JPWO2011111540A1 - Physical quantity sensor - Google Patents

Physical quantity sensor Download PDF

Info

Publication number
JPWO2011111540A1
JPWO2011111540A1 JP2012504401A JP2012504401A JPWO2011111540A1 JP WO2011111540 A1 JPWO2011111540 A1 JP WO2011111540A1 JP 2012504401 A JP2012504401 A JP 2012504401A JP 2012504401 A JP2012504401 A JP 2012504401A JP WO2011111540 A1 JPWO2011111540 A1 JP WO2011111540A1
Authority
JP
Japan
Prior art keywords
electrode layer
fixed electrode
facing
movable
height direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012504401A
Other languages
Japanese (ja)
Inventor
亨 宮武
亨 宮武
高橋 亨
亨 高橋
俊宏 小林
俊宏 小林
宜隆 宇都
宜隆 宇都
矢澤 久幸
久幸 矢澤
尚信 大川
尚信 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Publication of JPWO2011111540A1 publication Critical patent/JPWO2011111540A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0086Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0051For defining the movement, i.e. structures that guide or limit the movement of an element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0837Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being suspended so as to only allow movement perpendicular to the plane of the substrate, i.e. z-axis sensor

Abstract

【課題】 特に可動部(可動電極)と固定電極層間の電気ショートを抑制できる物理量センサを提供することを目的としている。【解決手段】 アンカ部29、及び、アンカ部にばね部を介して高さ方向に変位可能に支持される可動部34を有する基材と、基材と高さ方向に対向しアンカ部を固定支持するとともに可動部と高さ方向に間隔を空けて対向する対向部20と、対向部の表面に形成された固定電極層28及び表面が可動部に対するストッパ面である突起部23と、対向部の表面に設けられた固定支持部22と、固定支持部とアンカ部間を接合する金属層からなる接合部26と、を有して構成される。突起部23は対向部20の表面から突出しており、凹んだ対向部の表面に固定電極層28が配置されており、突起部23の表面は、固定電極層28の表面よりも高さ方向に突出している。【選択図】図1PROBLEM TO BE SOLVED: To provide a physical quantity sensor capable of suppressing an electrical short circuit between a movable part (movable electrode) and a fixed electrode layer. A base member having an anchor part 29 and a movable part 34 supported by the anchor part via a spring part so as to be displaceable in the height direction, and the base part facing the base material in the height direction and fixing the anchor part. A facing portion 20 that supports and opposes the movable portion with a gap in the height direction, a fixed electrode layer 28 formed on the surface of the facing portion, a protrusion 23 whose surface is a stopper surface for the movable portion, and a facing portion The fixed support portion 22 provided on the surface of the metal plate and the joint portion 26 made of a metal layer that joins between the fixed support portion and the anchor portion are configured. The protruding portion 23 protrudes from the surface of the facing portion 20, and the fixed electrode layer 28 is disposed on the surface of the recessed facing portion, and the surface of the protruding portion 23 is higher in the height direction than the surface of the fixed electrode layer 28. It protrudes. [Selection] Figure 1

Description

本発明は、シリコン基板から切り出すなどして形成された可動部の変位量を検知し、これにより、外部から作用する加速度などの物理量の測定を可能とした物理量センサに関する。   The present invention relates to a physical quantity sensor that detects a displacement amount of a movable part formed by cutting out from a silicon substrate, and thereby enables measurement of a physical quantity such as acceleration acting from the outside.

例えば、特許文献1に示す物理量センサは、高さ方向に変位可能な可動部と、可動部に対して高さ方向に間隔を空けて配置される固定電極層とを有し、可動部(可動電極層として機能する)と固定電極層間の静電容量変化に基づいて物理量を検出する構成である。   For example, the physical quantity sensor disclosed in Patent Document 1 includes a movable portion that can be displaced in the height direction, and a fixed electrode layer that is disposed at an interval in the height direction with respect to the movable portion. The physical quantity is detected based on the capacitance change between the fixed electrode layer and the electrode layer.

このような構成の物理量センサにあっては図10に示す本発明に対する比較例のように、可動部1における耐スティッキング性の向上のために固定電極層2を備える対向部3の表面3aに突起部4を形成する。なお図10は物理量センサを構成する可動部1等を有する基材9と基材9に対する対向部3とを上下に分離した状態の縦断面を模式図で示したものである。   In the physical quantity sensor having such a configuration, as shown in the comparative example of the present invention shown in FIG. Part 4 is formed. FIG. 10 is a schematic diagram showing a longitudinal section in a state where the base material 9 having the movable portion 1 and the like constituting the physical quantity sensor and the facing portion 3 with respect to the base material 9 are vertically separated.

図10に示すように、対向部3の表面3aには突出形状の固定支持部5が設けられる。固定支持部5の表面(上面)5aには第1の接続金属層6が形成されている。   As shown in FIG. 10, a protruding support portion 5 is provided on the surface 3 a of the facing portion 3. A first connection metal layer 6 is formed on the surface (upper surface) 5 a of the fixed support portion 5.

一方、対向部3に対して高さ方向に対する基材9は、アンカ部7と、アンカ部7にばね部8を介して連結された可動部1とを有している。図10に示すように、可動部1は、固定電極層2及び突起部4と対向した位置にある。図10に示すように、アンカ部7の表面(下面)には第2の接続金属層10が設けられる。第1の接続金属層6と第2の接続金属層10間は、加圧下で加熱されることで接合される。   On the other hand, the base material 9 with respect to the height direction with respect to the facing part 3 has an anchor part 7 and a movable part 1 connected to the anchor part 7 via a spring part 8. As shown in FIG. 10, the movable portion 1 is at a position facing the fixed electrode layer 2 and the protruding portion 4. As shown in FIG. 10, the second connection metal layer 10 is provided on the surface (lower surface) of the anchor portion 7. The first connection metal layer 6 and the second connection metal layer 10 are joined by being heated under pressure.

図10に示すように、可動部1と突起部4の間にはギャップAが形成されている。また、可動部1と固定電極層2の間にはギャップBが形成されている。なお図10に示すギャップA,Bは、基材9と対向部3とを分離した状態で示しているが、実際には、第1の接続金属層6と第2の接続金属層10間を接合した状態にて規定される。   As shown in FIG. 10, a gap A is formed between the movable portion 1 and the protruding portion 4. A gap B is formed between the movable part 1 and the fixed electrode layer 2. Note that the gaps A and B shown in FIG. 10 are shown in a state where the base material 9 and the facing portion 3 are separated from each other, but actually, the gap between the first connection metal layer 6 and the second connection metal layer 10 is shown. It is defined in the joined state.

特開2005−283393号公報JP 2005-283393 A 特開2008−197113号公報JP 2008-197113 A 特開平9−127151号公報JP-A-9-127151

図10に示す本発明に対する比較例では、固定電極層2の表面2aの高さが、突起部4の表面4aの高さの同等以上に位置している。このような場合、可動部1が図10の下方向に変位し、ストッパ面である突起部4の表面4aに当接するとともに固定電極層2の表面2aにも当接しやすくなる。したがって、可動部1と固定電極層2間が電気ショートする危険性があった。   In the comparative example with respect to the present invention shown in FIG. 10, the height of the surface 2 a of the fixed electrode layer 2 is equal to or higher than the height of the surface 4 a of the protrusion 4. In such a case, the movable part 1 is displaced downward in FIG. 10, and comes into contact with the surface 4 a of the protrusion 4 serving as a stopper surface and also easily comes into contact with the surface 2 a of the fixed electrode layer 2. Therefore, there is a risk of an electrical short between the movable part 1 and the fixed electrode layer 2.

また、図10に示す比較例では、固定電極層2が、対向部3の固定支持部5の表面5aに形成された第1の接続金属層6と同じ工程で形成されたものである。よって、固定電極層2と第1の接続金属層6は同等の膜厚で形成される。第1の接続金属層6は第2の接続金属層10との良好な接合性を確保するために、ある程度、厚い膜厚で形成される。このため固定電極層2も厚い膜厚で形成される。例えば固定電極層2はAlである。このように厚いAl層を形成すると、第1の接続金属層6と第2の接続金属層10間の接合工程による熱処理により固定電極層2の表面2aにヒロック11が形成され固定電極層2の膜厚は成膜段階よりも厚くなる。このため、ますます可動部1と固定電極層2間が電気ショートしやすくなった。   In the comparative example shown in FIG. 10, the fixed electrode layer 2 is formed in the same process as the first connection metal layer 6 formed on the surface 5 a of the fixed support portion 5 of the facing portion 3. Therefore, the fixed electrode layer 2 and the first connection metal layer 6 are formed with the same film thickness. The first connection metal layer 6 is formed to a certain degree of thickness in order to ensure good bondability with the second connection metal layer 10. For this reason, the fixed electrode layer 2 is also formed with a thick film thickness. For example, the fixed electrode layer 2 is Al. When a thick Al layer is formed in this way, hillocks 11 are formed on the surface 2a of the fixed electrode layer 2 by heat treatment in the bonding process between the first connection metal layer 6 and the second connection metal layer 10, and the fixed electrode layer 2 The film thickness becomes thicker than the film formation stage. For this reason, electrical shorting between the movable part 1 and the fixed electrode layer 2 is more likely to occur.

そこで本発明は、上記従来の課題を解決するものであり、特に可動部(可動電極)と固定電極層間の電気ショートを抑制できる物理量センサを提供することを目的としている。   Therefore, the present invention solves the above-described conventional problems, and has an object to provide a physical quantity sensor that can suppress an electrical short circuit between a movable part (movable electrode) and a fixed electrode layer.

本発明における物理量センサは、
アンカ部、及び、前記アンカ部にばね部を介して高さ方向に変位可能に支持される可動部を有する基材と、前記基材と高さ方向に対向し前記アンカ部を固定支持するとともに前記可動部と高さ方向に間隔を空けて対向する対向部と、前記対向部の前記可動部と対向する表面に形成された固定電極層及び表面が前記可動部に対するストッパ面である突起部と、前記対向部の前記アンカ部と対向する表面に設けられた固定支持部と、前記固定支持部と前記アンカ部間を接合する金属層からなる接合部と、を有して構成され、
前記突起部は前記対向部の表面から突出しており、前記突起部の表面よりも凹んだ前記対向部の表面に前記固定電極層が配置されており、前記突起部の表面は、前記固定電極層の表面よりも高さ方向に突出していることを特徴とするものである。
The physical quantity sensor in the present invention is
An anchor part, a base material having a movable part supported by the anchor part so as to be displaceable in a height direction via a spring part, and fixedly supporting the anchor part facing the base material in the height direction. A facing portion opposed to the movable portion at an interval in the height direction; a fixed electrode layer formed on a surface of the facing portion facing the movable portion; and a projection portion whose surface is a stopper surface for the movable portion; A fixed support portion provided on a surface of the facing portion facing the anchor portion, and a joint portion made of a metal layer that joins between the fixed support portion and the anchor portion,
The protruding portion protrudes from the surface of the facing portion, the fixed electrode layer is disposed on the surface of the facing portion that is recessed from the surface of the protruding portion, and the surface of the protruding portion is the fixed electrode layer It protrudes in the height direction from the surface of this.

これにより、可動部がストッパ面である突起部の表面に当接した際の、可動部と固定電極層間の電気ショートを適切に抑制することが可能になる。   As a result, it is possible to appropriately suppress an electrical short between the movable portion and the fixed electrode layer when the movable portion comes into contact with the surface of the protruding portion serving as the stopper surface.

本発明では、前記接合部が形成される前記固定支持部の表面は、前記固定電極層の表面よりも高さ方向に突出していることが好ましい。   In this invention, it is preferable that the surface of the said fixed support part in which the said junction part is formed protrudes in the height direction rather than the surface of the said fixed electrode layer.

また本発明では、前記接合部は、前記固定支持部の表面に形成された第1の接続金属層と、前記アンカ部の表面に形成された第2の接続金属層間を接合して構成され、前記固定電極層の膜厚は前記第1の接続金属層の膜厚よりも小さく形成されることが好ましい。これにより、第1の接続金属層と第2の接続金属層間の接合工程における熱処理によっても、固定電極層の表面におけるヒロックの生成を抑制できる。よって、可動部と固定電極層間の電気ショートをより効果的に抑制することが可能になる。   In the present invention, the joining portion is configured by joining a first connection metal layer formed on the surface of the fixed support portion and a second connection metal layer formed on the surface of the anchor portion, It is preferable that the film thickness of the fixed electrode layer is smaller than the film thickness of the first connection metal layer. Thereby, the production | generation of the hillock in the surface of a fixed electrode layer can be suppressed also by the heat processing in the joining process between a 1st connection metal layer and a 2nd connection metal layer. Therefore, it is possible to more effectively suppress an electrical short between the movable part and the fixed electrode layer.

また上記構成において、前記第1の接続金属層が形成される前記固定支持部の表面は、前記突起部の表面と同一の高さ位置に形成されることが好ましい。これにより、固定電極層と可動部間の高さ方向への間隔はそのままで、突起部と可動部間の高さ方向への間隔が広がるように適切に調整できる。これにより可動部の変位量を大きくでき、耐スティッキング性の向上を図ることができる。   In the above configuration, it is preferable that the surface of the fixed support portion on which the first connection metal layer is formed be formed at the same height as the surface of the protrusion. Thereby, it can adjust appropriately so that the space | interval in the height direction between a fixed part and a movable part may remain the same, and the space | interval in the height direction between a projection part and a movable part may spread. Thereby, the amount of displacement of the movable part can be increased, and the anti-sticking property can be improved.

また本発明では、前記固定電極層の膜厚は、突起部の表面から固定電極層の表面までの高さ方向への間隔よりも小さいことが好ましい。これにより、強い物理量変化の作用等により可動部が突起部に当接し更に撓み変形しても可動電極である可動部と固定電極層間の電気ショートを適切に防ぐことができる。   In the present invention, it is preferable that the film thickness of the fixed electrode layer is smaller than the distance in the height direction from the surface of the protrusion to the surface of the fixed electrode layer. Thereby, even if the movable part comes into contact with the protrusion due to a strong physical quantity change or the like and further bends and deforms, an electrical short circuit between the movable part which is a movable electrode and the fixed electrode layer can be appropriately prevented.

本発明の構成によれば、可動部(可動電極)がストッパ面である突起部の表面に当接した際の、可動部と固定電極層間の電気ショートを適切に抑制できる。   According to the configuration of the present invention, it is possible to appropriately suppress an electrical short between the movable portion and the fixed electrode layer when the movable portion (movable electrode) comes into contact with the surface of the protruding portion that is the stopper surface.

本発明における第1実施形態の物理量センサの縦断面を示す模式図、The schematic diagram which shows the longitudinal cross-section of the physical quantity sensor of 1st Embodiment in this invention, 本発明における第2実施形態の物理量センサの縦断面を示す模式図、The schematic diagram which shows the longitudinal cross-section of the physical quantity sensor of 2nd Embodiment in this invention, 本発明における第3実施形態の物理量センサの縦断面を示す模式図、A schematic diagram showing a longitudinal section of a physical quantity sensor of a third embodiment of the present invention, 図1ないし図3に示す実施形態を適用可能なより具体的な物理量センサの構造を示す縦断面図、1 is a longitudinal sectional view showing a more specific structure of a physical quantity sensor to which the embodiment shown in FIGS. 1 to 3 can be applied; 図1ないし図3に示す実施形態を適用可能なより具体的な物理量センサの構造を示す縦断面図、1 is a longitudinal sectional view showing a more specific structure of a physical quantity sensor to which the embodiment shown in FIGS. 1 to 3 can be applied; 図5の物理量センサが静止している状態を示す斜視図、FIG. 6 is a perspective view showing a state where the physical quantity sensor of FIG. 5 is stationary. 図5の物理量センサが動作している状態を示す斜視図、The perspective view which shows the state which the physical quantity sensor of FIG. 5 is operate | moving. 図5の物理量センサが動作している状態を示す斜視図、The perspective view which shows the state which the physical quantity sensor of FIG. 5 is operate | moving. 図5の物理量センサに設けられた脚部及び可動部が突起部に当接した状態を示す部分拡大縦断面図、FIG. 6 is a partially enlarged longitudinal sectional view showing a state in which a leg portion and a movable portion provided in the physical quantity sensor of FIG. 本発明に対する比較例の物理量センサの縦断面を示す模式図。The schematic diagram which shows the longitudinal cross-section of the physical quantity sensor of the comparative example with respect to this invention.

図1は、本発明における第1実施形態の物理量センサの縦断面を示す模式図、図2は、本発明における第2実施形態の物理量センサの縦断面を示す模式図、図3は、本発明における第3実施形態の物理量センサの縦断面を示す模式図である。各図は、第1の基材21と、第1の基材21の下側に位置する対向部20とを分離して示している。   FIG. 1 is a schematic diagram showing a longitudinal section of the physical quantity sensor of the first embodiment of the present invention, FIG. 2 is a schematic diagram showing a longitudinal section of the physical quantity sensor of the second embodiment of the present invention, and FIG. It is a schematic diagram which shows the longitudinal cross-section of the physical quantity sensor of 3rd Embodiment. Each drawing separately shows the first base material 21 and the facing portion 20 located on the lower side of the first base material 21.

図1に示す実施形態では、対向部20の表面(第1の基材21との対向面;上面)20aに、固定支持部22及び突起部23が突出形成されている。突起部23の表面23aは可動部34に対するストッパ面を構成する。表面23aは最も突起部22にて高い位置にある面を指す。図1に示すように、固定支持部22の最も高い表面22aと、突起部23の表面23aとは同一高さで形成される。図1に示すように、固定支持部22には表面22aよりも一段低い表面22bが形成されている。この表面22bと、突起部23に設けられた一段低い表面23bとが同一高さである。   In the embodiment shown in FIG. 1, a fixed support portion 22 and a protruding portion 23 are formed to protrude on the surface 20 a of the facing portion 20 (the surface facing the first base material 21; the upper surface) 20 a. The surface 23 a of the protrusion 23 forms a stopper surface for the movable portion 34. The surface 23 a indicates the surface that is at the highest position in the protrusion 22. As shown in FIG. 1, the highest surface 22 a of the fixed support portion 22 and the surface 23 a of the protruding portion 23 are formed at the same height. As shown in FIG. 1, the fixed support portion 22 is formed with a surface 22b that is one step lower than the surface 22a. This surface 22b and the one-step lower surface 23b provided on the protrusion 23 have the same height.

図1に示すように、固定支持部22の表面22bには第1の接続金属層24がスパッタ等の既存の方法で形成されている。例えば、第1の接続金属層24はAlあるいはAl合金(AlCu,AlSiCu,AlSi,AlScCu等)で形成される。また第1の接続金属層24の下面に下地のTi層やTa層等が形成されていてもよい。また第1の接続金属層24の表面には、後記する第2の接続金属層25と同じ材料(例えばGe)の薄い表面層が形成されていてもよい。   As shown in FIG. 1, the first connection metal layer 24 is formed on the surface 22b of the fixed support portion 22 by an existing method such as sputtering. For example, the first connection metal layer 24 is formed of Al or an Al alloy (AlCu, AlSiCu, AlSi, AlScCu, etc.). Further, an underlying Ti layer, Ta layer, or the like may be formed on the lower surface of the first connection metal layer 24. A thin surface layer made of the same material (for example, Ge) as the second connection metal layer 25 described later may be formed on the surface of the first connection metal layer 24.

図1に示す対向部20は例えばSi基材の表面に酸化シリコンや窒化シリコン等の絶縁層が形成された構成である。対向部20の表面20aは前記絶縁層の表面であり、絶縁層の表面をエッチングにて凹凸形状に形成する。   The facing portion 20 shown in FIG. 1 has a configuration in which an insulating layer such as silicon oxide or silicon nitride is formed on the surface of a Si base material, for example. The surface 20a of the facing portion 20 is the surface of the insulating layer, and the surface of the insulating layer is formed into an uneven shape by etching.

図1に示すように、固定支持部22と突起部23の間は凹部27となっており、凹部27の表面27aに固定電極層28が形成されている。固定電極層28はスパッタ等の既存の方法で形成される。図1に示すように、固定電極層28の表面28aは、突起部23の表面23a及び固定支持部22の表面22a,22bよりも低い位置に形成されている。   As shown in FIG. 1, a concave portion 27 is formed between the fixed support portion 22 and the protruding portion 23, and a fixed electrode layer 28 is formed on a surface 27 a of the concave portion 27. The fixed electrode layer 28 is formed by an existing method such as sputtering. As shown in FIG. 1, the surface 28 a of the fixed electrode layer 28 is formed at a position lower than the surface 23 a of the protrusion 23 and the surfaces 22 a and 22 b of the fixed support portion 22.

図1に示すように、対向部20の上方に位置する第1の基材21は、アンカ部29と、アンカ部29にばね部30を介して高さ方向(Z)に変位可能に支持された可動部34とを有して構成される。   As shown in FIG. 1, the first base material 21 positioned above the facing portion 20 is supported by an anchor portion 29 and the anchor portion 29 so as to be displaceable in the height direction (Z) via a spring portion 30. The movable portion 34 is configured.

図1に示すように、アンカ部29の表面(対向部20と対向する対向面;下面)29aには、第2の接続金属層25が形成される。第2の接続金属層25は例えばGeである。   As shown in FIG. 1, a second connection metal layer 25 is formed on the surface of the anchor portion 29 (opposing surface facing the opposing portion 20; lower surface) 29 a. The second connection metal layer 25 is, for example, Ge.

図1に示すように、対向部20側に形成された第1の接続金属層24とアンカ部29側に形成された第2の接続金属層25とを当接させた状態で加圧下で所定の加熱処理により、第1の接続金属層24と第2の接続金属層25間を共晶接合する。これによりアンカ部29と固定支持部22間が第1の接続金属層24及び第2の接続金属層25より成る接合部26を介して固定接合された状態となる。   As shown in FIG. 1, the first connecting metal layer 24 formed on the facing portion 20 side and the second connecting metal layer 25 formed on the anchor portion 29 side are in contact with each other under pressure. Through the heat treatment, eutectic bonding is performed between the first connection metal layer 24 and the second connection metal layer 25. As a result, the anchor portion 29 and the fixed support portion 22 are fixedly bonded via the bonding portion 26 including the first connection metal layer 24 and the second connection metal layer 25.

図1に示すように、固定電極層28と可動部34との間には高さ方向(Z)に間隔(ギャップ)C、突起部23と可動部34間には高さ方向(Z)に間隔(ギャップ)Dが夫々、形成されている。なお図1では、ギャップC,Dが対向部20と第1の基材21とを分離した状態で図示されているが、実際には、ギャップC,Dは、対向部20と第1の基材21とを接合した状態で規定される。   As shown in FIG. 1, a gap (gap) C is provided in the height direction (Z) between the fixed electrode layer 28 and the movable portion 34, and a height direction (Z) is provided between the protrusion 23 and the movable portion 34. An interval (gap) D is formed. In FIG. 1, the gaps C and D are illustrated in a state where the facing portion 20 and the first base material 21 are separated from each other. However, in practice, the gaps C and D are separated from the facing portion 20 and the first base 21. It is defined in a state where the material 21 is joined.

図1に示す実施形態では、固定電極層28の表面28aを突起部23の表面23aよりも低い位置に形成している。これにより可動部34が下方向に変位し、可動部34が突起部23のストッパ面である表面23aに当接した状態において、可動電極である可動部34と固定電極層28の間での電気ショートを適切に抑制することが可能である。   In the embodiment shown in FIG. 1, the surface 28 a of the fixed electrode layer 28 is formed at a position lower than the surface 23 a of the protrusion 23. As a result, the movable portion 34 is displaced downward, and in a state where the movable portion 34 is in contact with the surface 23 a that is the stopper surface of the protrusion 23, the electric power between the movable portion 34 that is a movable electrode and the fixed electrode layer 28 is obtained. It is possible to appropriately suppress a short circuit.

また図1に示すように固定電極層28の表面28aにヒロック31が生成された場合、固定電極層28の表面はヒロック31の表面31aで規定され、このとき、固定電極層28と可動部34との間の高さ方向への間隔(ギャップ)はEである。このように、ヒロック31が形成される場合でも、固定電極層28の表面であるヒロック31の表面31aが突起部23の表面23aよりも低い位置になるように規制される。なお図1に示す実施形態では、固定電極層28を第1の接続金属層24と別工程で形成することもできるし同工程で形成することもできる。   Further, as shown in FIG. 1, when the hillock 31 is generated on the surface 28a of the fixed electrode layer 28, the surface of the fixed electrode layer 28 is defined by the surface 31a of the hillock 31. At this time, the fixed electrode layer 28 and the movable part 34 The distance (gap) in the height direction between the two is E. As described above, even when the hillock 31 is formed, the surface 31 a of the hillock 31 that is the surface of the fixed electrode layer 28 is regulated to be lower than the surface 23 a of the protrusion 23. In the embodiment shown in FIG. 1, the fixed electrode layer 28 can be formed in a separate process from the first connection metal layer 24, or can be formed in the same process.

一方、図2に示す実施形態では、固定電極層32が対向部20の固定支持部22の表面22bに形成された第1の接続金属層24よりも薄い膜厚で形成されている。   On the other hand, in the embodiment shown in FIG. 2, the fixed electrode layer 32 is formed with a film thickness thinner than that of the first connection metal layer 24 formed on the surface 22 b of the fixed support portion 22 of the facing portion 20.

図2に示す実施形態では、固定電極層32を第1の接続金属層24と別工程で形成する。このとき、固定電極層32には、第1の接続金属層24と第2の接続金属層25との間の接合工程による熱処理によってもヒロックが形成されにくい材質で形成することができる。あるいは、固定電極層32を第1の接続金属層24と同じAlあるいはAl合金で形成しても固定電極層32の膜厚を薄く形成したことでヒロックの生成を適切に抑制することが可能である。図2に示す固定電極層32を、Al、Al合金(AlCu,AlSiCu,AlSi,AlScCu等)、Si,Cu,Au,Ru,Pt等で形成することができる。一例を示すと、固定電極層32をTi層(0.02μm程度)/AlCu層(0.3μm程度)の積層構造で形成できる。一方、第1の接続金属層24を例えば、Ta層(0.02μm程度)/AlCu層(0.8μm程度)/Ge層(0.03μm程度)の積層構造で形成できる。   In the embodiment shown in FIG. 2, the fixed electrode layer 32 is formed in a separate process from the first connection metal layer 24. At this time, the fixed electrode layer 32 can be formed of a material in which hillocks are not easily formed even by heat treatment in the bonding process between the first connection metal layer 24 and the second connection metal layer 25. Alternatively, even if the fixed electrode layer 32 is formed of the same Al or Al alloy as the first connection metal layer 24, the generation of hillocks can be appropriately suppressed by forming the fixed electrode layer 32 thin. is there. The fixed electrode layer 32 shown in FIG. 2 can be formed of Al, Al alloy (AlCu, AlSiCu, AlSi, AlScCu, etc.), Si, Cu, Au, Ru, Pt or the like. As an example, the fixed electrode layer 32 can be formed with a laminated structure of Ti layer (about 0.02 μm) / AlCu layer (about 0.3 μm). On the other hand, the first connection metal layer 24 can be formed, for example, with a stacked structure of Ta layer (about 0.02 μm) / AlCu layer (about 0.8 μm) / Ge layer (about 0.03 μm).

図2に示す実施形態では、固定電極層32の膜厚が、突起部23の表面23aと固定電極層32の表面32a間の高さ方向への間隔(ギャップF)よりも小さく形成されている。固定電極層32の膜厚を1μm以下、好ましくは0.5μm以下で形成できる。一方、ギャップFを1μm前後〜2μm程度に調整できる。   In the embodiment shown in FIG. 2, the film thickness of the fixed electrode layer 32 is formed to be smaller than the distance in the height direction (gap F) between the surface 23 a of the protrusion 23 and the surface 32 a of the fixed electrode layer 32. . The fixed electrode layer 32 can be formed with a film thickness of 1 μm or less, preferably 0.5 μm or less. On the other hand, the gap F can be adjusted to about 1 μm to about 2 μm.

これにより、可動部34が突起部23の表面23aに当接した後、更に強い物理量変化が作用等して、図2の点線Gに示すように可動部34が下方向に撓み変形しても可動部34と突起部23との接触を抑制でき電気ショートが生じるのを防止することが出来る。   As a result, after the movable part 34 comes into contact with the surface 23a of the protrusion 23, even if a stronger physical quantity change acts, the movable part 34 is bent downward and deformed as shown by the dotted line G in FIG. Contact between the movable portion 34 and the protrusion 23 can be suppressed, and an electrical short circuit can be prevented.

図3に示す実施形態でも図1,図2に示す実施形態と同様に、固定電極層32の表面32aは突起部23の表面23aよりも低い位置にある。また図3では図2と同様に固定電極層32の膜厚が第1の接続金属層24の膜厚より薄く形成されている。   In the embodiment shown in FIG. 3, the surface 32 a of the fixed electrode layer 32 is at a lower position than the surface 23 a of the protrusion 23, as in the embodiment shown in FIGS. 1 and 2. 3, the fixed electrode layer 32 is formed thinner than the first connection metal layer 24 as in FIG. 2.

図3では、図1,図2と違って、第1の接続金属層24を、突起部23の表面23aと同一高さ位置にある固定支持部22の表面22aに形成している。図3に示す実施形態では、固定電極層32と可動部34間のギャップCが図1,図2と同様となるように、固定支持部22と突起部23間の凹部27の掘り込み量を調整した。図3では、固定電極層32の膜厚を第1の接続金属層24の膜厚より薄く形成するとともに、突起部23の表面23aと同一高さの固定支持部22の表面22aに第1の接続金属層24を設けたことで、固定電極層32と可動部34間のギャップCはそのままで、突起部23と可動部34間の高さ方向への間隔(ギャップ)Hが図1,図2に示す実施形態よりも広がるように調整しやすい。   In FIG. 3, unlike FIGS. 1 and 2, the first connection metal layer 24 is formed on the surface 22 a of the fixed support portion 22 at the same height as the surface 23 a of the protrusion 23. In the embodiment shown in FIG. 3, the digging amount of the concave portion 27 between the fixed support portion 22 and the projection portion 23 is set so that the gap C between the fixed electrode layer 32 and the movable portion 34 is the same as in FIGS. It was adjusted. In FIG. 3, the fixed electrode layer 32 is formed thinner than the first connecting metal layer 24 and the first support metal layer 22 has the same height as the surface 23a of the protrusion 23. By providing the connection metal layer 24, the gap C between the fixed electrode layer 32 and the movable portion 34 remains the same, and the height interval (gap) H between the protrusion 23 and the movable portion 34 is as shown in FIG. It is easy to adjust so that it may spread rather than embodiment shown in FIG.

図1では、固定電極層28を第1の接続金属層24と同程度の膜厚で形成している。かかる場合、固定電極層28を接続金属層24と同じ工程で形成できるが、固定電極層28にはAlが含まれる。このため、図10で説明した比較例と同様に固定電極層28の表面28aにヒロック31が形成されやすい。したがって生成されるヒロック31の最大量を見越して凹部27を必要以上に深く形成しないと固定電極層28の表面となるヒロック31の表面31aが、突起部23の表面23aよりも低い位置にならない可能性がある。一方、固定電極層28を深い凹部27内に形成することで、可動部34と固定電極層28間のギャップCが広がりやすくなる。またヒロック31の生成量のばらつきによりギャップCのばらつきが大きくなりやすい。そのため、図1では、固定支持部22の表面に一段低い表面22bを形成し、その上に,アンカ部29との接合部26を形成することで、ギャップCの広がりをできるだけ抑制している。ギャップCが広がるとセンサ感度の低下に繋がる。   In FIG. 1, the fixed electrode layer 28 is formed with a film thickness comparable to that of the first connection metal layer 24. In such a case, the fixed electrode layer 28 can be formed in the same process as the connection metal layer 24, but the fixed electrode layer 28 contains Al. Therefore, hillocks 31 are easily formed on the surface 28a of the fixed electrode layer 28 as in the comparative example described in FIG. Therefore, if the concave portion 27 is not formed deeper than necessary in anticipation of the maximum amount of hillock 31 to be generated, the surface 31a of the hillock 31 that becomes the surface of the fixed electrode layer 28 may not be lower than the surface 23a of the protrusion 23. There is sex. On the other hand, by forming the fixed electrode layer 28 in the deep recess 27, the gap C between the movable portion 34 and the fixed electrode layer 28 is easily widened. Further, the variation in the gap C tends to increase due to the variation in the amount of hillock 31 generated. Therefore, in FIG. 1, the spread of the gap C is suppressed as much as possible by forming the surface 22 b that is one step lower on the surface of the fixed support portion 22 and forming the joint portion 26 with the anchor portion 29 thereon. When the gap C widens, it leads to a decrease in sensor sensitivity.

一方、図3のように、固定電極層32を第1の接続金属層24よりも薄く形成した実施形態では、図1のように、固定電極層32の表面にヒロックが生成されない。あるいはヒロックの生成量を非常に小さくできる。よって図3の形態ではヒロックが生成したとしても、固定電極層32の表面32aが突起部23の表面23aよりも低い位置となるように、凹部27を効果的に浅く形成することができる。またヒロックの生成量が非常に小さいので、ギャップCの変動も小さく所定値に調整しやすい。このため、図3では、接合部26を固定支持部22の最も高い表面22aに形成しても、ギャップCを小さい値に適切に調整することができる。固定支持部22の表面22aは、突起部23の表面23aと同一高さである。このようにアンカ部29と固定支持部22間の接合位置が図1、図2よりも上方に移動することで、可動部34と突起部23の間のギャップHを広げることができる。   On the other hand, in the embodiment in which the fixed electrode layer 32 is formed thinner than the first connection metal layer 24 as shown in FIG. 3, no hillock is generated on the surface of the fixed electrode layer 32 as shown in FIG. Alternatively, the amount of hillocks generated can be greatly reduced. Therefore, even if hillocks are generated in the form of FIG. 3, the concave portion 27 can be effectively shallowly formed so that the surface 32 a of the fixed electrode layer 32 is positioned lower than the surface 23 a of the protruding portion 23. Further, since the amount of hillocks generated is very small, the fluctuation of the gap C is small and it is easy to adjust to a predetermined value. For this reason, in FIG. 3, even if the junction part 26 is formed in the highest surface 22a of the fixed support part 22, the gap C can be appropriately adjusted to a small value. The surface 22 a of the fixed support portion 22 is the same height as the surface 23 a of the protruding portion 23. As described above, the joint position between the anchor portion 29 and the fixed support portion 22 moves upward as compared with FIGS. 1 and 2, so that the gap H between the movable portion 34 and the protruding portion 23 can be widened.

以上のように可動部34と突起部23のギャップHが広がることで、可動部34の高さ方向への変位量を大きくできる。よって、可動部34が突起部23に当接した状態から元の状態に戻る際、同じばね定数での復元力を大きくすることができ、耐スティッキング性をより効果的に向上させることができる。   As described above, since the gap H between the movable portion 34 and the protrusion 23 is widened, the amount of displacement of the movable portion 34 in the height direction can be increased. Therefore, when the movable part 34 returns to the original state from the state in contact with the protrusion 23, the restoring force with the same spring constant can be increased, and the sticking resistance can be improved more effectively.

なお図3に示す実施形態でも、固定電極層32の膜厚が、突起部23の表面23aと固定電極層32の表面32a間のギャップFよりも小さく形成されている。   In the embodiment shown in FIG. 3, the film thickness of the fixed electrode layer 32 is smaller than the gap F between the surface 23 a of the protrusion 23 and the surface 32 a of the fixed electrode layer 32.

図1、図2の形態でも、突起部23を削って高さを低くすれば、ギャップDを広げることができるが、かかる場合、固定電極層28の表面28aと突起部23の表面23aとが高さ方向に近づき、ギャップF(図2参照)を十分に確保できない場合がある。よって図3に示すように、接合部26が形成される固定支持部22の表面22aと突起部23の表面23aとを同一高さに規定することが好ましい。   1 and 2, the gap D can be widened by cutting the protrusion 23 to reduce the height. In such a case, the surface 28 a of the fixed electrode layer 28 and the surface 23 a of the protrusion 23 are formed. The gap may approach the height direction and the gap F (see FIG. 2) may not be sufficiently secured. Therefore, as shown in FIG. 3, it is preferable that the surface 22 a of the fixed support portion 22 where the joint portion 26 is formed and the surface 23 a of the projection portion 23 are defined to be the same height.

図3に示す実施形態では、突起部23よりも低い高さの突起部33が対向部20の表面に形成されている。ここで以下の図3の説明では突起部23を第1の突起部23、突起部33を第2の突起部33とする。   In the embodiment shown in FIG. 3, a protrusion 33 having a height lower than that of the protrusion 23 is formed on the surface of the facing portion 20. In the following description of FIG. 3, the protrusion 23 is the first protrusion 23 and the protrusion 33 is the second protrusion 33.

可動部34が下方向に変位した際、ある所定以上の物理量変化を受けて、可動部34が最初に当接するのは最も高さの高い第1の突起部23の表面23aである。更に強い物理量変化が作用する等して図2で説明したように可動部34が下方向に撓み変形したとき、可動部34が高さの低い第2の突起部33の表面33aに当接する。よって、高さが異なり可動部34と当接可能な複数の突起部23,33が形成されている図3の形態では、各突起部23,33の表面23a,33aが固定電極層の表面よりも高い位置にあることが必要である。   When the movable portion 34 is displaced downward, the movable portion 34 first comes into contact with the surface 23a of the first protrusion 23 having the highest height in response to a change in physical quantity of a predetermined amount or more. When the movable part 34 is bent downward and deformed as described with reference to FIG. 2 due to a stronger physical quantity change, the movable part 34 comes into contact with the surface 33a of the second protrusion 33 having a low height. Therefore, in the form of FIG. 3 in which the plurality of protrusions 23 and 33 that are different in height and can come into contact with the movable part 34 are formed, the surfaces 23a and 33a of the protrusions 23 and 33 are more than the surface of the fixed electrode layer. It is necessary to be in a high position.

図1ないし図3に示す実施形態は例えば図4に示す物理量センサに適用される。
図4に示すように物理量センサは、対向部40と第1の基材41とを備える。図4に示すように、対向部40を構成するシリコン等で形成された第2の基板42の表面42aには、酸化シリコン等の絶縁下地層43が形成されている。図4に示すように、酸化シリコン層43の表面43aには、内部配線層44が形成されている。
The embodiment shown in FIGS. 1 to 3 is applied to the physical quantity sensor shown in FIG. 4, for example.
As shown in FIG. 4, the physical quantity sensor includes a facing portion 40 and a first base material 41. As shown in FIG. 4, an insulating base layer 43 made of silicon oxide or the like is formed on the surface 42 a of the second substrate 42 made of silicon or the like that constitutes the facing portion 40. As shown in FIG. 4, an internal wiring layer 44 is formed on the surface 43 a of the silicon oxide layer 43.

図4に示すように内部配線層44上から絶縁下地層43上にかけて絶縁層45が形成される。絶縁層45には内部配線層44と対向する位置に貫通孔46,47が形成される。   As shown in FIG. 4, an insulating layer 45 is formed from the internal wiring layer 44 to the insulating base layer 43. Through holes 46 and 47 are formed in the insulating layer 45 at positions facing the internal wiring layer 44.

図4に示すように絶縁層45の表面には第1の基材41を構成するアンカ部48及び枠体部49と対向する位置に突出形状の固定支持部50,51が形成される。   As shown in FIG. 4, protruding fixed support portions 50 and 51 are formed on the surface of the insulating layer 45 at positions facing the anchor portion 48 and the frame body portion 49 constituting the first base material 41.

また図4に示すように絶縁層45の表面には突起部52が形成される。突起部52は可動部53と高さ方向で対向する位置に形成され、表面52aは可動部53に対するストッパ面を構成している。   Further, as shown in FIG. 4, a protrusion 52 is formed on the surface of the insulating layer 45. The protruding portion 52 is formed at a position facing the movable portion 53 in the height direction, and the surface 52 a constitutes a stopper surface for the movable portion 53.

図4に示すように、対向部40の上方に設けられた第1の基材41は、アンカ部48、アンカ部48にばね部63を介して連結された可動部53、及び枠体部49を有して構成される。枠体部49は可動部53の周囲を囲む枠形状である。   As shown in FIG. 4, the first base material 41 provided above the facing portion 40 includes an anchor portion 48, a movable portion 53 connected to the anchor portion 48 via a spring portion 63, and a frame body portion 49. It is comprised. The frame body part 49 has a frame shape surrounding the periphery of the movable part 53.

図4に示すように、アンカ部48と固定支持部50との間は第1の接続金属層54と第2の接続金属層55からなる接合部56により接合されている。同様に、枠体部49と固定支持部51との間も第1の接続金属層54と第2の接続金属層55からなる接合部57により接合されている。   As shown in FIG. 4, the anchor portion 48 and the fixed support portion 50 are joined by a joining portion 56 including a first connection metal layer 54 and a second connection metal layer 55. Similarly, the frame body portion 49 and the fixed support portion 51 are also joined by a joint portion 57 including the first connection metal layer 54 and the second connection metal layer 55.

図4に示すように、第1の基材41の上面は、酸化絶縁層(儀性層)58を介して支持基材59に固定支持される。第1の基材41、酸化絶縁層58及び支持基材59によりSOI(Silicon on Insulator)基板を構成することが出来る。支持基材59はシリコンで形成される。   As shown in FIG. 4, the upper surface of the first base material 41 is fixedly supported by the support base material 59 via an oxide insulating layer (ceremonial layer) 58. An SOI (Silicon on Insulator) substrate can be configured by the first base material 41, the oxide insulating layer 58, and the support base material 59. The support base 59 is made of silicon.

図4に示すように、絶縁層45の表面に形成された固定支持部51及び突起部52よりも凹んだ凹部60に固定電極層61が形成される。固定電極層61は、枠体部49の内側であって絶縁層45に形成された貫通孔46を介して内部配線層44と電気的に接続されている。また、枠体部49の外側では、電極パッド62が絶縁層45に形成された貫通孔47を介して内部配線層44と電気的に接続されている。   As shown in FIG. 4, the fixed electrode layer 61 is formed in the recessed portion 60 that is recessed from the fixed support portion 51 and the protruding portion 52 formed on the surface of the insulating layer 45. The fixed electrode layer 61 is electrically connected to the internal wiring layer 44 through a through hole 46 formed in the insulating layer 45 inside the frame body portion 49. On the outside of the frame portion 49, the electrode pad 62 is electrically connected to the internal wiring layer 44 through a through hole 47 formed in the insulating layer 45.

図4に示す実施形態でも、固定電極層61の表面61aは突起部52の表面52a及び各固定支持部50,51の表面50a,51aよりも低い位置に形成されている。また図4の実施形態では、固定電極層61の膜厚は第1の接続金属層54よりも薄く形成され、また、第1の接続金属層54が形成される固定支持部50の表面50a,51aと突起部52の表面52aは同一高さになっている。また、固定電極層61の膜厚は、突起部52の表面52aから固定電極層61の表面61aまでの高さ方向への間隔(ギャップ)Hよりも小さい。   Also in the embodiment shown in FIG. 4, the surface 61 a of the fixed electrode layer 61 is formed at a position lower than the surface 52 a of the protrusion 52 and the surfaces 50 a and 51 a of the fixed support portions 50 and 51. In the embodiment of FIG. 4, the fixed electrode layer 61 is formed to be thinner than the first connection metal layer 54, and the surface 50 a of the fixed support portion 50 on which the first connection metal layer 54 is formed. 51a and the surface 52a of the projection part 52 are the same height. Further, the film thickness of the fixed electrode layer 61 is smaller than an interval (gap) H in the height direction from the surface 52 a of the protrusion 52 to the surface 61 a of the fixed electrode layer 61.

あるいは、図1ないし図3に示す実施形態は図5に示す物理量センサに適用される。
図5に示す物理量センサは、長方形の長辺70a,70bおよび短辺70c,70dで囲まれた外枠部分が可動部71である。
Alternatively, the embodiment shown in FIGS. 1 to 3 is applied to the physical quantity sensor shown in FIG.
In the physical quantity sensor shown in FIG. 5, the outer frame portion surrounded by the rectangular long sides 70 a and 70 b and the short sides 70 c and 70 d is the movable portion 71.

図5に示すように可動部71の内側には、2本の支持連結体72,73が設けられている。支持連結体72,73の平面形状はクランク状で形成されている。   As shown in FIG. 5, two support coupling bodies 72 and 73 are provided inside the movable portion 71. The planar shape of the support coupling bodies 72 and 73 is formed in a crank shape.

図5に示すように第1支持連結体72は、前方(X1)に延びる第1連結腕72aと、後方(X2)に延びる脚部72bとが一体に形成されている。また図5に示すように第2支持連結体73は、後方(X2)に延びる第1連結腕73aと、前方(X1)に延びる脚部73bとが一体に形成されている。   As shown in FIG. 5, the 1st support coupling body 72 is integrally formed with the 1st connection arm 72a extended in the front (X1), and the leg part 72b extended in back (X2). As shown in FIG. 5, the second support connection body 73 is formed integrally with a first connection arm 73 a extending rearward (X2) and a leg portion 73 b extending forward (X1).

図5に示すように、可動部71の内側には、第1のアンカ部74、第2のアンカ部75及び第3のアンカ部76がY1−Y2方向に間隔を空けて並設されている。   As shown in FIG. 5, the first anchor portion 74, the second anchor portion 75, and the third anchor portion 76 are arranged in parallel inside the movable portion 71 with an interval in the Y1-Y2 direction. .

図5に示すように、第1支持連結体72の第1連結腕72aと可動部71とがばね部80aにおいて回動自在に連結されており、第2支持連結体73の第1連結腕73aと可動部71とがばね部80bにおいて回動自在に連結されている。   As shown in FIG. 5, the first connection arm 72 a of the first support connection body 72 and the movable portion 71 are rotatably connected at the spring portion 80 a, and the first connection arm 73 a of the second support connection body 73. And the movable portion 71 are rotatably connected at the spring portion 80b.

更に、第1支持連結体72は、ばね部81a,81bにおいて回動自在に連結されている。また図5に示すように、第2支持連結体73は、ばね部82a,82bにおいて回動自在に連結されている。   Furthermore, the 1st support coupling body 72 is connected with the spring parts 81a and 81b so that rotation is possible. Moreover, as shown in FIG. 5, the 2nd support connection body 73 is connected with the spring parts 82a and 82b so that rotation is possible.

また図5に示すように、第2連結腕83及び第2連結腕84が設けられている。第2連結腕83,84は可動部71の内側に形成される。   Further, as shown in FIG. 5, a second connecting arm 83 and a second connecting arm 84 are provided. The second connecting arms 83 and 84 are formed inside the movable portion 71.

図5に示すように第2連結腕83と可動部71とは、ばね部85aにおいて、回動自在に連結されている。また、第2連結腕84と可動部71とは、ばね部85bにおいて、回動自在に連結されている。また図5に示すように、第2連結腕83とアンカ部75とは、ばね部87aにおいて、回動自在に連結されている。また第2連結腕84とアンカ部76とは、ばね部87bにおいて、回動自在に連結されている。   As shown in FIG. 5, the 2nd connection arm 83 and the movable part 71 are rotatably connected in the spring part 85a. Moreover, the 2nd connection arm 84 and the movable part 71 are rotatably connected in the spring part 85b. Further, as shown in FIG. 5, the second connecting arm 83 and the anchor portion 75 are rotatably connected by a spring portion 87a. Moreover, the 2nd connection arm 84 and the anchor part 76 are rotatably connected in the spring part 87b.

更に図5に示すように、第1連結腕72aと第2連結腕83との間がばね部88aを介して連結されている。また図5に示すように、第1連結腕73aと第2連結腕84との間がばね部88bを介して連結されている。   Further, as shown in FIG. 5, the first connecting arm 72a and the second connecting arm 83 are connected via a spring portion 88a. Moreover, as shown in FIG. 5, between the 1st connection arm 73a and the 2nd connection arm 84 is connected via the spring part 88b.

図5に示す物理量センサでは、高さ方向に作用する物理量変化により図6ないし図8に示すように可動部71が高さ方向(Z)に変位する。このとき、可動部71の変位方向と反対方向に脚部72b,73bが高さ方向(Z)に変位する。   In the physical quantity sensor shown in FIG. 5, the movable portion 71 is displaced in the height direction (Z) as shown in FIGS. 6 to 8 due to a change in physical quantity acting in the height direction. At this time, the leg portions 72b and 73b are displaced in the height direction (Z) in the direction opposite to the displacement direction of the movable portion 71.

よって図9(a)に示すように、対向部90の表面には脚部72b,73bに当接する突起部91と、図9(b)に示すように可動部71に当接する突起部92の双方を設けることが出来る。突起部91の表面91aは脚部72b,73bに対するストッパ面であり、突起部92の表面92aは可動部71に対するストッパ面である。図9に示すように対向部90の表面には突起部91,92やアンカ部74〜76と対向する位置に設けられた固定支持部(図示せず)以外の部分に形成された凹部94に固定電極層93が形成されている。そして、固定電極層93の表面93aは、可動部71が当接可能な突起部92の表面92aより低い位置に形成される。   Therefore, as shown in FIG. 9 (a), on the surface of the facing portion 90, there are projections 91 that abut against the legs 72b and 73b, and projections 92 that abut against the movable portion 71 as shown in FIG. 9 (b). Both can be provided. The surface 91a of the protrusion 91 is a stopper surface for the legs 72b and 73b, and the surface 92a of the protrusion 92 is a stopper surface for the movable portion 71. As shown in FIG. 9, the surface of the facing portion 90 has a concave portion 94 formed in a portion other than a fixed support portion (not shown) provided at a position facing the protruding portions 91 and 92 and the anchor portions 74 to 76. A fixed electrode layer 93 is formed. The surface 93a of the fixed electrode layer 93 is formed at a position lower than the surface 92a of the protruding portion 92 with which the movable portion 71 can come into contact.

図5に示す物理量センサに対して、図3に示す実施形態を適用すると、図1,図2の実施形態に比べてギャップHを広く設定しやすく、したがって可動部71及び脚部72b,73bの高さ方向への変位量を大きくすることができる。このため、ばね定数が同じであっても、図9の状態から元の静止状態に戻る際の復元力を大きくでき耐スティッキング性を効果的に向上させることが可能となる。復元力が図1の形態に比べて図3の形態とすることで、1.5倍〜2倍程度に大きくできることがわかった。   If the embodiment shown in FIG. 3 is applied to the physical quantity sensor shown in FIG. 5, the gap H can be easily set wider than the embodiment shown in FIGS. 1 and 2, and accordingly, the movable portion 71 and the legs 72b and 73b can be set. The amount of displacement in the height direction can be increased. For this reason, even if the spring constant is the same, it is possible to increase the restoring force when returning from the state of FIG. 9 to the original stationary state, and to effectively improve the sticking resistance. It has been found that the restoring force can be increased to about 1.5 to 2 times by adopting the form of FIG. 3 as compared with the form of FIG.

本実施形態は加速度センサ、角速度センサ、衝撃センサ等、物理量センサ全般に適用可能である。   The present embodiment can be applied to all physical quantity sensors such as an acceleration sensor, an angular velocity sensor, and an impact sensor.

20、40 対向部
21、41 第1の基材
22、50、51 固定支持部
22a、22b、50a、51a 固定支持部の表面
23、33、52 突起部
23a、33a、52a 突起部の表面
24、54 第1の接続金属層
25、55 第2の接続金属層
26、56、57 接合部
27 凹部
28、32、61 固定電極層
28a、32a 固定電極層の表面
29、48 アンカ部
30 ばね部
31 ヒロック
31a ヒロックの表面
34、53、71 可動部
44 内部配線層
45 絶縁層
36、47 貫通孔
49 枠体部
20, 40 Opposing portions 21, 41 First base member 22, 50, 51 Fixed support portions 22a, 22b, 50a, 51a Surfaces 23, 33, 52 of fixed support portions Projected portions 23a, 33a, 52a Surface 24 of projected portions , 54 First connection metal layer 25, 55 Second connection metal layer 26, 56, 57 Joint 27 Recess 28, 32, 61 Fixed electrode layer 28 a, 32 a Fixed electrode layer surface 29, 48 Anchor part 30 Spring part 31 Hillock 31a Hillock surface 34, 53, 71 Movable part 44 Internal wiring layer 45 Insulating layer 36, 47 Through hole 49 Frame part

Claims (5)

アンカ部、及び、前記アンカ部にばね部を介して高さ方向に変位可能に支持される可動部を有する基材と、前記基材と高さ方向に対向し前記アンカ部を固定支持するとともに前記可動部と高さ方向に間隔を空けて対向する対向部と、前記対向部の前記可動部と対向する表面に形成された固定電極層及び表面が前記可動部に対するストッパ面である突起部と、前記対向部の前記アンカ部と対向する表面に設けられた固定支持部と、前記固定支持部と前記アンカ部間を接合する金属層からなる接合部と、を有して構成され、
前記突起部は前記対向部の表面から突出しており、前記突起部の表面よりも凹んだ前記対向部の表面に前記固定電極層が配置されており、前記突起部の表面は、前記固定電極層の表面よりも高さ方向に突出していることを特徴とする物理量センサ。
An anchor part, a base material having a movable part supported by the anchor part so as to be displaceable in a height direction via a spring part, and fixedly supporting the anchor part facing the base material in the height direction. A facing portion opposed to the movable portion at an interval in the height direction; a fixed electrode layer formed on a surface of the facing portion facing the movable portion; and a projection portion whose surface is a stopper surface for the movable portion; A fixed support portion provided on a surface of the facing portion facing the anchor portion, and a joint portion made of a metal layer that joins between the fixed support portion and the anchor portion,
The protruding portion protrudes from the surface of the facing portion, the fixed electrode layer is disposed on the surface of the facing portion that is recessed from the surface of the protruding portion, and the surface of the protruding portion is the fixed electrode layer A physical quantity sensor that protrudes in a height direction from the surface of the sensor.
前記接合部が形成される前記固定支持部の表面は、前記固定電極層の表面よりも高さ方向に突出している請求項1記載の物理量センサ。   The physical quantity sensor according to claim 1, wherein a surface of the fixed support portion on which the joint portion is formed protrudes in a height direction from a surface of the fixed electrode layer. 前記接合部は、前記固定支持部の表面に形成された第1の接続金属層と、前記アンカ部の表面に形成された第2の接続金属層間を接合して構成され、前記固定電極層の膜厚は前記第1の接続金属層の膜厚よりも小さく形成される請求項1又は2に記載の物理量センサ。   The joint portion is configured by joining a first connection metal layer formed on the surface of the fixed support portion and a second connection metal layer formed on the surface of the anchor portion, and the fixed electrode layer The physical quantity sensor according to claim 1, wherein the film thickness is formed smaller than the film thickness of the first connection metal layer. 前記第1の接続金属層が形成される前記固定支持部の表面は、前記突起部の表面と同一の高さ位置に形成される請求項3記載の物理量センサ。   The physical quantity sensor according to claim 3, wherein the surface of the fixed support portion on which the first connection metal layer is formed is formed at the same height position as the surface of the protrusion. 前記固定電極層の膜厚は、突起部の表面から固定電極層の表面までの高さ方向への間隔よりも小さい請求項1ないし4のいずれか1項に記載の物理量センサ。   5. The physical quantity sensor according to claim 1, wherein a film thickness of the fixed electrode layer is smaller than an interval in a height direction from a surface of the protruding portion to a surface of the fixed electrode layer.
JP2012504401A 2010-03-08 2011-02-24 Physical quantity sensor Withdrawn JPWO2011111540A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010050948 2010-03-08
JP2010050948 2010-03-08
PCT/JP2011/054114 WO2011111540A1 (en) 2010-03-08 2011-02-24 Physical quantity sensor

Publications (1)

Publication Number Publication Date
JPWO2011111540A1 true JPWO2011111540A1 (en) 2013-06-27

Family

ID=44563348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012504401A Withdrawn JPWO2011111540A1 (en) 2010-03-08 2011-02-24 Physical quantity sensor

Country Status (3)

Country Link
JP (1) JPWO2011111540A1 (en)
CN (1) CN102792170B (en)
WO (1) WO2011111540A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898556B2 (en) * 2012-04-25 2016-04-06 アルプス電気株式会社 MEMS sensor and manufacturing method thereof
WO2016135852A1 (en) * 2015-02-24 2016-09-01 三菱電機株式会社 Semiconductor device and method for manufacturing same
SG11201710863QA (en) 2015-09-17 2018-01-30 Murata Manufacturing Co Mems device and method for producing same
CN106018879B (en) * 2016-05-12 2019-03-22 广东合微集成电路技术有限公司 A kind of MEMS acceleration transducer and manufacturing method
JP2020159917A (en) * 2019-03-27 2020-10-01 セイコーエプソン株式会社 Inertia sensor, electronic apparatus, and moving body
EP4209451A1 (en) * 2022-01-10 2023-07-12 Murata Manufacturing Co., Ltd. Early-impact out-of-plane motion limiter for mems device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113817A (en) * 1993-10-15 1995-05-02 Hitachi Ltd Acceleration sensor
JP2825664B2 (en) * 1994-03-28 1998-11-18 アイ/オー、センサーズ、インコーポレーテッド Sensor structure having L-shaped spring legs
EP1183555A4 (en) * 1999-03-17 2003-03-05 Input Output Inc Hydrophone assembly
DE10038099A1 (en) * 2000-08-04 2002-02-21 Bosch Gmbh Robert Micromechanical component
JP2007113817A (en) * 2005-10-19 2007-05-10 Mitsubishi Electric Corp Refrigerator-freezer
JP2008241481A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Sensor element

Also Published As

Publication number Publication date
CN102792170B (en) 2014-07-02
CN102792170A (en) 2012-11-21
WO2011111540A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JPWO2011111540A1 (en) Physical quantity sensor
JP5550363B2 (en) Capacitance type electromechanical transducer
KR101296031B1 (en) Pressure sensors and methods of making the same
CN103508408B (en) Hybrid integrated parts and manufacture method thereof
US9120127B2 (en) Ultrasonic transducer structure, ultrasonic transducer, and method of manufacturing ultrasonic transducer
JP5315350B2 (en) MEMS sensor
CN103771334B (en) Hybrid integrated component
JPWO2010122953A1 (en) MEMS device and manufacturing method thereof
JP2010171422A (en) Mems sensor and method of manufacturing the same
JP5222947B2 (en) MEMS sensor
JP5175152B2 (en) MEMS sensor
WO2012014792A1 (en) Physical quantity sensor and manufacturing method for same
JP2010238921A (en) Mems sensor
JP5898556B2 (en) MEMS sensor and manufacturing method thereof
JP5237733B2 (en) MEMS sensor
JP2004333133A (en) Inertial force sensor
JP5000625B2 (en) MEMS sensor and manufacturing method thereof
JPWO2011111539A1 (en) Physical quantity sensor
JP2007173641A (en) Sensor module
JP5442277B2 (en) MEMS sensor and manufacturing method thereof
JP5314979B2 (en) MEMS sensor
WO2011016348A1 (en) Mems sensor
JP2007173637A (en) Sensor module
JP2016170121A (en) Pressure sensor, tactile sensor, and method for manufacturing pressure sensor
JP2012103112A (en) Physical quantity sensor and production method therefor

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130531