JPWO2010123152A1 - Cold rolled steel sheet manufacturing method and manufacturing equipment thereof - Google Patents

Cold rolled steel sheet manufacturing method and manufacturing equipment thereof Download PDF

Info

Publication number
JPWO2010123152A1
JPWO2010123152A1 JP2010541651A JP2010541651A JPWO2010123152A1 JP WO2010123152 A1 JPWO2010123152 A1 JP WO2010123152A1 JP 2010541651 A JP2010541651 A JP 2010541651A JP 2010541651 A JP2010541651 A JP 2010541651A JP WO2010123152 A1 JPWO2010123152 A1 JP WO2010123152A1
Authority
JP
Japan
Prior art keywords
steel sheet
cold
rolled steel
steel plate
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010541651A
Other languages
Japanese (ja)
Other versions
JP5479366B2 (en
Inventor
圭二 大串
圭二 大串
久幹 若林
久幹 若林
原田 新太郎
新太郎 原田
英規 石橋
英規 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Engineering Co Ltd filed Critical Nittetsu Plant Designing Corp
Priority to JP2010541651A priority Critical patent/JP5479366B2/en
Publication of JPWO2010123152A1 publication Critical patent/JPWO2010123152A1/en
Application granted granted Critical
Publication of JP5479366B2 publication Critical patent/JP5479366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Abstract

薄スラブ連続鋳造法で製造された鋼板を連続焼鈍して品質が均一な冷延鋼板を低コスト、高歩留で製造可能な冷延鋼板の製造方法及び製造設備を提供する。薄スラブ連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、冷間圧延、及び連続焼鈍して冷延鋼板を製造する方法において、連続焼鈍は、冷間圧延された鋼板14を800℃以上850℃以下の温度で40秒以上60秒以下の時間保持する均熱工程と、均熱化された鋼板14を10℃/秒以上の冷却速度で350℃以上400℃以下の温度まで下げながら、鋼板14に引張り応力及び曲げ応力を付与する冷却工程と、冷却された鋼板14を350℃以上400℃以下の温度で60秒以上180秒以下の時間保持する過時効工程とを有し、冷却工程で、鋼板14に付与する引張り応力は0.5kg/mm2以上かつ1.5kg/mm2以下で、前記曲げ応力は10kg/mm2以上かつ35kg/mm2以下である。The present invention provides a method and equipment for producing a cold-rolled steel sheet capable of producing a cold-rolled steel sheet having a uniform quality at a low cost and a high yield by continuously annealing a steel sheet produced by a thin slab continuous casting method. In the method of manufacturing a cold-rolled steel sheet by hot rolling, acid cleaning, cold rolling, and continuous annealing of a slab manufactured by a thin slab continuous casting method, the continuous annealing is performed on the cold-rolled steel sheet 14 by 800. A soaking step for holding at a temperature of not less than 850 ° C. and not more than 850 ° C. for a time of not less than 40 seconds and not more than 60 seconds; However, it has a cooling step of applying tensile stress and bending stress to the steel plate 14, and an overaging step of holding the cooled steel plate 14 at a temperature of 350 ° C. or higher and 400 ° C. or lower for a period of 60 seconds or more and 180 seconds or less, In the cooling step, the tensile stress applied to the steel sheet 14 is 0.5 kg / mm 2 or more and 1.5 kg / mm 2 or less, and the bending stress is 10 kg / mm 2 or more and 35 kg / mm 2 or less.

Description

本発明は、薄スラブ連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、冷間圧延、及び連続焼鈍して冷延鋼板を製造する冷延鋼板の製造方法及びその製造設備に関する。   The present invention relates to a method for manufacturing a cold-rolled steel sheet and equipment for manufacturing the cold-rolled steel sheet by hot rolling, acid cleaning, cold rolling, and continuous annealing of a slab manufactured by a thin slab continuous casting method.

従来、薄スラブ連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、及び冷間圧延して冷延鋼板を製造する場合、得られた冷延鋼板は硬質で加工性に劣るため、通常バッチ焼鈍炉にて冷延鋼板の焼鈍を実施している。例えば、特許文献2にはベルト式薄スラブ連続鋳造法が記載され、特許文献3には薄スラブ連続鋳造から鋳造された鋼板を連続的に熱間圧延する技術が記載されている。また、特許文献1では、スラブの熱処理と熱間加工とをバランスさせて材質制御を図り、材質安定性に優れた冷延鋼板を製造することができる薄鋼板の製造方法が提案されている。   Conventionally, when producing a cold-rolled steel sheet by hot rolling, acid cleaning, and cold-rolling a slab produced by a thin slab continuous casting method, the obtained cold-rolled steel sheet is hard and inferior in workability, Usually, cold-rolled steel sheets are annealed in a batch annealing furnace. For example, Patent Document 2 describes a belt-type thin slab continuous casting method, and Patent Document 3 describes a technique of continuously hot rolling a steel plate cast from thin slab continuous casting. Patent Document 1 proposes a method of manufacturing a thin steel sheet that can manufacture a cold-rolled steel sheet having excellent material stability by balancing the heat treatment and hot working of the slab to control the material.

特開平9−316533号公報JP 9-316533 A 特開昭61−279341号公報JP-A 61-279341 特開平11−77102号公報JP-A-11-77102

しかしながら、バッチ焼鈍炉を用いた冷延鋼板の焼鈍には長時間を要するためランニングコストが高くなるという問題がある。また、バッチ焼鈍炉を用いた冷延鋼板の焼鈍では、コイル状とした冷延鋼板をバッチ焼鈍炉内に装入して行うため、コイル状とした冷延鋼板全体を均一に焼鈍することが困難であり、冷延鋼板の加工性が長手方向で変化するという問題が生じる。
一方、特許文献1の薄鋼板の製造方法では、スラブの熱処理と熱間加工とをバランスさせて材質制御を図るものである。そのために、鋳片をAr3点(冷却時、γ鉄からα鉄、オーステナイトからフェライトへ変態開始する温度)〜1120℃の範囲で3〜30分保持したり、連続鋳造した鋳片を一度冷却してからAr3点〜1120℃の範囲で3〜30分保持したりして熱間圧延工程への負担が高くなるという問題を有している。また、特許文献1の薄鋼板の製造方法は、バッチ焼鈍及び連続焼鈍のいずれの焼鈍プロセスにも適用可能としているが、焼鈍プロセスの各条件については開示されていない。
However, annealing of cold-rolled steel sheets using a batch annealing furnace requires a long time, so there is a problem that running costs are increased. In addition, in the annealing of cold-rolled steel sheets using a batch annealing furnace, the coiled cold-rolled steel sheet is charged into the batch annealing furnace, so that the entire coiled cold-rolled steel sheet can be uniformly annealed. It is difficult and the problem that the workability of a cold-rolled steel plate changes in a longitudinal direction arises.
On the other hand, in the manufacturing method of the thin steel plate of patent document 1, material control is aimed at balancing the heat processing and hot processing of a slab. For this purpose, the slab is held for 3 to 30 minutes in the range of Ar3 point (temperature at which transformation starts from γ iron to α iron and austenite to ferrite during cooling) to 1120 ° C, or the continuously cast slab is cooled once. After that, there is a problem that the load on the hot rolling process is increased by holding for 3 to 30 minutes in the range of Ar3 point to 1120 ° C. Moreover, although the manufacturing method of the thin steel plate of patent document 1 is applicable to any annealing process of batch annealing and continuous annealing, each condition of annealing process is not disclosed.

本発明はかかる事情に鑑みてなされたもので、薄スラブ連続鋳造法で製造された鋳片から形成された鋼板を連続焼鈍して品質が均一な冷延鋼板を低コスト、高歩留で製造可能な冷延鋼板の製造方法及び低コストで簡単な構成の製造設備を提供することを目的とする。   The present invention has been made in view of such circumstances, and continuously anneals a steel plate formed from a slab produced by a thin slab continuous casting method to produce a cold-rolled steel plate having a uniform quality at a low cost and a high yield. An object of the present invention is to provide a manufacturing method of a possible cold-rolled steel sheet and a manufacturing facility with a simple configuration at low cost.

本発明者らは、かかる課題を解決するため鋭意検討した結果、連続焼鈍の均熱工程で鋼板中の結晶粒を成長させ、続いて冷却工程で鋼板に引張り応力及び曲げ応力を付与することで鋼板中に残留応力を発生させ、さらに過時効工程において発生させた残留応力により炭化物の析出を促進することができることを見出し、本発明を成すに至った。これにより、鋼板中の結晶粒に固溶している炭素量を低減させることができ、薄スラブ連続鋳造法で製造された鋳片から形成した鋼板であっても、均質に軟質化した冷延鋼板を得ることができる。本発明の要旨は以下のとおりである。   As a result of intensive studies to solve such problems, the present inventors have grown crystal grains in the steel plate in the soaking process of continuous annealing, and subsequently applied tensile stress and bending stress to the steel plate in the cooling process. It has been found that residual stress is generated in the steel sheet, and further, precipitation of carbides can be promoted by the residual stress generated in the overaging process, and the present invention has been achieved. As a result, the amount of carbon dissolved in the crystal grains in the steel sheet can be reduced, and even a steel sheet formed from a slab produced by a thin slab continuous casting method can be uniformly softened. A steel plate can be obtained. The gist of the present invention is as follows.

前記目的に沿う第1の発明に係る冷延鋼板の製造方法は、薄スラブ連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、冷間圧延、及び連続焼鈍し、炭素を0.5質量%以下、珪素を0.02質量%以上、マンガンを0.15質量%以上、カルシウムを0.001質量%以上含有する冷延鋼板を製造する方法において、前記連続焼鈍は、前記冷間圧延された鋼板を800℃以上850℃以下の温度で40秒以上60秒以下の時間保持する均熱工程と、前記均熱工程を通過した前記鋼板を10℃/秒以上の冷却速度で350℃以上400℃以下の温度まで下げながら、該鋼板に引張り応力及び曲げ応力を付与する冷却工程と、前記冷却工程を通過した前記鋼板を350℃以上400℃以下の温度で60秒以上180秒以下の時間保持する過時効工程とを有し、前記冷却工程で、前記鋼板に付与する前記引張り応力は0.5kg/mm以上かつ1.5kg/mm以下で、前記曲げ応力は10kg/mm以上かつ35kg/mm以下である。The manufacturing method of the cold-rolled steel sheet according to the first invention that meets the above-described object is a method of hot rolling, acid cleaning, cold rolling, and continuous annealing of a slab manufactured by a thin slab continuous casting method, so that carbon is reduced to 0.0. In the method of manufacturing a cold-rolled steel sheet containing 5% by mass or less, silicon 0.02% by mass or more, manganese 0.15% by mass or more, and calcium 0.001% by mass or more, the continuous annealing is performed by the cold A soaking step for holding the rolled steel plate at a temperature of 800 ° C. or more and 850 ° C. or less for 40 seconds or more and 60 seconds or less, and the steel plate that has passed through the soaking step is 350 ° C. at a cooling rate of 10 ° C./sec or more. The cooling step of applying tensile stress and bending stress to the steel sheet while lowering the temperature to 400 ° C. or lower, and the steel plate that has passed through the cooling step at a temperature of 350 ° C. or higher and 400 ° C. or lower for 60 seconds or longer and 180 seconds or shorter. Overaging work to keep time Has the door, the cooling step, the tensile stress applied to the steel sheet is 0.5 kg / mm 2 or more and at 1.5 kg / mm 2 or less, the bending stress is 10 kg / mm 2 or more and 35 kg / mm 2 It is as follows.

第1の発明に係る冷延鋼板の製造方法において、前記曲げ応力は、前記冷却工程のパスラインを通過する前記鋼板の通板方向と直交する方向(板幅方向)に軸方向を向けると共に軸心位置を該通板方向にずらせて該鋼板の厚み方向両側にそれぞれ配置された対となる小径ロールの両方又はいずれか一方を、前記パスラインと直交する方向(板厚方向)に該パスラインを超えて押し込むことにより発生させることが好ましい。
ここで、前記対となる小径ロールの外径は200mm以上かつ500mm以下、軸心間距離は500mm以上かつ1000mm以下であって、前記パスラインを超えて押し込む該小径ロールの押し込み距離は10mm以上かつ100mm以下であることが好ましい。
In the method for manufacturing a cold-rolled steel sheet according to the first invention, the bending stress is oriented in an axial direction in a direction (plate width direction) perpendicular to the sheet passing direction of the steel sheet passing through the pass line of the cooling step. The path line is shifted in the direction (plate thickness direction) perpendicular to the pass line by moving both or any one of the pair of small diameter rolls disposed on both sides in the thickness direction of the steel plate with the center position shifted in the plate passing direction. It is preferable to generate by pushing in excess of.
Here, the outer diameter of the paired small-diameter rolls is 200 mm or more and 500 mm or less, the distance between the axial centers is 500 mm or more and 1000 mm or less, and the pushing distance of the small-diameter roll that is pushed beyond the pass line is 10 mm or more and It is preferable that it is 100 mm or less.

第1の発明に係る冷延鋼板の製造方法において、前記曲げ応力の値を、前記鋼板に含まれる炭素量に応じて変化させることが好ましい。   In the method for manufacturing a cold-rolled steel sheet according to the first invention, it is preferable that the value of the bending stress is changed according to the amount of carbon contained in the steel sheet.

前記目的に沿う第2の発明に係る冷延鋼板の製造設備は、薄スラブ連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、冷間圧延、及び連続焼鈍して冷延鋼板を製造する冷延鋼板の製造設備において、前記連続焼鈍を行う連続焼鈍ラインは、前記冷間圧延された鋼板を均熱化する均熱装置と、均熱化された前記鋼板を冷却する冷却装置と、冷却された前記鋼板を過時効処理する過時効装置とを備え、前記冷却装置は、前記鋼板を冷却する冷却手段と、前記冷却手段の入側及び出側の両方又はいずれか一方に設けられ、前記鋼板の通板方向と直交する方向に軸方向を向けると共に軸心位置を該通板方向にずらせて該鋼板の厚み方向両側にそれぞれ配置されて該鋼板の移動を支持しながら、前記冷却装置のパスラインと直交する方向に該パスラインを超えて押し込まれて該鋼板に曲げ応力を付与する対となる小径ロールを備えた曲げ応力付与手段とを有している。   The cold rolled steel sheet manufacturing facility according to the second aspect of the present invention is a cold rolled steel sheet obtained by hot rolling, acid cleaning, cold rolling, and continuous annealing of a slab manufactured by a thin slab continuous casting method. In a production facility for cold-rolled steel sheets to be produced, a continuous annealing line for performing the continuous annealing includes a heat-equalizing device for soaking the cold-rolled steel plate, and a cooling device for cooling the so-heated steel plate. An overaging device for overaging the cooled steel plate, and the cooling device is provided on a cooling means for cooling the steel plate and / or on one or both of the inlet side and the outlet side of the cooling means. The cooling is performed while directing the axial direction in a direction orthogonal to the plate passing direction of the steel plate and shifting the axial center position to the plate passing direction so as to be arranged on both sides in the thickness direction of the steel plate to support the movement of the steel plate. The pass line in a direction perpendicular to the pass line of the device It is pushed beyond and a bending stress applying means comprises a small-diameter rolls to be paired to impart bending stresses in the steel sheet.

第1の発明に係る冷延鋼板の製造方法においては、連続焼鈍の均熱工程における均熱温度を、従来の連続焼鈍炉で設定している700〜800℃より高い800〜850℃に設定するので、鋼板中の結晶粒を成長させることができる。そして、冷却工程で鋼板に引張り応力及び曲げ応力を付与することで鋼板中の結晶粒内に転位を発生させることができ、過時効工程において発生させた転位により炭化物の析出を促進することができる。これにより、鋼板中の結晶粒に固溶している炭素量を低減させることができ、薄スラブ連続鋳造法で製造された鋳片から形成した鋼板に対して、連続焼鈍を適用して軟質化し鋼板内品位が均質した冷延鋼板を安価、大量に製造することが可能になる。
また、鋼板の焼鈍方法を、従来のコイル状とした冷延鋼板のバッチ焼鈍でなく、連続焼鈍炉にて実施するため焼鈍に要する時間が、従来の約2日間から数十分に短縮され、冷延鋼板の生産性が大幅に向上すると共に焼鈍後の鋼板の長手方向での品質が均一となる。
In the manufacturing method of the cold-rolled steel sheet according to the first invention, the soaking temperature in the soaking step of continuous annealing is set to 800 to 850 ° C., which is higher than 700 to 800 ° C. set in the conventional continuous annealing furnace. Therefore, the crystal grains in the steel plate can be grown. And, by applying tensile stress and bending stress to the steel sheet in the cooling process, dislocations can be generated in the crystal grains in the steel sheet, and precipitation of carbides can be promoted by the dislocations generated in the overaging process. . As a result, the amount of carbon dissolved in the crystal grains in the steel sheet can be reduced, and the steel sheet formed from the slab manufactured by the thin slab continuous casting method is softened by applying continuous annealing. It is possible to produce a large quantity of cold-rolled steel sheets having a uniform quality within the steel sheet at low cost.
In addition, the time required for annealing to perform the annealing method of the steel sheet in a continuous annealing furnace rather than the batch annealing of the cold-rolled steel sheet in the conventional coil shape, has been shortened by several tens of minutes from the conventional about two days, The productivity of the cold-rolled steel sheet is greatly improved and the quality in the longitudinal direction of the steel sheet after annealing becomes uniform.

第1の発明に係る冷延鋼板の製造方法において、曲げ応力が、冷却工程のパスラインを通過する鋼板の通板方向と直交する方向に軸方向を向けると共に軸心位置を通板方向にずらせて鋼板の両側にそれぞれ配置された対となる小径ロールの両方又はいずれか一方を、パスラインと直交する方向にパスラインを超えて押し込む場合、簡便な方法で冷却工程の鋼板に曲げ応力を付与することができる。   In the method for manufacturing a cold-rolled steel sheet according to the first invention, the bending stress is oriented in the axial direction in a direction orthogonal to the sheet passing direction of the steel sheet passing through the pass line in the cooling step and the axial position is shifted in the sheet passing direction. When pushing both or one of the paired small diameter rolls arranged on both sides of the steel plate beyond the pass line in a direction perpendicular to the pass line, a bending stress is applied to the steel plate in the cooling process by a simple method. can do.

第1の発明に係る冷延鋼板の製造方法において、対となる小径ロールの外径が200mm以上かつ500mm以下、軸心間距離が500mm以上かつ1000mm以下であって、パスラインを超えて押し込む小径ロールの押し込み距離が10mm以上かつ100mm以下である場合、加工曲率半径を調整して、曲げ応力を10kg/mm以上かつ35kg/mm以下に調整することができる。In the method for producing a cold-rolled steel sheet according to the first invention, the outer diameter of the paired small-diameter rolls is 200 mm or more and 500 mm or less, the distance between the axes is 500 mm or more and 1000 mm or less, and the small diameter is pushed beyond the pass line. When the indentation distance of the roll is 10 mm or more and 100 mm or less, the bending curvature can be adjusted to 10 kg / mm 2 or more and 35 kg / mm 2 or less by adjusting the processing curvature radius.

第1の発明に係る冷延鋼板の製造方法において、曲げ応力の値を、鋼板に含まれる炭素量に応じて変化させる場合、残留応力による冷延鋼板の硬質化による加工性の低下を防止できる。   In the method for manufacturing a cold-rolled steel sheet according to the first invention, when the value of the bending stress is changed according to the amount of carbon contained in the steel sheet, it is possible to prevent a decrease in workability due to hardening of the cold-rolled steel sheet due to residual stress. .

前記目的に沿う第2の発明に係る冷延鋼板の製造設備においては、連続焼鈍ラインで安価かつ簡単な機構で冷却工程の鋼板に引張り応力及び曲げ応力を付与することができ、鋼板の結晶粒内に発生させた転位を用いて過時効工程中の炭化物の析出を促進させて結晶粒の固溶炭素量を低減させることが可能になる。その結果、薄スラブ連続鋳造法で製造された鋳片から形成した鋼板を連続焼鈍して軟質化し鋼板内品位が均質した冷延鋼板を安価、大量に製造することが可能になる。   In the cold rolled steel sheet manufacturing facility according to the second aspect of the present invention, tensile stress and bending stress can be applied to the steel sheet in the cooling process by a cheap and simple mechanism in the continuous annealing line, and the crystal grains of the steel sheet It is possible to reduce the amount of solid solution carbon in the crystal grains by promoting the precipitation of carbides during the overaging process by using dislocations generated in the crystal. As a result, it is possible to manufacture a cold-rolled steel sheet having a uniform quality within the steel sheet at low cost and in large quantities at a low temperature by continuously annealing the steel sheet formed from the slab manufactured by the thin slab continuous casting method.

図1は、本発明の一実施の形態に係る冷延鋼板の製造設備に設けられた連続焼鈍ラインの説明図である。
図2は、同連続焼鈍ラインの冷却装置の説明図である。
図3は、焼鈍温度と鋼板軟質化(引張り強度、降伏応力、伸び)の関係を示す説明図である。
図4は、均熱時間と鋼板軟質化(引張り強度、降伏応力、伸び)の関係を示す説明図である。
図5は、冷却速度と鋼板軟質化(伸び)の関係を示す説明図である。
図6は、曲げ応力と鋼板軟質化(伸び)の関係を示す説明図である。
FIG. 1 is an explanatory diagram of a continuous annealing line provided in a cold rolled steel sheet manufacturing facility according to an embodiment of the present invention.
FIG. 2 is an explanatory view of the cooling device of the continuous annealing line.
FIG. 3 is an explanatory diagram showing the relationship between the annealing temperature and softening of the steel sheet (tensile strength, yield stress, elongation).
FIG. 4 is an explanatory diagram showing the relationship between soaking time and softening of the steel sheet (tensile strength, yield stress, elongation).
FIG. 5 is an explanatory diagram showing the relationship between the cooling rate and the softening (elongation) of the steel sheet.
FIG. 6 is an explanatory diagram showing the relationship between bending stress and steel sheet softening (elongation).

本発明の実施例に基づき、図面を参照しつつ、本発明について説明する。
本発明の一実施の形態に係る冷延鋼板の製造設備について説明する。図1に示すように、本発明の一実施の形態に係る冷延鋼板の製造設備に設けられた連続焼鈍ライン10は、例えば入側設備11、焼鈍設備12、及び出側設備13を有している。ここで、入側設備11は、薄スラブ連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、及び冷間圧延して得られた鋼板14を巻き取ったコイル15を巻き戻すペイオフリール16と、先に巻き戻された鋼板14の尾端と後に巻き戻される鋼板14の先端とを接続する溶接機17と、巻き戻された鋼板14を清浄化する電解清浄装置18と、清浄化された鋼板14を蓄えながら徐々に送出す入側ルーパー19とを有している。また、出側設備13は、焼鈍設備12から送出された鋼板14を蓄えながら徐々に送出す出側ルーパー20と、出側ルーパー20から送出された鋼板14の降伏点伸びの消去と表面粗度を調整する調質圧延機36と、調質圧延機36を通過した鋼板14を巻き取ってコイル21を形成する巻き取り機22と、コイル21の巻き取りの終了に合わせて鋼板14を切断する剪断機23とを有している。
Based on the Example of this invention, This invention is demonstrated, referring drawings.
A cold-rolled steel sheet manufacturing facility according to an embodiment of the present invention will be described. As shown in FIG. 1, a continuous annealing line 10 provided in a cold rolled steel sheet manufacturing facility according to an embodiment of the present invention includes, for example, an entry side facility 11, an annealing facility 12, and an exit side facility 13. ing. Here, the entry-side equipment 11 is a payoff reel that rewinds a coil 15 that has wound a steel plate 14 obtained by hot rolling, acid cleaning, and cold rolling a slab manufactured by a thin slab continuous casting method. 16, a welding machine 17 that connects the tail end of the steel sheet 14 that has been rewound earlier and the tip end of the steel sheet 14 that is rewound later, an electrolytic cleaning device 18 that cleans the rewound steel sheet 14, and cleaning And an entry-side looper 19 for gradually sending out the stored steel plate 14 while storing it. Further, the exit side equipment 13 includes an exit side looper 20 that gradually sends out the steel sheet 14 delivered from the annealing equipment 12, and elimination of yield point elongation and surface roughness of the steel sheet 14 delivered from the exit side looper 20. The temper rolling mill 36 for adjusting the winding, the winder 22 for winding the steel plate 14 that has passed through the temper rolling mill 36 to form the coil 21, and the steel plate 14 is cut in accordance with the end of winding of the coil 21. And a shearing machine 23.

焼鈍設備12は、冷間圧延された鋼板14を、焼鈍温度(例えば、800〜850℃)まで加熱する加熱装置24と、焼鈍温度まで加熱された鋼板14を焼鈍温度で一定時間(例えば、40〜60秒)保持して鋼板14の均熱化を図る均熱装置25と、均熱化された鋼板14を予め設定された冷却速度(例えば、10℃/秒以上)で時効温度(例えば、400〜350℃)まで冷却する冷却装置26と、冷却された鋼板14を時効温度で一定時間(60〜180秒)保持して過時効処理する過時効装置27と、過時効処理が終了した鋼板14を更に冷却して(例えば40〜60℃まで冷却して)出側ルーパー20に送出す二次冷却装置28を備えている。なお、入側設備11、出側設備13、焼鈍設備12の加熱装置24、均熱装置25、過時効装置27、及び二次冷却装置28には、通常の連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、冷間圧延、及び連続焼鈍して冷延鋼板を製造する際に連続焼鈍ラインで使用する設備及び装置と同様のものを使用することができる。   The annealing equipment 12 includes a heating device 24 that heats the cold-rolled steel sheet 14 to an annealing temperature (for example, 800 to 850 ° C.), and a steel sheet 14 that has been heated to the annealing temperature at the annealing temperature for a certain time (for example, 40 ˜60 seconds) A soaking device 25 for keeping the steel plate 14 soaked, and an aging temperature (eg, 10 ° C./second or more) of the soaked steel plate 14 at a preset cooling rate (eg, 10 ° C./second or more). A cooling device 26 for cooling to 400 to 350 ° C., an overaging device 27 for holding the cooled steel plate 14 at an aging temperature for a certain period of time (60 to 180 seconds), and an overaging treatment, and a steel plate for which the overaging treatment has been completed. 14 is further cooled (for example, cooled to 40 to 60 ° C.), and a secondary cooling device 28 for feeding to the outlet looper 20 is provided. The entrance side equipment 11, the exit side equipment 13, the heating device 24 of the annealing equipment 12, the soaking device 25, the overaging device 27, and the secondary cooling device 28 are cast pieces manufactured by a normal continuous casting method. The same equipment and equipment used in the continuous annealing line can be used when producing a cold-rolled steel sheet by hot rolling, acid cleaning, cold rolling, and continuous annealing.

焼鈍設備12の冷却装置26は、図2に示すように、入側及び出側にそれぞれ設けられ、鋼板14に引張り応力(例えば0.5kg/mm以上かつ1.5kg/mm以下)を付与しながら鋼板14を通板する第1及び第2のホットブライドルロール29、30と、第1及び第2のホットブライドルロール29、30の間に鋼板14の通板方向に沿って並べて設けられ、鋼板14を冷却する冷却手段の一例であり、通過する鋼板14の両面に冷風を吹き付ける第1、第2のウィンドボックス31、32と、第1のウィンドボックス31の入側、第1のウィンドボックス31の出側(すなわち、第2のウィンドボックス32の入側)、第2のウィンドボックス32の出側にそれぞれ設けられ、鋼板14の通板方向と直交する方向に軸方向を向けると共に軸心位置を通板方向にずらせて鋼板14の厚み方向両側にそれぞれ配置されて鋼板14の移動を支持しながら、冷却装置26のパスラインPLと直交する方向にパスラインPLを超えてδだけ押し込まれて鋼板14に曲げ応力(例えば、10kg/mm以上かつ35kg/mm以下)を付与する対となる小径ロール33、34を備えた曲げ応力付与手段35とを有している。As shown in FIG. 2, the cooling device 26 of the annealing equipment 12 is provided on each of the entry side and the exit side, and applies tensile stress (for example, 0.5 kg / mm 2 or more and 1.5 kg / mm 2 or less) to the steel plate 14. Between the first and second hot bridle rolls 29, 30 that pass the steel plate 14 while being applied, and the first and second hot bridle rolls 29, 30 are provided side by side along the plate passing direction of the steel plate 14. The first and second window boxes 31 and 32 for blowing cold air onto both surfaces of the passing steel sheet 14, the entrance side of the first window box 31, and the first window are examples of cooling means for cooling the steel sheet 14. Provided on the exit side of the box 31 (that is, the entrance side of the second window box 32) and the exit side of the second window box 32, respectively, the axial direction is perpendicular to the plate passing direction of the steel plate 14. In addition, the axial center position is shifted in the plate direction and arranged on both sides in the thickness direction of the steel plate 14 to support the movement of the steel plate 14, while exceeding the pass line PL in a direction perpendicular to the pass line PL of the cooling device 26. Bending stress applying means 35 provided with a pair of small diameter rolls 33 and 34 for applying bending stress (for example, 10 kg / mm 2 or more and 35 kg / mm 2 or less) to the steel sheet 14 by being pushed by δ. .

小径ロール33、34は、両側が軸受(図示せず)でそれぞれ支持され、軸受は小径ロール33、34の軸方向が鋼板14の通板方向と直交する方向に向くように取付け台に固定されている。そして、取付け台には、小径ロール33、34を冷却装置26のパスラインPLと直交する方向に進退するように取付け台を移動させる図示しない駆動機構(例えば、流体圧シリンダ)が設けられている。これにより、例えば、小径ロール33を固定し、小径ロール34を、パスラインPLを超えてδだけ押し込むことにより、小径ロール34に当接する部分の鋼板14に曲げ応力および引張応力を付与することができる。   The small-diameter rolls 33 and 34 are respectively supported by bearings (not shown) on both sides, and the bearings are fixed to the mounting base so that the axial direction of the small-diameter rolls 33 and 34 is oriented in a direction perpendicular to the sheet passing direction of the steel plate 14. ing. The mounting base is provided with a driving mechanism (for example, a fluid pressure cylinder) (not shown) that moves the mounting base so that the small-diameter rolls 33 and 34 advance and retreat in a direction perpendicular to the pass line PL of the cooling device 26. . Thereby, for example, by fixing the small diameter roll 33 and pushing the small diameter roll 34 by δ beyond the pass line PL, bending stress and tensile stress can be applied to the steel sheet 14 at the portion in contact with the small diameter roll 34. it can.

ここで、第1、第2のホットブライドルロール29、30の外径は、例えば800mm以上かつ1200mm以下である。一方、小径ロール33、34の外径は200mm以上かつ500mm以下である。これによって、第1、第2のホットブライドルロール29、30を通過する際に鋼板14に加えられる曲げ加工による曲げ応力より大きな曲げ応力を、小径ロール33、34の押し込みで与えることができる。なお、小径ロール33、34の外径が200mm未満では小径ロール33、34自体の強度不足が生じ、小径ロール33、34の外径が500mmを超えると曲げ応力を鋼板14に効果的に与えることができなくなると共に、小径ロール33、34の設置スペースが大きくなるため冷却の効率が低下する。
前記一対の小径ロールは第1のウィンドボックス31の入側と出側(第1と第2ウィンドボックスの中間)、第2のウィンドボックス32の出側の3箇所に設けている。よって、前記一対の小径ロールにより前記鋼板へ付与する曲げ応力は鋼板の温度が低い場所に設けた小径ロールでより多く付与すればより効果的である。
なお、一対の小径ロールにおける直径の最適組合せについて、品質的には前記外径が200mm〜500mmの範囲内であれば、同径、異径をともに差異がない。前記一対の小径ロールの外径を同径としておくことにより、当該ロールの破損・損耗時の交換用(予備品)ロールの在庫を少なくでき、保守が容易となる。
Here, the outer diameters of the first and second hot bridle rolls 29 and 30 are, for example, not less than 800 mm and not more than 1200 mm. On the other hand, the outer diameters of the small-diameter rolls 33 and 34 are 200 mm or more and 500 mm or less. As a result, a bending stress larger than the bending stress caused by bending applied to the steel plate 14 when passing through the first and second hot bridle rolls 29 and 30 can be applied by pushing the small-diameter rolls 33 and 34. If the outer diameter of the small-diameter rolls 33, 34 is less than 200 mm, the small-diameter rolls 33, 34 themselves have insufficient strength. If the outer diameter of the small-diameter rolls 33, 34 exceeds 500 mm, bending stress is effectively applied to the steel plate 14. In addition, the installation space for the small-diameter rolls 33 and 34 increases, and the cooling efficiency decreases.
The pair of small diameter rolls are provided at three locations on the entry side and the exit side of the first window box 31 (in the middle of the first and second window boxes) and the exit side of the second window box 32. Therefore, it is more effective if the bending stress applied to the steel sheet by the pair of small diameter rolls is applied more by the small diameter roll provided in a place where the temperature of the steel sheet is low.
In addition, about the optimal combination of the diameter in a pair of small diameter roll, if the said outer diameter is in the range of 200 mm-500 mm, there is no difference in both the same diameter and a different diameter. By setting the outer diameters of the pair of small-diameter rolls to the same diameter, the stock of replacement (spare parts) rolls when the rolls are damaged or worn can be reduced, and maintenance is facilitated.

小径ロール33、34の軸心間の距離は500mm以上かつ1000mm以下である。小径ロール33、34の軸心間の距離が1000mmを超えると、小径ロール33、34の押し込みによる加工曲率半径が大きくなるため、小径ロール33、34の押し込み量δの制御による曲げ応力の調節が困難となり、かつ冷却装置26内のパスラインPLの長さが長くなって、冷却の効率が低下する。
一方、小径ロール33、34の軸心間の距離が500mm未満では、小径ロール33、34を押し込んでいったときに、小径ロール33、34の軸心間の距離が小径ロール33、34の直径に近くなり、鋼板14を2本の小径ロール33、34で圧下するおそれがある。また、パスラインPLを超えて押し込む小径ロール34の押し込み距離δは10mm以上かつ100mm以下がよい。押し込み距離が10mm未満では、小径ロール33、34が鋼板14に当接した際に鋼板14にスリップが発生して、鋼板14に疵を発生させる問題が出てくる。一方、押し込み距離が100mmを超えると、鋼板14が第1、第2のウィンドボックス31、32と干渉するおそれが出てくる。
また、前記小径ロール33、34の表面粗度をRa=2〜3とした。これは該小径ロールで鋼板を10mm〜100mm押し込むため、鋼板は小径ロールの周囲の一部に巻きつけられ、該小径ロールでの鋼板のスリップが無くなる。よって、小径ロールの表面粗度を前記のとおり下げることが可能となる。これにより、小径ロール製作時のコストダウンが可能になる。尚、一般的に炉内に使用されるロールの表面粗度Raは4〜5である。
前記小径ロール33、34の肉厚は、10〜20mmとする。これは小径ロールで鋼板を押し込むため強度が必要となるため、一般的に炉内に使用されるロールの肉厚(15mm程度)に比し、若干肉厚は厚くした方が好ましい。
The distance between the shaft centers of the small diameter rolls 33 and 34 is 500 mm or more and 1000 mm or less. When the distance between the shaft centers of the small-diameter rolls 33 and 34 exceeds 1000 mm, the processing curvature radius due to the indentation of the small-diameter rolls 33 and 34 becomes large. It becomes difficult and the length of the pass line PL in the cooling device 26 becomes long, and the cooling efficiency is lowered.
On the other hand, when the distance between the shaft centers of the small diameter rolls 33 and 34 is less than 500 mm, when the small diameter rolls 33 and 34 are pushed in, the distance between the shaft centers of the small diameter rolls 33 and 34 is the diameter of the small diameter rolls 33 and 34. There is a risk that the steel sheet 14 may be rolled down by the two small-diameter rolls 33 and 34. The pushing distance δ of the small diameter roll 34 pushed beyond the pass line PL is preferably 10 mm or more and 100 mm or less. When the pushing distance is less than 10 mm, when the small-diameter rolls 33 and 34 come into contact with the steel plate 14, a slip occurs in the steel plate 14, causing a problem of generating wrinkles in the steel plate 14. On the other hand, if the pushing distance exceeds 100 mm, the steel plate 14 may interfere with the first and second window boxes 31 and 32.
The surface roughness of the small-diameter rolls 33 and 34 was Ra = 2 to 3. This is because the steel sheet is pushed in by 10 mm to 100 mm with the small diameter roll, so that the steel sheet is wound around a part of the circumference of the small diameter roll, and the slip of the steel sheet with the small diameter roll is eliminated. Therefore, the surface roughness of the small diameter roll can be lowered as described above. Thereby, the cost reduction at the time of manufacture of a small diameter roll is attained. In general, the surface roughness Ra of the roll used in the furnace is 4-5.
The wall thickness of the small diameter rolls 33 and 34 is 10 to 20 mm. Since this requires strength because the steel sheet is pushed in with a small-diameter roll, it is preferable that the wall thickness be slightly thicker than the wall thickness (about 15 mm) generally used in the furnace.

続いて、本発明の一実施の形態に係る冷延鋼板の製造方法について説明する。
本実施の形態に係る冷延鋼板の製造方法は、薄スラブ連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、冷間圧延、及び連続焼鈍して、炭素を0.5質量%以下、珪素を0.02質量%以上、マンガンを0.15質量%以上、カルシウムを0.001質量%以上含有する低炭素鋼からなる冷延鋼板を製造する方法である。また、本発明が適用可能な鋼板の板厚は、従来から知られている薄スラブ連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、及び冷間圧延して冷延鋼板を製造する場合の鋼板であり、0.15mm以上、3.2mm以下のものが適している。そして、連続焼鈍では、先ず、冷間圧延された鋼板14を800℃以上850℃以下の焼鈍温度まで加熱装置24で加熱し(加熱工程)、焼鈍温度まで加熱された鋼板14を均熱装置25に導入して、焼鈍温度で40秒以上かつ60秒以下の時間に亘って鋼板14を保持する(均熱工程)。これによって、冷間圧延されて硬化した鋼板14の結晶粒内では転位が消滅し、焼鈍温度及び保持時間に対応した大きさの結晶粒が生成すると共に、結晶粒内の析出物は分解し結晶粒内に固溶する。
Then, the manufacturing method of the cold rolled steel plate which concerns on one embodiment of this invention is demonstrated.
The method for producing a cold-rolled steel sheet according to the present embodiment includes hot-rolling, acid cleaning, cold-rolling, and continuous annealing of a slab produced by a thin slab continuous casting method, so that carbon is 0.5% by mass. Hereinafter, it is a method for producing a cold-rolled steel sheet made of a low carbon steel containing 0.02 mass% or more of silicon, 0.15 mass% or more of manganese, and 0.001 mass% or more of calcium. In addition, the thickness of the steel sheet to which the present invention can be applied is to produce a cold-rolled steel sheet by hot-rolling, pickling, and cold-rolling a slab produced by a conventionally known thin slab continuous casting method. In this case, a steel sheet of 0.15 mm or more and 3.2 mm or less is suitable. In the continuous annealing, first, the cold-rolled steel sheet 14 is heated by a heating device 24 to an annealing temperature of 800 ° C. or more and 850 ° C. or less (heating process), and the steel plate 14 heated to the annealing temperature is heated by a soaking device 25. And the steel sheet 14 is held for 40 seconds to 60 seconds at the annealing temperature (soaking step). As a result, dislocations disappear in crystal grains of the steel sheet 14 that has been cold-rolled and hardened, and crystal grains having a size corresponding to the annealing temperature and holding time are generated, and precipitates in the crystal grains are decomposed and crystallized. It dissolves in the grains.

ここで、均熱工程について説明する。冷間圧延された鋼板14を730〜850℃の温度範囲で40秒間保持する焼鈍処理をした後、10℃/秒の冷却速度で400℃まで冷却して400℃で180秒保持した。その後20℃まで冷却した後に1.0%の調質圧延を行った後に引張り試験を行い、鋼板14の引張り強度、降伏応力、及び破断までの伸びをそれぞれ求めた。その結果を図3に示す。
図3に示すように、焼鈍温度が上昇するのに伴って引張り強度及び降伏応力が低下し、伸びが増加することが確認された。つまり、焼鈍温度が高い程鋼板14が軟質化することが判る。しかし、温度が高過ぎると鋼板14が軟らかくなり過ぎ、加熱装置24、均熱装置25における鋼板14の通板性に影響が出易くなる(例えば、ヒートバックルが発生する)。このため焼鈍温度(均熱温度)の上限を850℃とし、焼鈍温度(均熱温度)の下限を伸びの増加が開始する800℃とした。
Here, the soaking process will be described. The cold-rolled steel sheet 14 was annealed for 40 seconds in a temperature range of 730 to 850 ° C., then cooled to 400 ° C. at a cooling rate of 10 ° C./second and held at 400 ° C. for 180 seconds. Then, after cooling to 20 ° C., 1.0% temper rolling was performed, and then a tensile test was performed to determine the tensile strength, yield stress, and elongation to break of the steel sheet 14. The result is shown in FIG.
As shown in FIG. 3, it was confirmed that the tensile strength and the yield stress were lowered and the elongation was increased as the annealing temperature was raised. That is, it can be seen that the steel plate 14 becomes softer as the annealing temperature is higher. However, if the temperature is too high, the steel plate 14 becomes too soft, and the plateability of the steel plate 14 in the heating device 24 and the heat equalizing device 25 is likely to be affected (for example, a heat buckle is generated). For this reason, the upper limit of the annealing temperature (soaking temperature) was set to 850 ° C., and the lower limit of the annealing temperature (soaking temperature) was set to 800 ° C. at which the increase in elongation starts.

また、冷間圧延された鋼板14を850℃の焼鈍温度で20〜60秒の時間保持する焼鈍処理(均熱処理)をした後、10℃/秒の冷却速度で400℃まで冷却して400℃で180秒保持した。その後20℃まで冷却し、1.0%の調質圧延を行った後に引張り試験を行い、鋼板14の引張り強度、降伏応力、及び破断までの伸びをそれぞれ求めた。その結果を図4に示す。
図4に示すように、均熱時間が長くなる程、引張り強度及び降伏応力が低下するため、鋼板14が軟質化することが判る。一方、伸びは、均熱時間が40秒のときに極大値を示し、40秒を超えると減少する傾向を示す。このため、均熱時間の増加に伴って引張り強度及び降伏応力が低下すること、伸びが均熱時間40秒のときに極大値を示すことを考慮して、保持する時間(均熱時間)を40秒以上60秒以下とした。
The cold-rolled steel sheet 14 is annealed (soaking) at an annealing temperature of 850 ° C. for 20 to 60 seconds and then cooled to 400 ° C. at a cooling rate of 10 ° C./second to 400 ° C. For 180 seconds. Thereafter, it was cooled to 20 ° C., subjected to temper rolling at 1.0%, and then a tensile test was conducted to determine the tensile strength, yield stress, and elongation to break of the steel sheet 14. The result is shown in FIG.
As shown in FIG. 4, it can be seen that the steel plate 14 becomes softer because the tensile strength and the yield stress decrease as the soaking time becomes longer. On the other hand, the elongation shows a maximum value when the soaking time is 40 seconds, and shows a tendency to decrease when it exceeds 40 seconds. For this reason, taking into account that the tensile strength and yield stress decrease with increasing soaking time and that the elongation shows a maximum value when the soaking time is 40 seconds, the holding time (soaking time) is It was 40 seconds or more and 60 seconds or less.

次に冷却工程について説明する。均熱工程を通過した鋼板14の温度を850℃で、例えば40秒間保持する焼鈍処理を行った後、10〜70℃/秒の冷却速度で鋼板14を400℃まで冷却して400℃で180秒保持し、その後20℃まで冷却した。その後、1.0%の調質圧延を行った後に引張り試験を行い、鋼板14の破断までの伸びを求めた。その結果を図5に示す。
図5に示すように、冷却速度の範囲が通常の連続焼鈍における一般的な冷却速度である10℃/秒以上かつ40℃/秒以下であれば、冷却速度が伸び(鋼板14が軟質化)に及ぼす影響はないと解される。従って、冷却速度の下限は10℃/秒に設定して問題ない。一方、冷却速度が50℃/秒では伸びの値が若干低下していること、冷却速度を大きくすることによって設備費の増大を招くこと等を考慮すると、冷却速度の上限は40℃/秒に設定することが好ましい。
Next, the cooling process will be described. After performing the annealing process which hold | maintains the temperature of the steel plate 14 which passed the soaking process at 850 degreeC, for example for 40 second, for example, the steel plate 14 is cooled to 400 degreeC with the cooling rate of 10-70 degreeC / second, and is 180 degreeC at 400 degreeC. Held for 2 seconds and then cooled to 20 ° C. Then, after performing temper rolling of 1.0%, a tensile test was performed to determine the elongation until the steel sheet 14 was broken. The result is shown in FIG.
As shown in FIG. 5, if the range of the cooling rate is 10 ° C./second or more and 40 ° C./second or less which is a general cooling rate in normal continuous annealing, the cooling rate is increased (the steel plate 14 is softened). It is understood that there is no effect on Therefore, the lower limit of the cooling rate can be set to 10 ° C./second without any problem. On the other hand, considering that the elongation value is slightly reduced at a cooling rate of 50 ° C./second and that the equipment cost is increased by increasing the cooling rate, the upper limit of the cooling rate is 40 ° C./second. It is preferable to set.

冷却工程で鋼板14中に転位を発生させるには、冷却工程で鋼板14に応力を負荷すればよい。例えば、冷却工程で鋼板14に与える張力を、均熱工程及び過時効工程で鋼板14にそれぞれ与える張力より大きくすればよい。しかし、鋼板14に与える張力だけで転位を発生させるのに必要な応力を賄おうとすると、冷却工程で鋼板14に対して大きな張力を維持する必要がある。そのためには、冷却装置26内に設置するブライドルロールの本数が多くする必要がある。このため、冷却装置26内には第1及び第2のホットブライドルロール29、30のみを設置して、冷却工程で鋼板14に与える張力による引張り応力を実用的な範囲、例えば0.5kg/mm以上(好ましくは1kg/mm以上)かつ1.5kg/mm以下とした。
そして、転位の発生に不足する分の応力は、小径ロール33、34のいずれか一方、例えば小径ロール34を、パスラインPLと直交する方向にパスラインPLを超えて押し込むことにより鋼板14に付与することができる曲げ応力により発生する引張応力を加えて鋼板14に付与する。ここで、前述したように、小径ロール33、34は、それらのロール軸方向を冷却工程のパスラインPLを通過する鋼板14の通板方向と直交する方向に向けると共に、それらのロール軸心位置を通板方向にずらせて鋼板14の両側にそれぞれ対向するように配置する。
In order to generate dislocations in the steel sheet 14 in the cooling process, stress may be applied to the steel sheet 14 in the cooling process. For example, the tension applied to the steel plate 14 in the cooling process may be made larger than the tension applied to the steel sheet 14 in the soaking process and the overaging process. However, in order to cover the stress necessary to generate dislocations only with the tension applied to the steel plate 14, it is necessary to maintain a large tension with respect to the steel plate 14 in the cooling process. For this purpose, it is necessary to increase the number of bridle rolls installed in the cooling device 26. For this reason, only the first and second hot bridle rolls 29 and 30 are installed in the cooling device 26, and the tensile stress due to the tension applied to the steel sheet 14 in the cooling process is within a practical range, for example, 0.5 kg / mm. 2 or more (preferably 1 kg / mm 2 or more) and 1.5 kg / mm 2 or less.
The stress that is insufficient for the occurrence of dislocation is applied to the steel sheet 14 by pushing one of the small-diameter rolls 33 and 34, for example, the small-diameter roll 34 beyond the pass line PL in a direction orthogonal to the pass line PL. A tensile stress generated by a bending stress that can be applied is applied to the steel sheet 14. Here, as described above, the small-diameter rolls 33 and 34 have their roll axis directions oriented in a direction orthogonal to the sheet passing direction of the steel sheet 14 passing through the pass line PL in the cooling process, and their roll axis positions. The steel plates 14 are arranged so as to oppose both sides of the steel plate 14 while being shifted in the through plate direction.

厚みtの鋼板14に小径ロール34を押し込んで加工曲率半径がRとなる曲げ加工を鋼板14に与えた場合、鋼板14に生じる歪εはt/2Rとなり、このときの鋼板14の縦弾性係数がEであると、鋼板14に付与される曲げ応力はEε、すなわちEt/2Rとなる。
また、加工曲率半径RはパスラインPLを超えて押し込む小径ロール34の押し込み距離δと関係するので、小径ロール34の押し込み距離δを調節することで、鋼板14に付与する曲げ応力の値を決めることができる。なお、対となる小径ロール33、34の外径は200mm以上かつ500mm以下と、第1、第2のホットブライドルロール29、30の外径(例えば800mm以上かつ1200mm以下)より小さいので、第1、第2のホットブライドルロール29、30を通過する際に鋼板14に加えられる曲げ応力より大きな曲げ応力を、小径ロール34の押し込みで与えることができる。ここで、鋼板14に付与する曲げ応力の値は、鋼板14に含まれる炭素量が多い程大きくし、鋼板14に含まれる炭素量が多い程多くの転位を結晶粒中に発生させるようにするとよい。
When a small-diameter roll 34 is pushed into a steel sheet 14 having a thickness t and the steel sheet 14 is subjected to a bending process in which the processing radius of curvature is R, the strain ε generated in the steel sheet 14 is t / 2R, and the longitudinal elastic modulus of the steel sheet 14 at this time Is E, the bending stress applied to the steel sheet 14 is Eε, that is, Et / 2R.
Further, since the processing radius of curvature R is related to the pushing distance δ of the small diameter roll 34 pushed beyond the pass line PL, the value of the bending stress applied to the steel sheet 14 is determined by adjusting the pushing distance δ of the small diameter roll 34. be able to. The outer diameters of the paired small-diameter rolls 33 and 34 are 200 mm or more and 500 mm or less and smaller than the outer diameters of the first and second hot bridle rolls 29 and 30 (for example, 800 mm or more and 1200 mm or less). A bending stress larger than the bending stress applied to the steel sheet 14 when passing through the second hot bridle rolls 29 and 30 can be applied by pushing the small diameter roll 34. Here, the value of the bending stress applied to the steel plate 14 is increased as the amount of carbon contained in the steel plate 14 is increased, and as the amount of carbon contained in the steel plate 14 is increased, more dislocations are generated in the crystal grains. Good.

冷却装置26内を通過する鋼板14には、例えばハースロールで搬送される時に、10kg/mm程度の曲げ応力が付与される。このため、鋼板14へ10kg/mm未満の曲げ応力を付与しても効果はないが、図6に示すように、曲げ応力10kg/mmを超えて付与すると伸びが増加することが確認された。そのため、小径ロール34の押し込みで鋼板14に与える曲げ応力の下限値を10kg/mmとした。一方、冷間圧延された鋼板14を850℃で40秒間保持する焼鈍処理(均熱処理)を行った後、10℃/秒の冷却速度で400℃まで冷却して400℃で180秒保持し、その後20℃まで冷却した後に1.0%の調質圧延を行った後に引張り試験を行い、鋼板14の破断までの伸びを求めた。その結果を図6に示す。
図6に示すように、伸びは、曲げ応力が23kg/mmのときに極大値を示し、23kg/mmを超えると僅かに減少する傾向を示す。そして、伸びは曲げ応力が35kg/mmを超えると大きく減少する。なお、曲げ応力を大きく設定すると、加工曲率半径Rを小さくするために小径ロール34の押し込み距離δが大きくなり過ぎるので、曲げ応力の上限を35kg/mmとした。以上により、曲げ応力の値として望ましくは、23kg/mm以上、35kg/mm以下にするとよい。
For example, when the steel plate 14 passing through the cooling device 26 is conveyed by a hearth roll, a bending stress of about 10 kg / mm 2 is applied. For this reason, it is not effective to apply a bending stress of less than 10 kg / mm 2 to the steel sheet 14, but as shown in FIG. 6, it is confirmed that the elongation increases when the bending stress exceeds 10 kg / mm 2. It was. Therefore, the lower limit value of the bending stress applied to the steel plate 14 by pushing the small diameter roll 34 is set to 10 kg / mm 2 . On the other hand, after performing an annealing treatment (soaking) for 40 seconds at 850 ° C., the cold-rolled steel sheet 14 was cooled to 400 ° C. at a cooling rate of 10 ° C./second and held at 400 ° C. for 180 seconds, Then, after cooling to 20 ° C., 1.0% temper rolling was performed, and then a tensile test was performed to determine the elongation of the steel sheet 14 until breakage. The result is shown in FIG.
As shown in FIG. 6, the elongation shows a maximum value when the bending stress is 23 kg / mm 2 , and shows a tendency to slightly decrease when the bending stress exceeds 23 kg / mm 2 . The elongation is greatly reduced when the bending stress exceeds 35 kg / mm 2 . If the bending stress is set large, the pushing distance δ of the small-diameter roll 34 becomes too large in order to reduce the processing curvature radius R, so the upper limit of the bending stress is set to 35 kg / mm 2 . As described above, the value of the bending stress is desirably 23 kg / mm 2 or more and 35 kg / mm 2 or less.

次に過時効工程を説明する。冷却工程を通過し転位が結晶粒中に導入された鋼板14は、過時効装置27に導入されて350℃以上400℃以下の温度で60秒以上180秒以下の時間保持される(過時効工程)。このとき、結晶粒中の固溶している炭素は、転位の周辺に炭化物を生成しながら析出する。これによって、結晶粒中に固溶している炭素量が減少し、鋼板14は軟質化する。なお、鋼板14に含まれる炭素量が多い場合、鋼板14に付与する曲げ応力の値を大きくして多量の転位を結晶粒中に導入するので、結晶粒中に固溶している炭素量を効率的に減少させることができ、鋼板14のいっそうの軟質化が可能になる。
一方、鋼板14に含まれる炭素量が少ない場合は、結晶粒中に固溶している炭素量が少ないので、鋼板14に付与する曲げ応力の値を小さくして結晶粒中に導入される転位の個数を少なく、転位の発生による残留応力の増加を抑制しながら鋼板14を軟質化することが可能になる。
過時効処理が終了した鋼板14は、出側ルーパー20に送出される。過時効処理終了後、二次冷却装置28に搬送されて、更に冷却され(例えば、40〜60℃まで冷却して)もよい。(二次冷却工程)。
Next, the overaging process will be described. The steel plate 14 that has passed through the cooling step and has dislocations introduced into the crystal grains is introduced into the overaging device 27 and held at a temperature of 350 ° C. or higher and 400 ° C. or lower for a period of 60 seconds or longer and 180 seconds or shorter (overaging step). ). At this time, carbon that is dissolved in the crystal grains is precipitated while generating carbide around the dislocation. As a result, the amount of carbon dissolved in the crystal grains is reduced, and the steel plate 14 is softened. When the amount of carbon contained in the steel plate 14 is large, the value of the bending stress applied to the steel plate 14 is increased to introduce a large amount of dislocations into the crystal grains. Therefore, the amount of carbon dissolved in the crystal grains is reduced. It can reduce efficiently and the softening of the steel plate 14 is attained.
On the other hand, when the amount of carbon contained in the steel sheet 14 is small, the amount of carbon dissolved in the crystal grains is small, so that the dislocation introduced into the crystal grains by reducing the value of the bending stress applied to the steel sheet 14. Therefore, the steel plate 14 can be softened while suppressing an increase in residual stress due to the occurrence of dislocations.
The steel plate 14 that has been over-aged is delivered to the exit looper 20. After the overaging treatment is completed, it may be conveyed to the secondary cooling device 28 and further cooled (for example, cooled to 40 to 60 ° C.). (Secondary cooling step).

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、対となる小径ロールの両方をパスラインと直交する方向にパスラインを超えて押しこんで鋼板に曲げ応力を付与させてもよい。
また、前記の実施の形態において、鋼板に曲げ応力を付与する小径ロールは一箇所で一対(2本)であるが、1箇所で上下方向に3本もうけ、中央部に設けた小径ロールをパスラインPLと直交する方向にパスラインPLを超えて押し込み、後半に曲げ応力を付与することも可能である。
なお、通常の鋼板を製造する際に使用する連続焼鈍ラインの焼鈍設備の冷却装置には、鋼板の両面に当接して通板を支持するサポートロールを設けている場合もあるので、このサポートロールを、本発明の小径ロールとすることもできる。そうすることにより、本発明の冷延鋼板の製造方法に使用できる冷却装置を安価に製造できる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, both of the paired small-diameter rolls may be pushed over the pass line in a direction orthogonal to the pass line to apply bending stress to the steel sheet.
Further, in the above-described embodiment, there are a pair of (two) small-diameter rolls that apply bending stress to the steel sheet. However, three small-diameter rolls are provided in one place in the vertical direction, and the small-diameter roll provided at the center is passed. It is also possible to push in beyond the pass line PL in a direction orthogonal to the line PL and apply bending stress to the latter half.
In addition, since the cooling apparatus of the annealing equipment of the continuous annealing line used when manufacturing a normal steel plate may be provided with a support roll that abuts on both sides of the steel plate and supports the through plate, this support roll Can also be used as the small-diameter roll of the present invention. By doing so, the cooling device which can be used for the manufacturing method of the cold-rolled steel plate of this invention can be manufactured cheaply.

本発明は、鋼板の製造において利用することができる。特にスラブ連続鋳造法で製造されたスラブから冷延鋼板を製造する際に利用することができる連続焼鈍ラインの冷却装置に適用することができる。   The present invention can be used in the manufacture of steel sheets. In particular, the present invention can be applied to a cooling device for a continuous annealing line that can be used when a cold-rolled steel sheet is manufactured from a slab manufactured by a slab continuous casting method.

10:連続焼鈍ライン
11:入側設備
12:焼鈍設備
13:出側設備
14:鋼板
15:コイル
16:ペイオフリール
17:溶接機
18:電解清浄装置
19:入側ルーパー
20:出側ルーパー
21:コイル
22:巻き取り機
23:剪断機
24:加熱装置
25:均熱装置
26:冷却装置
27:過時効装置
28:二次冷却装置
29:第1のホットブライドルロール
30:第2のホットブライドルロール
31:第1のウィンドボックス
32:第2のウィンドボックス
33、34:小径ロール
35:曲げ応力付与手段
36:調質圧延機
10: Continuous annealing line 11: Incoming equipment 12: Annealing equipment 13: Outgoing equipment 14: Steel plate 15: Coil 16: Payoff reel 17: Welding machine 18: Electrolytic cleaning device 19: Incoming looper 20: Outgoing looper 21: Coil 22: Winding machine 23: Shearing machine 24: Heating device 25: Soaking device 26: Cooling device 27: Overaging device 28: Secondary cooling device 29: First hot bridle roll 30: Second hot bridle roll 31: First window box 32: Second window box 33, 34: Small diameter roll 35: Bending stress applying means 36: Temper rolling mill

Claims (5)

薄スラブ連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、冷間圧延、及び連続焼鈍し、炭素を0.5質量%以下、珪素を0.02質量%以上、マンガンを0.15質量%以上、カルシウムを0.001質量%以上含有する冷延鋼板を製造する方法において、前記連続焼鈍は、前記冷間圧延された鋼板を800℃以上850℃以下の温度で40秒以上60秒以下の時間保持する均熱工程と、前記均熱工程を通過した前記鋼板を10℃/秒以上の冷却速度で350℃以上400℃以下の温度まで下げながら、該鋼板に引張り応力及び曲げ応力を付与する冷却工程と、前記冷却工程を通過した前記鋼板を350℃以上400℃以下の温度で60秒以上180秒以下の時間保持する過時効工程とを有し、前記冷却工程で、前記鋼板に付与する前記引張り応力は0.5kg/mm以上かつ1.5kg/mm以下で、前記曲げ応力は10kg/mm以上かつ35kg/mm以下であることを特徴とする冷延鋼板の製造方法。The slab manufactured by the thin slab continuous casting method is hot-rolled, pickled, cold-rolled, and continuously annealed, carbon is 0.5 mass% or less, silicon is 0.02 mass% or more, and manganese is 0.0. In the method of producing a cold-rolled steel sheet containing 15% by mass or more and 0.001% by mass or more of calcium, the continuous annealing is performed by using the cold-rolled steel sheet at a temperature of 800 ° C. or higher and 850 ° C. or lower for 40 seconds or more 60 Soaking the steel sheet that has passed through the soaking process at a cooling rate of 10 ° C./second or more to a temperature of 350 ° C. to 400 ° C. A cooling step for imparting a heat treatment, and an overaging step for holding the steel sheet that has passed through the cooling step at a temperature of 350 ° C. or higher and 400 ° C. or lower for a time period of 60 seconds or longer and 180 seconds or shorter. The pull to be given to Ri stress 0.5 kg / mm 2 or more and at 1.5 kg / mm 2 or less, the bending stress method for producing a cold-rolled steel sheet, characterized in that 10 kg / mm 2 or more and is 35 kg / mm 2 or less. 前記曲げ応力は、前記冷却工程のパスラインを通過する前記鋼板の通板方向と直交する方向に軸方向を向けると共に軸心位置を該通板方向にずらせて該鋼板の厚み方向両側にそれぞれ配置された対となる小径ロールの両方又はいずれか一方を、前記パスラインと直交する方向に該パスラインを超えて押し込むことにより発生させることを特徴とする請求項1に記載の冷延鋼板の製造方法。   The bending stress is arranged on both sides in the thickness direction of the steel sheet with the axial direction oriented in the direction orthogonal to the plate passing direction of the steel sheet passing through the pass line of the cooling step and the axial center position shifted in the plate passing direction. The production of the cold-rolled steel sheet according to claim 1, wherein both or any one of the paired small-diameter rolls is generated by being pushed beyond the pass line in a direction orthogonal to the pass line. Method. 前記対となる小径ロールの外径は200mm以上かつ500mm以下であって、それぞれの軸心間距離は500mm以上かつ1000mm以下であって、前記パスラインを超えて押し込む該小径ロールの押し込み距離は10mm以上かつ100mm以下であることを特徴とする請求項2に記載の冷延鋼板の製造方法。   The outer diameter of the paired small-diameter rolls is 200 mm or more and 500 mm or less, the distance between the axes is 500 mm or more and 1000 mm or less, and the pushing distance of the small-diameter rolls that are pushed beyond the pass line is 10 mm. The method for producing a cold-rolled steel sheet according to claim 2, wherein the manufacturing method is 100 mm or less. 前記曲げ応力の値を、前記鋼板に含まれる炭素量に応じて変化させることを特徴とする請求項1〜3のいずれか1項に記載の冷延鋼板の製造方法。   The method for producing a cold-rolled steel sheet according to any one of claims 1 to 3, wherein the value of the bending stress is changed according to the amount of carbon contained in the steel sheet. 薄スラブ連続鋳造法で製造された鋳片を熱間圧延、酸洗浄、冷間圧延、及び連続焼鈍して冷延鋼板を製造する冷延鋼板の製造設備において、
前記連続焼鈍を行う連続焼鈍ラインは、前記冷間圧延された鋼板を均熱化する均熱装置と、均熱化された前記鋼板を冷却する冷却装置と、冷却された前記鋼板を過時効処理する過時効装置とを備え、前記冷却装置は、前記鋼板を冷却する冷却手段と、前記冷却手段の入側及び出側の両方又はいずれか一方に設けられ、前記鋼板の通板方向と直交する方向に軸方向を向けると共に軸心位置を該通板方向にずらせて該鋼板の厚み方向両側にそれぞれ配置されて、前記冷却装置のパスラインと直交する方向に該パスラインを超えて押し込まれて該鋼板に引張り応力を0.5kg/mm以上かつ1.5kg/mm以下で、前記曲げ応力を10kg/mm以上かつ35kg/mm以下を付与する対となる小径ロールを備えた曲げ応力付与手段とを有することを特徴とする冷延鋼板の製造設備。
In the cold rolled steel sheet manufacturing equipment for producing cold rolled steel sheet by hot rolling, acid cleaning, cold rolling, and continuous annealing of the slab manufactured by the thin slab continuous casting method,
The continuous annealing line for performing the continuous annealing includes a soaking device for soaking the cold-rolled steel plate, a cooling device for cooling the soaked steel plate, and an overaging treatment for the cooled steel plate. The cooling device is provided on a cooling means for cooling the steel plate and / or on either the entry side or the exit side of the cooling means, and is orthogonal to the sheet passing direction of the steel plate. The axial direction is directed to the direction and the axial center position is shifted in the plate passing direction, and the steel plate is disposed on both sides in the thickness direction of the steel plate and pushed beyond the pass line in a direction orthogonal to the pass line of the cooling device. Bending provided with a pair of small-diameter rolls that applies a tensile stress of 0.5 kg / mm 2 to 1.5 kg / mm 2 and a bending stress of 10 kg / mm 2 to 35 kg / mm 2 to the steel sheet Stress application means And a cold-rolled steel sheet manufacturing facility.
JP2010541651A 2009-04-22 2010-04-22 Cold rolled steel sheet manufacturing method and manufacturing equipment thereof Expired - Fee Related JP5479366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541651A JP5479366B2 (en) 2009-04-22 2010-04-22 Cold rolled steel sheet manufacturing method and manufacturing equipment thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009104295 2009-04-22
JP2009104295 2009-04-22
PCT/JP2010/057641 WO2010123152A1 (en) 2009-04-22 2010-04-22 Cold-rolled steel sheet production method and production facility
JP2010541651A JP5479366B2 (en) 2009-04-22 2010-04-22 Cold rolled steel sheet manufacturing method and manufacturing equipment thereof

Publications (2)

Publication Number Publication Date
JPWO2010123152A1 true JPWO2010123152A1 (en) 2012-10-25
JP5479366B2 JP5479366B2 (en) 2014-04-23

Family

ID=43011257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010541651A Expired - Fee Related JP5479366B2 (en) 2009-04-22 2010-04-22 Cold rolled steel sheet manufacturing method and manufacturing equipment thereof

Country Status (3)

Country Link
JP (1) JP5479366B2 (en)
CN (1) CN102137943B (en)
WO (1) WO2010123152A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014007530B1 (en) 2011-09-30 2018-12-11 Nippon Steel & Sumitomo Metal Corporation high strength hot dip galvanized steel sheet and process for producing it
DE102012110010B4 (en) * 2012-10-19 2016-09-01 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Apparatus and method for the continuous treatment of a metal strip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103025A (en) * 1986-10-21 1988-05-07 Kawasaki Steel Corp Manufacture of cold rolled steel sheet for deep drawing from cast thin strip
JPH02267229A (en) * 1989-04-07 1990-11-01 Nippon Steel Corp Production of cold rolled steel sheet excellent in workability from thin cast slab
BE1012934A3 (en) * 1999-10-13 2001-06-05 Ct Rech Metallurgiques Asbl Manufacturing method of steel strip for cold rolled deep.
JP2002275545A (en) * 2001-03-15 2002-09-25 Kawasaki Steel Corp Continuous annealing facility
DE102004041732A1 (en) * 2004-08-28 2006-03-02 Sms Demag Ag Method of straightening a metal strip and straightening machine

Also Published As

Publication number Publication date
JP5479366B2 (en) 2014-04-23
CN102137943A (en) 2011-07-27
CN102137943B (en) 2013-01-09
WO2010123152A1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
US6776857B2 (en) Method and device for manufacturing a hot rolled steel strip
JP2008196015A (en) Continuous annealing facility
JP2010207836A (en) Method and device for conveying coil
US20120028069A1 (en) Grain-oriented electrical steel sheet and producing method therefor
JP2013081990A (en) Hot-rolled coil cooling method, manufacturing method, and cooling apparatus
JP2015214732A (en) Production method of high-strength steel sheet
JP2019141888A (en) Cold rolling method
JP5479366B2 (en) Cold rolled steel sheet manufacturing method and manufacturing equipment thereof
KR101589913B1 (en) Heat treating method for advanced high strength steel hot coil and cold rolling method using the same
JP2006272441A (en) Hot rolling method and hot rolling line of steel strip
JP4946223B2 (en) Steel pipe manufacturing equipment line
KR20030023601A (en) Heat-treated modified cross-section steel wire and method and apparatus for its production
BR112021014167A2 (en) METHOD FOR MANUFACTURING STAINLESS STEEL STRIPS
JP6948565B2 (en) Manufacturing method of martensitic stainless steel strip
KR101246393B1 (en) Apparatus for fabricating tailored rolled blank and method for fabricating tailored rolled blank using the same
JP5668406B2 (en) Continuous annealing equipment for thin steel sheet
JP6350322B2 (en) Manufacturing method and processing facility for high-strength steel sheet
JP7192378B2 (en) Rolling equipment and steel plate rolling method
JP4038541B2 (en) Heat treatment method for steel wire
JP6886619B2 (en) Manufacturing method of hardened steel strip
JP2002361314A (en) Apparatus and method for continuous heat treatment of hot-rolled plate of grain oriented silicon steel
JP7302563B2 (en) CONTINUOUS ANNEALING METHOD FOR COLD-ROLLED STEEL
JP4221978B2 (en) Metal band manufacturing method for preventing waist breakage in metal band manufacturing equipment
US6682612B2 (en) Method of heat treatment of wire
KR100513594B1 (en) Method of preventing hot coil strip from bing scratched for producing cold rolled high strength steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5479366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees