JPWO2011052003A1 - Novel bacterial strain, culture, carotenoid pigment-containing composition, and method for producing carotenoid pigment - Google Patents

Novel bacterial strain, culture, carotenoid pigment-containing composition, and method for producing carotenoid pigment Download PDF

Info

Publication number
JPWO2011052003A1
JPWO2011052003A1 JP2011538110A JP2011538110A JPWO2011052003A1 JP WO2011052003 A1 JPWO2011052003 A1 JP WO2011052003A1 JP 2011538110 A JP2011538110 A JP 2011538110A JP 2011538110 A JP2011538110 A JP 2011538110A JP WO2011052003 A1 JPWO2011052003 A1 JP WO2011052003A1
Authority
JP
Japan
Prior art keywords
carotenoid pigment
culture
carotenoid
strain
astaxanthin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011538110A
Other languages
Japanese (ja)
Other versions
JP5660543B2 (en
Inventor
松本 光史
光史 松本
松永 是
是 松永
田中 剛
剛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Tokyo University of Agriculture and Technology NUC
Original Assignee
Electric Power Development Co Ltd
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Tokyo University of Agriculture and Technology NUC filed Critical Electric Power Development Co Ltd
Publication of JPWO2011052003A1 publication Critical patent/JPWO2011052003A1/en
Application granted granted Critical
Publication of JP5660543B2 publication Critical patent/JP5660543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明により、カロテノイド色素の産生能を有する新規な細菌、及び該細菌を利用するカロテノイド色素の製造方法が提供される。本発明は、スフィンゴモナス(Sphingomonas)属JPCC MB0017−6株(受託番号:NITE BP−808);かかる細菌株を培養して得られた培養物;かかる培養物から分離されたカロテノイド色素含有組成物;前記細菌株を培養する工程を有するカロテノイド色素の製造方法に関する。The present invention provides a novel bacterium having a carotenoid pigment-producing ability and a method for producing a carotenoid pigment using the bacterium. The present invention relates to Sphingomonas sp. JPCC MB0017-6 strain (Accession No .: NITE BP-808); a culture obtained by culturing such a bacterial strain; a carotenoid pigment-containing composition isolated from such a culture. A method for producing a carotenoid pigment comprising culturing the bacterial strain.

Description

本発明は、スフィンゴモナス(Sphingomonas)属に属する細菌の新規変異株、該変異株を利用して得られた培養物及びカロテノイド色素含有組成物、並びに該変異株を利用するカロテノイド色素の製造方法に関する。   The present invention relates to a novel mutant strain of a bacterium belonging to the genus Sphingomonas, a culture obtained using the mutant strain and a carotenoid pigment-containing composition, and a method for producing a carotenoid pigment using the mutant strain .

アスタキサンチンやβ−カロテン等をはじめとする各種カロテノイド色素は、多くの生理活性を有しており、サプリメント食品の原料として有用である。一方、近年の天然資源の減少により、これら天然資源の養殖が期待されており、魚介類の人口種苗生産においては、対象種に対して高い餌料効果や付加価値を付与する飼料が求められている。このような中、タイやサケ等の養殖魚の色調をより天然のものに近付けるために、アスタキサンチンを配合した飼料(色揚げ飼料)が使用されることがある。また、タイやニジマス等の体色の鮮やかさが求められる魚種に対しては、アスタキサンチン等の色素を配合した飼料が使用されることがある。   Various carotenoid pigments such as astaxanthin and β-carotene have many physiological activities, and are useful as raw materials for supplement foods. On the other hand, due to the recent decrease in natural resources, the cultivation of these natural resources is expected, and in the production of artificial seeds and seedlings of fish and shellfish, there is a demand for feed that provides high feed effect and added value to the target species. . Under such circumstances, feed (colored fried feed) containing astaxanthin may be used to bring the color of cultured fish such as Thailand and salmon closer to natural ones. In addition, feeds containing pigments such as astaxanthin may be used for fish species such as Thailand and rainbow trout that require vivid body colors.

色揚げ飼料の添加物としてのアスタキサンチンは、カロリーピンク(合成アスタキサンチン)としてロッシュ社から販売されている。しかし、トレーサビリティーの問題や利用者の天然物志向から、天然由来のアスタキサンチンが注目されている。
アスタキサンチンは、マダイ、サケ等の魚類;カニ、エビ、オキアミ等の甲殻類に広く分布している。そこで、天然由来のアスタキサンチンを得る方法として、甲殻類からアスタキサンチンを抽出する方法が提案されている。しかし、抽出効率が低いため抽出量が少なく、コストが高くなるという問題点があった。また、天然資源の減少から、資源確保の点でも商業的に問題点があった。
Astaxanthin as an additive to deep-fried feed is sold by Roche as calorie pink (synthetic astaxanthin). However, astaxanthin derived from nature has been attracting attention because of traceability problems and users' preference for natural products.
Astaxanthin is widely distributed in fish such as red sea bream and salmon; crustaceans such as crabs, shrimps and krill. Therefore, a method for extracting astaxanthin from crustaceans has been proposed as a method for obtaining naturally-derived astaxanthin. However, since the extraction efficiency is low, there is a problem that the extraction amount is small and the cost is high. In addition, due to the decrease in natural resources, there were commercial problems in terms of securing resources.

一方、アスタキサンチンを産生する微生物として、緑藻であるHaematococcus pluvialisが最も良く知られており、その他にも、赤色酵母であるXanthophyllomyces dendrohous (旧Phaffia rhodozyma)が知られている。Haematococcus pluvialisのアスタキサンチン産生量は、43mg/g dry weight程度であることが報告されている(非特許文献1参照)。また、Xanthophyllomyces dendrohous(旧Phaffia rhodozyma)のアスタキサンチン産生量は、0.4mg/g dry weight程度であることが報告されている(非特許文献2参照)。   On the other hand, as a microorganism producing astaxanthin, Haematococcus pluviaris, which is a green alga, is best known, and in addition, Xanthophyllomyces dendrous (formerly Phaffia rhodozyma), which is a red yeast, is known. It has been reported that the amount of astaxanthin produced by Haematococcus pluvialis is about 43 mg / g dry weight (see Non-Patent Document 1). In addition, it has been reported that the amount of astaxanthin produced by Xanthophyllomyces dendrous (formerly Phaffia rhodozyma) is about 0.4 mg / g dry weight (see Non-Patent Document 2).

そこで、飼料に天然由来のアスタキサンチンを配合する方法として、Heamatococcus pluvialisやXanthophyllomyces dendrohousをそのまま配合する方法が提案されているが、着色が十分でないなどの問題点があった。これは、Haematococcus pluvialisやXanthophyllomyces dendrohousの細胞壁が厚いために、対象魚種での消化・吸収率が低いことが原因であった。そこで、吸収率の高い新たな微生物が求められている。   Thus, as a method of blending naturally derived astaxanthin into feed, a method of blending Hematococcus pluviaris or Xanthophyllomyces dendrhaus as it is has been proposed, but there are problems such as insufficient coloring. This was because the cell walls of Haematococcus plubialis and Xanthophyllomyces dendrous were thick, and the digestion / absorption rate in the target fish species was low. Therefore, a new microorganism having a high absorption rate is required.

原核細胞である細菌は、広い基質利用能力を有し、簡単な培養で高い生育速度を示し、酵母のような厚い細胞壁を有しないことから、有用物質の生産において最も期待される微生物の一つである。これまでに、細菌によるアスタキサンチンの産生では、Escherichia coliの遺伝子組換え体で、1.4mg/g dry weightが達成されている(非特許文献3参照)。また、Bacillus firmusでは、0.05mg/g dry weightの産生量が達成されている(非特許文献4参照)。さらに、海洋細菌であるParacoccus sp. MBIC1143では、0.14mg/g dry weightの産生量が報告されている(非特許文献5参照)。しかし、これら遺伝子組換え体によるアスタキサンチンの産生には、発現量等で問題点があった。
そこで、アスタキサンチンを産生する細菌が探索され、これまでに、フラボバクテリウム属、アルカリゲネス属、シュードモナス属、アルテロモナス属、ピポモナス属、カリオファノン属、エリスロバクター属、パラコッカス属等に属する細菌が報告されている。
Prokaryotic bacteria are one of the most promising microorganisms in the production of useful substances because they have a wide substrate utilization capacity, show a high growth rate in simple culture, and do not have a thick cell wall like yeast. It is. So far, in the production of astaxanthin by bacteria, 1.4 mg / g dry weight has been achieved with Escherichia coli gene recombinants (see Non-Patent Document 3). Moreover, in Bacillus firmus, the production amount of 0.05 mg / g dry weight was achieved (refer nonpatent literature 4). Furthermore, Paracoccus sp. In MBIC 1143, the production amount of 0.14 mg / g dry weight has been reported (see Non-Patent Document 5). However, production of astaxanthin by these gene recombinants has a problem in expression level and the like.
Therefore, bacteria that produce astaxanthin were searched, and bacteria belonging to the genus Flavobacterium, Alkaligenes, Pseudomonas, Alteromonas, Pipomonas, Caryophanone, Erytlobacter, Paracoccus have been reported so far. .

また、本発明者らは、スフィンゴモナス(Sphingomonas)属に属する細菌であるJPCCMB0017株(NITE P−48)が、カロテノイド色素産生能を有することを、これまでに報告している(特許文献1参照)。   In addition, the present inventors have reported that JPCMMB0017 strain (NITE P-48), which is a bacterium belonging to the genus Sphingomonas, has a carotenoid pigment producing ability (see Patent Document 1). ).

特開2006−191919号公報JP 2006-191919 A

リー及びソー(Lee,Y.−K.and Soh,C.−W.)、「ジャーナル・オブ・ファイコロジー(J.Phycol.)」、米国、1991年、第27巻、第3号、p.575−577Lee, Y.-K. and Soh, C.-W., "Journal of Phycolology", USA, 1991, Vol. 27, No. 3, p. . 575-577 フローレス-コテラら(Flores−Cotera,L.B.et al.)、アプライド・マイクロバイオロジー・アンド・バイオテクノロジー(Appl.Microbiol.Biotechnol.)、米国、2001年、第55巻、第2号、p.341−347Flores-Cotera, LB et al., Applied Microbiology and Biotechnology, USA, 2001, Vol. 55, No. 2, p. 341-347 ワンら(Wang,C.−W.et al.)、バイオテクノロジー・アンド・バイオエンジニアリング(Biotechnol.Bioeng.)、米国、1999年、第62巻、第3号、p.235−241Wang, C.-W. et al., Biotechnol. Bioeng., USA, 1999, Vol. 62, No. 3, p. 235-241 ヨコヤマら(Yokoyama et al.)、バイオサイエンス・バイオテクノロジー・アンド・バイオケミストリー(Bioscience,Biotechnology,and Biochemistry)、米国、1994年、第58巻、第10号、p.1842−1844Yokoyama et al., Bioscience, Biotechnology, and Biochemistry, USA, 1994, Vol. 58, No. 10, p. 1842-1844 ペインら(Pane,L.et al.)、ジャーナル・オブ・バイオロジー・リサーチ(J.Biol.Res.)、米国、1996年、第22巻、p.303−308Pane, L. et al., Journal of Biology Research (J. Biol. Res.), USA, 1996, Vol. 22, p. 303-308

しかし、アスタキサンチンをはじめとする各種カロテノイド色素の産生能を有する細菌は、まだ十分に探索されているとは言えず、より産生効率が高いカロテノイド色素の製造方法の開発が強く望まれている。
本発明は上記事情に鑑みて為されたものであり、カロテノイド色素の産生能を有する新規な細菌、及び該細菌を利用するカロテノイド色素の製造方法を提供することを課題とする。
However, bacteria having the ability to produce various carotenoid pigments including astaxanthin have not yet been fully searched, and development of a method for producing carotenoid pigments with higher production efficiency is strongly desired.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel bacterium having a carotenoid pigment-producing ability and a method for producing a carotenoid pigment using the bacterium.

上記課題を解決するため、本発明者らは鋭意検討の結果、以下の発明を完成させるに至った。
(1)スフィンゴモナス(Sphingomonas)属JPCC MB0017−6株(受託番号:NITE BP−808)。
(2)(1)に記載の細菌株を培養して得られた培養物。
(3)(2)に記載の培養物から分離されたカロテノイド色素含有組成物。
(4)(1)に記載の細菌株を培養する工程を有するカロテノイド色素の製造方法。
In order to solve the above problems, the present inventors have intensively studied and have completed the following invention.
(1) Sphingomonas sp. JPCC MB0017-6 strain (Accession number: NITE BP-808).
(2) A culture obtained by culturing the bacterial strain described in (1).
(3) A carotenoid pigment-containing composition separated from the culture according to (2).
(4) A method for producing a carotenoid pigment comprising the step of culturing the bacterial strain according to (1).

本発明によれば、カロテノイド色素の産生能を有する新規な細菌、及び該細菌を利用するカロテノイド色素の製造方法が提供される。また、本発明の細菌は、カロテノイド色素の産生能が高いので、高品質のカロテノイド色素を簡便且つ大量に製造できる。その結果、安価なカロテノイド色素を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the novel bacterium which has a carotenoid pigment-producing ability, and the manufacturing method of the carotenoid pigment | dye using this bacterium are provided. Moreover, since the bacterium of the present invention has a high ability to produce carotenoid pigments, high-quality carotenoid pigments can be produced easily and in large quantities. As a result, an inexpensive carotenoid pigment can be provided.

JPCC MB0017−6株及びJPCCMB0017株のコロニーの撮像データである。It is the imaging data of the colonies of JPCC MB0017-6 strain and JPPCMB0017 strain.

以下、本発明について詳しく説明する。
本発明のスフィンゴモナス(Sphingomonas)属JPCC MB0017−6株(受託番号:NITE BP−808)は、スフィンゴモナス(Sphingomonas)属JPCCMB0017株の変異株である。以下、本明細書において、「スフィンゴモナス(Sphingomonas)属JPCCMB0017株」のことを「野生株」と略記することがある。また、「スフィンゴモナス(Sphingomonas)属JPCC MB0017−6株(受託番号:NITE BP−808)」のことを「変異株」と略記することがある。
また、本発明において、「カロテノイド色素」とは、炭素数40のポリエン構造を基本骨格とする色素のことを指し、カロテン、リコペン等の炭化水素や、キサントフィル等のアルコール類を含み、β−カロテン、アスタキサンチン、β−カロテンがアスタキサンチンに変換される過程で生じる種々の有用なカロテノイド色素が例示できる。
カロテノイド色素として、より具体的には、カロテン、リコペン、アスタキサンチン、アドニキサンチン、ゼアキサンチン、アドニルビン、カンタキサンチン、クリプトキサンチン、エキネノン、ハイドロエキネノン、ルテイン、フコキサンチン、アンテラキサンチン、ビオラキサンチン、β−クリプトキサンチン等が例示できる。
The present invention will be described in detail below.
The Sphingomonas sp. JPCC MB0017-6 strain (Accession number: NITE BP-808) of the present invention is a variant of the Sphingomonas sp. JPCMBB strain. Hereinafter, in the present specification, “Sphingomonas sp. JPCMBB0017 strain” may be abbreviated as “wild strain”. “Sphingomonas sp. JPCC MB0017-6 strain (accession number: NITE BP-808)” is sometimes abbreviated as “mutant strain”.
In the present invention, the “carotenoid pigment” refers to a pigment having a polyene structure having 40 carbon atoms as a basic skeleton, and includes hydrocarbons such as carotene and lycopene, and alcohols such as xanthophyll, and β-carotene. Examples of various useful carotenoid pigments produced in the process of converting astaxanthin and β-carotene into astaxanthin.
More specifically, as carotenoid pigments, carotene, lycopene, astaxanthin, adonixanthin, zeaxanthin, adonilvin, canthaxanthin, cryptoxanthin, echinone, hydroechinone, lutein, fucoxanthin, anthaxanthin, violaxanthin, β- Examples include cryptoxanthin.

<変異株の獲得>
本発明の変異株は、野生株に対して、ケミカルミューテーションを行うことで獲得した。より具体的には、以下の通りである。
<Acquisition of mutant strain>
The mutant strain of the present invention was obtained by performing chemical mutation on the wild strain. More specifically, it is as follows.

(野生株の獲得)
野生株は、本出願人により、平成16年12月3日付けで、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国 千葉県木更津市かずさ鎌足2−5−8(郵便番号 292−0818))に寄託されている(受託番号:NITE P−48)。
また、本発明者らは、寄託にあたり野生株を天然より獲得しており、以下にその獲得手順を示す。
(Acquisition of wild strains)
The wild strain was obtained by the present applicant as of December 3, 2004, from the Patent Microorganism Depositary Center for Product Evaluation Technology, Japan (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan) -0818)) (deposit number: NITE P-48).
In addition, the present inventors have acquired a wild strain from the nature upon deposit, and the acquisition procedure is shown below.

海洋環境やマングローブ林より採取した海砂、泥、水などからアスタキサンチン及びスフィンゴ糖脂質を産生する微生物の獲得を試みた。酵母エキス5.0g/l、ペプトン1.0g/l、グルコース5.0g/lを人工海水(千寿製薬社製)に添加して作製した寒天プレートに、100μlのサンプルを塗布した。   We tried to acquire microorganisms that produce astaxanthin and glycosphingolipid from marine environment and sea sand, mud and water collected from mangrove forests. A sample of 100 μl was applied to an agar plate prepared by adding 5.0 g / l of yeast extract, 1.0 g / l of peptone, and 5.0 g / l of glucose to artificial seawater (manufactured by Senju Pharmaceutical).

25℃の条件下で7〜10日間静置培養を行い、オレンジ、赤色のコロニーを形成する海洋微生物を獲得した。これらの微生物を単菌化するため、5mlの上記成分を含む液体培地中に植菌し、150rpmで震とう培養して微生物を生育させ、これを寒天プレートに塗布してコロニーを形成させる操作を繰り返した。   The stationary culture was performed at 25 ° C. for 7 to 10 days to obtain marine microorganisms forming orange and red colonies. In order to isolate these microorganisms, an operation of inoculating them in a liquid medium containing 5 ml of the above-mentioned components, growing them by shaking culture at 150 rpm, and applying them to an agar plate to form colonies. Repeated.

約50株の海洋細菌からなる菌体粉末0.3mgから、クロロホルム:メタノール=1:1の溶液で色素及び脂質を抽出し、アスタキサンチン及びスフィンゴ糖脂質のスクリーニングを行った。野性株は、スフィンゴ糖脂質の産生能も有している。   Pigments and lipids were extracted from 0.3 mg of cell powder consisting of about 50 strains of marine bacteria with a solution of chloroform: methanol = 1: 1 and screened for astaxanthin and glycosphingolipids. Wild strains also have the ability to produce glycosphingolipids.

アスタキサンチン及びスフィンゴ糖脂質の有無については、TLC(薄層クロマトグラフィー)を用いて評価した。その結果、唯一アスタキサンチンとスフィンゴ糖脂質を産生する菌株を同定し、これを寄託した(JPCCMB0017株)。   The presence or absence of astaxanthin and glycosphingolipid was evaluated using TLC (Thin Layer Chromatography). As a result, a strain producing only astaxanthin and glycosphingolipid was identified and deposited (JPCCMB0017 strain).

野生株は、絶対好気性グラム陰性の桿菌である。16S rDNAの系統解析より、この野生株は、α−プロテオバクテリア(α−Proteobacteria)に属し、スフィンゴモナス属とクラスターを形成し、スフィンゴモナス属の特徴であるスフィンゴ脂質も含むことから、スフィンゴモナス属の細菌であることが確認されている。   The wild strain is an absolute aerobic gram-negative bacilli. From the phylogenetic analysis of 16S rDNA, this wild strain belongs to α-Proteobacteria, forms a cluster with the genus Sphingomonas, and also contains the sphingolipid characteristic of the genus Sphingomonas. Has been confirmed to be a bacterium.

(ケミカルミューテーション)
野生株に対して、下記手順でDNAアルキル化剤を使用したケミカルミューテーションを行った。
まず、野生株をマリンブロス(Marine Broth、以下、MBと略記することがある)2216培地(Becton Dickinson社製)で24時間培養し、遠心分離により回収した。
次いで、1×10cellsのJPCCMB0017株を、1.0〜5.0%のエチルメタンスルホネート(EMS)を含む、pH7.0の15mMリン酸緩衝液1ml中で、30℃にて30〜60分間インキュベートし、突然変異誘導を行った。
次いで、得られた菌体をリン酸緩衝生理食塩水(以下、PBSと略記する)で二回洗浄した後、前記MB2216培地で、30℃にて2時間、復活培養した。
次いで、PBSで洗浄した後、得られた菌体をMB寒天培地に塗布し、30℃にて3〜7日間インキュベートした。
以上により、変異株を獲得した。
(Chemical mutation)
The wild strain was subjected to chemical mutation using a DNA alkylating agent according to the following procedure.
First, wild strains were cultured in marine broth (hereinafter abbreviated as MB) 2216 medium (manufactured by Becton Dickinson) for 24 hours and collected by centrifugation.
Subsequently, 1 × 10 9 cells of JPCMBB0017 strain was added at 30 ° C. for 30-60 in 1 ml of pH 7.0 15 mM phosphate buffer containing 1.0-5.0% ethyl methanesulfonate (EMS). Incubation for min and mutagenesis was performed.
Next, the obtained cells were washed twice with phosphate buffered saline (hereinafter abbreviated as PBS), and then reincubated with the MB2216 medium at 30 ° C. for 2 hours.
Next, after washing with PBS, the obtained bacterial cells were applied to an MB agar medium and incubated at 30 ° C. for 3 to 7 days.
As a result, mutant strains were obtained.

また、1.0〜5.0%のエチルメタンスルホネート(EMS)を含む、pH7.0の15mMリン酸緩衝液に代わり、5.0〜10%のN−メチル−N’−ニトロ−N−ニトロソグアニジン(NTG)を含む、pH7.0の15mMリン酸緩衝液を使用したこと以外は、上記と同様の手順でも、変異株を獲得した。   Also, instead of 15 mM phosphate buffer pH 7.0 containing 1.0-5.0% ethyl methanesulfonate (EMS), 5.0-10% N-methyl-N′-nitro-N— Mutant strains were also obtained by the same procedure as above except that a pH 7.0 15 mM phosphate buffer containing nitrosoguanidine (NTG) was used.

<変異株の性質>
獲得した変異株の性質は、コロニーの色以外は、すべて野生株と同じであった。より具体的には、以下の通りである。
<Properties of mutant strain>
The acquired mutants were all the same as the wild type except for the color of the colonies. More specifically, it is as follows.

(1)形態学的性質
細胞の形状:桿菌
細胞の大きさ:(0.6−0.7)×(2.0−3.0μm)(伸長型有り)
胞子の有無:−
運動性(鞭毛の着生状態):−
多形性:−
(1) Morphological properties Cell shape: Aspergillus Cell size: (0.6-0.7) × (2.0-3.0 μm) (with extension type)
Presence of spores:-
Motility (flagellar state): −
Polymorphism:-

(2)培養的性質
(2−1)培地:マリンアガー(マリンブロス2216(Becton Dickinson社製)+1.5%寒天)
温度:25℃
色素産生:+
色調:赤色
光沢:+
(2−2)培地:マリンブロス2216
温度:25℃
表面発育:−
培地の混濁:+
(2−3)ゼラチン穿刺培養
温度:25℃
生育:−
ゼラチン液化:−
(2−4)リトマス・ミルク
温度:25℃
凝固:−
液化:−
(2) Culture characteristics (2-1) Medium: Marine agar (Marine broth 2216 (Becton Dickinson) + 1.5% agar)
Temperature: 25 ° C
Pigment production: +
Color: Red Gloss: +
(2-2) Medium: Marine Broth 2216
Temperature: 25 ° C
Surface development:-
Medium turbidity: +
(2-3) Gelatin puncture culture Temperature: 25 ° C
Growth:-
Gelatin liquefaction:-
(2-4) Litmus milk Temperature: 25 ° C
Coagulation:-
Liquefaction:-

野生株のコロニーはオレンジ色であるのに対し、変異株のコロニーは、上記のように赤色であり、色調の点で変異株は野生株と明確に区別できる。図1に変異株及び野生株のコロニーの撮像データをそれぞれ示す。図1中、右側が変異株のコロニーであり、左側が野生株のコロニーである。   Wild-type colonies are orange, whereas mutant-type colonies are red as described above, and mutants can be clearly distinguished from wild-types in terms of color tone. FIG. 1 shows imaging data of colonies of mutant and wild strains, respectively. In FIG. 1, the right side is a mutant colony, and the left side is a wild-type colony.

(3)生理学的性質
グラム染色性:−
硫酸塩の還元:+
脱窒反応:−
MRテスト:−
VPテスト:+
インドール産生:−
硫化水素の生成:−
デンプンの加水分解:−
クエン酸の利用(Koser):−
クエン酸の利用(Christensen):−
無機窒素源の利用(硝酸塩):−
無機窒素源の利用(アンモニウム塩):−
ウレアーゼ:−
カタラーゼ:+
オキシダーゼ:+
生育(pH5):−
生育(pH8):+
生育(pH9):+
生育(20℃):+(弱)
生育(25℃):+
生育(30℃):+
生育(37℃):+(弱)
生育(塩濃度0%):−
生育(塩濃度1%):+(弱)
生育(塩濃度2%):+
生育(塩濃度3%):+
生育(塩濃度7%):+(弱)
生育(塩濃度10%):−
嫌気的生育性:−
O/Fテスト(酸化/発酵):−/−
(3) Physiological properties Gram staining:-
Reduction of sulfate: +
Denitrification reaction:-
MR test:-
VP test: +
Indole production:-
Production of hydrogen sulfide:-
Hydrolysis of starch:-
Use of citric acid (Koser):-
Use of citric acid (Christensen):-
Use of inorganic nitrogen source (nitrate):-
Use of inorganic nitrogen source (ammonium salt):-
Urease:-
Catalase: +
Oxidase: +
Growth (pH 5):-
Growth (pH 8): +
Growth (pH 9): +
Growth (20 ° C): + (weak)
Growth (25 ° C): +
Growth (30 ° C): +
Growth (37 ° C): + (weak)
Growth (salt concentration 0%):-
Growth (salt concentration 1%): + (weak)
Growth (salt concentration 2%): +
Growth (salt concentration 3%): +
Growth (salt concentration 7%): + (weak)
Growth (salt concentration 10%):-
Anaerobic growth:-
O / F test (oxidation / fermentation):-/-

糖類からの酸産生/ガス産生
L−アラビノース:−/−
D−グルコース:−/−
D−フラクトース:−/−
マルトース:−/−
ラクトース:−/−
D−ソルビトール:−/−
イノシトール:−/−
D−キシロース:−/−
D−マンノース:−/−
D−ガラクトース:−/−
サークロース:−/−
トレハロース:−/−
D-マンニトール:−/−
グリセリン:−/−
Acid production / gas production from saccharides L-arabinose:-/-
D-glucose:-/-
D-fructose:-/-
Maltose:-/-
Lactose:-/-
D-sorbitol:-/-
Inositol:-/-
D-xylose:-/-
D-Mannose:-/-
D-galactose:-/-
Circus:-/-
Trehalose:-/-
D-mannitol:-/-
Glycerin:-/-

(4)その他の生理学的性質
β−ガラクトシダーゼ活性:+
アルギニンジヒドラーゼ活性:−
リジンデカルボキシラーゼ活性:−
トリプトファンデアミナーゼ活性:−
ゼラチナーゼ活性:−
エスクリン分解活性:+(弱)
馬尿酸の分解活性:−
マロン酸利用性:−
オルニチン脱炭酸反応:−
フェニルアラニン脱アミノ反応:−
コアグラーゼ活性:−
溶血性:−
フォスファターゼ活性:+
リパーゼ活性:+
レシチナーゼ活性:−
チトクロームオキシダーゼ活性:+
(4) Other physiological properties β-galactosidase activity: +
Arginine dihydrase activity:-
Lysine decarboxylase activity:-
Tryptophan deaminase activity:-
Gelatinase activity:-
Esculin degradation activity: + (weak)
Hippuric acid degradation activity:
Malonic acid availability:-
Ornithine decarboxylation reaction:-
Phenylalanine deamination reaction: −
Coagulase activity: −
Hemolytic:-
Phosphatase activity: +
Lipase activity: +
Lecithinase activity:-
Cytochrome oxidase activity: +

(5)資化性試験
ブドウ糖:陰性
L−アラビノース:陰性
D−マンノース:陰性
D−マンニトール:陰性
N−アセチル−D−グルコサミン:陰性
マルトース:陰性
グルコン酸カリウム:陰性
n−カプリン酸:陰性
アジピン酸:陰性
d1−リンゴ酸:陰性
クエン酸ナトリウム:陰性
酢酸フェニル:陰性
(5) Assessability Glucose: negative L-arabinose: negative D-mannose: negative D-mannitol: negative N-acetyl-D-glucosamine: negative maltose: negative potassium gluconate: negative n-capric acid: negative adipic acid : Negative d1-malic acid: negative sodium citrate: negative phenyl acetate: negative

(6)化学分類学的性質
DNA塩基組成(GC含量):59.1モル%
菌体脂質分析
主要キノン:ユビキノンQ−10
脂肪酸:
10:0 3OH 0.26%
12:0 2OH 0.13%
12:0 3OH 0.30%
14:0 0.17%
13:0 2OH 0.24%
15:0 1.32%
14:0 2OH 3.05%
16:0 5.82%
15:0 2OH 2.58%
17:0 ISO 0.08%
17:1 w8c 2.83%
17:1 w6c 2.95%
17:0 1.39%
16:1 2OH 0.09%
16:0 2OH 1.40%
18:1 w7c 71.90%
18:1 w5c 0.39%
18:0 0.20%
17:0 ISO 3OH 1.61%
18:1 2OH 0.24%
19:0 10 methyl 0.42%
類似脂肪酸をもつ菌種:Sphingomonas paucimobilis
類似度(S.I.):0.267
(6) Chemical taxonomic properties DNA base composition (GC content): 59.1 mol%
Cellular lipid analysis Major quinone: Ubiquinone Q-10
fatty acid:
10: 0 3OH 0.26%
12: 0 2OH 0.13%
12: 0 3OH 0.30%
14: 0 0.17%
13: 0 2OH 0.24%
15: 0 1.32%
14: 0 2OH 3.05%
16: 0 5.82%
15: 0 2OH 2.58%
17: 0 ISO 0.08%
17: 1 w8c 2.83%
17: 1 w6c 2.95%
17: 0 1.39%
16: 1 2OH 0.09%
16: 0 2OH 1.40%
18: 1 w7c 71.90%
18: 1 w5c 0.39%
18: 0 0.20%
17: 0 ISO 3OH 1.61%
18: 1 2OH 0.24%
19: 0 10 methyl 0.42%
Species with similar fatty acids: Sphingomonas paucimobilis
Similarity (SI): 0.267

バクテリオクロロフィル産生(嫌気下):生育せず
バクテリオクロロフィル産生(好気下):陰性
スフィンゴ脂質の存在:+
生育における塩(NaCl)要求性:+
Bacteriochlorophyll production (anaerobic): not growing Bacteriochlorophyll production (aerobic): negative Presence of sphingolipid: +
Salt (NaCl) requirement in growth: +

<変異株の16S rDNAの塩基配列>
変異株の16S rDNAの塩基配列を公知の方法で同定した結果、配列番号1に示す通りであり、野生株と同じであった。
<Base sequence of mutant 16S rDNA>
As a result of identifying the 16S rDNA base sequence of the mutant strain by a known method, it was as shown in SEQ ID NO: 1 and was the same as the wild strain.

<変異株、培養物、カロテノイド色素含有組成物>
本発明の変異株は、後述するように、同じ条件下でのカロテノイド色素の産生能が野生株よりも際立って高い、新規な細菌である。このように、カロテノイド色素の産生能が高い細菌は、スフィンゴモナス(Sphingomonas)属に属する細菌ではこれまでに知られていない。
また、本発明の変異株は、多様なカロテノイド色素の産生能を有し、しかも培養温度を調節することで、所望のカロテノイド色素を作り分けることができるという、従来のスフィンゴモナス属に属する細菌には見られない優れた性質を有する。
<Mutant, culture, carotenoid pigment-containing composition>
As will be described later, the mutant strain of the present invention is a novel bacterium having a carotenoid pigment producing ability significantly higher than that of the wild strain under the same conditions. As described above, a bacterium having a high carotenoid pigment-producing ability has not been known so far in bacteria belonging to the genus Sphingomonas.
In addition, the mutant strain of the present invention is a bacterium belonging to the genus Sphingomonas, which has the ability to produce various carotenoid pigments and can produce a desired carotenoid pigment by adjusting the culture temperature. Has excellent properties not seen.

本発明の変異株は、平成21年9月04日付けで受託番号NITE BP−808として、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国 千葉県木更津市かずさ鎌足2−5−8(郵便番号 292−0818))に受託されている。   The mutant strain of the present invention has an accession number of NITE BP-808 dated September 04, 2009, and is incorporated by the Incorporated Administrative Agency, National Institute of Technology and Evaluation of Microorganisms (2-5 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, Japan) 8 (zip code 292-0818).

変異株を培養して得られた培養物中には、産生したカロテノイド色素を有する前記変異株が含有される。該培養物は、そのまま目的の用途に使用しても良いし、適宜任意の精製操作を行ってから使用しても良い。例えば、培養後の変異株から、カロテノイド色素を含有する組成物を分離して、該組成物を目的の用途に使用しても良いし、さらに該組成物を精製して、純度を向上させたカロテノイド色素を使用しても良い。   The culture obtained by culturing the mutant strain contains the mutant strain having the produced carotenoid pigment. The culture may be used as it is for the intended purpose, or may be used after performing an arbitrary purification operation. For example, a composition containing a carotenoid pigment may be separated from a mutant after culturing, and the composition may be used for the intended use. Further, the composition is purified to improve purity. Carotenoid pigments may be used.

<カロテノイド色素の製造方法>
本発明のカロテノイド色素の製造方法は、上記本発明の変異株を培養する工程を有するものである。そして、培養温度を適宜調節することで、変異株が産生するカロテノイド色素の組成を調節することができる。
変異株の培養は、野生株と同様の方法で行なうことができる。具体的には、以下の通りである。
<Method for producing carotenoid pigment>
The method for producing a carotenoid pigment of the present invention includes a step of culturing the mutant strain of the present invention. The composition of the carotenoid pigment produced by the mutant strain can be adjusted by appropriately adjusting the culture temperature.
Mutant strains can be cultured in the same manner as for wild strains. Specifically, it is as follows.

培地は、生育に必要な炭素源、窒素源、無機塩類及び微量成分等の必須成分を含むものであれば特に限定されない。
前記炭素源としては、グルコース、シュークロース等の糖類;エタノール、グリセロール等のアルコール類が例示できる。
炭素源の添加割合は、炭素源の種類にもよるが、概ね0.5〜3.0質量%程度であることが好ましい。
The medium is not particularly limited as long as it contains essential components such as a carbon source, a nitrogen source, inorganic salts, and trace components necessary for growth.
Examples of the carbon source include sugars such as glucose and sucrose; alcohols such as ethanol and glycerol.
The addition ratio of the carbon source is preferably about 0.5 to 3.0% by mass although it depends on the type of the carbon source.

前記窒素源としては、硝酸ナトリウム、硝酸アンモニウム、硫酸アンモニウム、硝酸カリウム、塩化アンモニウム、尿素等が例示できる。
窒素源の添加割合は、窒素源の種類にもよるが、0.01%〜0.1質量%程度であることが好ましい。
Examples of the nitrogen source include sodium nitrate, ammonium nitrate, ammonium sulfate, potassium nitrate, ammonium chloride, urea and the like.
Although the addition ratio of a nitrogen source is based also on the kind of nitrogen source, it is preferable that it is about 0.01%-0.1 mass%.

前記無機塩類としては、塩化ナトリウム、硫酸ナトリウム、塩化カルシウム、塩化カリウム、炭酸水素ナトリウム、ホウ素化カリウム、塩化ストロンチウム、ホウ酸、ケイ酸ナトリウム、フッ化ナトリウム、リン酸一カリウム、リン酸二カリウム、リン酸一ナトリウム、リン酸二ナトリウム、塩化鉄、塩化マンガン、硫酸マンガン、塩化マグネシウム、硫酸銅等が例示できる。
無機塩類の添加割合は、無機塩類の種類にもよるが、0.001%〜0.01質量%程度であることが好ましい。
Examples of the inorganic salts include sodium chloride, sodium sulfate, calcium chloride, potassium chloride, sodium bicarbonate, potassium boride, strontium chloride, boric acid, sodium silicate, sodium fluoride, monopotassium phosphate, dipotassium phosphate, Examples thereof include monosodium phosphate, disodium phosphate, iron chloride, manganese chloride, manganese sulfate, magnesium chloride, and copper sulfate.
The addition ratio of the inorganic salt is preferably about 0.001% to 0.01% by mass, although it depends on the kind of the inorganic salt.

前記微量成分としては、ビタミンや微量金属等が例示できる。   Examples of the trace component include vitamins and trace metals.

培地は、前記必須成分以外の任意成分を含んでいても良い。任意成分としては、酵母エキス、ペプトン、トリプトン等が例示できる。
任意成分の添加割合は、任意成分の種類にもよるが、0.01%〜0.5質量%程度であることが好ましい。
The culture medium may contain optional components other than the essential components. Examples of optional components include yeast extract, peptone, and tryptone.
Although the addition ratio of an arbitrary component is based also on the kind of arbitrary component, it is preferable that it is about 0.01%-0.5 mass%.

培地のpHは、6.0〜8.0であることが好ましい。   The pH of the medium is preferably 6.0 to 8.0.

変異株の培養温度は、変異株の生育を妨げない範囲内において、任意に選択できるが、20〜45℃であることが好ましい。   The culture temperature of the mutant strain can be arbitrarily selected within a range that does not hinder the growth of the mutant strain, but is preferably 20 to 45 ° C.

変異株のカロテノイド色素の産生効率は、カロテノイド色素の種類ごとに、培養温度によって変化する。すなわち、変異株の培養温度を所望のカロテノイド色素の産生に適した温度に適宜調節することで、所望のカロテノイド色素の産生量を向上させることができ、カロテノイド色素を作り分けることができる。
アスタキサンチンの産生量を向上させる場合には、培養温度は20〜30℃であることが好ましく、23〜27℃であることがより好ましい。
エキネノンの産生量を向上させる場合には、培養温度は25〜40℃であることが好ましく、27〜33℃であることがより好ましい。
アドニキサンチンの産生量を向上させる場合には、培養温度は25〜40℃であることが好ましく、33〜37℃であることがより好ましい。
ゼアキサンチンの産生量を向上させる場合には、培養温度は30〜45℃であることが好ましく、33〜37℃であることがより好ましい。
カンタキサンチンの産生量を向上させる場合には、培養温度は25〜45℃であることが好ましく、33〜37℃であることがより好ましい。
β−クリプトキサンチンの産生量を向上させる場合には、培養温度は35〜45℃であることが好ましく、38〜42℃であることがより好ましい。
β−カロテンの産生量を向上させる場合には、培養温度は35〜45℃であることが好ましく、38〜42℃であることがより好ましい。
The production efficiency of the mutant carotenoid pigment varies depending on the culture temperature for each type of carotenoid pigment. That is, by appropriately adjusting the culture temperature of the mutant strain to a temperature suitable for the production of the desired carotenoid pigment, the production amount of the desired carotenoid pigment can be improved, and carotenoid pigments can be created separately.
When improving the production amount of astaxanthin, the culture temperature is preferably 20 to 30 ° C, more preferably 23 to 27 ° C.
When improving the production amount of echinenone, the culture temperature is preferably 25 to 40 ° C, more preferably 27 to 33 ° C.
When improving the production amount of adonixanthin, the culture temperature is preferably 25 to 40 ° C, more preferably 33 to 37 ° C.
When improving the production amount of zeaxanthin, the culture temperature is preferably 30 to 45 ° C, more preferably 33 to 37 ° C.
When improving the production amount of canthaxanthin, the culture temperature is preferably 25 to 45 ° C, more preferably 33 to 37 ° C.
When improving the production amount of β-cryptoxanthin, the culture temperature is preferably 35 to 45 ° C, more preferably 38 to 42 ° C.
When improving the production amount of β-carotene, the culture temperature is preferably 35 to 45 ° C, more preferably 38 to 42 ° C.

そして、上記のように変異株の培養温度を調節することで、所望のカロテノイド色素の産生量を以下のように向上させることができる。
例えば、アスタキサンチンの場合、変異株の乾燥菌体中のアスタキサンチン含有量を0.04質量%以上、全カロテノイド色素中のアスタキサンチン含有量を30質量%以上とすることができる。
エキネノンの場合、変異株の乾燥菌体中のエキネノン含有量を0.03質量%以上、全カロテノイド色素中のエキネノン含有量を11質量%以上とすることができる。
アドニキサンチンの場合、変異株の乾燥菌体中のアドニキサンチン含有量を0.04質量%以上、全カロテノイド色素中のアドニキサンチン含有量を6.5質量%以上とすることができる。
ゼアキサンチンの場合、変異株の乾燥菌体中のゼアキサンチン含有量を0.1質量%以上、全カロテノイド色素中のゼアキサンチン含有量を19.5質量%以上とすることができる。
カンタキサンチンの場合、変異株の乾燥菌体中のカンタキサンチン含有量を0.005質量%以上、全カロテノイド色素中のカンタキサンチン含有量を1.5質量%以上とすることができる。
β−クリプトキサンチンの場合、変異株の乾燥菌体中のβ−クリプトキサンチン含有量を0.05質量%以上、全カロテノイド色素中のβ−クリプトキサンチン含有量を6質量%以上とすることができる。
β−カロテンの場合、変異株の乾燥菌体中のβ−カロテン含有量を0.5質量%以上、全カロテノイド色素中のβ−カロテン含有量を65質量%以上とすることができる。
And the production amount of a desired carotenoid pigment | dye can be improved as follows by adjusting the culture | cultivation temperature of a mutant as mentioned above.
For example, in the case of astaxanthin, the astaxanthin content in the dried microbial cells of the mutant strain can be 0.04% by mass or more, and the astaxanthin content in all carotenoid pigments can be 30% by mass or more.
In the case of echinenone, the echinenone content in the dry cells of the mutant strain can be 0.03% by mass or more, and the echinenone content in all carotenoid pigments can be 11% by mass or more.
In the case of adonixanthin, the adonixanthin content in the dried cells of the mutant strain can be 0.04% by mass or more, and the adonixanthin content in all carotenoid pigments can be 6.5% by mass or more.
In the case of zeaxanthin, the zeaxanthin content in the dried cells of the mutant can be 0.1% by mass or more, and the zeaxanthin content in the total carotenoid pigment can be 19.5% by mass or more.
In the case of canthaxanthin, the canthaxanthin content in the dried microbial cells of the mutant strain can be 0.005% by mass or more, and the canthaxanthin content in all carotenoid pigments can be 1.5% by mass or more.
In the case of β-cryptoxanthin, the β-cryptoxanthin content in the dry cells of the mutant can be 0.05% by mass or more, and the β-cryptoxanthin content in all carotenoid pigments can be 6% by mass or more. .
In the case of β-carotene, the β-carotene content in the dried cells of the mutant strain can be 0.5 mass% or more, and the β-carotene content in the total carotenoid pigment can be 65 mass% or more.

このように、変異株の培養物から分離されたカロテノイド色素含有組成物は、野生株をはじめとするスフィンゴモナス属に属する細菌で、カロテノイド色素産生能を有する細菌の培養物から得られた組成物よりも、各種カロテノイド色素の含有量が際立って高い。また、例えば、アスタキサンチン、ゼアキサンチン、β−カロテン等の特定のカロテノイド色素の含有量を大幅に向上させることができる。したがって、本発明の前記カロテノイド色素含有組成物は、有用性が極めて高い。   Thus, the carotenoid pigment-containing composition isolated from the mutant culture is a composition belonging to the genus Sphingomonas, including wild strains, obtained from a culture of bacteria having the ability to produce carotenoid pigments. The content of various carotenoid pigments is remarkably high. In addition, for example, the content of specific carotenoid pigments such as astaxanthin, zeaxanthin, and β-carotene can be greatly improved. Therefore, the carotenoid pigment-containing composition of the present invention is extremely useful.

変異株の全カロテノイド色素の産生量(含有量)は、概ね培養温度が高いほど向上する。
例えば、培養温度を好ましくは20℃以上、より好ましくは23℃以上とすることで、変異株の乾燥菌体中の全カロテノイド色素の含有量を0.12質量%以上とすることができる。
また、培養温度を好ましくは25℃以上、より好ましくは27℃以上とすることで、変異株の乾燥菌体中の全カロテノイド色素の含有量を0.25質量%以上とすることができる。
また、培養温度を好ましくは30℃以上、より好ましくは33℃以上とすることで、変異株の乾燥菌体中の全カロテノイド色素の含有量を0.55質量%以上とすることができる。
また、培養温度を好ましくは35℃以上、より好ましくは38℃以上とすることで、変異株の乾燥菌体中の全カロテノイド色素の含有量を0.78質量%以上とすることができる。
The production amount (content) of the total carotenoid pigment in the mutant generally improves as the culture temperature increases.
For example, when the culture temperature is preferably 20 ° C. or higher, more preferably 23 ° C. or higher, the content of the total carotenoid pigment in the dried microbial cells of the mutant strain can be 0.12% by mass or higher.
Moreover, content of the total carotenoid pigment | dye in the dry microbial cell of a mutant can be made into 0.25 mass% or more by making culture | cultivation temperature preferably 25 degreeC or more, More preferably, 27 degreeC or more.
Moreover, content of the total carotenoid pigment | dye in the dry microbial cell of a mutant can be 0.55 mass% or more by making culture | cultivation temperature preferably 30 degreeC or more, More preferably, 33 degreeC or more.
Moreover, content of the total carotenoid pigment | dye in the dry microbial cell of a mutant can be 0.78 mass% or more by making culture | cultivation temperature preferably 35 degreeC or more, More preferably, 38 degreeC or more.

培養時間は、培養温度にもよるが、通常は1〜3日間であることが好ましい。
また培養方法は、静置培養、振とう培養、撹拌培養等、培地の種類に応じて適宜選択すれば良い。そして、通気培養することが好ましい。
Although the culture time depends on the culture temperature, it is usually preferably 1 to 3 days.
The culture method may be appropriately selected depending on the type of medium, such as stationary culture, shaking culture, and stirring culture. And it is preferable to carry out aeration culture.

培養後は、培養物から、又は培養物の遠心分離で回収された沈降物から、カロテノイド色素を分離することができる。
例えば、前記培養物又は沈降物を、必要に応じて洗浄後、凍結乾燥等に供して乾燥菌体を得る。そして、得られた乾燥菌体に有機溶媒を加え、該有機溶媒中にカロテノイド色素を抽出し、必要に応じて該抽出操作を複数回繰り返す。次いで、減圧濃縮等の手法で溶媒を除去することで、カロテノイド色素が得られる。
After culturing, the carotenoid pigment can be separated from the culture or from the sediment recovered by centrifugation of the culture.
For example, the culture or sediment is washed as necessary, and then subjected to freeze-drying or the like to obtain dry cells. And an organic solvent is added to the obtained dry microbial cell, carotenoid pigment | dye is extracted in this organic solvent, and this extraction operation is repeated in multiple times as needed. Subsequently, the carotenoid pigment is obtained by removing the solvent by a technique such as vacuum concentration.

抽出に使用する有機溶媒は、カロテノイド色素を溶解できるものであれば特に限定されず、極性溶媒及び非極性溶媒のいずれもが使用できる。好ましいものとして具体的には、ヘキサン等の炭化水素類;アセトン等のケトン類;メタノール、エタノール、2−プロパノール等のアルコール類;酢酸エチル等のエステル類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;アセトニトリル等のニトリル類等が例示できる。
有機溶媒は、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて任意に選択すれば良い。
また、これらの有機溶媒は、カロテノイド色素の精製にも使用できる。
The organic solvent used for extraction is not particularly limited as long as it can dissolve the carotenoid pigment, and any of a polar solvent and a nonpolar solvent can be used. Preferable examples include hydrocarbons such as hexane; ketones such as acetone; alcohols such as methanol, ethanol and 2-propanol; esters such as ethyl acetate; halogenated hydrocarbons such as dichloromethane and chloroform. Nitriles such as acetonitrile can be exemplified.
An organic solvent may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio may be arbitrarily selected according to the purpose.
These organic solvents can also be used for the purification of carotenoid pigments.

カロテノイド色素は、例えば、その分析データを公知化合物の分析データと比較することで同定できる。分析法としては、構造に関するデータが取得できるものであればいずれでも良く、例えば、HPLC、吸光度分析、NMR、LC/MSなど通常汎用される分析法で良い。また、例えば、HPLCにより分析時に検量線を作成しておけば、得られた組成物中の各成分の含有量も定量できる。   Carotenoid pigments can be identified, for example, by comparing their analytical data with analytical data of known compounds. Any analysis method may be used as long as it can acquire data related to the structure. For example, a commonly used analysis method such as HPLC, absorbance analysis, NMR, or LC / MS may be used. For example, if a calibration curve is prepared at the time of analysis by HPLC, the content of each component in the obtained composition can also be quantified.

変異株を培養して得られた培養物、又は変異株の乾燥菌体、凍結菌体、溶媒抽出物、若しくは粉砕・破砕処理物を、動物プランクトンの培養物へ添加して捕食させた後、動物プランクトンを回収することにより、カロテノイド色素を製造することもできる。この製造方法によれば、カロテノイド色素が濃縮された飼料も提供できる。   After the culture obtained by culturing the mutant strain, or the dried strain of the mutant strain, the frozen cell body, the solvent extract, or the crushed and crushed processed product is added to the zooplankton culture and preyed, Carotenoid pigments can also be produced by recovering zooplankton. According to this production method, a feed enriched with carotenoid pigments can also be provided.

前記動物プランクトンとしては、例えば、ワムシ、アルテミア、ミジンコ等が例示できる。これら動物プランクトンに、変異株を捕食させることで生物学的濃縮が行われ、その結果得られる動物プランクトンの培養物では、従来の細菌の培養によって産生されたものよりも、カロテノイド色素が格段に濃縮され、その利用価値が極めて高い。   Examples of the zooplankton include rotifers, artemia, daphnia and the like. These zooplanktons are biologically enriched by preying on mutants, and the resulting zooplankton cultures have a much higher concentration of carotenoid pigments than those produced by conventional bacterial cultures. And its utility value is extremely high.

動物プランクトンによりカロテノイド色素が濃縮された飼料は、養殖魚への使用に好適である。稚魚の中には、カロテノイド色素を含有する甲殻類プランクトンを摂餌しているものがあり、この摂餌により魚の色が影響されることが知られている。そこで、これらの稚魚類を養殖する際に、上記方法で製造された飼料を色揚げ用飼料として給餌すると、濃縮されたカロテノイド色素を給餌でき、従来よりも効率的に魚を色揚げできる。   A feed enriched with carotenoid pigments by zooplankton is suitable for use in farmed fish. Some juveniles feed on crustacean plankton containing carotenoid pigments, and it is known that the color of fish is affected by this feeding. Therefore, when these fry are cultivated, if the feed produced by the above method is fed as a fried food, the concentrated carotenoid pigment can be fed, and the fish can be colored more efficiently than before.

以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.

[実施例1]
<変異株を使用したカロテノイド色素の製造(1)>
MB2216(37.4g)、グルコース3g及び純水1Lを混合して培地を調製し、1Lメディアボトル中で前記培地を121℃にて20分間滅菌処理した。
次いで、前記培地を常温まで冷却した後、これをクリーンベンチ内で1L三角フラスコに200ml分注し、予め10mlのL型試験管中で培養した変異株10mlを、分注した前記培地に植菌した。植菌後の培地のpHは7.6〜7.8であった。
次いで、恒温振とう培養機バイオシェーカー(商品名、タイテック社製)を使用して、培養温度30℃、撹拌速度120rpmの条件で二日間、変異株を振とう培養した。
次いで、培養物を遠心分離して変異株を回収し、凍結乾燥させた後、乳鉢で破砕して、粉末状の乾燥菌体を得た。
そして、得られた乾燥菌体から、ジクロロメタン/メタノール(3/1、体積比)の混合溶媒を使用して、カロテノイド色素を抽出し、分離した。
分離したカロテノイド色素をメタノールに溶解させ、得られた溶液からフィルタを使用して夾雑物を除去し、HPLC分析用サンプルとした。また、分離したカロテノイド色素をアセトンに溶解させ、得られた溶液からフィルタを使用して夾雑物を除去し、吸光スペクトル分析用サンプルとした。そして、下記条件でHPLC分析及び吸光スペクトル分析を行った。HPLC分析時のカロテノイド色素のプロファイルにおけるピーク強度(面積値)の比から、各カロテノイド色素の含有量の比を算出し、吸光スペクトル分析時のデータから、全カロテノイド色素の含有量(カロテノイド色素の総含有量)を算出して、これらの値から、各カロテノイド色素の含有量を算出した。
[Example 1]
<Production of carotenoid pigment using mutant strain (1)>
MB2216 (37.4 g), 3 g of glucose and 1 L of pure water were mixed to prepare a medium, and the medium was sterilized at 121 ° C. for 20 minutes in a 1 L media bottle.
Next, after cooling the medium to room temperature, 200 ml of this was dispensed into a 1 L Erlenmeyer flask in a clean bench, and 10 ml of the mutant strain previously cultured in a 10 ml L-shaped test tube was inoculated into the dispensed medium. did. The pH of the medium after inoculation was 7.6 to 7.8.
Subsequently, the mutant strain was cultured by shaking for 2 days under the conditions of a culture temperature of 30 ° C. and a stirring speed of 120 rpm using a constant temperature shake incubator bioshaker (trade name, manufactured by Taitec Co., Ltd.).
Subsequently, the culture was centrifuged to recover the mutant strain, freeze-dried, and then crushed in a mortar to obtain powdered dry cells.
And the carotenoid pigment | dye was extracted and isolate | separated from the obtained dried microbial cell using the mixed solvent of dichloromethane / methanol (3/1, volume ratio).
The separated carotenoid pigment was dissolved in methanol, and contaminants were removed from the obtained solution using a filter to prepare a sample for HPLC analysis. In addition, the separated carotenoid pigment was dissolved in acetone, and impurities were removed from the obtained solution using a filter to obtain a sample for absorption spectrum analysis. Then, HPLC analysis and absorption spectrum analysis were performed under the following conditions. Calculate the ratio of the content of each carotenoid pigment from the ratio of peak intensity (area value) in the profile of the carotenoid pigment at the time of HPLC analysis, and calculate the total carotenoid pigment content (total of carotenoid pigments) from the data at the time of absorption spectrum analysis. Content) and the content of each carotenoid pigment was calculated from these values.

(HPLC分析条件)
HPLC分析器:LC−VPシリーズ(島津製作所社製)
カラム:逆相カラムSymmetry C18(5μm、4.6×250mm)(Waters社製)
カラム温度:40℃
移動相:アセトニトリル/メタノール/2−プロパノール(45/3/2、体積比)の混合溶媒
移動相の流速:0.5mL/分
(吸光スペクトル分析)
分光光度計:UV−2400(島津製作所社製)
セル:1cm幅
(HPLC analysis conditions)
HPLC analyzer: LC-VP series (manufactured by Shimadzu Corporation)
Column: Reversed phase column Symmetry C18 (5 μm, 4.6 × 250 mm) (manufactured by Waters)
Column temperature: 40 ° C
Mobile phase: Mixed solvent of acetonitrile / methanol / 2-propanol (45/3/2, volume ratio) Mobile phase flow rate: 0.5 mL / min (absorption spectrum analysis)
Spectrophotometer: UV-2400 (manufactured by Shimadzu Corporation)
Cell: 1cm width

その結果、乾燥菌体1g中の全カロテノイド色素の含有量は1.246mg(0.125質量%)であり、乾燥菌体1g中のアスタキサンチンの含有量は0.16mg(0.016質量%)であった。そして、全カロテノイド色素中のアスタキサンチンの含有量は12.8質量%であった。   As a result, the content of total carotenoid pigment in 1 g of dry cells was 1.246 mg (0.125% by mass), and the content of astaxanthin in 1 g of dry cells was 0.16 mg (0.016% by mass). Met. The content of astaxanthin in the total carotenoid pigment was 12.8% by mass.

[比較例1]
<野生株を使用したカロテノイド色素の製造(1)>
変異株に代わり野生株を使用したこと以外は、実施例1と同様に粉末状の乾燥菌体を得て、カロテノイド色素を分離した。
その結果、得られた乾燥菌体1g中の全カロテノイド色素の含有量は0.162mg(0.016質量%)であり、乾燥菌体1g中のアスタキサンチンの含有量は0.01mg(0.001質量%)であった。そして、全カロテノイド色素中のアスタキサンチンの含有量は6.2質量%であった。
[Comparative Example 1]
<Production of carotenoid pigment using wild type strain (1)>
A powdered dry cell was obtained in the same manner as in Example 1 except that the wild strain was used instead of the mutant strain, and the carotenoid pigment was separated.
As a result, the content of total carotenoid pigment in 1 g of the obtained dried cells was 0.162 mg (0.016% by mass), and the content of astaxanthin in 1 g of the dried cells was 0.01 mg (0.001 Mass%). The content of astaxanthin in the total carotenoid pigment was 6.2% by mass.

実施例1及び比較例1の結果から明らかなように、変異株の全カロテノイド色素の含有量(全カロテノイド色素の産生量)は野生株の約8倍であり、変異株のアスタキサンチンの含有量は野生株の約16倍であった。   As is clear from the results of Example 1 and Comparative Example 1, the content of total carotenoid pigment in the mutant strain (production amount of total carotenoid pigment) is about 8 times that of the wild strain, and the content of astaxanthin in the mutant strain is It was about 16 times the wild type.

[実施例2]
<変異株を使用したカロテノイド色素の製造(2)>
大豆タンパク質由来ペプチド:ハイニュートR(商品名、不二製油社製)10g、イースト1g、クエン酸鉄III0.1g、硫酸アンモニウム0.0016g、リン酸水素二ナトリウム0.008g、グルコース3g、人工海水37g及び純水1Lを混合して培地4Lを調製し、微生物培養装置BML−10PI(商品名、エイブル社製)の容量10Lの容器中で、前記培地を121℃にて20分間滅菌処理した。
次いで、前記容器を微生物培養装置の反応部にセットし、前記培地を常温まで冷却した後、クリーンベンチ内で予め1L三角フラスコ中で培養した変異株200mlを、前記培地に植菌した。植菌後の培地のpHは7.6〜7.8であった。
次いで、培養温度25℃、撹拌速度200rpm、通気量1vvm(一分間あたりの通気量(体積)が前記培養液(4.2L)に対して1倍)の条件で二日間、変異株を振とう培養した。
次いで、培養物を遠心分離して変異株を回収し、凍結乾燥させた後、乳鉢で破砕して、粉末状の乾燥菌体を得た。
そして、実施例1と同様の方法で、得られた乾燥菌体からカロテノイド色素を抽出して分離し、各カロテノイド色素の含有量を算出した。
得られた乾燥菌体1g中のカロテノイド色素の組成を表1に示す。
表1から明らかなように、全カロテノイド色素中、アスタキサンチンが最も含有量が高かった。
[Example 2]
<Production of carotenoid pigment using mutant strain (2)>
Soy protein-derived peptide: High New R (trade name, manufactured by Fuji Oil Co., Ltd.) 10 g, yeast 1 g, iron iron citrate III 0.1 g, ammonium sulfate 0.0016 g, disodium hydrogen phosphate 0.008 g, glucose 3 g, artificial seawater 37 g Then, 4 L of a medium was prepared by mixing 1 L of pure water, and the medium was sterilized at 121 ° C. for 20 minutes in a 10 L container of a microorganism culture apparatus BML-10PI (trade name, manufactured by Able).
Next, the container was set in a reaction part of a microorganism culture apparatus, and the medium was cooled to room temperature, and then 200 ml of a mutant strain previously cultured in a 1 L Erlenmeyer flask in a clean bench was inoculated into the medium. The pH of the medium after inoculation was 7.6 to 7.8.
Subsequently, the mutant strain is shaken for 2 days under the conditions of a culture temperature of 25 ° C., a stirring speed of 200 rpm, and an aeration rate of 1 vvm (aeration rate (volume) per minute is 1 times the culture solution (4.2 L)). Cultured.
Subsequently, the culture was centrifuged to recover the mutant strain, freeze-dried, and then crushed in a mortar to obtain powdered dry cells.
And the carotenoid pigment | dye was extracted and isolate | separated from the obtained dried microbial cell by the method similar to Example 1, and content of each carotenoid pigment | dye was computed.
Table 1 shows the composition of the carotenoid pigment in 1 g of the obtained dried cells.
As is clear from Table 1, astaxanthin had the highest content among all carotenoid pigments.

[実施例3]
<変異株を使用したカロテノイド色素の製造(3)>
変異株の培養温度を25℃でなはく30℃としたこと以外は、実施例2と同様にカロテノイド色素を分離し、各カロテノイド色素の含有量を算出した。
得られた乾燥菌体1g中のカロテノイド色素の組成を表2に示す。
表2から明らかなように、全カロテノイド色素中、β−カロテンが最も含有量が高かった。
[Example 3]
<Production of carotenoid pigment using mutant strain (3)>
The carotenoid pigment was separated and the content of each carotenoid pigment was calculated in the same manner as in Example 2 except that the culture temperature of the mutant strain was 30 ° C. instead of 25 ° C.
Table 2 shows the composition of the carotenoid pigment in 1 g of the obtained dried cells.
As is clear from Table 2, β-carotene had the highest content in all carotenoid pigments.

[実施例4]
<変異株を使用したカロテノイド色素の製造(4)>
変異株の培養温度を25℃でなはく35℃としたこと以外は、実施例2と同様にカロテノイド色素を分離し、各カロテノイド色素の含有量を算出した。
得られた乾燥菌体1g中のカロテノイド色素の組成を表3に示す。
表3から明らかなように、全カロテノイド色素中、β−カロテンが最も含有量が高かった。
[Example 4]
<Production of carotenoid pigment using mutant strain (4)>
Carotenoid pigments were separated in the same manner as in Example 2 except that the culture temperature of the mutant strain was 35 ° C instead of 25 ° C, and the content of each carotenoid pigment was calculated.
Table 3 shows the composition of the carotenoid pigment in 1 g of the obtained dried cells.
As is clear from Table 3, β-carotene had the highest content in all carotenoid pigments.

[実施例5]
<変異株を使用したカロテノイド色素の製造(5)>
変異株の培養温度を25℃でなはく40℃としたこと以外は、実施例2と同様にカロテノイド色素を分離し、各カロテノイド色素の含有量を算出した。
得られた乾燥菌体1g中のカロテノイド色素の組成を表4に示す。
表4から明らかなように、全カロテノイド色素中、β−カロテンが最も含有量が高かった。
[Example 5]
<Production of carotenoid pigment using mutant strain (5)>
Carotenoid pigments were separated and the content of each carotenoid pigment was calculated in the same manner as in Example 2 except that the culture temperature of the mutant strain was 40 ° C instead of 25 ° C.
Table 4 shows the composition of the carotenoid pigment in 1 g of the obtained dried cells.
As is clear from Table 4, β-carotene had the highest content among all carotenoid pigments.

[比較例2]
<野生株を使用したカロテノイド色素の製造(2)>
変異株に代わり野生株を使用したこと、培養温度を25℃でなはく30℃としたこと以外は、実施例2と同様にカロテノイド色素を分離し、各カロテノイド色素の含有量を算出した。
得られた乾燥菌体1g中のカロテノイド色素の組成を表5に示す。
[Comparative Example 2]
<Production of carotenoid pigment using wild type strain (2)>
Carotenoid pigments were separated and the content of each carotenoid pigment was calculated in the same manner as in Example 2 except that a wild strain was used instead of the mutant strain and the culture temperature was changed to 30 ° C. instead of 25 ° C.
Table 5 shows the composition of the carotenoid pigment in 1 g of the obtained dried cells.

表5から明らかなように、野生株を培養した比較例2では、アスタキサンチン、ゼアキサンチン、カンタキサンチン、エキネノン及びβ−カロテンの産生が認められなかった。そして、全カロテノイド色素の含有量も極めて低かった。
一方、変異株を比較例2と同じ培養温度で培養した実施例3では、表2及び5から明らかなように、全カロテノイド色素の含有量は、比較例2の約39倍であった。
そして、カロテノイド色素の含有量は、すべての種類において実施例3の方が比較例2よりも顕著に高かった。比較例2で産生が認められたカロテノイド色素で比較すると、アドニキサンチンは約18倍、β−クリプトキサンチンは約31倍であった。
As is clear from Table 5, in Comparative Example 2 in which the wild strain was cultured, production of astaxanthin, zeaxanthin, canthaxanthin, echinenone and β-carotene was not observed. And the content of the total carotenoid pigment was also very low.
On the other hand, in Example 3 where the mutant strain was cultured at the same culture temperature as in Comparative Example 2, the total carotenoid pigment content was about 39 times that in Comparative Example 2, as is apparent from Tables 2 and 5.
And the content of the carotenoid pigment was significantly higher in Example 3 than in Comparative Example 2 in all types. When compared with the carotenoid pigments produced in Comparative Example 2, adonixanthin was about 18 times, and β-cryptoxanthin was about 31 times.

また、表1〜4から明らかなように、変異株の培養温度を調節することによって、各カロテノイド色素の含有量を向上させることができた。
具体的には、アスタキサンチンは培養温度25℃で、エキネノンは培養温度30℃で、アドニキサンチン、ゼアキサンチン及びカンタキサンチンは培養温度35℃で、β−クリプトキサンチン及びβ−カロテンは培養温度40℃で、それぞれ最も含有量が高くなった。
このように、培養温度を適宜調節することで、所望のカロテノイド色素を効率良く得られた。
Further, as is apparent from Tables 1 to 4, the content of each carotenoid pigment could be improved by adjusting the culture temperature of the mutant strain.
Specifically, astaxanthin is cultured at 25 ° C., echinenone is cultured at 30 ° C., adonixanthin, zeaxanthin and canthaxanthin are cultured at 35 ° C., and β-cryptoxanthin and β-carotene are cultured at 40 ° C. , Each had the highest content.
Thus, the desired carotenoid pigment was efficiently obtained by appropriately adjusting the culture temperature.

さらに、実施例1〜5から明らかなように、変異株を使用してカロテノイド色素を産生させた場合、変異株を大量培養しても、カロテノイド色素の産生能は低下せず、カロテノイド色素の製造効率が極めて高いことが確認できた。   Furthermore, as is clear from Examples 1 to 5, when a carotenoid pigment was produced using a mutant strain, the ability to produce carotenoid pigment did not decrease even when the mutant strain was cultured in large quantities, and the production of carotenoid pigment was carried out. It was confirmed that the efficiency was extremely high.

本発明は、健康食品の原料や飼料の添加物の製造に利用可能であるため、産業上極めて有用である。   Since the present invention can be used for the production of health food ingredients and feed additives, it is extremely useful industrially.

NITE BP−808 NITE BP-808

【0001】
技術分野
[0001]
本発明は、アルターエリスロバクター属に属する細菌の新規変異株、該変異株を利用して得られた培養物及びカロテノイド色素含有組成物、並びに該変異株を利用するカロテノイド色素の製造方法に関する。
背景技術
[0002]
アスタキサンチンやβ−カロテン等をはじめとする各種カロテノイド色素は、多くの生理活性を有しており、サプリメント食品の原料として有用である。一方、近年の天然資源の減少により、これら天然資源の養殖が期待されており、魚介類の人口種苗生産においては、対象種に対して高い餌料効果や付加価値を付与する飼料が求められている。このような中、タイやサケ等の養殖魚の色調をより天然のものに近付けるために、アスタキサンチンを配合した飼料(色揚げ飼料)が使用されることがある。また、タイやニジマス等の体色の鮮やかさが求められる魚種に対しては、アスタキサンチン等の色素を配合した飼料が使用されることがある。
[0003]
色揚げ飼料の添加物としてのアスタキサンチンは、カロリーピンク(合成アスタキサンチン)としてロッシュ社から販売されている。しかし、トレーサビリティーの問題や利用者の天然物志向から、天然由来のアスタキサンチンが注目されている。
アスタキサンチンは、マダイ、サケ等の魚類;カニ、エビ、オキアミ等の甲殻類に広く分布している。そこで、天然由来のアスタキサンチンを得る方法として、甲殻類からアスタキサンチンを抽出する方法が提案されている。しかし、抽出効率が低いため抽出量が少なく、コストが高くなるという問題
[0001]
Technical field [0001]
The present invention relates to a novel mutant strain of a bacterium belonging to the genus Altererislobacter, a culture obtained using the mutant strain and a carotenoid pigment-containing composition, and a method for producing a carotenoid pigment using the mutant strain.
Background art [0002]
Various carotenoid pigments such as astaxanthin and β-carotene have many physiological activities, and are useful as raw materials for supplement foods. On the other hand, due to the recent decrease in natural resources, the cultivation of these natural resources is expected, and in the production of artificial seeds and seedlings of fish and shellfish, there is a demand for feed that provides high feed effect and added value to the target species. . Under such circumstances, feed (colored fried feed) containing astaxanthin may be used to bring the color of cultured fish such as Thailand and salmon closer to natural ones. In addition, feeds containing pigments such as astaxanthin may be used for fish species such as Thailand and rainbow trout that require vivid body colors.
[0003]
Astaxanthin as an additive to deep-fried feed is sold by Roche as calorie pink (synthetic astaxanthin). However, astaxanthin derived from nature has been attracting attention because of traceability problems and users' preference for natural products.
Astaxanthin is widely distributed in fish such as red sea bream and salmon; crustaceans such as crabs, shrimps and krill. Therefore, a method for extracting astaxanthin from crustaceans has been proposed as a method for obtaining naturally-derived astaxanthin. However, because extraction efficiency is low, the amount of extraction is small and the cost is high.

【0003】
43では、0.14mg/g dry weightの産生量が報告されている(非特許文献5参照)。しかし、これら遺伝子組換え体によるアスタキサンチンの産生には、発現量等で問題点があった。
そこで、アスタキサンチンを産生する細菌が探索され、これまでに、フラボバクテリウム属、アルカリゲネス属、シュードモナス属、アルテロモナス属、ピポモナス属、カリオファノン属、エリスロバクター属、パラコッカス属等に属する細菌が報告されている。
[0007]
また、本発明者らは、スフィンゴモナス(Sphingomonas)属に属する細菌であるJPCCMB0017株(NITE P−48)が、カロテノイド色素産生能を有することを、これまでに報告している(特許文献1参照)。なお、その後の解析により、JPCCMB0017株(NITE P−48)は、スフィンゴモナス属ではなく、アルターエリスロバクター属に属することが明らかになっている。
先行技術文献
特許文献
[0008]
特許文献1:特開2006−191919号公報
非特許文献
[0009]
非特許文献1:リー及びソー(Lee,Y.−K.and Soh,C.−W.)、「ジャーナル・オブ・ファイコロジー(J.Phycol.)」、米国、1991年、第27巻、第3号、p.575−577
非特許文献2:フローレス−コテラら(Flores−Cotera,L.B.et al.)、アプライド・マイクロバイオロジー・アンド・バイオテクノロジー(Appl.Microbiol.Biotechnol.)、米国、2001年、第55巻、第2号、p.341−347
非特許文献3:ワンら(Wang,C.−W.et al.)、バイオテクノロジー・アンド・バイオエンジニアリング(Biotechnol.Bioeng.)、米国、1999年、第62巻、第3号、p.235−241
非特許文献4:ヨコヤマら(Yokoyama et al.)、バイオサイエンス・バイオテクノロジー・アンド・バイオケミストリー(Bioscience,Biotechnology,and Biochemistr
[0003]
43, the production amount of 0.14 mg / g dry weight has been reported (see Non-Patent Document 5). However, production of astaxanthin by these gene recombinants has a problem in expression level and the like.
Therefore, bacteria that produce astaxanthin were searched, and bacteria belonging to the genus Flavobacterium, Alkaligenes, Pseudomonas, Alteromonas, Pipomonas, Caryophanone, Erytlobacter, Paracoccus have been reported so far. .
[0007]
In addition, the present inventors have reported that JPCMMB0017 strain (NITE P-48), which is a bacterium belonging to the genus Sphingomonas, has a carotenoid pigment producing ability (see Patent Document 1). ). Further analysis revealed that JPCMB0017 strain (NITE P-48) belongs to the genus Alterellislobacter, not Sphingomonas.
Prior Art Literature Patent Literature [0008]
Patent Document 1: Non-Patent Document [0009] of JP-A-2006-191919
Non-Patent Document 1: Lee, Y.-K. and Soh, C.-W., “Journal of Phycolology”, USA, 1991, Vol. 27, No. 3, p. 575-577
Non-Patent Document 2: Flores-Cotera, LB et al., Applied Microbiology and Biotechnology (Appl. Microbiol. Biotechnol.), USA, 2001, Vol. 55 , No. 2, p. 341-347
Non-Patent Document 3: Wang et al. (Wang, C.-W. et al.), Biotechnology and Bioengineering (Biotechnol. Bioeng.), USA, 1999, Vol. 62, No. 3, p. 235-241
Non-Patent Document 4: Yokoyama et al., Bioscience, Biotechnology and Biochemistry (Bioscience, Biotechnology, and Biochemistry)

【0004】
y)、米国、1994年、第58巻、第10号、p.1842−1844
非特許文献5:ペインら(Pane,L.et al.)、ジャーナル・オブ・バイオロジー・リサーチ(J.Biol.Res.)、米国、1996年、第22巻、p.303−308
発明の概要
発明が解決しようとする課題
[0010]
しかし、アスタキサンチンをはじめとする各種カロテノイド色素の産生能を有する細菌は、まだ十分に探索されているとは言えず、より産生効率が高いカロテノイド色素の製造方法の開発が強く望まれている。
本発明は上記事情に鑑みて為されたものであり、カロテノイド色素の産生能を有する新規な細菌、及び該細菌を利用するカロテノイド色素の製造方法を提供することを課題とする。
課題を解決するための手段
[0011]
上記課題を解決するため、本発明者らは鋭意検討の結果、以下の発明を完成させるに至った。
(1)アルターエリスロバクター属JPCC MB0017−6株(受託番号:NITE BP−808)。
(2)(1)に記載の細菌株を培養して得られた培養物。
(3)(2)に記載の培養物から分離されたカロテノイド色素含有組成物。
(4)(1)に記載の細菌株を培養する工程を有するカロテノイド色素の製造方法。
発明の効果
[0012]
本発明によれば、カロテノイド色素の産生能を有する新規な細菌、及び該細菌を利用するカロテノイド色素の製造方法が提供される。また、本発明の細菌は、カロテノイド色素の産生能が高いので、高品質のカロテノイド色素を簡便且つ大量に製造できる。その結果、安価なカロテノイド色素を提供できる。
[0004]
y), USA, 1994, Vol. 58, No. 10, p. 1842-1844
Non-Patent Document 5: Pane, L. et al., Journal of Biology Research (J. Biol. Res.), USA, 1996, Vol. 22, p. 303-308
SUMMARY OF THE INVENTION Problems to be Solved by the Invention [0010]
However, bacteria having the ability to produce various carotenoid pigments including astaxanthin have not yet been fully searched, and development of a method for producing carotenoid pigments with higher production efficiency is strongly desired.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel bacterium having a carotenoid pigment-producing ability and a method for producing a carotenoid pigment using the bacterium.
Means for Solving the Problems [0011]
In order to solve the above problems, the present inventors have intensively studied and have completed the following invention.
(1) Alter Ellis Lobacter genus JPCC MB0017-6 strain (Accession number: NITE BP-808).
(2) A culture obtained by culturing the bacterial strain described in (1).
(3) A carotenoid pigment-containing composition separated from the culture according to (2).
(4) A method for producing a carotenoid pigment comprising the step of culturing the bacterial strain according to (1).
Effects of the Invention [0012]
ADVANTAGE OF THE INVENTION According to this invention, the novel bacterium which has a carotenoid pigment-producing ability, and the manufacturing method of the carotenoid pigment | dye using this bacterium are provided. Moreover, since the bacterium of the present invention has a high ability to produce carotenoid pigments, high-quality carotenoid pigments can be produced easily and in large quantities. As a result, an inexpensive carotenoid pigment can be provided.

【0005】
図面の簡単な説明
[0013]
[図1]JPCC MB0017−6株及びJPCCMB0017株のコロニーの撮像データである。
発明を実施するための形態
[0014]
以下、本発明について詳しく説明する。
本発明のアルターエリスロバクター属JPCC MB0017−6株(受託番号:NITE BP−808)は、アルターエリスロバクター属JPCCMB0017株の変異株である。以下、本明細書において、「アルターエリスロバクター属JPCCMB0017株」のことを「野生株」と略記することがある。また、「アルターエリスロバクター属JPCC MB0017−6株(受託番号:NITE BP−808)」のことを「変異株」と略記することがある。
また、本発明において、「カロテノイド色素」とは、炭素数40のポリエン構造を基本骨格とする色素のことを指し、カロテン、リコペン等の炭化水素や、キサントフィル等のアルコール類を含み、β−カロテン、アスタキサンチン、β−カロテンがアスタキサンチンに変換される過程で生じる種々の有用なカロテノイド色素が例示できる。
カロテノイド色素として、より具体的には、カロテン、リコペン、アスタキサンチン、アドニキサンチン、ゼアキサンチン、アドニルビン、カンタキサンチン、クリプトキサンチン、エキネノン、ハイドロエキネノン、ルテイン、フコキサンチン、アンテラキサンチン、ビオラキサンチン、β−クリプトキサンチン等が例示できる。
[0015]
<変異株の獲得>
本発明の変異株は、野生株に対して、ケミカルミューテーションを行うことで獲得した。より具体的には、以下の通りである。
[0016]
(野生株の獲得)
野生株は、本出願人により、平成16年12月3日付けで、独立行政法人
[0005]
BRIEF DESCRIPTION OF THE DRAWINGS [0013]
[FIG. 1] Imaging data of colonies of JPCC MB0017-6 strain and JPCCMB0017 strain.
MODE FOR CARRYING OUT THE INVENTION [0014]
The present invention will be described in detail below.
The Alter erythrobacter genus JPCC MB0017-6 strain (Accession number: NITE BP-808) of the present invention is a mutant of the Alter erythrobacter genus JPCMBB0017 strain. Hereinafter, in the present specification, the “Alter Ellis Lobacter genus JPCMBB0017 strain” may be abbreviated as “wild strain”. In addition, “Alter Ellis Lobacter genus JPCC MB0017-6 strain (accession number: NITE BP-808)” may be abbreviated as “mutant strain”.
In the present invention, the “carotenoid pigment” refers to a pigment having a polyene structure having 40 carbon atoms as a basic skeleton, and includes hydrocarbons such as carotene and lycopene, and alcohols such as xanthophyll, and β-carotene. Examples of various useful carotenoid pigments produced in the process of converting astaxanthin and β-carotene into astaxanthin.
More specifically, as carotenoid pigments, carotene, lycopene, astaxanthin, adonixanthin, zeaxanthin, adonilvin, canthaxanthin, cryptoxanthin, echinone, hydroechinone, lutein, fucoxanthin, anthaxanthin, violaxanthin, β- Examples include cryptoxanthin.
[0015]
<Acquisition of mutant strain>
The mutant strain of the present invention was obtained by performing chemical mutation on the wild strain. More specifically, it is as follows.
[0016]
(Acquisition of wild strains)
Wild strains are independent administrative corporations dated December 3, 2004 by the applicant.

【0006】
製品評価技術基盤機構特許微生物寄託センター(日本国 千葉県木更津市かずさ鎌足2−5−8(郵便番号 292−0818))に寄託されている(受託番号:NITE P−48)。
また、本発明者らは、寄託にあたり野生株を天然より獲得しており、以下にその獲得手順を示す。
[0017]
海洋環境やマングローブ林より採取した海砂、泥、水などからアスタキサンチン及びスフィンゴ糖脂質を産生する微生物の獲得を試みた。酵母エキス5.0g/l、ペプトン1.0g/l、グルコース5.0g/lを人工海水(千寿製薬社製)に添加して作製した寒天プレートに、100μlのサンプルを塗布した。
[0018]
25℃の条件下で7〜10日間静置培養を行い、オレンジ、赤色のコロニーを形成する海洋微生物を獲得した。これらの微生物を単菌化するため、5mlの上記成分を含む液体培地中に植菌し、150rpmで震とう培養して微生物を生育させ、これを寒天プレートに塗布してコロニーを形成させる操作を繰り返した。
[0019]
約50株の海洋細菌からなる菌体粉末0.3mgから、クロロホルム:メタノール=1:1の溶液で色素及び脂質を抽出し、アスタキサンチン及びスフィンゴ糖脂質のスクリーニングを行った。野性株は、スフィンゴ糖脂質の産生能も有している。
[0020]
アスタキサンチン及びスフィンゴ糖脂質の有無については、TLC(薄層クロマトグラフィー)を用いて評価した。その結果、唯一アスタキサンチンとスフィンゴ糖脂質を産生する菌株を同定し、これを寄託した(JPCCMB0017株)。
[0021]
野生株は、絶対好気性グラム陰性の桿菌である。16S rDNAの系統解析より、この野生株は、α−プロテオバクテリア(α−Proteobacteria)に属し、アルターエリスロバクター属とクラスターを形成し、アルターエリスロバクター属の特徴であるスフィンゴ脂質も含むことから、アルターエリスロバクター属の細菌であることが確認されている。
[0006]
It is deposited at the Product Evaluation Technology Infrastructure Organization Patent Microorganism Deposit Center (2-5-8 Kazusa-Kamashita, Kisarazu City, Chiba Prefecture, Japan, postal code 292-0818) (Accession Number: NITE P-48).
In addition, the present inventors have acquired a wild strain from the nature upon deposit, and the acquisition procedure is shown below.
[0017]
We tried to acquire microorganisms that produce astaxanthin and glycosphingolipid from marine environment and sea sand, mud and water collected from mangrove forests. A sample of 100 μl was applied to an agar plate prepared by adding 5.0 g / l of yeast extract, 1.0 g / l of peptone, and 5.0 g / l of glucose to artificial seawater (manufactured by Senju Pharmaceutical).
[0018]
The stationary culture was performed at 25 ° C. for 7 to 10 days to obtain marine microorganisms forming orange and red colonies. In order to isolate these microorganisms, an operation of inoculating them in a liquid medium containing 5 ml of the above-mentioned components, growing them by shaking culture at 150 rpm, and applying them to an agar plate to form colonies. Repeated.
[0019]
Pigments and lipids were extracted from 0.3 mg of cell powder consisting of about 50 strains of marine bacteria with a solution of chloroform: methanol = 1: 1 and screened for astaxanthin and glycosphingolipids. Wild strains also have the ability to produce glycosphingolipids.
[0020]
The presence or absence of astaxanthin and glycosphingolipid was evaluated using TLC (Thin Layer Chromatography). As a result, a strain producing only astaxanthin and glycosphingolipid was identified and deposited (JPCCMB0017 strain).
[0021]
The wild strain is an absolute aerobic gram-negative bacilli. From the phylogenetic analysis of 16S rDNA, this wild strain belongs to α-Proteobacteria, forms a cluster with Altera erythrobacter genus, and also contains sphingolipid, which is characteristic of Alter erythrobacter genus. It has been confirmed that it is a bacterium belonging to the genus Erytlobacter.

【0013】
産生能が野生株よりも際立って高い、新規な細菌である。このように、カロテノイド色素の産生能が高い細菌は、アルターエリスロバクター属に属する細菌ではこれまでに知られていない。
また、本発明の変異株は、多様なカロテノイド色素の産生能を有し、しかも培養温度を調節することで、所望のカロテノイド色素を作り分けることができるという、従来のアルターエリスロバクター属に属する細菌には見られない優れた性質を有する。
[0036]
本発明の変異株は、平成21年9月04日付けで受託番号NITE BP−808として、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国 千葉県木更津市かずさ鎌足2−5−8(郵便番号 292−0818))に受託されている。
[0037]
変異株を培養して得られた培養物中には、産生したカロテノイド色素を有する前記変異株が含有される。該培養物は、そのまま目的の用途に使用しても良いし、適宜任意の精製操作を行ってから使用しても良い。例えば、培養後の変異株から、カロテノイド色素を含有する組成物を分離して、該組成物を目的の用途に使用しても良いし、さらに該組成物を精製して、純度を向上させたカロテノイド色素を使用しても良い。
[0038]
<カロテノイド色素の製造方法>
本発明のカロテノイド色素の製造方法は、上記本発明の変異株を培養する工程を有するものである。そして、培養温度を適宜調節することで、変異株が産生するカロテノイド色素の組成を調節することができる。
変異株の培養は、野生株と同様の方法で行なうことができる。具体的には、以下の通りである。
[0039]
培地は、生育に必要な炭素源、窒素源、無機塩類及び微量成分等の必須成分を含むものであれば特に限定されない。
前記炭素源としては、グルコース、シュークロース等の糖類;エタノール、グリセロール等のアルコール類が例示できる。
炭素源の添加割合は、炭素源の種類にもよるが、概ね0.5〜3.0質量
[0013]
It is a novel bacterium with significantly higher productivity than the wild type. Thus, a bacterium having a high carotenoid pigment-producing ability has not been known so far in bacteria belonging to the genus Alterellislobacter.
In addition, the mutant strain of the present invention has the ability to produce various carotenoid pigments, and can control the culture temperature to produce the desired carotenoid pigments separately. It has excellent properties not found in
[0036]
The mutant strain of the present invention has an accession number of NITE BP-808 dated September 04, 2009, and is incorporated by the Incorporated Administrative Agency, National Institute of Technology and Evaluation of Microorganisms (2-5 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, Japan) 8 (zip code 292-0818).
[0037]
The culture obtained by culturing the mutant strain contains the mutant strain having the produced carotenoid pigment. The culture may be used as it is for the intended purpose, or may be used after performing an arbitrary purification operation. For example, a composition containing a carotenoid pigment may be separated from the mutant after culturing, and the composition may be used for the intended use. Further, the composition is purified to improve purity. Carotenoid pigments may be used.
[0038]
<Method for producing carotenoid pigment>
The method for producing a carotenoid pigment of the present invention includes a step of culturing the mutant strain of the present invention. The composition of the carotenoid pigment produced by the mutant strain can be adjusted by appropriately adjusting the culture temperature.
Mutant strains can be cultured in the same manner as for wild strains. Specifically, it is as follows.
[0039]
The medium is not particularly limited as long as it contains essential components such as a carbon source, a nitrogen source, inorganic salts, and trace components necessary for growth.
Examples of the carbon source include sugars such as glucose and sucrose; alcohols such as ethanol and glycerol.
The addition ratio of the carbon source depends on the type of the carbon source, but is generally 0.5 to 3.0 mass.

【0016】
β−クリプトキサンチンの場合、変異株の乾燥菌体中のβ−クリプトキサンチン含有量を0.05質量%以上、全カロテノイド色素中のβ−クリプトキサンチン含有量を6質量%以上とすることができる。
β−カロテンの場合、変異株の乾燥菌体中のβ−カロテン含有量を0.5質量%以上、全カロテノイド色素中のβ−カロテン含有量を65質量%以上とすることができる。
[0048]
このように、変異株の培養物から分離されたカロテノイド色素含有組成物は、野生株をはじめとするアルターエリスロバクター属に属する細菌で、カロテノイド色素産生能を有する細菌の培養物から得られた組成物よりも、各種カロテノイド色素の含有量が際立って高い。また、例えば、アスタキサンチン、ゼアキサンチン、β−カロテン等の特定のカロテノイド色素の含有量を大幅に向上させることができる。したがって、本発明の前記カロテノイド色素含有組成物は、有用性が極めて高い。
[0049]
変異株の全カロテノイド色素の産生量(含有量)は、概ね培養温度が高いほど向上する。
例えば、培養温度を好ましくは20℃以上、より好ましくは23℃以上とすることで、変異株の乾燥菌体中の全カロテノイド色素の含有量を0.12質量%以上とすることができる。
また、培養温度を好ましくは25℃以上、より好ましくは27℃以上とすることで、変異株の乾燥菌体中の全カロテノイド色素の含有量を0.25質量%以上とすることができる。
また、培養温度を好ましくは30℃以上、より好ましくは33℃以上とすることで、変異株の乾燥菌体中の全カロテノイド色素の含有量を0.55質量%以上とすることができる。
また、培養温度を好ましくは35℃以上、より好ましくは38℃以上とすることで、変異株の乾燥菌体中の全カロテノイド色素の含有量を0.78質量%以上とすることができる。
[0050]
培養時間は、培養温度にもよるが、通常は1〜3日間であることが好まし
[0016]
In the case of β-cryptoxanthin, the β-cryptoxanthin content in the dry cells of the mutant can be 0.05% by mass or more, and the β-cryptoxanthin content in all carotenoid pigments can be 6% by mass or more. .
In the case of β-carotene, the β-carotene content in the dried cells of the mutant strain can be 0.5 mass% or more, and the β-carotene content in the total carotenoid pigment can be 65 mass% or more.
[0048]
As described above, the carotenoid pigment-containing composition isolated from the mutant culture is a composition belonging to the genus Altera erythrobacter including wild strains, and obtained from a culture of bacteria having carotenoid pigment-producing ability. The content of various carotenoid pigments is remarkably higher than the product. In addition, for example, the content of specific carotenoid pigments such as astaxanthin, zeaxanthin, and β-carotene can be greatly improved. Therefore, the carotenoid pigment-containing composition of the present invention is extremely useful.
[0049]
The production amount (content) of the total carotenoid pigment in the mutant generally improves as the culture temperature increases.
For example, when the culture temperature is preferably 20 ° C. or higher, more preferably 23 ° C. or higher, the content of the total carotenoid pigment in the dried microbial cells of the mutant strain can be 0.12% by mass or higher.
Moreover, content of the total carotenoid pigment | dye in the dry microbial cell of a mutant can be made into 0.25 mass% or more by making culture | cultivation temperature preferably 25 degreeC or more, More preferably, 27 degreeC or more.
Moreover, content of the total carotenoid pigment | dye in the dry microbial cell of a mutant can be 0.55 mass% or more by making culture | cultivation temperature preferably 30 degreeC or more, More preferably, 33 degreeC or more.
Moreover, content of the total carotenoid pigment | dye in the dry microbial cell of a mutant can be 0.78 mass% or more by making culture | cultivation temperature preferably 35 degreeC or more, More preferably, 38 degreeC or more.
[0050]
The culture time is usually 1 to 3 days, although it depends on the culture temperature.

【0025】
[表5]
[0073]
表5から明らかなように、野生株を培養した比較例2では、アスタキサンチン、ゼアキサンチン、カンタキサンチン、エキネノン及びβ−カロテンの産生が認められなかった。そして、全カロテノイド色素の含有量も極めて低かった。
一方、変異株を比較例2と同じ培養温度で培養した実施例3では、表2及び5から明らかなように、全カロテノイド色素の含有量は、比較例2の約39倍であった。
そして、カロテノイド色素の含有量は、すべての種類において実施例3の方が比較例2よりも顕著に高かった。比較例2で産生が認められたカロテノイド色素で比較すると、アドニキサンチンは約18倍、β−クリプトキサンチンは約31倍であった。
[0074]
また、表1〜4から明らかなように、変異株の培養温度を調節することによって、各カロテノイド色素の含有量を向上させることができた。
具体的には、アスタキサンチンは培養温度25℃で、エキネノンは培養温度30℃で、アドニキサンチン、ゼアキサンチン及びカンタキサンチンは培養温度35℃で、β−クリプトキサンチン及びβ−カロテンは培養温度40℃で、それぞれ最も含有量が高くなった。
[0025]
[Table 5]
[0073]
As is clear from Table 5, in Comparative Example 2 in which the wild strain was cultured, production of astaxanthin, zeaxanthin, canthaxanthin, echinenone and β-carotene was not observed. And the content of the total carotenoid pigment was also very low.
On the other hand, in Example 3 where the mutant strain was cultured at the same culture temperature as in Comparative Example 2, the total carotenoid pigment content was about 39 times that in Comparative Example 2, as is apparent from Tables 2 and 5.
And the content of the carotenoid pigment was significantly higher in Example 3 than in Comparative Example 2 in all types. When compared with the carotenoid pigments produced in Comparative Example 2, adonixanthin was about 18 times, and β-cryptoxanthin was about 31 times.
[0074]
Further, as is apparent from Tables 1 to 4, the content of each carotenoid pigment could be improved by adjusting the culture temperature of the mutant strain.
Specifically, astaxanthin is cultured at 25 ° C., echinenone is cultured at 30 ° C., adonixanthin, zeaxanthin and canthaxanthin are cultured at 35 ° C., and β-cryptoxanthin and β-carotene are cultured at 40 ° C. , Each had the highest content.

Claims (4)

スフィンゴモナス(Sphingomonas)属JPCC MB0017−6株(受託番号:NITE BP−808)。   Sphingomonas sp. JPCC MB0017-6 strain (Accession number: NITE BP-808). 請求項1に記載の細菌株を培養して得られた培養物。   A culture obtained by culturing the bacterial strain according to claim 1. 請求項2に記載の培養物から分離されたカロテノイド色素含有組成物。   A carotenoid pigment-containing composition separated from the culture according to claim 2. 請求項1に記載の細菌株を培養する工程を有するカロテノイド色素の製造方法。   The manufacturing method of the carotenoid pigment | dye which has the process of culturing the bacterial strain of Claim 1.
JP2011538110A 2009-10-27 2009-10-27 Novel bacterial strain, culture and production method of carotenoid pigment Expired - Fee Related JP5660543B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005663 WO2011052003A1 (en) 2009-10-27 2009-10-27 Novel bacterial strain, culture, carotenoid pigment-containing composition and method for producing carotenoid pigment

Publications (2)

Publication Number Publication Date
JPWO2011052003A1 true JPWO2011052003A1 (en) 2013-03-14
JP5660543B2 JP5660543B2 (en) 2015-01-28

Family

ID=43921449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011538110A Expired - Fee Related JP5660543B2 (en) 2009-10-27 2009-10-27 Novel bacterial strain, culture and production method of carotenoid pigment

Country Status (2)

Country Link
JP (1) JP5660543B2 (en)
WO (1) WO2011052003A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799895B2 (en) * 2004-12-15 2011-10-26 電源開発株式会社 Production method of carotenoid pigment, glycosphingolipid, ubiquinone Q-10

Also Published As

Publication number Publication date
WO2011052003A1 (en) 2011-05-05
JP5660543B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP4199919B2 (en) Novel carotenoid-producing bacterial species and method for producing carotenoids using the same
CA2128549C (en) Bacteria belonging to new genus and process for production of carotenoids using same
JP5714907B2 (en) Carotenoid fermentation
US9605323B2 (en) Method for producing astaxanthin by fermentation
JP4463347B2 (en) Pigment-containing material for feed addition
JP4427167B2 (en) Production of carotenoid pigments
KR100836093B1 (en) 2 Novel Deinococcus sp. strain A2 and method for producing astaxanthin using the same
JP4799895B2 (en) Production method of carotenoid pigment, glycosphingolipid, ubiquinone Q-10
US8853460B2 (en) Method for separating carotenoid
CA2539069C (en) Process for producing carotenoid compound
JP3242531B2 (en) Method for producing carotenoid pigment
Yang et al. Distribution of marine red yeasts in shrimps and the environments of shrimp culture
JP4557244B2 (en) Method for producing zeaxanthin
JP5066385B2 (en) Astaxanthin-producing bacteria, bacterial culture, and method for producing astaxanthin
JP5091531B2 (en) Astaxanthin-producing bacteria, bacterial culture, and method for producing astaxanthin
JP5660543B2 (en) Novel bacterial strain, culture and production method of carotenoid pigment
JP5090611B2 (en) Production of carotenoids by fermentation
KR100249731B1 (en) Mutant yeast producing astaxanthin and method of preparation thereof
JP2008011824A (en) Microorganism and method for producing carotenoid using the same
KR100706175B1 (en) New bacterium Flavococcus chejuensis producing zeaxanthin and production method of zeaxanthin using thereof
JP2010088450A (en) Method for producing carotenoid by fermentation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5660543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees