Electrodes and electrode tips

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578873B2 (en) * 1996-08-08 2004-10-20 帝国ピストンリング株式会社 Sliding member
JP3198066B2 (en) * 1997-02-21 2001-08-13 荏原ユージライト株式会社 Microporous copper film and electroless copper plating solution for obtaining the same
JP5176618B2 (en) * 2008-03-17 2013-04-03 株式会社村田製作所 Imprint mold and imprint method using the same
CN101981636B (en) * 2008-04-08 2013-09-11 株式会社村田制作所 Capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
WO2012029405A1 (en) 2012-03-08
JP5673682B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
Asnavandi et al. Dynamic hydrogen bubble templated NiCu phosphide electrodes for pH-insensitive hydrogen evolution reactions
Zhang et al. Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems
Wang et al. Electro-deposition of CoNi 2 S 4 flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance
CN102439783B (en) Air cathode based on single-walled carbon nanotube
Li et al. Novel configuration of bifunctional air electrodes for rechargeable zinc–air batteries
Zhang et al. Paper with Power: Engraving 2D Materials on 3D Structures for Printed, High‐Performance, Binder‐Free, and All‐Solid‐State Supercapacitors
JP2020132965A (en) Electrode catalyst layer for carbon dioxide electrolysis cell, and electrolysis cell and electrolysis device having same
Shim et al. Electrocatalytic activity of nanoporous Pd and Pt: effect of structural features
WO2001084654A1 (en) Lithium secondary battery-use electrode and lithium secondary battery
JP2012528465A (en) Current collector for catalytic electrode
US9129755B2 (en) Method of preparing porous metal material
US20140283650A1 (en) Method of manufacturing powder having high surface area
CN103931034B (en) Fuel cell collector plate and manufacture method thereof
CN106252670A (en) Use the electrode added with crystal seed by the nucleocapsid catalyst volume to volume manufacture to high performance fuel cell electrode
CN105874632A (en) Positive electrode for lithium air battery and lithium air battery comprising same
Lu et al. Reduction of the electrode overpotential of the oxygen evolution reaction by electrode surface modification
ES2688098T3 (en) Stainless steel sheet for polymer electrolyte fuel cell separator
JP5673682B2 (en) Porous electroless plated film, electrode, current collector, electrochemical sensor, power storage device and sliding member using the same, and method for producing porous electroless plated film
Hosseini et al. Fabrication and Performance Evaluation of Pd‐Cu Nanoparticles for Hydrogen Evolution Reaction
CN101740787A (en) Metal particle-amorphous diamond composite anode for fuel cell and preparation method thereof
JP2013014819A (en) Porous metal film, electrode, current collector, electrochemical sensor, power storage device and sliding member as well as method for producing porous metal film
Armutlulu et al. Supercapacitor Electrodes Based on Three‐Dimensional Copper Structures with Precisely Controlled Dimensions
Choi et al. A Pt cathode with high mass activity for proton exchange membrane water electrolysis
WO2011097286A2 (en) Electrodes for metal-air batteries and fuel cells
Lin et al. Templated fabrication of nanostructured Ni brush for hydrogen evolution reaction

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150