JPWO2011158305A1 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JPWO2011158305A1
JPWO2011158305A1 JP2012520171A JP2012520171A JPWO2011158305A1 JP WO2011158305 A1 JPWO2011158305 A1 JP WO2011158305A1 JP 2012520171 A JP2012520171 A JP 2012520171A JP 2012520171 A JP2012520171 A JP 2012520171A JP WO2011158305 A1 JPWO2011158305 A1 JP WO2011158305A1
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration
heat exchanger
unit
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012520171A
Other languages
Japanese (ja)
Inventor
久保田 剛
剛 久保田
博文 ▲高▼下
博文 ▲高▼下
幸志 東
幸志 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2011158305A1 publication Critical patent/JPWO2011158305A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

冷房負荷や暖房負荷等の空調負荷と冷蔵・冷凍負荷を同時に処理でき、年間を通して安定した熱源を供給可能にした冷凍空調装置を提供する。冷凍空調装置100は、一次側冷媒に貯えられた温熱又は冷熱を、室内熱交換器118を介して空調負荷として利用可能にしつつ、一次側冷媒に貯えられた冷熱を、第1冷媒−冷媒熱交換器131を介して冷蔵・冷凍用冷凍サイクル2を循環する二次側冷媒に伝達することで冷蔵・冷凍負荷として利用可能にしている。A refrigeration and air conditioning system that can handle air conditioning loads such as cooling and heating loads and refrigeration / refrigeration loads at the same time, and that can supply a stable heat source throughout the year. The refrigerating and air-conditioning apparatus 100 uses the heat or cold stored in the primary-side refrigerant as an air-conditioning load via the indoor heat exchanger 118, while the cold stored in the primary-side refrigerant is used as the first refrigerant-refrigerant heat. By transmitting to the secondary refrigerant circulating through the refrigeration / refrigeration refrigeration cycle 2 via the exchanger 131, it can be used as a refrigeration / refrigeration load.

Description

本発明は、ヒートポンプサイクルを搭載し、空気調和装置と冷凍装置とを一体化した冷凍空調装置に関し、特に年間を通しての熱源の安定供給を図るようにした冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner that includes a heat pump cycle and integrates an air conditioner and a refrigeration apparatus, and particularly relates to a refrigeration air conditioner that can stably supply a heat source throughout the year.

従来から、カスケード熱交換器を用いて空調装置と冷凍装置とを一体化し、二元の冷凍サイクルによって、冷房負荷、暖房負荷、給湯負荷を同時に提供する冷凍空調装置が提案されている。   Conventionally, a refrigerating and air-conditioning apparatus that integrates an air-conditioning apparatus and a refrigeration apparatus using a cascade heat exchanger and simultaneously provides a cooling load, a heating load, and a hot water supply load by a two-way refrigeration cycle has been proposed.

そのようなものとして、「空調用圧縮機、熱源側熱交換器及び利用側熱交換器を備えて当該利用側熱交換器により被空調室の空気調和を行う空調系統部と、冷却用圧縮機、凝縮器及び蒸発器を備えて当該蒸発器により被空調室に配置される冷却貯蔵設備の冷却を行う冷却系統部と、空調系統部の低圧側の空調用冷媒と冷凍系統部の高圧側の冷却用冷媒とが供給されて、空調用冷媒により冷却用冷媒を過冷却させるカスケード熱交換器とを備えた空調冷凍装置において、前記空調系統部に運転/停止を含む各種指示を与える遠隔操作手段を備え、前記冷却系統部の冷却用圧縮機が運転された場合に、この遠隔操作手段による指示のうち、少なくとも、運転/停止以外の指示を禁止する禁止手段を備えた空調冷凍装置」が提案されている(たとえば、特許文献1参照)。   As such, “an air conditioning system unit that includes an air conditioning compressor, a heat source side heat exchanger, and a use side heat exchanger and performs air conditioning of the air-conditioned room by the use side heat exchanger, and a cooling compressor. A cooling system unit including a condenser and an evaporator for cooling a cooling storage facility disposed in the air-conditioned room, a low-pressure side air-conditioning refrigerant of the air-conditioning system unit, and a high-pressure side of the refrigeration system unit Remote control means for supplying various instructions including operation / stop to the air conditioning system unit in an air conditioning refrigeration apparatus provided with a cascade heat exchanger that is supplied with a cooling refrigerant and supercools the cooling refrigerant with the air conditioning refrigerant Air conditioning refrigeration apparatus comprising a prohibiting means for prohibiting at least instructions other than operation / stop among the instructions by the remote operation means when the cooling compressor of the cooling system section is operated. Has been (even if , See Patent Document 1).

また、「圧縮機と熱源側熱交換器と減圧装置と利用側熱交換器からなる空調用冷媒回路と、圧縮機と凝縮器と減圧装置と蒸発器からなる冷却貯蔵設備用冷媒回路と、前記空調用冷媒回路の低圧側と前記冷却貯蔵設備用冷媒回路の高圧側とを熱交換させるカスケード熱交換器及び過冷却用熱交換器とを備え、前記空調用冷媒回路の暖房運転時に、前記冷却貯蔵設備用冷媒回路の高圧側冷媒を前記カスケード熱交換器、前記凝縮器を介して過冷却用熱交換器に流す冷凍システム」が提案されている(たとえば、特許文献2参照)。   Further, “a refrigerant circuit for air conditioning composed of a compressor, a heat source side heat exchanger, a decompression device, and a use side heat exchanger, a refrigerant circuit for a cooling storage facility composed of a compressor, a condenser, a decompression device, and an evaporator, A cascade heat exchanger and a supercooling heat exchanger for exchanging heat between the low pressure side of the air conditioning refrigerant circuit and the high pressure side of the cooling storage facility refrigerant circuit, and the cooling during the heating operation of the air conditioning refrigerant circuit There has been proposed a “refrigeration system” in which the high-pressure side refrigerant in the refrigerant circuit for storage facilities is passed through the cascade heat exchanger and the condenser to the supercooling heat exchanger (see, for example, Patent Document 2).

特開2005−249241号公報(第4−5頁、図1等)Japanese Patent Laying-Open No. 2005-249241 (page 4-5, FIG. 1 etc.) 特開2007−100986号公報(第4−5頁、図1等)JP 2007-100706 (page 4-5, FIG. 1 etc.)

しかしながら、上記特許文献1や特許文献2に記載されているような冷凍空調装置では、空調回路と冷蔵・冷凍回路の圧縮機等の大部分が一つの熱源機ユニットとして構成されており、空調負荷と冷蔵・冷凍負荷の割合の違いによって熱源機ユニットを選定することができなかった。また、熱源機ユニットからすべての負荷側ユニットに配管を接続する必要があるため、使用配管量の増加や冷媒量の増加につながり、据付費用が増大してしまっていた。   However, in the refrigerating and air-conditioning apparatuses described in Patent Document 1 and Patent Document 2, most of the air-conditioning circuit and the compressor of the refrigeration / refrigeration circuit are configured as one heat source unit, and the air-conditioning load The heat source unit could not be selected due to the difference in the ratio of refrigeration / refrigeration load. In addition, since it is necessary to connect piping from the heat source unit to all load-side units, this leads to an increase in the amount of piping used and an increase in the amount of refrigerant, which increases installation costs.

本発明は、上記の問題を解決するためになされたもので、冷房負荷や暖房負荷等の空調負荷と冷蔵・冷凍負荷を同時に処理でき、年間を通して安定した熱源を供給可能にした冷凍空調装置を提供することを目的としている。   The present invention has been made to solve the above problems, and is a refrigeration air conditioner capable of simultaneously processing an air conditioning load such as a cooling load and a heating load and a refrigeration / refrigeration load and capable of supplying a stable heat source throughout the year. It is intended to provide.

本発明に係る冷凍空調装置は、空調用圧縮機、熱源側熱交換器、第1絞り手段、及び、利用側熱交換器が直列に接続されているとともに、前記空調用圧縮機、前記熱源側熱交換器、第2絞り手段、及び、第1冷媒−冷媒熱交換器の一次側が直列に接続され、一次側冷媒を循環させる空調用冷凍サイクルと、冷凍用圧縮機、前記第1冷媒−冷媒熱交換器の二次側、第3絞り手段、及び、冷凍用熱交換器が直列に接続され、二次側冷媒を循環させる冷蔵・冷凍用冷凍サイクルと、を有し、前記一次側冷媒に貯えられた温熱又は冷熱を、前記利用側熱交換器を介して空調負荷として利用可能にしつつ、前記一次側冷媒に貯えられた冷熱を、前記二次側冷媒に伝達することで冷蔵・冷凍負荷として利用可能にしていることを特徴とする。   In the refrigeration air conditioner according to the present invention, an air conditioning compressor, a heat source side heat exchanger, a first throttle means, and a use side heat exchanger are connected in series, and the air conditioning compressor, the heat source side The primary side of the heat exchanger, the second throttle means, and the first refrigerant-refrigerant heat exchanger are connected in series, and the air-conditioning refrigeration cycle for circulating the primary side refrigerant, the refrigeration compressor, and the first refrigerant-refrigerant A refrigerating / refrigerating refrigeration cycle in which a secondary side of the heat exchanger, a third throttling means, and a refrigeration heat exchanger are connected in series to circulate the secondary side refrigerant, and the primary side refrigerant Refrigeration / refrigeration load by transmitting the cold heat stored in the primary side refrigerant to the secondary side refrigerant while making the stored hot or cold heat available as an air conditioning load via the use side heat exchanger It is possible to use as.

本発明に係る冷凍空調装置によれば、空調負荷、冷蔵・冷凍負荷を同時に処理することが可能となり、年間を通して安定した熱源を供給することができる。   According to the refrigerating and air-conditioning apparatus according to the present invention, it is possible to simultaneously process an air-conditioning load and a refrigeration / refrigeration load, and a stable heat source can be supplied throughout the year.

本発明の実施の形態1に係る冷凍空調装置の冷媒回路構成の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerant circuit structure of the refrigerating air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍空調装置の冷房主体運転時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the cooling main operation | movement of the refrigerating and air-conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍空調装置の冷媒回路構成の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerant circuit structure of the refrigeration air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍空調装置の冷媒回路構成の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerant circuit structure of the refrigeration air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍空調装置の冷媒回路構成の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerant circuit structure of the refrigeration air conditioning apparatus which concerns on Embodiment 4 of this invention.

以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る冷凍空調装置100の冷媒回路構成の一例を示す冷媒回路図である。図1に基づいて、冷暖同時運転で熱を回収するタイプの冷凍空調装置100の冷媒回路構成及び動作について説明する。この冷凍空調装置100は、ビルやマンション、ホテル等に設置され、冷媒を循環させる冷凍サイクルを利用することで空調負荷及び冷蔵・冷凍負荷を同時に供給できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1では、冷凍空調装置100が実行する暖房主体運転時における冷媒の流れを示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the refrigerant circuit configuration and operation of a refrigerating and air-conditioning apparatus 100 of a type that recovers heat by simultaneous cooling and heating operation will be described. This refrigeration air conditioner 100 is installed in a building, condominium, hotel or the like, and can supply an air conditioning load and a refrigeration / refrigeration load at the same time by using a refrigeration cycle for circulating a refrigerant. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Moreover, in FIG. 1, the flow of the refrigerant | coolant at the time of the heating main operation | movement which the refrigeration air conditioning apparatus 100 performs is shown.

実施の形態1に係る冷凍空調装置100は、空調用冷凍サイクル1と、冷蔵・冷凍用冷凍サイクル2と、を少なくとも有している。空調用冷凍サイクル1と冷蔵・冷凍用冷凍サイクル2とは、冷媒−冷媒熱交換器131で互いの冷媒が混ざることなく熱交換を行なうように構成されている。なお、空調用冷凍サイクル1を循環する冷媒を一次側冷媒と、冷蔵・冷凍用冷凍サイクル2を循環する冷媒を二次側冷媒と、それぞれ称する。なお、冷蔵・冷凍の表記は、冷蔵及び/又は冷凍のことを称している。   The refrigerating and air-conditioning apparatus 100 according to Embodiment 1 includes at least an air-conditioning refrigeration cycle 1 and a refrigeration / refrigeration refrigeration cycle 2. The air-conditioning refrigeration cycle 1 and the refrigeration / refrigeration refrigeration cycle 2 are configured to perform heat exchange in the refrigerant-refrigerant heat exchanger 131 without mixing the refrigerants. In addition, the refrigerant | coolant which circulates through the refrigerating cycle 1 for air-conditioning is called a primary side refrigerant | coolant, and the refrigerant | coolant which circulates through the refrigerating cycle 2 for refrigeration / refrigeration is called a secondary side refrigerant | coolant, respectively. Note that the notation of refrigeration / freezing refers to refrigeration and / or freezing.

[空調用冷凍サイクル1]
空調用冷凍サイクル1は、熱源機Aと、たとえば冷房負荷を担当する室内機B(以下、冷房室内機Bと称する)と、たとえば暖房負荷を担当する室内機C(以下、暖房室内機Cと称する)と、冷蔵・冷凍用冷凍サイクル2の熱源となる冷蔵・冷凍用ブースターユニットD(詳しくは冷媒−冷媒熱交換器131の一次側)と、中継機Eと、によって構成されている。なお、室内機Bを冷房室内機として、室内機Cを暖房室内機として、説明するが、これらは室内機B、室内機Cの機能の一例であって、室内機Bが暖房負荷を担当してもよく、室内機Cが冷房負荷を担当してもよい。また、単に室内機と称する場合には、室内機B及び室内機Cの双方を示している。
[Refrigeration cycle 1 for air conditioning]
The refrigeration cycle 1 for air conditioning includes a heat source unit A, an indoor unit B in charge of a cooling load (hereinafter referred to as a cooling indoor unit B), and an indoor unit C in charge of a heating load (hereinafter referred to as a heating indoor unit C). And a refrigeration / refrigeration booster unit D (specifically, the primary side of the refrigerant-refrigerant heat exchanger 131) and a relay E, which are heat sources for the refrigeration / refrigeration refrigeration cycle 2. The indoor unit B will be described as a cooling indoor unit, and the indoor unit C will be described as a heating indoor unit. These are examples of the functions of the indoor unit B and the indoor unit C, and the indoor unit B is in charge of the heating load. The indoor unit C may be responsible for the cooling load. In addition, when simply referred to as an indoor unit, both the indoor unit B and the indoor unit C are shown.

図1に示すように、冷房室内機B、暖房室内機C及び冷蔵・冷凍用ブースターユニットDの空調用冷凍サイクル1側は、中継機Eを介して熱源機Aに対して並列となるように接続されている。この中継機Eが、熱源機Aと、冷房室内機B、暖房室内機C及び冷蔵・冷凍用ブースターユニットDの空調用冷凍サイクル1側と、の間に設置され、一次側冷媒の流れを切り換えることで、冷房室内機B、暖房室内機C及び冷蔵・冷凍用ブースターユニットDとしての機能を発揮させるようになっている。なお、冷蔵・冷凍用ブースターユニットDの空調用冷凍サイクル1側を冷蔵・冷凍用ブースターユニットDの一次側と、冷蔵・冷凍用冷凍サイクル2側を冷蔵・冷凍用ブースターユニットDの二次側と、それぞれ称する。   As shown in FIG. 1, the air conditioning refrigeration cycle 1 side of the cooling indoor unit B, the heating indoor unit C, and the refrigeration / freezing booster unit D is arranged in parallel to the heat source unit A via the relay unit E. It is connected. This relay unit E is installed between the heat source unit A, the cooling indoor unit B, the heating indoor unit C, and the air conditioning refrigeration cycle 1 side of the refrigeration / freezing booster unit D, and switches the flow of the primary refrigerant. Thus, the functions as the cooling indoor unit B, the heating indoor unit C, and the refrigeration / freezing booster unit D are exhibited. Note that the refrigeration / freezing booster unit D is connected to the primary side of the refrigeration / freezing booster unit D and the refrigeration / refrigeration booster unit 2 is connected to the secondary side of the refrigeration / refrigeration booster unit D. , Respectively.

{熱源機A}
熱源機Aは、中継機Eを介して、冷房室内機B、暖房室内機C及び冷蔵・冷凍用ブースターユニットDの一次側に温熱又は冷熱を供給する機能を有している。この熱源機Aには、空調用圧縮機101と、流路切替手段である四方弁102と、室外熱交換器(熱源側熱交換器)103と、アキュムレーター104とが直列に配管接続されて搭載されている。なお、熱源機Aには、室外熱交換器103に空気を供給するためのファン等の送風機を室外熱交換器103の近傍位置に設けるとよい。
{Heat source machine A}
The heat source unit A has a function of supplying hot or cold heat to the primary side of the cooling indoor unit B, the heating indoor unit C, and the refrigeration / freezing booster unit D via the relay unit E. In this heat source machine A, an air conditioning compressor 101, a four-way valve 102 as a flow path switching means, an outdoor heat exchanger (heat source side heat exchanger) 103, and an accumulator 104 are connected in series by piping. It is installed. The heat source unit A may be provided with a blower such as a fan for supplying air to the outdoor heat exchanger 103 in the vicinity of the outdoor heat exchanger 103.

空調用圧縮機101は、一次側冷媒を吸入し、その一次側冷媒を圧縮して高温・高圧の状態にするものである。四方弁102は、一次側冷媒の流れを切り替えるものである。室外熱交換器103は、蒸発器や放熱器(凝縮器)として機能し、図示省略の送風機から供給される空気と一次側冷媒との間で熱交換を行ない、一次側冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレーター104は、空調用圧縮機101の吸入側に配置され、過剰な一次側冷媒を貯留するものである。なお、アキュムレーター104は、過剰な一次側冷媒を貯留できる容器であればよい。   The air-conditioning compressor 101 sucks the primary side refrigerant and compresses the primary side refrigerant to bring it into a high temperature / high pressure state. The four-way valve 102 switches the flow of the primary side refrigerant. The outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the primary refrigerant, and converts the primary refrigerant into evaporated gas or Condensed liquid. The accumulator 104 is disposed on the suction side of the air-conditioning compressor 101 and stores excess primary refrigerant. In addition, the accumulator 104 should just be a container which can store an excess primary side refrigerant | coolant.

また、熱源機Aには、室外熱交換器103と中継機Eとの間における高圧側接続配管106に所定の方向(熱源機Aから中継機Eへの方向)のみに一次側冷媒の流れを許容する逆止弁105aが、四方弁102と中継機Eとの間における低圧側接続配管107に所定の方向(中継機Eから熱源機Aへの方向)のみに一次側冷媒の流れを許容する逆止弁105bが、設けられている。   In addition, in the heat source unit A, the flow of the primary side refrigerant is allowed to flow only in a predetermined direction (direction from the heat source unit A to the relay unit E) in the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E. The permissible check valve 105a permits the flow of the primary side refrigerant only in a predetermined direction (direction from the relay E to the heat source unit A) to the low-pressure side connection pipe 107 between the four-way valve 102 and the relay E. A check valve 105b is provided.

高圧側接続配管106と低圧側接続配管107とは、逆止弁105aの下流側と逆止弁105bの下流側を接続する第1接続配管10と、逆止弁105aの上流側と逆止弁105bの上流側を接続する第2接続配管11とで接続されている。第1接続配管10には、低圧側接続配管107から高圧側接続配管106の方向のみに一次側冷媒の流通を許容する逆止弁105cが設けられている。第2接続配管11にも、低圧側接続配管107から高圧側接続配管106の方向のみに一次側冷媒の流通を許容する逆止弁105dが設けられている。   The high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are a first connection pipe 10 that connects the downstream side of the check valve 105a and the downstream side of the check valve 105b, and the upstream side of the check valve 105a and the check valve. The second connection pipe 11 connecting the upstream side of 105b is connected. The first connection pipe 10 is provided with a check valve 105 c that allows the flow of the primary-side refrigerant only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106. The second connection pipe 11 is also provided with a check valve 105 d that allows the flow of the primary-side refrigerant only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.

[室内機]
室内機は、熱源機Aからの冷熱又は温熱の供給を受けて冷房負荷又は暖房負荷を担当する機能を有している。室内機には、空調用絞り手段117と、室内熱交換器(利用側熱交換器)118とが、直列に接続されて搭載されている。なお、図1では、冷房室内機Bが2台、暖房室内機Cが2台、接続されている状態を例に示している。また、室内機には、室内熱交換器118に空気を供給するためのファン等の送風機を室内熱交換器118の近傍に設けるとよい。また、便宜的に、中継機Eから室内熱交換器118に接続している配管を接続配管12と、中継機Eから空調用絞り手段117に接続している配管を接続配管13と称する。
[Indoor unit]
The indoor unit has a function of receiving cooling or heating supply from the heat source unit A and taking charge of cooling load or heating load. In the indoor unit, an air conditioning throttle means 117 and an indoor heat exchanger (use side heat exchanger) 118 are mounted connected in series. FIG. 1 shows an example in which two cooling indoor units B and two heating indoor units C are connected. The indoor unit may be provided with a blower such as a fan for supplying air to the indoor heat exchanger 118 in the vicinity of the indoor heat exchanger 118. For convenience, the pipe connected from the relay E to the indoor heat exchanger 118 is referred to as a connection pipe 12 and the pipe connected from the relay E to the air conditioning throttle means 117 is referred to as a connection pipe 13.

空調用絞り手段117は、減圧弁や膨張弁としての機能を有し、一次側冷媒を減圧して膨張させるものである。この空調用絞り手段117は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。室内熱交換器118は、放熱器(凝縮器)や蒸発器として機能し、図示省略の送風機から供給される空気と一次側冷媒との間で熱交換を行ない、一次側冷媒を凝縮液化又は蒸発ガス化するものである。   The air conditioning throttle means 117 has a function as a pressure reducing valve or an expansion valve, and expands the primary side refrigerant by reducing the pressure. The air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. The indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator, performs heat exchange between air supplied from a blower (not shown) and the primary refrigerant, and condensates or evaporates the primary refrigerant. It is gasified.

{冷蔵・冷凍用ブースターユニットD}
冷蔵・冷凍用ブースターユニットDは、熱源機Aからの冷熱を冷媒−冷媒熱交換器131を介して冷蔵・冷凍用冷凍サイクル2に伝達する機能を有している。冷蔵・冷凍用ブースターユニットDの一次側には、絞り手段119と、冷媒−冷媒熱交換器131とが、直列に接続されている。空調用冷凍サイクル1と冷蔵・冷凍用冷凍サイクル2とは、冷媒−冷媒熱交換器131でカスケード接続されている。すなわち、冷媒−冷媒熱交換器131は、一次側冷媒と、二次側冷媒と、の間で熱交換を行なうものである。
{Refrigerator / Freezer Booster Unit D}
The refrigeration / freezing booster unit D has a function of transmitting cold heat from the heat source unit A to the refrigeration / freezing refrigeration cycle 2 via the refrigerant-refrigerant heat exchanger 131. On the primary side of the refrigeration / freezing booster unit D, a throttle means 119 and a refrigerant-refrigerant heat exchanger 131 are connected in series. The air-conditioning refrigeration cycle 1 and the refrigeration / refrigeration refrigeration cycle 2 are cascade-connected by a refrigerant-refrigerant heat exchanger 131. That is, the refrigerant-refrigerant heat exchanger 131 performs heat exchange between the primary side refrigerant and the secondary side refrigerant.

絞り手段119は、空調用絞り手段117と同様に、減圧弁や膨張弁としての機能を有し、一次側冷媒を減圧して膨張させるものである。この絞り手段119は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒−冷媒熱交換器131は、放熱器(凝縮器)や蒸発器として機能し、冷蔵・冷凍用冷凍サイクル2を循環する二次側冷媒と、空調用冷凍サイクル1を循環する一次側冷媒との、間で熱交換を行なうものである。なお、便宜的に、中継機Eから冷媒−冷媒熱交換器131に接続している配管を接続配管14と、中継機Eから絞り手段119に接続している接続配管を接続配管15と称する。   Similar to the air conditioning throttle means 117, the throttle means 119 has a function as a pressure reducing valve or an expansion valve, and decompresses the primary side refrigerant to expand it. The throttling means 119 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. The refrigerant-refrigerant heat exchanger 131 functions as a radiator (condenser) and an evaporator, and a secondary-side refrigerant that circulates through the refrigeration / refrigeration refrigeration cycle 2 and a primary-side refrigerant that circulates through the air-conditioning refrigeration cycle 1. Heat exchange is performed between the two. For convenience, the pipe connected from the relay E to the refrigerant-refrigerant heat exchanger 131 is referred to as a connection pipe 14, and the connection pipe connected from the relay E to the throttle means 119 is referred to as a connection pipe 15.

{中継機E}
中継機Eは、利用側ユニット(室内機B、室内機C及び冷蔵・冷凍用ブースターユニットD)と、熱源機Aとを、接続し、第1分配部109の弁手段109a又は弁手段109bの何れかを択一的に開閉することにより、室内熱交換器118を放熱器又は蒸発器とするか、冷媒−冷媒熱交換器131を冷水器又は給湯機とするかを決定する機能を有している。この中継機Eは、気液分離器108と、第1分配部109と、第2分配部110と、第1内部熱交換器111と、第1中継機用絞り手段112と、第2内部熱交換器113と、第2中継機用絞り手段114と、を少なくとも有している。
{Repeater E}
The relay unit E connects the use side unit (the indoor unit B, the indoor unit C, and the refrigeration / refrigeration booster unit D) and the heat source unit A, and connects the valve unit 109a or the valve unit 109b of the first distribution unit 109. It has a function of determining whether the indoor heat exchanger 118 is a radiator or an evaporator or whether the refrigerant-refrigerant heat exchanger 131 is a chiller or a hot water supply by opening or closing one of them. ing. The relay E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat. It has at least the exchanger 113 and the second relay throttle unit 114.

第1分配部109では、接続配管12及び接続配管14が2つに分岐されており、一方(接続配管12b及び接続配管14b)が低圧側接続配管107に接続し、他方(接続配管12a及び接続配管14a)が気液分離器108に接続している接続配管(接続配管16と称する)に接続するようになっている。また、接続配管12a及び接続配管14aには開閉制御されて冷媒を導通したりしなかったりする弁手段109aが、接続配管12b及び接続配管14bには開閉制御されて冷媒を導通したりしなかったりする弁手段109bが、それぞれ設けられている。   In the first distribution unit 109, the connection pipe 12 and the connection pipe 14 are branched into two, one (the connection pipe 12b and the connection pipe 14b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 12a and the connection pipe). The pipe 14a) is connected to a connection pipe (referred to as connection pipe 16) connected to the gas-liquid separator 108. Further, the valve means 109a that is controlled to open / close the connection pipe 12a and the connection pipe 14a so as not to conduct the refrigerant, or the valve means 109a that is controlled to open / close the connection pipe 12b and the connection pipe 14b does not conduct the refrigerant. Valve means 109b are provided respectively.

第2分配部110では、接続配管13及び接続配管15が2つに分岐されており、一方(接続配管13a及び接続配管15a)が第1会合部115で接続され、他方(接続配管13b及び接続配管15b)が第2会合部116で接続されるようになっている。また、第2分配部110では、接続配管13a及び接続配管15aに冷媒の流通を一方のみに許容する逆止弁110aが、接続配管13b及び接続配管15bに冷媒の流通を一方のみに許容する逆止弁110bがそれぞれ設けられている。なお、逆止弁110a、逆止弁110bの代わりに電磁弁のような弁手段を用いてもよい。そうすれば、第2分配部110において確実に流路の切り替えを実行することができる。   In the second distribution unit 110, the connection pipe 13 and the connection pipe 15 are branched into two, one (the connection pipe 13a and the connection pipe 15a) is connected at the first meeting part 115, and the other (the connection pipe 13b and the connection pipe). A pipe 15 b) is connected at the second meeting part 116. In the second distribution unit 110, the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 13a and the connecting pipe 15a is reverse to allow only one of the refrigerant to flow in the connecting pipe 13b and the connecting pipe 15b. A stop valve 110b is provided. Note that valve means such as an electromagnetic valve may be used instead of the check valve 110a and the check valve 110b. If it does so, in the 2nd distribution part 110, switching of a flow path can be performed reliably.

第1会合部115は、第2分配部110から第1中継機用絞り手段112及び第1内部熱交換器111を介して気液分離器108に接続している。第2会合部116は、第2分配部110と第2内部熱交換器113との間で分岐し、一方が第2内部熱交換器113を介して第2分配部110と第1中継機用絞り手段112との間における第1会合部115に接続され、他方(第2会合部116a)が第2中継機用絞り手段114、第2内部熱交換器113及び第1内部熱交換器111を介して低圧側接続配管107に接続されている。   The first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111. The second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113. The second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111. To the low-pressure side connection pipe 107.

気液分離器108は、冷媒をガス冷媒と液冷媒とに分離するものであり、高圧側接続配管106に設けられ、一方が第1分配部109の弁手段109aに接続され、他方が第1会合部115を経て第2分配部110に接続されている。第1分配部109は、弁手段109a又は弁手段109bの何れかが択一的に開閉され、室内熱交換器118及び冷媒−冷媒熱交換器131に対して冷媒を流出入させる機能を有している。第2分配部110は、逆止弁110a及び逆止弁110bによって、冷媒の流れをいずれか一方に許容する機能を有している。   The gas-liquid separator 108 separates the refrigerant into a gas refrigerant and a liquid refrigerant, and is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109a of the first distributor 109, and the other is the first. It is connected to the second distribution unit 110 via the meeting unit 115. The first distribution unit 109 has a function of causing the refrigerant to flow into and out of the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 131 by selectively opening or closing either the valve means 109a or the valve means 109b. ing. The 2nd distribution part 110 has a function which permits the flow of a refrigerant to either one by check valve 110a and check valve 110b.

第1内部熱交換器111は、気液分離器108と第1中継機用絞り手段112との間における第1会合部115に設けられており、第1会合部115を導通している冷媒と、第2会合部116が分岐された第2会合部116aを導通している冷媒と、の間で熱交換を実行するものである。第1中継機用絞り手段112は、第1内部熱交換器111と第2分配部110との間における第1会合部115に設けられており、冷媒を減圧して膨張させるものである。この第1中継機用絞り手段112は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。   The first internal heat exchanger 111 is provided in the first meeting section 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is connected to the refrigerant conducting the first meeting section 115. The heat exchange is performed between the second meeting portion 116a branched from the second meeting portion 116a and the refrigerant conducting. The first repeater throttle means 112 is provided in the first meeting part 115 between the first internal heat exchanger 111 and the second distribution part 110, and expands the refrigerant by decompressing it. The first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.

第2内部熱交換器113は、第2会合部116に設けられており、第2会合部116を導通している冷媒と、第2会合部116が分岐された第2会合部116aを導通している冷媒と、の間で熱交換を実行するものである。第2中継機用絞り手段114は、第2内部熱交換器113と第2分配部110との間における第2会合部116に設けられており、減圧弁や膨張弁として機能し、冷媒を減圧して膨張させるものである。この第2中継機用絞り手段114は、第1中継機用絞り手段112と同様に、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。   The second internal heat exchanger 113 is provided in the second meeting part 116, and conducts the refrigerant that is conducted through the second meeting part 116 and the second meeting part 116a from which the second meeting part 116 is branched. The heat exchange is performed between the refrigerant and the refrigerant. The second relay throttling means 114 is provided in the second meeting part 116 between the second internal heat exchanger 113 and the second distribution part 110, functions as a pressure reducing valve or an expansion valve, and decompresses the refrigerant. And expand. As with the first relay unit throttle unit 112, the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube. The refrigerant flow rate adjusting means may be used.

以上のように、空調用冷凍サイクル1は、空調用圧縮機101、四方弁102、室内熱交換器118、空調用絞り手段117、室外熱交換器103、アキュムレーター104が直列に接続され、空調用圧縮機101、四方弁102、冷媒−冷媒熱交換器131、絞り手段119、室外熱交換器103、アキュムレーター104が直列に接続されており、中継機Eを介して室内熱交換器118と冷媒−冷媒熱交換器131とが並列に接続され、これらに冷媒を循環させることで成立している。   As described above, the air conditioning refrigeration cycle 1 includes the air conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air conditioning throttle means 117, the outdoor heat exchanger 103, and the accumulator 104 connected in series. Compressor 101, four-way valve 102, refrigerant-refrigerant heat exchanger 131, throttle means 119, outdoor heat exchanger 103, and accumulator 104 are connected in series. The refrigerant-refrigerant heat exchanger 131 is connected in parallel, and the refrigerant is circulated through them.

なお、空調用圧縮機101は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して空調用圧縮機101を構成することができる。この空調用圧縮機101は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。   The air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw. The air-conditioning compressor 101 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed.

また、空調用冷凍サイクル1を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素(CO2 )や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。Further, the type of the refrigerant circulating through the air-conditioning refrigeration cycle 1 is not particularly limited. For example, natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.

ここで、図1に基づいて冷凍空調装置100が実行する暖房主体運転時の空調用冷凍サイクル1での一次側冷媒の流れについて説明する。冷凍空調装置100は、室内機の全てが冷房運転を実行する全冷房運転モード、室内機の全てが暖房運転を実行する全暖房運転モード、冷暖混在であって冷房負荷の方が大きい冷房主体運転モード(図2参照)、及び、冷暖混在であって暖房負荷の方が大きい暖房主体運転モードを有している。また、図1では冷媒の流れを逆止弁及び弁手段の開閉状態(白抜き(開状態)及び黒塗り(閉状態))で表している。   Here, the flow of the primary-side refrigerant in the air-conditioning refrigeration cycle 1 during the heating-main operation performed by the refrigeration air-conditioning apparatus 100 will be described with reference to FIG. The refrigerating and air-conditioning apparatus 100 has a cooling only operation mode in which all of the indoor units execute a cooling operation, a heating only operation mode in which all of the indoor units perform a heating operation, and a cooling main operation in which cooling and heating are mixed and the cooling load is larger. Mode (see FIG. 2) and a heating main operation mode in which the heating load is larger and the heating / cooling is mixed. Moreover, in FIG. 1, the flow of the refrigerant | coolant is represented by the check valve and the open / close state of the valve means (white (open state) and black (closed state)).

空調用圧縮機101で高温・高圧にされたガス状態の一次側冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、逆止弁105cを導通し、高圧側接続配管106に導かれ、過熱ガス状態で中継機Eの気液分離器108へ流入する。気液分離器108に流入した過熱ガス状態の一次側冷媒は、接続配管16を流れ、第1分配部109の弁手段109aが開いている回路、つまり暖房室内機Cに分配される。暖房室内機Cに流入した一次側冷媒は、室内熱交換器118で放熱し(つまり、室内空気を暖め)、空調用絞り手段117で減圧され、第1会合部115で合流する。   The primary refrigerant in the gas state heated to high temperature and high pressure by the air conditioning compressor 101 is discharged from the air conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and is connected to the high pressure side connecting pipe 106. To the gas-liquid separator 108 of the relay E in the superheated gas state. The primary refrigerant in the superheated gas state flowing into the gas-liquid separator 108 flows through the connection pipe 16 and is distributed to the circuit in which the valve means 109a of the first distribution unit 109 is open, that is, the heating indoor unit C. The primary-side refrigerant that has flowed into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air conditioning throttle means 117, and joins at the first meeting unit 115.

一方、気液分離器108に流入した過熱ガス状態の一次側冷媒の一部は、第1内部熱交換器111で第2中継機用絞り手段114にて低温・低圧に膨張した一次側冷媒と熱交換を行なうことにより過冷却度を得る。それから、第1中継機用絞り手段112を通過して、空調用として利用された一次側冷媒(暖房室内機Cに流入し、室内熱交換器118で放熱した一次側冷媒)と第1会合部115で合流する。なお、第1中継機用絞り手段112を通る一部の過熱ガス状態の一次側冷媒は、第1中継機用絞り手段112を全閉にして、皆無にしてもよい。   On the other hand, a part of the primary refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is combined with the primary refrigerant that has been expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111. The degree of supercooling is obtained by heat exchange. Then, the primary side refrigerant (primary side refrigerant that flows into the heating indoor unit C and dissipates heat in the indoor heat exchanger 118) that has passed through the first repeater throttle means 112 and is used for air conditioning and the first meeting unit Join at 115. It should be noted that some of the primary refrigerant in the superheated gas state passing through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112.

その後、合流した一次側冷媒は、第2内部熱交換器113で、第2中継機用絞り手段114にて低温・低圧に膨張した一次側冷媒と熱交換を行なうことにより過冷却度を得る。そして、この一次側冷媒は、第2会合部116側と第2中継機用絞り手段114側とに分配される。   Thereafter, the joined primary side refrigerant exchanges heat with the primary side refrigerant expanded to low temperature and low pressure in the second relay heat exchanger 113 in the second internal heat exchanger 113 to obtain a degree of supercooling. And this primary side refrigerant | coolant is distributed to the 2nd meeting part 116 side and the throttle means 114 side for the 2nd repeater.

第2会合部116を導通する一次側冷媒は、弁手段109bが開いている回路、つまり冷房室内機B及び冷蔵・冷凍用ブースターユニットDの一次側に分配される。冷房室内機Bに流入した一次側冷媒は、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109bを経て低圧側接続配管107に流入する。冷蔵・冷凍用ブースターユニットDの一次側に流入した一次側冷媒は、絞り手段119にて低温・低圧に膨張され、冷媒−冷媒熱交換器131で蒸発し、弁手段109bを経て低圧側接続配管107に流入する。   The primary refrigerant conducted through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open, that is, the primary side of the cooling indoor unit B and the refrigeration / freezing booster unit D. The primary-side refrigerant that has flowed into the cooling indoor unit B is expanded to low temperature and low pressure by the air conditioning throttle means 117, evaporates in the indoor heat exchanger 118, and flows into the low-pressure side connection pipe 107 through the valve means 109b. The primary refrigerant that has flowed into the primary side of the refrigeration / freezing booster unit D is expanded to a low temperature / low pressure by the throttle means 119, evaporates in the refrigerant-refrigerant heat exchanger 131, passes through the valve means 109b, and is connected to the low pressure side connection pipe. It flows into 107.

また、第2中継機用絞り手段114を導通した一次側冷媒は、第2内部熱交換器113及び第1内部熱交換器111で熱交換を行なって蒸発し、低圧側接続配管107で冷房室内機B及び冷蔵・冷凍用ブースターユニットDの一次側を流出した一次側冷媒と合流する。そして、低圧側接続配管107で合流した一次側冷媒は、逆止弁105dを通って室外熱交換器103に導かれ、運転条件によっては残留している液冷媒を蒸発させ、四方弁102、アキュムレーター104を経て空調用圧縮機101へ戻る。   Further, the primary refrigerant that has been conducted through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107. The primary side refrigerant that has flowed out of the primary side of the machine B and the refrigeration / freezing booster unit D merges. And the primary side refrigerant | coolant merged by the low voltage | pressure side connection piping 107 is led to the outdoor heat exchanger 103 through the non-return valve 105d, and depending on an operating condition, the remaining liquid refrigerant is evaporated, and the four-way valve 102, the accumulator Return to the air-conditioning compressor 101 via the radiator 104.

[冷蔵・冷凍用冷凍サイクル2]
冷蔵・冷凍用冷凍サイクル2は、冷蔵・冷凍用ブースターユニットD(詳しくは冷媒−冷媒熱交換器131の二次側)と、冷蔵・冷凍ユニットFと、によって構成されている。つまり、冷蔵・冷凍用冷凍サイクル2は、冷蔵・冷凍用ブースターユニットDに搭載されている冷凍用圧縮機130と、冷媒−冷媒熱交換器131と、冷凍用絞り手段132と、冷蔵・冷凍ユニットFに搭載されている冷凍用熱交換器133と、が直列に配管接続されることで構成されている。この冷蔵・冷凍用冷凍サイクル2は、冷蔵・冷凍用ブースターユニットDに搭載されている冷媒−冷媒熱交換器131によって空調用冷凍サイクル1と接続している。
[Refrigeration cycle 2 for refrigeration / freezing]
The refrigeration / refrigeration refrigeration cycle 2 includes a refrigeration / refrigeration booster unit D (specifically, a secondary side of the refrigerant-refrigerant heat exchanger 131) and a refrigeration / refrigeration unit F. That is, the refrigeration / refrigeration refrigeration cycle 2 includes a refrigeration compressor 130, a refrigerant-refrigerant heat exchanger 131, a refrigeration throttle means 132, and a refrigeration / refrigeration unit mounted in the refrigeration / refrigeration booster unit D. The refrigeration heat exchanger 133 mounted on F is connected by piping in series. The refrigeration / refrigeration refrigeration cycle 2 is connected to the air-conditioning refrigeration cycle 1 by a refrigerant-refrigerant heat exchanger 131 mounted on the refrigeration / refrigeration booster unit D.

{冷蔵・冷凍用ブースターユニットD}
上述したように、冷蔵・冷凍用ブースターユニットDは、熱源機Aからの温熱又は冷熱を冷媒−冷媒熱交換器131を介して冷蔵・冷凍用冷凍サイクル2に伝達する機能を有している。冷蔵・冷凍用ブースターユニットDの二次側には、冷凍用圧縮機130と、冷媒−冷媒熱交換器131の二次側と、冷凍用絞り手段132と、が直列に接続されている。
{Refrigerator / Freezer Booster Unit D}
As described above, the refrigeration / freezing booster unit D has a function of transmitting the heat or cold from the heat source unit A to the refrigeration / freezing refrigeration cycle 2 via the refrigerant-refrigerant heat exchanger 131. On the secondary side of the refrigeration / freezing booster unit D, a refrigeration compressor 130, a secondary side of the refrigerant-refrigerant heat exchanger 131, and a refrigeration throttle means 132 are connected in series.

冷凍用圧縮機130は、二次側冷媒を吸入し、その二次側冷媒を圧縮して高温・高圧の状態にするものである。この冷凍用圧縮機130は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、冷凍用圧縮機130は、吸入した二次側冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して冷凍用圧縮機130を構成することができる。   The refrigeration compressor 130 sucks the secondary side refrigerant and compresses the secondary side refrigerant to a high temperature and high pressure state. The refrigeration compressor 130 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed. The refrigeration compressor 130 is not particularly limited as long as it can compress the sucked secondary refrigerant into a high pressure state. For example, the refrigeration compressor 130 can be configured using various types such as reciprocating, rotary, scroll, or screw.

冷媒−冷媒熱交換器131は、上述したように、空調用冷凍サイクル1を循環する一次側冷媒と、冷蔵・冷凍用冷凍サイクル2を循環する二次側冷媒と、の間で熱交換を行なうものである。冷凍用絞り手段132は、減圧弁や膨張弁としての機能を有し、二次側冷媒を減圧して膨張させるものである。この冷凍用絞り手段132は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。   As described above, the refrigerant-refrigerant heat exchanger 131 performs heat exchange between the primary side refrigerant circulating in the air-conditioning refrigeration cycle 1 and the secondary side refrigerant circulating in the refrigeration / refrigeration cycle 2. Is. The freezing throttling means 132 has a function as a pressure reducing valve or an expansion valve, and expands the secondary side refrigerant by reducing the pressure. The refrigeration throttle means 132 may be configured by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.

なお、冷蔵・冷凍用冷凍サイクル2を循環する二次側冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。   In addition, the kind of secondary side refrigerant | coolant which circulates through the refrigerating cycle 2 for refrigeration / freezing is not specifically limited, For example, natural refrigerants, such as a carbon dioxide, a hydrocarbon, and helium, chlorine, such as HFC410A, HFC407C, and HFC404A, is not included Either an alternative refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.

{冷蔵・冷凍ユニットF}
冷蔵・冷凍ユニットFは、冷蔵・冷凍用ブースターユニットDからの冷熱の供給を受けて冷蔵・冷凍負荷を担当する機能を有している。冷蔵・冷凍ユニットFには、冷凍用熱交換器133が搭載されている。この冷凍用熱交換器133は、冷蔵・冷凍用ブースターユニットDの冷凍用絞り手段132と冷凍用圧縮機130との間に設けられ、蒸発器として機能し、図示省略の送風機から供給される空気と二次側冷媒との間で熱交換を行ない、二次側冷媒を蒸発ガス化するものである。なお、冷蔵・冷凍ユニットFには、冷凍用熱交換器133に空気を供給するためのファン等の送風機を冷凍用熱交換器133の近傍に設けるとよい。
{Refrigerated / Frozen Unit F}
The refrigeration / freezing unit F has a function of receiving cold heat from the refrigeration / freezing booster unit D and taking charge of the refrigeration / freezing load. The refrigeration / freezing unit F is equipped with a refrigeration heat exchanger 133. The refrigeration heat exchanger 133 is provided between the refrigeration throttle means 132 and the refrigeration compressor 130 of the refrigeration / refrigeration booster unit D, functions as an evaporator, and is supplied from a blower (not shown). Heat exchange between the secondary refrigerant and the secondary refrigerant to evaporate the secondary refrigerant. The refrigeration / freezing unit F may be provided with a blower such as a fan for supplying air to the refrigeration heat exchanger 133 in the vicinity of the refrigeration heat exchanger 133.

ここで、冷蔵・冷凍用冷凍サイクル2での一次側冷媒の流れについて説明する。
まず、冷凍用圧縮機130で高温・高圧にされた給湯用冷媒は、冷凍用圧縮機130から吐出して、冷媒−冷媒熱交換器131に流入する。この冷媒−冷媒熱交換器131では、流入した二次側冷媒が空調用冷凍サイクル1を循環している一次側により冷却・凝縮される。この二次側冷媒は、冷凍用絞り手段132で膨張される。膨張された二次側冷媒は、冷蔵・冷凍用ブースターユニットDから流出し、冷蔵・冷凍ユニットFに流入する。
Here, the flow of the primary refrigerant in the refrigeration / freezing refrigeration cycle 2 will be described.
First, the hot water supply refrigerant that has been heated to a high temperature and high pressure by the refrigeration compressor 130 is discharged from the refrigeration compressor 130 and flows into the refrigerant-refrigerant heat exchanger 131. In the refrigerant-refrigerant heat exchanger 131, the inflowing secondary refrigerant is cooled and condensed by the primary side circulating in the air conditioning refrigeration cycle 1. This secondary refrigerant is expanded by the freezing throttle means 132. The expanded secondary refrigerant flows out of the refrigeration / freezing booster unit D and flows into the refrigeration / freezing unit F.

冷蔵・冷凍ユニットFに流入した二次側冷媒は、冷凍用熱交換器133で図示省略の送風機から供給される空気から受熱して蒸発し、冷蔵・冷凍ユニットFから流出する。冷蔵・冷凍ユニットFから流出した二次側冷媒は、冷蔵・冷凍用ブースターユニットDの二次側に流入し、冷凍用圧縮機130へ戻る。   The secondary refrigerant that has flowed into the refrigeration / freezing unit F receives heat from the air supplied from a blower (not shown) in the refrigeration heat exchanger 133 and evaporates, and flows out from the refrigeration / refrigeration unit F. The secondary refrigerant flowing out of the refrigeration / freezing unit F flows into the secondary side of the refrigeration / freezing booster unit D and returns to the refrigeration compressor 130.

なお、図示していないが、冷凍空調装置100には、一次側冷媒の吐出圧力や吸入圧力を検知するセンサーや、一次側冷媒の吐出温度や吸入温度を検知するセンサー、室外熱交換器103に流出入する一次側冷媒の温度を検知するセンサー、熱源機Aに取り込まれる外気温を検知するセンサー、室内熱交換器118に流出入する一次側冷媒の温度を検知するセンサー、二次側冷媒の吐出圧力や吸入圧力を検知するセンサー、二次冷媒の吐出温度や吸引温度を検知するセンサー、冷凍用熱交換器133に流出入する二次側冷媒の温度を検知するセンサー、冷蔵・冷凍ユニットFに取り込まれる外気温を検知するセンサー、冷媒−冷媒熱交換器131に流出入する一次側冷媒及び二次側冷媒の温度を検知するセンサー等を設けておくとよい。   Although not shown, the refrigerating and air-conditioning apparatus 100 includes a sensor that detects the discharge pressure and suction pressure of the primary refrigerant, a sensor that detects the discharge temperature and suction temperature of the primary refrigerant, and the outdoor heat exchanger 103. A sensor for detecting the temperature of the primary side refrigerant flowing in and out, a sensor for detecting the outside air temperature taken into the heat source unit A, a sensor for detecting the temperature of the primary side refrigerant flowing into and out of the indoor heat exchanger 118, Sensor for detecting discharge pressure and suction pressure, sensor for detecting discharge temperature and suction temperature of secondary refrigerant, sensor for detecting temperature of secondary refrigerant flowing into and out of refrigeration heat exchanger 133, refrigeration / refrigeration unit F It is preferable to provide a sensor for detecting the outside air temperature taken in, a sensor for detecting the temperature of the primary refrigerant and the secondary refrigerant flowing in and out of the refrigerant-refrigerant heat exchanger 131, and the like.

これらの各種センサーで検知された情報(温度情報や圧力情報等)は、冷凍空調装置100の動作を制御する図示省略の制御手段に送られ、空調用圧縮機101の駆動周波数や、四方弁102の切り替え、弁手段109a及び弁手段109bの開閉、冷凍用圧縮機130の駆動周波数、各絞り装置の開度等の制御に利用されることになる。   Information (temperature information, pressure information, etc.) detected by these various sensors is sent to a control means (not shown) that controls the operation of the refrigerating and air-conditioning apparatus 100, and the drive frequency of the air-conditioning compressor 101 and the four-way valve 102. Switching, opening / closing of the valve means 109a and valve means 109b, the driving frequency of the refrigeration compressor 130, the opening degree of each expansion device, and the like.

なお、空調用冷凍サイクル1と冷蔵・冷凍用冷凍サイクル2とは、上述したように、それぞれ独立した冷媒回路構成(空調用冷凍サイクル1及び冷蔵・冷凍用冷凍サイクル2)になっているため、各冷媒回路を循環させる冷媒を同じ種類のものとしてもよいし、別の種類のものとしてもよい。つまり、各冷媒回路の冷媒は、それぞれ混ざることなく冷媒−冷媒熱交換器131にて互いに熱交換するように流れている。   The air-conditioning refrigeration cycle 1 and the refrigeration / refrigeration refrigeration cycle 2 have independent refrigerant circuit configurations (the air-conditioning refrigeration cycle 1 and the refrigeration / refrigeration refrigeration cycle 2), as described above. The refrigerant circulating through each refrigerant circuit may be of the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 131 without being mixed.

また、空調用冷凍サイクル1において余剰冷媒を受液器(アキュムレーター104)によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵するようにすれば、アキュムレーター104を取り除いてもよい。さらに、図1では、冷房室内機Bと暖房室内機Cとが2台接続されている状態を例に示しているが、冷房室内機Bを1台以上、暖房室内機Cを0台若しくは1台以上接続するようにしてもよい。   Moreover, although the case where the excess refrigerant | coolant was stored by the liquid receiver (accumulator 104) in the refrigerating cycle 1 for an air conditioning was shown, it is not restricted to this, It is stored with the heat exchanger used as a heat radiator in a refrigerating cycle. In this case, the accumulator 104 may be removed. Further, FIG. 1 shows an example in which two cooling indoor units B and two heating indoor units C are connected, but one or more cooling indoor units B and zero or one heating indoor unit C are used. More than one unit may be connected.

さらに、図1では冷蔵・冷凍用ブースターユニットDと冷蔵・冷凍ユニットFとがともに1台接続されている状態を例に示しているが、接続台数を限定するものではない。たとえば、冷蔵・冷凍用ブースターユニットDを2台以上接続するようにしてもよいし、冷蔵・冷凍ユニットFを2台以上接続するようにしてもよい。そして、搭載されている各室内機や冷蔵・冷凍用ブースターユニットDの容量は、全部を同一としてもよく、大から小まで異なるようにしてもよい。   Further, FIG. 1 shows an example in which one refrigeration / freezing booster unit D and one refrigeration / freezing unit F are connected, but the number of connected units is not limited. For example, two or more refrigeration / freezing booster units D may be connected, or two or more refrigeration / freezing units F may be connected. And the capacity | capacitance of each installed indoor unit and the booster unit D for refrigeration and freezing may be made the same, and may differ from large to small.

以上のように、実施の形態1に係る冷凍空調装置100では、冷蔵または冷凍負荷系統を二元サイクルで構成しているため、低温の冷凍需要(たとえば、−20℃)を提供する場合に、冷蔵・冷凍用冷凍サイクル2の蒸発器(冷凍用熱交換器133)の温度を低温(たとえば、蒸発温度−25℃)にすればよく、他に冷房空調負荷がある場合に、冷房室内機Bの蒸発温度(たとえば、0℃)までも低下させずに済むので、空調負荷側の室内の快適性を維持しつつ、省エネを実現できる。また、たとえば冬期の空調冷房運転中に低温の給湯需要があった場合、冷凍空調装置100では、冷蔵・冷凍用冷凍サイクル2で回収した排熱を再利用して暖房空調を行なうので、システムCOPが大幅に向上し、省エネとなる。   As described above, in the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, since the refrigeration or refrigeration load system is configured in a two-way cycle, when providing low-temperature refrigeration demand (for example, −20 ° C.), The temperature of the evaporator (refrigeration heat exchanger 133) of the refrigeration / freezing refrigeration cycle 2 may be set to a low temperature (for example, the evaporation temperature −25 ° C.). Therefore, energy saving can be realized while maintaining the comfort of the room on the air conditioning load side. For example, when there is a demand for low-temperature hot water supply during air-conditioning cooling operation in winter, the refrigeration air-conditioning apparatus 100 recycles the exhaust heat collected in the refrigeration / freezing refrigeration cycle 2 to perform heating air-conditioning. Is greatly improved and energy saving.

図2は、本発明の実施の形態1に係る冷凍空調装置100の冷房主体運転時における冷媒の流れを示す冷媒回路図である。図2に基づいて、冷凍空調装置100が実行する空調用冷凍サイクル1の冷房主体運転について説明する。なお、図2では冷媒の流れを逆止弁及び弁手段の開閉状態(白抜き(開状態)及び黒塗り(閉状態))で表している。   FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow during the cooling main operation of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 2, the cooling main operation | movement of the refrigerating cycle 1 for an air conditioning which the refrigeration air conditioning apparatus 100 performs is demonstrated. In FIG. 2, the refrigerant flow is represented by open / close states of the check valve and valve means (white (open state) and black (closed state)).

空調用圧縮機101で高温・高圧にされたガス状態の一次側冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、室外熱交換器103に流入する。室外熱交換器103に流入した一次側冷媒は、室外熱交換器103に供給される空気に放熱し、周囲の空気温度程度にまで冷却される。この一次側冷媒は、室外熱交換器103から流出し、逆止弁105aを導通し、高圧側接続配管106に導かれ、中継機Eの気液分離器108へ流入する。   The primary refrigerant in the gas state that has been heated to a high temperature and high pressure by the air conditioning compressor 101 is discharged from the air conditioning compressor 101 and flows into the outdoor heat exchanger 103 via the four-way valve 102. The primary refrigerant flowing into the outdoor heat exchanger 103 dissipates heat to the air supplied to the outdoor heat exchanger 103 and is cooled to about the ambient air temperature. The primary refrigerant flows out of the outdoor heat exchanger 103, is conducted through the check valve 105a, is led to the high-pressure side connecting pipe 106, and flows into the gas-liquid separator 108 of the relay E.

気液分離器108に流入した一次側冷媒は、気液分離器108から流出して第1内部熱交換器111に流入する。第1内部熱交換器111に流入した一次側冷媒は、第2中継機用絞り手段114にて低温・低圧に膨張した一次側冷媒と熱交換を行なうことによって過冷却度を得る。それから、第1中継機用絞り手段112を通過して、空調用として利用された一次側冷媒と第1会合部115で合流する。合流した一次側冷媒は、その後、第2内部熱交換器113にて、第2中継機用絞り手段114にて低温・低圧に膨張した一次側冷媒と熱交換を行なうことにより、さらに過冷却度を得る。そして、第2会合部116を流れる一次側冷媒と、第2中継機用絞り手段114を流れる一次側冷媒と、に分配される。   The primary refrigerant flowing into the gas-liquid separator 108 flows out of the gas-liquid separator 108 and flows into the first internal heat exchanger 111. The primary-side refrigerant that has flowed into the first internal heat exchanger 111 performs heat exchange with the primary-side refrigerant expanded to a low temperature and low pressure in the second relay throttle unit 114 to obtain a degree of supercooling. Then, it passes through the first relay stop means 112 and merges with the primary side refrigerant used for air conditioning at the first meeting part 115. The merged primary side refrigerant is then subjected to heat exchange with the second side internal heat exchanger 113 and the primary side refrigerant expanded to low temperature and low pressure at the second relay throttle unit 114, thereby further reducing the degree of supercooling. Get. And it distributes to the primary side refrigerant | coolant which flows through the 2nd meeting part 116, and the primary side refrigerant | coolant which flows through the throttle means 114 for 2nd relay machines.

また、第2会合部116を通る一次側冷媒は、弁手段109bが開いている回路、つまり冷房室内機B、及び、冷蔵・冷凍用ブースターユニットDの一次側に分配される。冷房室内機Bに流入した一次側冷媒は、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109bを経て低圧側接続配管107に流入する。冷蔵・冷凍用ブースターユニットDの一次側に流入した一次側冷媒は、絞り手段119にて低温・低圧に膨張され、冷媒−冷媒熱交換器131で蒸発し、弁手段109bを経て低圧側接続配管107に流入する。   Further, the primary refrigerant passing through the second meeting portion 116 is distributed to the circuit in which the valve means 109b is open, that is, the cooling indoor unit B and the primary side of the refrigeration / freezing booster unit D. The primary-side refrigerant that has flowed into the cooling indoor unit B is expanded to low temperature and low pressure by the air conditioning throttle means 117, evaporates in the indoor heat exchanger 118, and flows into the low-pressure side connection pipe 107 through the valve means 109b. The primary refrigerant that has flowed into the primary side of the refrigeration / freezing booster unit D is expanded to a low temperature / low pressure by the throttle means 119, evaporates in the refrigerant-refrigerant heat exchanger 131, passes through the valve means 109b, and is connected to the low pressure side connection pipe. It flows into 107.

さらに、第2中継機用絞り手段114を導通した一次側冷媒は、第2内部熱交換器113及び第1内部熱交換器111で熱交換を行なって蒸発し、低圧側接続配管107で冷房室内機B及び冷蔵・冷凍用ブースターユニットDの一次側を流出した一次側冷媒と合流する。   Further, the primary refrigerant that has been conducted through the second repeater throttle means 114 evaporates by exchanging heat with the second internal heat exchanger 113 and the first internal heat exchanger 111, and is cooled with the low-pressure side connection pipe 107. The primary side refrigerant that has flowed out of the primary side of the machine B and the refrigeration / freezing booster unit D merges.

一方、気液分離器108で分離されたガス状態の一次側冷媒は、弁手段109aを通って暖房室内機C側へ分配される。暖房室内機Cに流入した一次側冷媒は、室内熱交換器118で放熱し、空調用絞り手段117で減圧され、第1会合部115で合流する。
最終的に、低圧側接続配管107で合流した一次側冷媒は、逆止弁105b、四方弁102、アキュムレーター104を経て空調用圧縮機101へ戻る。なお、冷蔵・冷凍用冷凍サイクル2を循環する二次側冷媒の流れについて暖房主体運転時と同様である。
On the other hand, the primary refrigerant in the gas state separated by the gas-liquid separator 108 is distributed to the heating indoor unit C side through the valve means 109a. The primary refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118, is depressurized by the air conditioning throttle means 117, and merges in the first meeting unit 115.
Finally, the primary refrigerant that has joined in the low-pressure side connection pipe 107 returns to the air-conditioning compressor 101 via the check valve 105b, the four-way valve 102, and the accumulator 104. Note that the flow of the secondary refrigerant circulating in the refrigeration / refrigeration refrigeration cycle 2 is the same as in the heating-main operation.

したがって、冷凍空調装置100によれば、空調、冷蔵、冷凍それぞれの負荷によって最適な負荷側ユニットを選定でき、熱源機Aからそれぞれの負荷側ユニットに別途新しい配管を設置する必要がなく、中継機Eから負荷側ユニットを配管接続するだけでよいので、配管使用量を削減できることになる。また、冷凍空調装置100によれば、冷房負荷、暖房負荷を同時に行なうことができる空調複合システムを使用することで、2元冷凍サイクルを用いて空調負荷と同時に冷蔵・冷凍負荷を提供するができる。よって、冷凍空調装置100によれば、年間を通して安定した熱源を供給できる。さらに、冷凍空調装置100によれば、年間を通して負荷側ユニットで熱回収することができので、省エネ運転を実現することができる。   Therefore, according to the refrigerating and air-conditioning apparatus 100, the optimum load-side unit can be selected depending on the loads of air-conditioning, refrigeration, and refrigeration, and there is no need to separately install new piping from the heat source unit A to each load-side unit. Since only the load side unit needs to be connected by piping from E, the amount of piping used can be reduced. Moreover, according to the refrigerating and air-conditioning apparatus 100, by using a combined air conditioning system capable of performing a cooling load and a heating load at the same time, a refrigerating / refrigeration load can be provided simultaneously with the air conditioning load using a two-way refrigeration cycle. . Therefore, according to the refrigeration air conditioner 100, a stable heat source can be supplied throughout the year. Furthermore, according to the refrigerating and air-conditioning apparatus 100, heat can be recovered by the load side unit throughout the year, so that energy saving operation can be realized.

実施の形態2.
図3は、本発明の実施の形態2に係る冷凍空調装置100aの冷媒回路構成の一例を示す冷媒回路図である。図3に基づいて、冷暖同時運転で熱を回収するタイプの冷凍空調装置100aの冷媒回路構成について説明する。この冷凍空調装置100aは、実施の形態1に係る冷凍空調装置100と同様にビルやマンション、ホテル等に設置され、冷媒を循環させる冷凍サイクルを利用することで空調負荷及び冷蔵・冷凍負荷を同時に供給できるものである。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 2. FIG.
FIG. 3 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of the refrigerating and air-conditioning apparatus 100a according to Embodiment 2 of the present invention. Based on FIG. 3, a refrigerant circuit configuration of a type of refrigerating and air-conditioning apparatus 100a that recovers heat by simultaneous cooling and heating operation will be described. This refrigeration air conditioner 100a is installed in a building, condominium, hotel, etc., similarly to the refrigeration air conditioner 100 according to the first embodiment. By using a refrigeration cycle that circulates refrigerant, the air conditioning load and the refrigeration / refrigeration load are simultaneously applied. It can be supplied. In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.

実施の形態1では、冷蔵・冷凍用ブースターユニットDと冷蔵・冷凍ユニットFとを別筐体とし、それらを配管で接続した構成を例に示したが、実施の形態2では、冷蔵・冷凍用ブースターユニットと冷蔵・冷凍ユニットとを同一の筐体(図3に示すユニットG)とした構成を例に示している。冷蔵・冷凍用ブースターユニットと冷蔵・冷凍ユニットとを同一のユニットGとすることにより、配管の更なる節約になるとともに、トータルでのユニット設置面積や製造コストの低下に寄与することもできる。   In the first embodiment, a configuration in which the refrigeration / freezing booster unit D and the refrigeration / freezing unit F are separated from each other and connected by piping is shown as an example. In the second embodiment, the refrigeration / freezing unit F is used. A configuration in which the booster unit and the refrigeration / freezing unit are the same casing (unit G shown in FIG. 3) is shown as an example. By making the refrigeration / refrigeration booster unit and the refrigeration / refrigeration unit the same unit G, the piping can be further saved, and the total unit installation area and manufacturing cost can be reduced.

実施の形態3.
図4は、本発明の実施の形態3に係る冷凍空調装置100bの冷媒回路構成の一例を示す冷媒回路図である。図4に基づいて、冷暖同時運転で熱を回収するタイプの冷凍空調装置100bの冷媒回路構成及び動作について説明する。この冷凍空調装置100bは、実施の形態1に係る冷凍空調装置100と同様にビルやマンション、ホテル等に設置され、冷媒を循環させる冷凍サイクルを利用することで空調負荷、給湯負荷及び冷蔵・冷凍負荷を同時に供給できるものである。なお、実施の形態3では実施の形態1及び実施の形態2との相違点を中心に説明し、実施の形態1及び実施の形態2と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 3 FIG.
FIG. 4 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of the refrigerating and air-conditioning apparatus 100b according to Embodiment 3 of the present invention. Based on FIG. 4, the refrigerant circuit configuration and operation of a refrigerating and air-conditioning apparatus 100b of a type that recovers heat by simultaneous cooling and heating operation will be described. This refrigeration air conditioner 100b is installed in a building, condominium, hotel, etc., similar to the refrigeration air conditioner 100 according to the first embodiment, and uses a refrigeration cycle that circulates the refrigerant to thereby provide air conditioning load, hot water supply load, and refrigeration / refrigeration. The load can be supplied simultaneously. In the third embodiment, differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals and the description thereof will be omitted. It shall be.

実施の形態3に係る冷凍空調装置100bは、実施の形態1又は実施の形態2に係る冷凍空調装置に給湯システムを追加した構成をしている。すなわち、冷凍空調装置100bは、空調用冷凍サイクル1、冷蔵・冷凍用冷凍サイクル2だけでなく、給湯用冷凍サイクル3及び給湯負荷側サイクル4を有している。空調用冷凍サイクル1と給湯用冷凍サイクル3とは、冷媒−冷媒熱交換器141で互いの冷媒が混ざることなく熱交換を行なうように構成されている。また、給湯用冷凍サイクル3と給湯負荷側サイクル4とは、熱媒体−冷媒熱交換器143で冷媒と熱媒体(たとえば、水や不凍液等)とが混ざることなく熱交換を行なうように構成されている。なお、給湯用冷凍サイクル3を循環する冷媒を給湯用冷媒と称する。   The refrigeration air conditioner 100b according to Embodiment 3 has a configuration in which a hot water supply system is added to the refrigeration air conditioner according to Embodiment 1 or Embodiment 2. That is, the refrigerating and air-conditioning apparatus 100b includes not only the air conditioning refrigeration cycle 1 and the refrigeration / refrigeration refrigeration cycle 2, but also the hot water supply refrigeration cycle 3 and the hot water supply load side cycle 4. The refrigeration cycle 1 for air conditioning and the refrigeration cycle 3 for hot water supply are configured to perform heat exchange in the refrigerant-refrigerant heat exchanger 141 without mixing the refrigerants. The hot water supply refrigeration cycle 3 and the hot water supply load side cycle 4 are configured to perform heat exchange in the heat medium-refrigerant heat exchanger 143 without mixing the refrigerant and the heat medium (for example, water or antifreeze liquid). ing. The refrigerant circulating in the hot water supply refrigeration cycle 3 is referred to as hot water supply refrigerant.

[給湯用冷凍サイクル3]
給湯用冷凍サイクル3は、給湯用ブースターユニットHに搭載されている給湯用圧縮機140と、熱媒体−冷媒熱交換器143の給湯用冷媒側と、給湯用絞り手段142と、冷媒−冷媒熱交換器141の給湯用冷媒側と、が直列に配管接続されることで構成されている。この給湯用冷凍サイクル3は、熱源機Aからの温熱を冷媒−冷媒熱交換器141を介して給湯用ユニットIに供給する機能を有している。なお、給湯用ブースターユニットHは、室内機や冷蔵・冷凍用ブースターユニットDと同様に熱源機Aに対して並列に接続されて搭載されている。したがって、中継機Eにより、一次側冷媒の流れが切り換えられ、給湯用ブースターユニットHとしての機能を発揮させるようになっている。
[Refrigeration cycle 3 for hot water supply]
The hot water supply refrigeration cycle 3 includes a hot water supply compressor 140 mounted on the hot water supply booster unit H, a hot water supply refrigerant side of the heat medium-refrigerant heat exchanger 143, a hot water supply throttle means 142, and refrigerant-refrigerant heat. The hot water supply refrigerant side of the exchanger 141 is connected by piping in series. The hot water supply refrigeration cycle 3 has a function of supplying the hot heat from the heat source unit A to the hot water supply unit I via the refrigerant-refrigerant heat exchanger 141. The hot water supply booster unit H is connected and mounted in parallel to the heat source device A in the same manner as the indoor unit and the refrigeration / freezing booster unit D. Therefore, the flow of the primary-side refrigerant is switched by the relay machine E, and the function as the hot water supply booster unit H is exhibited.

[給湯負荷側サイクル4]
給湯負荷側サイクル4は、給湯用ユニットIに搭載されている水循環用ポンプ144と、熱媒体−冷媒熱交換器143の熱媒体側と、貯湯タンク145と、が直列に配管接続されることで構成されている。この給湯負荷側サイクル4は、給湯用ブースターユニットHの熱媒体−冷媒熱交換器143を介して伝達された温熱で貯湯タンク145に蓄える水を湯に沸き上げる機能を有している。
[Hot water supply load cycle 4]
In the hot water supply load side cycle 4, the water circulation pump 144 mounted in the hot water supply unit I, the heat medium side of the heat medium-refrigerant heat exchanger 143, and the hot water storage tank 145 are connected in series by piping. It is configured. The hot water supply load side cycle 4 has a function of boiling water stored in the hot water storage tank 145 into hot water with the heat transmitted via the heat medium-refrigerant heat exchanger 143 of the hot water supply booster unit H.

{給湯用ブースターユニットH}
給湯用ブースターユニットHは、熱源機Aからの温熱を冷媒−冷媒熱交換器141を介して給湯用冷凍サイクル3に伝達する機能を有している。給湯用ブースターユニットHの一次側には、絞り手段120と、冷媒−冷媒熱交換器141とが、直列に接続されている。また、給湯用ブースターユニットHの二次側(給湯側)には、給湯用圧縮機140と、熱媒体−冷媒熱交換器143の給湯用冷媒側と、給湯用絞り手段142と、冷媒−冷媒熱交換器141の給湯用冷媒側と、が直列に接続されている。空調用冷凍サイクル1と給湯用冷凍サイクル3は、冷媒−冷媒熱交換器141でカスケード接続されている。すなわち、冷媒−冷媒熱交換器141は、一次側冷媒と、給湯用冷媒と、の間で熱交換を行なうものである。
{Booster unit H for hot water supply}
The hot water supply booster unit H has a function of transmitting the heat from the heat source device A to the hot water supply refrigeration cycle 3 via the refrigerant-refrigerant heat exchanger 141. On the primary side of the hot water supply booster unit H, a throttle means 120 and a refrigerant-refrigerant heat exchanger 141 are connected in series. Further, on the secondary side (hot water supply side) of the hot water supply booster unit H, the hot water supply compressor 140, the hot water supply refrigerant side of the heat medium-refrigerant heat exchanger 143, the hot water supply throttle means 142, and the refrigerant-refrigerant. The hot water supply refrigerant side of the heat exchanger 141 is connected in series. The refrigeration cycle 1 for air conditioning and the refrigeration cycle 3 for hot water supply are cascade-connected by a refrigerant-refrigerant heat exchanger 141. That is, the refrigerant-refrigerant heat exchanger 141 performs heat exchange between the primary side refrigerant and the hot water supply refrigerant.

絞り手段120は、空調用絞り手段117と同様に、減圧弁や膨張弁としての機能を有し、一次側冷媒を減圧して膨張させるものである。この絞り手段120は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒−冷媒熱交換器141は、放熱器(凝縮器)や蒸発器として機能し、給湯用冷凍サイクル3を循環する給湯用冷媒と、空調用冷凍サイクル1を循環する一次側冷媒との、間で熱交換を行なうものである。なお、便宜的に、中継機Eから冷媒−冷媒熱交換器141に接続している配管を接続配管14aと、中継機Eから絞り手段120に接続している接続配管を接続配管15aと称する。   Similar to the air conditioning throttle means 117, the throttle means 120 functions as a pressure reducing valve and an expansion valve, and expands the primary refrigerant by reducing the pressure. The throttling means 120 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. The refrigerant-refrigerant heat exchanger 141 functions as a radiator (condenser) or an evaporator, and is provided between a hot water supply refrigerant that circulates in the hot water supply refrigeration cycle 3 and a primary refrigerant that circulates in the air conditioning refrigeration cycle 1. Heat exchange. For convenience, the pipe connecting the relay E to the refrigerant-refrigerant heat exchanger 141 is referred to as a connection pipe 14a, and the connection pipe connecting the relay E to the throttle means 120 is referred to as a connection pipe 15a.

給湯用圧縮機140は、給湯用冷媒を吸入し、その給湯用冷媒を圧縮して高温・高圧の状態にするものである。この給湯用圧縮機140は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、給湯用圧縮機140は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して給湯用圧縮機140を構成することができる。   The hot water supply compressor 140 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant into a high temperature and high pressure state. The hot water supply compressor 140 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed. The hot water supply compressor 140 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, the hot water supply compressor 140 can be configured using various types such as reciprocating, rotary, scroll, or screw.

熱媒体−冷媒熱交換器143は、給湯用冷凍サイクル3を循環する給湯用冷媒と、給湯負荷側サイクルを循環する熱媒体との、間で熱交換を行なうものである。つまり、給湯用冷凍サイクル3と給湯負荷側サイクルとは、熱媒体−冷媒熱交換器143を介してカスケード接続されている。給湯用絞り手段142は、減圧弁や膨張弁として機能し、給湯用冷媒を減圧して膨張させるものである。この給湯用絞り手段142は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。   The heat medium-refrigerant heat exchanger 143 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 3 and the heat medium circulating in the hot water supply load side cycle. That is, the hot water supply refrigeration cycle 3 and the hot water supply load side cycle are cascade-connected via the heat medium-refrigerant heat exchanger 143. The hot water supply throttling means 142 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the hot water supply refrigerant. The hot water supply throttling means 142 may be configured by a controllable opening degree such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.

なお、給湯用冷凍サイクル3を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。   The type of refrigerant circulating in the hot water supply refrigeration cycle 3 is not particularly limited. For example, natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.

{給湯用ユニットI}
給湯用ユニットIは、給湯用ブースターユニットHから供給される温熱によって水が湯に沸き上げられるものである。給湯用ユニットIには、水循環用ポンプ144と、熱媒体−冷媒熱交換器143の熱媒体側と、貯湯タンク145と、が直列に接続されている。つまり、給湯用ユニットIは、水循環用ポンプ144、熱媒体−冷媒熱交換器143、及び、貯湯タンク145が接続されて給湯負荷側サイクル4を構成し、これに熱媒体を循環させることで成立している。なお、給湯負荷側サイクル4の配管は、たとえば銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成されている。
{Hot water supply unit I}
In the hot water supply unit I, water is heated to hot water by the hot heat supplied from the hot water supply booster unit H. In the hot water supply unit I, a water circulation pump 144, a heat medium side of the heat medium-refrigerant heat exchanger 143, and a hot water storage tank 145 are connected in series. That is, the hot water supply unit I is formed by connecting the water circulation pump 144, the heat medium-refrigerant heat exchanger 143, and the hot water storage tank 145 to constitute the hot water supply load side cycle 4, and circulating the heat medium therethrough. doing. In addition, the piping of the hot water supply load side cycle 4 is constituted by, for example, a copper tube, a stainless tube, a steel tube, a vinyl chloride piping, or the like.

水循環用ポンプ144は、貯湯タンク145に蓄えられている水を吸入し、その水を加圧し、給湯負荷側サイクル4内を循環させるものであり、たとえばインバーターにより回転数が制御されるタイプのもので構成するとよい。熱媒体−冷媒熱交換器143は、上述したように、給湯負荷側サイクル4を循環する熱媒体と、給湯用冷凍サイクル3を循環する給湯用冷媒との、間で熱交換を行なうものである。貯湯タンク145は、熱媒体−冷媒熱交換器143で加熱された水を貯えておくものである。   The water circulation pump 144 sucks the water stored in the hot water storage tank 145, pressurizes the water, and circulates it in the hot water supply load side cycle 4. For example, the rotation speed is controlled by an inverter. It is good to comprise. As described above, the heat medium-refrigerant heat exchanger 143 performs heat exchange between the heat medium circulating in the hot water supply load side cycle 4 and the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 3. . The hot water storage tank 145 stores water heated by the heat medium-refrigerant heat exchanger 143.

一般的に、夏季でも給湯負荷の需要があり、冬季でも冷蔵・冷凍負荷の需要がある。このため、冷凍空調装置100bでは、給湯用ブースターユニットHと、冷蔵・冷凍用ブースターユニットDと、を同一システムに組み込むことで、年間を通して冷却負荷(冷房負荷、冷蔵・冷凍負荷)と加熱負荷(暖房負荷、給湯負荷)とが同時に利用される機会を増やし、熱回収による省エネ効果の増大を期待したものとなっている。   In general, there is a demand for hot water supply load even in summer, and there is a demand for refrigeration / freezing load in winter. For this reason, in the refrigerating and air-conditioning apparatus 100b, the hot water supply booster unit H and the refrigeration / refrigeration booster unit D are incorporated in the same system, so that the cooling load (cooling load, refrigeration / refrigeration load) and heating load ( The heating load and the hot water supply load) are increased at the same time, and the energy saving effect by heat recovery is expected to increase.

ここで、給湯用冷凍サイクル3での給湯用冷媒の流れについて説明する。なお、冷凍空調装置100bにおける熱源機A、室内機、冷蔵・冷凍ユニットF、及び、中継機Eの動作、一次側冷媒の流れは、実施の形態1及び実施の形態2と同様である。また、中継機Eから給湯用ブースターユニットHへ流れる一次側冷媒の流れは、中継機Eから暖房室内機Cへ流れる一次側冷媒の流れと同様であり、高温の冷媒ガスは、弁手段109aを導通し、冷媒−冷媒熱交換器141にて放熱し、絞り手段119を通って、第1会合部115にて合流することになる。   Here, the flow of the hot water supply refrigerant in the hot water supply refrigeration cycle 3 will be described. The operations of the heat source unit A, the indoor unit, the refrigeration / refrigeration unit F, the relay unit E, and the flow of the primary refrigerant in the refrigeration air conditioner 100b are the same as those in the first and second embodiments. The flow of the primary refrigerant flowing from the relay E to the hot water supply booster unit H is the same as the flow of the primary refrigerant flowing from the relay E to the heating indoor unit C, and the high-temperature refrigerant gas passes through the valve means 109a. Conduction is conducted, heat is radiated by the refrigerant-refrigerant heat exchanger 141, passes through the throttle means 119, and merges at the first meeting part 115.

給湯用ブースターユニットHにおいて、給湯用圧縮機140で高温・高圧にされた給湯用冷媒は、給湯用圧縮機140から吐出して、熱媒体−冷媒熱交換器143に流入する。この熱媒体−冷媒熱交換器143では、流入した給湯用冷媒が、給湯負荷側サイクル4を循環している熱媒体を加熱することで放熱する。この給湯用冷媒は、給湯用絞り手段142で膨張される。膨張された給湯用冷媒は、冷媒−冷媒熱交換器141で、空調用冷凍サイクル1を一次側冷媒から受熱して蒸発し、給湯用圧縮機140へ戻る。   In the hot water supply booster unit H, the hot water supply refrigerant heated to a high temperature and high pressure by the hot water supply compressor 140 is discharged from the hot water supply compressor 140 and flows into the heat medium-refrigerant heat exchanger 143. In the heat medium-refrigerant heat exchanger 143, the flowing hot water supply refrigerant dissipates heat by heating the heat medium circulating in the hot water supply load side cycle 4. The hot water supply refrigerant is expanded by the hot water supply throttle means 142. The expanded hot water supply refrigerant receives the air-conditioning refrigeration cycle 1 from the primary refrigerant in the refrigerant-refrigerant heat exchanger 141, evaporates, and returns to the hot water supply compressor 140.

なお、給湯用冷凍サイクル3を循環する二次側冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。また、空調用冷凍サイクル1と給湯用冷凍サイクル3とは、それぞれ独立した冷媒回路構成になっているため、各冷媒回路を循環させる冷媒を同じ種類のものとしてもよいし、別の種類のものとしてもよい。つまり、各冷媒回路の冷媒は、それぞれ混ざることなく冷媒−冷媒熱交換器141にて互いに熱交換するように流れている。   In addition, the kind of secondary side refrigerant | coolant which circulates through the refrigerating cycle 3 for hot water supply is not specifically limited, For example, natural refrigerants, such as a carbon dioxide, a hydrocarbon, and helium, alternative refrigerant | coolants which do not contain chlorine, such as HFC410A, HFC407C, and HFC404A Alternatively, any of CFC-based refrigerants such as R22 and R134a used in existing products may be used. In addition, since the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 3 have independent refrigerant circuit configurations, the refrigerant circulating through each refrigerant circuit may be the same type or different types. It is good. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 141 without being mixed.

以上のように、冷凍空調装置100bでは、給湯負荷系統を二元サイクルで構成しているため、高温の給湯需要(たとえば、80℃)を提供する場合に、給湯用冷凍サイクル3の放熱器の温度を高温(たとえば、凝縮温度85℃)にすればよく、他に暖房負荷がある場合に、暖房室内機Cの凝縮温度(たとえば、50℃)までも増加させずに済むので、省エネとなる。また、たとえば夏季の空調冷房運転中に高温の給湯需要があった場合、従来はボイラーなどによって提供する必要があったが、従来大気中に排出していた温熱を回収し、再利用して給湯を行なうので、システムCOPが大幅に向上し、省エネとなる。   As described above, in the refrigerating and air-conditioning apparatus 100b, the hot water supply load system is configured in a two-way cycle. Therefore, when providing hot water supply demand (for example, 80 ° C.), the radiator of the refrigeration cycle 3 for hot water supply is provided. What is necessary is just to make temperature high (for example, condensing temperature 85 degreeC), and when there is another heating load, since it is not necessary to increase even to the condensing temperature (for example, 50 degreeC) of the heating indoor unit C, it becomes energy saving. . Also, for example, when there was a demand for hot water supply during the air conditioning and cooling operation in summer, it was necessary to provide it with a boiler, etc., but it was necessary to collect hot water that had been discharged into the atmosphere and reuse it. Therefore, the system COP is greatly improved and energy is saved.

次に、給湯負荷側サイクル4を流れる熱媒体(ここでは水)の流れについて説明する。
貯湯タンク145に蓄えられている比較的低温な水は、水循環用ポンプ144によって貯湯タンク145の底部から引き出されるとともに加圧される。水循環用ポンプ144で加圧された水は、熱媒体−冷媒熱交換器143に流入し、この熱媒体−冷媒熱交換器143で給湯用冷凍サイクル3を循環している給湯用冷媒から受熱する。すなわち、熱媒体−冷媒熱交換器143に流入した水は、給湯用冷凍サイクル3を循環している給湯用冷媒によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク145の比較的高温な上部へ戻り、この貯湯タンク145に蓄えられることになる。
Next, the flow of the heat medium (water here) flowing through the hot water supply load side cycle 4 will be described.
The relatively low temperature water stored in the hot water storage tank 145 is drawn out from the bottom of the hot water storage tank 145 and pressurized by the water circulation pump 144. The water pressurized by the water circulation pump 144 flows into the heat medium-refrigerant heat exchanger 143 and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 3 by the heat medium-refrigerant heat exchanger 143. . That is, the water flowing into the heat medium-refrigerant heat exchanger 143 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 3, and the temperature rises. Then, the boiled water returns to a relatively hot upper portion of the hot water storage tank 145 and is stored in the hot water storage tank 145.

また、空調用冷凍サイクル1において余剰冷媒を受液器(アキュムレーター104)によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵するようにすれば、アキュムレーター104を取り除いてもよい。さらに、図4では、冷房室内機Bと暖房室内機Cとが2台接続されている状態を例に示しているが、冷房室内機Bを0台もしくは3台以上、暖房室内機Cを0台、1台もしくは3台以上接続するようにしてもよい。   Moreover, although the case where the excess refrigerant | coolant was stored by the liquid receiver (accumulator 104) in the refrigerating cycle 1 for an air conditioning was shown, it is not restricted to this, It is stored with the heat exchanger used as a heat radiator in a refrigerating cycle. In this case, the accumulator 104 may be removed. Further, FIG. 4 shows an example in which two cooling indoor units B and two heating indoor units C are connected, but 0 or 3 or more cooling indoor units B and 0 heating indoor unit C are set. One unit or three or more units may be connected.

さらに、図4では給湯用ブースターユニットHと給湯用ユニットIとがともに1台接続されている状態を例に示しているが、接続台数を限定するものではない。たとえば、給湯用ブースターユニットHを2台以上接続するようにしてもよいし、給湯用ユニットIを2台以上接続するようにしてもよい。また、冷蔵・冷凍用ブースターユニットDと冷蔵・冷凍ユニットFとがともに1台接続されている状態を例に示しているが、接続台数を限定するものではない。たとえば、冷蔵・冷凍用ブースターユニットDを2台以上接続するようにしてもよいし、冷蔵・冷凍ユニットFを2台以上接続するようにしてもよい。そして、搭載されている各室内機や各ブースターユニットの容量は、全部を同一としてもよく、大から小まで異なるようにしてもよい。   Further, FIG. 4 shows an example in which one hot water supply booster unit H and one hot water supply unit I are connected, but the number of connected units is not limited. For example, two or more hot water supply booster units H may be connected, or two or more hot water supply units I may be connected. Moreover, although the state in which one refrigeration / freezing booster unit D and one refrigeration / freezing unit F are connected is shown as an example, the number of connected units is not limited. For example, two or more refrigeration / freezing booster units D may be connected, or two or more refrigeration / freezing units F may be connected. And the capacity | capacitance of each installed indoor unit and each booster unit may be made the same, and may be made to differ from large to small.

実施の形態4.
図5は、本発明の実施の形態4に係る冷凍空調装置100cの冷媒回路構成の一例を示す冷媒回路図である。図5に基づいて、冷凍空調装置100cの冷媒回路構成及び動作について説明する。この冷凍空調装置100cは、実施の形態1に係る冷凍空調装置100と同様にビルやマンション、ホテル等に設置され、冷媒を循環させる冷凍サイクルを利用することで冷房負荷及び冷蔵・冷凍負荷を同時に供給できるものである。なお、実施の形態4では実施の形態1〜実施の形態3との相違点を中心に説明し、実施の形態1〜実施の形態3と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 4 FIG.
FIG. 5 is a refrigerant circuit diagram illustrating an example of a refrigerant circuit configuration of the refrigerating and air-conditioning apparatus 100c according to Embodiment 4 of the present invention. Based on FIG. 5, the refrigerant circuit configuration and operation of the refrigerating and air-conditioning apparatus 100c will be described. This refrigeration air conditioner 100c is installed in a building, condominium, hotel, etc., similarly to the refrigeration air conditioner 100 according to the first embodiment, and uses a refrigeration cycle that circulates the refrigerant, thereby simultaneously adjusting the cooling load and the refrigeration / refrigeration load. It can be supplied. In the fourth embodiment, differences from the first to third embodiments will be mainly described, and the same parts as those in the first to third embodiments will be denoted by the same reference numerals and the description thereof will be omitted. It shall be.

実施の形態1〜実施の形態3に係る冷凍空調装置では、熱源機Aと各負荷側ユニットとの間に中継機Eを介在させて冷暖同時運転が可能なシステムについて説明したが、実施の形態4に係る冷凍空調装置100cでは、図5に示すような冷房専用タイプのシステムについて説明する。   In the refrigerating and air-conditioning apparatus according to the first to third embodiments, the system has been described in which the relay device E is interposed between the heat source unit A and each load-side unit and the cooling and heating simultaneous operation is possible. In the refrigerating and air-conditioning apparatus 100c according to No. 4, a cooling only type system as shown in FIG. 5 will be described.

実施の形態4に係る冷凍空調装置100cは、空調用冷凍サイクル1cと、冷蔵・冷凍用冷凍サイクル2cと、を少なくとも有している。空調用冷凍サイクル1cと冷蔵・冷凍用冷凍サイクル2cとは、冷媒−冷媒熱交換器131cで互いの冷媒が混ざることなく熱交換を行なうように構成されている。なお、空調用冷凍サイクル1cを循環する冷媒を一次側冷媒と、冷蔵・冷凍用冷凍サイクル2cを循環する冷媒を二次側冷媒と、それぞれ称する。   The refrigerating and air-conditioning apparatus 100c according to Embodiment 4 includes at least an air-conditioning refrigeration cycle 1c and a refrigeration / freezing refrigeration cycle 2c. The air-conditioning refrigeration cycle 1c and the refrigeration / refrigeration refrigeration cycle 2c are configured to perform heat exchange in the refrigerant-refrigerant heat exchanger 131c without mixing the refrigerants. In addition, the refrigerant | coolant which circulates through the refrigerating cycle 1c for an air conditioning is called a primary side refrigerant | coolant, and the refrigerant | coolant which circulates through the refrigerating / refrigeration cycle 2c is respectively called a secondary side refrigerant | coolant.

[空調用冷凍サイクル1c]
空調用冷凍サイクル1は、熱源機Acと、たとえば冷房負荷を担当する室内機Bc(以下、冷房室内機Bcと称する)と、冷蔵・冷凍用冷凍サイクル2cの熱源となる冷蔵・冷凍用ブースターユニットDc(詳しくは冷媒−冷媒熱交換器131cの一次側)と、によって構成されている。
[Refrigeration cycle 1c for air conditioning]
The air-conditioning refrigeration cycle 1 includes a heat source unit Ac, an indoor unit Bc in charge of a cooling load (hereinafter referred to as a cooling indoor unit Bc), and a refrigeration / freezing booster unit serving as a heat source for the refrigeration / freezing refrigeration cycle 2c. Dc (specifically, the primary side of the refrigerant-refrigerant heat exchanger 131c).

図5に示すように、冷房室内機Bc、及び冷蔵・冷凍用ブースターユニットDcの空調用冷凍サイクル1側は、熱源機Acに対して並列となるように接続されている。なお、冷蔵・冷凍用ブースターユニットDcの空調用冷凍サイクル1c側を冷蔵・冷凍用ブースターユニットDcの一次側と、冷蔵・冷凍用冷凍サイクル2c側を冷蔵・冷凍用ブースターユニットDcの二次側と、それぞれ称する。   As shown in FIG. 5, the air conditioning refrigeration cycle 1 side of the cooling indoor unit Bc and the refrigeration / freezing booster unit Dc are connected in parallel to the heat source unit Ac. Note that the refrigeration / freezing booster unit Dc side of the refrigeration / freezing booster unit Dc is the primary side of the refrigeration / freezing booster unit Dc, and the refrigeration / refrigeration booster unit 2c side is the secondary side of the refrigeration / refrigeration booster unit Dc. , Respectively.

{熱源機Ac}
熱源機Acは、冷房室内機B、及び冷蔵・冷凍用ブースターユニットDcの一次側に冷熱を供給する機能を有している。この熱源機Acには、空調用圧縮機101cと、室外熱交換器(熱源側熱交換器)103cと、アキュムレーター104cとが直列に配管接続されて搭載されている。なお、熱源機Acには、室外熱交換器103に空気を供給するためのファン等の送風機を室外熱交換器103の近傍位置に設けるとよい。
{Heat source machine Ac}
The heat source unit Ac has a function of supplying cold heat to the primary side of the cooling indoor unit B and the refrigeration / freezing booster unit Dc. In this heat source unit Ac, an air conditioning compressor 101c, an outdoor heat exchanger (heat source side heat exchanger) 103c, and an accumulator 104c are serially connected by piping. The heat source unit Ac may be provided with a blower such as a fan for supplying air to the outdoor heat exchanger 103 in the vicinity of the outdoor heat exchanger 103.

空調用圧縮機101cは、一次側冷媒を吸入し、その一次側冷媒を圧縮して高温・高圧の状態にするものである。室外熱交換器103cは、放熱器(凝縮器)として機能し、図示省略の送風機から供給される空気と一次側冷媒との間で熱交換を行ない、一次側冷媒を凝縮液化するものである。アキュムレーター104cは、空調用圧縮機101cの吸入側に配置され、過剰な一次側冷媒を貯留するものである。なお、アキュムレーター104cは、過剰な一次側冷媒を貯留できる容器であればよい。   The air-conditioning compressor 101c sucks the primary side refrigerant and compresses the primary side refrigerant to bring it into a high temperature / high pressure state. The outdoor heat exchanger 103c functions as a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the primary refrigerant, and condenses and liquefies the primary refrigerant. The accumulator 104c is disposed on the suction side of the air-conditioning compressor 101c and stores excess primary refrigerant. In addition, the accumulator 104c should just be a container which can store an excess primary side refrigerant | coolant.

[冷房室内機Bc]
冷房室内機Bcは、熱源機Acからの冷熱又は温熱の供給を受けて冷房負荷を担当する機能を有している。冷房室内機Bcには、空調用絞り手段117cと、室内熱交換器(利用側熱交換器)118cとが、直列に接続されて搭載されている。なお、図5では、冷房室内機Bが2台接続されている状態を例に示している。また、冷房室内機Bcには、室内熱交換器118cに空気を供給するためのファン等の送風機を室内熱交換器118cの近傍に設けるとよい。
[Cooling indoor unit Bc]
The cooling indoor unit Bc has a function of receiving cooling heat or heat supply from the heat source unit Ac and taking charge of a cooling load. The cooling indoor unit Bc is equipped with an air conditioning throttle means 117c and an indoor heat exchanger (use side heat exchanger) 118c connected in series. FIG. 5 shows an example in which two cooling indoor units B are connected. The cooling indoor unit Bc may be provided with a blower such as a fan for supplying air to the indoor heat exchanger 118c in the vicinity of the indoor heat exchanger 118c.

空調用絞り手段117cは、減圧弁や膨張弁としての機能を有し、一次側冷媒を減圧して膨張させるものである。この空調用絞り手段117cは、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。室内熱交換器118cは、蒸発器として機能し、図示省略の送風機から供給される空気と一次側冷媒との間で熱交換を行ない、一次側冷媒を蒸発ガス化するものである。   The air-conditioning throttle means 117c functions as a pressure reducing valve or an expansion valve, and decompresses the primary side refrigerant to expand it. The air-conditioning throttle means 117c may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. The indoor heat exchanger 118c functions as an evaporator, performs heat exchange between air supplied from a blower (not shown) and the primary side refrigerant, and evaporates the primary side refrigerant.

{冷蔵・冷凍用ブースターユニットDc}
冷蔵・冷凍用ブースターユニットDcは、熱源機Acからの冷熱を冷媒−冷媒熱交換器131cを介して冷蔵・冷凍用冷凍サイクル2cに伝達する機能を有している。冷蔵・冷凍用ブースターユニットDcの一次側には、絞り手段119cと、冷媒−冷媒熱交換器131cとが、直列に接続されている。空調用冷凍サイクル1cと冷蔵・冷凍用冷凍サイクル2cとは、冷媒−冷媒熱交換器131cでカスケード接続されている。すなわち、冷媒−冷媒熱交換器131cは、一次側冷媒と、二次側冷媒と、の間で熱交換を行なうものである。
{Refrigerator / Freezer Booster Unit Dc}
The refrigeration / freezing booster unit Dc has a function of transmitting cold heat from the heat source unit Ac to the refrigeration / freezing refrigeration cycle 2c via the refrigerant-refrigerant heat exchanger 131c. An expansion means 119c and a refrigerant-refrigerant heat exchanger 131c are connected in series to the primary side of the refrigeration / freezing booster unit Dc. The refrigeration cycle 1c for air conditioning and the refrigeration cycle 2c for refrigeration / refrigeration are cascade-connected by a refrigerant-refrigerant heat exchanger 131c. That is, the refrigerant-refrigerant heat exchanger 131c performs heat exchange between the primary side refrigerant and the secondary side refrigerant.

絞り手段119cは、空調用絞り手段117cと同様に、減圧弁や膨張弁としての機能を有し、一次側冷媒を減圧して膨張させるものである。この絞り手段119cは、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒−冷媒熱交換器131cは、蒸発器として機能し、冷蔵・冷凍用冷凍サイクル2cを循環する二次側冷媒と、空調用冷凍サイクル1cを循環する一次側冷媒との、間で熱交換を行なうものである。   The throttle means 119c has a function as a pressure reducing valve or an expansion valve like the air conditioning throttle means 117c, and decompresses the primary side refrigerant to expand it. The throttling means 119c may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like. The refrigerant-refrigerant heat exchanger 131c functions as an evaporator, and exchanges heat between the secondary side refrigerant circulating in the refrigeration / refrigeration refrigeration cycle 2c and the primary side refrigerant circulating in the air conditioning refrigeration cycle 1c. To do.

以上のように、空調用冷凍サイクル1cは、空調用圧縮機101c、室外熱交換器103c、空調用絞り手段117c、室内熱交換器118c、アキュムレーター104cが直列に接続され、空調用圧縮機101c、室外熱交換器103c、絞り手段119c、冷媒−冷媒熱交換器131c、アキュムレーター104cが直列に接続されており、これらに冷媒を循環させることで成立している。   As described above, in the air conditioning refrigeration cycle 1c, the air conditioning compressor 101c, the outdoor heat exchanger 103c, the air conditioning throttle means 117c, the indoor heat exchanger 118c, and the accumulator 104c are connected in series, and the air conditioning compressor 101c. The outdoor heat exchanger 103c, the throttle means 119c, the refrigerant-refrigerant heat exchanger 131c, and the accumulator 104c are connected in series, and this is established by circulating the refrigerant through them.

なお、空調用圧縮機101cは、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して空調用圧縮機101cを構成することができる。この空調用圧縮機101cは、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。   The air-conditioning compressor 101c is not particularly limited as long as it can compress the sucked refrigerant into a high-pressure state. For example, the air-conditioning compressor 101c can be configured using various types such as reciprocating, rotary, scroll, or screw. The air-conditioning compressor 101c may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed.

また、空調用冷凍サイクル1cを循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素(CO2 )や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。Further, the type of refrigerant circulating in the air-conditioning refrigeration cycle 1c is not particularly limited. For example, natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.

ここで、図5に基づいて冷凍空調装置100cの運転中における空調用冷凍サイクル1cでの一次側冷媒の流れについて説明する。
空調用圧縮機101cで高温・高圧にされたガス状態の一次側冷媒は、空調用圧縮機101cから吐出して、室外熱交換器103cへ流入する。室外熱交換器103cに流入した過熱ガス状態の一次側冷媒は、室外熱交換器103cに供給される空気で冷却され、液化する。この一次側冷媒は、室外熱交換器103cから流出し、高圧側接続配管106cを流れ、冷房室内機Bc及び冷蔵・冷凍用ブースターユニットDcの一次側にそれぞれに分配される。
Here, the flow of the primary-side refrigerant in the air-conditioning refrigeration cycle 1c during operation of the refrigeration air-conditioning apparatus 100c will be described with reference to FIG.
The primary refrigerant in the gas state that has been heated to a high temperature and high pressure by the air conditioning compressor 101c is discharged from the air conditioning compressor 101c and flows into the outdoor heat exchanger 103c. The primary refrigerant in the superheated gas state that has flowed into the outdoor heat exchanger 103c is cooled and liquefied by the air supplied to the outdoor heat exchanger 103c. The primary-side refrigerant flows out of the outdoor heat exchanger 103c, flows through the high-pressure side connection pipe 106c, and is distributed to the primary side of the cooling indoor unit Bc and the refrigeration / freezing booster unit Dc.

冷房室内機Bcに流入した一次側冷媒は、空調用絞り手段117cにて低温・低圧に膨張され、室内熱交換器118cで蒸発し、低圧側接続配管107cに流入する。冷蔵・冷凍用ブースターユニットDcの一次側に流入した一次側冷媒は、絞り手段119cにて低温・低圧に膨張され、冷媒−冷媒熱交換器131cで蒸発し、低圧側接続配管107cに流入する。低圧側接続配管107cを流れる一次側冷媒は、その後、熱源機Aに流入し、アキュムレーター104cを介して空調用圧縮機101cへ戻る。   The primary-side refrigerant that has flowed into the cooling indoor unit Bc is expanded to low temperature and low pressure by the air conditioning throttle means 117c, is evaporated by the indoor heat exchanger 118c, and flows into the low-pressure side connection pipe 107c. The primary-side refrigerant that has flowed into the primary side of the refrigeration / freezing booster unit Dc is expanded to low temperature and low pressure by the throttle means 119c, is evaporated by the refrigerant-refrigerant heat exchanger 131c, and flows into the low-pressure side connection pipe 107c. The primary-side refrigerant flowing through the low-pressure side connection pipe 107c then flows into the heat source unit A and returns to the air conditioning compressor 101c via the accumulator 104c.

[冷蔵・冷凍用冷凍サイクル2c]
冷蔵・冷凍用冷凍サイクル2cは、冷蔵・冷凍用ブースターユニットDc(詳しくは冷媒−冷媒熱交換器131の二次側)と、冷蔵・冷凍ユニットFcと、によって構成されている。つまり、冷蔵・冷凍用冷凍サイクル2cは、冷蔵・冷凍用ブースターユニットDcに搭載されている冷凍用圧縮機130cと、冷媒−冷媒熱交換器131cと、冷凍用絞り手段132cと、冷蔵・冷凍ユニットFcに搭載されている冷凍用熱交換器133cと、が直列に配管接続されることで構成されている。この冷蔵・冷凍用冷凍サイクル2cは、冷蔵・冷凍用ブースターユニットDcに搭載されている冷媒−冷媒熱交換器131cによって空調用冷凍サイクル1cと接続している。
[Refrigeration cycle 2c for refrigeration / freezing]
The refrigeration / refrigeration refrigeration cycle 2c includes a refrigeration / refrigeration booster unit Dc (specifically, a secondary side of the refrigerant-refrigerant heat exchanger 131) and a refrigeration / refrigeration unit Fc. That is, the refrigeration / refrigeration refrigeration cycle 2c includes a refrigeration compressor 130c mounted on the refrigeration / refrigeration booster unit Dc, a refrigerant-refrigerant heat exchanger 131c, a refrigeration throttle means 132c, and a refrigeration / refrigeration unit. The refrigeration heat exchanger 133c mounted on the Fc is connected by pipe connection in series. The refrigeration / refrigeration refrigeration cycle 2c is connected to the air-conditioning refrigeration cycle 1c by a refrigerant-refrigerant heat exchanger 131c mounted on the refrigeration / refrigeration booster unit Dc.

{冷蔵・冷凍用ブースターユニットDc}
上述したように、冷蔵・冷凍用ブースターユニットDcは、熱源機Acからの冷熱を冷媒−冷媒熱交換器131cを介して冷蔵・冷凍用冷凍サイクル2cに伝達する機能を有している。冷蔵・冷凍用ブースターユニットDcの二次側には、冷凍用圧縮機130cと、冷媒−冷媒熱交換器131cの二次側と、冷凍用絞り手段132cと、が直列に接続されている。
{Refrigerator / Freezer Booster Unit Dc}
As described above, the refrigeration / freezing booster unit Dc has a function of transmitting cold heat from the heat source unit Ac to the refrigeration / freezing refrigeration cycle 2c via the refrigerant-refrigerant heat exchanger 131c. On the secondary side of the refrigeration / freezing booster unit Dc, a refrigeration compressor 130c, a secondary side of the refrigerant-refrigerant heat exchanger 131c, and a refrigeration throttle means 132c are connected in series.

冷凍用圧縮機130cは、二次側冷媒を吸入し、その二次側冷媒を圧縮して高温・高圧の状態にするものである。この冷凍用圧縮機130cは、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、冷凍用圧縮機130cは、吸入した二次側冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して冷凍用圧縮機130cを構成することができる。   The refrigeration compressor 130c sucks the secondary side refrigerant and compresses the secondary side refrigerant to bring it into a high temperature / high pressure state. The refrigeration compressor 130c may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed. The refrigeration compressor 130c is not particularly limited as long as it can compress the sucked secondary refrigerant to a high pressure state. For example, the refrigeration compressor 130c can be configured using various types such as reciprocating, rotary, scroll, or screw.

冷媒−冷媒熱交換器131cは、上述したように、空調用冷凍サイクル1cを循環する一次側冷媒と、冷蔵・冷凍用冷凍サイクル2cを循環する二次側冷媒と、の間で熱交換を行なうものである。冷凍用絞り手段132cは、減圧弁や膨張弁としての機能を有し、二次側冷媒を減圧して膨張させるものである。この冷凍用絞り手段132cは、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。   As described above, the refrigerant-refrigerant heat exchanger 131c performs heat exchange between the primary refrigerant circulating in the air-conditioning refrigeration cycle 1c and the secondary refrigerant circulating in the refrigeration / refrigeration cycle 2c. Is. The freezing throttling means 132c has a function as a pressure reducing valve or an expansion valve, and expands the secondary side refrigerant by reducing the pressure. The refrigeration throttle means 132c may be constituted by a variable flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, etc., whose opening degree can be variably controlled.

なお、冷蔵・冷凍用冷凍サイクル2cを循環する二次側冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。   The type of the secondary refrigerant that circulates in the refrigeration / freezing refrigeration cycle 2c is not particularly limited. For example, natural refrigerants such as carbon dioxide, hydrocarbons, and helium, and chlorine such as HFC410A, HFC407C, and HFC404A are not included. Either an alternative refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.

{冷蔵・冷凍ユニットFc}
冷蔵・冷凍ユニットFcは、冷蔵・冷凍用ブースターユニットDcからの冷熱の供給を受けて冷蔵・冷凍負荷を担当する機能を有している。冷蔵・冷凍ユニットFcには、冷凍用熱交換器133cが搭載されている。この冷凍用熱交換器133cは、冷蔵・冷凍用ブースターユニットDcの冷凍用絞り手段132cと冷凍用圧縮機130cとの間に設けられ、蒸発器として機能し、図示省略の送風機から供給される空気と二次側冷媒との間で熱交換を行ない、二次側冷媒を蒸発ガス化するものである。なお、冷蔵・冷凍ユニットFcには、冷凍用熱交換器133cに空気を供給するためのファン等の送風機を冷凍用熱交換器133cの近傍に設けるとよい。
{Refrigerated / Frozen Unit Fc}
The refrigeration / freezing unit Fc has a function of receiving cold heat from the refrigeration / freezing booster unit Dc and taking charge of the refrigeration / freezing load. The refrigeration / freezing unit Fc is equipped with a refrigeration heat exchanger 133c. The refrigeration heat exchanger 133c is provided between the refrigeration throttle means 132c and the refrigeration compressor 130c of the refrigeration / refrigeration booster unit Dc, functions as an evaporator, and is supplied from a blower (not shown). Heat exchange between the secondary refrigerant and the secondary refrigerant to evaporate the secondary refrigerant. In the refrigeration / freezing unit Fc, a fan such as a fan for supplying air to the refrigeration heat exchanger 133c may be provided in the vicinity of the refrigeration heat exchanger 133c.

なお、冷蔵・冷凍用ブースターユニットDc及び冷蔵・冷凍ユニットFc、つまり冷蔵・冷凍用冷凍サイクル2cでの二次側冷媒の流れは、実施の形態1〜実施の形態3で説明した冷蔵・冷凍用ブースターユニットD及び冷蔵・冷凍ユニットF、つまり冷蔵・冷凍用冷凍サイクル2での二次側冷媒の流れと同様である。   The flow of the secondary refrigerant in the refrigeration / freezing booster unit Dc and the refrigeration / freezing unit Fc, that is, the refrigeration / freezing refrigeration cycle 2c, is the same as that for the refrigeration / freezing described in the first to third embodiments. This is the same as the flow of the secondary refrigerant in the booster unit D and the refrigeration / refrigeration unit F, that is, the refrigeration / refrigeration cycle 2.

このような構成の冷凍空調装置100cは、たとえば年間を通して比較的温暖な気候の南国地方での用途を想定したものであり、年間を通して冷房負荷があり、暖房負荷のない場合に有効である。したがって、冷凍空調装置100cによれば、空調負荷(冷房負荷)、冷蔵・冷凍負荷のそれぞれによって最適な負荷側ユニットを選定でき、また、空調負荷と冷蔵・冷凍負荷の熱源を1つのユニット(熱源機A)とすることで据付スペースを縮小することができる。   The refrigerating and air-conditioning apparatus 100c having such a configuration is assumed to be used in a southern region with a relatively warm climate throughout the year, for example, and is effective when there is a cooling load and no heating load throughout the year. Therefore, according to the refrigerating and air-conditioning apparatus 100c, an optimum load-side unit can be selected depending on each of the air-conditioning load (cooling load) and the refrigeration / refrigeration load. By using the machine A), the installation space can be reduced.

なお、本発明に係る冷凍空調装置を実施の形態に分けて説明したが、各実施の形態の特徴事項を適宜組み合わせて冷凍空調装置を構成するようにしてもよい。各実施の形態を適宜組み合わせるようにすれば、各実施の形態の特徴事項による効果を重畳的に得ることができることになる。   In addition, although the refrigerating and air-conditioning apparatus according to the present invention has been described separately in the embodiments, the refrigerating and air-conditioning apparatus may be configured by appropriately combining the features of each embodiment. If the embodiments are appropriately combined, the effects of the features of the embodiments can be obtained in a superimposed manner.

1 空調用冷凍サイクル、1c 空調用冷凍サイクル、2 冷蔵・冷凍用冷凍サイクル、2c 冷蔵・冷凍用冷凍サイクル、3 給湯用冷凍サイクル、4 給湯負荷側サイクル、10 第1接続配管、11 第2接続配管、12 接続配管、12a 接続配管、12b 接続配管、13 接続配管、13a 接続配管、13b 接続配管、14 接続配管、14a 接続配管、14b 接続配管、15 接続配管、15a 接続配管、15b 接続配管、16 接続配管、100 冷凍空調装置、100a 冷凍空調装置、100b 冷凍空調装置、100c 冷凍空調装置、101 空調用圧縮機、101c 空調用圧縮機、102 四方弁、103 室外熱交換器、103c 室外熱交換器、104 アキュムレーター、104c アキュムレーター、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、106 高圧側接続配管、106c 高圧側接続配管、107 低圧側接続配管、107c 低圧側接続配管、108 気液分離器、109 第1分配部、109a 弁手段、109b 弁手段、110 第2分配部、110a 逆止弁、110b 逆止弁、111 第1内部熱交換器、112 第1中継機用絞り手段、113 第2内部熱交換器、114 第2中継機用絞り手段、115 第1会合部、116 第2会合部、116a 第2会合部、117 空調用絞り手段(第1絞り手段)、117c 空調用絞り手段(第1絞り手段)、118 室内熱交換器、118c 室内熱交換器、119 絞り手段(第2絞り手段)、119c 絞り手段(第2絞り手段)、120 絞り手段、130 冷凍用圧縮機、130c 冷凍用圧縮機、131 冷媒−冷媒熱交換器(第1冷媒−冷媒熱交換器)、131c 冷媒−冷媒熱交換器(第1冷媒−冷媒熱交換器)、132 冷凍用絞り手段(第3絞り手段)、132c 冷凍用絞り手段(第3絞り手段)、133 冷凍用熱交換器、133c 冷凍用熱交換器、140 給湯用圧縮機、141 冷媒−冷媒熱交換器(第2冷媒−冷媒熱交換器)、142 給湯用絞り手段(第4絞り手段)、143 熱媒体−冷媒熱交換器、144 水循環用ポンプ、145 貯湯タンク、A 熱源機、Ac 熱源機、B 室内機、Bc 室内機、C 室内機、D 冷凍用ブースターユニット、E 中継機、F 冷凍ユニット、Fc 冷凍ユニット、G ユニット、H 給湯用ブースターユニット、I 給湯用ユニット。   1 Refrigeration cycle for air conditioning, 1c Refrigeration cycle for air conditioning, 2 Refrigeration cycle for refrigeration / refrigeration, 2c Refrigeration cycle for refrigeration / refrigeration, 3 Refrigeration cycle for hot water supply, 4 Hot water supply load side cycle, 10 1st connection piping, 11 2nd connection Piping, 12 connecting piping, 12a connecting piping, 12b connecting piping, 13 connecting piping, 13a connecting piping, 13b connecting piping, 14 connecting piping, 14a connecting piping, 14b connecting piping, 15 connecting piping, 15a connecting piping, 15b connecting piping, 16 connection piping, 100 refrigeration air conditioner, 100a refrigeration air conditioner, 100b refrigeration air conditioner, 100c refrigeration air conditioner, 101 air conditioning compressor, 101c air conditioning compressor, 102 four-way valve, 103 outdoor heat exchanger, 103c outdoor heat exchange 104 accumulator, 104c accumulator, 105a Check valve, 105b Check valve, 105c Check valve, 105d Check valve, 106 High-pressure side connection piping, 106c High-pressure side connection piping, 107 Low-pressure side connection piping, 107c Low-pressure side connection piping, 108 Gas-liquid separator, 109 1st distribution part, 109a valve means, 109b valve means, 110 2nd distribution part, 110a check valve, 110b check valve, 111 1st internal heat exchanger, 112 throttle means for 1st repeater, 113 2nd inside Heat exchanger, 114 Second relay squeezing means, 115 First meeting part, 116 Second meeting part, 116a Second meeting part, 117 Air conditioning throttle means (first throttle means), 117c Air conditioning throttle means (first 1 throttle means), 118 indoor heat exchanger, 118c indoor heat exchanger, 119 throttle means (second throttle means), 119c throttle means (second throttle means), 120 throttle means, 130 refrigeration compressor, 130c refrigeration compressor, 131 refrigerant-refrigerant heat exchanger (first refrigerant-refrigerant heat exchanger), 131c refrigerant-refrigerant heat exchanger (first refrigerant-refrigerant heat exchanger), 132 refrigeration Throttle means (third throttle means), 132c refrigeration throttle means (third throttle means), 133 refrigeration heat exchanger, 133c refrigeration heat exchanger, 140 hot water supply compressor, 141 refrigerant-refrigerant heat exchanger ( (Second refrigerant-refrigerant heat exchanger), 142 hot water supply throttling means (fourth throttling means), 143 heat medium-refrigerant heat exchanger, 144 water circulation pump, 145 hot water storage tank, A heat source machine, Ac heat source machine, B room Machine, Bc indoor unit, C indoor unit, D refrigeration booster unit, E relay machine, F refrigeration unit, Fc refrigeration unit, G unit, H hot water supply booster unit, I hot water supply unit .

本発明に係る冷凍空調装置は、空調用圧縮機、熱源側熱交換器、第1絞り手段、及び、利用側熱交換器が直列に接続されているとともに、前記空調用圧縮機、前記熱源側熱交換器、第2絞り手段、及び、第1冷媒−冷媒熱交換器の一次側が直列に接続され、一次側冷媒を循環させる空調用冷凍サイクルと、冷凍用圧縮機、前記第1冷媒−冷媒熱交換器の二次側、第3絞り手段、及び、冷凍用熱交換器が直列に接続され、二次側冷媒を循環させる冷蔵・冷凍用冷凍サイクルと、前記空調用圧縮機、及び、前記熱源側熱交換器を熱源機に搭載し、前記第1絞り手段、及び、前記利用側熱交換器を室内機に搭載し、前記第2絞り手段、前記第1冷媒−冷媒熱交換器、前記冷凍用圧縮機、及び、前記第3絞り手段を冷蔵・冷凍ブースターユニットに搭載し、前記熱源機から流入する高圧接続配管と、前記熱源機へ流出する低圧接続配管と、がそれぞれ接続され、前記空調用冷凍サイクルと前記冷蔵・冷凍用冷凍サイクルの間に介在する少なくとも1台の中継機を備え、前記一次側冷媒に貯えられた温熱又は冷熱を、前記利用側熱交換器を介して空調負荷として利用可能にしつつ、前記一次側冷媒に貯えられた冷熱を、前記第1冷媒−冷媒熱交換器を介して前記二次側冷媒に伝達することで冷蔵・冷凍負荷として利用可能にしていることを特徴とする。 In the refrigeration air conditioner according to the present invention, an air conditioning compressor, a heat source side heat exchanger, a first throttle means, and a use side heat exchanger are connected in series, and the air conditioning compressor, the heat source side The primary side of the heat exchanger, the second throttle means, and the first refrigerant-refrigerant heat exchanger are connected in series, and the air-conditioning refrigeration cycle for circulating the primary side refrigerant, the refrigeration compressor, and the first refrigerant-refrigerant The secondary side of the heat exchanger, the third throttling means, and the refrigeration heat exchanger are connected in series, and the refrigeration / freezing refrigeration cycle for circulating the secondary side refrigerant , the air conditioning compressor, and the A heat source side heat exchanger is mounted on a heat source unit, the first throttle unit, and the use side heat exchanger are mounted on an indoor unit, the second throttle unit, the first refrigerant-refrigerant heat exchanger, The refrigeration compressor and the third throttle means are mounted on a refrigeration / refrigeration booster unit. And at least one unit interposed between the air-conditioning refrigeration cycle and the refrigeration / refrigeration cycle, wherein a high-pressure connection pipe flowing from the heat source unit and a low-pressure connection pipe flowing out to the heat source unit are respectively connected. And the heat stored in the primary refrigerant can be used as an air conditioning load via the use-side heat exchanger, while the cold stored in the primary-side refrigerant is used as the first heat. It can be used as a refrigeration / refrigeration load by being transmitted to the secondary refrigerant through a refrigerant-refrigerant heat exchanger.

Claims (6)

空調用圧縮機、熱源側熱交換器、第1絞り手段、及び、利用側熱交換器が直列に接続されているとともに、前記空調用圧縮機、前記熱源側熱交換器、第2絞り手段、及び、第1冷媒−冷媒熱交換器の一次側が直列に接続され、一次側冷媒を循環させる空調用冷凍サイクルと、
冷凍用圧縮機、前記第1冷媒−冷媒熱交換器の二次側、第3絞り手段、及び、冷凍用熱交換器が直列に接続され、二次側冷媒を循環させる冷蔵・冷凍用冷凍サイクルと、を有し、
前記一次側冷媒に貯えられた温熱又は冷熱を、前記利用側熱交換器を介して空調負荷として利用可能にしつつ、
前記一次側冷媒に貯えられた冷熱を、前記第1冷媒−冷媒熱交換器を介して前記二次側冷媒に伝達することで冷蔵・冷凍負荷として利用可能にしている
ことを特徴とする冷凍空調装置。
The air conditioning compressor, the heat source side heat exchanger, the first throttle means, and the use side heat exchanger are connected in series, and the air conditioning compressor, the heat source side heat exchanger, the second throttle means, And the primary side of the 1st refrigerant-refrigerant heat exchanger is connected in series, and the refrigeration cycle for air conditioning which circulates the primary side refrigerant,
Refrigeration / refrigeration refrigeration cycle in which a refrigeration compressor, a secondary side of the first refrigerant-refrigerant heat exchanger, a third throttle means, and a refrigeration heat exchanger are connected in series to circulate the secondary side refrigerant. And having
While making the hot or cold stored in the primary side refrigerant available as an air conditioning load via the use side heat exchanger,
Refrigeration air conditioning characterized in that it can be used as a refrigeration / refrigeration load by transmitting cold heat stored in the primary refrigerant to the secondary refrigerant via the first refrigerant-refrigerant heat exchanger. apparatus.
前記空調用圧縮機、及び、前記熱源側熱交換器を熱源機に搭載し、
前記第1絞り手段、及び、前記利用側熱交換器を室内機に搭載し、
前記第2絞り手段、前記第1冷媒−冷媒熱交換器、前記冷凍用圧縮機、前記第3絞り手段、及び、前記冷凍用熱交換器を前記熱源機及び前記室内機とは別の1つのユニットに搭載した
ことを特徴とする請求項1に記載の冷凍空調装置。
The air conditioning compressor and the heat source side heat exchanger are mounted on a heat source unit,
The first throttle means and the use side heat exchanger are mounted on an indoor unit,
The second throttle means, the first refrigerant-refrigerant heat exchanger, the refrigeration compressor, the third throttle means, and the refrigeration heat exchanger are different from the heat source unit and the indoor unit. The refrigerating and air-conditioning apparatus according to claim 1, wherein the refrigerating and air-conditioning apparatus is mounted on a unit.
前記空調用圧縮機、及び、前記熱源側熱交換器を熱源機に搭載し、
前記第1絞り手段、及び、前記利用側熱交換器を室内機に搭載し、
前記第2絞り手段、前記第1冷媒−冷媒熱交換器、前記冷凍用圧縮機、及び、前記第3絞り手段を冷蔵・冷凍ブースターユニットに搭載し、
前記冷凍用熱交換器を冷凍ユニットに搭載した
ことを特徴とする請求項1に記載の冷凍空調装置。
The air conditioning compressor and the heat source side heat exchanger are mounted on a heat source unit,
The first throttle means and the use side heat exchanger are mounted on an indoor unit,
The second throttle means, the first refrigerant-refrigerant heat exchanger, the refrigeration compressor, and the third throttle means are mounted in a refrigeration / refrigeration booster unit,
The refrigeration air conditioner according to claim 1, wherein the refrigeration heat exchanger is mounted on a refrigeration unit.
前記熱源機と、前記室内機及び前記冷蔵・冷凍ブースターユニットと、の間に介在し、前記熱源機で生成された温熱又は冷熱を前記室内機に、前記熱源機で生成された冷熱を前記冷蔵・冷凍ブースターユニットに、それぞれ伝達する少なくとも1台の中継機を備えた
ことを特徴とする請求項2又は3に記載の冷凍空調装置。
It is interposed between the heat source unit, the indoor unit, and the refrigeration / refrigeration booster unit, and heat or cold generated by the heat source unit is used for the indoor unit, and cold heat generated by the heat source unit is used for the refrigeration. The refrigeration air conditioner according to claim 2 or 3, wherein the refrigeration booster unit includes at least one relay device that transmits the refrigeration booster unit.
給湯用圧縮機、熱媒体−冷媒熱交換器の給湯用冷媒側、第4絞り手段、及び、第2冷媒−冷媒熱交換器の給湯用冷媒側が直列に接続され、給湯用冷媒を循環させる給湯用冷凍サイクルを有し、
前記一次側冷媒に貯えられた温熱を、前記第2冷媒−冷媒熱交換器を介して前記給湯用冷媒に伝達することで給湯負荷として利用可能にしている
ことを特徴とする請求項1〜4のいずれか一項に記載の冷凍空調装置。
The hot water supply compressor, the hot water supply refrigerant side of the heat medium-refrigerant heat exchanger, the fourth throttling means, and the hot water supply refrigerant side of the second refrigerant-refrigerant heat exchanger are connected in series to circulate the hot water supply refrigerant. Has a refrigeration cycle for
The hot heat stored in the primary refrigerant is transmitted to the hot water supply refrigerant through the second refrigerant-refrigerant heat exchanger so as to be used as a hot water supply load. The refrigerating and air-conditioning apparatus according to any one of the above.
前記給湯用圧縮機、前記熱媒体−冷媒熱交換器の給湯用冷媒側、前記第4絞り手段、及び、前記第2冷媒−冷媒熱交換器を給湯用ブースターユニットに搭載した
ことを特徴とする請求項5に記載の冷凍空調装置。
The hot water supply compressor, the hot water refrigerant side of the heat medium-refrigerant heat exchanger, the fourth throttle means, and the second refrigerant-refrigerant heat exchanger are mounted in a hot water supply booster unit. The refrigerating and air-conditioning apparatus according to claim 5.
JP2012520171A 2010-06-18 2010-06-18 Refrigeration air conditioner Pending JPWO2011158305A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004088 WO2011158305A1 (en) 2010-06-18 2010-06-18 Refrigerating air-conditioning device

Publications (1)

Publication Number Publication Date
JPWO2011158305A1 true JPWO2011158305A1 (en) 2013-08-15

Family

ID=45347733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012520171A Pending JPWO2011158305A1 (en) 2010-06-18 2010-06-18 Refrigeration air conditioner

Country Status (5)

Country Link
US (1) US20130061622A1 (en)
EP (1) EP2584285B1 (en)
JP (1) JPWO2011158305A1 (en)
CN (1) CN102947653A (en)
WO (1) WO2011158305A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011191B2 (en) 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
JP5955409B2 (en) * 2012-11-29 2016-07-20 三菱電機株式会社 Air conditioner
EP2975335B1 (en) * 2013-03-12 2018-12-05 Mitsubishi Electric Corporation Air conditioner
DE102014203895B4 (en) * 2014-03-04 2018-08-16 Konvekta Ag refrigeration plant
KR102264725B1 (en) * 2014-05-22 2021-06-11 엘지전자 주식회사 Heat pump
WO2016189810A1 (en) * 2015-05-28 2016-12-01 パナソニックIpマネジメント株式会社 Heat pump device
CN109386989B (en) * 2018-10-22 2020-07-28 广东美的暖通设备有限公司 Two-pipe jet enthalpy-increasing outdoor unit and multi-split system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277098A (en) * 2001-03-21 2002-09-25 Daikin Ind Ltd Refrigerator
WO2009098751A1 (en) * 2008-02-04 2009-08-13 Mitsubishi Electric Corporation Air-conditioning and water-heating complex system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241829A (en) * 1989-11-02 1993-09-07 Osaka Prefecture Government Method of operating heat pump
MY114473A (en) * 1997-04-08 2002-10-31 Daikin Ind Ltd Refrigerating system
JP4221780B2 (en) * 1998-07-24 2009-02-12 ダイキン工業株式会社 Refrigeration equipment
US7188490B2 (en) * 2003-01-17 2007-03-13 Samsung Electronics Co., Ltd. Refrigerator
JP4488767B2 (en) 2004-03-02 2010-06-23 三洋電機株式会社 Air-conditioning refrigeration equipment
JP4599910B2 (en) * 2004-07-01 2010-12-15 ダイキン工業株式会社 Water heater
JP4660334B2 (en) 2005-09-30 2011-03-30 三洋電機株式会社 Refrigeration system
JP2007139274A (en) * 2005-11-16 2007-06-07 Hitachi Ltd Air conditioner
EP2131122B1 (en) * 2007-03-27 2014-11-12 Mitsubishi Electric Corporation Heat pump device
JP5121922B2 (en) * 2008-03-31 2013-01-16 三菱電機株式会社 Air conditioning and hot water supply complex system
KR101639814B1 (en) * 2009-11-20 2016-07-22 엘지전자 주식회사 Refrigerating and freezing combine air conditioning system
KR101151529B1 (en) * 2009-11-20 2012-05-30 엘지전자 주식회사 Refrigerant system
KR101155496B1 (en) * 2010-04-23 2012-06-15 엘지전자 주식회사 Heat pump type speed heating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277098A (en) * 2001-03-21 2002-09-25 Daikin Ind Ltd Refrigerator
WO2009098751A1 (en) * 2008-02-04 2009-08-13 Mitsubishi Electric Corporation Air-conditioning and water-heating complex system

Also Published As

Publication number Publication date
US20130061622A1 (en) 2013-03-14
EP2584285A4 (en) 2014-03-19
EP2584285A1 (en) 2013-04-24
CN102947653A (en) 2013-02-27
WO2011158305A1 (en) 2011-12-22
EP2584285B1 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP5084903B2 (en) Air conditioning and hot water supply complex system
JP5121922B2 (en) Air conditioning and hot water supply complex system
US9759454B2 (en) Cascade heat pump
JP5042262B2 (en) Air conditioning and hot water supply complex system
WO2009098751A1 (en) Air-conditioning and water-heating complex system
WO2014091548A1 (en) Air conditioning hot water supply composite system
WO2011158305A1 (en) Refrigerating air-conditioning device
WO2011048695A1 (en) Air conditioning device
JPWO2013144994A1 (en) Air conditioner
JP2009228979A (en) Air conditioner
CN108759142B (en) Special cascade air source high-temperature heat pump cooling and heating system
EP3995758B1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP5264936B2 (en) Air conditioning and hot water supply complex system
WO2015063846A1 (en) Air conditioning device
JPH0634169A (en) Air conditioning device
JPWO2014038059A1 (en) Air conditioner
JP6042037B2 (en) Refrigeration cycle equipment
JP3543448B2 (en) Heat transfer device
KR102014457B1 (en) A combined refrigerating and air conditioning system
CN108759150B (en) Air conditioning system and control method thereof
JP4270803B2 (en) Cold generation system
US20230392829A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
EP3995760B1 (en) Thermal storage unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP2004361000A (en) Refrigerating system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408