JPWO2012029203A1 - Expander and refrigeration cycle equipment - Google Patents

Expander and refrigeration cycle equipment Download PDF

Info

Publication number
JPWO2012029203A1
JPWO2012029203A1 JP2012531652A JP2012531652A JPWO2012029203A1 JP WO2012029203 A1 JPWO2012029203 A1 JP WO2012029203A1 JP 2012531652 A JP2012531652 A JP 2012531652A JP 2012531652 A JP2012531652 A JP 2012531652A JP WO2012029203 A1 JPWO2012029203 A1 JP WO2012029203A1
Authority
JP
Japan
Prior art keywords
oil
refrigerant
space
expansion
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012531652A
Other languages
Japanese (ja)
Other versions
JPWO2012029203A6 (en
Inventor
角田 昌之
昌之 角田
石園 文彦
文彦 石園
英彰 永田
英彰 永田
下地 美保子
美保子 下地
関屋 慎
慎 関屋
利秀 幸田
利秀 幸田
加賀 邦彦
邦彦 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2012029203A6 publication Critical patent/JPWO2012029203A6/en
Publication of JPWO2012029203A1 publication Critical patent/JPWO2012029203A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F01C1/0223Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/04Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • F01C21/045Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F04C18/0223Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft

Abstract

均油管と均圧管の設置や、高さ等の設置制約が生じること無く、更にバランスウェイトによる攪拌損失無く、油分離器から供給される高圧の油を用いた各軸受部への給油が可能な回転式の膨張機等を提供する。容器(4)内が、容器(4)を貫通する給油孔(4c)を介して油分離器(26)から高圧の油が供給される第1空間(4a)と、第1空間(4a)よりも低圧雰囲気となる第2空間(4b)とに分割されると共に、第2空間(4b)に、軸(78)に支持されて軸(78)と一体に回転するバランスウェイト(79a、79b)を配置し、軸(78)は、軸(78)を軸方向に貫通し、一端が第1空間(4a)に開口し、他端が第2空間(4b)に開口する油孔(78a)と、油孔(78a)から軸(78)の半径方向に貫通して各軸受部(51c、52d、61c)に連通する各軸受給油孔(78d)とを有し、第1空間(4a)内の油が油孔(78a)の一端から軸受給油孔(78d)を介して各軸受部(51c、52d、61c)に差圧給油される。Installation of oil equalization pipes and pressure equalization pipes, installation restrictions such as height, etc. do not occur, and there is no stirring loss due to balance weight, and oil supply to each bearing part using high-pressure oil supplied from an oil separator is possible A rotary expander is provided. A first space (4a) in which high-pressure oil is supplied from an oil separator (26) through an oil supply hole (4c) penetrating the container (4) inside the container (4), and a first space (4a) The balance weights (79a, 79b) are divided into the second space (4b) having a lower pressure atmosphere, and are supported by the shaft (78) and rotate integrally with the shaft (78) in the second space (4b). ) And the shaft (78) penetrates the shaft (78) in the axial direction, one end opens to the first space (4a), and the other end opens to the second space (4b). ) And each bearing oil supply hole (78d) penetrating in the radial direction of the shaft (78) from the oil hole (78a) and communicating with each bearing portion (51c, 52d, 61c), and the first space (4a ) Oil in each of the bearing portions (51c, 52d, 61c) from one end of the oil hole (78a) through the bearing oil supply hole (78d). It is pressure refueling.

Description

この発明は、膨張過程から動力を回収する膨張機とその膨張機を備えた冷凍サイクル装置に関するものである。  The present invention relates to an expander that recovers power from an expansion process and a refrigeration cycle apparatus including the expander.

冷凍・空調用途の冷凍サイクル装置において、サイクルC.O.P.(Coefficient Of Performance)向上手段として、膨張過程から動力を回収する膨張機が用いられている。動力回収を行う膨張機としては、例えば、冷媒を膨張させる膨張機構と、膨張機構に同軸で連結され、膨張機構にて回収された動力により駆動されるサブ圧縮機構とを容器内に収容した回転式の膨張機がある。この種の膨張機を冷凍サイクルに用いた場合、軸受部や摺動部などの潤滑が必要な部分を有する機器がサイクル中で圧縮機と膨張機の二つになる。したがって、圧縮機だけでなく膨張機構にも給油する必要があり、圧縮機と膨張機の各々で油が枯渇しないように配慮する必要がある。そこで、従来より、膨張機と圧縮機のそれぞれの容器を均圧管で接続すると共に、それぞれの容器の底部に設けた油溜まり同士を均油管で接続し、膨張機と圧縮機の間で油面位置が等しくなるように油面をコントロールするようにした冷凍サイクル装置がある(例えば、特許文献1参照)。  In the refrigeration cycle apparatus for refrigeration and air conditioning, the cycle C.I. O. P. (Coefficient of Performance) As an improvement means, an expander that recovers power from an expansion process is used. As an expander that performs power recovery, for example, a rotation in which a expansion mechanism that expands a refrigerant and a sub-compression mechanism that is coaxially connected to the expansion mechanism and driven by power recovered by the expansion mechanism are accommodated in a container. There is a type of expander. When this type of expander is used in a refrigeration cycle, there are two devices having a portion requiring lubrication, such as a bearing portion and a sliding portion, a compressor and an expander in the cycle. Therefore, it is necessary to supply oil not only to the compressor but also to the expansion mechanism, and consideration must be given so that the oil is not exhausted in each of the compressor and the expander. Therefore, conventionally, each container of the expander and the compressor is connected by a pressure equalizing pipe, and oil reservoirs provided at the bottom of each container are connected by an oil equalizing pipe so that the oil level is between the expander and the compressor. There is a refrigeration cycle apparatus in which the oil level is controlled so that the positions are equal (for example, see Patent Document 1).

また、その他の冷凍サイクル装置として、例えば、高圧側に油分離器を設け、油分離器により分離した高圧の油を、直接、差圧により膨張機の膨張機構と圧縮機構の両方に給油するようにした冷凍サイクル装置がある(例えば、特許文献2参照)。この冷凍サイクル装置では、転がり軸受けを用いた斜板式の膨張機を採用している。  As another refrigeration cycle apparatus, for example, an oil separator is provided on the high pressure side, and high pressure oil separated by the oil separator is directly supplied to both the expansion mechanism and the compression mechanism of the expander by differential pressure. There is a refrigeration cycle apparatus (see, for example, Patent Document 2). This refrigeration cycle apparatus employs a swash plate type expander using a rolling bearing.

また、動力回収を行う回転式の膨張機では、膨張機構とサブ圧縮機構とを連結する軸の一端と他端にそれぞれバランスウェイトを配置し、膨張機構及び圧縮機構をそれぞれ独立して静的且つ動的にバランスさせるようにしている(例えば、特許文献3参照)。また、この種の動力回収を行う膨張機では、膨張機構とサブ圧縮機構とが同軸に一体に構成されているため、両者の回転数を一致させるべく、膨張機構を通過する体積流量の調整が必要である。そこで、特許文献3の冷凍サイクル装置では、膨張機構をバイパスさせて膨張機構入口側の流量を減らしたり、膨張機構に流入させる前に予膨張を行って膨張機構入口の比容積を増やしたりして調整を行うようにしている。  Further, in a rotary expander that recovers power, balance weights are arranged at one end and the other end of a shaft that connects the expansion mechanism and the sub-compression mechanism, respectively, and the expansion mechanism and the compression mechanism are independently static and The balance is dynamically made (see, for example, Patent Document 3). Further, in an expander that performs this type of power recovery, the expansion mechanism and the sub-compression mechanism are integrally formed coaxially, so that the volume flow rate that passes through the expansion mechanism can be adjusted so that the rotational speeds of the expansion mechanism and the sub-compression mechanism coincide with each other. is necessary. Therefore, in the refrigeration cycle device of Patent Document 3, the expansion mechanism is bypassed to reduce the flow rate on the expansion mechanism inlet side, or pre-expansion is performed before flowing into the expansion mechanism to increase the specific volume of the expansion mechanism inlet. Adjustments are made.

特開2008−232012号公報([0018]、図1)Japanese Patent Laying-Open No. 2008-233201 ([0018], FIG. 1) 特開2001−141315号公報([0031]、図1)JP 2001-141315 A ([0031], FIG. 1) 特開2009−24546号公報([0021]、図2)JP 2009-24546 A ([0021], FIG. 2)

特許文献1の冷凍サイクル装置では、膨張機と圧縮機の間で油面位置を等しくする都合上、膨張機を圧縮機とほぼ同等の高さに設置しなければならず、設置位置に制約があった。これに対し、特許文献2の冷凍サイクル装置では、油分離器に貯留した油を差圧により直接供給することから、均油管と均圧管の設置や、高さ等の設置制約は生じない。しかし、特許文献2の冷凍サイクル装置に用いられる膨張機は、転がり軸受けを用いた斜板式の膨張機であり、回転式の膨張機において、均油管と均圧管の設置や、高さ等の設置制約無く、油分離器から供給される高圧の油を用いて軸受部を潤滑する膨張機は未だ提案されていない。  In the refrigeration cycle apparatus of Patent Document 1, for the convenience of making the oil surface position equal between the expander and the compressor, the expander must be installed at almost the same height as the compressor, and the installation position is restricted. there were. On the other hand, in the refrigeration cycle apparatus of Patent Document 2, since the oil stored in the oil separator is directly supplied by differential pressure, installation restrictions such as the installation of the oil equalizing pipe and the pressure equalizing pipe, and the height do not occur. However, the expander used in the refrigeration cycle apparatus of Patent Document 2 is a swash plate type expander using a rolling bearing, and in the rotary expander, installation of oil equalization pipes and pressure equalization pipes, installation of height, etc. There has not yet been proposed an expander that lubricates the bearing portion using high-pressure oil supplied from an oil separator without restriction.

また、特許文献3の冷凍サイクル装置では、バランスウェイトが設けられているが、バランスウェイトが膨張機の容器内に貯留された油に浸かっていると、バランスウェイトが油を撹拌することによる撹拌損失が生じ、動力ロスが生じるという問題があった。よって、回転式の膨張機の場合、バランスウェイトが油に浸からない配慮が必要である。  Further, in the refrigeration cycle apparatus of Patent Document 3, a balance weight is provided, but when the balance weight is immersed in oil stored in the container of the expander, the balance weight causes agitation loss due to agitation of the oil. There was a problem that power loss occurred. Therefore, in the case of a rotary expander, it is necessary to consider that the balance weight is not immersed in oil.

さらに、特許文献3の冷凍サイクル装置では、体積流量の調整を膨張機構のバイパスや予膨張によって行っているが、この方法の場合、バイパス分や予膨張分の流量が、膨張動力を回収できない非回収流量となる。よって、動力回収効果が低下してエネルギー効率が低下するという問題があった。  Further, in the refrigeration cycle apparatus of Patent Document 3, the volume flow rate is adjusted by bypass or pre-expansion of the expansion mechanism. However, in this method, the flow rate of the bypass or pre-expansion cannot recover the expansion power. The recovery flow rate. Therefore, there is a problem that the power recovery effect is lowered and the energy efficiency is lowered.

この発明はこのような点に鑑みなされたもので、均油管と均圧管の設置や、高さ等の設置制約が生じること無く、更にバランスウェイトによる攪拌損失無く、油分離器から供給される高圧の油を用いた各軸受部への給油が可能な回転式の膨張機を得ることを目的とする。  The present invention has been made in view of the above points, and does not cause installation restrictions such as the installation of oil equalization pipes and pressure equalization pipes, height, and the like, and further, high pressure supplied from the oil separator without agitation loss due to the balance weight. An object of the present invention is to obtain a rotary expander capable of supplying oil to each bearing portion using the above oil.

また、膨張側のバイパスや予膨張に寄らない体積流量調整を行い、エネルギー効率を向上することが可能な冷凍サイクル装置を提供することを目的とする。  It is another object of the present invention to provide a refrigeration cycle apparatus capable of adjusting the volume flow rate without depending on expansion side bypass or pre-expansion and improving energy efficiency.

この発明の膨張機は、冷媒を膨張させて動力を回収する膨張機構と、膨張機構に軸を介して連結され、膨張機構で回収された動力により冷媒を圧縮する圧縮機構と、膨張機構と圧縮機構とを収容する容器とを備え、容器内は、容器を貫通する給油孔を介して油分離器から高圧の油が供給される第1空間と、第1空間よりも低圧雰囲気となる第2空間とに分割されると共に、第2空間に、軸に支持されて軸と一体に回転するバランスウェイトを配置し、軸は、軸を軸方向に貫通し、一端が第1空間に開口し、他端が第2空間に開口する給油通路と、給油通路から軸の半径方向に貫通し、膨張機構および圧縮機構のそれぞれの軸に対する各軸受部に連通する各軸受給油孔とを有し、第1空間内の油が給油通路の一端から軸受給油孔を介して各軸受部に差圧給油されるものである。  An expander according to the present invention includes an expansion mechanism that recovers power by expanding a refrigerant, a compression mechanism that is coupled to the expansion mechanism via a shaft, and that compresses the refrigerant by the power recovered by the expansion mechanism, and the expansion mechanism and the compression mechanism A container that houses the mechanism, and the inside of the container is a first space in which high-pressure oil is supplied from an oil separator through an oil supply hole that penetrates the container, and a second atmosphere that has a lower-pressure atmosphere than the first space. A balance weight that is divided into a space and is supported by a shaft and rotates integrally with the shaft is arranged in the second space, the shaft penetrates the shaft in the axial direction, and one end opens into the first space, An oil supply passage whose other end opens into the second space, and each bearing oil supply hole that penetrates from the oil supply passage in the radial direction of the shaft and communicates with each bearing portion for each shaft of the expansion mechanism and the compression mechanism, Each bearing is filled with oil from one end of the oil supply passage through the bearing oil supply hole. It is intended to be a differential pressure refuel.

また、この発明の冷凍サイクル装置は、冷媒を圧縮する主圧縮機構と、主圧縮機構を通過した冷媒と冷媒に含まれている油とを分離する油分離器と、主圧縮機構を通過した冷媒を冷却する放熱器と、放熱器を通過した冷媒を膨張させるための膨張機と、膨張機により膨張した冷媒を蒸発させるための蒸発器とを備え、これらが順次配管で接続されて冷媒が循環するように構成され、膨張機を請求項1記載の膨張機構で構成すると共に、蒸発器から主圧縮機構に向かう冷媒の一部を、膨張機の圧縮機構に供給して圧縮した後、主圧縮機構の圧縮途中に供給するようにし、油分離器にて分離した油を、主圧縮機構と蒸発器との間の配管に戻す主油戻し管と、油分離器にて分離した油を、容器の給油孔に送るサブ油戻し管とを有するものである。  The refrigeration cycle apparatus of the present invention includes a main compression mechanism that compresses refrigerant, an oil separator that separates refrigerant that has passed through the main compression mechanism and oil contained in the refrigerant, and refrigerant that has passed through the main compression mechanism. A radiator that cools the refrigerant, an expander that expands the refrigerant that has passed through the radiator, and an evaporator that evaporates the refrigerant expanded by the expander, which are sequentially connected by piping to circulate the refrigerant The expander is configured by the expansion mechanism according to claim 1, and a part of the refrigerant from the evaporator toward the main compression mechanism is supplied to the compression mechanism of the expander and compressed, and then the main compression Supply the oil in the middle of compression of the mechanism, return the oil separated by the oil separator to the pipe between the main compression mechanism and the evaporator, and the oil separated by the oil separator in the container And a sub oil return pipe to be sent to the oil supply hole.

この発明によれば、均油管と均圧管の設置や、高さ等の設置制約が生じること無く、更にバランスウェイトによる攪拌損失無く、油分離器から供給される高圧の油を用いた各軸受部への給油が可能な回転式の膨張機を得ることができる。
また、エネルギー効率を向上することが可能な冷凍サイクル装置を得ることができる。
According to the present invention, each bearing portion using high-pressure oil supplied from the oil separator without installation restrictions such as the installation of oil equalization pipes and pressure equalization pipes, height, and the like, and further without stirring loss due to the balance weight. A rotary expander capable of refueling can be obtained.
Moreover, the refrigeration cycle apparatus which can improve energy efficiency can be obtained.

この発明の一実施の形態に係る膨張機の概略断面図である。It is a schematic sectional drawing of the expander which concerns on one embodiment of this invention. 図1の膨張機の別の断面を示す概略断面図である。It is a schematic sectional drawing which shows another cross section of the expander of FIG. 図1の膨張機を搭載する冷凍サイクル装置を示す回路構成図である。It is a circuit block diagram which shows the refrigerating-cycle apparatus carrying the expander of FIG. この発明の膨張機を用いた冷凍サイクルにおける冷媒の状態を説明するモリエル線図である。It is a Mollier diagram explaining the state of the refrigerant | coolant in the refrigerating cycle using the expander of this invention.

図1は、この発明の一実施の形態に係る膨張機の概略断面図である。以下の各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。  FIG. 1 is a schematic sectional view of an expander according to an embodiment of the present invention. In the following drawings, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification. Furthermore, the form of the constituent elements appearing in the whole specification is merely an example, and is not limited to these descriptions.

膨張機1は、密閉容器4内に、冷媒を膨張させて動力を回収する膨張機構2と、膨張機構2に軸78を介して連結され、膨張機構2で回収された動力により冷媒を圧縮するサブ圧縮機構3とを有している。密閉容器4の下方には、膨張機構2を構成する膨張固定スクロール51が配置されている。膨張固定スクロール51は、台板51aから上方に渦巻歯51bを立設した構成を有している。また、密閉容器4の上方には、サブ圧縮機構3を構成するサブ圧縮固定スクロール61が配置されている。サブ圧縮固定スクロール61も、台板61aから下方に渦巻歯61bが立設された構成を有している。そして、膨張固定スクロール51とサブ圧縮固定スクロール61との間に揺動スクロール52が配置されている。  The expander 1 is connected to the expansion mechanism 2 that expands the refrigerant and recovers power in the sealed container 4, and is connected to the expansion mechanism 2 via a shaft 78, and compresses the refrigerant by the power recovered by the expansion mechanism 2. And a sub-compression mechanism 3. Below the sealed container 4, an expansion fixed scroll 51 constituting the expansion mechanism 2 is disposed. The expansion fixed scroll 51 has a configuration in which spiral teeth 51b are erected upward from the base plate 51a. A sub-compression fixed scroll 61 constituting the sub-compression mechanism 3 is disposed above the sealed container 4. The sub-compression fixed scroll 61 also has a configuration in which spiral teeth 61b are erected downward from the base plate 61a. A swing scroll 52 is disposed between the expansion fixed scroll 51 and the sub compression fixed scroll 61.

揺動スクロール52は、台板52aにおいて膨張固定スクロール51と対向する一方の面に、膨張固定スクロール51の渦巻歯51bと噛み合う膨張側渦巻歯52bが立設され、膨張固定スクロール51と共に膨張機構2を構成している。また、揺動スクロール52は、台板52aにおいてサブ圧縮固定スクロール61と対向する他方の面に、サブ圧縮固定スクロール61の渦巻歯61bと噛み合うサブ圧縮側渦巻歯52cが立設され、サブ圧縮固定スクロール61と共にサブ圧縮機構3を構成している。  The swing scroll 52 is provided with an expansion side spiral tooth 52b that engages with the spiral tooth 51b of the expansion fixed scroll 51 on one surface of the base plate 52a facing the expansion fixed scroll 51, and the expansion mechanism 2 together with the expansion fixed scroll 51. Is configured. The swing scroll 52 has a sub-compression-side spiral tooth 52c that is engaged with the spiral tooth 61b of the sub-compression fixed scroll 61 on the other surface of the base plate 52a facing the sub-compression fixed scroll 61. The sub-compression mechanism 3 is configured together with the scroll 61.

サブ圧縮固定スクロール61、揺動スクロール52および膨張固定スクロール51の中央部には上下方向に軸78が貫通している。軸78は、膨張固定スクロール51およびサブ圧縮固定スクロール61それぞれの中央に形成された膨張側軸受部51cおよびサブ圧縮側軸受部61cによって、回転自由に支持されている。揺動スクロール52は、その中央に形成された揺動軸受部52dが軸78に形成されたクランク(偏心)部によって貫通支持され、揺動運動できるようになっている。また、揺動スクロール52と膨張固定スクロール51の間にはオルダムリング77が配置され、揺動スクロール52の自転を防止し、姿勢を規正している。  A shaft 78 passes through the center of the sub-compression fixed scroll 61, the swing scroll 52 and the expansion fixed scroll 51 in the vertical direction. The shaft 78 is rotatably supported by an expansion side bearing portion 51c and a sub compression side bearing portion 61c formed at the center of each of the expansion fixed scroll 51 and the sub compression fixed scroll 61. The orbiting scroll 52 has an orbiting bearing portion 52d formed at its center penetrating and supported by a crank (eccentricity) portion formed on a shaft 78 so as to be able to swing. Further, an Oldham ring 77 is disposed between the swing scroll 52 and the expansion fixed scroll 51 to prevent the swing scroll 52 from rotating and to regulate the posture.

膨張機1では、軸78が回転して揺動スクロール52が揺動運動を行うことで冷媒の膨張作用および圧縮作用を行っている。すなわち、膨張機構2側では、揺動スクロール52の円軌道に沿った揺動により膨張固定スクロール51との間に中央部から周辺方向に移動しながら容積を大きくする膨張室を形成しており、ここで膨張作用を行う。一方、サブ圧縮機側では、揺動スクロール52の円軌道に沿った揺動によりサブ圧縮固定スクロール61との間に外周部から中心方向に移動しながら容積を小さくする圧縮室を形成しており、ここで圧縮作用を行う。  In the expander 1, the shaft 78 rotates and the rocking scroll 52 performs a rocking motion, so that the refrigerant expands and compresses. That is, on the expansion mechanism 2 side, an expansion chamber is formed between the expansion scroll 52 and the expansion fixed scroll 51 by swinging along the circular orbit of the swing scroll 52 while increasing the volume while moving from the center to the peripheral direction. Here, the expansion action is performed. On the other hand, on the sub-compressor side, a compression chamber is formed between the sub-compression fixed scroll 61 and the sub-compression fixed scroll 61 by moving along the circular orbit of the orbiting scroll 52 while moving in the center direction from the outer peripheral portion. Here, the compression action is performed.

密閉容器4内は、膨張固定スクロール51の背面側の第1空間4aと、サブ圧縮固定スクロール61の背面側の第2空間4bと、膨張固定スクロール51とサブ圧縮固定スクロール61の間の揺動スクロール運動空間61eとに三分割されている。密閉容器4には第1空間に連通する給油孔4cが貫通形成されており、その給油孔4cに密閉容器4外から接続された給油管37により、後述の油分離器26からの油が第1空間4aに供給されて充満するようになっている。また、密閉容器4には第2空間4bに連通する吸気孔4dが貫通形成されており、その吸気孔4dに密閉容器4外から接続されたサブ圧縮吸入管19により、外部からの冷媒が第2空間4bに供給される。この例では、第2空間4bは、サブ圧縮機構3の吸入圧力雰囲気となっている。サブ圧縮固定スクロール61には、軸方向に貫通するサブ圧縮吸入連通路61dが形成されており、このサブ圧縮吸入連通路61dにより、第2空間4bと揺動スクロール運動空間61eとは連通し、実質同一空間化している。  Inside the sealed container 4, the first space 4 a on the back side of the expansion fixed scroll 51, the second space 4 b on the back side of the sub compression fixed scroll 61, and the swing between the expansion fixed scroll 51 and the sub compression fixed scroll 61. The scroll motion space 61e is divided into three parts. An oil supply hole 4c communicating with the first space is formed through the sealed container 4 and oil from an oil separator 26 described later is supplied to the oil supply hole 4c by an oil supply pipe 37 connected from the outside of the closed container 4. 1 space 4a is supplied and filled. In addition, an air intake hole 4d communicating with the second space 4b is formed in the sealed container 4 so that the refrigerant from the outside is supplied to the intake hole 4d by the sub-compression suction pipe 19 connected from the outside of the airtight container 4. 2 space 4b is supplied. In this example, the second space 4 b is the suction pressure atmosphere of the sub compression mechanism 3. The sub-compression fixed scroll 61 is formed with a sub-compression suction communication passage 61d penetrating in the axial direction. The sub-compression suction communication passage 61d allows the second space 4b and the orbiting scroll motion space 61e to communicate with each other. Virtually the same space.

軸78は、その内部に軸方向に貫通する給油通路である油孔78aを有し、油孔78aの一端78bは第1空間4aに充満した油に開口し、油孔78aの他端78cは第2空間4bに開口している。また、軸78には油孔78aから半径方向に貫通して形成され、膨張側軸受部51c、揺動軸受部52d、サブ圧縮側軸受部61cへ通じる複数の軸受給油孔78dを有している。また、軸78において第2空間4bに突出している突出部には、軸78と一体に回転するバランスウェイト79a,79bが装着されている。揺動スクロール52と同じ偏心方向のバランスウェイト79bと、反偏心方向のバランスウェイト79aとが互いに隣接しており、揺動スクロール52とバランスウェイト79a,79bの三つで静バランスと動バランスの両方を取るようになっている。  The shaft 78 has an oil hole 78a that is an oil supply passage penetrating in the axial direction therein, and one end 78b of the oil hole 78a opens to the oil filled in the first space 4a, and the other end 78c of the oil hole 78a is It opens to the second space 4b. Further, the shaft 78 has a plurality of bearing oil supply holes 78d that are formed through the oil holes 78a in the radial direction and communicate with the expansion side bearing portion 51c, the swinging bearing portion 52d, and the sub compression side bearing portion 61c. . Further, balance weights 79 a and 79 b that rotate integrally with the shaft 78 are attached to the protruding portion of the shaft 78 that protrudes into the second space 4 b. The balance weight 79b in the same eccentric direction as the swing scroll 52 and the balance weight 79a in the anti-eccentric direction are adjacent to each other, and both the static scroll and the dynamic balance are provided by the swing scroll 52 and the balance weights 79a and 79b. Is supposed to take.

図2は、図1の膨張機の別の断面を示す概略断面図である。
サブ圧縮機構3において、サブ圧縮固定スクロール61の台板61aには、サブ圧縮室に連通するサブ圧縮吐出ポート40が軸方向に形成され、サブ圧縮吐出ポート40の吐出側の端部には、サブ圧縮吐出ポート40を開閉する吐出弁32が配置されている。サブ圧縮固定スクロール61の台板61aには更に、吐出弁32が配置された弁スペース33と、弁スペース33から台板61aを半径方向に貫通するサブ圧縮吐出流路61fとが形成されている。サブ圧縮吐出流路61fには、密閉容器4を貫通して挿入されたサブ圧縮吐出管20が接続されている。第1空間4aは上述したようにサブ圧縮機構3の吸入圧力雰囲気となっており、吸入圧力の冷媒はサブ圧縮機構3の圧縮室にて圧縮された後、吐出弁32から吐出され、サブ圧縮吐出流路61fを通過してサブ圧縮吐出管20から密閉容器4外へと吐出される。尚、弁スペース33の第2空間4b側の開口部はプレート34によって閉塞されている。
FIG. 2 is a schematic cross-sectional view showing another cross section of the expander of FIG.
In the sub-compression mechanism 3, a sub-compression discharge port 40 that communicates with the sub-compression chamber is formed in the base plate 61 a of the sub-compression fixed scroll 61 in the axial direction. A discharge valve 32 for opening and closing the sub compression discharge port 40 is disposed. The base plate 61a of the sub-compression fixed scroll 61 is further formed with a valve space 33 in which the discharge valve 32 is disposed, and a sub-compression discharge passage 61f that penetrates the base plate 61a from the valve space 33 in the radial direction. . A sub compression discharge pipe 20 inserted through the sealed container 4 is connected to the sub compression discharge flow path 61f. As described above, the first space 4a is the suction pressure atmosphere of the sub-compression mechanism 3, and the refrigerant at the suction pressure is compressed in the compression chamber of the sub-compression mechanism 3, and then discharged from the discharge valve 32, and the sub-compression It passes through the discharge flow path 61f and is discharged from the sub-compression discharge pipe 20 to the outside of the sealed container 4. Note that the opening of the valve space 33 on the second space 4 b side is closed by the plate 34.

膨張機構2において、膨張固定スクロール51の台板51aには、膨張室に連通する膨張吸入ポート35と膨張吸入ポート35に連通する膨張吸入流路51dとが形成されている。膨張固定スクロール51の台板51aには更に、密閉容器4を貫通して挿入され、膨張吸入流路51dに連通する膨張吸入管15が接続されている。また、膨張固定スクロール51の台板51aには更に、膨張室に連通する膨張吐出ポート36と膨張吐出ポート36に連通する膨張吐出流路51eとが形成されている。膨張固定スクロール51の台板51aには更に、密閉容器4を貫通して挿入され、膨張吐出流路51eに連通する膨張吐出管16が接続されている。この構成により、膨張機構2では、密閉容器4外から直接冷媒を吸入し、膨張室にて膨張した後、密閉容器4内に吐出されることなく膨張吐出管16から直接密閉容器4外に吐出される。  In the expansion mechanism 2, an expansion suction port 35 communicating with the expansion chamber and an expansion suction flow path 51 d communicating with the expansion suction port 35 are formed on the base plate 51 a of the expansion fixed scroll 51. An expansion suction pipe 15 that is inserted through the sealed container 4 and communicates with the expansion suction flow path 51d is further connected to the base plate 51a of the expansion fixed scroll 51. Further, an expansion / discharge port 36 communicating with the expansion chamber and an expansion / discharge channel 51e communicating with the expansion / discharge port 36 are further formed on the base plate 51a of the expansion fixed scroll 51. An expansion / discharge pipe 16 that is inserted through the sealed container 4 and communicates with the expansion / discharge flow path 51e is further connected to the base plate 51a of the expansion fixed scroll 51. With this configuration, in the expansion mechanism 2, the refrigerant is directly sucked from outside the sealed container 4, expanded in the expansion chamber, and then discharged directly from the expansion discharge pipe 16 to the outside of the sealed container 4 without being discharged into the sealed container 4. Is done.

揺動スクロール52の膨張側渦巻歯52bの中央部歯先には、揺動軸受部52dを囲繞するように偏心シール72aが設けられ、膨張機構2の入口と密閉容器4内とをシールしている。また、揺動スクロール52のサブ圧縮側渦巻歯52cを囲繞して同心シール73が設けられ、その更に外側に偏心シール72bが設けられている。揺動スクロール52の台板52aには、膨張側渦巻歯52bの膨張室形成部分から軸方向に貫通する高圧導入孔52eが形成されており、高圧導入孔52eのサブ圧縮側は、同心シール73と偏心シール72bの間の部分に開口している。この高圧導入孔52eの作用については後述する。  An eccentric seal 72a is provided at the center of the expansion side spiral tooth 52b of the swing scroll 52 so as to surround the swing bearing portion 52d, and seals the inlet of the expansion mechanism 2 and the inside of the sealed container 4. Yes. A concentric seal 73 is provided surrounding the sub-compression side spiral teeth 52c of the orbiting scroll 52, and an eccentric seal 72b is provided further outside. The base plate 52a of the orbiting scroll 52 is formed with a high pressure introduction hole 52e penetrating in the axial direction from the expansion chamber forming portion of the expansion side spiral tooth 52b. The sub compression side of the high pressure introduction hole 52e is a concentric seal 73. And an opening between the eccentric seal 72b. The operation of the high pressure introduction hole 52e will be described later.

図3は、この発明による膨張機を搭載する冷凍サイクル装置を模式的に表すサイクル構成図である。
この冷凍サイクル装置は、モーター6によって駆動される主圧縮機構7を有する主圧縮機5と、油分離器26と、放熱器11と、予膨張弁14と、膨張機1内の膨張機構2と、蒸発器12とが順次配管で接続されている。そして、蒸発器12と主圧縮機構7との間の配管とサブ圧縮機構3のサブ圧縮吸入管19とが配管80で接続され、蒸発器12から主圧縮機構7に向かう冷媒の一部が配管80を経て膨張機1内のサブ圧縮機構3に供給される。更に、サブ圧縮機構3のサブ圧縮吐出管20と主圧縮機構7の圧縮途中の吸入ポートとが逆止弁82を有する配管81で接続され、サブ圧縮機構3によって圧縮された冷媒が、配管81を経て主圧縮機構7の圧縮途中の圧縮室に導入される。
FIG. 3 is a cycle configuration diagram schematically showing a refrigeration cycle apparatus equipped with an expander according to the present invention.
This refrigeration cycle apparatus includes a main compressor 5 having a main compression mechanism 7 driven by a motor 6, an oil separator 26, a radiator 11, a pre-expansion valve 14, and an expansion mechanism 2 in the expander 1. The evaporator 12 is sequentially connected by piping. A pipe between the evaporator 12 and the main compression mechanism 7 and the sub compression suction pipe 19 of the sub compression mechanism 3 are connected by a pipe 80, and a part of the refrigerant from the evaporator 12 toward the main compression mechanism 7 is piped. After 80, it is supplied to the sub-compression mechanism 3 in the expander 1. Further, the sub compression discharge pipe 20 of the sub compression mechanism 3 and the suction port in the middle of compression of the main compression mechanism 7 are connected by a pipe 81 having a check valve 82, and the refrigerant compressed by the sub compression mechanism 3 is connected to the pipe 81. Then, it is introduced into the compression chamber in the middle of compression of the main compression mechanism 7.

モーター6に電気が供給されると、主圧縮機5が駆動し、主圧縮機5の主圧縮機構7によって冷媒が昇圧される。そして、昇圧された冷媒から、この冷媒に含まれる油が油分離器26によって分離された後、放熱器11に導入され冷却される。そして、放熱器11によって冷却された高圧の冷媒は、予膨張弁14を経て膨張機1の膨張機構2に送られ、膨張減圧される。予膨張弁14は、起動時など過渡時に膨張機構2側の圧力をコントロールするためのもので、定常時は全開とされ、流量/動力のマッチングに関わらないようになっている。膨張機構2によって減圧された冷媒は、蒸発器12にて加熱された後、再び主圧縮機5の主圧縮機構7に戻る。蒸発器12から主圧縮機5に戻る冷媒の一部は、上述したように配管80を経て膨張機1内のサブ圧縮機構3に供給され、サブ圧縮機構3によって中間圧まで圧縮された後、逆止弁82を有する配管81を経て主圧縮機構7の圧縮途中の圧縮室に導入される。主圧縮機構7では、蒸発器12から流入した冷媒が中間圧まで圧縮され、サブ圧縮機構7から流入した冷媒と合流してその冷媒と共に高圧まで圧縮される。  When electricity is supplied to the motor 6, the main compressor 5 is driven, and the refrigerant is pressurized by the main compression mechanism 7 of the main compressor 5. And after the oil contained in this refrigerant | coolant is isolate | separated from the pressure-reduced refrigerant | coolant by the oil separator 26, it introduce | transduces into the heat radiator 11 and is cooled. Then, the high-pressure refrigerant cooled by the radiator 11 is sent to the expansion mechanism 2 of the expander 1 through the pre-expansion valve 14 and is decompressed and decompressed. The pre-expansion valve 14 is for controlling the pressure on the side of the expansion mechanism 2 at the time of transition such as startup, and is fully opened at the time of steady state so as not to be involved in flow rate / power matching. The refrigerant decompressed by the expansion mechanism 2 is heated by the evaporator 12 and then returns to the main compression mechanism 7 of the main compressor 5 again. A part of the refrigerant returning from the evaporator 12 to the main compressor 5 is supplied to the sub compression mechanism 3 in the expander 1 through the pipe 80 as described above, and after being compressed to the intermediate pressure by the sub compression mechanism 3, It is introduced into a compression chamber in the middle of compression of the main compression mechanism 7 through a pipe 81 having a check valve 82. In the main compression mechanism 7, the refrigerant flowing in from the evaporator 12 is compressed to an intermediate pressure, merged with the refrigerant flowing in from the sub-compression mechanism 7, and compressed together with the refrigerant to a high pressure.

膨張機1において、冷媒が減圧するときに発生する動力を膨張機構2で回収してサブ圧縮機構3が駆動されると、冷凍サイクル装置を循環する冷媒はサブ圧縮機構3と主圧縮機5にw:(1−w)で分流される。本例の冷凍サイクル装置では、主圧縮/サブ圧縮の分流による体積流量調整を行い、膨張機構2側で決まる回転数とサブ圧縮機構3側の回転数を一致させる条件を満たすようにする。膨張機構2を通過する通過流量をGe、サブ圧縮機構3を通過する通過流量をGc、膨張機構入口の冷媒比容積をvexi、サブ圧縮機構入口の冷媒比容積をvs、膨張機構吸入容積をVei、サブ圧縮機構吸入容積をVcs、とすると(1)式を満たす必要がある。  In the expander 1, when the power generated when the refrigerant is depressurized is recovered by the expansion mechanism 2 and the sub-compression mechanism 3 is driven, the refrigerant circulating in the refrigeration cycle apparatus is transferred to the sub-compression mechanism 3 and the main compressor 5. w: Divided by (1-w). In the refrigeration cycle apparatus of this example, volume flow rate adjustment is performed by splitting main compression / sub-compression to satisfy the condition that the rotational speed determined on the expansion mechanism 2 side matches the rotational speed on the sub-compression mechanism 3 side. The flow rate passing through the expansion mechanism 2 is Ge, the flow rate passing through the sub-compression mechanism 3 is Gc, the refrigerant specific volume at the expansion mechanism inlet is vexi, the refrigerant specific volume at the sub-compression mechanism inlet is vs, and the expansion mechanism suction volume is Vei. When the sub compression mechanism suction volume is Vcs, the expression (1) must be satisfied.

Figure 2012029203
Figure 2012029203

ここで、膨張機構吸入容積/サブ圧縮機構吸入容積=σvEC*とする。そして、重量流量Gc/重量流量Ge=wである。これらの式を用いて上記(1)式を整理すると、wが以下の(2)式となる。よって、wが以下の(2)式を満足するように主圧縮機5の吸入量を調整することにより、膨張機構2とサブ圧縮機構3の入口体積流量の釣り合いを取ることができる。  Here, the expansion mechanism suction volume / sub-compression mechanism suction volume = σvEC *. The weight flow rate Gc / weight flow rate Ge = w. If the above equation (1) is rearranged using these equations, w becomes the following equation (2). Therefore, the inlet volume flow rate of the expansion mechanism 2 and the sub compression mechanism 3 can be balanced by adjusting the suction amount of the main compressor 5 so that w satisfies the following expression (2).

Figure 2012029203
Figure 2012029203

上記の膨張機構2とサブ圧縮機構3の入口体積流量の釣り合いに加えて、膨張機構2とサブ圧縮機構3間の動力も釣り合いも必要である。分流比w分の冷媒について、膨張機構2で回収された動力によってサブ圧縮機構3でPlから中間圧Pmまで圧縮され、Pmから高圧Phまでの追加圧縮は(1−w)分と共に主圧縮機構7で行なわれることにより、膨張機構2とサブ圧縮機構3間の動力も釣り合いが取れる。  In addition to the balance of the inlet volume flow rates of the expansion mechanism 2 and the sub-compression mechanism 3, the power and balance between the expansion mechanism 2 and the sub-compression mechanism 3 are required. The refrigerant having a flow ratio w is compressed from Pl to the intermediate pressure Pm by the sub-compression mechanism 3 by the power recovered by the expansion mechanism 2, and the additional compression from Pm to the high pressure Ph is performed along with the (1-w) minute main compression mechanism. 7, the power between the expansion mechanism 2 and the sub-compression mechanism 3 can be balanced.

すなわち、膨張機1の吸入容積比σvEC*が固定で、回収動力は条件に依存して決まっていることに対して、サブ圧縮機構3と主圧縮機5とに分流することで流量のマッチングを図る。そして、サブ圧縮機構3に分流した冷媒を主圧縮機構7で合流してから追加圧縮することで、w分をPlからPhまで昇圧するのに必要な動力と回収動力とのずれを吸収していることになる。尚、図3には予膨張弁14が記載されているが、これは上述したように起動時など過渡時に膨張機構2側の圧力をコントロールするためのもので、定常時は全開で入口体積流量と動力の上記マッチングに関わらないようになっている。  That is, the suction volume ratio σvEC * of the expander 1 is fixed, and the recovery power is determined depending on the conditions. On the other hand, the flow rate is matched by dividing the subcompression mechanism 3 and the main compressor 5. Plan. Then, the refrigerant divided into the sub-compression mechanism 3 is merged by the main compression mechanism 7 and then subjected to additional compression, thereby absorbing the shift between the power necessary for boosting w from Pl to Ph and the recovered power. Will be. FIG. 3 shows the pre-expansion valve 14, which is for controlling the pressure on the expansion mechanism 2 side at the time of transition such as start-up as described above. And is not involved in the above power matching.

図4は、図3の冷凍サイクル装置における冷媒の状態量変化を示すモリエル線図である。図4において縦軸(対数)は冷媒圧力P、横軸に比エンタルピhである。
主圧縮機5では冷媒が低圧Plのc1sから高圧Phのc1dまで昇圧される。尚、ここでは冷媒としてCO2を想定しているため圧力Phが臨界圧を超えている。Phまで昇圧された冷媒は放熱器11で冷却されることによって、c1d→exiに変化する。放熱器11出口の冷媒を、膨張弁のように動力を回収しない絞りで減圧した場合には、点exiから比エンタルピ一定で減圧して点exo’に至る。これに対し、膨張機構2で膨張動力を発生しながら減圧した場合には、exi→exoの過程を辿る。この減圧時の比エンタルピの差hexo’−hexoが動力として回収されるエネルギーに相当し、流量w分をサブ圧縮機構3でc2s→c2dまで圧縮するときの動力として利用される。流量w分に関して主圧縮機5に合流後に行なわれる追加圧縮はc2d→c1dで表され、流量(w−1)分の主圧縮機5での圧縮はc1s(=c2s・→c1dで表される。
FIG. 4 is a Mollier diagram showing changes in the state quantity of the refrigerant in the refrigeration cycle apparatus of FIG. In FIG. 4, the vertical axis (logarithm) is the refrigerant pressure P, and the horizontal axis is the specific enthalpy h.
In the main compressor 5, the pressure of the refrigerant is increased from the low pressure Pl c1s to the high pressure Ph c1d. Here, since CO2 is assumed as the refrigerant, the pressure Ph exceeds the critical pressure. The refrigerant whose pressure has been increased to Ph is cooled by the radiator 11, thereby changing from c1d → exi. When the refrigerant at the outlet of the radiator 11 is depressurized with a throttle that does not collect power, such as an expansion valve, the refrigerant is depressurized from the point exi at a specific enthalpy to the point exo ′. On the other hand, when decompression is performed while generating expansion power by the expansion mechanism 2, the process of exo → exo is followed. The specific enthalpy difference hexo'-hexo at the time of decompression corresponds to the energy recovered as power, and is used as power when the sub-compression mechanism 3 compresses the flow rate w from c2s to c2d. The additional compression performed after joining the main compressor 5 with respect to the flow rate w is expressed by c2d → c1d, and the compression in the main compressor 5 for the flow rate (w−1) is expressed by c1s (= c2s · → c1d. .

このとき、(エンタルピ差hc2s−hexo)×(流量1)相当分が冷凍能力である。また、動力回収されたエネルギー(流量w分のエンタルピ差hc2d−hc2s相当分)を除く、(エンタルピ差hc2d−hc1s)×(流量1−w)+(エンタルピ差hc1d−hc2d)・(流量1)相当分の電気入力が主圧縮機5のモーター6で消費される。よって、この比率(冷凍能力/消費電力)が所謂サイクルC.O.P.となる。動力回収を行なわないときのサイクルc1s→c1d→exi→exo"→c1sと比べると、入力の(エンタルピ差hc2d−hc2s)×(流量w)分と冷凍能力の(エンタルピ差hexo’−hexo)・(流量1)分がC.O.P.向上に寄与している。  At this time, (enthalpy difference hc2s-hexo) × (flow rate 1) equivalent is the refrigerating capacity. Further, the energy recovered from the power (the enthalpy difference hc2d−hc2s equivalent to the flow rate w) is excluded, (enthalpy difference hc2d−hc1s) × (flow rate 1−w) + (enthalpy difference hc1d−hc2d) · (flow rate 1) A considerable amount of electrical input is consumed by the motor 6 of the main compressor 5. Therefore, this ratio (refrigeration capacity / power consumption) is the so-called cycle C.I. O. P. It becomes. Compared with the cycle c1s → c1d → exi → exo ”→ c1s without power recovery, the input (enthalpy difference hc2d−hc2s) × (flow rate w) and the refrigeration capacity (enthalpy difference hexo′−hexo). The amount of (flow rate 1) contributes to the improvement of COP.

ここで、揺動スクロール52の両面に作用する圧力と高圧導入孔52eについて説明する。サブ圧縮機構3におけるサブ圧縮過程は図4のモリエル線図でc2s→c2d間、膨張機構2における膨張過程はexi→exo間で行われる。したがって、揺動スクロール52の両面に作用する圧力は、サブ圧縮機構3側からよりも膨張機構2側からの方が大きい。このため、渦巻スペックをサブ圧縮機構3側は外径の大きいものに、膨張機構2側はできるだけ外径を抑えたものにして、オルダムリング77を膨張側渦巻外周部に配置している。しかし、通常、膨張機構2側からサブ圧縮機構3側への軸方向ガス荷重(スラスト)により、サブ圧縮側渦巻歯52cの歯先押付力が過大となる。この発明の膨張機1は、回収する膨張動力以外に駆動源を持たないため、過大な押付力は回収動力の浪費或いは運転不能の原因となる。このため、膨張入口側の高圧(モリエル線図上の点exi)を高圧導入孔52eによりサブ圧縮機構3側の面に導いて、サブ圧縮機構3側へのスラスト(=サブ圧縮側渦巻の歯先押付力)を軽減するようにしている。  Here, the pressure acting on both surfaces of the swing scroll 52 and the high-pressure introduction hole 52e will be described. The sub-compression process in the sub-compression mechanism 3 is performed between c2s → c2d in the Mollier diagram of FIG. 4, and the expansion process in the expansion mechanism 2 is performed between exi → exo. Therefore, the pressure acting on both surfaces of the orbiting scroll 52 is greater from the expansion mechanism 2 side than from the sub compression mechanism 3 side. Therefore, the Oldham ring 77 is arranged on the outer peripheral portion of the expansion side spiral, with the spiral specification having a larger outer diameter on the sub-compression mechanism 3 side and the outer diameter being suppressed on the expansion mechanism 2 side as much as possible. However, normally, the tip pressing force of the sub compression side spiral tooth 52c becomes excessive due to the axial gas load (thrust) from the expansion mechanism 2 side to the sub compression mechanism 3 side. Since the expander 1 of the present invention has no drive source other than the recovered expansion power, an excessive pressing force causes the recovered power to be wasted or cannot be operated. For this reason, the high pressure (point exi on the Mollier diagram) on the expansion inlet side is guided to the surface on the sub compression mechanism 3 side by the high pressure introduction hole 52e, and the thrust toward the sub compression mechanism 3 side (= sub compression side spiral teeth) The first pressing force is reduced.

次に、膨張機への給油経路および油の流れについて説明する。油分離器26には、油分離器26にて分離した油を蒸発器12と主圧縮機5との間の配管へ戻す主油戻し管22aと、油を膨張機1に戻すサブ油戻し管22bとが接続されている。サブ油戻し管22bは一端が油分離器26に、他端が密閉容器4を貫通する給油管37に接続され、油分離器26からの油を給油管37に導いて第2空間4b内に導入させる。  Next, the oil supply path to the expander and the oil flow will be described. The oil separator 26 includes a main oil return pipe 22 a that returns the oil separated by the oil separator 26 to a pipe between the evaporator 12 and the main compressor 5, and a sub oil return pipe that returns the oil to the expander 1. 22b is connected. One end of the sub oil return pipe 22b is connected to the oil separator 26, and the other end is connected to the oil supply pipe 37 penetrating the sealed container 4, and the oil from the oil separator 26 is guided to the oil supply pipe 37 to enter the second space 4b. Let it be introduced.

高圧側に設けられた油分離器26で分離された油は、キャピラリのような抵抗一定の油戻し管で圧縮機の吸入側に戻すのが一般的である。しかし、この実施の形態では、主油戻し管22aに可変絞り27を設け、返油時の抵抗を変更できるようにしている。可変絞り27により、油分離器26から主圧縮機5の吸入側に戻す油量が適正になるように調整される。また、サブ油戻し管22bは一定の抵抗で減圧する管であり、油分離器26で分離された油を一定の抵抗で減圧して膨張機1の第1空間4aに供給する。  The oil separated by the oil separator 26 provided on the high pressure side is generally returned to the suction side of the compressor by an oil return pipe having a constant resistance such as a capillary. However, in this embodiment, the variable throttle 27 is provided in the main oil return pipe 22a so that the resistance during oil return can be changed. The variable throttle 27 adjusts the amount of oil returned from the oil separator 26 to the suction side of the main compressor 5 to be appropriate. The sub oil return pipe 22b is a pipe that depressurizes with a constant resistance, and supplies the oil separated by the oil separator 26 with a constant resistance to the first space 4a of the expander 1.

第1空間4aは、油分離器26からの油が充満して油の圧力雰囲気となっている。一方、第2空間4bは、上述したようにサブ圧縮吸入管19から吸入された冷媒によって吸入圧力雰囲気となっている。第1空間4a内の圧力雰囲気はサブ油戻し管22bの抵抗に依存するものであり、ここでは、油孔78aの一端78bと他端78cとの間に圧力差が生じるようにサブ油戻し管22bの抵抗が設定されている。よって、油孔78aの一端78bと他端78cとの間に生じる圧力差により、第1空間4a内の油が油孔78aの一端78bから吸い込まれ、各軸受給油孔78dから膨張側軸受部51c、サブ圧縮側軸受部61cおよび揺動軸受部52dにそれぞれ差圧給油される。尚、サブ油戻し管22bの抵抗は、油孔78aの一端78bと他端78cの圧力差が、軸78の長さ分の圧力ヘッドとなるように設定されている。  The first space 4a is filled with oil from the oil separator 26 and has an oil pressure atmosphere. On the other hand, the second space 4b is in the suction pressure atmosphere by the refrigerant sucked from the sub compression suction pipe 19 as described above. The pressure atmosphere in the first space 4a depends on the resistance of the sub oil return pipe 22b. Here, the sub oil return pipe has a pressure difference between one end 78b and the other end 78c of the oil hole 78a. A resistance of 22b is set. Therefore, the oil in the first space 4a is sucked in from the one end 78b of the oil hole 78a due to the pressure difference generated between the one end 78b and the other end 78c of the oil hole 78a, and the expansion side bearing portion 51c from each bearing oil supply hole 78d. The sub-compression side bearing portion 61c and the swing bearing portion 52d are respectively supplied with differential pressure. The resistance of the sub oil return pipe 22b is set so that the pressure difference between the one end 78b and the other end 78c of the oil hole 78a becomes a pressure head corresponding to the length of the shaft 78.

膨張側軸受部51c、サブ圧縮側軸受部61cおよび揺動軸受部52dを潤滑した冷媒は、第2空間4bにオーバーフローし、サブ圧縮吸入管19から流入した流量w分の冷媒と共に、サブ圧縮吸入連通路61dを経て揺動スクロール運動空間61eに流入する。揺動スクロール運動空間61eに流入した冷媒は、サブ圧縮機構3によりサブ圧縮され、サブ圧縮吐出管20から主圧縮機構7へ送られる。したがって、揺動スクロール運動空間61eは油リッチな雰囲気となり、この空間内にあるオルダムリング77の爪摺動部にも油が供給される。  The refrigerant that has lubricated the expansion side bearing portion 51c, the sub compression side bearing portion 61c, and the rocking bearing portion 52d overflows into the second space 4b and together with the refrigerant for the flow rate w flowing from the sub compression suction pipe 19, the sub compression suction. It flows into the orbiting scroll motion space 61e through the communication path 61d. The refrigerant that has flowed into the orbiting scroll motion space 61 e is sub-compressed by the sub-compression mechanism 3 and sent from the sub-compression discharge pipe 20 to the main compression mechanism 7. Accordingly, the orbiting scroll motion space 61e has an oil-rich atmosphere, and oil is also supplied to the claw sliding portion of the Oldham ring 77 in this space.

サブ圧縮された冷媒は、主圧縮機構7で追加圧縮された後吐出され、油分離器26に至る。よって、冷媒中の油も油分離器26に戻る。したがって、油分離器26〜サブ油戻し管22b〜第1空間4a〜各軸受部…揺動スクロール運動空間61e〜サブ圧縮機構3〜追加圧縮機構(主圧縮機構7)〜油分離器26という、膨張機1の給油系が構成されている。  The sub-compressed refrigerant is further compressed by the main compression mechanism 7 and then discharged, and reaches the oil separator 26. Therefore, the oil in the refrigerant also returns to the oil separator 26. Therefore, the oil separator 26, the sub oil return pipe 22b, the first space 4a, the bearings, the orbiting scroll motion space 61e, the sub compression mechanism 3, the additional compression mechanism (main compression mechanism 7), and the oil separator 26. An oil supply system of the expander 1 is configured.

膨張機1への給油量は、油分離器26の高圧と蒸発器12出口の低圧との差圧とサブ油戻し管22bの抵抗とによって決まる。したがって、一旦定常状態に入ったら、油分離器26で捕捉される油から膨張機1の給油に用いられる量を除いた分、すなわち主圧縮機5から本来持ち出される油上がり分、を主油戻し管22aから主圧縮機5の吸入側に戻せば良い。主油戻し管22aから主圧縮機5の吸入側に戻す油量の調整は、可変絞り27によって行われる。  The amount of oil supplied to the expander 1 is determined by the differential pressure between the high pressure of the oil separator 26 and the low pressure of the outlet of the evaporator 12 and the resistance of the sub oil return pipe 22b. Therefore, once the steady state is entered, the amount obtained by subtracting the amount used for refueling of the expander 1 from the oil captured by the oil separator 26, that is, the amount of oil that has been originally taken out from the main compressor 5, is returned to the main oil. What is necessary is just to return to the inlet side of the main compressor 5 from the pipe | tube 22a. Adjustment of the amount of oil returned from the main oil return pipe 22 a to the suction side of the main compressor 5 is performed by the variable throttle 27.

以上のように、膨張機1とモーター駆動の主圧縮機5の二ヶ所への給油を、主圧縮機5の吐出側に設けた油分離器26からの返油により行うにあたって、この実施の形態の構成によれば以下の効果を奏する。すなわち、軸78内の油孔78aの一端78bと他端78cとの圧力差により油孔78aおよび軸受給油孔78dを介して各軸受部(膨張側軸受部51c、サブ圧縮側軸受部61cおよび揺動軸受部52d)に差圧給油する構成としたので、主な油貯留部である主圧縮機5の密閉容器内と膨張機1の密閉容器4内の油面を共有するための均油管および均圧管が不要で、また、設置位置の制約が生じない。また、給油ポンプによらない給油が可能である。  As described above, when the oil supply to the two places of the expander 1 and the motor driven main compressor 5 is performed by the oil return from the oil separator 26 provided on the discharge side of the main compressor 5, this embodiment is used. According to the configuration, the following effects can be obtained. That is, due to the pressure difference between the one end 78b and the other end 78c of the oil hole 78a in the shaft 78, each bearing portion (the expansion side bearing portion 51c, the sub compression side bearing portion 61c, and the swinging portion is connected via the oil hole 78a and the bearing oil supply hole 78d. Since the differential pressure oil is supplied to the dynamic bearing portion 52d), the oil leveling pipe for sharing the oil level in the sealed container of the main compressor 5 and the sealed container 4 of the expander 1 which are the main oil reservoirs and There is no need for a pressure equalizing pipe, and there are no restrictions on the installation position. In addition, it is possible to supply oil without using an oil supply pump.

また、油を充満させる第1空間4a内には、軸78の端部が面している以外にバランスウェイト等の運動する部材が存在しない。よって、軸78内の油孔78aから各軸受部や各摺動部への給油を、充満した油を攪拌することによる損失や、油の抵抗による運動阻害等を付随せずに行うことができ、回収効率が高く安定した動作のサブ圧縮機一体型の膨張機を得ることができる。  In addition, in the first space 4a filled with oil, there is no moving member such as a balance weight other than the end of the shaft 78 facing. Therefore, the oil supply from the oil hole 78a in the shaft 78 to each bearing portion and each sliding portion can be performed without accompanying loss due to stirring of the filled oil, movement inhibition due to oil resistance, and the like. Thus, a sub-compressor integrated expander with high recovery efficiency and stable operation can be obtained.

また、サブ圧縮機構3が低圧〜中間圧まで主圧縮機5と並列に圧縮動作を行うことにより、膨張動力回収に伴う流量と動力のマッチングのロスを極小化することができる。  Further, the sub-compression mechanism 3 performs the compression operation in parallel with the main compressor 5 from the low pressure to the intermediate pressure, so that the loss of matching between the flow rate and the power accompanying the recovery of the expansion power can be minimized.

また、圧縮側の主圧縮/サブ圧縮の分流による体積流量の調整を行うようにしたので、膨張側のバイパスや予膨張による体積流量調整を行う冷凍サイクル装置に比べてエネルギー効率を向上することが可能であり、引いては省エネにも寄与できる。  In addition, since the volume flow rate is adjusted by the main compression / sub-compression split on the compression side, energy efficiency can be improved compared to a refrigeration cycle apparatus that performs volume flow adjustment by expansion side bypass or pre-expansion. Yes, it can contribute to energy saving.

また、従来の油面コントロールが必要な冷凍サイクル装置では、延長配管で回路が長大になったりしている場合には、主圧縮機、膨張機以外の容器部分で油が滞留したり油の移動に時間がかかったりすることにより、過渡的に油面のバランスが保持できず、主圧縮機、膨張機どちらかの容器内の潤滑油が不足する可能性がある。これに対し、この実施の形態では、主油戻し管22aに設けた可変絞り27により、油分離器26から主圧縮機5の吸入側に戻す油量が適正になるように調整するため、油を安定して供給できる。よって、油が枯渇することを防止でき、潤滑不足による焼き付きを防止できる。その結果、長寿命化を図ることができる。  In addition, in conventional refrigeration cycle equipment that requires oil level control, if the circuit is long due to the extension piping, oil may stay in the container other than the main compressor and expander, or the oil may move. If it takes a long time, the oil level balance cannot be maintained transiently, and there is a possibility that the lubricating oil in either the main compressor or the expander is insufficient. In contrast, in this embodiment, the variable throttle 27 provided in the main oil return pipe 22a is adjusted so that the amount of oil returned from the oil separator 26 to the suction side of the main compressor 5 is adjusted appropriately. Can be supplied stably. Therefore, it is possible to prevent the oil from being depleted and to prevent seizure due to insufficient lubrication. As a result, the life can be extended.

また、油分離器26で分離された油が、主圧縮機構7と膨張機1の間で回路を経由せずに、直接主圧縮機5又は膨張機1に供給されるので、冷媒中に油が混在することによる熱交換性能の低下を抑制でき、効率の高い冷凍システムが得られる。  Further, since the oil separated by the oil separator 26 is directly supplied to the main compressor 5 or the expander 1 without passing through the circuit between the main compression mechanism 7 and the expander 1, the oil is contained in the refrigerant. Decrease in heat exchange performance due to the presence of the mixture can be suppressed and a highly efficient refrigeration system can be obtained.

また、冷媒としてはCO2 を用いるため、地球環境を破壊すること無く、上記効果を有する冷凍サイクル装置を得ることができる。  Moreover, since CO2 is used as the refrigerant, a refrigeration cycle apparatus having the above-described effects can be obtained without destroying the global environment.

1 膨張機、2 膨張機構、3 サブ圧縮機構、4 密閉容器、4a 第1空間、4b
第2空間、4c 給油孔、4d 吸気孔、5 主圧縮機、6 モーター、7 主圧縮機構、11 放熱器、12 蒸発器、14 予膨張弁、15 膨張吸入管、16 膨張吐出管、19 サブ圧縮吸入管、20 サブ圧縮吐出管、22a 主油戻し管、22b サブ油戻し管、26 油分離器、27 可変絞り、32 吐出弁、33 弁スペース、34 プレート、35 膨張吸入ポート、36 膨張吐出ポート、37 給油管、40 サブ圧縮吐出ポート、51 膨張固定スクロール、51a 台板、51b 渦巻歯、51c 膨張側軸受部、51d 膨張吸入流路、51e 膨張吐出流路、52 揺動スクロール、52a 台板、52b 膨張側渦巻歯、52c サブ圧縮側渦巻歯、52d 揺動軸受部、52e 高圧導入孔、61 サブ圧縮固定スクロール、61a 台板、61b 渦巻歯、61c サブ圧縮側軸受部、61d サブ圧縮吸入連通路、61e 揺動スクロール運動空間、61f サブ圧縮吐出流路、72a 偏心シール、72b 偏心シール、73 同心シール、77 オルダムリング、78 軸、78a 油孔、78b 一端、78c 他端、78d 軸受給油孔、79a バランスウェイト(反揺動偏心側)、79b バランスウェイト(揺動偏心側)、80 配管、81 配管、82 逆止弁。
DESCRIPTION OF SYMBOLS 1 Expander, 2 Expansion mechanism, 3 Sub compression mechanism, 4 Airtight container, 4a 1st space, 4b
2nd space, 4c Oil supply hole, 4d Intake hole, 5 Main compressor, 6 Motor, 7 Main compression mechanism, 11 Radiator, 12 Evaporator, 14 Pre-expansion valve, 15 Expansion suction pipe, 16 Expansion discharge pipe, 19 Sub Compression suction pipe, 20 sub-compression discharge pipe, 22a main oil return pipe, 22b sub oil return pipe, 26 oil separator, 27 variable throttle, 32 discharge valve, 33 valve space, 34 plate, 35 expansion suction port, 36 expansion discharge Port, 37 Oil supply pipe, 40 Sub compression discharge port, 51 Expansion fixed scroll, 51a Base plate, 51b Spiral tooth, 51c Expansion side bearing part, 51d Expansion suction flow path, 51e Expansion discharge flow path, 52 Swing scroll, 52a table Plate, 52b Expansion side spiral tooth, 52c Sub compression side spiral tooth, 52d Oscillating bearing, 52e High pressure introduction hole, 61 Sub compression fixed scroll, 61a Base plate, 61b Spiral tooth 61c Sub-compression side bearing part, 61d Sub-compression suction communication path, 61e Orbiting scroll motion space, 61f Sub-compression discharge flow path, 72a Eccentric seal, 72b Eccentric seal, 73 Concentric seal, 77 Oldham ring, 78 Shaft, 78a Oil hole 78b one end, 78c other end, 78d bearing oil supply hole, 79a balance weight (anti-oscillation eccentric side), 79b balance weight (oscillation eccentric side), 80 piping, 81 piping, 82 check valve.

Claims (3)

冷媒を膨張させて動力を回収する膨張機構と、
前記膨張機構に軸を介して連結され、前記膨張機構で回収された動力により冷媒を圧縮する圧縮機構と、
前記膨張機構と前記圧縮機構とを収容する容器とを備え、
前記容器内は、前記容器を貫通する給油孔を介して油分離器から高圧の油が供給される第1空間と、前記第1空間よりも低圧雰囲気となる第2空間とに分割されると共に、前記第2空間に、前記軸に支持されて前記軸と一体に回転するバランスウェイトを配置し、
前記軸は、前記軸を軸方向に貫通し、一端が前記第1空間に開口し、他端が前記第2空間に開口する給油通路と、前記給油通路から前記軸の半径方向に貫通し、前記膨張機構および前記圧縮機構のそれぞれの前記軸に対する各軸受部に連通する各軸受給油孔とを有し、
前記第1空間内の油が前記給油通路の前記一端から前記軸受給油孔を介して前記各軸受部に差圧給油されることを特徴とする膨張機。
An expansion mechanism for recovering power by expanding the refrigerant;
A compression mechanism coupled to the expansion mechanism via a shaft and compressing the refrigerant by the power recovered by the expansion mechanism;
A container for accommodating the expansion mechanism and the compression mechanism;
The inside of the container is divided into a first space in which high-pressure oil is supplied from an oil separator through an oil supply hole that penetrates the container, and a second space that has a lower pressure atmosphere than the first space. In the second space, a balance weight supported by the shaft and rotating integrally with the shaft is disposed,
The shaft passes through the shaft in the axial direction, one end opens into the first space, the other end opens into the second space, and the shaft extends from the oil supply passage in the radial direction of the shaft. Bearing oil supply holes communicating with the bearing portions for the shafts of the expansion mechanism and the compression mechanism,
The expander according to claim 1, wherein oil in the first space is supplied to each of the bearing portions through the bearing oil supply hole from the one end of the oil supply passage.
冷媒を圧縮する主圧縮機構と、
前記主圧縮機構を通過した冷媒と前記冷媒に含まれている油とを分離する油分離器と、
前記主圧縮機構を通過した冷媒を冷却する放熱器と、
前記放熱器を通過した冷媒を膨張させるための膨張機と、
膨張機により膨張した冷媒を蒸発させるための蒸発器とを備え、
これらが順次配管で接続されて冷媒が循環するように構成され、
前記膨張機を請求項1記載の膨張機構で構成すると共に、前記蒸発器から前記主圧縮機構に向かう冷媒の一部を、前記膨張機の前記圧縮機構に供給して圧縮した後、前記主圧縮機構の圧縮途中に供給するようにし、
前記油分離器にて分離した油を、前記主圧縮機構と前記蒸発器との間の配管に戻す主油戻し管と、前記油分離器にて分離した油を、前記容器の前記給油孔に送るサブ油戻し管とを有することを特徴とする冷凍サイクル装置。
A main compression mechanism for compressing the refrigerant;
An oil separator that separates the refrigerant that has passed through the main compression mechanism and the oil contained in the refrigerant;
A radiator that cools the refrigerant that has passed through the main compression mechanism;
An expander for expanding the refrigerant that has passed through the radiator;
An evaporator for evaporating the refrigerant expanded by the expander,
These are sequentially connected by piping, and the refrigerant is circulated.
The expander is configured by the expansion mechanism according to claim 1, and a part of the refrigerant from the evaporator toward the main compression mechanism is supplied to the compression mechanism of the expander and compressed, and then the main compression Supply it while the mechanism is compressing,
A main oil return pipe that returns oil separated by the oil separator to a pipe between the main compression mechanism and the evaporator, and oil separated by the oil separator is supplied to the oil supply hole of the container. A refrigeration cycle apparatus comprising a sub oil return pipe for feeding.
前記主油戻し管は可変絞りを有することを特徴とする請求項2記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to claim 2, wherein the main oil return pipe has a variable throttle.
JP2012531652A 2010-09-02 2011-03-02 Expander and refrigeration cycle equipment Pending JPWO2012029203A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010196774 2010-09-02
JP2010196774 2010-09-02
PCT/JP2011/001199 WO2012029203A1 (en) 2010-09-02 2011-03-02 Expander and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2012029203A6 JPWO2012029203A6 (en) 2013-10-28
JPWO2012029203A1 true JPWO2012029203A1 (en) 2013-10-28

Family

ID=45772331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012531652A Pending JPWO2012029203A1 (en) 2010-09-02 2011-03-02 Expander and refrigeration cycle equipment

Country Status (2)

Country Link
JP (1) JPWO2012029203A1 (en)
WO (1) WO2012029203A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006387B1 (en) 2013-05-31 2016-02-19 Danfoss Commercial Compressors SPIRAL COMPRESSOR
JP6241605B2 (en) * 2013-12-11 2017-12-06 サンデンホールディングス株式会社 Scroll type fluid machinery
EP3104101A4 (en) * 2014-01-09 2017-10-25 Mitsubishi Electric Corporation Refrigeration cycle device
JP6150907B2 (en) * 2014-01-09 2017-06-21 三菱電機株式会社 Refrigeration cycle equipment
KR102483241B1 (en) * 2016-04-26 2022-12-30 엘지전자 주식회사 Scroll compressor
CN112392558A (en) * 2019-08-13 2021-02-23 江苏国富氢能技术装备有限公司 Turbine expansion device for low-temperature gas liquefaction
CN112392556A (en) * 2019-08-13 2021-02-23 江苏国富氢能技术装备有限公司 Annular turbine expansion system for low-temperature gas liquefaction

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337195A (en) * 1998-05-28 1999-12-10 Mitsubishi Electric Corp Chiller
JP2001141315A (en) * 1999-11-10 2001-05-25 Aisin Seiki Co Ltd Refrigerating air conditioner
JP2007032337A (en) * 2005-07-25 2007-02-08 Kawakami Senpaku Kiki Kk Muffler
JP2007218550A (en) * 2006-02-20 2007-08-30 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2008087958A (en) * 2006-09-08 2008-04-17 Canon System Solutions Inc Information processor, information processing method, program and recording medium
JP2008142822A (en) * 2006-12-08 2008-06-26 Max Co Ltd Gas combustion impact tool
JP2008232012A (en) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd Expander
JP2009019591A (en) * 2007-07-12 2009-01-29 Panasonic Corp Expander-integrated compressor and refrigerating cycle device
JP2009024546A (en) * 2007-07-18 2009-02-05 Mitsubishi Electric Corp Scroll expander
JP2009066416A (en) * 2007-09-14 2009-04-02 Ivoclar Vivadent Ag Raw material constitution
JP2009066410A (en) * 2007-09-12 2009-04-02 Faurecia Sieges D'automobile Motor vehicle seat tilt adjustment mechanism
JP2009270529A (en) * 2008-05-09 2009-11-19 Hitachi Appliances Inc Positive displacement fluid machine
WO2009142023A1 (en) * 2008-05-23 2009-11-26 パナソニック株式会社 Fluid machine and refrigeration cycle device
WO2009142014A1 (en) * 2008-05-22 2009-11-26 パナソニック株式会社 Fluid machine and refrigeration cycle device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337195A (en) * 1998-05-28 1999-12-10 Mitsubishi Electric Corp Chiller
JP2001141315A (en) * 1999-11-10 2001-05-25 Aisin Seiki Co Ltd Refrigerating air conditioner
JP2007032337A (en) * 2005-07-25 2007-02-08 Kawakami Senpaku Kiki Kk Muffler
JP2007218550A (en) * 2006-02-20 2007-08-30 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2008087958A (en) * 2006-09-08 2008-04-17 Canon System Solutions Inc Information processor, information processing method, program and recording medium
JP2008142822A (en) * 2006-12-08 2008-06-26 Max Co Ltd Gas combustion impact tool
JP2008232012A (en) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd Expander
JP2009019591A (en) * 2007-07-12 2009-01-29 Panasonic Corp Expander-integrated compressor and refrigerating cycle device
JP2009024546A (en) * 2007-07-18 2009-02-05 Mitsubishi Electric Corp Scroll expander
JP2009066410A (en) * 2007-09-12 2009-04-02 Faurecia Sieges D'automobile Motor vehicle seat tilt adjustment mechanism
JP2009066416A (en) * 2007-09-14 2009-04-02 Ivoclar Vivadent Ag Raw material constitution
JP2009270529A (en) * 2008-05-09 2009-11-19 Hitachi Appliances Inc Positive displacement fluid machine
WO2009142014A1 (en) * 2008-05-22 2009-11-26 パナソニック株式会社 Fluid machine and refrigeration cycle device
WO2009142023A1 (en) * 2008-05-23 2009-11-26 パナソニック株式会社 Fluid machine and refrigeration cycle device

Also Published As

Publication number Publication date
WO2012029203A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
WO2012029203A1 (en) Expander and refrigeration cycle device
US8109116B2 (en) Dual compressor air conditioning system with oil level regulation
JPWO2012029203A6 (en) Expander and refrigeration cycle equipment
US7438539B2 (en) Hermetic type scroll compressor and refrigerating and air-conditioning apparatus
JP4607221B2 (en) Scroll expander
JP4555231B2 (en) Scroll expander
JP2012177302A (en) Scroll compressor
US9435337B2 (en) Scroll compressor
JP2009024546A (en) Scroll expander
WO2012042698A1 (en) Refrigerating and air conditioning device
CN110914607B (en) Refrigeration cycle device
JP5523629B2 (en) Scroll expander and refrigeration cycle apparatus
JP2009270529A (en) Positive displacement fluid machine
JP5247752B2 (en) Refrigeration cycle equipment
JP2009085189A (en) Displacement type expander, expander-integrated compressor, and refrigeration cycle equipment
JPWO2011083510A1 (en) Refrigeration cycle apparatus and expander mounted thereon
JP2008232012A (en) Expander
WO2012104934A1 (en) Scroll expander, and refrigeration cycle with the scroll expander
JP2006214335A (en) Scroll compressor
JP4929051B2 (en) Hermetic scroll compressor and refrigeration air conditioner
JP2008286040A (en) Expander and refrigerating cycle device using the same
JP2007239575A (en) Refrigerating cycle device
JP2010043556A (en) Expander unit and refrigeration cycle device including the same
JP2005201563A (en) Heat pump system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304