JPWO2012026585A1 - Fluoride crystal, scintillator for radiation detection and radiation detector - Google Patents

Fluoride crystal, scintillator for radiation detection and radiation detector Download PDF

Info

Publication number
JPWO2012026585A1
JPWO2012026585A1 JP2012530740A JP2012530740A JPWO2012026585A1 JP WO2012026585 A1 JPWO2012026585 A1 JP WO2012026585A1 JP 2012530740 A JP2012530740 A JP 2012530740A JP 2012530740 A JP2012530740 A JP 2012530740A JP WO2012026585 A1 JPWO2012026585 A1 JP WO2012026585A1
Authority
JP
Japan
Prior art keywords
scintillator
radiation
crystal
fluoride crystal
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012530740A
Other languages
Japanese (ja)
Inventor
範明 河口
範明 河口
福田 健太郎
健太郎 福田
敏尚 須山
敏尚 須山
吉川 彰
彰 吉川
健之 柳田
健之 柳田
有為 横田
有為 横田
優貴 古谷
優貴 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokuyama Corp
Original Assignee
Tohoku University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tokuyama Corp filed Critical Tohoku University NUC
Publication of JPWO2012026585A1 publication Critical patent/JPWO2012026585A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/06Measuring neutron radiation with scintillation detectors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7756Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing neodynium
    • C09K11/7757Halogenides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/08Downward pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/204Measuring radiation intensity with scintillation detectors the detector being a liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)

Abstract

【課題】 放射線耐性の高い真空紫外受光素子との組み合わせに好適な新しいシンチレーター及びシンチレーターを用いた放射線検出器として、中性子線とγ線の弁別に適用が可能である、Cross−Luminescenceと希土類の電子遷移発光とが共存するフッ化物結晶を提供する。【解決手段】 少なくとも一種類の希土類元素を添加したKLiLuF5からなるフッ化物結晶、該フッ化物結晶からなる放射線検出用シンチレーター及び該シンチレーターを用いることを特徴とする放射線検出器。【選択図】 なしPROBLEM TO BE SOLVED To provide a new scintillator suitable for combination with a radiation-resistant vacuum ultraviolet light receiving element and a radiation detector using the scintillator, which can be applied to discriminate between neutron rays and γ rays, Cross-Luminescence and rare earth electrons Provided is a fluoride crystal in which transition light emission coexists. SOLUTION: A fluoride crystal made of KLiLuF5 to which at least one kind of rare earth element is added, a scintillator for radiation detection made of the fluoride crystal, and a radiation detector using the scintillator. [Selection figure] None

Description

本発明は、新規なフッ化物結晶に関する。該フッ化物結晶はPETによる癌診断やX線CT、中性子検出器に用いられる放射線検出用シンチレーターとして好適に使用できる。   The present invention relates to a novel fluoride crystal. The fluoride crystal can be suitably used as a scintillator for radiation detection used in cancer diagnosis by PET, X-ray CT, or neutron detector.

シンチレーターとは、α線、β線、γ線、X線、中性子線等の放射線が当たった時に当該放射線を吸収して発光する物質のことであり、光電子増倍管などの光検出器と組み合わせることで放射線検出に用いられ、断層撮影などの医療分野、非破壊検査などの工業分野、所持品検査などの保安分野、高エネルギー物理学などの学術分野等の多彩な応用分野を持っている。   A scintillator is a substance that absorbs and emits light when irradiated with radiation such as α-rays, β-rays, γ-rays, X-rays, and neutrons, and is combined with a photodetector such as a photomultiplier tube. It is used for radiation detection and has various application fields such as medical field such as tomography, industrial field such as non-destructive inspection, security field such as personal belongings inspection, and academic field such as high energy physics.

このシンチレーターとしては、放射線の種類や使用目的に応じてさまざまな種類のシンチレーターがあり、BiGe12、GdSiO:Ceなどの無機結晶、アントラセンなどの有機結晶、有機蛍光体を含有させたポリスチレンやポリビニルトルエンなどの高分子体、または液体シンチレーターや気体シンチレーターがある。As this scintillator, there are various types of scintillators depending on the type of radiation and purpose of use, and inorganic crystals such as Bi 4 Ge 3 O 12 and Gd 2 SiO 5 : Ce, organic crystals such as anthracene, and organic phosphors are used. There are polymer bodies such as polystyrene and polyvinyltoluene, liquid scintillators and gas scintillators.

一方で、シンチレーターの発光を検出するための光検出器としては、従来は光電子増倍管やシリコン受光素子など可視光の感度が高いものが主流であったが、近年、ダイヤモンド受光素子やAlGaN受光素子など真空紫外の波長の光に対して感度のある光検出器が開発されている。特に、ダイヤモンド受光素子は高い放射線耐性を持つことから、放射線検出器への応用が期待されているが、現状では、好適なシンチレーターが存在しないため、シンチレーターと光検出器による放射線検出器として実用化されていない。   On the other hand, conventional photo detectors for detecting the light emitted from the scintillator have been highly sensitive to visible light, such as photomultiplier tubes and silicon photo detectors. Recently, however, diamond photo detectors and AlGaN photo detectors have been used. Optical detectors that are sensitive to vacuum ultraviolet light, such as devices, have been developed. In particular, diamond light-receiving elements are expected to be applied to radiation detectors because of their high radiation resistance, but since no suitable scintillator exists at present, they are put to practical use as radiation detectors with scintillators and photodetectors. It has not been.

従ってダイヤモンド受光素子等に使用可能なシンチレーター結晶の開発が求められるが、従来は可視光に感度が高い光検出器が主流であったことから、シンチレーターに関する研究も可視光発光するシンチレーターが対象となるのが主流で、好適な材料の候補は少ない。   Therefore, the development of scintillator crystals that can be used for diamond light-receiving elements, etc. is required. However, since the conventional detectors with high sensitivity to visible light have been the mainstream, research on scintillators is also targeted for scintillators that emit visible light However, there are few candidates for suitable materials.

候補の一例として、希土類の発光を利用する真空紫外発光シンチレーターとしては、Ndを添加したフッ化ランタン結晶が十年以上前から知られているが(非特許文献1)、有効原子番号が低くγ線検出効率が低いなどの理由で実用化されていない。   As an example of a candidate, as a vacuum ultraviolet light emitting scintillator using rare earth light emission, a lanthanum fluoride crystal added with Nd has been known for more than ten years (Non-patent Document 1), but the effective atomic number is low and γ It has not been put into practical use for reasons such as low line detection efficiency.

また、Cross−Luminescenceと呼ばれる内殻準位のエネルギー遷移に付随する発光を利用する結晶としては、KCaF、KMgF、BaFが比較的、高発光強度の真空紫外発光を起こすことが知られている(非特許文献2)。異種元素を添加しないLiKLuF結晶についても報告例がある(非特許文献3)。しかし、この発光機構に特有の現象で、いずれの結晶も中性子線やアルファ線による励起では発光が得られないため、用途は限定される。As crystals that use light emission associated with energy transition of the core level called Cross-Luminescence, it is known that KCaF 3 , KMgF 3 , and BaF 2 cause relatively high emission intensity vacuum ultraviolet light emission. (Non-Patent Document 2). There is also a report example of LiKLuF 5 crystals to which different elements are not added (Non-patent Document 3). However, this is a phenomenon peculiar to this light emission mechanism, and since any crystal cannot emit light when excited by neutron rays or alpha rays, its application is limited.

真空紫外発光材料の報告例が可視光発光材料に比べて少なく、開発が困難である要因としては、真空紫外線は多くの物質に吸収されてしまうため、自己吸収を起こさない物質が限られる点が挙げられる。   There are fewer reported examples of vacuum ultraviolet light emitting materials than visible light emitting materials, and the reason why development is difficult is that vacuum ultraviolet rays are absorbed by many substances, so that substances that do not cause self-absorption are limited. Can be mentioned.

さらに、真空紫外領域における発光特性は材料中の不純物の影響を受けやすく、たとえ真空紫外領域に発光のエネルギー準位を有する材料であっても、より低いエネルギー準位に基づく長波長の発光が支配的であったり、非輻射遷移による損失が甚大であったりする等の理由により、所望の真空紫外発光を得られない場合が多い。したがって、真空紫外領域における発光特性を予め予測することは極めて困難であり、このことが真空紫外発光材料の開発における大きな障壁となっている。   Furthermore, the emission characteristics in the vacuum ultraviolet region are easily affected by impurities in the material, and even if the material has a light emission energy level in the vacuum ultraviolet region, light emission at a longer wavelength based on a lower energy level is dominant. In many cases, the desired vacuum ultraviolet light emission cannot be obtained due to the reason that the loss due to non-radiative transition is significant. Therefore, it is extremely difficult to predict the emission characteristics in the vacuum ultraviolet region in advance, and this is a big barrier in the development of vacuum ultraviolet light emitting materials.

P.SHOTAUS et al.、“DETECTION OF LaF3:Nd3+ SCINTILLATION LIGHT IN A PHOTOSENSITIVE MULTIWIRE CHAMBER” Nuclear Instruments and Methods in Physics Research A272,913−916(1988).P. SHOTAUS et al. , “DETECTION OF LaF3: Nd3 + SCINTILLATION LIGHT IN A PHOTOSENSITIVE MULTIWIRE CHAMBER” Nuclear Instruments and Methods in Physics16, 1987. C.W.E.Van Eijk et al.、“Cross−luminescence” Journal of luminescence 60&61(1994)936−941C. W. E. Van Eijk et al. , “Cross-Luminescence” Journal of Luminescence 60 & 61 (1994) 936-941 N. Yu. Kirikova et al.、“Cross−luminescence of several complex fluorides excited by synchrotron radiation” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,359 Issues 1−2, 1 (1995) 351−353, Proceedings of the 10th National Synchrotron Radiation ConferenceN. Yu. Kirikova et al. , "Cross-luminescence of several complex fluorides excited by synchrotron radiation" Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 359 Issues 1-2, 1 (1995) 351-353, Proceedings of the 10th National Synchrotron Radiation Conference

近年開発された放射線耐性の高い真空紫外受光素子との組み合わせに好適な新しいシンチレーターとして、中性子線とγ線の弁別に適用が可能である、Cross−Luminescenceと希土類の電子遷移発光とが共存するシンチレーター結晶を提供することを目的とする。   As a new scintillator suitable for combination with a radiation-resistant vacuum ultraviolet light receiving element developed in recent years, a scintillator in which Cross-Lumescence and rare earth electron transition emission can coexist, which can be applied to neutron and γ-ray discrimination. The object is to provide crystals.

本発明者等は、真空紫外領域で発光する材料を探索し、種々検討した結果、KLiLuFに希土類元素を含有させたフッ化物結晶をX線で励起した場合に、Cross−Luminescenceの真空紫外発光を維持したまま希土類の電子遷移発光が共存して得られることを見出し、本発明を完成するに至った。The present inventors have searched for materials that emit light in the vacuum ultraviolet region, and as a result of various investigations, when a fluoride crystal containing a rare earth element in KLiLuF 5 is excited by X-rays, cross-luminance vacuum ultraviolet light emission. As a result, it was found that the electron transition emission of rare earth can be obtained in coexistence while maintaining the above, and the present invention has been completed.

即ち、本発明は、希土類元素を含有するKLiLuFのフッ化物結晶及び該フッ化物結晶をシンチレーターとして用いることを特徴とする放射線検出器である。That is, the present invention is a radiation detector characterized by using a fluoride crystal of KLiLuF 5 containing a rare earth element and the fluoride crystal as a scintillator.

本発明は、中性子線やアルファ線による励起では起こらないCross−Luminescenceによる真空紫外発光と、多くの放射線による励起で起こる希土類の電子遷移発光とを有する特徴的な材料を提供する。   The present invention provides a characteristic material having vacuum ultraviolet emission by Cross-Luminescence that does not occur by excitation by neutron rays or alpha rays, and rare earth electron transition emission that occurs by excitation by many radiations.

本発明のフッ化物結晶によれば、ダイヤモンド受光素子やAlGaN受光素子等の真空紫外用の光検出器に対するシンチレーターとして好適に使用できる。また、希土類添加により付与された電子軌道遷移発光により、中性子線やアルファ線による励起でも発光を示すようになり、本発明のフッ化物結晶は励起源により発光スペクトルの形状が異なることになるので、励起源が不明な場合でも励起源の種類を弁別することが可能となる。
The fluoride crystal of the present invention can be suitably used as a scintillator for a vacuum ultraviolet photodetector such as a diamond light receiving element or an AlGaN light receiving element. In addition, due to the electron orbit transition light emission imparted by the addition of rare earth, light emission is exhibited even when excited by neutron rays and alpha rays, and the shape of the emission spectrum of the fluoride crystal of the present invention differs depending on the excitation source. Even when the excitation source is unknown, the type of the excitation source can be discriminated.

本図は、マイクロ引き下げ法による結晶製造装置の概略図である。This figure is a schematic view of an apparatus for producing a crystal by the micro pull-down method. 本図は、X線励起発光スペクトルの測定装置の概略図である。This figure is a schematic diagram of an X-ray excitation emission spectrum measuring apparatus. 本図は、実施例1、比較例1のフッ化物結晶のX線励起発光スペクトルである。This figure is an X-ray excitation emission spectrum of the fluoride crystals of Example 1 and Comparative Example 1. 本図は、実施例2のフッ化物結晶のα線励起発光スペクトルである。This figure is the α-ray excited emission spectrum of the fluoride crystal of Example 2. 本図は、実施例3のフッ化物結晶のα線励起発光スペクトルである。This figure is the α-ray excited emission spectrum of the fluoride crystal of Example 3.

以下、本発明の希土類を含有するKLiLuFからなるフッ化物結晶について説明する。Hereinafter, the fluoride crystal composed of KLiLuF 5 containing the rare earth of the present invention will be described.

本発明のフッ化物結晶は、KLiLuFの一部を希土類元素に置き換えた組成の結晶である。本発明において、希土類元素は、Ce、Eu、Pr、Nd、Er、Tm、Ho、Dy、Tb、Gd、Sm、Yb、La、Y、Pmのことを示す。The fluoride crystal of the present invention is a crystal having a composition in which a part of KLiLuF 5 is replaced with a rare earth element. In the present invention, the rare earth elements are Ce, Eu, Pr, Nd, Er, Tm, Ho, Dy, Tb, Gd, Sm, Yb, La, Y, and Pm.

本発明の結晶は単結晶、多結晶、あるいは結晶粉末のいずれの状態であっても発光を起こすことができるが、単結晶の場合は一般的に光の透過性が高く、大きなサイズの固体サンプルであっても内部からの発光を減衰させずに取り出しやすいため好適である。   The crystal of the present invention can emit light in any state of a single crystal, a polycrystal, or a crystal powder. However, in the case of a single crystal, it is generally high in light transmission and has a large solid sample. However, it is preferable because light emission from the inside is easily taken out without being attenuated.

製造方法は特に限定されないが、チョクラルスキー法やマイクロ引き下げ法に代表される一般的な融液成長法によって製造することができる。   Although the production method is not particularly limited, it can be produced by a general melt growth method represented by the Czochralski method or the micro pull-down method.

マイクロ引き下げ法とは、図1に示すような装置を用いて、坩堝5の底部に設けた穴より原料融液を引き出して結晶を製造する方法である。   The micro pulling-down method is a method for producing a crystal by drawing a raw material melt from a hole provided in the bottom of the crucible 5 using an apparatus as shown in FIG.

以下、マイクロ引き下げ法によって本発明のフッ化物結晶を製造する際の、一般的な方法について説明する。   Hereinafter, a general method for producing the fluoride crystal of the present invention by the micro pull-down method will be described.

まず、所定量の原料を、底部に孔を設けた坩堝5に充填する。坩堝底部に設ける孔の形状は、特に限定されないが、直径が0.5〜4mm、長さが0〜2mmの円柱状とすることが好ましい。   First, a predetermined amount of raw material is filled into a crucible 5 having a hole at the bottom. Although the shape of the hole provided in the crucible bottom is not particularly limited, it is preferably a cylindrical shape having a diameter of 0.5 to 4 mm and a length of 0 to 2 mm.

本発明において原料は特に限定されないが、純度がそれぞれ99.99%以上のKF、LiF、LuF及び希土類フッ化物から選ばれる少なくとも一種の金属フッ化物の粉末を混合した混合原料を用いることが好ましい。このような高純度の混合原料を用いることにより、結晶の純度を高めることができ、発光強度等の特性が向上する。LiFは中性子線に対する検出効率を向上する目的で、Li濃縮原料を用いても良い。混合原料は、混合後に焼結或いは溶融固化させてから用いても良い。中性子線の検出を目的とする場合、原料又は製造後のシンチレーターに含まれる全Li元素に対するLi同位体の元素比率は、50モル%以上であることが好ましく、80モル%以上であることが更に好ましく、90モル%以上であることが特に好ましい。In the present invention, the raw material is not particularly limited, but it is preferable to use a mixed raw material in which powders of at least one metal fluoride selected from KF, LiF, LuF 3 and rare earth fluoride each having a purity of 99.99% or more are mixed. . By using such a high-purity mixed raw material, the purity of the crystal can be increased and characteristics such as emission intensity are improved. LiF for the purpose of improving the detection efficiency for a neutron beam, may be used 6 Li concentrated material. The mixed raw material may be used after being sintered or melted and solidified after mixing. For the purpose of detecting neutron beams, the elemental ratio of 6 Li isotopes to the total Li elements contained in the raw material or the manufactured scintillator is preferably 50 mol% or more, and preferably 80 mol% or more. More preferably, it is particularly preferably 90 mol% or more.

上記混合原料における原料粉末の混合比は、K:Li:Lu:R=x:1:1−y:y(Rは少なくとも一種の希土類元素、xは1〜1.5、yは0.001〜0.5)の原子数の比率で秤量することができる。xはさらに好ましくは1〜1.2であり、特に好ましくは1〜1.1であり、またyはさらに好ましくは0.001〜0.1であり、特に好ましくは0.001〜0.05である。なお、作製した結晶中に含まれる元素比と、原料の混合比は大きくは異ならない。   The mixing ratio of the raw material powder in the mixed raw material is K: Li: Lu: R = x: 1: 1-y: y (R is at least one kind of rare earth element, x is 1 to 1.5, and y is 0.001. Can be weighed at a ratio of the number of atoms of ~ 0.5). x is more preferably 1 to 1.2, particularly preferably 1 to 1.1, and y is further preferably 0.001 to 0.1, and particularly preferably 0.001 to 0.05. It is. In addition, the element ratio contained in the produced crystal and the mixing ratio of the raw materials are not greatly different.

通常の結晶育成条件ではx=1でよいが、融点に比べ著しく高温に加熱するなどした場合は、育成時にそれぞれの原料粉末の揮発量に差が生じることがあるため、揮発しやすい粉末であるKFが多く秤量されるよう、xの値を1よりも高くする必要がある。xの値は通常、1.5以下であるが、長時間高温で焼成するなどして多量にKFが揮発する場合には1.5よりも高くする必要がある。   Under normal crystal growth conditions, x = 1 may be sufficient, but when heated to a remarkably high temperature compared to the melting point, there may be a difference in volatilization amount of each raw material powder at the time of growth. The value of x needs to be higher than 1 so that much KF is weighed. The value of x is usually 1.5 or less, but when KF is volatilized in a large amount by baking at a high temperature for a long time, it is necessary to make it higher than 1.5.

Lu元素と希土類元素の秤量値の合計に対するLi元素の秤量値は上記の通り、通常は等量でよいが、育成条件によってはLiが揮発しやすい場合もあるため、その時はKFと同様に多めに秤量しなければならない。   As described above, the weighed value of Li element relative to the sum of the weighed values of Lu element and rare earth element is usually the same, but depending on the growth conditions, Li may easily volatilize. Must be weighed.

yの値は少なくとも一種の希土類元素の添加量であり、作製した結晶の真空紫外発光特性に影響する。本発明の結晶は、X線で励起した場合、KLiLuFのCross−Luminescenceと呼ばれる内殻準位のエネルギー遷移に付随する発光と、希土類元素の電子軌道遷移に起因する発光の2種類の発光が観察されるが、希土類元素の添加量を増加させることで前者の発光が低減する。2種類の発光を共存させるためにyの値は0.001〜0.5とすることが望ましく、0.001〜0.05とすることが更に望ましい。The value of y is the amount of at least one rare earth element added and affects the vacuum ultraviolet emission characteristics of the produced crystal. When the crystal of the present invention is excited by X-rays, it emits two types of light emission, that is, light emission associated with the energy transition of the core level called Cross-Luminescence of KLiLuF 5 and light emission caused by electron orbital transition of rare earth elements. As observed, the former emission is reduced by increasing the amount of rare earth element added. In order for two types of light emission to coexist, the value of y is preferably 0.001 to 0.5, and more preferably 0.001 to 0.05.

次いで、上記原料を充填した坩堝5、アフターヒーター1、ヒーター2、断熱材3、及びステージ4を図1に示すようにセットする。真空排気装置を用いて、チャンバー6内を1.0×10−3Pa以下まで真空排気した後、高純度アルゴン等の不活性ガスをチャンバー6内に導入してガス置換を行う。ガス置換後のチャンバー内の圧力は特に限定されないが、大気圧が一般的である。Next, the crucible 5 filled with the raw materials, the after heater 1, the heater 2, the heat insulating material 3, and the stage 4 are set as shown in FIG. After evacuating the inside of the chamber 6 to 1.0 × 10 −3 Pa or less using a vacuum evacuation apparatus, an inert gas such as high-purity argon is introduced into the chamber 6 to perform gas replacement. The pressure in the chamber after gas replacement is not particularly limited, but atmospheric pressure is common.

該ガス置換操作によって、原料或いはチャンバー内に付着した水分を除去することができ、かかる水分に由来する結晶の劣化を妨げることができる。上記ガス置換操作によっても除去できない水分による影響を避けるため、フッ化亜鉛等の固体スカベンジャー或いは四フッ化メタン等の気体スカベンジャーを用いることが好ましい。固体スカベンジャーを用いる場合には原料中に予め混合しておく方法が好適であり、気体スカベンジャーを用いる場合には上記不活性ガスに混合してチャンバー内に導入する方法が好適である。   By the gas replacement operation, moisture attached to the raw material or the chamber can be removed, and deterioration of crystals derived from the moisture can be prevented. In order to avoid the influence of moisture that cannot be removed by the gas replacement operation, it is preferable to use a solid scavenger such as zinc fluoride or a gas scavenger such as tetrafluoromethane. When using a solid scavenger, a method of mixing in the raw material in advance is preferable, and when using a gas scavenger, a method of mixing with the above inert gas and introducing it into the chamber is preferable.

ガス置換操作を行った後、高周波コイル7で原料を加熱して溶融せしめ、溶融した原料融液を坩堝底部の孔から引き出して、結晶の育成を開始する。   After performing the gas replacement operation, the raw material is heated and melted by the high-frequency coil 7, and the melted raw material melt is drawn out from the hole at the bottom of the crucible to start crystal growth.

ここで、金属ワイヤーを引き下げロッドの先端に設け、該金属ワイヤーを坩堝底部の孔から坩堝内部に挿入し、該金属ワイヤーに原料融液を付着せしめた後、原料融液を金属ワイヤーと共に引き下げることによって結晶の育成が可能となる。   Here, the metal wire is provided at the tip of the pull-down rod, the metal wire is inserted into the crucible through the hole at the bottom of the crucible, the raw material melt is attached to the metal wire, and then the raw material melt is pulled down together with the metal wire. This makes it possible to grow crystals.

即ち、高周波の出力を調整し、原料の温度を徐々に上げながら、該金属ワイヤーを坩堝底部の孔に挿入し、引き出しを行う。この操作を、原料融液が金属ワイヤーと共に引き出されるまで繰り返して、結晶の育成を開始する。該金属ワイヤーの材質は、原料融液と実質的に反応しない材質であれば制限無く使用できるが、W−Re合金等の高温における耐食性に優れた材質が好適である。   That is, while adjusting the output of the high frequency and gradually raising the temperature of the raw material, the metal wire is inserted into the hole at the bottom of the crucible and pulled out. This operation is repeated until the raw material melt is drawn together with the metal wire, and crystal growth is started. The material of the metal wire can be used without limitation as long as it is a material that does not substantially react with the raw material melt, but a material excellent in corrosion resistance at high temperatures such as a W-Re alloy is preferable.

上記金属ワイヤーによる原料融液の引き出しを行った後、一定の引き下げ速度で連続的に引き下げることにより、結晶を得ることができる。   After pulling out the raw material melt with the metal wire, the crystal can be obtained by continuously pulling it down at a constant pulling rate.

該引き下げ速度は、特に限定されないが、速過ぎると結晶性が悪くなりやすく、遅過ぎると、結晶性は良くなるものの、結晶育成に必要な時間が膨大になってしまうため、0.5〜10mm/hrの範囲とすることが好ましい。   The pulling speed is not particularly limited, but if it is too fast, the crystallinity tends to be poor, and if it is too slow, the crystallinity is improved, but the time required for crystal growth becomes enormous. / Hr is preferable.

本発明のフッ化物結晶の製造において、熱歪に起因する結晶欠陥を除去する目的で、結晶の製造後にアニール操作を行っても良い。   In the production of the fluoride crystal of the present invention, an annealing operation may be performed after the production of the crystal for the purpose of removing crystal defects caused by thermal strain.

得られた結晶は、良好な加工性を有しており、所望の形状に加工して用いることが容易である。加工に際しては、公知のブレードソー、ワイヤーソー等の切断機、研削機、或いは研磨盤を何ら制限無く用いることができる。   The obtained crystal has good workability and can be easily processed into a desired shape. In processing, a known cutting machine such as a blade saw or wire saw, a grinding machine, or a polishing machine can be used without any limitation.

本発明のフッ化物結晶は良好な発光特性を有しており、X線、γ線、β線、α線、中性子線などの放射線によって励起して発光させることが可能である。   The fluoride crystal of the present invention has good light emission characteristics, and can be excited by radiation such as X-rays, γ-rays, β-rays, α-rays, and neutron rays to emit light.

該結晶は所望の形状に加工して、シンチレーターとして放射線検出器に組み込むことができ、ダイヤモンド受光素子やAlGaN受光素子等の真空紫外用の光検出器と組み合わせた放射線検出器として好適に使用できる。   The crystal can be processed into a desired shape and incorporated into a radiation detector as a scintillator, and can be suitably used as a radiation detector combined with a vacuum ultraviolet photodetector such as a diamond light receiving element or an AlGaN light receiving element.

以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

実施例1〜3、比較例1
(フッ化物結晶の製造)
図1に示す結晶製造装置を用いて、実施例1〜3及び比較例1の結晶を製造した。以下、実施例1について作製した方法を詳述するが、実施例2〜3及び比較例1についても表1に示すように各原料の秤量値が異なることを除いて、同様の方法で作製した。
Examples 1-3, Comparative Example 1
(Production of fluoride crystals)
The crystals of Examples 1 to 3 and Comparative Example 1 were manufactured using the crystal manufacturing apparatus shown in FIG. Hereinafter, although the method produced about Example 1 is explained in full detail, it was produced by the same method also about Examples 2-3 and the comparative example 1 except that the measured value of each raw material differs as shown in Table 1. .

原料としては、純度が99.99%のKF、LiF、LuF、NdFを用いた。アフターヒーター1、ヒーター2、断熱材3、ステージ4、及び坩堝5は、高純度カーボン製のものを使用し、坩堝底部に設けた孔の形状は直径2mm、長さ0.5mmの円柱状とした。As raw materials, KF, LiF, LuF 3 and NdF 3 having a purity of 99.99% were used. The after-heater 1, the heater 2, the heat insulating material 3, the stage 4, and the crucible 5 are made of high-purity carbon, and the shape of the hole provided at the bottom of the crucible is 2 mm in diameter and 0.5 mm in length. did.

まず、各原料を表1に示すとおりそれぞれ秤量し、よく混合した後に坩堝5に充填した。   First, each raw material was weighed as shown in Table 1, mixed well, and then charged in the crucible 5.

原料を充填した坩堝5を、アフターヒーター1の上部にセットし、その周囲にヒーター2、及び断熱材3を順次セットした。次いで、油回転ポンプ及び油拡散ポンプからなる真空排気装置を用いて、チャンバー6内を1.0×10−4Paまで真空排気した後、アルゴン90%−四フッ化メタン10%混合ガスをチャンバー6内に導入してガス置換を行った。The crucible 5 filled with the raw material was set on the upper part of the after heater 1, and the heater 2 and the heat insulating material 3 were sequentially set around the crucible. Next, the inside of the chamber 6 is evacuated to 1.0 × 10 −4 Pa using an evacuation apparatus including an oil rotary pump and an oil diffusion pump, and then a 90% argon-tetrafluoromethane 10% mixed gas is added to the chamber. The gas was replaced by introducing the gas into 6.

ガス置換後のチャンバー6内の圧力は大気圧とした後、高周波コイル7で原料を約400度まで加熱したが、原料融液の坩堝5底部の孔からの滲出は認められなかった。そこで、高周波の出力を調整して原料融液の温度を徐々に上げながら、引き下げロッド8の先端に設けたW−Reワイヤーを、上記孔に挿入し、引き下げる操作を繰り返したところ、原料の融液を上記孔より引き出すことができた。   After the gas replacement, the pressure in the chamber 6 was changed to atmospheric pressure, and then the raw material was heated to about 400 ° C. with the high-frequency coil 7, but no leaching of the raw material melt from the bottom of the crucible 5 was observed. Then, while adjusting the high frequency output and gradually raising the temperature of the raw material melt, the W-Re wire provided at the tip of the pull-down rod 8 was inserted into the hole and pulled down repeatedly. The liquid could be drawn out from the hole.

この時点の温度が保たれるように高周波の出力を固定し、原料の融液を引き下げ、結晶化を開始した。6mm/hrの速度で連続的に12時間引き下げ、最終的に直径2mm、長さ約70mmの無色透明の結晶を得た。   The high frequency output was fixed so that the temperature at this time was maintained, the raw material melt was lowered, and crystallization was started. It was continuously pulled down at a speed of 6 mm / hr for 12 hours, and finally a colorless transparent crystal having a diameter of 2 mm and a length of about 70 mm was obtained.

Figure 2012026585
Figure 2012026585

(発光特性の評価)
得られた結晶を、ワイヤーソーによって約10mmの長さに切断し、側面を研削して長さ10mm、幅約2mm、厚さ1mmの形状に加工した後、長さ10mm、幅約2mmの面の両面を鏡面研磨して発光特性測定用の試料を作製した。
(Evaluation of luminous characteristics)
The obtained crystal is cut into a length of about 10 mm with a wire saw, the side surface is ground and processed into a shape having a length of 10 mm, a width of about 2 mm, and a thickness of 1 mm, and then a surface having a length of 10 mm and a width of about 2 mm. Both surfaces were mirror-polished to prepare a sample for measuring the light emission characteristics.

加工した結晶の室温の放射線の一種であるX線の励起による発光特性を、図2に示す測定装置を用いて以下のようにして測定した。   The light emission characteristics of the processed crystal due to the excitation of X-rays, which is a kind of room-temperature radiation, were measured as follows using the measuring apparatus shown in FIG.

測定装置内の所定の位置に本発明の試料9をセットし、装置内部全体を窒素ガスで置換した。励起源であるX線発生器10(RIGAKU SA−HFM3用X線発生装置)からのX線を60kV、35mAの出力で試料9に照射し、試料9からの発光を発光分光器11(分光計器製、KV201型極紫外分光器)で分光した。発光分光器11による分光の波長を130〜210nmの範囲で掃引し、各発光波長における発光強度を光電子増倍管12で記録した。   The sample 9 of the present invention was set at a predetermined position in the measuring apparatus, and the entire interior of the apparatus was replaced with nitrogen gas. The sample 9 is irradiated with X-rays from the X-ray generator 10 (X-ray generator for RIGAKU SA-HFM3), which is an excitation source, at an output of 60 kV and 35 mA, and emission from the sample 9 is emitted into the emission spectrometer 11 (spectrometer instrument). Manufactured by KV201 type extreme ultraviolet spectrometer). The wavelength of the spectrum by the emission spectrometer 11 was swept in the range of 130 to 210 nm, and the emission intensity at each emission wavelength was recorded by the photomultiplier tube 12.

上記測定において、実施例1、比較例1のフッ化物結晶のX線励起発光スペクトルを図3に示した。図3より、実施例1の結晶で、比較例1で確認された波長140〜190nmにかけての発光の他に、新たな波長約190nmの発光を確認した。これらの結果より、本発明の結晶は従来報告されているα線や中性子線では発光させることができないKLiLuFのCross−Luminescenceに加え、希土類元素の電子軌道遷移に起因する発光が共存して得られることがわかり、共存して得られた2種類の発光を生かすことで放射線種の弁別用シンチレーターとして使用することが可能であることがわかった。In the above measurement, the X-ray excited emission spectra of the fluoride crystals of Example 1 and Comparative Example 1 are shown in FIG. From FIG. 3, in addition to the light emission at the wavelength of 140 to 190 nm confirmed in Comparative Example 1 with the crystal of Example 1, light emission at a new wavelength of about 190 nm was confirmed. From these results, in addition to KLiLuF 5 Cross-Lumescence which cannot be emitted by α-rays and neutrons that have been reported in the past, the crystal of the present invention can be obtained by coexisting light emission due to electron orbital transition of rare earth elements. It was found that it can be used as a scintillator for discriminating radiation species by taking advantage of the two types of luminescence obtained together.

実施例1で添加したNd以外の希土類の電子遷移発光が得られることを確認し、その発光波長を調べることを目的として、実施例2〜3のフッ化物結晶について、α線励起による発光スペクトルを測定した。方法としては図2に示す装置を用い、X線を照射せずに、4MBqの放射能のα線源である241Am密封線源を測定サンプルの近傍に設置し、発光スペクトルを取得した。For the purpose of confirming that an electron transition emission of a rare earth other than Nd added in Example 1 is obtained and investigating the emission wavelength, the emission spectrum by α-ray excitation of the fluoride crystals of Examples 2 to 3 is shown. It was measured. As a method, using the apparatus shown in FIG. 2, a 241 Am sealed radiation source, which is a 4 MBq radioactive α-ray source, was installed in the vicinity of the measurement sample without irradiating X-rays, and an emission spectrum was obtained.

結果を図4、5に示す。Tmを添加した実施例2のフッ化物結晶では波長約170nmの真空紫外発光が、Ceを添加した実施例3のフッ化物結晶では波長約350nmの紫外発光が得られていることがわかり、他の希土類を添加した場合にも希土類の電子遷移発光が付与されることがわかる。   The results are shown in FIGS. It can be seen that the fluoride crystal of Example 2 to which Tm was added obtained vacuum ultraviolet light emission at a wavelength of about 170 nm, and the fluoride crystal of Example 3 to which Ce was added obtained ultraviolet light emission at a wavelength of about 350 nm. It can be seen that even when rare earth is added, electron transition emission of rare earth is imparted.

また、放射線検出器とする場合、実施例1、2のフッ化物結晶を用いる場合は真空紫外受光素子単体で発光を読み出すことが想定され、KLiLuFのCross−Luminescenceと希土類の電子軌道遷移発光の蛍光寿命曲線の違いから放射線種の違いを弁別しても良い。実施例3のフッ化物結晶を用いる場合は、可視光用の光検出器も併用することで、2種類の光検出器の検出信号の違いから放射線種を弁別することが可能である。それぞれの構成の放射線検出器は、光検出器の技術面やコスト面などを鑑みて、どちらの構成が優位かは場合によるが、このように添加する希土類を選択することで、本発明のフッ化物結晶は異なる構成の放射線検出器に適用可能な放射線検出用シンチレーター材料を提供できる。In addition, when using the fluoride crystals of Examples 1 and 2 when the radiation detector is used, it is assumed that light emission is read out by a single vacuum ultraviolet light receiving element, and KLiLuF 5 Cross-Luminescence and rare earth electron orbit transition light emission. You may distinguish the difference in a radiation type from the difference in a fluorescence lifetime curve. In the case of using the fluoride crystal of Example 3, it is possible to discriminate radiation types from the difference in detection signals of the two types of photodetectors by using a photodetector for visible light in combination. Depending on the configuration of the radiation detector of each configuration, the configuration of the present invention can be selected by selecting the rare earth to be added in this case, depending on the technical aspect and cost of the photodetector. The compound crystal can provide a scintillator material for radiation detection applicable to radiation detectors of different configurations.

1 アフターヒーター
2 ヒーター
3 断熱材
4 ステージ
5 坩堝
6 チャンバー
7 高周波コイル
8 引き下げロッド
9 試料
10 X線発生器
11 発光分光器
12 光電子増倍管
DESCRIPTION OF SYMBOLS 1 After heater 2 Heater 3 Heat insulation material 4 Stage 5 Crucible 6 Chamber 7 High frequency coil 8 Pulling rod 9 Sample 10 X-ray generator 11 Emission spectrometer 12 Photomultiplier tube

Claims (4)

少なくとも一種類の希土類元素を含有するKLiLuFからなるフッ化物結晶。A fluoride crystal composed of KLiLuF 5 containing at least one kind of rare earth element. 前記希土類元素は、Nd、Tm及びCeのうちのいずれかであることを特徴とする請求項1に記載のフッ化物結晶。 The fluoride crystal according to claim 1, wherein the rare earth element is any one of Nd, Tm, and Ce. 請求項1又は請求項2記載のフッ化物結晶からなることを特徴とする放射線検出用シンチレーター。 A scintillator for radiation detection, comprising the fluoride crystal according to claim 1. 請求項3記載のシンチレーターを備えたことを特徴とする放射線検出器。 A radiation detector comprising the scintillator according to claim 3.
JP2012530740A 2010-08-27 2011-08-26 Fluoride crystal, scintillator for radiation detection and radiation detector Pending JPWO2012026585A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010191462 2010-08-27
JP2010191462 2010-08-27
PCT/JP2011/069301 WO2012026585A1 (en) 2010-08-27 2011-08-26 Fluoride crystal, scintillator for detection of radioactive ray, and radioactive ray detector

Publications (1)

Publication Number Publication Date
JPWO2012026585A1 true JPWO2012026585A1 (en) 2013-10-28

Family

ID=45723574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012530740A Pending JPWO2012026585A1 (en) 2010-08-27 2011-08-26 Fluoride crystal, scintillator for radiation detection and radiation detector

Country Status (2)

Country Link
JP (1) JPWO2012026585A1 (en)
WO (1) WO2012026585A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028591A1 (en) * 2003-09-24 2005-03-31 Kabushiki Kaisha Toshiba Ceramic scintillator, and radiation detector and radiographic examination apparatus using same
WO2006049284A1 (en) * 2004-11-08 2006-05-11 Tohoku Techno Arch Co., Ltd. Pr-CONTAINING SINGLE CRYSTAL FOR SCINTILLATOR, PROCESS FOR PRODUCING THE SAME, RADIATION DETECTOR AND INSPECTION APPARATUS
JP2010181373A (en) * 2009-02-09 2010-08-19 Tokuyama Corp Apparatus and method of detecting radiation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028591A1 (en) * 2003-09-24 2005-03-31 Kabushiki Kaisha Toshiba Ceramic scintillator, and radiation detector and radiographic examination apparatus using same
WO2006049284A1 (en) * 2004-11-08 2006-05-11 Tohoku Techno Arch Co., Ltd. Pr-CONTAINING SINGLE CRYSTAL FOR SCINTILLATOR, PROCESS FOR PRODUCING THE SAME, RADIATION DETECTOR AND INSPECTION APPARATUS
JP2010181373A (en) * 2009-02-09 2010-08-19 Tokuyama Corp Apparatus and method of detecting radiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015034971; N. Yu Kirikova: 'Cross-luminescence of several complex fluorides excited by synchrotron radiation' Nuclear Instruments and Methods in Physics Research Section A Vol. 359,, 1995, pp. 351-353 *

Also Published As

Publication number Publication date
WO2012026585A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5378356B2 (en) Neutron detection scintillator and neutron detector
JP5389328B2 (en) Single crystal for scintillator containing Pr, its manufacturing method, radiation detector and inspection apparatus
Pidol et al. Scintillation properties of Lu2Si2O7: Ce3+, a fast and efficient scintillator crystal
JP5103879B2 (en) Scintillator crystals and radiation detectors
Wilson et al. Strontium iodide scintillators for high energy resolution gamma ray spectroscopy
WO2012137738A1 (en) Scintillator, radiation detector, and method for detecting radiation
JP5575123B2 (en) Scintillator
JP5868329B2 (en) Neutron scintillator
JP2017066245A (en) Scintillator crystal material, single crystal scintillator, radiation detector, imaging apparatus and nondestructive inspection apparatus
JP2010285559A (en) Crystal for scintillator, and radiation detector
Fawad et al. Czochralski growth and scintillation properties of Li6LuxY1− x (BO3) 3: Ce3+ single crystals
WO2012026585A1 (en) Fluoride crystal, scintillator for detection of radioactive ray, and radioactive ray detector
JP5393266B2 (en) Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator
JP5905956B2 (en) Metal fluoride crystal, light emitting device, scintillator, neutron detection method, and metal fluoride crystal manufacturing method
JP5737978B2 (en) Neutron detection scintillator and neutron beam detector
JP5737974B2 (en) Neutron detection scintillator and neutron beam detector
JP5611239B2 (en) Metal fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP5317952B2 (en) Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
WO2012026584A1 (en) Neutron-detecting scintillator and neutron ray detector
JP2011184206A (en) Fluoride crystal, vacuum ultraviolet light emitting element, and vacuum ultraviolet light emitting scintillator
Pejchal et al. Luminescence and Scintillation Properties of Scintillators Based on Orthorhombic and Monoclinic BaLu $ _ {2} $ F $ _ {8} $ Single Crystals
JP2011190393A (en) Vacuum ultraviolet (uv) light-emitting element and scintillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105