JPWO2010143248A1 - Tunnel magnetoresistive element and random access memory using the same - Google Patents

Tunnel magnetoresistive element and random access memory using the same Download PDF

Info

Publication number
JPWO2010143248A1
JPWO2010143248A1 JP2011518149A JP2011518149A JPWO2010143248A1 JP WO2010143248 A1 JPWO2010143248 A1 JP WO2010143248A1 JP 2011518149 A JP2011518149 A JP 2011518149A JP 2011518149 A JP2011518149 A JP 2011518149A JP WO2010143248 A1 JPWO2010143248 A1 JP WO2010143248A1
Authority
JP
Japan
Prior art keywords
recording layer
region
layer
tunnel magnetoresistive
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011518149A
Other languages
Japanese (ja)
Other versions
JP5456035B2 (en
Inventor
山本 浩之
浩之 山本
高橋 宏昌
宏昌 高橋
伊藤 顕知
顕知 伊藤
早川 純
純 早川
路彦 山ノ内
路彦 山ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2010143248A1 publication Critical patent/JPWO2010143248A1/en
Application granted granted Critical
Publication of JP5456035B2 publication Critical patent/JP5456035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

垂直磁化材料を適用し、かつ書き込み電流密度を低減した磁気抵抗効果素子を提供する。記録層10の中央部に、周囲よりも膜厚の薄い領域を形成する。もしくは、記録層の中央部に、強磁性体として機能する実効的な膜厚が周囲よりも薄い領域を形成する。A magnetoresistive element using a perpendicular magnetization material and having a reduced write current density is provided. In the central portion of the recording layer 10, a region having a thickness smaller than that of the surrounding is formed. Alternatively, a region having an effective film thickness that functions as a ferromagnetic material is formed in the central portion of the recording layer thinner than the surroundings.

Description

本発明は、垂直磁化材料を用いたトンネル磁気抵抗効果素子及びそれを用いたランダムアクセスメモリに関するものである。   The present invention relates to a tunnel magnetoresistive effect element using a perpendicular magnetization material and a random access memory using the same.

近年、磁性体を用いたメモリとしてMRAM(Magnetic Random Access Memory)が開発されている。MRAMは、トンネル磁気抵抗(Tunneling Magnetoresistive:TMR)効果を利用するMTJ(Magnetic Tunneling Junction)を要素素子とし、MTJ素子に含まれる磁性体の磁化方向を制御することによって、情報を記録する。電源を切っても磁性体の磁化方向は変化しないため、記録した情報は保持される不揮発動作が実現できる。MTJ素子の磁化方向を変化させる(情報を書き換える)には外部から磁場を印加する方式の他、近年、MTJ素子に直接直流電流を流して磁化を反転させる、スピントランスファートルク磁化反転(スピン注入磁化反転)方式が見出されている。例えば、特許文献1には面内磁化材料を記録層として用い、スピン注入磁化反転を利用するMTJ素子及びそれを集積したメモリ:SPRAM(SPin-transfer torque Magnetic Random Access Memory)が開示されている。   In recent years, MRAM (Magnetic Random Access Memory) has been developed as a memory using a magnetic material. The MRAM uses MTJ (Magnetic Tunneling Junction) that utilizes a tunneling magnetoresistive (TMR) effect as an element element, and records information by controlling the magnetization direction of a magnetic substance included in the MTJ element. Since the magnetization direction of the magnetic material does not change even when the power is turned off, a nonvolatile operation in which recorded information is retained can be realized. In order to change the magnetization direction (rewrite information) of the MTJ element, in addition to a method of applying a magnetic field from the outside, in recent years, a spin transfer torque magnetization reversal (spin injection magnetization) in which a direct current is passed through the MTJ element to reverse the magnetization. Inversion) method has been found. For example, Patent Document 1 discloses an MTJ element using an in-plane magnetization material as a recording layer and utilizing spin injection magnetization reversal and a memory in which the MTJ element is integrated: SPRAM (SPin-transfer torque Magnetic Random Access Memory).

SPRAMの集積度向上にはMTJ素子の微細化が必要となるが、その際、MTJ素子における磁気情報の熱的安定性が課題となる。MTJ素子の記録層の磁化方向を反転させるために必要な磁気エネルギーに対し、環境温度による熱エネルギーが高くなる場合、外部磁場もしくは電流を印加しなくとも磁化の反転が起こる。サイズの縮小とともにMTJ素子の磁気エネルギーは減少するため、素子の微細化に伴いこの熱的安定性は低下する。微細な領域でも熱的安定性を維持し信頼性の高い動作を実現するためには、MTJ素子の記録層材料の結晶磁気異方性を高めるのが有効である。これまでに、面内磁化材料と比べ結晶磁気異方性の高い垂直磁化材料を用いたMTJ素子が開示されている(特許文献2)。さらに垂直磁化材料を適用したMTJ素子では、記録層内にかかる反磁界の影響が面内磁化MTJ素子とは異なり、磁化の反転に要する電流密度(書き込み電流密度)を低減する方向にはたらく。そのため、面内磁化MTJ素子と比べ、書き込み電流密度を低減でき消費電力を抑制できる利点がある。   In order to improve the degree of integration of SPRAM, it is necessary to miniaturize the MTJ element. At that time, the thermal stability of magnetic information in the MTJ element becomes a problem. When the thermal energy due to the environmental temperature is higher than the magnetic energy necessary for reversing the magnetization direction of the recording layer of the MTJ element, magnetization reversal occurs without applying an external magnetic field or current. Since the magnetic energy of the MTJ element decreases as the size decreases, this thermal stability decreases as the element becomes finer. In order to maintain thermal stability even in a fine region and realize a highly reliable operation, it is effective to increase the magnetocrystalline anisotropy of the recording layer material of the MTJ element. So far, an MTJ element using a perpendicular magnetization material having higher magnetocrystalline anisotropy than an in-plane magnetization material has been disclosed (Patent Document 2). Further, in the MTJ element to which the perpendicular magnetization material is applied, the influence of the demagnetizing field applied in the recording layer is different from the in-plane magnetization MTJ element and works in the direction of reducing the current density required for the magnetization reversal (write current density). Therefore, compared with the in-plane magnetization MTJ element, there is an advantage that the write current density can be reduced and the power consumption can be suppressed.

垂直磁化MTJ素子を適用したSPRAMのさらなる低消費電力化には、書き込み電流密度の一層の低減が必要である。垂直磁化薄膜が多磁区構造を形成する場合、電流注入によってはじめに一部の磁区の磁化が反転し、その周囲の磁壁が伝播することで磁性薄膜全体の磁化が反転する現象が一般的に知られている。この磁化反転機構では、強磁性薄膜の磁化が全領域で一斉に回転する磁化反転機構に比べて、磁化反転に要する電流密度が少ない。しかしながら、MTJ素子の微細化を進めていくと記録層に用いる垂直磁化薄膜は磁壁を含まない単一磁区構造をとり、磁化の反転は一斉磁化反転機構となるため書き込み電流密度が増大する。   In order to further reduce the power consumption of the SPRAM to which the perpendicular magnetization MTJ element is applied, it is necessary to further reduce the write current density. When a perpendicular magnetic thin film forms a multi-domain structure, it is generally known that the magnetization of some magnetic domains is first reversed by current injection, and the magnetization of the entire magnetic thin film is reversed by propagation of the surrounding domain wall. ing. This magnetization reversal mechanism requires less current density for magnetization reversal than the magnetization reversal mechanism in which the magnetization of the ferromagnetic thin film rotates all at once. However, as the MTJ element is further miniaturized, the perpendicular magnetization thin film used for the recording layer has a single domain structure that does not include a domain wall, and the magnetization reversal becomes a simultaneous magnetization reversal mechanism, so that the write current density increases.

一方、電流注入ではなく外部磁場によってMTJ素子の記録層の磁化を反転させる方式に関しては、書き込み磁場を低下させる構成が開示されている。例えば、特許文献3には、記録層の外周部に中央部と比べて保持力が小さい領域を設け、外部磁場印加時にまず外周部の磁化を反転させ、その漏洩磁場で中央部の磁化反転をアシストする方式が示されている。
特開2002−305337号公報 特開2003−142364号公報 特開2002−299727号公報
On the other hand, regarding a method of reversing the magnetization of the recording layer of the MTJ element by an external magnetic field instead of current injection, a configuration for lowering the write magnetic field is disclosed. For example, in Patent Document 3, a region having a smaller coercive force than the central portion is provided in the outer peripheral portion of the recording layer, and the magnetization of the outer peripheral portion is first reversed when an external magnetic field is applied, and the magnetization reversal of the central portion is performed by the leakage magnetic field. Shows how to assist.
JP 2002-305337 A JP 2003-142364 A JP 2002-299727 A

本発明の目的は、上述した課題に鑑み、従来技術に比べてより書き込み電流を低減できる垂直磁化MTJ素子を提供するものである。さらには、記録層が単一磁区構造となるような極微細領域であっても書き込み電流を低減できる垂直磁化MTJ素子を提供するものである。   In view of the above-described problems, an object of the present invention is to provide a perpendicular magnetization MTJ element that can reduce a write current as compared with the prior art. Further, it is an object of the present invention to provide a perpendicular magnetization MTJ element that can reduce a write current even in a very fine region in which a recording layer has a single magnetic domain structure.

スピン注入磁化反転方式を利用する場合には、記録層の外周部よりも先に中央部の磁化を反転させる方が、上述した磁壁の伝播が容易に進行するため、磁化反転の効率が良い。さらに、特許文献3のように外周部の磁化を最初に反転させるには外周部の抵抗を中央部より下げる必要があるが、通常、MTJ素子形状加工の際に外周部はイオンビームにさらされ高抵抗となる。そのため電流注入によって中央部より先に外周部の磁化を反転させるのは難しい。   When the spin injection magnetization reversal method is used, the reversal of the magnetization at the central portion prior to the outer peripheral portion of the recording layer facilitates the propagation of the domain wall described above, so that the efficiency of the magnetization reversal is good. Furthermore, as in Patent Document 3, it is necessary to lower the resistance of the outer peripheral portion from the central portion in order to reverse the magnetization of the outer peripheral portion first, but normally the outer peripheral portion is exposed to an ion beam during the MTJ element shape processing. High resistance. Therefore, it is difficult to reverse the magnetization of the outer peripheral portion before the central portion by current injection.

本発明では、MTJ素子の記録層として用いる磁性体薄膜の一部を、その周囲よりも薄くした構造を適用する。もしくは、記録層として用いる磁性体薄膜の一部領域の単位面積あたりの磁気モーメントをその周囲よりも低減させた構造を適用する。   In the present invention, a structure in which a part of the magnetic thin film used as the recording layer of the MTJ element is made thinner than the periphery thereof is applied. Alternatively, a structure in which the magnetic moment per unit area of a partial region of the magnetic thin film used as the recording layer is reduced from the surroundings is applied.

より具体的には、本発明のトンネル磁気抵抗効果素子は、垂直磁化膜からなる記録層と、垂直磁化膜からなる固定層と、記録層と固定層の間に配置された非磁性層と、記録層と固定層のそれぞれに接して形成され、記録層の磁化の向きを反転させるための電流を素子膜厚方向に流すための一対の電極層とを備える。記録層は第1の領域と第2の領域をそれぞれ少なくとも一つ含み、第1の領域における単位面積あたりの磁気モーメントは第2の領域における単位面積あたりの磁気モーメントよりも低く、記録層の外周部分に第2の領域が占める割合は第1の領域が占める割合より大きい。   More specifically, the tunnel magnetoresistive element of the present invention includes a recording layer made of a perpendicular magnetization film, a fixed layer made of a perpendicular magnetization film, a nonmagnetic layer disposed between the recording layer and the fixed layer, A pair of electrode layers is formed in contact with each of the recording layer and the fixed layer, and flows a current for reversing the magnetization direction of the recording layer in the element film thickness direction. The recording layer includes at least one of a first region and a second region, and the magnetic moment per unit area in the first region is lower than the magnetic moment per unit area in the second region, and the outer periphery of the recording layer The ratio of the second area to the portion is larger than the ratio of the first area.

本発明の素子構造を適用することで、垂直磁化MTJ素子における書き込み電流密度を従来技術に比べより低減できる。さらに、記録層の磁性体薄膜が単一磁区構造となる極微細素子であっても書き込み電流密度の増大を抑制できる。   By applying the element structure of the present invention, the write current density in the perpendicular magnetization MTJ element can be further reduced as compared with the prior art. Furthermore, even if the magnetic thin film of the recording layer is a very fine element having a single magnetic domain structure, an increase in write current density can be suppressed.

実施例1のMTJ素子の模式図であり、(A)は断面模式図、(B)は上面模式図である。It is a schematic diagram of the MTJ element of Example 1, (A) is a cross-sectional schematic diagram, (B) is a top schematic diagram. 実施例1のMTJ素子の作製工程を示した図である。FIG. 5 is a diagram showing a manufacturing process of the MTJ element of Example 1. 実施例1のMTJ素子の磁化反転の機構を模式的に示した図である。FIG. 3 is a diagram schematically showing a magnetization reversal mechanism of the MTJ element of Example 1. 実施例2のMTJ素子の模式図であり、(A)は断面模式図、(B)は上面模式図である。It is a schematic diagram of the MTJ element of Example 2, (A) is a cross-sectional schematic diagram, (B) is a top schematic diagram. 実施例3のMTJ素子の模式図であり、(A)は断面模式図、(B)は上面模式図である。It is a schematic diagram of the MTJ element of Example 3, (A) is a cross-sectional schematic diagram, (B) is a top schematic diagram. 実施例4のMTJ素子の模式図であり、(A)は断面模式図、(B)は上面模式図である。It is a schematic diagram of the MTJ element of Example 4, (A) is a cross-sectional schematic diagram, (B) is an upper surface schematic diagram. 実施例5のMTJ素子の断面模式図である。6 is a schematic cross-sectional view of an MTJ element of Example 5. FIG. 実施例5のMTJ素子の作製工程を示した図である。FIG. 10 is a view showing a manufacturing process of the MTJ element of Example 5. 実施例6のMTJ素子の断面模式図である。6 is a schematic cross-sectional view of an MTJ element according to Example 6. FIG. 磁気メモリセルの構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structural example of a magnetic memory cell. ランダムアクセスメモリの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a random access memory.

本発明の実施形態を、図面を用いて詳細に説明する。なお、本発明の実施例で述べるMTJ素子では、スピン注入磁化反転の機構を利用して記録層の磁化を反転させる。すなわち、素子中に電流を流し、スピン偏極した電流のスピンが磁性体記録層の磁気モーメントにトルクを与えることにより、記録層の磁化を反転させる。   Embodiments of the present invention will be described in detail with reference to the drawings. In the MTJ element described in the embodiment of the present invention, the magnetization of the recording layer is reversed by utilizing the mechanism of spin injection magnetization reversal. That is, a current is passed through the element, and the spin of the spin-polarized current gives a torque to the magnetic moment of the magnetic recording layer, thereby reversing the magnetization of the recording layer.

<実施例1>
図1に、実施例1におけるMTJ素子の模式図を示す。図1(A)は断面模式図、図1(B)は上面模式図である。素子は、基板20上に、下部電極層21、強磁性体の固定層11、非磁性層23、強磁性体の記録層10、上部電極層22を積層して構成される。素子は上面から見た場合、直径Wの円形である。記録層10及び固定層11の磁化は、膜面に対して垂直方向に向いている。スピン偏極した電流を流した際、記録層10の磁化が固定層11の磁化よりも先に磁化反転するよう、記録層10と固定層11の材料と膜厚が設定される。本実施例では、記録層10と固定層11の材料は同じ強磁性体を用い、記録層10の膜厚を固定層11よりも薄くした。さらに、記録層10の中央部には、周辺と比べて膜厚が薄い凹型の領域(領域1)を形成した。すなわち凹型形状の領域1は、それ以外の領域2と比べて単位面積あたりの磁気モーメントmが小さい(m=MS・t、MS:飽和磁化、t:膜厚)。なお、図示していないが上部電極層22と下部電極層21にはそれぞれ、素子に電流を流すための配線が接続される。
<Example 1>
FIG. 1 is a schematic diagram of an MTJ element in Example 1. 1A is a schematic cross-sectional view, and FIG. 1B is a schematic top view. The element is configured by laminating a lower electrode layer 21, a ferromagnetic fixed layer 11, a nonmagnetic layer 23, a ferromagnetic recording layer 10, and an upper electrode layer 22 on a substrate 20. The element is circular with a diameter W when viewed from above. The magnetizations of the recording layer 10 and the fixed layer 11 are perpendicular to the film surface. The material and film thickness of the recording layer 10 and the fixed layer 11 are set so that the magnetization of the recording layer 10 is reversed before the magnetization of the fixed layer 11 when a spin-polarized current is passed. In this embodiment, the recording layer 10 and the fixed layer 11 are made of the same ferromagnetic material, and the recording layer 10 is made thinner than the fixed layer 11. Further, a concave region (region 1) having a smaller film thickness than the periphery was formed in the central portion of the recording layer 10. That is, the concave-shaped region 1 has a smaller magnetic moment m 0 per unit area than the other region 2 (m 0 = M S · t, M S : saturation magnetization, t: film thickness). Although not shown in the drawing, the upper electrode layer 22 and the lower electrode layer 21 are connected to wirings for supplying current to the element.

実施例1では、固定層11と記録層10の材料にL10型のCo50Pt50規則合金を用いた。また、下部電極層21には、Ta,Ru,Ptからなる積層膜を用い、上部電極層22にはTa,Ruからなる積層膜を用いた。また、非磁性層23には酸化マグネシウム(MgO)を用いた。記録層10の膜厚t0は3nm、固定層11の膜厚t1は10nmとし、非磁性層23の膜厚は1nmとした。素子の直径Wは30nm、記録層10中央に設けた凹型部の直径Dを10nmとした。In Example 1, using the L1 0 type Co 50 Pt 50 ordered alloy in the material of the fixed layer 11 and the recording layer 10. Further, a laminated film made of Ta, Ru, Pt was used for the lower electrode layer 21, and a laminated film made of Ta, Ru was used for the upper electrode layer 22. Further, magnesium oxide (MgO) was used for the nonmagnetic layer 23. The recording layer 10 has a thickness t 0 of 3 nm, the fixed layer 11 has a thickness t 1 of 10 nm, and the nonmagnetic layer 23 has a thickness of 1 nm. The diameter W of the element was 30 nm, and the diameter D of the concave portion provided in the center of the recording layer 10 was 10 nm.

実施例1のMTJ素子の作製方法を説明する。図2に、素子の作製工程を示す。以下図2(A)〜図2(H)に示した工程順に従って説明する。まず、基板20の上に下部電極層21、固定層11、非磁性層23、記録層10、上部電極層22の順に積層した積層膜25を形成した(図2(A))。薄膜の形成にはスパッタリング法を用い、全ての層をin-situで形成した。その後、電子ビーム(EB)リソグラフィとイオンビームエッチングを用いて積層膜25をピラー形状に加工した(図2(B))。次に、ピラーの表面にレジストパターン51が残った状態で層間絶縁層52としてAl23を成膜した(図2(C))。その後、リフトオフによりピラー表面のレジストを除去し、ピラーの表面を露出させた(図2(D))。A method for manufacturing the MTJ element of Example 1 will be described. FIG. 2 shows a manufacturing process of the element. Hereinafter, description will be made in accordance with the order of steps shown in FIGS. 2 (A) to 2 (H). First, a laminated film 25 in which a lower electrode layer 21, a fixed layer 11, a nonmagnetic layer 23, a recording layer 10, and an upper electrode layer 22 were laminated in this order was formed on a substrate 20 (FIG. 2A). A thin film was formed by sputtering, and all layers were formed in-situ. Thereafter, the laminated film 25 was processed into a pillar shape by using electron beam (EB) lithography and ion beam etching (FIG. 2B). Next, Al 2 O 3 was deposited as an interlayer insulating layer 52 with the resist pattern 51 remaining on the pillar surface (FIG. 2C). Thereafter, the resist on the pillar surface was removed by lift-off to expose the pillar surface (FIG. 2D).

続いて、露出したピラーの上からレジストを塗布し、EBリソグラフィによってピラー中央上部が開口したレジストパターンを形成した(図2(E))。その状態でイオンビームにより上部電極層21と、記録層10の途中までをエッチングで除去した(図2(F))。記録層10の中央部をエッチングする深さhは、1nmとした。エッチング後、in-situにおいて追加の上部電極層26となるRuとTaをスパッタリング法で堆積し、ピラーの上部を被覆した(図2(G))。その後、EBリソグラフィとイオンビームエッチングを用いて上部電極層21をピラー上部だけ残してパターニングし、MTJ素子を完成した(図2(H))。最後に、素子を300℃の温度でアニールした。なお、レジストパターン51の形成にはEBリソグラフィ以外の技術として、例えばナノインプリント技術を用いてもよい。   Subsequently, a resist was applied from above the exposed pillar, and a resist pattern having an opening at the center upper part of the pillar was formed by EB lithography (FIG. 2E). In this state, the upper electrode layer 21 and part of the recording layer 10 were removed by etching with an ion beam (FIG. 2F). The depth h for etching the central portion of the recording layer 10 was 1 nm. After etching, Ru and Ta to be the additional upper electrode layer 26 were deposited in-situ by sputtering to cover the upper part of the pillar (FIG. 2G). After that, patterning was performed using EB lithography and ion beam etching, leaving only the upper electrode layer 21 above the pillar, thereby completing the MTJ element (FIG. 2 (H)). Finally, the device was annealed at a temperature of 300 ° C. For example, a nanoimprint technique may be used for forming the resist pattern 51 as a technique other than the EB lithography.

次に、実施例1のMTJ素子における記録層の書き換え動作について説明する。固定層11の磁化が素子の上部方向に固定されていることを前提とする。記録層10の磁化が固定層11の磁化と逆方向を向いた反平行配列となっている場合、MTJ素子の上部から下部へ向けて電流を流すと、スピン偏極した電子が固定層11から記録層10に流れこみ、スピン注入磁化反転により、記録層10の磁化が反転する。すなわち、固定層11の磁化と記録層10の磁化が平行配列となり、MTJ素子の抵抗は高抵抗状態から低抵抗状態にスイッチする。一方、記録層10の磁化が固定層11の磁化と同方向を向いた平行配列となっている場合、MTJ素子の下部から上部へ向けて電流を流すと、スピン偏極した電子が記録層10を通り、固定層11に流れる。その際、固定層11のスピンと同方向のスピンを持った電子のみが、固定層11に流れ込み、逆方向のスピンを持った電子は絶縁体23の表面で反射される。反射された電子は記録層10の磁化に作用し、スピン注入磁化反転により、記録層10の磁化が反転する。すなわち固定層11の磁化と記録層10の磁化が反平行配列となりMTJ素子の抵抗は低抵抗状態から高抵抗状態にスイッチする。   Next, the rewriting operation of the recording layer in the MTJ element of Example 1 will be described. It is assumed that the magnetization of the fixed layer 11 is fixed in the upper direction of the element. When the magnetization of the recording layer 10 has an antiparallel arrangement in the opposite direction to the magnetization of the fixed layer 11, when a current is passed from the upper part to the lower part of the MTJ element, spin-polarized electrons are transferred from the fixed layer 11. The magnetization of the recording layer 10 is reversed by flowing into the recording layer 10 and reversing the spin injection magnetization. That is, the magnetization of the fixed layer 11 and the magnetization of the recording layer 10 are arranged in parallel, and the resistance of the MTJ element is switched from the high resistance state to the low resistance state. On the other hand, when the magnetization of the recording layer 10 has a parallel arrangement in the same direction as the magnetization of the fixed layer 11, when a current is passed from the lower part to the upper part of the MTJ element, spin-polarized electrons are generated. And flows to the fixed layer 11. At that time, only electrons having a spin in the same direction as the spin of the fixed layer 11 flow into the fixed layer 11, and the electrons having a spin in the reverse direction are reflected on the surface of the insulator 23. The reflected electrons act on the magnetization of the recording layer 10, and the magnetization of the recording layer 10 is reversed by spin injection magnetization reversal. That is, the magnetization of the fixed layer 11 and the magnetization of the recording layer 10 become an antiparallel arrangement, and the resistance of the MTJ element is switched from the low resistance state to the high resistance state.

実施例1では、記録層10の中央部の膜厚を薄くしている。そのため、記録層10の磁化反転は以下のように進む。はじめに、記録層の磁化が膜面上側を向いている状態を考える(図3(A))。スピン偏極した電子を素子の上側から下側へ流すと、まず膜厚が薄い中央部の領域で磁化反転が起こる(図3(B))。すなわち磁化反転の核が形成される。そのとき、記録層10内では磁化が反転した中央部の周囲に磁壁35が形成される。形成された磁壁35は素子の外周部に向かって伝播し(図3(C))、最終的に記録層全体の磁化が反転する(図3(D))。従来のMTJ素子では記録層10の膜厚は一様であり、実施例1と同程度のサイズの場合は単一磁区構造となるので、磁化は記録層10の全領域で一斉に回転する。このような一斉回転機構に対し、実施例1のMTJ素子では、磁化が反転しやすい領域を中央部に設け、そこが磁化反転すれば磁壁の伝播により全体の磁化が反転する。すなわち、実施例1のMTJ素子では、磁化反転が始まる電流密度(JC0)を記録層に凹型領域を設けない従来構造よりも低減でき、消費電力低減を実現できる。試作した実施例1のMTJ素子を評価した結果、書き込み電流を、記録層に凹型領域を設けない従来構造の垂直磁化MTJ素子に比べ約50%に低減できた。In Example 1, the thickness of the central portion of the recording layer 10 is reduced. Therefore, the magnetization reversal of the recording layer 10 proceeds as follows. First, consider a state in which the magnetization of the recording layer faces the upper side of the film surface (FIG. 3A). When spin-polarized electrons are caused to flow from the upper side to the lower side of the element, first, magnetization reversal occurs in the central region where the film thickness is thin (FIG. 3B). That is, a magnetization reversal nucleus is formed. At that time, a domain wall 35 is formed around the central portion where the magnetization is reversed in the recording layer 10. The formed domain wall 35 propagates toward the outer periphery of the element (FIG. 3C), and finally the magnetization of the entire recording layer is reversed (FIG. 3D). In the conventional MTJ element, the film thickness of the recording layer 10 is uniform, and in the case of the same size as in the first embodiment, a single magnetic domain structure is formed. Therefore, the magnetization rotates all over the entire area of the recording layer 10. In contrast to such a simultaneous rotation mechanism, in the MTJ element of the first embodiment, a region where the magnetization is easily reversed is provided in the central portion, and if the magnetization is reversed, the entire magnetization is reversed by propagation of the domain wall. That is, in the MTJ element of Example 1, the current density (J C0 ) at which magnetization reversal starts can be reduced as compared with the conventional structure in which no concave region is provided in the recording layer, and power consumption can be reduced. As a result of evaluating the prototype MTJ element of Example 1, it was possible to reduce the write current to about 50% as compared with a perpendicular magnetization MTJ element having a conventional structure in which no concave region was provided in the recording layer.

磁壁の幅δは磁性体の結晶異方性エネルギーKuに依存し、1/√Kuに比例する。107erg/cm2程度の高い結晶異方性エネルギーKuをもつCoPt規則合金などの場合、磁壁の幅δは5〜10nm程度となる。電流注入によって記録層10中に磁壁が形成されるためには、凹型領域の直径D(10nm)は磁壁の幅δと同等以上の大きさであることが望ましい。実施例1では記録層の凹型領域の直径Dを10nmとしたが、本実施例と同様の効果を得るためには最小でも5nm以上であることが望ましい。さらに、磁化反転の核形成と磁壁の伝播を利用した書き換えを行うには、記録層の直径Wは、凹型領域の直径Dと強磁性材料の磁壁の幅δを用いて、W>D+2δであることが望ましい。本実施例では、記録層の直径Wを30nm、凹型領域の直径Dを10nmとし、磁壁の幅δは5〜10nm程度であるのでこの関係を満足する。The width δ of the domain wall depends on the crystal anisotropy energy Ku of the magnetic material and is proportional to 1 / √Ku. In the case of a CoPt ordered alloy having a high crystal anisotropy energy Ku of about 10 7 erg / cm 2 , the domain wall width δ is about 5 to 10 nm. In order to form a domain wall in the recording layer 10 by current injection, it is desirable that the diameter D (10 nm) of the concave region is equal to or larger than the domain wall width δ. In Example 1, the diameter D of the concave region of the recording layer is 10 nm. However, in order to obtain the same effect as in this example, it is preferably 5 nm or more at the minimum. Furthermore, in order to perform rewriting utilizing nucleation of magnetization reversal and domain wall propagation, the diameter W of the recording layer is W> D + 2δ using the diameter D of the concave region and the width δ of the domain wall of the ferromagnetic material. It is desirable. In this embodiment, the diameter W of the recording layer is 30 nm, the diameter D of the concave region is 10 nm, and the domain wall width δ is about 5 to 10 nm, which satisfies this relationship.

また、垂直磁化MTJ素子の書き込み電流密度は、JC0∝(MSk−4πMS 2)・tで表される(MS:記録層材料の飽和磁化、Hk:記録層材料の異方性磁界、t:記録層の膜厚)。すなわち、磁化反転に要する電流密度は記録層の厚さに比例する。実施例1では、記録層10の膜厚t0=3nmに対して、中央の凹型領域の膜厚を2nmとしたが、それ以外の寸法としても同様の効果を得ることができる。ただし、書き込み電流密度の素子ごとによるばらつき分布を考慮して、記録層に凹型領域を設けない従来構成のMTJ素子に対する優位なJC0低減効果を得るためには、記録層10における凹型領域の膜厚を少なくとも周囲の8割以下程度にするのが望ましい。The write current density of the perpendicular magnetization MTJ element is represented by J C0 ∝ (M S H k −4πM S 2 ) · t (M S : saturation magnetization of the recording layer material, H k : different of the recording layer material) Isotropic magnetic field, t: film thickness of recording layer). That is, the current density required for magnetization reversal is proportional to the thickness of the recording layer. In Example 1, the film thickness of the central concave region is 2 nm with respect to the film thickness t 0 = 3 nm of the recording layer 10, but the same effect can be obtained with other dimensions. However, in order to obtain a superior J C0 reduction effect over the MTJ element having the conventional configuration in which the concave region is not provided in the recording layer in consideration of the distribution of the write current density for each device, the film of the concave region in the recording layer 10 is obtained. It is desirable that the thickness be at least about 80% of the circumference.

実施例1では、記録層10及び固定層11の垂直磁化材料として、L10型のCo50Pt50規則合金を適用したが、それ以外の垂直磁化材料を適用しても実施例1と同様の効果が得られるのは言うまでもない。具体的な材料として、例えば、L11型のCoPt規則合金、m−D019型のCo75Pt35規則合金、Fe50Pt50などのL10型規則合金、もしくは、CoCrPt−SiO2,FePt−SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。In Example 1, as a perpendicular magnetization material of the recording layer 10 and the fixed layer 11, L1 0 type is applied the Co 50 Pt 50 ordered alloy, the same as also in Example 1 by applying other perpendicularly magnetized material Needless to say, an effect can be obtained. Specific materials, for example, L1 1 type CoPt ordered alloy, m-D0 19 type Co 75 Pt 35 ordered alloy, L1 0 type ordered alloy such as Fe 50 Pt 50 or,, CoCrPt-SiO 2, FePt- A granular structure material in which a granular magnetic material such as SiO 2 is dispersed in a non-magnetic matrix, or an alloy containing one or more of Fe, Co, Ni, and Ru, Pt, Rh, Pd, A laminated film in which nonmagnetic metals such as Cr are alternately laminated, or an amorphous alloy containing a transition metal in a rare earth metal such as Gd, Dy, or Tb such as TbFeCo or GdFeCo may be used.

また、実施例1では、円形の記録層に円形の凹型領域を形成したが、凹型領域の形状は円形以外の例えば四角形状などでもかまわない。   In Embodiment 1, a circular concave area is formed in the circular recording layer, but the shape of the concave area may be a square shape other than a circular shape.

また実施例1では、記録層10が単磁区構造となる領域の極微細寸法の素子を提案したが、より大きい寸法の素子に対しても本発明が適用できる。例えば、上部からみて直径が100nmのMTJ素子では、記録層に凹型領域を設けない従来構造であっても電流注入による磁化反転の際、記録層中には磁区が形成され磁壁の伝播によって記録層全体の磁化が反転する。このような素子寸法でも、本発明を適用した記録層中央部の膜厚が薄いMTJ素子では、磁化反転核の生成を誘起でき、書き込み電流密度を記録層に凹型領域を設けない従来の素子よりもさらに低減できるのは言うまでもない。   In the first embodiment, an element having an extremely fine size in a region where the recording layer 10 has a single magnetic domain structure is proposed. However, the present invention can be applied to an element having a larger size. For example, in an MTJ element having a diameter of 100 nm when viewed from above, even in a conventional structure in which no concave region is provided in the recording layer, a magnetic domain is formed in the recording layer when the magnetization is reversed by current injection, and the recording layer is propagated by the propagation of the domain wall. The entire magnetization is reversed. Even with such an element size, an MTJ element with a thin film thickness at the central portion of the recording layer to which the present invention is applied can induce the generation of magnetization reversal nuclei, and the write current density is lower than that of a conventional element that does not provide a concave region in the recording layer. Needless to say, it can be further reduced.

<実施例2>
実施例2は、四角形状の垂直磁化MTJ素子を提案するものである。図4に、実施例2のMTJ素子の断面模式図、及び上面図を示す。素子の基本構造、積層膜の構成及び材料、各層の膜厚については実施例1と同様である。実施例2の素子は、上からみて正方形となっており、図4に示すように、記録層10(膜厚t0:3nm)の中央に周囲よりも膜厚が薄い領域を設ける。素子の一辺Aは30nmとし、記録層10中央に設けた凹型部の一辺Bは10nm、凹型部の溝の深さhは1nmとした。なお、図示していないが上部電極層22と下部電極層21にはそれぞれ、素子に電流を流すための配線が接続される。
<Example 2>
Example 2 proposes a rectangular perpendicular magnetization MTJ element. FIG. 4 shows a schematic cross-sectional view and a top view of the MTJ element of Example 2. The basic structure of the element, the structure and material of the laminated film, and the film thickness of each layer are the same as in Example 1. The element of Example 2 has a square shape when viewed from above, and as shown in FIG. 4, a region having a smaller film thickness than the surroundings is provided in the center of the recording layer 10 (film thickness t 0 : 3 nm). One side A of the element was 30 nm, one side B of the concave portion provided in the center of the recording layer 10 was 10 nm, and the groove depth h of the concave portion was 1 nm. Although not shown in the drawing, the upper electrode layer 22 and the lower electrode layer 21 are connected to wirings for supplying current to the element.

実施例2のMTJ素子の書き換え動作及び磁化反転の機構については、実施例1と同様である。記録層10で膜厚の薄い中央部から磁化反転が生じ、磁壁移動によって記録層10全体の磁化が反転する。これにより、記録層に凹型領域を設けない従来構造の垂直磁化MTJ素子と比べ、書き込み電流密度を低減できる。   The rewriting operation and the magnetization reversal mechanism of the MTJ element of Example 2 are the same as those of Example 1. In the recording layer 10, magnetization reversal occurs from a thin central portion, and magnetization of the entire recording layer 10 is reversed by domain wall movement. Thereby, the write current density can be reduced as compared with a perpendicular magnetization MTJ element having a conventional structure in which no concave region is provided in the recording layer.

電流注入によって記録層10中に磁壁が形成されるためには、凹型領域の一辺Bは磁壁の幅δと同等以上の大きさであることが望ましい。実施例2では記録層の凹型領域の一辺Bを10nmとしたが、本実施例と同様の効果を得るためには最小でも5nm以上であることが望ましい。さらに、磁化反転の核形成と磁壁の伝播を利用した書き換えを行うには、記録層の一辺Aは、凹型領域の一辺Bと強磁性材料の磁壁の幅δを用いて、A>B+2δであることが望ましい。本実施例では、記録層の一辺Aを30nm、凹型領域の一辺Bを10nmとし、磁壁の幅δは5〜10nm程度であるのでこの関係を満足する。   In order to form a domain wall in the recording layer 10 by current injection, it is desirable that one side B of the concave region has a size equal to or greater than the width δ of the domain wall. In Example 2, one side B of the concave region of the recording layer is 10 nm. However, in order to obtain the same effect as in this example, it is desirable that the minimum is 5 nm or more. Further, in order to perform rewriting utilizing nucleation of magnetization reversal and domain wall propagation, one side A of the recording layer is A> B + 2δ using one side B of the concave region and the domain wall width δ of the ferromagnetic material. It is desirable. In this embodiment, one side A of the recording layer is 30 nm, one side B of the concave region is 10 nm, and the domain wall width δ is about 5 to 10 nm, which satisfies this relationship.

また、垂直磁化MTJ素子の書き込み電流密度は、JC0∝(MSk−4πMS 2)・tで表される(MS:記録層材料の飽和磁化、Hk:記録層材料の異方性磁界、t:記録層の膜厚)。すなわち、磁化反転に要する電流密度は記録層の厚さに比例する。実施例2では、記録層10の膜厚t0=3nmに対して、中央の凹型領域の膜厚を2nmとしたが、それ以外の寸法でも同様の効果を得ることができる。ただし、書き込み電流密度の素子ごとによるばらつき分布を考慮して、記録層に凹型領域を設けない従来構成のMTJ素子に対する優位なJC0低減効果を得るためには、記録層10における凹型領域の膜厚を少なくとも周囲の8割以下程度にするのが望ましい。The write current density of the perpendicular magnetization MTJ element is represented by J C0 ∝ (M S H k −4πM S 2 ) · t (M S : saturation magnetization of the recording layer material, H k : different of the recording layer material) Isotropic magnetic field, t: film thickness of recording layer). That is, the current density required for magnetization reversal is proportional to the thickness of the recording layer. In Example 2, the thickness of the central concave region was set to 2 nm with respect to the thickness t 0 = 3 nm of the recording layer 10, but the same effect can be obtained with other dimensions. However, in order to obtain a superior J C0 reduction effect over the MTJ element having the conventional configuration in which the concave region is not provided in the recording layer in consideration of the distribution of the write current density for each device, the film of the concave region in the recording layer 10 is obtained. It is desirable that the thickness be at least about 80% of the circumference.

実施例2では、記録層10及び固定層11の垂直磁化材料として、L10型のCo50Pt50規則合金を適用したが、それ以外の垂直磁化材料を適用しても実施例2と同様の効果が得られるのは言うまでもない。具体的な材料として、例えば、L11型のCoPt規則合金、m−D019型のCo75Pt35規則合金、Fe50Pt50などのL10型規則合金、もしくは、CoCrPt−SiO2,FePt−SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。In Example 2, as a perpendicular magnetization material of the recording layer 10 and the fixed layer 11, L1 0 type is applied the Co 50 Pt 50 ordered alloy, the same as also in Example 2 by applying the other perpendicular magnetization material Needless to say, an effect can be obtained. Specific materials, for example, L1 1 type CoPt ordered alloy, m-D0 19 type Co 75 Pt 35 ordered alloy, L1 0 type ordered alloy such as Fe 50 Pt 50 or,, CoCrPt-SiO 2, FePt- A granular structure material in which a granular magnetic material such as SiO 2 is dispersed in a non-magnetic matrix, or an alloy containing one or more of Fe, Co, Ni, and Ru, Pt, Rh, Pd, A laminated film in which nonmagnetic metals such as Cr are alternately laminated, or an amorphous alloy containing a transition metal in a rare earth metal such as Gd, Dy, or Tb such as TbFeCo or GdFeCo may be used.

また、実施例2では、四角形状の記録層に四角形状の凹型領域を形成したが、凹型領域の形状は四角形以外の例えば円形などでもかまわない。   In the second embodiment, the quadrangular concave area is formed in the quadrangular recording layer. However, the concave area may have a shape other than the square, for example, a circle.

<実施例3>
実施例3は、実施例2と同様、四角形状の垂直磁化MTJ素子を提案するものである。図5に、実施例3のMTJ素子の断面模式図、及び上面図を示す。素子の基本構造、積層膜の構成及び材料、各層の膜厚については実施例1及び実施例2と同様である。実施例3の素子は、上からみて四角形状を有する。図5に示すように、記録層10の中央に周囲よりも膜厚が薄い領域を設ける。凹型部の領域は図5(B)の上面図に示したように、素子外周の一辺から対向する一辺までつながっている。素子の一辺Aは30nm、記録層10中央に設けた凹型部の幅Bを10nmとした。なお、図示していないが上部電極層22と下部電極層21にはそれぞれ、素子に電流を流すための配線が接続される。
<Example 3>
Example 3 proposes a quadrangular perpendicular magnetization MTJ element as in Example 2. FIG. 5 shows a schematic cross-sectional view and a top view of the MTJ element of Example 3. The basic structure of the element, the configuration and material of the laminated film, and the film thickness of each layer are the same as in the first and second embodiments. The element of Example 3 has a quadrangular shape when viewed from above. As shown in FIG. 5, a region having a thinner film thickness than the surroundings is provided in the center of the recording layer 10. As shown in the top view of FIG. 5B, the concave portion region is connected from one side of the element outer periphery to the opposite side. One side A of the element was 30 nm, and the width B of the concave portion provided in the center of the recording layer 10 was 10 nm. Although not shown in the drawing, the upper electrode layer 22 and the lower electrode layer 21 are connected to wirings for supplying current to the element.

実施例3のMTJ素子の書き換え動作及び磁化反転の機構については、実施例1と同様である。記録層10で膜厚の薄い中央部から磁化反転が生じ、磁壁移動によって記録層10全体の磁化が反転する。これにより記録層に凹型領域を設けない従来の垂直磁化MTJ素子と比べ書き込み電流密度を低減できる。   The rewriting operation and the magnetization reversal mechanism of the MTJ element of Example 3 are the same as those of Example 1. In the recording layer 10, magnetization reversal occurs from a thin central portion, and magnetization of the entire recording layer 10 is reversed by domain wall movement. As a result, the write current density can be reduced as compared with a conventional perpendicular magnetization MTJ element in which no concave region is provided in the recording layer.

電流注入によって記録層10中に磁壁が形成されるためには、凹型領域の幅Bは磁壁の幅δと同等以上の大きさであることが望ましい。実施例3では記録層の凹型領域の幅Bを10nmとしたが、本実施例と同様の効果を得るためには最小でも5nm以上であることが望ましい。さらに、磁化反転の核形成と磁壁の伝播を利用した書き換えを行うには、記録層の一辺Aは、凹型領域の一辺Bと強磁性材料の磁壁の幅δを用いて、A>B+2δであることが望ましい。本実施例では、記録層の一辺Aを30nm、凹型領域の一辺Bを10nmとし、磁壁の幅δは5〜10nm程度であるのでこの関係を満足する。   In order to form a domain wall in the recording layer 10 by current injection, it is desirable that the width B of the concave region is equal to or greater than the width δ of the domain wall. In Example 3, the width B of the concave region of the recording layer was 10 nm. However, in order to obtain the same effect as in this example, it is desirable that the width be at least 5 nm. Further, in order to perform rewriting utilizing nucleation of magnetization reversal and domain wall propagation, one side A of the recording layer is A> B + 2δ using one side B of the concave region and the domain wall width δ of the ferromagnetic material. It is desirable. In this embodiment, one side A of the recording layer is 30 nm, one side B of the concave region is 10 nm, and the domain wall width δ is about 5 to 10 nm, which satisfies this relationship.

また、垂直磁化MTJ素子の書き込み電流密度は、JC0∝(MSk−4πMS 2)・tで表される(MS:記録層材料の飽和磁化、Hk:記録層材料の異方性磁界、t:記録層の膜厚)。すなわち、磁化反転に要する電流密度は記録層の厚さに比例する。実施例3では、記録層10の膜厚t0=3nmに対して、中央の凹型領域の膜厚を2nmとしたが、それ以外の寸法でも同様の効果を得ることができる。ただし、書き込み電流密度の素子ごとによるばらつき分布を考慮して、記録層に凹型領域を設けない従来構成のMTJ素子に対する優位なJC0低減効果を得るためには、記録層10における凹型領域の膜厚を少なくとも周囲の8割以下程度にするのが望ましい。The write current density of the perpendicular magnetization MTJ element is represented by J C0 ∝ (M S H k −4πM S 2 ) · t (M S : saturation magnetization of the recording layer material, H k : different of the recording layer material) Isotropic magnetic field, t: film thickness of recording layer). That is, the current density required for magnetization reversal is proportional to the thickness of the recording layer. In Example 3, the film thickness of the central concave region was set to 2 nm with respect to the film thickness t 0 = 3 nm of the recording layer 10, but the same effect can be obtained with other dimensions. However, in order to obtain a superior J C0 reduction effect over the MTJ element having the conventional configuration in which the concave region is not provided in the recording layer in consideration of the distribution of the write current density for each device, the film of the concave region in the recording layer 10 is obtained. It is desirable that the thickness be at least about 80% of the circumference.

実施例3では、記録層10及び固定層11の垂直磁化材料として、L10型のCo50Pt50規則合金を適用したが、それ以外の垂直磁化材料を適用しても実施例3と同様の効果が得られるのは言うまでもない。具体的な材料として、例えば、L11型のCoPt規則合金、m−D019型のCo75Pt35規則合金、Fe50Pt50などのL10型規則合金、もしくは、CoCrPt−SiO2,FePt−SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。In Example 3, as a perpendicular magnetization material of the recording layer 10 and the fixed layer 11, L1 0 type is applied the Co 50 Pt 50 ordered alloy, the same as also in Example 3 by applying other perpendicularly magnetized material Needless to say, an effect can be obtained. Specific materials, for example, L1 1 type CoPt ordered alloy, m-D0 19 type Co 75 Pt 35 ordered alloy, L1 0 type ordered alloy such as Fe 50 Pt 50 or,, CoCrPt-SiO 2, FePt- A granular structure material in which a granular magnetic material such as SiO 2 is dispersed in a non-magnetic matrix, or an alloy containing one or more of Fe, Co, Ni, and Ru, Pt, Rh, Pd, A laminated film in which nonmagnetic metals such as Cr are alternately laminated, or an amorphous alloy containing a transition metal in a rare earth metal such as Gd, Dy, or Tb such as TbFeCo or GdFeCo may be used.

<実施例4>
実施例4は、凹型部を複数備えた垂直磁化MTJ素子を提案するものである。図6に、実施例4のMTJ素子の断面模式図、及び上面図を示す。素子の基本構造、積層膜の構成及び材料、各層の膜厚については実施例3と同様であるが、実施例4の場合、凹型部が複数形成される。素子の一辺Aは100nm、記録層10に設けた凹型領域の幅Bを10nmとした。なお、図示していないが上部電極層22と下部電極層21にはそれぞれ、素子に電流を流すための配線が接続される。
<Example 4>
Example 4 proposes a perpendicular magnetization MTJ element having a plurality of concave portions. FIG. 6 shows a schematic cross-sectional view and a top view of the MTJ element of Example 4. The basic structure of the element, the configuration and material of the laminated film, and the film thickness of each layer are the same as in Example 3. In the case of Example 4, a plurality of concave portions are formed. The side A of the element was 100 nm, and the width B of the concave region provided in the recording layer 10 was 10 nm. Although not shown in the drawing, the upper electrode layer 22 and the lower electrode layer 21 are connected to wirings for supplying current to the element.

実施例4のMTJ素子の書き換え動作及び磁化反転の機構については、基本的に実施例1と同様である。記録層10に設けた2箇所の膜厚が薄い部分から磁化反転が生じ、磁壁移動によって記録層10全体の磁化が反転する。これにより記録層に凹型領域を設けない従来の垂直磁化MTJ素子と比べ書き込み電流密度を低減できる。   The rewriting operation and the magnetization reversal mechanism of the MTJ element of the fourth embodiment are basically the same as those of the first embodiment. Magnetization reversal occurs from the two thin portions provided in the recording layer 10, and magnetization of the entire recording layer 10 is reversed by domain wall movement. As a result, the write current density can be reduced as compared with a conventional perpendicular magnetization MTJ element in which no concave region is provided in the recording layer.

電流注入によって記録層10中に磁壁が形成されるためには、凹型領域の幅Bは磁壁の幅δと同等以上の大きさであることが望ましい。実施例4では記録層の凹型領域の幅Bを10nmとしたが、本実施例と同様の効果を得るためには最小でも5nm以上であることが望ましい。   In order to form a domain wall in the recording layer 10 by current injection, it is desirable that the width B of the concave region is equal to or greater than the width δ of the domain wall. In Example 4, the width B of the concave region of the recording layer is 10 nm. However, in order to obtain the same effect as in this example, it is desirable that the width be at least 5 nm.

また、垂直磁化MTJ素子の書き込み電流密度は、JC0∝(MSk−4πMS 2)・tで表される(MS:記録層材料の飽和磁化、Hk:記録層材料の異方性磁界、t:記録層の膜厚)。すなわち、磁化反転に要する電流密度は記録層の厚さに比例する。実施例4では、記録層10の膜厚t0=3nmに対して、中央の凹型領域の膜厚を2nmとしたが、それ以外の寸法でも同様の効果を得ることができる。ただし、書き込み電流密度の素子ごとによるばらつき分布を考慮して、記録層に凹型領域を設けない従来構成のMTJ素子に対する優位なJC0低減効果を得るためには、記録層10における凹型領域の膜厚を少なくとも周囲の8割以下程度にするのが望ましい。The write current density of the perpendicular magnetization MTJ element is represented by J C0 ∝ (M S H k −4πM S 2 ) · t (M S : saturation magnetization of the recording layer material, H k : different of the recording layer material) Isotropic magnetic field, t: film thickness of recording layer). That is, the current density required for magnetization reversal is proportional to the thickness of the recording layer. In Example 4, the film thickness of the central concave region was 2 nm with respect to the film thickness t 0 = 3 nm of the recording layer 10, but the same effect can be obtained with other dimensions. However, in order to obtain a superior J C0 reduction effect over the MTJ element having the conventional configuration in which the concave region is not provided in the recording layer in consideration of the distribution of the write current density for each device, the film of the concave region in the recording layer 10 is obtained. It is desirable that the thickness be at least about 80% of the circumference.

実施例4では、記録層10及び固定層11の垂直磁化材料として、L10型のCo50Pt50規則合金を適用したが、それ以外の垂直磁化材料を適用しても実施例4と同様の効果が得られるのは言うまでもない。具体的な材料として、例えば、L11型のCoPt規則合金、m−D019型のCo75Pt35規則合金、Fe50Pt50などのL10型規則合金、もしくは、CoCrPt−SiO2,FePt−SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。In Example 4, as a perpendicular magnetization material of the recording layer 10 and the fixed layer 11, L1 0 type is applied the Co 50 Pt 50 ordered alloy, the same as also in Example 4 by applying the other perpendicular magnetization material Needless to say, an effect can be obtained. Specific materials, for example, L1 1 type CoPt ordered alloy, m-D0 19 type Co 75 Pt 35 ordered alloy, L1 0 type ordered alloy such as Fe 50 Pt 50 or,, CoCrPt-SiO 2, FePt- A granular structure material in which a granular magnetic material such as SiO 2 is dispersed in a non-magnetic matrix, or an alloy containing one or more of Fe, Co, Ni, and Ru, Pt, Rh, Pd, A laminated film in which nonmagnetic metals such as Cr are alternately laminated, or an amorphous alloy containing a transition metal in a rare earth metal such as Gd, Dy, or Tb such as TbFeCo or GdFeCo may be used.

<実施例5>
実施例5は、記録層における磁化反転の核形成を、記録層の形状ではなく物性の制御によって実現するMTJ素子を提案するものである。図7に、実施例5におけるMTJ素子の断面模式図を示す。素子の基本構造は実施例1と同様である。記録層10及び固定層11には垂直磁化の強磁性体であるCo50Pt50合金を用い、非磁性層23にはMgOを用いた。実施例5では、図7に示すように、上部電極層22は、第1のキャップ層41と第2のキャップ層42とで構成される。第1のキャップ層41は、記録層10のほぼ中央上に配置され、その周囲に第2のキャップ層42が配置される。第1のキャップ層41はTiであり、第2のキャップ層42にはPtを用いた。記録層10内には、第1のキャップ層41との反応により反応領域43が形成される。
<Example 5>
Example 5 proposes an MTJ element that realizes nucleation of magnetization reversal in a recording layer by controlling physical properties, not the shape of the recording layer. FIG. 7 is a schematic cross-sectional view of the MTJ element in Example 5. The basic structure of the element is the same as that of the first embodiment. The recording layer 10 and the fixed layer 11 were made of a Co 50 Pt 50 alloy, which is a perpendicularly magnetized ferromagnetic material, and MgO was used for the nonmagnetic layer 23. In Example 5, as illustrated in FIG. 7, the upper electrode layer 22 includes a first cap layer 41 and a second cap layer 42. The first cap layer 41 is disposed substantially at the center of the recording layer 10, and the second cap layer 42 is disposed around the first cap layer 41. The first cap layer 41 was Ti, and Pt was used for the second cap layer 42. A reaction region 43 is formed in the recording layer 10 by reaction with the first cap layer 41.

記録層10の膜厚t0は3nm、固定層11の膜厚t1は10nmとし、非磁性層23の膜厚は1nmとした。素子の直径Wは30nm、第1のキャップ層41の直径Dを10nmとした。なお、図示していないが上部電極層22と下部電極層21にはそれぞれ、素子に電流を流すための配線が接続される。The recording layer 10 has a thickness t 0 of 3 nm, the fixed layer 11 has a thickness t 1 of 10 nm, and the nonmagnetic layer 23 has a thickness of 1 nm. The diameter W of the element was 30 nm, and the diameter D of the first cap layer 41 was 10 nm. Although not shown in the drawing, the upper electrode layer 22 and the lower electrode layer 21 are connected to wirings for supplying current to the element.

実施例5の素子作製方法を説明する。図8に、素子の作製工程を示す。以下図8(A)〜図8(I)に示した工程順に従って説明する。まず、基板20の上に下部電極層21、固定層11、非磁性層23、記録層10、第1のキャップ層41の順に積層した積層膜25を形成した(図8(A))。薄膜の形成にはスパッタリング法を用い、全ての層をin-situで形成した。その後、電子ビーム(EB)リソグラフィとイオンビームエッチングを用いて積層膜25をピラー形状に加工した(図8(B))。次に、ピラーの表面にレジスト51が残った状態で層間絶縁層52としてAl23を成膜した(図8(C))。その後、リフトオフによりピラー表面のレジストを除去し、ピラーの表面を露出させた(図8(D))。続いて、露出したピラーの上からレジストを塗布し、EBリソグラフィによってピラー中央の一部にレジストパターン51を形成した(図8(E))。その状態でイオンビーム53を用いて第1のキャップ層41をエッチングした(図8(F))。その後、レジストパターンを除去し(図8(G))、積層膜25のピラー上に第2のキャップ層42であるPtを積層した状態とした(図8(H))。続いて、EBリソグラフィとイオンビームエッチングを用いて第2のキャップ層42を上部電極層の形状に加工した(図8(I))。最後に、素子を400℃の温度でアニールし、反応領域43を形成しMTJ素子を完成した(図8(J))。なお、本実施例ではレジストパターンの形成にEBリソグラフィを用いたが、それ以外のパターン技術として例えばナノインプリント技術を用いても良い。A device manufacturing method of Example 5 will be described. FIG. 8 shows a manufacturing process of the element. Hereinafter, description will be made in accordance with the order of steps shown in FIGS. First, a laminated film 25 in which the lower electrode layer 21, the fixed layer 11, the nonmagnetic layer 23, the recording layer 10, and the first cap layer 41 were laminated in this order was formed on the substrate 20 (FIG. 8A). A thin film was formed by sputtering, and all layers were formed in-situ. Thereafter, the laminated film 25 was processed into a pillar shape by using electron beam (EB) lithography and ion beam etching (FIG. 8B). Next, Al 2 O 3 was deposited as an interlayer insulating layer 52 with the resist 51 remaining on the pillar surface (FIG. 8C). Thereafter, the resist on the pillar surface was removed by lift-off to expose the pillar surface (FIG. 8D). Subsequently, a resist was applied from above the exposed pillar, and a resist pattern 51 was formed at a part of the center of the pillar by EB lithography (FIG. 8E). In this state, the first cap layer 41 was etched using the ion beam 53 (FIG. 8F). Thereafter, the resist pattern was removed (FIG. 8G), and Pt as the second cap layer 42 was laminated on the pillar of the laminated film 25 (FIG. 8H). Subsequently, the second cap layer 42 was processed into the shape of the upper electrode layer by using EB lithography and ion beam etching (FIG. 8I). Finally, the device was annealed at a temperature of 400 ° C. to form a reaction region 43 to complete the MTJ device (FIG. 8J). In this embodiment, the EB lithography is used for forming the resist pattern. However, for example, a nanoimprint technique may be used as another pattern technique.

記録層10内の反応領域43は、強磁性体として振舞わないため、記録層10は実質的には実施例1と同様、中央部の膜厚が薄くなっているのと等価である。したがって、素子に電流を流して磁化を反転させる場合、実施例1の素子と同様の機構がはたらく。すなわち、まず中央部の磁化が反転し、その周囲に形成される磁壁が外周に向かって伝播し記録層10全体の磁化が反転する。この磁化反転機構により、実施例1と同様、記録層に凹型領域を設けない従来のMTJ素子に比べて磁気情報の書き換えに必要な電流密度を低減できる。   Since the reaction region 43 in the recording layer 10 does not behave as a ferromagnet, the recording layer 10 is substantially equivalent to a thin central portion as in the first embodiment. Therefore, when a current is passed through the element to reverse the magnetization, the same mechanism as that of the element of Example 1 works. That is, first, the magnetization of the central portion is reversed, the domain wall formed around the center is propagated toward the outer periphery, and the magnetization of the entire recording layer 10 is reversed. With this magnetization reversal mechanism, the current density required for rewriting magnetic information can be reduced as compared with the conventional MTJ element in which the recording layer is not provided with the concave region, as in the first embodiment.

電流注入によって記録層10中に磁壁が形成されるためには、第1のキャップ層41の直径Dは磁壁の幅δと同等以上の大きさであることが望ましい。実施例5では第1のキャップ層41の直径Dを10nmとしたが、本実施例と同様の効果を得るためには最小でも5nm以上であることが望ましい。   In order to form a domain wall in the recording layer 10 by current injection, it is desirable that the diameter D of the first cap layer 41 be equal to or greater than the domain wall width δ. In the fifth embodiment, the diameter D of the first cap layer 41 is 10 nm. However, in order to obtain the same effect as that of the present embodiment, it is desirable that the diameter is at least 5 nm.

また、垂直磁化MTJ素子の書き込み電流密度は、JC0∝(MSk−4πMS 2)・tで表される(MS:記録層材料の飽和磁化、Hk:記録層材料の異方性磁界、t:記録層の膜厚)。すなわち、磁化反転に要する電流密度は記録層の厚さに比例する。実施例5では、記録層10の膜厚t0=3nmに対して、中央の反応領域43の深さhを約1nmとしたが、それ以外の寸法でも同様の効果を得ることができる。ただし、書き込み電流密度の素子ごとによるばらつき分布を考慮して、記録層に凹型領域を設けない従来構成のMTJ素子に対する優位なJC0低減効果を得るためには、記録層10の中央部において反応領域43を含まない膜厚(t0−h)を少なくとも周囲の膜厚(t0)の8割以下程度にするのが望ましい。The write current density of the perpendicular magnetization MTJ element is represented by J C0 ∝ (M S H k −4πM S 2 ) · t (M S : saturation magnetization of the recording layer material, H k : different of the recording layer material) Isotropic magnetic field, t: film thickness of recording layer). That is, the current density required for magnetization reversal is proportional to the thickness of the recording layer. In Example 5, the depth h of the central reaction region 43 is about 1 nm with respect to the film thickness t 0 = 3 nm of the recording layer 10, but the same effect can be obtained with other dimensions. However, in order to obtain a superior J C0 reduction effect with respect to the MTJ element having the conventional configuration in which the recording layer is not provided with the concave region in consideration of the variation distribution of the write current density for each element, the reaction is performed in the central portion of the recording layer 10. It is desirable that the film thickness not including the region 43 (t 0 -h) be at least about 80% of the surrounding film thickness (t 0 ).

実施例5では、記録層10及び固定層11の垂直磁化材料として、L10型のCo50Pt50規則合金を適用したが、それ以外の垂直磁化材料を適用しても実施例5と同様の効果が得られるのは言うまでもない。具体的な材料として、例えば、L11型のCoPt規則合金、m−D019型のCo75Pt35規則合金、Fe50Pt50などのL10型規則合金、もしくは、CoCrPt−SiO2,FePt−SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。In Example 5, as a perpendicular magnetization material of the recording layer 10 and the fixed layer 11, L1 0 type is applied the Co 50 Pt 50 ordered alloy, the same as also Example 5 by applying other perpendicularly magnetized material Needless to say, an effect can be obtained. Specific materials, for example, L1 1 type CoPt ordered alloy, m-D0 19 type Co 75 Pt 35 ordered alloy, L1 0 type ordered alloy such as Fe 50 Pt 50 or,, CoCrPt-SiO 2, FePt- A granular structure material in which a granular magnetic material such as SiO 2 is dispersed in a non-magnetic matrix, or an alloy containing one or more of Fe, Co, Ni, and Ru, Pt, Rh, Pd, A laminated film in which nonmagnetic metals such as Cr are alternately laminated, or an amorphous alloy containing a transition metal in a rare earth metal such as Gd, Dy, or Tb such as TbFeCo or GdFeCo may be used.

また、実施例5では、第1のキャップ層41と第2のキャップ層42の材料の組み合わせとして、TiとPtを用いたが、その他の材料を用いても良い。例えば、第2のキャップ層42としてTaやRuなどを用いても良い。   In the fifth embodiment, Ti and Pt are used as a combination of materials for the first cap layer 41 and the second cap layer 42. However, other materials may be used. For example, Ta or Ru may be used as the second cap layer 42.

また、実施例5では、四角形状の記録層に四角形状の反応領域43を形成したが、反応領域43の形状は四角形以外の例えば円形などでもかまわない。   In the fifth embodiment, the quadrangular reaction region 43 is formed in the quadrangular recording layer. However, the reaction region 43 may have a shape other than the quadrangle, such as a circle.

<実施例6>
実施例6は、記録層における磁化反転の核形成を、記録層の形状ではなく結晶性の制御によって実現するMTJ素子を提案するものである。図9に、実施例6におけるMTJ素子の断面模式図を示す。素子の基本構造は実施例1と同様である。記録層10及び固定層11には垂直磁化の強磁性体であるCo50Pt50合金を用い、非磁性層23にはMgOを用いた。実施例6では、図9に示すように記録層10内に改質領域44を含む。改質領域44は非晶質化させた領域である。なお、記録層10の膜厚t0は3nm、固定層11の膜厚t1は10nmとし、非磁性層23の膜厚は1nmとした。素子の直径Wは30nm、改質領域44の直径Dを10nmとした。なお、図示していないが上部電極層22と下部電極層21にはそれぞれ、素子に電流を流すための配線が接続される。
<Example 6>
Example 6 proposes an MTJ element that realizes nucleation of magnetization reversal in a recording layer by controlling the crystallinity rather than the shape of the recording layer. FIG. 9 is a schematic cross-sectional view of the MTJ element in Example 6. The basic structure of the element is the same as that of the first embodiment. The recording layer 10 and the fixed layer 11 were made of a Co 50 Pt 50 alloy, which is a perpendicularly magnetized ferromagnetic material, and MgO was used for the nonmagnetic layer 23. In Example 6, a modified region 44 is included in the recording layer 10 as shown in FIG. The modified region 44 is a region made amorphous. The film thickness t 0 of the recording layer 10 was 3 nm, the film thickness t 1 of the fixed layer 11 was 10 nm, and the film thickness of the nonmagnetic layer 23 was 1 nm. The diameter W of the element was 30 nm, and the diameter D of the modified region 44 was 10 nm. Although not shown in the drawing, the upper electrode layer 22 and the lower electrode layer 21 are connected to wirings for supplying current to the element.

実施例6の素子作製方法を説明する。作製方法は、基本的に図2に示した実施例1の素子と同様である。ただし、積層膜25のピラーを形成しリフトオフによりピラー表面のレジストパターン51を除去した後が異なる。実施例6では、ピラーの表面を露出させた状態(図2(D))で、記録層10中央の上部から収束イオンビームを照射し、記録層10中央部の結晶構造を改質する。その後、上部電極層22をEBリソグラフィとイオンビームエッチングで形成・加工し、MTJ素子を完成した。最後に温度300℃で熱処理を行った。   A device manufacturing method of Example 6 will be described. The manufacturing method is basically the same as that of the device of Example 1 shown in FIG. However, this is different after the pillars of the laminated film 25 are formed and the resist pattern 51 on the pillar surface is removed by lift-off. In Example 6, with the surface of the pillar exposed (FIG. 2D), a focused ion beam is irradiated from the upper center of the recording layer 10 to modify the crystal structure of the central portion of the recording layer 10. Thereafter, the upper electrode layer 22 was formed and processed by EB lithography and ion beam etching to complete the MTJ element. Finally, heat treatment was performed at a temperature of 300 ° C.

記録層10内の改質領域44は、それ以外の領域と結晶構造が異なり、結晶構造が非晶質になっている。非晶質の領域は垂直磁化を生じないため、実質的には実施例1と同様、記録層10の中央部の膜厚が薄くなっているのと等価である。したがって、素子に電流を流して磁化を反転させる場合、実施例1の素子と同様の機構がはたらく。すなわち、まず中央部の磁化が反転し、その周囲に形成される磁壁が外周に向かって伝播し記録層10全体の磁化が反転する。この磁化反転機構により、実施例1と同様、記録層に凹型領域を設けない従来のMTJ素子に比べて磁気情報の書き換えに必要な電流密度を低減できる。   The modified region 44 in the recording layer 10 has a different crystal structure from the other regions, and the crystal structure is amorphous. Since the amorphous region does not generate perpendicular magnetization, it is substantially equivalent to a reduction in the thickness of the central portion of the recording layer 10 as in the first embodiment. Therefore, when a current is passed through the element to reverse the magnetization, the same mechanism as that of the element of Example 1 works. That is, first, the magnetization of the central portion is reversed, the domain wall formed around the center is propagated toward the outer periphery, and the magnetization of the entire recording layer 10 is reversed. With this magnetization reversal mechanism, the current density required for rewriting magnetic information can be reduced as compared with the conventional MTJ element in which the recording layer is not provided with the concave region, as in the first embodiment.

電流注入によって記録層10中に磁壁が形成されるためには、改質領域44の直径Dは磁壁の幅δと同等以上の大きさであることが望ましい。実施例6では改質領域44の直径Dを10nmとしたが、本実施例と同様の効果を得るためには最小でも5nm以上であることが望ましい。   In order to form a domain wall in the recording layer 10 by current injection, the diameter D of the modified region 44 is desirably equal to or greater than the domain wall width δ. In Example 6, the diameter D of the modified region 44 is 10 nm. However, in order to obtain the same effect as in this example, it is desirable that the diameter be 5 nm or more at the minimum.

また、垂直磁化MTJ素子の書き込み電流密度は、JC0∝(MSk−4πMS 2)・tで表される(MS:記録層材料の飽和磁化、Hk:記録層材料の異方性磁界、t:記録層の膜厚)。すなわち、磁化反転に要する電流密度は記録層の厚さに比例する。実施例6では、記録層10の膜厚t0=3nmに対して、中央の改質領域44の厚さhを約1nmとしたが、それ以外の寸法でも同様の効果を得ることができる。ただし、書き込み電流密度の素子ごとによるばらつき分布を考慮して、記録層に凹型領域を設けない従来構成のMTJ素子に対する優位なJC0低減効果を得るためには、記録層10の中央部において改質領域44を含まない膜厚(t0−h)を少なくとも周囲の膜厚(t0)の8割以下程度にするのが望ましい。The write current density of the perpendicular magnetization MTJ element is represented by J C0 ∝ (M S H k −4πM S 2 ) · t (M S : saturation magnetization of the recording layer material, H k : different of the recording layer material) Isotropic magnetic field, t: film thickness of recording layer). That is, the current density required for magnetization reversal is proportional to the thickness of the recording layer. In Example 6, the thickness h of the central modified region 44 is about 1 nm with respect to the thickness t 0 = 3 nm of the recording layer 10, but the same effect can be obtained with other dimensions. However, in view of the variation distribution of the write current density for each element, in order to obtain a superior J C0 reduction effect with respect to the MTJ element having the conventional configuration in which the concave region is not provided in the recording layer, the recording layer 10 is modified in the central portion. It is desirable that the film thickness (t 0 -h) not including the quality region 44 be at least about 80% or less of the surrounding film thickness (t 0 ).

実施例6では、記録層10及び固定層11の垂直磁化材料として、L10型のCo50Pt50規則合金を適用したが、それ以外の垂直磁化材料を適用しても実施例6と同様の効果が得られるのは言うまでもない。具体的な材料として、例えば、L11型のCoPt規則合金、m−D019型のCo75Pt35規則合金、Fe50Pt50などのL10型規則合金、もしくは、CoCrPt−SiO2,FePt−SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。In Example 6, a perpendicular magnetization material of the recording layer 10 and the fixed layer 11, L1 0 type is applied the Co 50 Pt 50 ordered alloy, the same as also Example 6 by applying the other perpendicular magnetization material Needless to say, an effect can be obtained. Specific materials, for example, L1 1 type CoPt ordered alloy, m-D0 19 type Co 75 Pt 35 ordered alloy, L1 0 type ordered alloy such as Fe 50 Pt 50 or,, CoCrPt-SiO 2, FePt- A granular structure material in which a granular magnetic material such as SiO 2 is dispersed in a non-magnetic matrix, or an alloy containing one or more of Fe, Co, Ni, and Ru, Pt, Rh, Pd, A laminated film in which nonmagnetic metals such as Cr are alternately laminated, or an amorphous alloy containing a transition metal in a rare earth metal such as Gd, Dy, or Tb such as TbFeCo or GdFeCo may be used.

また、実施例6では、四角形状の記録層に四角形状の改質領域44を形成したが、改質領域44の形状は四角形以外の例えば円形などでもかまわない。   In Embodiment 6, the quadrangular modified region 44 is formed in the quadrangular recording layer. However, the modified region 44 may have a shape other than the quadrangle, such as a circle.

<実施例7>
実施例7は、本発明によるMTJ素子を適用したランダムアクセスメモリを提案するものである。図10は、本発明による磁気メモリセルの構成例を示す断面模式図である。この磁気メモリセル100は、実施例1〜6に示したMTJ素子110を搭載している。
<Example 7>
The seventh embodiment proposes a random access memory to which the MTJ element according to the present invention is applied. FIG. 10 is a schematic cross-sectional view showing a configuration example of a magnetic memory cell according to the present invention. This magnetic memory cell 100 is equipped with the MTJ element 110 shown in the first to sixth embodiments.

C−MOS111は、2つのn型半導体112,113と一つのp型半導体114からなる。n型半導体112にドレインとなる電極121が電気的に接続され、電極141及び電極147を介してグラウンドに接続されている。n型半導体113には、ソースとなる電極122が電気的に接続されている。さらに123はゲート電極であり、このゲート電極123のON/OFFによりソース電極122とドレイン電極121の間の電流のON/OFFを制御する。上記ソース電極122に電極145、電極144、電極143、電極142、電極146が積層され、電極146を介してMTJ素子110の下部電極11が接続されている。   The C-MOS 111 includes two n-type semiconductors 112 and 113 and one p-type semiconductor 114. An electrode 121 serving as a drain is electrically connected to the n-type semiconductor 112, and is connected to the ground via the electrode 141 and the electrode 147. An electrode 122 serving as a source is electrically connected to the n-type semiconductor 113. Further, 123 is a gate electrode, and ON / OFF of the current between the source electrode 122 and the drain electrode 121 is controlled by ON / OFF of the gate electrode 123. An electrode 145, an electrode 144, an electrode 143, an electrode 142, and an electrode 146 are stacked on the source electrode 122, and the lower electrode 11 of the MTJ element 110 is connected via the electrode 146.

ビット線222はMTJ素子110の上部電極22に接続されている。本実施例の磁気メモリセルでは、MTJ素子110に流れる電流、すなわちスピントランスファートルクによりMTJ素子110の記録層の磁化方向を回転し磁気的情報を記録する。スピントランスファートルクは空間的な外部磁界ではなく主として、MTJ素子中を流れるスピン偏極した電流のスピンがMTJ素子の強磁性自由層の磁気モーメントにトルクを与える原理である。したがってMTJ素子に外部から電流を供給する手段を備え、その手段を用いて電流を流すことによりスピントランスファートルク磁化反転は実現される。本実施例では、ビット線222と電極146の間に電流を流すことにより110中の記録層の磁化の方向を制御する。   The bit line 222 is connected to the upper electrode 22 of the MTJ element 110. In the magnetic memory cell of the present embodiment, magnetic information is recorded by rotating the magnetization direction of the recording layer of the MTJ element 110 by the current flowing through the MTJ element 110, that is, the spin transfer torque. The spin transfer torque is not a spatial external magnetic field, but is mainly a principle that spins of a spin-polarized current flowing in the MTJ element give torque to the magnetic moment of the ferromagnetic free layer of the MTJ element. Accordingly, the MTJ element is provided with means for supplying current from the outside, and spin transfer torque magnetization reversal is realized by flowing current using the means. In this embodiment, the direction of magnetization of the recording layer 110 is controlled by passing a current between the bit line 222 and the electrode 146.

図11は、上記磁気メモリセル100を配置した磁気ランダムアクセスメモリの構成例を示す図である。ゲート電極123に接続されたワード線223、及びビット線222がメモリセル100に電気的に接続されている。実施例1〜6に記載のMTJ素子を備えた磁気メモリセル100を配置することにより、磁気メモリは面内磁化MTJ素子や、記録層に凹型領域を設けない垂直磁化MTJ素子を用いた従来のメモリよりも低消電力で動作が可能であり、ギガビット級の高密度磁気メモリを実現可能である。   FIG. 11 is a diagram showing a configuration example of a magnetic random access memory in which the magnetic memory cell 100 is arranged. A word line 223 and a bit line 222 connected to the gate electrode 123 are electrically connected to the memory cell 100. By disposing the magnetic memory cell 100 including the MTJ element described in the first to sixth embodiments, the magnetic memory uses the in-plane magnetization MTJ element or the conventional perpendicular magnetization MTJ element in which no concave region is provided in the recording layer. Operation with lower power consumption than memory is possible, and a gigabit-class high-density magnetic memory can be realized.

本構成の場合の書込みは、まず、電流を流したいビット線222に接続された書き込みドライバにライトイネーブル信号を送って昇圧し、ビット線222に所定の電流を流す。電流の向きに応じ、書き込みドライバ230ないし書き込みドライバ231のいずれかをグランドに落として、電位差を調節して電流方向を制御する。次に所定時間経過後、ワード線223に接続された書き込みドライバ232にライトイネーブル信号を送り、書き込みドライバ232を昇圧して、書き込みたいMTJ素子に接続されたトランジスタをオンにする。これによりMTJ素子に電流が流れ、スピントルク磁化反転が行われる。所定の時間、トランジスタをオンにしたのち、書込みドライバ232への信号を切断し、トランジスタをオフにする。読出しの際は、読出したいMTJ素子につながったビット線222のみを読出し電圧Vに昇圧し、選択トランジスタのみをオンにして電流を流し、読出しを行う。この構造は最も単純な1トランジスタ+1メモリセルの配置なので、単位セルの占める面積は2F×4F=8F2と高集積なものにすることができる。In writing in this configuration, first, a write enable signal is sent to the write driver connected to the bit line 222 to which a current is to be supplied to boost the voltage, and a predetermined current is supplied to the bit line 222. Depending on the direction of the current, either the write driver 230 or the write driver 231 is dropped to the ground, and the current direction is controlled by adjusting the potential difference. Next, after a predetermined time has elapsed, a write enable signal is sent to the write driver 232 connected to the word line 223 to boost the write driver 232 and turn on the transistor connected to the MTJ element to be written. As a result, a current flows through the MTJ element, and spin torque magnetization reversal is performed. After the transistor is turned on for a predetermined time, the signal to the write driver 232 is disconnected and the transistor is turned off. At the time of reading, only the bit line 222 connected to the MTJ element to be read is boosted to the reading voltage V, only the selection transistor is turned on, and a current is supplied to perform reading. Since this structure is the simplest arrangement of 1 transistor + 1 memory cell, the area occupied by the unit cell can be made highly integrated with 2F × 4F = 8F 2 .

10…記録層、11…固定層、20…基板、21…下部電極層、22…上部電極層、23…非磁性層、25…積層膜、26…追加の上部電極層、35…磁壁、41…第1のキャップ層、42…第2のキャップ層、43…反応領域、44…改質領域、51…レジストパターン、52…層間絶縁層、53…イオンビーム、100…メモリセル、110…MTJ素子、111…C−MOS、112,113…n型半導体、114…p型半導体、121…ソース電極、122…ドレイン電極、123…ゲート電極、141〜147…電極、150…書き込み線、222…ビット線、223…ワード線、230,231,232…書き込みドライバ   DESCRIPTION OF SYMBOLS 10 ... Recording layer, 11 ... Fixed layer, 20 ... Substrate, 21 ... Lower electrode layer, 22 ... Upper electrode layer, 23 ... Nonmagnetic layer, 25 ... Multilayer film, 26 ... Additional upper electrode layer, 35 ... Domain wall, 41 ... 1st cap layer, 42 ... 2nd cap layer, 43 ... Reaction region, 44 ... Modified region, 51 ... Resist pattern, 52 ... Interlayer insulating layer, 53 ... Ion beam, 100 ... Memory cell, 110 ... MTJ Element, 111... C-MOS, 112, 113... N-type semiconductor, 114... P-type semiconductor, 121... Source electrode, 122... Drain electrode, 123 ... Gate electrode, 141 to 147. Bit line, 223 ... word line, 230, 231, 232 ... write driver

Claims (13)

垂直磁化膜からなる記録層と、
垂直磁化膜からなる固定層と、
前記記録層と前記固定層の間に配置された非磁性層と、
前記記録層と前記固定層のそれぞれに接して形成され、前記記録層の磁化の向きを反転させるための電流を素子膜厚方向に流すための一対の電極層とを備え、
前記記録層は第1の領域と第2の領域をそれぞれ少なくとも一つ含み、前記第1の領域における単位面積あたりの磁気モーメントは前記第2の領域における単位面積あたりの磁気モーメントよりも低く、
前記記録層の外周部分に前記第2の領域が占める割合は前記第1の領域が占める割合より大きい
ことを特徴とするトンネル磁気抵抗効果素子。
A recording layer made of a perpendicular magnetization film;
A fixed layer made of a perpendicular magnetization film;
A nonmagnetic layer disposed between the recording layer and the fixed layer;
A pair of electrode layers, formed in contact with each of the recording layer and the fixed layer, for passing a current for reversing the magnetization direction of the recording layer in the element film thickness direction;
The recording layer includes at least one of a first region and a second region, and a magnetic moment per unit area in the first region is lower than a magnetic moment per unit area in the second region,
The tunnel magnetoresistive element according to claim 1, wherein a ratio of the second region to an outer peripheral portion of the recording layer is larger than a ratio of the first region.
請求項1記載のトンネル磁気抵抗効果素子において、前記記録層の前記第2の領域は前記第1の領域を取り囲んで配置されていることを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive element according to claim 1, wherein the second region of the recording layer is disposed so as to surround the first region. 請求項1記載のトンネル磁気抵抗効果素子において、前記記録層の前記第1の領域の膜厚は、前記記録層の前記第2の領域の膜厚よりも薄いことを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive element according to claim 1, wherein the film thickness of the first region of the recording layer is smaller than the film thickness of the second region of the recording layer. element. 請求項1記載のトンネル磁気抵抗効果素子において、前記記録層の前記第1の領域の飽和磁化は、前記記録層の前記第2の領域の飽和磁化よりも低いことを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive effect according to claim 1, wherein the saturation magnetization of the first region of the recording layer is lower than the saturation magnetization of the second region of the recording layer. element. 請求項4記載のトンネル磁気抵抗効果素子において、前記記録層の第1の領域は、その結晶構造が前記第2の領域と異なる領域を含むことを特徴とする、トンネル磁気抵抗効果素子。   5. The tunnel magnetoresistive element according to claim 4, wherein the first region of the recording layer includes a region having a crystal structure different from that of the second region. 請求項1記載のトンネル磁気抵抗効果素子において、前記記録層の最小辺長Wは、前記記録層の第1の領域の最小辺長をD、前記記録層を構成する材料の磁壁の幅をδとするとき、W>D+2δを満たすことを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive effect element according to claim 1, wherein the minimum side length W of the recording layer is D as the minimum side length of the first region of the recording layer and δ is the width of the domain wall of the material constituting the recording layer. A tunnel magnetoresistive effect element satisfying W> D + 2δ. 請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層を構成する垂直磁化膜の両方もしくは一方は、Co,Fe,Niのいずれか、もしくはその中から1つ以上の元素と、Pt,Pdのうち1つ以上の元素とを含む規則合金であることを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive element according to claim 1, wherein both or one of the perpendicular magnetization films constituting the recording layer and the fixed layer is one of Co, Fe, and Ni, or one or more elements therein. , Pt, Pd is a regular alloy containing one or more elements. 請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層を構成する垂直磁化膜の両方もしくは一方は、Coを含み、Cr,Ta,Nb,V,W,Hf,Ti,Zr,Pt,Pd,Fe,Niの中から1つ以上の元素を含む合金であることを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive effect element according to claim 1, wherein one or both of the recording layer and the perpendicular magnetization film constituting the fixed layer contain Co, and Cr, Ta, Nb, V, W, Hf, Ti, Zr. , Pt, Pd, Fe, Ni, an alloy containing one or more elements, and a tunnel magnetoresistive effect element. 請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層を構成する垂直磁化膜の両方もしくは一方は、Fe,Co,Niのいずれか、もしくはその中の1つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜であることを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive effect element according to claim 1, wherein both or one of the perpendicular magnetization films constituting the recording layer and the fixed layer is Fe, Co, Ni, or an alloy containing one or more of them. And a tunnel magnetoresistive effect element characterized by being a laminated film in which nonmagnetic metals such as Ru, Pt, Rh, Pd, and Cr are alternately laminated. 請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層を構成する垂直磁化膜の両方もしくは一方は、粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造を有することを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive element according to claim 1, wherein at least one of the recording layer and the perpendicular magnetization film constituting the fixed layer has a granular structure in which granular magnetic materials are dispersed in a non-magnetic matrix. A tunnel magnetoresistive effect element. 請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層を構成する垂直磁化膜の両方もしくは一方は、希土類金属と遷移金属を含んだアモルファス合金であることを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive element according to claim 1, wherein both or one of the perpendicular magnetization films constituting the recording layer and the fixed layer is an amorphous alloy containing a rare earth metal and a transition metal. Resistive effect element. 請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層を構成する垂直磁化膜の両方もしくは一方は、m−D019型のCoPt規則合金、L11型のCoPt規則合金、もしくはCo−Pt,Co−Pd,Fe−Pt,Fe−Pdを主成分とするL10型の規則合金であることを特徴とするトンネル磁気抵抗効果素子。In tunneling magnetoresistive element according to claim 1, wherein both or one of the recording layer and the perpendicular magnetic film of the pinned layer, m-D0 19 type CoPt ordered alloy, L1 1 type CoPt ordered alloy or, Co-Pt, Co-Pd, Fe-Pt, tunneling magnetoresistive element which is a L1 0 type ordered alloy mainly composed of Fe-Pd. 複数の磁気メモリセルと、所望の磁気メモリセルを選択する選択手段とを備えたランダムアクセスメモリにおいて、
前記磁気メモリセルは、トンネル磁気抵抗効果素子と、前記トンネル磁気抵抗効果素子に通電するためのトランジスタとを備え、
前記選択手段は、第一の書込みドライバ回路と、第二の書込みドライバ回路と、第三の書込みドライバ回路とを備え、
前記トンネル磁気抵抗効果素子は、垂直磁化膜からなる記録層と、垂直磁化膜からなる固定層と、前記記録層と前記固定層の間に配置された非磁性層と、前記記録層と前記固定層のそれぞれに接して形成され、前記記録層の磁化の向きを反転させるための電流を素子膜厚方向に流すための一対の電極層とを備え、前記記録層は第1の領域と第2の領域をそれぞれ少なくとも一つ含み、前記第1の領域における単位面積あたりの磁気モーメントは前記第2の領域における単位面積あたりの磁気モーメントよりも低く、前記記録層の外周部分に前記第2の領域が占める割合は前記第1の領域が占める割合より大きく、
前記トランジスタの一端が第一の書込みドライバ回路に接続されたソース線に電気的に接続され、
前記トンネル磁気抵抗効果素子の前記トランジスタに接続されていない側の電極層が、第二の書込みドライバ回路と読出し信号を増幅するアンプに接続されたビット線に接続され、
前記トランジスタの抵抗を制御するワード線を備え、該ワード線が第三の書込みドライバ回路に接続され、
前記選択手段によって選択した磁気メモリセルが備えるトンネル磁気抵抗効果素子の膜厚方向に電流を流し、当該トンネル磁気抵抗効果素子の記録層をスピントランスファートルクにより磁化反転させることにより情報を書き込むことを特徴とするランダムアクセスメモリ。
In a random access memory comprising a plurality of magnetic memory cells and a selection means for selecting a desired magnetic memory cell,
The magnetic memory cell includes a tunnel magnetoresistive element and a transistor for energizing the tunnel magnetoresistive element,
The selection means includes a first write driver circuit, a second write driver circuit, and a third write driver circuit,
The tunnel magnetoresistive element includes a recording layer made of a perpendicular magnetization film, a fixed layer made of a perpendicular magnetization film, a nonmagnetic layer disposed between the recording layer and the fixed layer, the recording layer and the fixed layer A pair of electrode layers formed in contact with each of the layers for flowing a current for reversing the magnetization direction of the recording layer in the element film thickness direction. The recording layer includes a first region and a second region. At least one of the regions, and the magnetic moment per unit area in the first region is lower than the magnetic moment per unit area in the second region, and the second region is formed on the outer peripheral portion of the recording layer. Is greater than the proportion of the first region,
One end of the transistor is electrically connected to a source line connected to a first write driver circuit;
The electrode layer of the tunnel magnetoresistive element not connected to the transistor is connected to a bit line connected to a second write driver circuit and an amplifier for amplifying a read signal,
A word line for controlling the resistance of the transistor, the word line connected to a third write driver circuit;
Information is written by passing a current in a film thickness direction of a tunnel magnetoresistive element included in the magnetic memory cell selected by the selection unit, and reversing the magnetization of the recording layer of the tunnel magnetoresistive element by spin transfer torque. Random access memory.
JP2011518149A 2009-06-08 2009-06-08 Tunnel magnetoresistive element and random access memory using the same Expired - Fee Related JP5456035B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060432 WO2010143248A1 (en) 2009-06-08 2009-06-08 Tunnel magnetic resistance effect element and random access memory using same

Publications (2)

Publication Number Publication Date
JPWO2010143248A1 true JPWO2010143248A1 (en) 2012-11-22
JP5456035B2 JP5456035B2 (en) 2014-03-26

Family

ID=43308518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011518149A Expired - Fee Related JP5456035B2 (en) 2009-06-08 2009-06-08 Tunnel magnetoresistive element and random access memory using the same

Country Status (3)

Country Link
JP (1) JP5456035B2 (en)
TW (1) TWI430485B (en)
WO (1) WO2010143248A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102017623B1 (en) * 2012-08-30 2019-09-03 삼성전자주식회사 Magnetic Memory Device
JP6948229B2 (en) * 2017-11-09 2021-10-13 株式会社日立製作所 Thermoelectric converter and heat transport system
JP2021150364A (en) * 2020-03-17 2021-09-27 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079508A (en) * 2003-09-03 2005-03-24 Canon Inc Magnetic film, multilayered magnetic film, method and mechanism for inverting magnetization of magnetic film, and magnetic random access memory
JP4384183B2 (en) * 2007-01-26 2009-12-16 株式会社東芝 Magnetoresistive element and magnetic memory
JP2008211058A (en) * 2007-02-27 2008-09-11 Toshiba Corp Magnetic random access memory and writing method thereof
JP4649457B2 (en) * 2007-09-26 2011-03-09 株式会社東芝 Magnetoresistive element and magnetic memory
JP5191717B2 (en) * 2007-10-05 2013-05-08 株式会社東芝 Magnetic recording element, manufacturing method thereof, and magnetic memory

Also Published As

Publication number Publication date
JP5456035B2 (en) 2014-03-26
WO2010143248A1 (en) 2010-12-16
TW201123570A (en) 2011-07-01
TWI430485B (en) 2014-03-11

Similar Documents

Publication Publication Date Title
JP5579175B2 (en) Magnetoresistive element and random access memory using the same
JP4903277B2 (en) Magnetoresistive element, magnetic memory cell using the same, and random access memory
US7732881B2 (en) Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
JP5600344B2 (en) Magnetoresistive element and magnetic memory
US8493780B2 (en) Non-volatile magnetic memory element with graded layer
JP5283922B2 (en) Magnetic memory
JP5321991B2 (en) Magnetic memory device and driving method thereof
USRE49364E1 (en) Memory element, memory apparatus
WO2017149874A1 (en) Magnetoresistive element and electronic device
CN109564896B (en) Magnetoresistive element and electronic device
JP6182993B2 (en) Storage element, storage device, storage element manufacturing method, and magnetic head
WO2012004883A1 (en) Magnetoresistive effect element and random access memory using same
JP5034317B2 (en) Memory element and memory
JP4187021B2 (en) Memory element and memory
JP5456035B2 (en) Tunnel magnetoresistive element and random access memory using the same
JP2004087870A (en) Magnetoresistive effect element and magnetic memory device
JP2011253884A (en) Magnetic memory device
JP2004023015A (en) Magnetoresistive effect element and method of manufacturing the same, and magnetic memory device
JP4615797B2 (en) Magnetoresistive element, manufacturing apparatus thereof, and magnetic memory device
WO2013080437A1 (en) Storage element, and storage device
JP5777124B6 (en) Magnetoresistive element, magnetic film, and method of manufacturing magnetic film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

LAPS Cancellation because of no payment of annual fees