JPWO2010067684A1 - Silsesquioxane compound having a polymerizable functional group - Google Patents

Silsesquioxane compound having a polymerizable functional group Download PDF

Info

Publication number
JPWO2010067684A1
JPWO2010067684A1 JP2010542063A JP2010542063A JPWO2010067684A1 JP WO2010067684 A1 JPWO2010067684 A1 JP WO2010067684A1 JP 2010542063 A JP2010542063 A JP 2010542063A JP 2010542063 A JP2010542063 A JP 2010542063A JP WO2010067684 A1 JPWO2010067684 A1 JP WO2010067684A1
Authority
JP
Japan
Prior art keywords
group
general formula
compound
represented
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010542063A
Other languages
Japanese (ja)
Inventor
彰典 永井
彰典 永井
芳明 千野
芳明 千野
小畑 政示
政示 小畑
磯崎 理
理 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Publication of JPWO2010067684A1 publication Critical patent/JPWO2010067684A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/148Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Silicon Polymers (AREA)

Abstract

本発明は、得られる塗膜の耐熱性、耐擦傷性及び耐候性に優れるシルセスキオキサン化合物を提供することを課題とする。本発明はさらに一般的な重合性不飽和化合物との相溶性に優れるのみならず、極性の高い重合性不飽和化合物との相溶性にも優れるシルセスキオキサン化合物を提供することを課題とする。本発明は、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つが(メタ)アクリロイルオキシ基を2つ以上有する有機基であることを特徴とするシルセスキオキサン化合物。さらに前記(メタ)アクリロイルオキシ基を2つ以上有する有機基が、(メタ)アクリロイルオキシ基を2つ以上有しかつウレタン結合及び/又はウレア結合を有する有機基であることを特徴とするシルセスキオキサン化合物を提供する。This invention makes it a subject to provide the silsesquioxane compound which is excellent in the heat resistance of the obtained coating film, scratch resistance, and a weather resistance. Another object of the present invention is to provide a silsesquioxane compound that is not only excellent in compatibility with a general polymerizable unsaturated compound but also excellent in compatibility with a highly polar polymerizable unsaturated compound. . The present invention is a silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom has two or more (meth) acryloyloxy groups A silsesquioxane compound, which is a group. Furthermore, the organic group having two or more (meth) acryloyloxy groups is an organic group having two or more (meth) acryloyloxy groups and having a urethane bond and / or a urea bond. Oxane compounds are provided.

Description

本発明は、重合性官能基を有するシルセスキオキサン化合物に関する。   The present invention relates to a silsesquioxane compound having a polymerizable functional group.

シルセスキオキサンは、梯子型、籠型及び三次元網目型(ランダム型)の構造をとる一連のネットワーク状ポリシロキサンの総称である。このシルセスキオキサンは、一般式SiOで示される完全な無機物質であるシリカとは異なり一般的な有機溶媒に可溶であることから、取り扱いが容易であり、成膜等の加工性、成形性等に優れるという特徴を有する。Silsesquioxane is a generic name for a series of network-like polysiloxanes having a ladder-type, cage-type, and three-dimensional network-type (random type) structure. Since this silsesquioxane is soluble in a general organic solvent unlike silica, which is a complete inorganic substance represented by the general formula SiO 2 , it is easy to handle, processability such as film formation, It is characterized by excellent moldability and the like.

一方、ラジカル重合性を有する不飽和化合物として、多官能アクリレート及び不飽和ポリエステル等が広く検討され、また工業的に利用されている。これらラジカル重合性の不飽和化合物は、その硬化物に耐擦傷性、耐汚染性等の特性を付与する目的で、種々の検討が加えられている。しかし、従来多用されているラジカル重合性の不飽和化合物にシルセスキオキサン等のオルガノポリシロキサン化合物を混合した組成物は、相溶性が悪いために均一な組成物になりにくいこと、得られた硬化物からオルガノポリシロキサン化合物が遊離すること等の問題点を有している。   On the other hand, polyfunctional acrylates and unsaturated polyesters are widely studied as unsaturated compounds having radical polymerizability and are industrially used. Various studies have been made on these radically polymerizable unsaturated compounds for the purpose of imparting characteristics such as scratch resistance and stain resistance to the cured product. However, a composition obtained by mixing an organopolysiloxane compound such as silsesquioxane with a radically polymerizable unsaturated compound that has been widely used in the past has been obtained because it is difficult to form a uniform composition due to poor compatibility. There are problems such as the release of the organopolysiloxane compound from the cured product.

特許文献1〜5には、アクリロイルオキシ基又はメタクリロイルオキシ基等のラジカル重合性の官能基を有するシルセスキオキサン及び該シルセスキオキサンを含有する紫外線硬化性組成物に関する発明が開示されている。しかしながら、これらシルセスキオキサンを含有する紫外線硬化性組成物から得られる硬化物は、耐擦傷性を十分に満足するものではない点、またシルセスキオキサンが、他の重合性不飽和基化合物との相溶性、特に極性の高い重合性不飽和有化合物との相溶性が十分ではない点で課題がある。   Patent Documents 1 to 5 disclose inventions relating to silsesquioxane having a radical polymerizable functional group such as acryloyloxy group or methacryloyloxy group and an ultraviolet curable composition containing the silsesquioxane. . However, the cured product obtained from the ultraviolet curable composition containing these silsesquioxanes does not sufficiently satisfy the scratch resistance, and the silsesquioxane is another polymerizable unsaturated group compound. There is a problem in that the compatibility with the polymerizable unsaturated compound having a high polarity is not sufficient.

特開平3−281616号公報JP-A-3-281616 特開平4−28722号公報Japanese Patent Laid-Open No. 4-28722 特開2002−167552号公報JP 2002-167552 A 特開2002−363414号公報JP 2002-363414 A 国際公開WO04/85501International Publication WO04 / 85501

本発明は上記事情に鑑みてなされたものである。本発明の第一の目的は、耐熱性に優れ、さらに耐擦傷性及び耐候性に十分に優れた塗膜を得ることができるシルセスキオキサン化合物を提供することにある。また本発明の第二の目的は、得られる塗膜が耐熱性、耐擦傷性及び耐候性に十分に優れることに加えて、一般的な重合性不飽和組成物との相溶性に優れるのみならず、極性の高い重合性不飽和化合物との相溶性にも優れるシルセスキオキサン化合物を提供することにある。   The present invention has been made in view of the above circumstances. The first object of the present invention is to provide a silsesquioxane compound that is excellent in heat resistance and that can obtain a coating film sufficiently excellent in scratch resistance and weather resistance. Further, the second object of the present invention is that the obtained coating film is not only excellent in heat resistance, scratch resistance and weather resistance, but also excellent in compatibility with a general polymerizable unsaturated composition. Another object of the present invention is to provide a silsesquioxane compound that is excellent in compatibility with a highly polar polymerizable unsaturated compound.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、ケイ素原子に直接に結合した有機基として(メタ)アクリロイルオキシ基を2つ以上有する特定の有機基をシルセスキオキサン化合物に導入することにより、上記課題を解決することができることを見出し、本発明を完成するに至った。   As a result of intensive studies in order to solve the above problems, the present inventors have determined that a specific organic group having two or more (meth) acryloyloxy groups as an organic group directly bonded to a silicon atom is silsesquioxane. It has been found that the above problems can be solved by introducing the compound into the compound, and the present invention has been completed.

すなわち本発明は、
1.ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つが(メタ)アクリロイルオキシ基を2つ以上有する有機基であることを特徴とするシルセスキオキサン化合物。
That is, the present invention
1. A silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom is an organic group having two or more (meth) acryloyloxy groups. Silsesquioxane compound characterized by the above.

2.前記(メタ)アクリロイルオキシ基を2つ以上有する有機基が、(メタ)アクリロイルオキシ基を2つ以上有しかつウレタン結合及び/又はウレア結合を有する有機基である1項記載のシルセスキオキサン化合物。   2. The silsesquioxane according to 1, wherein the organic group having two or more (meth) acryloyloxy groups is an organic group having two or more (meth) acryloyloxy groups and having a urethane bond and / or a urea bond. Compound.

3.前記(メタ)アクリロイルオキシ基を2つ以上有しかつウレタン結合及び/又はウレア結合を有する有機基が、下記一般式(I−1)で表される有機基である2項記載のシルセスキオキサン化合物、   3. The silsesquioxy according to 2, wherein the organic group having two or more (meth) acryloyloxy groups and having a urethane bond and / or a urea bond is an organic group represented by the following general formula (I-1): Sun compounds,

Figure 2010067684
Figure 2010067684

[式(I−1)中、Rは水素原子又はメチル基を示し、mは2〜5の整数を示し、Yはウレタン結合及び/又はウレア結合を有する(m+1)価の有機基を示す。
但し、m個のHC=(R)COO−基は、各々、Yである有機基を構成する2個以上の異なる炭素に結合しているものとする]。
[In Formula (I-1), R 1 represents a hydrogen atom or a methyl group, m represents an integer of 2 to 5, and Y represents a (m + 1) -valent organic group having a urethane bond and / or a urea bond. .
However, m H 2 C═ (R 1 ) COO— groups are each bonded to two or more different carbons constituting the organic group that is Y].

4.前記一般式(I−1)で表される有機基が、下記一般式(II−1)から一般式(V−1)で表される有機基のいずれか1種である3項記載のシルセスキオキサン化合物、   4). The silyl according to 3, wherein the organic group represented by the general formula (I-1) is any one of organic groups represented by the following general formula (II-1) to general formula (V-1): Sesquioxane compounds,

Figure 2010067684
Figure 2010067684

{式(II−1)中、Rは水素原子又はメチル基を示し、Rは炭素数1〜10の2価の炭化水素基を示し、Rは水素原子又はメチル基を示し、Rは炭素数1〜10の2価の炭化水素基又は下記一般式(VI){In Formula (II-1), R 2 represents a hydrogen atom or a methyl group, R 3 represents a divalent hydrocarbon group having 1 to 10 carbon atoms, R 4 represents a hydrogen atom or a methyl group, R 5 is a divalent hydrocarbon group having 1 to 10 carbon atoms or the following general formula (VI)

Figure 2010067684
Figure 2010067684

[式(VI)中、R17は炭素数2〜4の2価の炭化水素基を示し、R18はジイソシアネート残基を示す。]
で表される2価の基を示す。式(III−1)中、Rは水素原子又はメチル基を示し、Rは炭素数1〜10の2価の炭化水素基を示し、Rは水素原子又はメチル基を示し、Rは炭素数1〜10の2価の炭化水素基又は上記一般式(VI)で表される2価の基を示す。式(IV−1)中、R10はそれぞれ同一でも又は異なっていてもよい水素原子又はメチル基を示し、R11はそれぞれ同一でも又は異なっていてもよい炭素数1〜10の2価の炭化水素基又は上記一般式(VI)で表される2価の基を示し、R12は炭素数1〜10の2価の炭化水素基を示す。式(V−1)中、nは1〜3の整数を示し、R13はそれぞれ同一でも又は異なっていてもよい水素原子又はメチル基を示し、R14はそれぞれ同一でも又は異なっていてもよい炭素数1〜10の2価の炭化水素基又は上記一般式(VI)で表される2価の基を示し、R15は炭素数1〜10の(n+1)価の炭化水素基を示し、R16は炭素数1〜10の2価の炭化水素基を示す。
但し、nが2又は3の場合、HC=C(R13)COOR14NHCOO−基は、R15である炭化水素基を構成する2個以上の異なる炭素に結合しているものとする}。
[In the formula (VI), R 17 represents a divalent hydrocarbon group having 2 to 4 carbon atoms, and R 18 represents a diisocyanate residue. ]
The bivalent group represented by these is shown. In formula (III-1), R 6 represents a hydrogen atom or a methyl group, R 7 represents a divalent hydrocarbon group having 1 to 10 carbon atoms, R 8 represents a hydrogen atom or a methyl group, R 9 Represents a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (VI). In formula (IV-1), R 10 represents a hydrogen atom or a methyl group which may be the same or different, and R 11 is a divalent carbon atom having 1 to 10 carbon atoms which may be the same or different. A hydrogen group or a divalent group represented by the general formula (VI) is shown, and R 12 represents a C 1-10 divalent hydrocarbon group. In formula (V-1), n represents an integer of 1 to 3, R 13 represents a hydrogen atom or a methyl group which may be the same or different, and R 14 may be the same or different. A divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the above general formula (VI); R 15 represents an (n + 1) valent hydrocarbon group having 1 to 10 carbon atoms; R 16 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
However, when n is 2 or 3, the H 2 C═C (R 13 ) COOR 14 NHCOO— group is bonded to two or more different carbons constituting the hydrocarbon group of R 15. }.

5.重量平均分子量が1,000〜100,000である1〜4項のいずれか1項に記載のシルセスキオキサン化合物。   5. The silsesquioxane compound of any one of 1-4 whose weight average molecular weights are 1,000-100,000.

6.1〜5項のいずれか1項に記載のシルセスキオキサン化合物、及び光重合開始剤を含有する活性エネルギー線硬化性組成物。   An active energy ray-curable composition comprising the silsesquioxane compound according to any one of 6.1 to 5 and a photopolymerization initiator.

7.前記シルセスキオキサン化合物以外の重合性不飽和化合物をさらに含有する6項記載の活性エネルギー線硬化性組成物、に関する。   7). The active energy ray-curable composition according to 6, further comprising a polymerizable unsaturated compound other than the silsesquioxane compound.

本発明のシルセスキオキサン化合物によれば、(メタ)アクリロイルオキシ基を2つ以上有する有機基をシルセスキオキサン化合物に導入することにより、本発明のシルセスキオキサン化合物を用いた活性エネルギー線硬化性組成物から得られる塗膜の耐熱性、耐擦傷性及び耐候性を向上させることができる。また、本発明のシルセスキオキサン化合物のうち、(メタ)アクリロイルオキシ基を2つ以上有しかつウレタン結合及び/又はウレア結合を有する有機基を導入した請求項2記載のシルセスキオキサン化合物は、得られる塗膜が耐熱性、耐擦傷性及び耐候性に十分に優れることに加えて、一般的な重合性不飽和化合物との相溶性に優れるのみならず、極性の高い重合性不飽和化合物との相溶性にも優れる。   According to the silsesquioxane compound of the present invention, by introducing an organic group having two or more (meth) acryloyloxy groups into the silsesquioxane compound, an active energy using the silsesquioxane compound of the present invention. The heat resistance, scratch resistance and weather resistance of the coating film obtained from the linear curable composition can be improved. The silsesquioxane compound according to claim 2, wherein an organic group having two or more (meth) acryloyloxy groups and having a urethane bond and / or a urea bond is introduced among the silsesquioxane compounds of the present invention. In addition to being excellent in heat resistance, scratch resistance and weather resistance, the obtained coating film is not only excellent in compatibility with general polymerizable unsaturated compounds, but also highly polar polymerizable unsaturated Excellent compatibility with compounds.

本発明のシルセスキオキサン化合物は、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つが(メタ)アクリロイルオキシ基を2つ以上有する有機基であるシルセスキオキサン化合物(以下、単に「本発明のシルセスキオキサン化合物」と略すことがある。)である。前記本発明のシルセスキオキサン化合物の前記ケイ素原子に直接に結合した有機基の少なくとも1つが(メタ)アクリロイルオキシ基を2つ以上有する有機基であることにより、光硬化性に優れ、その結果、得られる塗膜は耐熱性に優れかつ耐擦傷性及び耐候性にも十分に優れる。   The silsesquioxane compound of the present invention is a silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom is a (meth) acryloyloxy group. It is a silsesquioxane compound (hereinafter, sometimes simply referred to as “silsesquioxane compound of the present invention”) which is an organic group having two or more. When at least one of the organic groups directly bonded to the silicon atom of the silsesquioxane compound of the present invention is an organic group having two or more (meth) acryloyloxy groups, the photocurability is excellent, and as a result The obtained coating film is excellent in heat resistance and sufficiently excellent in scratch resistance and weather resistance.

本発明のシルセスキオキサン化合物
本発明のシルセスキオキサン化合物は、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つが(メタ)アクリロイルオキシ基を2つ以上有する有機基であるシルセスキオキサン化合物である。
Silsesquioxane Compound of the Present Invention The silsesquioxane compound of the present invention is a silsesquioxane compound having an organic group directly bonded to a silicon atom, and at least of the organic groups directly bonded to the silicon atom. One is a silsesquioxane compound which is an organic group having two or more (meth) acryloyloxy groups.

ここで、本明細書において「シルセスキオキサン化合物」は、Si−OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物のみを意味するのではなく、Si−OH基が残存したラダー構造、不完全籠型構造又はランダム縮合体のシルセスキオキサン化合物をも含むことができる。   Here, in the present specification, the “silsesquioxane compound” does not mean only a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed, but Si—OH A ladder structure in which groups remain, an incomplete cage structure, or a random condensate silsesquioxane compound may also be included.

前記本発明のシルセスキオキサン化合物は、Si−OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは100質量%であることが液安定性の点から好ましい。   In the silsesquioxane compound of the present invention, the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolytically condensed is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably. Is preferably 100% by mass from the viewpoint of liquid stability.

本発明において、ケイ素原子に直接に結合した有機基のうち(メタ)アクリロイルオキシ基を2つ以上有する有機基の割合は特に限定されず、好ましくは、少なくとも15モル%以上であればよく、より好ましくは、50モル%以上であればよい。   In the present invention, the ratio of the organic group having two or more (meth) acryloyloxy groups among the organic groups directly bonded to the silicon atom is not particularly limited, and preferably at least 15 mol% or more. Preferably, it may be 50 mol% or more.

前記本発明のシルセスキオキサン化合物として、例えば、前記(メタ)アクリロイルオキシ基を2つ以上有する有機基が(メタ)アクリロイルオキシ基を2つ以上有しかつウレタン結合及び/又はウレア結合を有する有機基であるシルセスキオキサン化合物を挙げることができる。このシルセスキオキサン化合物から得られる塗膜は、耐熱性、耐擦傷性及び耐候性に十分に優れることに加えて、一般的な重合性不飽和化合物との相溶性に優れるのみならず、極性の高い重合性不飽和化合物との相溶性にも優れる。   As the silsesquioxane compound of the present invention, for example, the organic group having two or more (meth) acryloyloxy groups has two or more (meth) acryloyloxy groups and has a urethane bond and / or a urea bond. The silsesquioxane compound which is an organic group can be mentioned. The coating film obtained from this silsesquioxane compound not only has excellent heat resistance, scratch resistance and weather resistance, but also has excellent compatibility with general polymerizable unsaturated compounds, as well as polarity. Excellent compatibility with highly polymerizable unsaturated compounds.

前記(メタ)アクリロイルオキシ基を2つ以上有しかつウレタン結合及び/又はウレア結合を有する有機基としては、例えば、下記一般式(I−1)で表される有機基を挙げることができる。   Examples of the organic group having two or more (meth) acryloyloxy groups and having a urethane bond and / or a urea bond include organic groups represented by the following general formula (I-1).

Figure 2010067684
Figure 2010067684

[式(I−1)中、Rは水素原子又はメチル基を示し、mは2〜5の整数を示し、Yはウレタン結合及び/又はウレア結合を有する(m+1)価の有機基を示す。[In Formula (I-1), R 1 represents a hydrogen atom or a methyl group, m represents an integer of 2 to 5, and Y represents a (m + 1) -valent organic group having a urethane bond and / or a urea bond. .

但し、m個のHC=(R)COO−基は、各々、Yである有機基を構成する2個以上の異なる炭素に結合しているものとする]
尚、式(I−1)中、2〜5個のRは、同じでも異なっていてもよい。
However, m H 2 C═ (R 1 ) COO— groups are each bonded to two or more different carbons constituting the organic group that is Y.
In formula (I-1), 2 to 5 R 1 s may be the same or different.

前記一般式(I−1)で表される有機基としては、具体的には例えば、下記一般式(II−1)〜一般式(V−1)で表される有機基を挙げることができる。   Specific examples of the organic group represented by the general formula (I-1) include organic groups represented by the following general formula (II-1) to general formula (V-1). .

Figure 2010067684
Figure 2010067684

{式(II−1)中、Rは水素原子又はメチル基を示し、Rは炭素数1〜10の2価の炭化水素基を示し、Rは水素原子又はメチル基を示し、Rは炭素数1〜10の2価の炭化水素基又は下記一般式(VI){In Formula (II-1), R 2 represents a hydrogen atom or a methyl group, R 3 represents a divalent hydrocarbon group having 1 to 10 carbon atoms, R 4 represents a hydrogen atom or a methyl group, R 5 is a divalent hydrocarbon group having 1 to 10 carbon atoms or the following general formula (VI)

Figure 2010067684
Figure 2010067684

[式(VI)中、R17は炭素数2〜4の2価の炭化水素基を示し、R18はジイソシアネート残基を示す。]
で表される2価の基を示す。式(III−1)中、Rは水素原子又はメチル基を示し、Rは炭素数1〜10の2価の炭化水素基を示し、Rは水素原子又はメチル基を示し、Rは炭素数1〜10の2価の炭化水素基又は上記一般式(VI)で表される2価の基を示す。式(IV−1)中、R10はそれぞれ同一でも又は異なっていてもよい水素原子又はメチル基を示し、R11はそれぞれ同一でも又は異なっていてもよい炭素数1〜10の2価の炭化水素基又は上記一般式(VI)で表される2価の基を示し、R12は炭素数1〜10の2価の炭化水素基を示す。式(V−1)中、nは1〜3の整数を示し、R13はそれぞれ同一でも又は異なっていてもよい水素原子又はメチル基を示し、R14はそれぞれ同一でも又は異なっていてもよい炭素数1〜10の2価の炭化水素基又は上記一般式(VI)で表される2価の基を示し、R15は炭素数1〜10の(n+1)価の炭化水素基を示し、R16は炭素数1〜10の2価の炭化水素基を示す。}
[In the formula (VI), R 17 represents a divalent hydrocarbon group having 2 to 4 carbon atoms, and R 18 represents a diisocyanate residue. ]
The bivalent group represented by these is shown. In formula (III-1), R 6 represents a hydrogen atom or a methyl group, R 7 represents a divalent hydrocarbon group having 1 to 10 carbon atoms, R 8 represents a hydrogen atom or a methyl group, R 9 Represents a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (VI). In formula (IV-1), R 10 represents a hydrogen atom or a methyl group which may be the same or different, and R 11 is a divalent carbon atom having 1 to 10 carbon atoms which may be the same or different. A hydrogen group or a divalent group represented by the general formula (VI) is shown, and R 12 represents a C 1-10 divalent hydrocarbon group. In formula (V-1), n represents an integer of 1 to 3, R 13 represents a hydrogen atom or a methyl group which may be the same or different, and R 14 may be the same or different. A divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the above general formula (VI); R 15 represents an (n + 1) valent hydrocarbon group having 1 to 10 carbon atoms; R 16 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. }

前記一般式(II−1)中のRは、炭素数1〜10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2−プロピレン基、1,3−プロピレン基、1,2−ブチレン基、1,4−ブチレン基、ヘキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1〜6(より好ましくは炭素数1〜3)の2価の炭化水素基、特にエチレン基、1,3−プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。R 3 in the general formula (II-1) is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specifically, for example, alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group, decanylene group; Examples thereof include cycloalkylene groups such as cyclohexylene group; arylene groups such as phenylene group and xylylene group. Among them, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent heat resistance, scratch resistance, and polarity. It is preferable from the viewpoint of more excellent compatibility with a highly polymerizable unsaturated compound.

前記一般式(II−1)中のRは、炭素数1〜10の2価の炭化水素基又は前記一般式(VI)で表される2価の基であれば特に限定されるものではない。炭素数1〜10の2価の炭化水素基としては、具体的には例えば、メチレン基、エチレン基、1,2−プロピレン基、1,3−プロピレン基、1,2−ブチレン基、1,4−ブチレン基、ヘキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1〜6(より好ましくは炭素数1〜3)の2価の炭化水素基、特にエチレン基、1,3−プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。前記一般式(VI)中のR17としては、炭素数2〜4の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、エチレン基、1,2−プロピレン基、1,3−プロピレン基、1,2−ブチレン基、1,4−ブチレン基等が挙げられる。前記一般式(VI)中のR18は、ジイソシアネート残基を示す。ジイソシアネ−ト残基とは、ジイソシアネ−ト化合物から2つのイソシアネ−ト基(NCO)を除いた残りの部分である。ジイソシアネート化合物としては、具体的には例えば、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、1−クロロ−2,4−フェニレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、1,5−ナフタレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、3,3’−ジメチル−4,4’−ビフェニレンジイソシアネート等の芳香族ジイソシアネート化合物;エタンジイソシアネート、プロパンジイソシアネート、ブタンジイソシアネート、ペンタンジイソシアネート、ヘキサンジイソシアネート、ヘプタンジイソアネート、オクタンジイソアネート、ノナンジイソシアネート、デカンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族ジイソシアネート化合物等が挙げられる。なかでも、脂肪族ジイソシアネート化合物、特にイソホロンジイソシアネートが耐候性に優れる点から好ましい。また、ジイソシアネート化合物としては、耐擦傷性及び活性エネルギー線硬化性がより優れる点から分子量300以下のジイソシアネート化合物が好ましい。R 5 in the general formula (II-1) is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (VI). Absent. Specific examples of the divalent hydrocarbon group having 1 to 10 carbon atoms include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1, Examples thereof include alkylene groups such as 4-butylene group, hexylene group and decanylene group; cycloalkylene groups such as cyclohexylene group; arylene groups such as phenylene group and xylylene group. Among them, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent heat resistance, scratch resistance, and polarity. It is preferable from the viewpoint of more excellent compatibility with a highly polymerizable unsaturated compound. R 17 in the general formula (VI) is not particularly limited as long as it is a divalent hydrocarbon group having 2 to 4 carbon atoms. Specific examples include ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group and the like. R 18 in the general formula (VI) represents a diisocyanate residue. The diisocyanate residue is a remaining portion obtained by removing two isocyanate groups (NCO) from a diisocyanate compound. Specific examples of the diisocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1, Aromatic diisocyanate compounds such as 5-naphthalene diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate; ethane diisocyanate, propane diisocyanate, butane diisocyanate, pentane diisocyanate, hexane diisocyanate, Heptane diisocyanate, octane diisocyanate, nonane diisocyanate, decane diisocyanate, dicyclohexylmethane diisocyanate, iso Aliphatic diisocyanate compounds such Ron diisocyanate. Of these, aliphatic diisocyanate compounds, particularly isophorone diisocyanate, are preferred from the viewpoint of excellent weather resistance. Moreover, as a diisocyanate compound, the diisocyanate compound of molecular weight 300 or less is preferable from the point which is more excellent in abrasion resistance and active energy ray curability.

前記一般式(II−1)で表される有機基としては、耐熱性、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び活性エネルギー線硬化性がより優れる点から、Rが水素原子であり、Rがエチレン基若しくは1,3−プロピレン基であり、Rが水素原子であり、Rがエチレン基である有機基が好ましい。また、Rが水素原子であり、Rがエチレン基若しくは1,3−プロピレン基であり、Rが水素原子であり、Rが前記一般式(VI)で表される2価の基であってかつR17がエチレン基でありR18がイソホロンジイソシアネート残基である2価の基である有機基が好ましい。As the organic group represented by the general formula (II-1), R 2 is preferable because it is more excellent in heat resistance, scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability. Is an organic group in which is a hydrogen atom, R 3 is an ethylene group or a 1,3-propylene group, R 4 is a hydrogen atom, and R 5 is an ethylene group. R 2 is a hydrogen atom, R 3 is an ethylene group or a 1,3-propylene group, R 4 is a hydrogen atom, and R 5 is a divalent group represented by the general formula (VI). And an organic group in which R 17 is an ethylene group and R 18 is a divalent group which is an isophorone diisocyanate residue.

前記一般式(III−1)中のRは、炭素数1〜10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、前記一般式(II−1)中のRの説明において例示した2価の炭化水素基と同じ基が挙げられる。なかでも、炭素数1〜6(より好ましくは炭素数1〜3)の2価の炭化水素基、特にエチレン基、1,3−プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。R 7 in the general formula (III-1) is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples thereof include the same groups as the divalent hydrocarbon group exemplified in the description of R 3 in the general formula (II-1). Among them, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent heat resistance, scratch resistance, and polarity. It is preferable from the viewpoint of more excellent compatibility with a highly polymerizable unsaturated compound.

前記一般式(III−1)中のRは、炭素数1〜10の2価の炭化水素基又は前記一般式(VI)で表される2価の基であれば特に限定されるものではない。具体的には例えば、前記一般式(II−1)中のRの説明において例示した2価の基と同じ基が挙げられる。なかでも、炭素数1〜6(より好ましくは炭素数1〜3)の2価の炭化水素基、特にエチレン基、1,3−プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。R 9 in the general formula (III-1) is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (VI). Absent. Specific examples include the same groups as the divalent groups exemplified in the description of R 5 in the general formula (II-1). Among them, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent heat resistance, scratch resistance, and polarity. It is preferable from the viewpoint of more excellent compatibility with a highly polymerizable unsaturated compound.

前記一般式(III−1)で表される有機基としては、耐熱性、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び活性エネルギー線硬化性がより優れる点から、Rが水素原子であり、Rがエチレン基若しくは1,3−プロピレン基であり、Rが水素原子であり、Rがエチレン基である有機基が好ましい。また、Rが水素原子であり、Rがエチレン基若しくは1,3−プロピレン基であり、Rが水素原子であり、Rが前記一般式(VI)で表される2価の基であってかつR17がエチレン基でありR18がイソホロンジイソシアネート残基である2価の基である有機基が好ましい。The organic group represented by the general formula (III-1) includes R 6 from the viewpoints of heat resistance, scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability. Is an organic group in which is a hydrogen atom, R 7 is an ethylene group or a 1,3-propylene group, R 8 is a hydrogen atom, and R 9 is an ethylene group. In addition, R 6 is a hydrogen atom, R 7 is an ethylene group or a 1,3-propylene group, R 8 is a hydrogen atom, and R 9 is a divalent group represented by the general formula (VI). And an organic group in which R 17 is an ethylene group and R 18 is a divalent group which is an isophorone diisocyanate residue.

前記一般式(IV−1)中のR11は、炭素数1〜10の2価の炭化水素基又は前記一般式(VI)で表される2価の基であれば特に限定されるものではない。具体的には例えば、前記一般式(II−1)中のRの説明において例示した2価の基と同じ基が挙げられる。なかでも、炭素数1〜6(より好ましくは炭素数1〜3)の2価の炭化水素基、特にエチレン基、1,3−プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。R 11 in the general formula (IV-1) is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (VI). Absent. Specific examples include the same groups as the divalent groups exemplified in the description of R 5 in the general formula (II-1). Among them, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent heat resistance, scratch resistance, and polarity. It is preferable from the viewpoint of more excellent compatibility with a highly polymerizable unsaturated compound.

前記一般式(IV−1)中のR12は、炭素数1〜10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、前記一般式(II−1)中のRの説明において例示した2価の炭化水素基と同じ基が挙げられる。なかでも、炭素数1〜6(より好ましくは炭素数1〜3)の2価の炭化水素基、特にエチレン基、1,3−プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。R 12 in the general formula (IV-1) is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples thereof include the same groups as the divalent hydrocarbon group exemplified in the description of R 3 in the general formula (II-1). Among them, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent heat resistance, scratch resistance, and polarity. It is preferable from the viewpoint of more excellent compatibility with a highly polymerizable unsaturated compound.

前記一般式(IV−1)で表される有機基としては、耐熱性、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び活性エネルギー線硬化性がより優れる点から、R10が水素原子であり、R11がエチレン基であり、R12がエチレン基若しくは1,3−プロピレン基である有機基が好ましい。また、R10が水素原子であり、R11が前記一般式(VI)で表される2価の基であってかつR17がエチレン基でありR18がイソホロンジイソシアネート残基である2価の基であり、R12がエチレン基若しくは1,3−プロピレン基である有機基が好ましい。As the organic group represented by the general formula (IV-1), R 10 from the viewpoint that heat resistance, scratch resistance, compatibility with a highly polar polymerizable unsaturated compound and active energy ray curability are more excellent. Is an organic group in which is a hydrogen atom, R 11 is an ethylene group, and R 12 is an ethylene group or a 1,3-propylene group. Further, R 10 is a hydrogen atom, R 11 is a divalent group represented by the general formula (VI), R 17 is an ethylene group, and R 18 is an isophorone diisocyanate residue. An organic group in which R 12 is an ethylene group or a 1,3-propylene group.

前記一般式(V−1)中のR14は、炭素数1〜10の2価の炭化水素基又は前記一般式(VI)で表される2価の基であれば特に限定されるものではない。具体的には例えば、前記一般式(II−1)中のRの説明において例示した2価の基と同じ基が挙げられる。なかでも、炭素数1〜6(より好ましくは炭素数1〜3)の2価の炭化水素基、特にエチレン基、1,3−プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。R 14 in the general formula (V-1) is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (VI). Absent. Specific examples include the same groups as the divalent groups exemplified in the description of R 5 in the general formula (II-1). Among them, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent heat resistance, scratch resistance, and polarity. It is preferable from the viewpoint of more excellent compatibility with a highly polymerizable unsaturated compound.

前記一般式(V−1)中のR15は、炭素数1〜10の(n+1)価の炭化水素基であれば特に限定されるものではない。R15における(n+1)価の炭化水素基は、ヒドロキシモノカルボン酸残基である。ヒドロキシモノカルボン酸残基とは、ヒドロキシモノカルボン酸からヒドロキシル基とカルボキシル基を除いた残りの部分である。具体的には例えば、2価の炭化水素基としては、メチレン基、エチレン基、1,2−プロピレン基、1,3−プロピレン基、1,2−ブチレン基、1,4−ブチレン基、ヘキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。ヒドロキシモノカルボン酸としては、具体的には例えば、ヒドロキシピバリン酸、グリコール酸、乳酸、3−ヒドロキシプロピオン酸、2−ヒドロキシ酪酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシイソ酪酸、2−ヒドロキシ−2−メチルプロピオン酸、3−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、2−ヒドロキシシクロヘキサンカルボン酸、ジメチロールプロピオン酸、ジメチロールブタン酸、o−ヒドロキシ安息香酸、m−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸等が挙げられる。なかでも、耐擦傷性及び活性エネルギー線硬化性がより優れる点からジメチロールプロピオン酸、ジメチロールブタン酸が好ましい。R 15 in the general formula (V-1) is not particularly limited as long as it is an (n + 1) -valent hydrocarbon group having 1 to 10 carbon atoms. The (n + 1) -valent hydrocarbon group for R 15 is a hydroxymonocarboxylic acid residue. The hydroxy monocarboxylic acid residue is the remaining part obtained by removing the hydroxyl group and the carboxyl group from the hydroxy monocarboxylic acid. Specifically, for example, the divalent hydrocarbon group includes methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene. Group, alkylene group such as decanylene group; cycloalkylene group such as cyclohexylene group; arylene group such as phenylene group and xylylene group. Specific examples of the hydroxy monocarboxylic acid include hydroxypivalic acid, glycolic acid, lactic acid, 3-hydroxypropionic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxyisobutyric acid, 2 -Hydroxy-2-methylpropionic acid, 3-hydroxyvaleric acid, 5-hydroxyvaleric acid, 2-hydroxycyclohexanecarboxylic acid, dimethylolpropionic acid, dimethylolbutanoic acid, o-hydroxybenzoic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid etc. are mentioned. Of these, dimethylolpropionic acid and dimethylolbutanoic acid are preferred from the standpoint of better scratch resistance and active energy ray curability.

前記一般式(V−1)中のR16は、炭素数1〜10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、前記一般式(II−1)中のRの説明において例示した2価の炭化水素基と同じ基が挙げられる。なかでも、炭素数1〜6の2価の炭化水素基、特にエチレン基、1,3−プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。R 16 in the general formula (V-1) is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples thereof include the same groups as the divalent hydrocarbon group exemplified in the description of R 3 in the general formula (II-1). Among them, a divalent hydrocarbon group having 1 to 6 carbon atoms, particularly an ethylene group or a 1,3-propylene group, is compatible with heat-resistant, scratch-resistant and highly polar polymerizable unsaturated compounds. Is preferable from the viewpoint of more excellent.

前記一般式(V−1)で表される有機基としては、耐熱性、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び活性エネルギー線硬化性がより優れる点から、nが2であり、R13が水素原子であり、R14がエチレン基であり、R15がジメチロールプロピオン酸残基であり、R16がエチレン基若しくは1,3−プロピレン基である有機基が好ましい。また、nが2であり、R13が水素原子であり、R14が前記一般式(VI)で表される2価の基であってかつR17がエチレン基でありR18がイソホロンジイソシアネート残基である2価の基であり、R15がジメチロールプロピオン酸残基であり、R16がエチレン基若しくは1,3−プロピレン基である有機基が好ましい。As the organic group represented by the general formula (V-1), the heat resistance, the scratch resistance, the compatibility with the polymerizable unsaturated compound having a high polarity and the active energy ray curability are more excellent. 2, an organic group in which R 13 is a hydrogen atom, R 14 is an ethylene group, R 15 is a dimethylolpropionic acid residue, and R 16 is an ethylene group or a 1,3-propylene group is preferable. . N is 2, R 13 is a hydrogen atom, R 14 is a divalent group represented by the general formula (VI), R 17 is an ethylene group, and R 18 is an isophorone diisocyanate residue. An organic group which is a divalent group which is a group, R 15 is a dimethylolpropionic acid residue, and R 16 is an ethylene group or a 1,3-propylene group is preferable.

前記本発明のシルセスキオキサン化合物は、単一の組成の化合物であってもよく、又は組成の異なる化合物の混合物であってもよい。   The silsesquioxane compound of the present invention may be a compound having a single composition or a mixture of compounds having different compositions.

前記本発明のシルセスキオキサン化合物の重量平均分子量は、特に限定されるものではない。好ましくは重量平均分子量が1,000〜100,000、より好ましくは重量平均分子量が1,000〜10,000である。これら範囲は、本発明のシルセスキオキサン化合物から得られた塗膜の耐熱性、本発明のシルセスキオキサン化合物を含む活性エネルギー線硬化性組成物の粘度及び塗装性等の点で意義がある。   The weight average molecular weight of the silsesquioxane compound of the present invention is not particularly limited. The weight average molecular weight is preferably 1,000 to 100,000, more preferably 1,000 to 10,000. These ranges are significant in terms of the heat resistance of the coating film obtained from the silsesquioxane compound of the present invention, the viscosity and paintability of the active energy ray-curable composition containing the silsesquioxane compound of the present invention, and the like. is there.

本明細書において、重量平均分子量は、光散乱法により測定した重量平均分子量である。光散乱法による重量平均分子量の測定には、Zetasizer Nano Nano−ZS(Malvern Instruments Ltd社製)を用いた。測定に用いた試料は、プロピレングリコールモノメチルエーテルに本発明のシルセスキオキサン化合物を溶解させ、濃度を0.5〜5.0質量%に調整した濃度の異なる10種の試料である。この10種の試料の光散乱強度を測定することにより、重量平均分子量を求めた。   In this specification, the weight average molecular weight is a weight average molecular weight measured by a light scattering method. Zetasizer Nano Nano-ZS (Malvern Instruments Ltd.) was used for the measurement of the weight average molecular weight by the light-scattering method. The samples used for the measurement are 10 samples having different concentrations in which the silsesquioxane compound of the present invention is dissolved in propylene glycol monomethyl ether and the concentration is adjusted to 0.5 to 5.0 mass%. The weight average molecular weight was determined by measuring the light scattering intensity of these 10 samples.

本発明のシルセスキオキサン化合物の製造方法
前記本発明のシルセスキオキサン化合物の製造方法は、一般的なシルセスキオキサンの製造に従来用いられている製造方法を用いることができ、特に限定されるものではない。
加えて、例えば、以下の製造方法A、又は製造方法B等を用いて製造することもできる。
Production method of silsesquioxane compound of the present invention The production method of the silsesquioxane compound of the present invention can use a production method conventionally used for production of general silsesquioxane, and is particularly limited. Is not to be done.
In addition, for example, it can also be produced using the following production method A, production method B or the like.

製造方法A
製造方法Aとしては、(メタ)アクリロイルオキシ基を2つ以上有する有機基がケイ素原子に直接に結合した加水分解性シランを出発物質として用いた製造方法が挙げられる。
Manufacturing method A
Production method A includes a production method using a hydrolyzable silane in which an organic group having two or more (meth) acryloyloxy groups is directly bonded to a silicon atom as a starting material.

具体的には例えば、出発物質に下記一般式(VII)で表される加水分解性シラン及び必要に応じて下記一般式(VII)で表される加水分解性シラン以外の加水分解性シランを用いて、触媒の存在下で加水分解縮合を行って本発明のシルセスキオキサン化合物を製造する方法が挙げられる。   Specifically, for example, a hydrolyzable silane represented by the following general formula (VII) and, if necessary, a hydrolyzable silane other than the hydrolyzable silane represented by the following general formula (VII) are used as a starting material. And a method for producing the silsesquioxane compound of the present invention by hydrolytic condensation in the presence of a catalyst.

19SiX (VII)
前記一般式(VII)中のR19は、(メタ)アクリロイルオキシ基を2つ以上有する有機基を示す。Xは塩素又は炭素数1〜6のアルコキシ基であり、Xは同一でも又は異なっていてもよい。
R 19 SiX 3 (VII)
R 19 in the general formula (VII) represents an organic group having two or more (meth) acryloyloxy groups. X is chlorine or a C1-C6 alkoxy group, and X may be the same or different.

炭素数1〜6のアルコキシ基としては、炭素数1〜6(好ましくは炭素数1〜4)の直鎖状又は分岐鎖状のアルコキシ基を挙げることができる。より具体的には、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、tert−ブトキシ、sec−ブトキシ、n−ペンチルオキシ、1−エチルプロポキシ、イソペンチルオキシ、ネオペンチルオキシ、n−ヘキシルオキシ、1,2,2−トリメチルプロポキシ、3,3−ジメチルブトキシ、2−エチルブトキシ、イソヘキシルオキシ、3−メチ
ルペンチルオキシ基等が含まれる。
As a C1-C6 alkoxy group, a C1-C6 (preferably C1-C4) linear or branched alkoxy group can be mentioned. More specifically, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, 1-ethylpropoxy, isopentyloxy, neopentyloxy, n -Hexyloxy, 1,2,2-trimethylpropoxy, 3,3-dimethylbutoxy, 2-ethylbutoxy, isohexyloxy, 3-methylpentyloxy group and the like are included.

従って、Xの具体例としては、塩素、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。   Therefore, specific examples of X include chlorine, methoxy group, ethoxy group, propoxy group, butoxy group and the like.

前記一般式(VII)で表される加水分解性シラン以外の加水分解性シランとしては、前記一般式(VII)で表される加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン等が挙げられる。   As the hydrolyzable silane other than the hydrolyzable silane represented by the general formula (VII), a silsesquioxane compound is obtained by hydrolytic condensation together with the hydrolyzable silane represented by the general formula (VII). If it can manufacture, it will not specifically limit. Specific examples include alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.

前記一般式(VII)で表される加水分解性シランとしては、例えば、下記一般式(I−2)で表される加水分解性シランが挙げられる。   Examples of the hydrolyzable silane represented by the general formula (VII) include hydrolyzable silanes represented by the following general formula (I-2).

Figure 2010067684
Figure 2010067684

[一般式(I−2)中、R、m、Y及びXは、前記に同じ。Xは、同一でも又は異なっていてもよい。]。[In General Formula (I-2), R 1 , m, Y and X are the same as above. X may be the same or different. ].

前記一般式(I−2)で表される加水分解性シランとしては、具体的には例えば、下記一般式(II−2)で表される加水分解性シラン及び下記一般式(III−2)で表される加水分解性シランが挙げられる。   Specific examples of the hydrolyzable silane represented by the general formula (I-2) include a hydrolyzable silane represented by the following general formula (II-2) and the following general formula (III-2). The hydrolyzable silane represented by these is mentioned.

Figure 2010067684
Figure 2010067684

[一般式(II−2)中、R、R、R、R及びXは、前記に同じ。
一般式(III−2)中、R、R、R、R及びXは、前記に同じ。
Xは同一でも又は異なっていてもよい。]。
[In General Formula (II-2), R 2 , R 3 , R 4 , R 5 and X are the same as above.
In General Formula (III-2), R 6 , R 7 , R 8 , R 9 and X are the same as described above.
X may be the same or different. ].

前記一般式(II−2)で表される加水分解性シランは、例えば、下記一般式(II−3)で表される加水分解性シランと下記一般式(II−4)で表される化合物とを反応させ生成物を得た後、さらに該生成物に下記一般式(II−5)で表される化合物を反応させることにより得ることができる。   Examples of the hydrolyzable silane represented by the general formula (II-2) include a hydrolyzable silane represented by the following general formula (II-3) and a compound represented by the following general formula (II-4). Can be obtained by further reacting a compound represented by the following general formula (II-5) with the product.

Figure 2010067684
Figure 2010067684

[一般式(II−3)中、R及びXは、前記に同じ。
一般式(II−4)中、Rは、前記に同じ。
一般式(II−5)中、R及びRは、前記に同じ。]。
[In General Formula (II-3), R 3 and X are the same as defined above.
In General Formula (II-4), R 2 is the same as described above.
In general formula (II-5), R 4 and R 5 are the same as above. ].

前記一般式(II−3)で表される加水分解性シランとしては、具体的には例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン等が挙げられる。   Specific examples of the hydrolyzable silane represented by the general formula (II-3) include 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane.

前記一般式(II−4)で表される化合物は、具体的には、アクリル酸及びメタクリル酸である。   Specifically, the compound represented by the general formula (II-4) is acrylic acid and methacrylic acid.

前記一般式(II−5)で表される化合物としては、具体的には例えば、イソシアネートメチル(メタ)アクリレート、2−イソシアネートエチル(メタ)アクリレート、3−イソシアネートプロピル(メタ)アクリレート、イソシアネートオクチル(メタ)アクリレート等が挙げられる。また、ヒドロキシル基含有(メタ)アクリレートとジイソシアネート化合物との付加物が挙げられ、具体的には例えば、2−ヒドロキシエチル(メタ)アクリレートとイソホロンジイシソシアネートとの付加物が挙げられる。   Specific examples of the compound represented by the general formula (II-5) include isocyanate methyl (meth) acrylate, 2-isocyanatoethyl (meth) acrylate, 3-isocyanatepropyl (meth) acrylate, and isocyanate octyl ( And (meth) acrylate. Moreover, the adduct of a hydroxyl group containing (meth) acrylate and a diisocyanate compound is mentioned, Specifically, the adduct of 2-hydroxyethyl (meth) acrylate and isophorone diisocyanate is mentioned, for example.

前記一般式(III−2)で表される加水分解性シランは、例えば、下記一般式(III−3)で表される加水分解性シランと下記一般式(III−4)で表される化合物とを反応させ生成物を得た後、さらに該生成物に下記一般式(III−5)で表される化合物を反応させることにより得ることができる。   Examples of the hydrolyzable silane represented by the general formula (III-2) include a hydrolyzable silane represented by the following general formula (III-3) and a compound represented by the following general formula (III-4). Can be obtained by further reacting the product with a compound represented by the following general formula (III-5).

Figure 2010067684
Figure 2010067684

[一般式(III−3)中、R及びXは、前記に同じ。
一般式(III−4)中、Rは、前記に同じ。
一般式(III−5)中、R及びRは、前記に同じ。]。
[In General Formula (III-3), R 7 and X are the same as defined above.
In general formula (III-4), R 6 is the same as described above.
In General Formula (III-5), R 8 and R 9 are the same as described above. ].

前記一般式(III−3)で表される加水分解性シランとしては、具体的には例えば、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられる。   Specific examples of the hydrolyzable silane represented by the general formula (III-3) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and 2- (3,4-epoxycyclohexyl). Examples thereof include ethyltriethoxysilane.

前記一般式(III−4)で表される化合物は、具体的には、アクリル酸、メタクリル酸である。   Specifically, the compound represented by the general formula (III-4) is acrylic acid or methacrylic acid.

前記一般式(III−5)で表される化合物としては、具体的には例えば、前記一般式(II−5)で表される化合物の説明において具体的に示した化合物と同じ化合物が挙げられる。   Specific examples of the compound represented by the general formula (III-5) include the same compounds as those specifically shown in the description of the compound represented by the general formula (II-5). .

前記一般式(II−3)で表される加水分解性シランと前記一般式(II−4)で表される化合物との反応、及び、前記一般式(III−3)で表される加水分解性シランと前記一般式(III−4)で表される化合物との反応は、カルボキシル基とエポキシ基とを反応させる常法に従って行うことができる。   Reaction of the hydrolyzable silane represented by the general formula (II-3) with the compound represented by the general formula (II-4), and the hydrolysis represented by the general formula (III-3) The reaction of the functional silane and the compound represented by the general formula (III-4) can be performed according to a conventional method in which a carboxyl group and an epoxy group are reacted.

上記反応における前記一般式(II−3)で表される加水分解性シランと前記一般式(II−4)で表される化合物との使用割合は、通常前者1モルに対し後者を0.80〜1.20モル程度、好ましくは0.90〜1.10モル程度とすればよい。   In the above reaction, the proportion of the hydrolyzable silane represented by the general formula (II-3) and the compound represented by the general formula (II-4) is usually 0.80 with respect to 1 mole of the former. About 1.20 mol, preferably about 0.90 to 1.10 mol.

上記反応における前記一般式(III−3)で表される加水分解性シランと前記一般式(III−4)で表される化合物との使用割合は、通常前者1モルに対し後者を0.80〜1.20モル程度、好ましくは0.90〜1.10モル程度とすればよい。   In the above reaction, the proportion of the hydrolyzable silane represented by the general formula (III-3) and the compound represented by the general formula (III-4) is usually 0.80 with respect to 1 mole of the former. About 1.20 mol, preferably about 0.90 to 1.10 mol.

反応温度は、例えば、0〜200℃、好ましくは20〜200℃、更に好ましくは、20〜120℃である。当該反応は、通常、10〜24時間程度で終了する。   The reaction temperature is, for example, 0 to 200 ° C, preferably 20 to 200 ° C, more preferably 20 to 120 ° C. The reaction is usually completed in about 10 to 24 hours.

前記反応では適宜触媒を使用しても良い。触媒としては、具体的には例えば、トリエチルアミン、ベンジルジメチルアミン等の3級アミン;テトラメチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩;ジエチルアミン等の酢酸塩、ギ酸塩等の2級アミン塩;水酸化ナトリウム、水酸化カルシウム等のアルカリ金属、アルカリ土類金属の水酸化物;酢酸ナトリウム、酢酸カルシウム等のアルカリ金属、アルカリ土類金属塩;イミダゾ−ル類;ジアザビシクロウンデセン等の環状含窒素化合物、トリフェニルフォスフィン、トリブチルフォスフィンなどのリン化合物等が挙げられる。触媒の使用量は、特に限定されるものではないが、反応原料に対して、0.01〜5質量%である。   In the reaction, a catalyst may be appropriately used. Specific examples of the catalyst include tertiary amines such as triethylamine and benzyldimethylamine; quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium bromide and tetrabutylammonium bromide; acetates and formates such as diethylamine Secondary amine salts of sodium hydroxide, alkali metal hydroxides such as sodium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal salts such as sodium acetate and calcium acetate, imidazoles, diaza Examples thereof include cyclic nitrogen-containing compounds such as bicycloundecene and phosphorus compounds such as triphenylphosphine and tributylphosphine. Although the usage-amount of a catalyst is not specifically limited, It is 0.01-5 mass% with respect to the reaction raw material.

前記反応では適宜溶媒を使用しても良い。溶媒は特に限定されるものではない。具体的には例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート等のグリコールエーテル類;トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。   In the reaction, a solvent may be appropriately used. The solvent is not particularly limited. Specifically, for example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, methyl propionate, etc. Esters; ethers such as tetrahydrofuran, dioxane, dimethoxyethane; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate; toluene, xylene, etc. Aromatic hydrocarbons, aliphatic hydrocarbons and the like.

前記一般式(II−3)で表される加水分解性シランと前記一般式(II−4)で表される化合物とを反応させて得た生成物(以下、単に生成物(II−3−4)と示すこともある)と前記一般式(II−5)で表される化合物との反応、及び、前記一般式(III−3)で表される加水分解性シランと前記一般式(III−4)で表される化合物とを反応させて得た生成物(以下、単に生成物(III−3−4)と示すこともある)と前記一般式(III−5)で表される化合物との反応は、水酸基とイソシアネート基とを反応させる常法に従って行うことができる。   A product obtained by reacting the hydrolyzable silane represented by the general formula (II-3) with the compound represented by the general formula (II-4) (hereinafter simply referred to as a product (II-3- 4) and the compound represented by the general formula (II-5), and the hydrolyzable silane represented by the general formula (III-3) and the general formula (III). -4) product obtained by reacting with the compound (hereinafter sometimes simply referred to as product (III-3-4)) and the compound represented by the general formula (III-5) The reaction with can be carried out according to a conventional method in which a hydroxyl group and an isocyanate group are reacted.

上記反応における前記生成物(II−3−4)と前記一般式(II−5)で表される化合物との使用割合は、通常前者1モルに対し後者を0.90〜1.10モル程度、好ましくは0.95〜1.05モル程度とすればよい。   The use ratio of the product (II-3-4) and the compound represented by the general formula (II-5) in the above reaction is usually about 0.90 to 1.10 mol of the latter with respect to 1 mol of the former. Preferably, it may be about 0.95 to 1.05 mol.

上記反応における前記生成物(III−3−4)と前記一般式(III−5)で表される化合物との使用割合は、通常前者1モルに対し後者を0.90〜1.10モル程度、好ましくは0.95〜1.05モル程度とすればよい。   The use ratio of the product (III-3-4) and the compound represented by the general formula (III-5) in the above reaction is usually about 0.90 to 1.10 mol of the latter with respect to 1 mol of the former. Preferably, it may be about 0.95 to 1.05 mol.

反応温度は、例えば、0〜200℃、好ましくは20〜200℃、更に好ましくは、20〜120℃である。また、この反応は圧力によらず実施できるが、0.02〜0.2MPa、特に0.08〜0.15MPaの圧力範囲が好ましい。当該反応は、通常、2〜10時間程度で終了する。 The reaction temperature is, for example, 0 to 200 ° C, preferably 20 to 200 ° C, more preferably 20 to 120 ° C. Although this reaction can be carried out regardless of pressure, a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferable. The reaction is usually completed in about 2 to 10 hours.

前記反応では適宜触媒を使用しても良い。触媒としては、トリエチルアミン等の第三級アミン、ジブチル錫ジラウレート等の有機金属化合物等が挙げられる。   In the reaction, a catalyst may be appropriately used. Examples of the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.

前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート等のグリコールエーテル類;トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。   In the reaction, a solvent may be appropriately used. Specific examples of the solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, and methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, propion Esters such as methyl acid; Ethers such as tetrahydrofuran, dioxane and dimethoxyethane; Glycol ethers such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; Aromatic hydrocarbons such as toluene and xylene; Aliphatic hydrocarbons And the like.

また、前記一般式(I−2)で表される加水分解性シランの他の具体的な例としては、下記一般式(IV−2)で表される加水分解性シランが挙げられる。   Another specific example of the hydrolyzable silane represented by the general formula (I-2) is a hydrolyzable silane represented by the following general formula (IV-2).

Figure 2010067684
Figure 2010067684

[一般式(IV−2)中、R10、R11、R12及びXは、前記に同じ。
Xは同一でも又は異なっていてもよい。]。
[In General Formula (IV-2), R 10 , R 11 , R 12 and X are the same as above.
X may be the same or different. ].

前記一般式(IV−2)で表される加水分解性シランは、例えば、下記一般式(IV−3)で表される加水分解性シランと下記一般式(IV−4)で表される化合物とを反応させることにより得ることができる。   Examples of the hydrolyzable silane represented by the general formula (IV-2) include a hydrolyzable silane represented by the following general formula (IV-3) and a compound represented by the following general formula (IV-4). It can obtain by making it react.

Figure 2010067684
Figure 2010067684

前記一般式(IV−3)中のR12、Xは、前記一般式(IV−2)中のR12、Xと同じである。前記一般式(IV−4)中のR10、R11は、前記一般式(IV−2)中のR10、R11と同じである。 R 12, X in the general formula (IV-3) is the same as R 12, X in the general formula (IV-2). R 10, R 11 in the general formula (IV-4) is the same as R 10, R 11 in the general formula (IV-2).

前記一般式(IV−3)で表される加水分解性シランとしては、具体的には例えば、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン等が挙げられる。   Specific examples of the hydrolyzable silane represented by the general formula (IV-3) include N- (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl). -3-aminopropyltriethoxysilane and the like.

前記一般式(IV−4)で表される化合物としては、具体的には例えば、前記一般式(II−5)で表される化合物の説明において具体的に示した化合物と同じ化合物が挙げられる。   Specific examples of the compound represented by the general formula (IV-4) include the same compounds as those specifically shown in the description of the compound represented by the general formula (II-5). .

前記一般式(IV−3)で表される加水分解性シランと前記一般式(IV−4)で表される化合物との反応は、通常、前記一般式(IV−3)で表される加水分解性シラン1モルに対して、前記一般式(IV−4)で表される化合物を2モル以上用いて行われる。   The reaction between the hydrolyzable silane represented by the general formula (IV-3) and the compound represented by the general formula (IV-4) is usually performed by the hydrolysis represented by the general formula (IV-3). It is carried out using 2 mol or more of the compound represented by the general formula (IV-4) with respect to 1 mol of the decomposable silane.

前記一般式(IV−3)で表される加水分解性シランと前記一般式(IV−4)で表される化合物との反応は、アミノ基とイソシアネート基とを反応させる常法に従って行うことができる。   The reaction between the hydrolyzable silane represented by the general formula (IV-3) and the compound represented by the general formula (IV-4) may be performed according to a conventional method in which an amino group and an isocyanate group are reacted. it can.

反応温度は、例えば、−78℃〜200℃、好ましくは−78℃〜100℃、更に好ましくは、−10℃〜40℃である。また、この反応は圧力によらず実施できるが、0.02〜0.2MPa、特に0.08〜0.15MPaの圧力範囲が好ましい。当該反応は非常に速いため、通常、滴下が終了するとすぐに反応は終了する。   The reaction temperature is, for example, -78 ° C to 200 ° C, preferably -78 ° C to 100 ° C, more preferably -10 ° C to 40 ° C. Although this reaction can be carried out regardless of pressure, a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferable. Since the reaction is very fast, the reaction usually ends as soon as the dropping is completed.

前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート等のグリコールエーテル類;メタノール、エタノール、プロパノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。   In the reaction, a solvent may be appropriately used. Specific examples of the solvent include esters such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ethers such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Examples include glycol ethers such as 3-methoxybutyl acetate; alcohols such as methanol, ethanol, and propanol; aromatic hydrocarbons such as toluene and xylene; and aliphatic hydrocarbons.

また、前記一般式(I−2)で表される加水分解性シランの他の具体的な例としては、下記一般式(V−2)で表される加水分解性シランが挙げられる。   Another specific example of the hydrolyzable silane represented by the general formula (I-2) is a hydrolyzable silane represented by the following general formula (V-2).

Figure 2010067684
Figure 2010067684

[一般式(V−2)中のn、R13、R14、R15、R16及びXは、前記に同じ。
Xは同一でも又は異なっていてもよい。]。
[N, R 13 , R 14 , R 15 , R 16 and X in the general formula (V-2) are the same as described above.
X may be the same or different. ].

前記一般式(V−2)で表される加水分解性シランは、例えば、下記一般式(V−3)で表される加水分解性シランと下記一般式(V−4)で表される化合物とを反応させ生成物を得た後、さらに該生成物に下記一般式(V−5)で表される化合物を反応させることにより得ることができる。   Examples of the hydrolyzable silane represented by the general formula (V-2) include a hydrolyzable silane represented by the following general formula (V-3) and a compound represented by the following general formula (V-4). Can be obtained by further reacting the product with a compound represented by the following general formula (V-5).

Figure 2010067684
Figure 2010067684

前記一般式(V−3)中のR16及びXは、前記一般式(V−2)中のR16及びXと同じである。前記一般式(V−4)中のn及びR15は、前記一般式(V−2)中のn及びR15と同じである。前記一般式(V−5)中のR13及びR14は、前記一般式(V−2)中のR13及びR14と同じである。 R 16 and X in the general formula (V-3) is the same as R 16 and X in the general formula (V-2). N and R 15 in the general formula (V-4) is the same as n and R 15 in the general formula (V-2). R 13 and R 14 in the general formula (V-5) is the same as R 13 and R 14 in the general formula (V-2).

前記一般式(V−3)で表される加水分解性シランとしては、具体的には例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン等が挙げられる。   Specific examples of the hydrolyzable silane represented by the general formula (V-3) include 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane.

前記一般式(V−4)で表される化合物としては、具体的には例えば、前記一般式(V−1)中のR15の説明において具体的に示したヒドロキシモノカルボン酸と同じヒドロキシモノカルボン酸が挙げられる。Specific examples of the compound represented by the general formula (V-4) include the same hydroxymonocarboxylic acid as the hydroxymonocarboxylic acid specifically shown in the description of R 15 in the general formula (V-1). Carboxylic acid is mentioned.

前記一般式(V−5)で表される化合物としては、具体的には例えば、前記一般式(II−5)で表される化合物の説明において具体的に示した化合物と同じ化合物が挙げられる。   Specific examples of the compound represented by the general formula (V-5) include the same compounds as those specifically shown in the description of the compound represented by the general formula (II-5). .

前記一般式(V−3)で表される加水分解性シランと前記一般式(V−4)で表される化合物との反応は、カルボキシル基とエポキシ基とを反応させる常法に従って行うことができる。原料化合物の使用割合、反応温度、触媒、溶媒、反応時間等の反応条件としては、前述した前記一般式(II−3)で表される加水分解性シランと前記一般式(II−4)で表される化合物との反応において例示した反応条件と同じ反応条件が挙げられる。   The reaction between the hydrolyzable silane represented by the general formula (V-3) and the compound represented by the general formula (V-4) may be performed according to a conventional method in which a carboxyl group and an epoxy group are reacted. it can. The reaction conditions such as the use ratio of the raw material compound, reaction temperature, catalyst, solvent, reaction time, etc. are the hydrolyzable silane represented by the general formula (II-3) and the general formula (II-4) described above. The same reaction conditions as the reaction conditions illustrated in the reaction with the represented compound can be mentioned.

前記一般式(V−3)で表される加水分解性シランと前記一般式(V−4)で表される化合物とを反応させて得た生成物と前記一般式(V−5)で表される化合物との反応は、通常、前記一般式(V−3)で表される加水分解性シランと前記一般式(V−4)で表される化合物とを反応させて得た生成物1モルに対して、前記一般式(V−5)で表される化合物を2モル以上用いて行われる。   The product obtained by reacting the hydrolyzable silane represented by the general formula (V-3) with the compound represented by the general formula (V-4) and the general formula (V-5) The product 1 obtained by reacting the hydrolyzable silane represented by the general formula (V-3) and the compound represented by the general formula (V-4) is usually It is carried out using 2 mol or more of the compound represented by the general formula (V-5) with respect to mol.

前記一般式(V−3)で表される加水分解性シランと前記一般式(V−4)で表される化合物とを反応させて得た生成物と前記一般式(V−5)で表される化合物との反応は、水酸基とイソシアネート基とを反応させる常法に従って行うことができる。反応温度、触媒、溶媒、反応時間等の反応条件としては、前述した前記一般式(II−3)で表される加水分解性シランと前記一般式(II−4)で表される化合物とを反応させて得た生成物と前記一般式(II−5)で表される化合物との反応において例示した反応条件と同じ反応条件が挙げられる。   The product obtained by reacting the hydrolyzable silane represented by the general formula (V-3) with the compound represented by the general formula (V-4) and the general formula (V-5) The reaction with the compound can be carried out according to a conventional method in which a hydroxyl group and an isocyanate group are reacted. As reaction conditions such as reaction temperature, catalyst, solvent, and reaction time, the hydrolyzable silane represented by the general formula (II-3) and the compound represented by the general formula (II-4) described above are used. The same reaction conditions as the reaction conditions illustrated in the reaction of the product obtained by the reaction and the compound represented by the general formula (II-5) can be mentioned.

製造方法Aを用いて前記本発明のシルセスキオキサン化合物を得るためには、具体的には、
前記一般式(VII)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
前記一般式(VII)で表される加水分解性シラン及び前記一般式(VII)で表される加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、ことが挙げられる。
In order to obtain the silsesquioxane compound of the present invention using production method A, specifically,
Hydrolyzing and condensing in the presence of a catalyst using the hydrolyzable silane represented by the general formula (VII) as a starting material, or
The hydrolyzable silane represented by the general formula (VII) and the hydrolyzable silane other than the hydrolyzable silane represented by the general formula (VII) are used as a starting material for hydrolysis condensation in the presence of a catalyst. It can be mentioned.

前記触媒としては、塩基性触媒が好適に用いられる。塩基性触媒としては、具体的には例えば、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩、テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩などが挙げられる。   As the catalyst, a basic catalyst is preferably used. Specific examples of the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethyl Examples thereof include ammonium hydroxide salts such as ammonium hydroxide and ammonium fluoride salts such as tetrabutylammonium fluoride.

前記触媒の使用量は特に限定されるものではないが、多すぎるとコスト高、除去が困難等の問題があり、一方、少なすぎると反応が遅くなってしまう。そのため、触媒の使用量は、好ましくは加水分解性シラン1モルに対して0.0001〜1.0モル、より好ましくは0.0005〜0.1モルの範囲である。   The amount of the catalyst used is not particularly limited. However, if the amount is too large, there are problems such as high cost and difficulty in removal. On the other hand, if the amount is too small, the reaction becomes slow. Therefore, the usage-amount of a catalyst becomes like this. Preferably it is 0.0001-1.0 mol with respect to 1 mol of hydrolysable silane, More preferably, it is the range of 0.0005-0.1 mol.

加水分解縮合する場合は水を使用する。加水分解性シランと水との量比は、特に限定されるものでない。水の使用量は、加水分解性シラン1モルに対し、好ましくは水0.1〜100モル、さらに好ましくは0.5〜3モルの割合である。水の量が少なすぎると、反応が遅くなり、目的とする本発明のシルセスキオキサン化合物の収率が低くなるおそれがあり、水の量が多すぎると高分子量化し、所望とする構造の生成物が減少するおそれがある。また、使用する水は塩基性触媒を水溶液として用いる場合はその水で代用してもよいし、別途水を加えてもよい。   Use water for hydrolysis and condensation. The quantity ratio of hydrolyzable silane and water is not particularly limited. The amount of water used is preferably 0.1 to 100 mol of water, more preferably 0.5 to 3 mol, per mol of hydrolyzable silane. If the amount of water is too small, the reaction slows down, and the yield of the desired silsesquioxane compound of the present invention may be lowered. If the amount of water is too large, the molecular weight increases and the desired structure is obtained. Product may be reduced. Moreover, when using a basic catalyst as aqueous solution, the water to be used may be substituted with the water, and water may be added separately.

前記加水分解縮合において、有機溶媒は使用してもよく、又は使用しなくてもよい。有機溶媒を用いることは、ゲル化を防止する点及び製造時の粘度を調節できる点から好ましい。有機溶媒としては、極性有機溶媒、非極性有機溶媒を単独又は混合物として用いることができる。   In the hydrolysis condensation, an organic solvent may be used or may not be used. It is preferable to use an organic solvent from the viewpoint of preventing gelation and adjusting the viscosity during production. As the organic solvent, polar organic solvents and nonpolar organic solvents can be used alone or as a mixture.

極性有機溶媒としてはメタノール、エタノール、2−プロパノール等の低級アルコール類、アセトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン等のエーテル類が用いられるが、特にアセトン及びテトラヒドロフランは沸点が低く系が均一になり反応性が向上することから好ましい。非極性有機溶媒としては、炭化水素系溶媒が好ましく、トルエン、キシレン等の水よりも沸点が高い有機溶媒が好ましく、特にトルエン等の水と共沸する有機溶媒は系内から水を効率よく除去できるため好ましい。特に、極性有機溶媒と非極性有機溶媒とを混合することで、前述したそれぞれの利点が得られるため混合溶媒として用いることが好ましい。   As the polar organic solvent, lower alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone and methyl isobutyl ketone, and ethers such as tetrahydrofuran are used. Particularly, acetone and tetrahydrofuran have a low boiling point and the system is uniform. It is preferable because the reactivity is improved. As the nonpolar organic solvent, a hydrocarbon solvent is preferable, and an organic solvent having a boiling point higher than that of water such as toluene and xylene is preferable. In particular, an organic solvent azeotropic with water such as toluene efficiently removes water from the system. This is preferable because it is possible. In particular, mixing a polar organic solvent and a nonpolar organic solvent provides the above-described advantages, so that it is preferably used as a mixed solvent.

加水分解縮合時の反応温度としては0〜200℃、好ましくは10〜200℃、更に好ましくは、10〜120℃である。また、この反応は圧力によらず実施できるが、0.02〜0.2MPa、特に0.08〜0.15MPaの圧力範囲が好ましい。   The reaction temperature during hydrolysis condensation is 0 to 200 ° C, preferably 10 to 200 ° C, and more preferably 10 to 120 ° C. Although this reaction can be carried out regardless of pressure, a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferable.

加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(VII)中のX]の大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。   In the hydrolysis-condensation reaction, the condensation reaction proceeds with hydrolysis, and most of the hydrolyzable group of the hydrolyzable silane [specifically, for example, X in the general formula (VII)], preferably 100% It is preferable from the viewpoint of liquid stability that it is hydrolyzed to a hydroxyl group (OH group), and further, most of the OH group, preferably 80% or more, more preferably 90% or more, particularly preferably 100%, is condensed.

加水分解縮合後の混合液からは、反応で生成したアルコール、溶媒、及び触媒を公知の手法で除去してもよい。なお、得られた生成物は、その目的に応じて、触媒を洗浄、カラム分離、固体吸着剤等の各種の精製法によって除去し、更に精製してもよい。好ましくは、効率の点から水洗により触媒を除去することである。   The alcohol, solvent, and catalyst generated by the reaction may be removed from the mixed solution after hydrolysis condensation by a known method. The obtained product may be further purified by removing the catalyst by various purification methods such as washing, column separation, and solid adsorbent according to the purpose. Preferably, the catalyst is removed by washing with water from the viewpoint of efficiency.

以上の製造方法により本発明のシルセスキオキサン化合物が製造される。   The silsesquioxane compound of this invention is manufactured by the above manufacturing method.

ここで、前記加水分解縮合において100%縮合しない場合には、本製造方法により得られる生成物には、Si−OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si−OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、本製造方法により得られる本発明のシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。なお、本製造方法により得られる本発明のシルセスキオキサン化合物は、Si−OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上であることが液安定性の点から好ましい。   Here, when 100% condensation does not occur in the hydrolysis condensation, the product obtained by the present production method includes a silsesquioxane compound having a structure in which all of the Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed. In addition, a silsesquioxane compound of the present invention obtained by the present production method, which may contain a ladder structure, an incomplete cage structure and / or a random condensate silsesquioxane compound in which a Si-OH group remains, may be included. The sun compound may contain a ladder structure, an incomplete cage structure and / or a random condensate. In the silsesquioxane compound of the present invention obtained by the present production method, the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is preferably 80% by mass or more, more preferably. It is preferably 90% by mass or more from the viewpoint of liquid stability.

製造方法B
製造方法Bとしては、エポキシ基又はアミノ基を有する加水分解性シランを用いて、対応するエポキシ基又はアミノ基を有するシルセスキオキサン化合物を製造する工程、該工程により得られたシルセスキオキサン化合物のエポキシ基又はアミノ基を利用して、前記シルセスキオキサン化合物に(メタ)アクリロイルオキシ基を有する化合物を反応させるなどすることにより、ケイ素原子に直接に結合した有機基であり、かつ(メタ)アクリロイルオキシ基を2つ以上有する有機基を有するシルセスキオキサン化合物を得る製造方法が挙げられる。
Manufacturing method B
Production method B includes a step of producing a silsesquioxane compound having a corresponding epoxy group or amino group using a hydrolyzable silane having an epoxy group or an amino group, and a silsesquioxane obtained by the step An organic group bonded directly to a silicon atom by reacting a compound having a (meth) acryloyloxy group with the silsesquioxane compound using an epoxy group or an amino group of the compound, and ( A production method for obtaining a silsesquioxane compound having an organic group having two or more (meth) acryloyloxy groups may be mentioned.

製造方法B1
製造方法Bの一態様(製造方法B1)としては、エポキシ基を有する加水分解性シランを用いて、エポキシ基を有するシルセスキオキサン化合物を製造する第B1−1工程、該第B1−1工程により得られたシルセスキオキサン化合物のエポキシ基に、(メタ)アクリロイルオキシ基及びカルボキシル基を有する化合物のカルボキシル基を反応させ、2級水酸基及び1つの(メタ)アクリロイル基を有するシルセスキオキサン化合物を製造する第B1−2工程、該第B1−2工程により得られたシルセスキオキサン化合物の2級水酸基に、(メタ)アクリロイルオキシ基及びイソシアネート基を有する化合物の該イソシアネート基を反応させる第B1−3工程を含む製造方法が挙げられる。
Manufacturing method B1
As one mode of manufacturing method B (manufacturing method B1), Step B1-1 for manufacturing a silsesquioxane compound having an epoxy group using hydrolyzable silane having an epoxy group, Step B1-1 The silsesquioxane having a secondary hydroxyl group and one (meth) acryloyl group by reacting the carboxyl group of the compound having a (meth) acryloyloxy group and a carboxyl group with the epoxy group of the silsesquioxane compound obtained by Step B1-2 for producing the compound, and the secondary hydroxyl group of the silsesquioxane compound obtained in Step B1-2 is reacted with the isocyanate group of the compound having a (meth) acryloyloxy group and an isocyanate group. A manufacturing method including the B1-3 process is mentioned.

第B1−1工程
前記第B1−1工程に用いるエポキシ基を有する加水分解性シランとしては、具体的には例えば、下記一般式(II−6)で表される加水分解性シラン、及び下記一般式(III−6)で表される加水分解性シランが挙げられる。
Step B1-1 Specific examples of the hydrolyzable silane having an epoxy group used in Step B1-1 include the hydrolyzable silane represented by the following general formula (II-6) and the following general formula. A hydrolyzable silane represented by the formula (III-6) is mentioned.

Figure 2010067684
Figure 2010067684

前記一般式(II−6)中のRは、前記一般式(II−1)中のRと同じである。
Xは塩素又は炭素数1〜6のアルコキシ基であり、Xは同一でも又は異なっていてもよい。Xとしては、具体的には、塩素、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。
R 3 in the general formula (II-6) is the same as R 3 in the general formula (II-1).
X is chlorine or a C1-C6 alkoxy group, and X may be the same or different. Specific examples of X include chlorine, methoxy group, ethoxy group, propoxy group, butoxy group and the like.

前記一般式(III−6)中のRは、前記一般式(III−1)中のRと同じである。Xは塩素又は炭素数1〜6のアルコキシ基であり、Xは同一でも又は異なっていてもよい。Xとしては、具体的には、塩素、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。 R 7 in the general formula (III-6) is the same as R 7 in the general formula (III-1). X is chlorine or a C1-C6 alkoxy group, and X may be the same or different. Specific examples of X include chlorine, methoxy group, ethoxy group, propoxy group, butoxy group and the like.

前記第B1−1工程においてエポキシ基を有するシルセスキオキサン化合物を得るためには、具体的には、
前記一般式(II−6)で表される加水分解性シラン及び/又は前記一般式(III−6)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
前記一般式(II−6)で表される加水分解性シラン及び/又は前記一般式(III−6)で表される加水分解性シラン、並びにエポキシ基を有する加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合すること
が挙げられる。
In order to obtain a silsesquioxane compound having an epoxy group in the step B1-1, specifically,
The hydrolyzable silane represented by the general formula (II-6) and / or the hydrolyzable silane represented by the general formula (III-6) is used as a starting material for hydrolysis condensation in the presence of a catalyst. Or
Hydrolyzable other than hydrolyzable silane represented by general formula (II-6) and / or hydrolyzable silane represented by general formula (III-6) and hydrolyzable silane having an epoxy group Examples include hydrolytic condensation using silane as a starting material in the presence of a catalyst.

前記エポキシ基を有する加水分解性シラン以外の加水分解性シランとしては、前記エポキシ基を有する加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン等が挙げられる。   The hydrolyzable silane other than the hydrolyzable silane having an epoxy group is particularly limited as long as it can produce a silsesquioxane compound by hydrolytic condensation together with the hydrolyzable silane having the epoxy group. It is not a thing. Specific examples include alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.

前記触媒としては、塩基性触媒が好適に用いられる。塩基性触媒としては、具体的には例えば、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩、テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩などが挙げられる。   As the catalyst, a basic catalyst is preferably used. Specific examples of the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethyl Examples thereof include ammonium hydroxide salts such as ammonium hydroxide and ammonium fluoride salts such as tetrabutylammonium fluoride.

前記触媒の使用量は特に限定されるものではないが、多すぎるとコスト高、除去が困難等の問題があり、一方、少なすぎると反応が遅くなってしまう。そのため、触媒の使用量は、好ましくは加水分解性シラン1モルに対して0.0001〜1.0モル、より好ましくは0.0005〜0.1モルの範囲である。   The amount of the catalyst used is not particularly limited. However, if the amount is too large, there are problems such as high cost and difficulty in removal. On the other hand, if the amount is too small, the reaction becomes slow. Therefore, the usage-amount of a catalyst becomes like this. Preferably it is 0.0001-1.0 mol with respect to 1 mol of hydrolysable silane, More preferably, it is the range of 0.0005-0.1 mol.

加水分解縮合する場合は水を使用する。加水分解性シランと水との量比は、特に限定されるものでない。水の使用量は、加水分解性シラン1モルに対し、好ましくは水0.1〜100モル、さらに好ましくは1.5〜3モルの割合である。水の量が少なすぎると、反応が遅くなり、目的とするシルセスキオキサンの収率が低くなるおそれがあり、水の量が多すぎると高分子量化し、所望とする構造の生成物が減少するおそれがある。また、使用する水は塩基性触媒を水溶液として用いる場合はその水で代用してもよいし、別途水を加えてもよい。   Use water for hydrolysis and condensation. The quantity ratio of hydrolyzable silane and water is not particularly limited. The amount of water used is preferably 0.1 to 100 moles of water, more preferably 1.5 to 3 moles per mole of hydrolyzable silane. If the amount of water is too small, the reaction may be slowed and the yield of the desired silsesquioxane may be reduced. If the amount of water is too large, the molecular weight will increase and the product of the desired structure will decrease. There is a risk. Moreover, when using a basic catalyst as aqueous solution, the water to be used may be substituted with the water, and water may be added separately.

前記加水分解縮合において、有機溶媒は使用してもよく、又は使用しなくてもよい。有機溶媒を用いることは、ゲル化を防止する点及び製造時の粘度を調節できる点から好ましい。有機溶媒としては、極性有機溶媒、非極性有機溶媒を単独又は混合物として用いることができる。   In the hydrolysis condensation, an organic solvent may be used or may not be used. It is preferable to use an organic solvent from the viewpoint of preventing gelation and adjusting the viscosity during production. As the organic solvent, polar organic solvents and nonpolar organic solvents can be used alone or as a mixture.

極性有機溶媒としてはメタノール、エタノール、2−プロパノール等の低級アルコール類、アセトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン等のエーテル類が用いられるが、特にアセトン及びテトラヒドロフランは沸点が低く系が均一になり反応性が向上することから好ましい。非極性有機溶媒としては、炭化水素系溶媒が好ましく、トルエン、キシレン等の水よりも沸点が高い有機溶媒が好ましく、特にトルエン等の水と共沸する有機溶媒は系内から水を効率よく除去できるため好ましい。特に、極性有機溶媒と非極性有機溶媒とを混合することで、前述したそれぞれの利点が得られるため混合溶媒として用いることが好ましい。   As the polar organic solvent, lower alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone and methyl isobutyl ketone, and ethers such as tetrahydrofuran are used. Particularly, acetone and tetrahydrofuran have a low boiling point and the system is uniform. It is preferable because the reactivity is improved. As the nonpolar organic solvent, a hydrocarbon solvent is preferable, and an organic solvent having a boiling point higher than that of water such as toluene and xylene is preferable. In particular, an organic solvent azeotropic with water such as toluene efficiently removes water from the system. This is preferable because it is possible. In particular, mixing a polar organic solvent and a nonpolar organic solvent provides the above-described advantages, so that it is preferably used as a mixed solvent.

加水分解縮合時の反応温度としては0〜200℃、好ましくは10〜200℃、更に好ましくは、10〜120℃である。   The reaction temperature during hydrolysis condensation is 0 to 200 ° C, preferably 10 to 200 ° C, and more preferably 10 to 120 ° C.

加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(II−6)中のX、及び前記一般式(III−6)中のX]のXの大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。   In the hydrolysis-condensation reaction, the condensation reaction proceeds with hydrolysis, and the hydrolyzable group of the hydrolyzable silane [specifically, for example, X in the general formula (II-6) and the general formula (III- 6), most of X of X], preferably 100%, is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly Preferably, 100% is condensed from the viewpoint of liquid stability.

第B1−2工程
前記第B1−2工程では、具体的には例えば、前記第B1−1工程により得られるケイ素原子に直接に結合した有機基として下記一般式(II−7)で表される有機基を有するシルセスキオキサン化合物に、下記一般式(II−8)で表される化合物を反応させ、ケイ素原子に直接に結合した有機基として下記一般式(II−9)で表される有機基を有するシルセスキオキサン化合物を製造する。
Step B1-2 In Step B1-2, specifically, for example, an organic group bonded directly to the silicon atom obtained in Step B1-1 is represented by the following general formula (II-7). A compound represented by the following general formula (II-8) is reacted with a silsesquioxane compound having an organic group, and the organic group bonded directly to the silicon atom is represented by the following general formula (II-9). A silsesquioxane compound having an organic group is produced.

Figure 2010067684
Figure 2010067684

前記一般式(II−7)中のRは、前記一般式(II−1)中のRと同じである。
前記一般式(II−8)中のRは、前記一般式(II−1)中のRと同じである。前記一般式(II−9)中のRは、前記一般式(II−8)中のRと同じであり、Rは、前記一般式(II−7)中のRと同じである。
R 3 in the general formula (II-7) is the same as R 3 in the general formula (II-1).
R 2 in the general formula (II-8) is the same as R 2 in the general formula (II-1). R 2 in the general formula (II-9) is the same as R 2 in the general formula (II-8), R 3 is the same as R 3 in the general formula (II-7) is there.

また他の具体例としては例えば、前記第B1−1工程により得られるケイ素原子に直接に結合した有機基として下記一般式(III−7)で表される有機基を有するシルセスキオキサン化合物に、下記一般式(III−8)で表される化合物を反応させ、ケイ素原子に直接に結合した有機基として下記一般式(III−9)で表される有機基を有するシルセスキオキサン化合物を製造する。   As another specific example, for example, a silsesquioxane compound having an organic group represented by the following general formula (III-7) as an organic group directly bonded to the silicon atom obtained in the step B1-1. A silsesquioxane compound having an organic group represented by the following general formula (III-9) as an organic group directly bonded to a silicon atom by reacting a compound represented by the following general formula (III-8) To manufacture.

Figure 2010067684
Figure 2010067684

[一般式(III−7)中、Rは、前記に同じ。
一般式(III−8)中、Rは、前記に同じ。
一般式(III−9)中、R及びRは、前記に同じ。]。
[In General Formula (III-7), R 7 is the same as defined above.
In General Formula (III-8), R 6 is the same as described above.
In General Formula (III-9), R 6 and R 7 are the same as described above. ].

前記ケイ素原子に直接に結合した有機基として前記一般式(II−9)で表される有機基を有するシルセスキオキサン化合物、及び前記ケイ素原子に直接に結合した有機基として前記一般式(III−9)で表される有機基を有するシルセスキオキサン化合物を製造する際の反応は、エポキシ基とカルボキシル基とを反応させる常法に従って行うことができる。   A silsesquioxane compound having an organic group represented by the general formula (II-9) as an organic group directly bonded to the silicon atom, and the general formula (III) as an organic group directly bonded to the silicon atom. The reaction for producing the silsesquioxane compound having an organic group represented by -9) can be carried out according to a conventional method in which an epoxy group and a carboxyl group are reacted.

上記反応における前記一般式(II−7)で表される有機基を有するシルセスキオキサン化合物と前記一般式(II−8)で表される化合物との使用割合は、シルセスキオキサン化合物が有する一般式(II−7)で表される有機基1モルに対し一般式(II−8)で表される化合物を、通常、0.80〜1.20モル程度、好ましくは0.90〜1.10モル程度とすればよい。   The ratio of the silsesquioxane compound having an organic group represented by the general formula (II-7) and the compound represented by the general formula (II-8) in the above reaction is such that the silsesquioxane compound is used. The compound represented by the general formula (II-8) is usually about 0.80 to 1.20 mol, preferably 0.90 to 1 mol of the organic group represented by the general formula (II-7). What is necessary is just to be about 1.10 mol.

上記反応における前記一般式(III−7)で表される有機基を有するシルセスキオキサン化合物と前記一般式(III−8)で表される化合物との使用割合は、シルセスキオキサン化合物が有する一般式(III−7)で表される有機基1モルに対し一般式(III−8)で表される化合物を、通常、0.80〜1.20モル程度、好ましくは0.80〜1.20モル程度とすればよい。   The ratio of the silsesquioxane compound having an organic group represented by the general formula (III-7) and the compound represented by the general formula (III-8) in the above reaction is such that the silsesquioxane compound is used. The amount of the compound represented by the general formula (III-8) is usually about 0.80 to 1.20 mol, preferably 0.80 to 1 mol of the organic group represented by the general formula (III-7). What is necessary is just to be about 1.20 mol.

これらの反応は、通常、10〜24時間程度で終了する。反応温度は、例えば、0〜200℃、好ましくは20〜200℃、更に好ましくは、20〜120℃である。   These reactions are usually completed in about 10 to 24 hours. The reaction temperature is, for example, 0 to 200 ° C, preferably 20 to 200 ° C, more preferably 20 to 120 ° C.

前記反応では適宜触媒を使用しても良い。触媒としては、具体的には例えば、トリエチルアミン、ベンジルジメチルアミン等の3級アミン;テトラメチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩;ジエチルアミン等の酢酸塩、ギ酸塩等の2級アミン塩;水酸化ナトリウム、水酸化カルシウム等のアルカリ金属、アルカリ土類金属の水酸化物;酢酸ナトリウム、酢酸カルシウム等のアルカリ金属、アルカリ土類金属塩;イミダゾ−ル類;ジアザビシクロウンデセン等の環状含窒素化合物、トリフェニルフォスフィン、トリブチルフォスフィンなどのリン化合物等が挙げられる。触媒の使用量は、特に限定されるものではないが、反応原料に対して、0.01〜5質量%である。   In the reaction, a catalyst may be appropriately used. Specific examples of the catalyst include tertiary amines such as triethylamine and benzyldimethylamine; quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium bromide and tetrabutylammonium bromide; acetates and formates such as diethylamine Secondary amine salts of sodium hydroxide, alkali metal hydroxides such as sodium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal salts such as sodium acetate and calcium acetate, imidazoles, diaza Examples thereof include cyclic nitrogen-containing compounds such as bicycloundecene and phosphorus compounds such as triphenylphosphine and tributylphosphine. Although the usage-amount of a catalyst is not specifically limited, It is 0.01-5 mass% with respect to the reaction raw material.

前記反応では適宜溶媒を使用しても良い。溶媒は特に限定されるものではない。具体的には例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート等のグリコールエーテル類;トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。   In the reaction, a solvent may be appropriately used. The solvent is not particularly limited. Specifically, for example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, methyl propionate, etc. Esters; ethers such as tetrahydrofuran, dioxane, dimethoxyethane; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate; toluene, xylene, etc. Aromatic hydrocarbons, aliphatic hydrocarbons and the like.

第B1−3工程
前記第B1−3工程では、具体的には例えば、前記第B1−2工程により得られるケイ素原子に直接に結合した有機基として前記一般式(II−9)で表される有機基を有するシルセスキオキサン化合物の2級水酸基に、下記一般式(II−10)で表される化合物のイソシアネート基を反応させる。
Step B1-3 Step In the step B1-3, specifically, for example, the organic group directly bonded to the silicon atom obtained by the step B1-2 is represented by the general formula (II-9). The isocyanate group of the compound represented by the following general formula (II-10) is reacted with the secondary hydroxyl group of the silsesquioxane compound having an organic group.

Figure 2010067684
Figure 2010067684

[一般式(II−10)中、R及びRは、前記に同じ。]。[In General Formula (II-10), R 4 and R 5 are the same as above. ].

この反応を行うことにより、ケイ素原子に直接に結合した有機基として前記一般式(II−1)で表される有機基を有するシルセスキオキサン化合物を得ることができる。   By carrying out this reaction, a silsesquioxane compound having an organic group represented by the general formula (II-1) as an organic group directly bonded to a silicon atom can be obtained.

また他の具体例としては例えば、前記第B1−2工程により得られるケイ素原子に直接に結合した有機基として前記一般式(III−9)で表される有機基を有するシルセスキオキサン化合物の2級水酸基に、下記一般式(III−10)で表される化合物のイソシアネート基を反応させる。   As another specific example, for example, a silsesquioxane compound having an organic group represented by the general formula (III-9) as an organic group directly bonded to a silicon atom obtained by the step B1-2 is used. The secondary hydroxyl group is reacted with an isocyanate group of a compound represented by the following general formula (III-10).

Figure 2010067684
Figure 2010067684

[一般式(III−10)中のR及びRは、前記に同じ。]。[R 8 and R 9 in General Formula (III-10) are the same as above. ].

この反応を行うことにより、ケイ素原子に直接に結合した有機基として前記一般式(III−1)で表される有機基を有するシルセスキオキサン化合物を得ることができる。   By performing this reaction, a silsesquioxane compound having an organic group represented by the general formula (III-1) as an organic group directly bonded to a silicon atom can be obtained.

前記反応は、水酸基とイソシアネート基を反応させる常法に従って行うことができる。
反応温度としては例えば、0〜200℃、好ましくは10〜200℃、更に好ましくは、10〜120℃である。当該反応は、通常、2〜10時間程度で終了する。
The said reaction can be performed in accordance with the conventional method with which a hydroxyl group and an isocyanate group are made to react.
As reaction temperature, it is 0-200 degreeC, Preferably it is 10-200 degreeC, More preferably, it is 10-120 degreeC. The reaction is usually completed in about 2 to 10 hours.

上記反応における前記一般式(II−9)で表される有機基を有するシルセスキオキサン化合物と前記一般式(II−10)で表される化合物との使用割合は、シルセスキオキサン化合物が有する一般式(II−9)で表される有機基1モルに対し一般式(II−10)で表される化合物を、通常、0.90〜1.10モル程度、好ましくは0.95〜1.05モル程度とすればよい。   The ratio of the silsesquioxane compound having an organic group represented by the general formula (II-9) and the compound represented by the general formula (II-10) in the above reaction is such that the silsesquioxane compound is used. The compound represented by the general formula (II-10) is usually about 0.90 to 1.10 mol, preferably 0.95 to 1 mol of the organic group represented by the general formula (II-9). What is necessary is just to be about 1.05 mol.

上記反応における前記一般式(III−9)で表される有機基を有するシルセスキオキサン化合物と前記一般式(III−10)で表される化合物との使用割合は、シルセスキオキサン化合物が有する一般式(III−9)で表される有機基1モルに対し一般式(III−10)で表される化合物を、通常、0.90〜1.10モル程度、好ましくは0.95〜1.05モル程度とすればよい。   The ratio of the silsesquioxane compound having an organic group represented by the general formula (III-9) and the compound represented by the general formula (III-10) in the above reaction is such that the silsesquioxane compound is The compound represented by the general formula (III-10) is usually about 0.90 to 1.10 mol, preferably 0.95 to 1 mol of the organic group represented by the general formula (III-9). What is necessary is just to be about 1.05 mol.

前記反応では適宜触媒を使用しても良い。触媒としては、トリエチルアミン等の第三級アミン、ジブチル錫ジラウレート等の有機金属化合物等が挙げられる。   In the reaction, a catalyst may be appropriately used. Examples of the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.

以上の製造方法により本発明のシルセスキオキサン化合物が製造される。   The silsesquioxane compound of this invention is manufactured by the above manufacturing method.

ここで、前記第B1−1工程の加水分解縮合において100%縮合しない場合には、製造方法B1により得られる生成物には、Si−OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si−OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、製造方法B1により得られる本発明のシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。   Here, in the case where 100% condensation is not performed in the hydrolysis and condensation in the step B1-1, the product obtained by the production method B1 has a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed. In addition to the silsesquioxane compound, a ladder structure in which a Si—OH group remains, an incomplete cage structure, and / or a random condensate silsesquioxane compound may be contained, but the production method B1 is used. The silsesquioxane compound of the present invention may contain a ladder structure, an incomplete cage structure and / or a random condensate.

製造方法B2
製造方法Bの他の一態様(製造方法B2)としては、2つのアミノ基を有する加水分解性シランを用いて、2つのアミノ基を有するシルセスキオキサン化合物を製造する第B2−1工程、該第B2−1工程により得られたシルセスキオキサン化合物の2つのアミノ基に、(メタ)アクリロイルオキシ基及びイソシアネート基を有する化合物の該イソシアネート基を反応させる第B2−2工程を含む製造方法が挙げられる。
Manufacturing method B2
As another embodiment of the production method B (production method B2), the step B2-1 for producing a silsesquioxane compound having two amino groups using a hydrolyzable silane having two amino groups, A production method comprising a step B2-2 in which the two amino groups of the silsesquioxane compound obtained in the step B2-1 are reacted with the isocyanate group of a compound having a (meth) acryloyloxy group and an isocyanate group. Is mentioned.

第B2−1工程
前記第B2−1工程に用いる2つのアミノ基を有する加水分解性シランとしては、具体的には例えば、下記一般式(IV−5)で表される加水分解性シランが挙げられる。
Step B2-1 Specific examples of the hydrolyzable silane having two amino groups used in Step B2-1 include hydrolyzable silanes represented by the following general formula (IV-5). It is done.

Figure 2010067684
Figure 2010067684

[一般式(IV−5)中、R12及びXは、前記に同じ。
Xは同一でも又は異なっていてもよい。]。
[In General Formula (IV-5), R 12 and X are the same as defined above.
X may be the same or different. ].

前記第B2−1工程において2つのアミノ基を有するシルセスキオキサン化合物を得るためには、具体的には、
前記一般式(IV−5)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
前記一般式(IV−5)で表される加水分解性シラン、及び2つのアミノ基を有する加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、ことが挙げられる。
In order to obtain a silsesquioxane compound having two amino groups in the step B2-1, specifically,
Hydrolyzing condensation in the presence of a catalyst using the hydrolyzable silane represented by the general formula (IV-5) as a starting material, or
Hydrolysis-condensation in the presence of a catalyst using a hydrolyzable silane represented by the general formula (IV-5) and a hydrolyzable silane other than a hydrolyzable silane having two amino groups as a starting material; Can be mentioned.

前記2つのアミノ基を有する加水分解性シラン以外の加水分解性シランとしては、前記2つのアミノ基を有する加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン等が挙げられる。   The hydrolyzable silane other than the hydrolyzable silane having the two amino groups may be any one that can produce a silsesquioxane compound by hydrolytic condensation together with the hydrolyzable silane having the two amino groups. It is not particularly limited. Specific examples include alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.

加水分解縮合の際の触媒、溶媒、反応温度、反応時間等の反応条件としては、例えば、前記第B1−1工程の説明において例示した加水分解縮合の反応条件と同じ反応条件が挙げられる。   Examples of reaction conditions such as a catalyst, a solvent, a reaction temperature, and a reaction time in the hydrolysis condensation include the same reaction conditions as the hydrolysis condensation reaction exemplified in the description of the step B1-1.

加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(IV−5)中のX]のXの大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。   In the hydrolysis-condensation reaction, the condensation reaction proceeds together with the hydrolysis, and a hydrolyzable group of the hydrolyzable silane [specifically, for example, most of X in the general formula (IV-5)], preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100% is condensed to be liquid stable. It is preferable from the point.

第B2−2工程
前記第B2−2工程では、具体的には例えば、前記第B2−1工程により得られるケイ素原子に直接に結合した有機基として下記一般式(IV−6)で表される有機基を有するシルセスキオキサン化合物のアミノ基に、下記一般式(IV−7)で表される化合物のイソシアネート基を反応させる。
Step B2-2 In step B2-2, specifically, for example, an organic group directly bonded to a silicon atom obtained in step B2-1 is represented by the following general formula (IV-6). The isocyanate group of the compound represented by the following general formula (IV-7) is reacted with the amino group of the silsesquioxane compound having an organic group.

Figure 2010067684
Figure 2010067684

[一般式(IV−6)中、R12は、前記に同じ。
一般式(IV−7)中、R10及びR11は、前記に同じ。]。
[In General Formula (IV-6), R 12 is the same as defined above.
In General Formula (IV-7), R 10 and R 11 are the same as described above. ].

前記反応は、通常、前記一般式(IV−6)で表される有機基1モルに対して、前記一般式(IV−7)で表される化合物を2モル以上用いて行われる。   The reaction is usually performed using 2 mol or more of the compound represented by the general formula (IV-7) with respect to 1 mol of the organic group represented by the general formula (IV-6).

この反応を行うことにより、ケイ素原子に直接に結合した有機基として前記一般式(IV−1)で表される有機基を有するシルセスキオキサン化合物を得ることができる。   By performing this reaction, a silsesquioxane compound having an organic group represented by the general formula (IV-1) as an organic group directly bonded to a silicon atom can be obtained.

前記反応は、アミノ基とイソシアネート基を反応させる常法に従って行うことができる。反応温度は、例えば、−78℃〜200℃、好ましくは−78℃〜100℃、更に好ましくは、−10℃〜40℃である。また、この反応は圧力によらず実施できるが、0.02〜0.2MPa、特に0.08〜0.15MPaの圧力範囲が好ましい。当該反応は非常に速いため、通常、滴下が終了するとすぐに反応は終了する。   The said reaction can be performed in accordance with the conventional method with which an amino group and an isocyanate group are made to react. The reaction temperature is, for example, -78 ° C to 200 ° C, preferably -78 ° C to 100 ° C, more preferably -10 ° C to 40 ° C. Although this reaction can be carried out regardless of pressure, a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferable. Since the reaction is very fast, the reaction usually ends as soon as the dropping is completed.

前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート等のグリコールエーテル類;メタノール、エタノール、プロパノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。   In the reaction, a solvent may be appropriately used. Specific examples of the solvent include esters such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ethers such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Examples include glycol ethers such as 3-methoxybutyl acetate; alcohols such as methanol, ethanol, and propanol; aromatic hydrocarbons such as toluene and xylene; and aliphatic hydrocarbons.

以上の製造方法により本発明のシルセスキオキサン化合物が製造される。   The silsesquioxane compound of this invention is manufactured by the above manufacturing method.

ここで、前記第B2−1工程の加水分解縮合において100%縮合しない場合には、製造方法B2により得られる生成物には、Si−OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si−OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、製造方法B2により得られる本発明のシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。なお、本製造方法により得られる本発明のシルセスキオキサン化合物は、Si−OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上であることが液安定性の点から好ましい。   Here, in the case where 100% condensation is not performed in the hydrolysis and condensation in the step B2-1, the product obtained by the production method B2 has a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed. In addition to the silsesquioxane compound, a ladder structure in which an Si—OH group remains, an incomplete cage structure, and / or a random condensate silsesquioxane compound may be contained, but the production method B2 may be used. The silsesquioxane compound of the present invention may contain a ladder structure, an incomplete cage structure and / or a random condensate. In the silsesquioxane compound of the present invention obtained by the present production method, the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is preferably 80% by mass or more, more preferably. It is preferably 90% by mass or more from the viewpoint of liquid stability.

製造方法B3
製造方法Bの他の一態様(製造方法B3)としては、エポキシ基を有する加水分解性シランを用いて、エポキシ基を有するシルセスキオキサン化合物を製造する第B3−1工程、該第B3−1工程により得られたシルセスキオキサン化合物のエポキシ基に、ヒドロキシモノカルボン酸のカルボキシル基を反応させ、水酸基を2つ以上有するシルセスキオキサン化合物を製造する第B2−2工程、該第B2−2工程により得られたシルセスキオキサン化合物の水酸基に、(メタ)アクリロイルオキシ基及びイソシアネート基を有する化合物の該イソシアネート基を反応させる第B3−3工程を含む製造方法が挙げられる。
Manufacturing method B3
As another aspect of the production method B (production method B3), a step B3-1 for producing a silsesquioxane compound having an epoxy group using a hydrolyzable silane having an epoxy group, the step B3- Step B2-2 for producing a silsesquioxane compound having two or more hydroxyl groups by reacting the carboxyl group of hydroxymonocarboxylic acid with the epoxy group of the silsesquioxane compound obtained in one step, the B2 -2 The manufacturing method including the B3-3 process which makes this isocyanate group of the compound which has a (meth) acryloyloxy group and an isocyanate group react with the hydroxyl group of the silsesquioxane compound obtained by -2 process is mentioned.

第B3−1工程
前記第B3−1工程に用いるエポキシ基を有する加水分解性シランとしては、具体的には例えば、下記一般式(V−6)で表される加水分解性シランが挙げられる。
Step B3-1 Specific examples of the hydrolyzable silane having an epoxy group used in Step B3-1 include hydrolyzable silanes represented by the following general formula (V-6).

Figure 2010067684
Figure 2010067684

[一般式(V−6)中、R16及びXは、前記に同じ。
Xは同一でも又は異なっていてもよい。]。
[In General Formula (V-6), R 16 and X are the same as defined above.
X may be the same or different. ].

前記第B3−1工程においてエポキシ基を有するシルセスキオキサン化合物を得るためには、具体的には、
前記一般式(V−6)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
前記一般式(V−6)で表される加水分解性シラン、及びエポキシ基を有する加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、ことが挙げられる。
In order to obtain a silsesquioxane compound having an epoxy group in the step B3-1, specifically,
Hydrolyzing and condensing in the presence of a catalyst using the hydrolyzable silane represented by the general formula (V-6) as a starting material, or
Hydrolysis-condensation in the presence of a catalyst using a hydrolyzable silane represented by the general formula (V-6) and a hydrolyzable silane other than the hydrolyzable silane having an epoxy group as a starting material; Can be mentioned.

前記エポキシ基を有する加水分解性シラン以外の加水分解性シランとしては、前記エポキシ基を有する加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン等が挙げられる。   The hydrolyzable silane other than the hydrolyzable silane having an epoxy group is particularly limited as long as it can produce a silsesquioxane compound by hydrolytic condensation together with the hydrolyzable silane having the epoxy group. It is not a thing. Specific examples include alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.

加水分解縮合の際の触媒、溶媒、反応温度、反応時間等の反応条件としては、例えば、前記第B1−1工程の説明において例示した加水分解縮合の反応条件と同じ反応条件が挙げられる。   Examples of reaction conditions such as a catalyst, a solvent, a reaction temperature, and a reaction time in the hydrolysis condensation include the same reaction conditions as the hydrolysis condensation reaction exemplified in the description of the step B1-1.

加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(V−6)中のX]のXの大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。   In the hydrolysis-condensation reaction, the condensation reaction proceeds with hydrolysis, and the hydrolyzable group of the hydrolyzable silane [specifically, for example, most of X in the general formula (V-6)], preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100% is condensed to be liquid stable. It is preferable from the point.

第B3−2工程
前記第B3−2工程では、具体的には例えば、前記第B3−1工程により得られるケイ素原子に直接に結合した有機基として下記一般式(V−7)で表される有機基を有するシルセスキオキサン化合物に、下記一般式(V−8)で表される化合物を反応させ、ケイ素原子に直接に結合した有機基として下記一般式(V−9)で表される有機基を有するシルセスキオキサン化合物を製造する。
Step B3-2 In the step B3-2, specifically, for example, an organic group directly bonded to a silicon atom obtained by the step B3-1 is represented by the following general formula (V-7). A silsesquioxane compound having an organic group is reacted with a compound represented by the following general formula (V-8), and the organic group bonded directly to the silicon atom is represented by the following general formula (V-9). A silsesquioxane compound having an organic group is produced.

Figure 2010067684
Figure 2010067684

[一般式(V−7)中、R16は、前記に同じ。
一般式(V−8)中、n及びR15は、前記に同じ。
一般式(V−9)中、n、R15及びR16は、前記に同じ。]。
[In General Formula (V-7), R 16 is the same as defined above.
In general formula (V-8), n and R 15 are the same as above.
In the general formula (V-9), n, R 15 and R 16 are the same as described above. ].

前記ケイ素原子に直接に結合した有機基として前記一般式(V−9)で表される有機基を有するシルセスキオキサン化合物を製造する際の反応は、エポキシ基とカルボキシル基とを反応させる常法に従って行うことができる。原料化合物の使用割合、反応温度、触媒、溶媒、反応時間等の反応条件としては、前記第B1−2工程における一般式(II−7)で表される有機基を有するシルセスキオキサン化合物と一般式(II−8)で表される化合物との反応で例示した反応条件と同じ反応条件が挙げられる。   The reaction for producing a silsesquioxane compound having an organic group represented by the general formula (V-9) as an organic group directly bonded to the silicon atom is usually performed by reacting an epoxy group and a carboxyl group. Can be done according to law. As the reaction conditions such as the use ratio of the raw material compound, reaction temperature, catalyst, solvent, reaction time, etc., a silsesquioxane compound having an organic group represented by the general formula (II-7) in Step B1-2 The same reaction conditions as those exemplified for the reaction with the compound represented by formula (II-8) can be mentioned.

第B3−3工程
前記第B3−3工程では、具体的には例えば、前記第B3−2工程により得られるケイ素原子に直接に結合した有機基として前記一般式(V−9)で表される有機基を有するシルセスキオキサン化合物の水酸基に、下記一般式(V−10)で表される化合物のイソシアネート基を反応させる。
Step B3-3 In the step B3-3, specifically, for example, the organic group directly bonded to the silicon atom obtained by the step B3-2 is represented by the general formula (V-9). The isocyanate group of the compound represented by the following general formula (V-10) is reacted with the hydroxyl group of the silsesquioxane compound having an organic group.

Figure 2010067684
Figure 2010067684

[一般式(V−10)中のR13及びR14は、前記に同じ。]。[Formula (V-10) R 13 and R 14 in it is as defined above. ].

前記反応は、通常、前記一般式(V−9)で表される有機基1モルに対して、前記一般式(V−10)で表される化合物を2モル以上用いて行われる。   The reaction is usually performed using 2 mol or more of the compound represented by the general formula (V-10) with respect to 1 mol of the organic group represented by the general formula (V-9).

この反応を行うことにより、ケイ素原子に直接に結合した有機基として前記一般式(V−1)で表される有機基を有するシルセスキオキサン化合物を得ることができる。   By performing this reaction, a silsesquioxane compound having an organic group represented by the general formula (V-1) as an organic group directly bonded to a silicon atom can be obtained.

前記反応は、水酸基とイソシアネート基を反応させる常法に従って行うことができる。反応温度、触媒、反応時間等の反応条件としては、前記第B1−3工程において例示した反応条件と同じ反応条件が挙げられる。   The said reaction can be performed in accordance with the conventional method with which a hydroxyl group and an isocyanate group are made to react. Examples of the reaction conditions such as reaction temperature, catalyst, reaction time, and the like include the same reaction conditions as those exemplified in Step B1-3.

以上の製造方法により本発明のシルセスキオキサン化合物が製造される。   The silsesquioxane compound of this invention is manufactured by the above manufacturing method.

ここで、前記第B3−1工程の加水分解縮合において100%縮合しない場合には、製造方法B3により得られる生成物には、Si−OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si−OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、製造方法B3により得られる本発明のシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。なお、本製造方法により得られる本発明のシルセスキオキサン化合物は、Si−OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上であることが液安定性の点から好ましい。   Here, in the case where 100% condensation is not performed in the hydrolysis condensation in the step B3-1, the product obtained by the production method B3 has a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed. In addition to the silsesquioxane compound, a ladder structure in which a Si—OH group remains, an incomplete cage structure, and / or a random condensate silsesquioxane compound may be contained, but the production method B3 is used. The silsesquioxane compound of the present invention may contain a ladder structure, an incomplete cage structure and / or a random condensate. In the silsesquioxane compound of the present invention obtained by the present production method, the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is preferably 80% by mass or more, more preferably. It is preferably 90% by mass or more from the viewpoint of liquid stability.

上記各反応により得られる目的とする化合物は、通常の分離手段により反応系内より分離され、さらに精製することができる。この分離及び精製手段としては、例えば、蒸留法、溶媒抽出法、希釈法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、アフィニティークロマトグラフィー等を用いることができる。   The target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified. As this separation and purification means, for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography and the like can be used.

活性エネルギー線硬化性組成物
本発明の活性エネルギー線硬化性組成物は、本発明のシルセスキオキサン化合物、及び光重合開始剤を含有する。
Active energy ray-curable composition The active energy ray-curable composition of the present invention contains the silsesquioxane compound of the present invention and a photopolymerization initiator.

本発明の活性エネルギー線硬化性組成物の不揮発分100重量部における本発明のシルセスキオキサン化合物(不揮発分)の使用割合は、特に限定されないが、好ましくは5〜99質量部、より好ましくは10〜80質量部である。   The use ratio of the silsesquioxane compound (nonvolatile content) of the present invention in the nonvolatile content of 100 parts by weight of the active energy ray-curable composition of the present invention is not particularly limited, but is preferably 5 to 99 parts by mass, more preferably 10 to 80 parts by mass.

光重合開始剤
光重合開始剤としては、活性エネルギー線を吸収してラジカルを発生する開始剤であれば特に限定されることなく使用できる。
The photopolymerization initiator is not particularly limited as long as it is an initiator that absorbs active energy rays and generates radicals.

前記光重合開始剤としては、例えばベンジル、ジアセチル等のα−ジケトン類;ベンゾイン等のアシロイン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のアシロインエーテル類;チオキサントン、2,4−ジエチルチオキサントン、2−イソプロピルチオキサントン、チオキサントン−4−スルホン酸等のチオキサントン類;ベンゾフェノン、4,4′−ビス(ジメチルアミノ)ベンゾフェノン、4,4′−ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン類;ミヒラーケトン類;アセトフェノン、2−(4−トルエンスルホニルオキシ)−2−フェニルアセトフェノン、p−ジメチルアミノアセトフェノン、α,α′−ジメトキシアセトキシベンゾフェノン、2,2′−ジメトキシ−2−フェニルアセトフェノン、p−メトキシアセトフェノン、2−メチル〔4−(メチルチオ)フェニル〕−2−モルフォリノ−1−プロパノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、α−イソヒドロキシイソブチルフェノン、α,α′−ジクロル−4−フェノキシアセトフェノン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン等のアセトフェノン類;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(アシル)フォスフィンオキサイド等のアシルフォスフィンオキサイド類;アントラキノン、1,4−ナフトキノン等のキノン類;フェナシルクロライド、トリハロメチルフェニルスルホン、トリス(トリハロメチル)−s−トリアジン等のハロゲン化合物;ジ−t−ブチルパーオキサイド等の過酸化物等が挙げられる。これらは1種又は2種以上の混合物として使用できる。   Examples of the photopolymerization initiator include α-diketones such as benzyl and diacetyl; acyloins such as benzoin; acyloin ethers such as benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether; thioxanthone and 2,4-diethyl Thioxanthones such as thioxanthone, 2-isopropylthioxanthone, thioxanthone-4-sulfonic acid; benzophenones such as benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone; Michler's ketones; Acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophenone, α, α'-dimethoxyacetoxybenzophenone, 2,2'-dimeth Ci-2-phenylacetophenone, p-methoxyacetophenone, 2-methyl [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) Acetophenones such as -butan-1-one, α-isohydroxyisobutylphenone, α, α'-dichloro-4-phenoxyacetophenone, 1-hydroxy-cyclohexyl-phenyl-ketone; 2,4,6-trimethylbenzoyldiphenylphosphine Acyl phosphine oxides such as oxide and bis (acyl) phosphine oxide; quinones such as anthraquinone and 1,4-naphthoquinone; phenacyl chloride, trihalomethylphenyl sulfone, tris (trihalomethyl) -s-triazine, etc. Gen compounds; peroxides such as di -t- butyl peroxide and the like. These can be used as one or a mixture of two or more.

前記光重合開始剤の市販品としては、例えば、イルガキュア(IRGACURE)−184、同261、同500、同651、同907、同CGI−1700(チバ スペシャルティ ケミカルズ社製、商品名)、ダロキュア(Darocur)−1173、同1116、同2959、同1664、同4043(メルクジャパン社製、商品名)、カヤキュア(KAYACURE)−MBP、同DETX−S、同DMBI、同EPA、同OA(日本化薬(株)製、商品名)、ビキュア(VICURE)−10、同55〔ストウファー社(STAUFFER Co., LTD.)製、商品名〕、トリゴナル(TRIGONAL)P1〔アクゾ社(AKZO Co., LTD.)製、商品名〕、サンドレイ(SANDORAY)1000〔サンドズ社(SANDOZ Co., LTD.)製、商品名〕、ディープ(DEAP)〔アプジョン社(APJOHN Co., LTD.)製、商品名〕、カンタキュア(QUANTACURE)−PDO、同ITX、同EPD〔ウォードブレキンソプ社(WARD BLEKINSOP Co., LTD.)製、商品名〕等を挙げることができる。   Examples of commercially available photopolymerization initiators include IRGACURE-184, 261, 500, 651, 907, CGI-1700 (trade name, manufactured by Ciba Specialty Chemicals), Darocur (Darocur). ) -1173, 1116, 2959, 1664, 4043 (trade name, manufactured by Merck Japan), KAYACURE-MBP, DETX-S, DMBI, EPA, OA (Nippon Kayaku ( Co., Ltd., trade name), VICURE-10, 55 (made by STAUFFER Co., LTD., Trade name), TRIGONAL P1 [AKZO Co., LTD.] Product name], SANDORAY 1000 (manufactured by SANDOZ Co., LTD., Product name), DEAP (manufactured by APJOHN Co., LTD., Product name), CANTACURE QUANTACURE) -PDO, the ITX, the EPD [Ward shake Kin Sopu, Inc. (WARD BLEKINSOP Co., LTD.), Trade name], and the like can be given.

前記光重合開始剤としては、光硬化性の点からチオキサントン類、アセトフェノン類及びアシルフォスフィンオキシド類の1種又は2種以上の混合物であることが好ましく、なかでもアセトフェノン類とアシルフォスフィンオキシド類との混合物であることが特に好適である。   The photopolymerization initiator is preferably one or a mixture of two or more of thioxanthones, acetophenones and acylphosphine oxides from the viewpoint of photocurability, and among them, acetophenones and acylphosphine oxides. It is particularly preferred to be a mixture with.

光重合開始剤の使用量は、特に限定されるものではないが、本発明のシルセスキオキサン化合物及び重合性不飽和化合物の総量100質量部に対して、0.5〜10質量部が好ましく、さらに好ましくは1〜5質量部の範囲である。この範囲の下限値は、活性エネルギー線硬化性向上の点で意義があり、上限値はコスト及び深部硬化性の点で意義がある。   Although the usage-amount of a photoinitiator is not specifically limited, 0.5-10 mass parts is preferable with respect to 100 mass parts of total amounts of the silsesquioxane compound and polymerizable unsaturated compound of this invention. More preferably, it is the range of 1-5 mass parts. The lower limit of this range is significant in terms of improving active energy ray curability, and the upper limit is significant in terms of cost and deep curability.

重合性不飽和化合物
また本発明の活性エネルギー線硬化性組成物は、本発明のシルセスキオキサン化合物以外の重合性不飽和化合物を含有していてもよい。該重合性不飽和化合物としては、本発明のシルセスキオキサン化合物以外の化合物であって、その化学構造中に重合性不飽和二重結合を少なくとも1つ有する化合物であれば特に限定されない。
The polymerizable unsaturated compound or the active energy ray-curable composition of the present invention may contain a polymerizable unsaturated compound other than the silsesquioxane compound of the present invention. The polymerizable unsaturated compound is not particularly limited as long as it is a compound other than the silsesquioxane compound of the present invention and has at least one polymerizable unsaturated double bond in its chemical structure.

前記重合性不飽和化合物としては、単官能重合性不飽和化合物、多官能重合性不飽和化合物が挙げられる。   Examples of the polymerizable unsaturated compound include a monofunctional polymerizable unsaturated compound and a polyfunctional polymerizable unsaturated compound.

単官能重合性不飽和化合物としては、例えば、一価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、N−アクリロイルオキシエチルヘキサヒドロフタルイミド等が挙げられる。また、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、2−カルボキシエチル(メタ)アクリレート、2−カルボキシプロピル(メタ)アクリレート、5−カルボキシペンチル(メタ)アクリレート等のカルボキシル基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有重合性不飽和化合物;スチレン、α−メチルスチレン、ビニルトルエン、α−クロルスチレン等のビニル芳香族化合物;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N−t−ブチルアミノエチル(メタ)アクリレート等の含窒素アルキル(メタ)アクリレート;アクリルアミド、メタクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリルアミド等の重合性アミド類等が挙げられる。   Examples of the monofunctional polymerizable unsaturated compound include esterified products of monohydric alcohol and (meth) acrylic acid. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (Meth) acrylate, neopentyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, N-acryloyloxyethylhexahydro Examples include phthalimide. Also, for example, hydroxyl-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate; acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid Carboxyl group-containing (meth) acrylates such as 2-carboxyethyl (meth) acrylate, 2-carboxypropyl (meth) acrylate and 5-carboxypentyl (meth) acrylate; glycidyl groups such as glycidyl (meth) acrylate and allyl glycidyl ether Containing polymerizable unsaturated compounds; vinyl aromatic compounds such as styrene, α-methylstyrene, vinyltoluene, α-chlorostyrene; N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl Nitrogen-containing alkyl (meth) acrylates such as ru (meth) acrylate and Nt-butylaminoethyl (meth) acrylate; acrylamide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N- Methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N- Examples thereof include polymerizable amides such as dimethylaminoethyl (meth) acrylamide.

多官能重合性不飽和化合物としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート等のジ(メタ)アクリレート化合物;グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;その他、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。さらに、ウレタン(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂等が挙げられる。ウレタン(メタ)アクリレート樹脂は、例えばポリイソシアネート化合物、ヒドロキシルアルキル(メタ)アクリレート及びポリオール化合物を原料として用い、イソシアネート基に対してヒドロキシル基が等モル量もしくは過剰になるような量で反応させることで得ることができる。これら重合性不飽和化合物は単独で又は2種以上組合せて使用することができる。   Examples of the polyfunctional polymerizable unsaturated compound include an esterified product of a polyhydric alcohol and (meth) acrylic acid. Specifically, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) Acrylate, 1,4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, Dipentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaerythritol di (meth) acrylate, bisphenol A ethylene oxide modified di (meth) acrylate, etc. Meth) acrylate compounds; glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane propylene oxide modified tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, ε-caprolactone modified tris (acryloxyethyl) isocyanurate, etc. tri (meth) acrylate compound; pentaerythritol tetra (meth) acrylate etc. tetra (meth) acrylate compound; other dipentaerythritol penta (meth) acrylate And dipentaerythritol hexa (meth) acrylate. Furthermore, urethane (meth) acrylate resin, epoxy (meth) acrylate resin, polyester (meth) acrylate resin and the like can be mentioned. The urethane (meth) acrylate resin is prepared by, for example, using a polyisocyanate compound, a hydroxylalkyl (meth) acrylate, and a polyol compound as raw materials, and reacting them in an amount such that the hydroxyl group is equimolar or excessive with respect to the isocyanate group. Obtainable. These polymerizable unsaturated compounds can be used alone or in combination of two or more.

前記重合性不飽和化合物を含有する場合の使用量は特に限定されるものではないが、得られる塗膜の物性の点から、前記本発明のシルセスキオキサン化合物の不揮発分100質量部に対して、0.1〜1000質量部が好ましく、20〜200質量部がさらに好ましい。   The amount used in the case of containing the polymerizable unsaturated compound is not particularly limited, but from the viewpoint of the physical properties of the obtained coating film, the non-volatile content of the silsesquioxane compound of the present invention is 100 parts by mass. 0.1 to 1000 parts by mass is preferable, and 20 to 200 parts by mass is more preferable.

本発明の活性エネルギー線硬化性組成物は、必要に応じて各種添加剤を配合してもよく、所望により溶剤で希釈しても良い。添加剤としては、例えば、増感剤、紫外線吸収剤、光安定剤、重合禁止剤、酸化防止剤、消泡剤、表面調整剤、可塑剤、着色剤等が挙げられる。   The active energy ray-curable composition of the present invention may contain various additives as necessary, and may be diluted with a solvent as desired. Examples of the additive include a sensitizer, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, an antioxidant, an antifoaming agent, a surface conditioner, a plasticizer, and a colorant.

希釈に用いる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート等のグリコールエーテル類;芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。これらは、粘度の調整、塗布性の調整等を目的に適宜組み合わせて使用することができる。   Examples of the solvent used for dilution include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as ethyl acetate, butyl acetate, methyl benzoate, and methyl propionate; ethers such as tetrahydrofuran, dioxane, and dimethoxyethane; Examples include glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and 3-methoxybutyl acetate; aromatic hydrocarbons and aliphatic hydrocarbons. These can be used in appropriate combination for the purpose of adjusting the viscosity, adjusting the coating property, and the like.

本発明の活性エネルギー線硬化性組成物の不揮発分は特に限定されるものではない。例えば、好ましくは20〜100質量%であり、さらに好ましくは25〜70質量%である。これら範囲は、塗膜の平滑性及び乾燥時間の短縮化の点で意義がある。   The nonvolatile content of the active energy ray-curable composition of the present invention is not particularly limited. For example, Preferably it is 20-100 mass%, More preferably, it is 25-70 mass%. These ranges are significant in terms of smoothness of the coating film and shortening of the drying time.

本発明の活性エネルギー線硬化性組成物を被塗物表面へ塗布する方法は特に限定されるものではなく、例えば、ローラー塗装、ロールコーター塗装、スピンコーター塗装、カーテンロールコーター塗装、スリットコーター塗装、スプレー塗装、静電塗装、浸漬塗装、シルク印刷、スピン塗装等が挙げられる。   The method for applying the active energy ray-curable composition of the present invention to the surface of an object to be coated is not particularly limited. For example, roller coating, roll coater coating, spin coater coating, curtain roll coater coating, slit coater coating, Examples include spray coating, electrostatic coating, dip coating, silk printing, and spin coating.

被塗物としては、特に限定されるものではない。具体的には例えば、金属、セラミックス、ガラス、プラスチック、木材等が挙げられる。   The article to be coated is not particularly limited. Specific examples include metals, ceramics, glass, plastics, wood, and the like.

前記活性エネルギー線硬化性組成物から塗膜を形成する際、必要に応じて乾燥を行うことができる。乾燥は、添加している溶剤を除去できる条件であれば特に限定されるものではない。例えば、20〜100℃の乾燥温度において3〜20分の乾燥時間で行うことができる。   When forming a coating film from the said active energy ray curable composition, it can dry as needed. The drying is not particularly limited as long as the solvent that is added can be removed. For example, the drying time can be 3 to 20 minutes at a drying temperature of 20 to 100 ° C.

塗膜の膜厚は目的に応じて適宜設定される。例えば膜厚は1〜100μmが好ましく、1〜20μmがさらに好ましい。膜厚がこれら範囲の下限値以上の場合には、塗膜の平滑性及び外観に優れる。またこれら範囲の上限値以下の場合には塗膜の硬化性、耐割れ性に優れる。   The film thickness of the coating film is appropriately set according to the purpose. For example, the film thickness is preferably 1 to 100 μm, and more preferably 1 to 20 μm. When the film thickness is at least the lower limit of these ranges, the coating film is excellent in smoothness and appearance. Moreover, when it is below the upper limit value of these ranges, the curability and crack resistance of the coating film are excellent.

活性エネルギー線硬化性組成物を被塗物表面に塗布し、必要に応じて乾燥させた後に、活性エネルギー線照射を行い硬化塗膜を形成する。活性エネルギー線照射の照射源及び照射量は特に限定されるものではない。例えば活性エネルギー線の照射源としては、超高圧、高圧、中圧、低圧の水銀灯、ケミカルランプ、カーボンアーク灯、キセノン灯、メタルハライド灯、蛍光灯、タングステン灯、太陽光等が挙げられる。照射量は、例えば好ましくは5〜20,000J/m2、さらに好ましくは100〜10,000J/m2の範囲が挙げられる。An active energy ray-curable composition is applied to the surface of an object to be coated and dried as necessary, and then irradiated with active energy rays to form a cured coating film. The irradiation source and irradiation amount of active energy ray irradiation are not particularly limited. For example, the active energy ray irradiation source includes ultra-high pressure, high pressure, medium pressure, low pressure mercury lamp, chemical lamp, carbon arc lamp, xenon lamp, metal halide lamp, fluorescent lamp, tungsten lamp, sunlight and the like. Dose, for example preferably 5~20,000J / m 2, more preferably include a range of 100~10,000J / m 2.

活性エネルギー線照射は、大気雰囲気下で行なってもよく、また不活性ガス雰囲気下で行なっても良い。不活性ガスとしては、窒素、二酸化炭素等が挙げられる。不活性ガス雰囲気下での活性エネルギー線照射が、硬化性の点から好ましい。   The active energy ray irradiation may be performed in an air atmosphere or in an inert gas atmosphere. Examples of the inert gas include nitrogen and carbon dioxide. Active energy ray irradiation in an inert gas atmosphere is preferable from the viewpoint of curability.

また、活性エネルギー線照射後、必要に応じて塗膜を加熱してもよい。加熱をすることによって、活性エネルギー線照射による塗膜の硬化により発生した塗膜の歪みを緩和することができる。さらにこの加熱によって塗膜の硬度、密着性等の向上を行なうことができる場合がある。加熱は、通常、150〜250℃の雰囲気温度で1〜30分間の条件で行なうことができる。   Moreover, you may heat a coating film as needed after active energy ray irradiation. By heating, distortion of the coating film generated by curing of the coating film by active energy ray irradiation can be alleviated. Furthermore, the heating may improve the hardness and adhesion of the coating film. Heating can usually be performed at an ambient temperature of 150 to 250 ° C. for 1 to 30 minutes.

以下、実施例を挙げて本発明をさらに詳細に説明する。尚、「部」及び「%」は、別記しない限り「質量部」及び「質量%」を示す。なお、本実施例における構造解析及び測定は、本明細書に記載の前記分析装置に加え、以下の分析装置及び測定方法により行った。   Hereinafter, the present invention will be described in more detail with reference to examples. “Part” and “%” indicate “part by mass” and “% by mass” unless otherwise specified. In addition, the structural analysis and measurement in this example were performed by the following analyzer and measurement method in addition to the analyzer described in this specification.

29Si−NMR、H−NMR分析)
装置:JEOL社製 FT−NMR EX−400
溶媒:CDCl
内部標準物質:テトラメチルシラン (FT−IR分析)
装置:日本分光社製 FT/IR−610
( 29 Si-NMR, 1 H-NMR analysis)
Apparatus: FT-NMR EX-400 manufactured by JEOL
Solvent: CDCl 3
Internal standard: Tetramethylsilane (FT-IR analysis)
Apparatus: FT / IR-610 manufactured by JASCO Corporation

(SP値の測定方法)
本実施例におけるSP値とは溶解性パラメーターのことであり、簡便な実測法である濁点滴定により測定することができ、下記のK.W.SUH、J.M.CORBETTの式(Journalof Applied Polymer Science,12,2359,1968の記載参照)に従い算出される値である。
式 SP=(√Vml・δH+√Vmh・δD)/(√Vml+√Vmh)
濁点滴定では、試料0.5gをアセトン10mlに溶解した中に、n−ヘキサンを加えていき、濁点での滴定量H(ml)を読み、同様にアセトン溶液中に脱イオン水を加えたときの濁点における滴定量D(ml)を読み、これらを下記式に適用し、Vml、Vmh、δH、δDを算出する。なお、各溶剤の分子容(mol/ml)は、アセトン:74.4、n−ヘキサン:130.3、脱イオン水:18であり、各溶剤のSPは、アセトン:9.75、n−ヘキサン:7.24、脱イオン水:23.43である。
Vml=74.4×130.3/((1−VH)×130.3+VH×74.4)
Vmh=74.4×18/((1−VD)×18+VD×74.4)
VH=H/(10+H)
VD=D/(10+D)
δH=9.75×10/(10+H)+7.24×H/(10+H)
δD=9.75×10/(10+D)+23.43×D/(10+D)
(SP value measurement method)
The SP value in this example is a solubility parameter, which can be measured by cloud point titration, which is a simple measurement method. W. SUH, J. et al. M.M. It is a value calculated according to the CORBETT equation (see description of Journalof Applied Polymer Science, 12, 2359, 1968).
Formula SP = (√Vml · δH + √Vmh · δD) / (√Vml + √Vmh)
In cloud point titration, when 0.5 g of sample was dissolved in 10 ml of acetone, n-hexane was added and the titration amount H (ml) at the cloud point was read, and similarly deionized water was added to the acetone solution. The titration amount D (ml) at the cloud point is read and applied to the following formula to calculate Vml, Vmh, δH, and δD. The molecular volume (mol / ml) of each solvent is acetone: 74.4, n-hexane: 130.3, deionized water: 18, and SP of each solvent is acetone: 9.75, n- Hexane: 7.24, deionized water: 23.43.
Vml = 74.4 × 130.3 / ((1−VH) × 130.3 + VH × 74.4)
Vmh = 74.4 × 18 / ((1−VD) × 18 + VD × 74.4)
VH = H / (10 + H)
VD = D / (10 + D)
δH = 9.75 × 10 / (10 + H) + 7.24 × H / (10 + H)
δD = 9.75 × 10 / (10 + D) + 23.43 × D / (10 + D)

(実施例1)
還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、Glycidyl POSS cage mixture (商品名、Hybrid Plastics社製)400部及び酢酸ブチル600部を仕込み、60℃で攪拌しながら溶解させた。ここにアクリル酸172部、メトキノン1.5部、及びテトラブチルアンモニウムブロミド10部を仕込み、乾燥空気を吹き込みながら100℃で24時間反応させた。さらに2−イソシアネートエチルアクリレート338部、及び酢酸ブチル306部を配合して、80℃で12時間反応させ、生成物(P1)の不揮発分50%溶液を得た。
Example 1
A separable flask equipped with a reflux condenser, thermometer, air inlet tube, and stirrer was charged with 400 parts of Glycidyl POSS cage mixture (trade name, manufactured by Hybrid Plastics) and 600 parts of butyl acetate, and dissolved while stirring at 60 ° C. I let you. To this, 172 parts of acrylic acid, 1.5 parts of methoquinone and 10 parts of tetrabutylammonium bromide were charged and reacted at 100 ° C. for 24 hours while blowing dry air. Further, 338 parts of 2-isocyanatoethyl acrylate and 306 parts of butyl acetate were blended and reacted at 80 ° C. for 12 hours to obtain a 50% nonvolatile solution of the product (P1).

原材料として用いたGlycidyl POSS cage mixtureは、3−グリシドキシプロピル基含有籠型ポリシルセスキオキサンであり、重量平均分子量は1,800、エポキシ当量は168g/eqであった。   The Glycidyl POSS cage mixture used as a raw material was a 3-glycidoxypropyl group-containing cage-type polysilsesquioxane, the weight average molecular weight was 1,800, and the epoxy equivalent was 168 g / eq.

生成物(P1)について29Si−NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する−70ppm付近のピークのみが確認され、ヒドロキシシリル基の存在を示すT1及びT2構造は確認されなかった。As a result of 29 Si-NMR analysis of the product (P1), only a peak near −70 ppm derived from the T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si was confirmed. The T1 and T2 structures indicating the presence of were not confirmed.

また、生成物(P1)についてH−NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素−炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素−炭素不飽和結合のモル比率は2.03であった。また、エポキシ基に帰属されるピークは確認されなかった。また、エポキシ当量は10,000g/eq以上であった。Further, as a result of 1 H-NMR analysis of the product (P1), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. In addition, 5.9 ppm, 6.1 ppm, and 6.4 ppm peaks derived from the carbon-carbon unsaturated bond of the acryloyloxy group were confirmed. The molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si calculated from these peak intensity ratios was 2.03. Moreover, the peak attributed to an epoxy group was not confirmed. The epoxy equivalent was 10,000 g / eq or more.

また、生成物(P1)についてFT−IR分析を行った結果、原材料であるGlycidyl POSS cage mixtureにおいて確認されなかったウレタン結合に帰属される1540cm−1付近のピークが確認された。   Moreover, as a result of performing FT-IR analysis about the product (P1), the peak of 1540cm <-1> vicinity which was attributed to the urethane bond which was not confirmed in the raw material Glycidyl POSS cage mixture was confirmed.

また、生成物(P1)のNCO価は0mgNCO/gであった。   Further, the NCO value of the product (P1) was 0 mg NCO / g.

また、生成物(P1)の重量平均分子量は5,000であった。   Moreover, the weight average molecular weight of the product (P1) was 5,000.

生成物(P1)についての前記29Si−NMR、H−NMR、FT−IR、重量平均分子量等の結果から、生成物(P1)が、ケイ素原子に直接に結合した有機基のほとんど全てが下記式(II−11)で表される有機基From the results of the 29 Si-NMR, 1 H-NMR, FT-IR, weight average molecular weight and the like for the product (P1), almost all of the organic groups in which the product (P1) was directly bonded to the silicon atom were found. Organic group represented by the following formula (II-11)

Figure 2010067684
Figure 2010067684

を有する重量平均分子量5,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は11.1であった。 It was confirmed to be a silsesquioxane compound having a weight average molecular weight of 5,000. The resulting silsesquioxane compound had an SP value of 11.1.

(実施例2)
還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、2−ヒドロキシエチルアクリレート455部、イソホロンジイソシアネート870部、メトキノン1部、及び酢酸ブチル883部を仕込み、乾燥空気を吹き込みながら60℃で24時間反応させ、生成物(P2)の不揮発分60%溶液を得た。生成物(P2)のNCO価は144mgNCO/gであった。
(Example 2)
While adding 455 parts of 2-hydroxyethyl acrylate, 870 parts of isophorone diisocyanate, 1 part of methoquinone, and 883 parts of butyl acetate to a separable flask equipped with a reflux condenser, a thermometer, an air introduction tube, and a stirrer, blowing dry air The mixture was reacted at 60 ° C. for 24 hours to obtain a 60% nonvolatile solution of the product (P2). The NCO value of the product (P2) was 144 mg NCO / g.

還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、Glycidyl POSS cage mixture 400部及び酢酸ブチル600部を仕込み、60℃で攪拌しながら溶解させた。ここにアクリル酸172部、メトキノン1.5部、及びテトラブチルアンモニウムブロミド10部を仕込み、乾燥空気を吹き込みながら100℃で24時間反応させた。さらに生成物(P2)の不揮発分60%溶液1,350部、及び酢酸ブチル246部を配合して、80℃で12時間反応させ、生成物(P3)の不揮発分50%溶液を得た。   400 parts of Glycidyl POSS cage mixture and 600 parts of butyl acetate were charged into a separable flask equipped with a reflux condenser, a thermometer, an air introduction tube, and a stirrer, and dissolved while stirring at 60 ° C. To this, 172 parts of acrylic acid, 1.5 parts of methoquinone and 10 parts of tetrabutylammonium bromide were charged and reacted at 100 ° C. for 24 hours while blowing dry air. Further, 1,350 parts of a 60% nonvolatile solution of the product (P2) and 246 parts of butyl acetate were blended and reacted at 80 ° C. for 12 hours to obtain a 50% nonvolatile solution of the product (P3).

生成物(P3)について29Si−NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する−70ppm付近のピークのみが確認され、ヒドロキシシリル基の存在を示すT1及びT2構造は確認されなかった。As a result of 29 Si-NMR analysis of the product (P3), only a peak around −70 ppm derived from the T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si was confirmed. The T1 and T2 structures indicating the presence of were not confirmed.

また、生成物(P3)についてH−NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素−炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素−炭素不飽和結合のモル比率は2.05であった。また、エポキシ基に帰属されるピークは確認されなかった。また、エポキシ当量は10,000g/eq以上であった。Further, as a result of 1 H-NMR analysis of the product (P3), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. In addition, 5.9 ppm, 6.1 ppm, and 6.4 ppm peaks derived from the carbon-carbon unsaturated bond of the acryloyloxy group were confirmed. The molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si calculated from these peak intensity ratios was 2.05. Moreover, the peak attributed to an epoxy group was not confirmed. The epoxy equivalent was 10,000 g / eq or more.

また、生成物(P3)についてFT−IR分析を行った結果、原材料であるGlycidyl POSS cage mixtureにおいて確認されなかったウレタン結合に帰属される1540cm−1付近のピークが確認された。   Moreover, as a result of performing FT-IR analysis about the product (P3), the peak of 1540cm <-1> vicinity attributed to the urethane bond which was not confirmed in Glycidyl POSS cage mixture which is a raw material was confirmed.

また、生成物(P3)のNCO価は0mgNCO/gであった。   Further, the NCO value of the product (P3) was 0 mg NCO / g.

また、生成物(P3)の重量平均分子量は7,000であった。   Moreover, the weight average molecular weight of the product (P3) was 7,000.

生成物(P3)についての前記29Si−NMR、H−NMR、FT−IR、重量平均分子量等の結果から、生成物(P3)が、ケイ素原子に直接に結合した有機基のほとんど全てが下記式(II−12)で表される有機基From the results of the 29 Si-NMR, 1 H-NMR, FT-IR, weight average molecular weight and the like for the product (P3), almost all of the organic groups in which the product (P3) was directly bonded to the silicon atom were found. Organic group represented by the following formula (II-12)

Figure 2010067684
Figure 2010067684

[式(II-12)中、R20はイソホロンジイソシアネート残基を示す。]を有する重量平均分子量7,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は10.8であった。[In the formula (II-12), R 20 represents an isophorone diisocyanate residue. It was confirmed that the compound was a silsesquioxane compound having a weight average molecular weight of 7,000. The resulting silsesquioxane compound had an SP value of 10.8.

(実施例3)
還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、Epoxycyclohexyl POSS Cage Mixture(商品名、Hybrid Plastics社製)400部及びプロピレングリコールモノメチルエーテルアセテート600部を仕込み、60℃で攪拌しながら溶解させた。ここにメタクリル酸195部、メトキノン1.5部、及びテトラブチルアンモニウムブロミド10部を仕込み、乾燥空気を吹き込みながら100℃で48時間反応させた。さらに2−イソシアネートエチルメタクリレート350部、プロピレングリコールモノメチルエーテルアセテート360部を仕込み、80℃で12時間反応させ、生成物(P4)の不揮発分50%溶液を得た。
(Example 3)
A separable flask equipped with a reflux condenser, thermometer, air inlet tube, and stirrer was charged with 400 parts of Epoxycyclohexyl POSS Cage Mixture (trade name, manufactured by Hybrid Plastics) and 600 parts of propylene glycol monomethyl ether acetate and stirred at 60 ° C. While dissolving. 195 parts of methacrylic acid, 1.5 parts of methoquinone, and 10 parts of tetrabutylammonium bromide were added thereto, and reacted at 100 ° C. for 48 hours while blowing dry air. Furthermore, 350 parts of 2-isocyanatoethyl methacrylate and 360 parts of propylene glycol monomethyl ether acetate were added and reacted at 80 ° C. for 12 hours to obtain a 50% non-volatile solution of the product (P4).

原材料として用いたEpoxycyclohexyl POSS Cage Mixture は、2−(3,4−エポキシシクロヘキシル)エチル基含有籠型ポリシルセスキオキサンであり、重量平均分子量は2,200、エポキシ当量は178g/eqであった。   Epoxycyclohexyl POSS Cage Mixture used as a raw material was 2- (3,4-epoxycyclohexyl) ethyl group-containing cage-type polysilsesquioxane, having a weight average molecular weight of 2,200 and an epoxy equivalent of 178 g / eq. .

生成物(P4)について29Si−NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する−70ppm付近のピークのみが確認され、ヒドロキシシリル基の存在を示すT1及びT2構造は確認されなかった。As a result of 29 Si-NMR analysis of the product (P4), only a peak near −70 ppm derived from the T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si was confirmed. The T1 and T2 structures indicating the presence of were not confirmed.

また、生成物(P4)についてH−NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、メタクリロイルオキシ基の炭素−炭素不飽和結合に由来する5.5ppm、6.1ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するメタクリロイルオキシ基の炭素−炭素不飽和結合のモル比率は2.01であった。また、エポキシ基に帰属されるピークは確認されなかった。またエポキシ当量は10,000g/eq以上であった。Further, as a result of 1 H-NMR analysis of the product (P4), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. Moreover, the peak of 5.5 ppm and 6.1 ppm derived from the carbon-carbon unsaturated bond of a methacryloyloxy group was confirmed. The molar ratio of the carbon-carbon unsaturated bond of the methacryloyloxy group to the methylene group bonded to Si calculated from these peak intensity ratios was 2.01. Moreover, the peak attributed to an epoxy group was not confirmed. The epoxy equivalent was 10,000 g / eq or more.

また、生成物(P4)についてFT−IR分析を行った結果、原材料であるEpoxycyclohexyl POSS Cage Mixtureにおいて確認されなかったウレタン結合に帰属される1540cm−1付近のピークが確認された。   Moreover, as a result of conducting FT-IR analysis about the product (P4), the peak of 1540 cm <-1> vicinity which was attributed to the urethane bond which was not confirmed in Epoxycyclohexyl POSS Cage Mixture which is a raw material was confirmed.

また、生成物(P4)のNCO価は0mgNCO/gであった。   Further, the NCO value of the product (P4) was 0 mg NCO / g.

また、生成物(P4)の重量平均分子量は6,000であった。   The product (P4) had a weight average molecular weight of 6,000.

生成物(P4)についての前記29Si−NMR、H−NMR、FT−IR、重量平均分子量等の結果から、生成物(P4)が、ケイ素原子に直接に結合した有機基のほとんど全てが下記式(III−11)で表される有機基From the results of the 29 Si-NMR, 1 H-NMR, FT-IR, weight average molecular weight and the like for the product (P4), almost all of the organic groups in which the product (P4) was directly bonded to the silicon atom were found. Organic group represented by the following formula (III-11)

Figure 2010067684
Figure 2010067684

を有する重量平均分子量6,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は10.8であった。 It was confirmed to be a silsesquioxane compound having a weight average molecular weight of 6,000. The resulting silsesquioxane compound had an SP value of 10.8.

(実施例4)
還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン580部、2−プロピルアルコール2,320部、テトラブチルアンモニウムフルオリド2部、及び脱イオン水70部を仕込み、60℃で8時間反応させた。減圧蒸留にて不揮発分60%となるまで濃縮した後、酢酸ブチル300部を配合し、減圧蒸留を継続し、生成物(P5)の不揮発分60%溶液を得た。
Example 4
In a separable flask equipped with a reflux condenser, a thermometer, an air inlet tube, and a stirrer, 580 parts of N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 2,320 parts of 2-propyl alcohol, tetrabutyl 2 parts of ammonium fluoride and 70 parts of deionized water were charged and reacted at 60 ° C. for 8 hours. After concentration to a non-volatile content of 60% by vacuum distillation, 300 parts of butyl acetate was added, and the vacuum distillation was continued to obtain a 60% non-volatile solution of the product (P5).

還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、酢酸ブチル643部、2−イソシアネートエチルアクリレート552部を配合し、氷浴で攪拌しながら10℃まで冷却した。ここに生成物(P5)の不揮発分60%溶液500部を、反応温度を10℃以下に維持しながら滴下した。60℃で1時間攪拌した後、300メッシュのフィルターにてろ過し、生成物(P6)の不揮発分50%溶液を得た。   A separable flask equipped with a reflux condenser, a thermometer, an air introduction tube, and a stirrer was mixed with 643 parts of butyl acetate and 552 parts of 2-isocyanatoethyl acrylate, and cooled to 10 ° C. while stirring in an ice bath. 500 parts of a non-volatile content 60% solution of the product (P5) was added dropwise thereto while maintaining the reaction temperature at 10 ° C. or lower. After stirring at 60 ° C. for 1 hour, the mixture was filtered through a 300-mesh filter to obtain a 50% non-volatile solution of the product (P6).

生成物(P5)について29Si−NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する−70ppm付近のピークのみが確認され、ヒドロキシシリル基の存在を示すT1及びT2構造は確認されなかった。全アミン価は730mgKOH/gであった。As a result of 29 Si-NMR analysis of the product (P5), only a peak around −70 ppm derived from T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si was confirmed, and hydroxysilyl group The T1 and T2 structures indicating the presence of were not confirmed. The total amine value was 730 mg KOH / g.

生成物(P5)の重量平均分子量は2,000であった。   The weight average molecular weight of the product (P5) was 2,000.

生成物(P6)について29Si−NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する−70ppm付近のピークのみが確認され、ヒドロキシシリル基の存在を示すT1及びT2構造は確認されなかった。全アミン価は0mgKOH/g、NCO価は0mgNCO/gであった。As a result of 29 Si-NMR analysis of the product (P6), only a peak near −70 ppm derived from the T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si was confirmed. The T1 and T2 structures indicating the presence of were not confirmed. The total amine value was 0 mgKOH / g, and the NCO value was 0 mgNCO / g.

生成物(P6)についてH−NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素−炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するメタクリロイルオキシ基の炭素−炭素不飽和結合のモル比率は2.01であった。As a result of 1 H-NMR analysis of the product (P6), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. In addition, 5.9 ppm, 6.1 ppm, and 6.4 ppm peaks derived from the carbon-carbon unsaturated bond of the acryloyloxy group were confirmed. The molar ratio of the carbon-carbon unsaturated bond of the methacryloyloxy group to the methylene group bonded to Si calculated from these peak intensity ratios was 2.01.

生成物(P6)の重量平均分子量は5,600であった。   The weight average molecular weight of the product (P6) was 5,600.

生成物(P6)についての前記29Si−NMR、H−NMR、重量平均分子量等の結果から、生成物(P6)が、ケイ素原子に直接に結合した有機基のほとんど全てが下記式(IV−8)で表される有機基From the results of the 29 Si-NMR, 1 H-NMR, weight average molecular weight and the like for the product (P6), almost all of the organic groups in which the product (P6) was directly bonded to the silicon atom were represented by the following formula (IV Organic group represented by -8)

Figure 2010067684
Figure 2010067684

を有する重量平均分子量5,600のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は13.4であった。 It was confirmed to be a silsesquioxane compound having a weight average molecular weight of 5,600. The resulting silsesquioxane compound had an SP value of 13.4.

(実施例5)
還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、酢酸ブチル482部、及び生成物(P2)の不揮発分60%溶液1,910部を配合し、氷浴で攪拌しながら10℃まで冷却した。ここに生成物(P5)の不揮発分60%溶液500部を、反応温度を20℃以下に維持しながら滴下した。60℃で1時間攪拌した後、300メッシュのフィルターにてろ過し、生成物(P7)の不揮発分50%溶液を得た。
(Example 5)
In a separable flask equipped with a reflux condenser, a thermometer, an air inlet tube, and a stirrer, 482 parts of butyl acetate and 1,910 parts of a 60% non-volatile solution of the product (P2) were blended and stirred in an ice bath. While cooling to 10 ° C. Here, 500 parts of a 60% nonvolatile solution of the product (P5) was added dropwise while maintaining the reaction temperature at 20 ° C. or lower. After stirring at 60 ° C. for 1 hour, the mixture was filtered through a 300 mesh filter to obtain a 50% nonvolatile solution of the product (P7).

生成物(P7)について29Si−NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する−70ppm付近のピークのみが確認され、ヒドロキシシリル基の存在を示すT1及びT2構造は確認されなかった。全アミン価は0mgKOH/g、NCO価は0mgNCO/gであった。As a result of 29 Si-NMR analysis of the product (P7), only a peak near −70 ppm derived from T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si was confirmed, and hydroxysilyl group The T1 and T2 structures indicating the presence of were not confirmed. The total amine value was 0 mgKOH / g, and the NCO value was 0 mgNCO / g.

生成物(P7)についてH−NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素−炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素−炭素不飽和結合のモル比率は2.05であった。As a result of 1 H-NMR analysis of the product (P7), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. In addition, 5.9 ppm, 6.1 ppm, and 6.4 ppm peaks derived from the carbon-carbon unsaturated bond of the acryloyloxy group were confirmed. The molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si calculated from these peak intensity ratios was 2.05.

生成物(P7)の重量平均分子量は10,000であった。   The weight average molecular weight of the product (P7) was 10,000.

生成物(P7)についての前記29Si−NMR、H−NMR、重量平均分子量等の結果から、生成物(P7)が、ケイ素原子に直接に結合した有機基のほとんど全てが下記式(IV−9)で表される有機基From the results of the 29 Si-NMR, 1 H-NMR, weight average molecular weight and the like for the product (P7), almost all of the organic groups in which the product (P7) was directly bonded to the silicon atom were represented by the following formula (IV Organic group represented by -9)

Figure 2010067684
Figure 2010067684

[式(IV−9)中、R21はイソホロンジイソシアネート残基を示す。]を有する重量平均分子量10,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は13.1であった。[In formula (IV-9), R 21 represents an isophorone diisocyanate residue. And a silsesquioxane compound having a weight average molecular weight of 10,000. The resulting silsesquioxane compound had an SP value of 13.1.

(実施例6)
還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、Glycidyl POSS cage mixture 400部及び酢酸ブチル600部を仕込み、60℃で攪拌しながら溶解させた。ここにジメチロールプロピオン酸355部、及びテトラブチルアンモニウムブロミド10部を仕込み、100℃で24時間反応させた。さらに2−イソシアネートエチルアクリレート1,010部、酢酸ブチル1,200部、メトキノン2部を配合して、乾燥空気を吹き込みながら80℃で12時間反応させ、生成物(P8)の不揮発分50%溶液を得た。
(Example 6)
400 parts of Glycidyl POSS cage mixture and 600 parts of butyl acetate were charged into a separable flask equipped with a reflux condenser, a thermometer, an air introduction tube, and a stirrer, and dissolved while stirring at 60 ° C. Here, 355 parts of dimethylolpropionic acid and 10 parts of tetrabutylammonium bromide were charged and reacted at 100 ° C. for 24 hours. Further, 1,010 parts of 2-isocyanatoethyl acrylate, 1,200 parts of butyl acetate and 2 parts of methoquinone were blended and reacted at 80 ° C. for 12 hours while blowing dry air, and a 50% non-volatile solution of the product (P8) Got.

生成物(P8)について29Si−NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する−70ppm付近のピークのみが確認され、ヒドロキシシリル基の存在を示すT1及びT2構造は確認されなかった。酸価は0mgKOH/gであった。As a result of 29 Si-NMR analysis of the product (P8), only a peak near −70 ppm derived from the T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si was confirmed. The T1 and T2 structures indicating the presence of were not confirmed. The acid value was 0 mgKOH / g.

また、生成物(P8)についてH−NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素−炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素−炭素不飽和結合のモル比率は3.00であった。また、エポキシ基に帰属されるピークは確認されなかった。またエポキシ当量は10,000g/eq以上であった。Further, as a result of 1 H-NMR analysis of the product (P8), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. In addition, 5.9 ppm, 6.1 ppm, and 6.4 ppm peaks derived from the carbon-carbon unsaturated bond of the acryloyloxy group were confirmed. The molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si calculated from these peak intensity ratios was 3.00. Moreover, the peak attributed to an epoxy group was not confirmed. The epoxy equivalent was 10,000 g / eq or more.

また、生成物(P8)についてFT−IR分析を行った結果、原材料であるGlycidyl POSS Cage Mixtureにおいて確認されなかったウレタン結合に帰属される1540cm−1付近のピークが確認された。   Moreover, as a result of performing FT-IR analysis about the product (P8), the peak of 1540cm <-1> vicinity attributed to the urethane bond which was not confirmed in Glycidyl POSS Cage Mixture which is a raw material was confirmed.

また、生成物(P8)のNCO価は0mgNCO/gであった。   Further, the NCO value of the product (P8) was 0 mg NCO / g.

また、生成物(P8)の重量平均分子量は8,000であった。   Moreover, the weight average molecular weight of the product (P8) was 8,000.

生成物(P8)についての前記29Si−NMR、H−NMR、FT−IR、重量平均分子量等の結果から、生成物(P8)が、ケイ素原子に直接に結合した有機基のほとんど全てが下記式(V−11)で表される有機基From the results of the 29 Si-NMR, 1 H-NMR, FT-IR, weight average molecular weight and the like for the product (P8), almost all of the organic groups in which the product (P8) was directly bonded to the silicon atom were found. Organic group represented by the following formula (V-11)

Figure 2010067684
Figure 2010067684

を有する重量平均分子量8,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は11.0であった。 And a silsesquioxane compound having a weight average molecular weight of 8,000. The SP value of the obtained silsesquioxane compound was 11.0.

(比較例1)
還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、トルエン300部、テトラブチルアンモニウムヒドロキシド40%メタノール溶液30部、及び脱イオン水12部を入れ、氷浴で2℃まで冷却した。ここにテトラヒドロフラン300部を加えて希釈した3−アクリロイルオキシプロピルトリメトキシシラン110部を投入し、20℃にて24時間反応させた。減圧蒸留にて揮発分を除去した後、プロピレングリコールモノメチルエーテルアセテート100部に溶解し、生成物(P9)の不揮発分50%溶液を得た。
(Comparative Example 1)
A separable flask equipped with a reflux condenser, a thermometer, and a stirrer was charged with 300 parts of toluene, 30 parts of tetrabutylammonium hydroxide 40% methanol solution, and 12 parts of deionized water, and cooled to 2 ° C. with an ice bath. 110 parts of 3-acryloyloxypropyltrimethoxysilane diluted with 300 parts of tetrahydrofuran was added thereto and reacted at 20 ° C. for 24 hours. After removing the volatile components by distillation under reduced pressure, the product was dissolved in 100 parts of propylene glycol monomethyl ether acetate to obtain a 50% non-volatile solution of the product (P9).

生成物(P9)について29Si−NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する−70ppm付近のピークと、一つのヒドロキシシリル基を有するT2構造に由来する−59ppmのピークが確認された。
これらのピークの積分強度比は、T3構造に由来するピーク/T2構造に由来するピーク=90/10であった。
As a result of 29 Si-NMR analysis of the product (P9), a peak around −70 ppm derived from the T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si, and one hydroxysilyl group were found. A -59 ppm peak derived from the T2 structure possessed was confirmed.
The integrated intensity ratio of these peaks was: peak derived from the T3 structure / peak derived from the T2 structure = 90/10.

また、生成物(P9)についてH−NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素−炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素−炭素不飽和結合のモル比率は、1.00であった。Further, as a result of 1 H-NMR analysis of the product (P9), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. In addition, 5.9 ppm, 6.1 ppm, and 6.4 ppm peaks derived from the carbon-carbon unsaturated bond of the acryloyloxy group were confirmed. The molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si calculated from these peak intensity ratios was 1.00.

また、生成物(P9)の重量平均分子量は1,500であった。   Moreover, the weight average molecular weight of the product (P9) was 1,500.

生成物(P9)についての前記29Si−NMR、H−NMR、FT−IR、重量平均分子量等の結果から、生成物(P9)が、ケイ素原子に直接に結合した有機基の全てが下記式(VIII)で表される有機基From the results of the 29 Si-NMR, 1 H-NMR, FT-IR, weight average molecular weight and the like for the product (P9), all the organic groups in which the product (P9) was directly bonded to the silicon atom were as follows: Organic group represented by formula (VIII)

Figure 2010067684
Figure 2010067684

を有する重量平均分子量1,500のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は9.5であった。 It was confirmed to be a silsesquioxane compound having a weight average molecular weight of 1,500. The SP value of the obtained silsesquioxane compound was 9.5.

(実施例7)
実施例1で得られた生成物(P1)の不揮発分50%溶液と下記の重合性不飽和化合物(A1)を、生成物(P1)と重合性不飽和化合物(A1)の質量比が1:1になるように混合し、40℃で24時間攪拌して、混合溶液を得た。該混合溶液の相溶性を評価することにより、実施例1で得られた生成物(P1)と重合性不飽和化合物との溶液状態における相溶性を評価した。評価は、目視にて相溶状態を観察し、下記の基準に従って行った。評価結果を表1に示した。
(Example 7)
A 50% non-volatile solution of the product (P1) obtained in Example 1 and the following polymerizable unsaturated compound (A1), the mass ratio of the product (P1) and polymerizable unsaturated compound (A1) is 1. 1 and mixed at 40 ° C. for 24 hours to obtain a mixed solution. By evaluating the compatibility of the mixed solution, the compatibility of the product (P1) obtained in Example 1 and the polymerizable unsaturated compound in a solution state was evaluated. The evaluation was carried out according to the following criteria by visually observing the compatible state. The evaluation results are shown in Table 1.

また、前記と同様にして、生成物(P1)と下記の重合性不飽和化合物(A2)から(A8)の各々を混合し、各混合溶液を得た。そして、該混合溶液の相溶性を前記と同様の基準にて評価した。評価結果を表1に示した。   Further, in the same manner as described above, the product (P1) and each of the following polymerizable unsaturated compounds (A2) to (A8) were mixed to obtain mixed solutions. And the compatibility of this mixed solution was evaluated on the same basis as the above. The evaluation results are shown in Table 1.

<相溶性の判定>
○:均一、透明であり、相溶性は良好
△:わずかに濁りがある、又は振った時に揺らぎが見え、相溶性は良好ではない
×:かなり濁っている、又は分離、凝集、沈降物、ゲル化のいずれか1つ以上が見られ、相溶性は悪い
<重合性不飽和化合物>
A1:HDDA(商品名、ダイセルサイテック社製、1,6−ヘキサンジオールジアクリレート)
A2:アロニックスM−140(商品名、東亜合成社製、N-アクリロイルオキシエチルヘキサヒドロフタルイミド)
A3:アロニックスM−325[商品名、東亜合成社製、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート]
A4:トリメチロールプロパンジアクリレート
A5:ペンタエリスリトールジアクリレート
A6:ペンタエリスリトールトリアクリレート
A7:アロニックスM−403(商品名、東亜合成社製、ジペンタエリスリトールペンタ及びヘキサアクリレート)
A8:アロニックスM−1200(商品名、東亞合成社製、ニ官能ウレタンアクリレートオリゴマー)
<Compatibility determination>
○: Uniform and transparent, good compatibility Δ: Slightly turbid, or fluctuating when shaken, poor compatibility ×: considerably turbid, or separation, aggregation, sediment, gel Any one or more of the above are observed, and the compatibility is poor <Polymerizable unsaturated compound>
A1: HDDA (trade name, manufactured by Daicel Cytec, 1,6-hexanediol diacrylate)
A2: Aronix M-140 (trade name, manufactured by Toa Gosei Co., Ltd., N-acryloyloxyethyl hexahydrophthalimide)
A3: Aronix M-325 [trade name, manufactured by Toa Gosei Co., Ltd., ε-caprolactone-modified tris (acryloxyethyl) isocyanurate]
A4: Trimethylolpropane diacrylate A5: Pentaerythritol diacrylate A6: Pentaerythritol triacrylate A7: Aronix M-403 (trade name, manufactured by Toa Gosei Co., Ltd., dipentaerythritol pentaacrylate and hexaacrylate)
A8: Aronix M-1200 (trade name, manufactured by Toagosei Co., Ltd., bifunctional urethane acrylate oligomer)

(実施例8〜12、比較例2)
実施例7と同様にして、実施例2〜6、比較例1で得られた各生成物(P3、P4、P6、P7、P8、P9)について、重合性不飽和化合物との溶液状態における相溶性を評価した。評価結果を表1に示した。
(Examples 8 to 12, Comparative Example 2)
In the same manner as in Example 7, for each product (P3, P4, P6, P7, P8, P9) obtained in Examples 2-6 and Comparative Example 1, the phase in a solution state with the polymerizable unsaturated compound The solubility was evaluated. The evaluation results are shown in Table 1.

Figure 2010067684
Figure 2010067684

(実施例13)
本発明のシルセスキオキサン化合物を含む活性エネルギー線硬化性組成物について、重合性不飽和化合物を混合した場合の相溶性を評価した。試験方法を以下に示す。
(Example 13)
About the active energy ray curable composition containing the silsesquioxane compound of this invention, the compatibility at the time of mixing a polymerizable unsaturated compound was evaluated. The test method is shown below.

実施例1で得られた生成物(P1)の不揮発分50%溶液 100部、重合性不飽和化合物(A1)50部、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(光重合開始剤)3.0部、及び2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(光重合開始剤)0.5部を配合し、酢酸エチルで不揮発分30%に希釈した後に攪拌し、活性エネルギー線硬化性組成物を作成した。   100 parts of a 50% non-volatile solution of the product (P1) obtained in Example 1, 50 parts of a polymerizable unsaturated compound (A1), 1-hydroxy-cyclohexyl-phenyl-ketone (photopolymerization initiator) 3.0 And 0.54 parts of 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (photopolymerization initiator), diluted with ethyl acetate to a non-volatile content of 30%, stirred, and active energy ray curable A composition was prepared.

次いで中塗り板(注1)に、前記活性エネルギー線硬化性組成物をアプリケーターで乾燥膜厚が10μmとなる条件で塗装し、80℃で10分間乾燥して溶剤を除去した後、高圧水銀灯(80W/cm)で、紫外線(ピークトップ波長365nm)を照射量20,000J/mで照射して、塗膜を硬化させた。硬化させた塗膜の外観を目視で観察し、相溶状態を下記の基準に従って評価した。評価結果を表2に示す。Next, the active energy ray-curable composition was applied to an intermediate coating plate (Note 1) with an applicator under a condition that the dry film thickness was 10 μm, dried at 80 ° C. for 10 minutes to remove the solvent, and then the high-pressure mercury lamp ( 80 W / cm), ultraviolet rays (peak top wavelength 365 nm) were irradiated at an irradiation amount of 20,000 J / m 2 to cure the coating film. The appearance of the cured coating film was visually observed, and the compatibility state was evaluated according to the following criteria. The evaluation results are shown in Table 2.

また、重合性不飽和化合物(A1)を重合性不飽和化合物(A2)から(A8)の各々に替えた以外は、前記と同様の配合で、各重合性不飽和化合物(A2)から(A8)の各々を含む各活性エネルギー線硬化性組成物を作成した。次いで、前記と同様の条件で硬化させた塗膜を作成し、該塗膜を目視で観察し、相溶状態を下記の基準に従って評価した。
評価結果を表2に示す。
Also, each polymerizable unsaturated compound (A2) to (A8) was prepared in the same manner as above except that the polymerizable unsaturated compound (A1) was changed to each of the polymerizable unsaturated compound (A2) to (A8). Each active energy ray-curable composition containing each of the above was prepared. Subsequently, the coating film hardened | cured on the same conditions as the above was created, this coating film was observed visually, and the compatible state was evaluated according to the following reference | standard.
The evaluation results are shown in Table 2.

(注1)中塗り板:パルボンド#3020(商品名、日本パーカライジング社製、りん酸亜鉛処理剤)で化成処理した0.8×150×70mmの冷延鋼板に、エレクロンGT−10(商品名、関西ペイント社製、カチオン電着塗料)を膜厚20μmとなるように電着塗装し、170℃で30分焼付け乾燥を行なって電着塗膜を形成させた。該電着塗膜上にWP−300(商品名、関西ペイント社製、水性中塗り塗料)を、硬化膜厚が25μmとなるようにスプレー塗装した後、電気熱風乾燥器で140℃×30分焼付け乾燥を行ない中塗り板を作成した。   (Note 1) Intermediate coating plate: 0.8 × 150 × 70 mm cold-rolled steel plate chemical-treated with Palbond # 3020 (trade name, manufactured by Nihon Parkerizing Co., Ltd., zinc phosphate treatment agent), ELECRON GT-10 (trade name) Electrodeposition coating (made by Kansai Paint Co., Ltd., cationic electrodeposition coating) so as to have a film thickness of 20 μm was performed by baking at 170 ° C. for 30 minutes to form an electrodeposition coating film. After spray coating WP-300 (trade name, manufactured by Kansai Paint Co., Ltd., aqueous intermediate coating) on the electrodeposition coating film so that the cured film thickness is 25 μm, it is 140 ° C. × 30 minutes in an electric hot air dryer. Baking and drying were performed to prepare an intermediate coating plate.

<相溶性の判定>
○:均一、透明であり、相溶性は良好
△:わずかに濁りがあり、相溶性は良好ではない
×:かなりに濁っている、又は凝集物、ブツ、はじきのいずれか1つ以上が見られ、相溶性は悪い
<Compatibility determination>
○: Uniform and transparent, good compatibility △: Slightly turbid, poor compatibility ×: Slightly turbid, or any one or more of aggregates, bumps, and repelling , Poor compatibility

(実施例14〜18、比較例3)
生成物(P1)の不揮発分50%溶液を、実施例2〜6、比較例1で得られた各生成物(P3、P4、P6、P7、P8、P9)の溶液の各々に替えた以外は、実施例13と同様にして、活性エネルギー線硬化性組成物を作成した。次いで、実施例13と同様の条件で該活性エネルギー線硬化性組成物を硬化させた塗膜を作成し、重合性不飽和化合物を混合した場合の相溶性を評価した。評価結果を表2に示す。
(Examples 14 to 18, Comparative Example 3)
The product (P1) with a non-volatile content of 50% was changed to each of the solutions of the products (P3, P4, P6, P7, P8, P9) obtained in Examples 2 to 6 and Comparative Example 1. Produced an active energy ray-curable composition in the same manner as in Example 13. Subsequently, the coating film which hardened this active energy ray curable composition on the conditions similar to Example 13 was created, and the compatibility at the time of mixing a polymerizable unsaturated compound was evaluated. The evaluation results are shown in Table 2.

Figure 2010067684
Figure 2010067684

(実施例19〜26)
実施例13における活性エネルギー線硬化性組成物の作成方法及び硬化塗膜の作成方法と同様にして、表3に示す配合の活性エネルギー線硬化性組成物を作成して、中塗り板(注1)上に乾燥膜厚10μmの硬化塗膜を形成し、試験板を得た。得られた各試験板について、耐擦傷性及び耐候性を評価した。評価結果を表3に示す。
(Examples 19 to 26)
In the same manner as in the method for producing the active energy ray curable composition and the method for producing the cured coating film in Example 13, an active energy ray curable composition having the composition shown in Table 3 was prepared, and an intermediate coating plate (Note 1) was prepared. ) A cured coating film having a dry film thickness of 10 μm was formed thereon to obtain a test plate. Each test plate obtained was evaluated for scratch resistance and weather resistance. The evaluation results are shown in Table 3.

<耐擦傷性>
各塗膜に市販のスチールウール(#0000)をこすりつけ、塗膜を目視で観察し下記の基準に従って評価した。
○:傷、ワレ、剥がれがない、若しくは傷が僅かにあるが実用上問題が無い
△:傷が認められる
×:ワレ、剥がれ、著しい傷等が認められる
<Abrasion resistance>
Commercially available steel wool (# 0000) was rubbed on each coating film, and the coating film was visually observed and evaluated according to the following criteria.
○: no scratches, cracks, peeling, or slight scratches, but no problem in practical use Δ: scratches are observed ×: cracks, peeling, significant scratches, etc. are observed

<耐候性>
得られた各試験板ついてサンシャインウェザーオメーターを用いて、1000時間試験を行った後に、塗膜を目視で観察し下記の基準に従って評価した。
○:異常無し、若しくはフクレ、変色、ツヤ変化、剥がれ等が僅かに認められるが実用上問題が無い
△:フクレ、変色、ツヤ変化、剥がれ等が認められる
×:フクレ、変色、ツヤ変化、剥がれ等が著しく認められる
<Weather resistance>
About each obtained test board, after performing the test for 1000 hours using a sunshine weatherometer, the coating film was observed visually and evaluated according to the following reference | standard.
○: No abnormality, or slight swelling, discoloration, gloss change, peeling, etc. are observed, but there are no practical problems. Etc. are remarkably recognized

Figure 2010067684
Figure 2010067684

Claims (7)

ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つが(メタ)アクリロイルオキシ基を2つ以上有する有機基であることを特徴とするシルセスキオキサン化合物。   A silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom is an organic group having two or more (meth) acryloyloxy groups. Silsesquioxane compound characterized by the above. 前記(メタ)アクリロイルオキシ基を2つ以上有する有機基が、(メタ)アクリロイルオキシ基を2つ以上有しかつウレタン結合及び/又はウレア結合を有する有機基である請求項1記載のシルセスキオキサン化合物。   The silsesquioxy according to claim 1, wherein the organic group having two or more (meth) acryloyloxy groups is an organic group having two or more (meth) acryloyloxy groups and having a urethane bond and / or a urea bond. Sun compound. 前記(メタ)アクリロイルオキシ基を2つ以上有しかつウレタン結合及び/又はウレア結合を有する有機基が、下記一般式(I−1)で表される有機基である請求項2記載のシルセスキオキサン化合物。
Figure 2010067684
[式(I−1)中、Rは水素原子又はメチル基を示し、mは2〜5の整数を示し、Yはウレタン結合及び/又はウレア結合を有する(m+1)価の有機基を示す。
但し、m個のHC=(R)COO−基は、各々、Yである有機基を構成する2個以上の異なる炭素に結合しているものとする]
The silsesquide according to claim 2, wherein the organic group having two or more (meth) acryloyloxy groups and having a urethane bond and / or a urea bond is an organic group represented by the following general formula (I-1). Oxan compounds.
Figure 2010067684
[In Formula (I-1), R 1 represents a hydrogen atom or a methyl group, m represents an integer of 2 to 5, and Y represents a (m + 1) -valent organic group having a urethane bond and / or a urea bond. .
However, m H 2 C═ (R 1 ) COO— groups are each bonded to two or more different carbons constituting the organic group that is Y.
前記一般式(I−1)で表される有機基が、下記一般式(II−1)から一般式(V−1)で表される有機基のいずれか1種である請求項3記載のシルセスキオキサン化合物。
Figure 2010067684
{式(II−1)中、Rは水素原子又はメチル基を示し、Rは炭素数1〜10の2価の炭化水素基を示し、Rは水素原子又はメチル基を示し、Rは炭素数1〜10の2価の炭化水素基又は下記一般式(VI)
Figure 2010067684
[式(VI)中、R17は炭素数2〜4の2価の炭化水素基を示し、R18はジイソシアネート残基を示す。]
で表される2価の基を示す。
式(III−1)中、Rは水素原子又はメチル基を示し、
は炭素数1〜10の2価の炭化水素基を示し、
は水素原子又はメチル基を示し、
は炭素数1〜10の2価の炭化水素基又は上記一般式(VI)で表される2価の基を示す。
式(IV−1)中、R10はそれぞれ同一でも又は異なっていてもよい水素原子又はメチル基を示し、
11はそれぞれ同一でも又は異なっていてもよい炭素数1〜10の2価の炭化水素基又は上記一般式(VI)で表される2価の基を示し、
12は炭素数1〜10の2価の炭化水素基を示す。
式(V−1)中、nは1〜3の整数を示し、
13はそれぞれ同一でも又は異なっていてもよい水素原子又はメチル基を示し、
14はそれぞれ同一でも又は異なっていてもよい炭素数1〜10の2価の炭化水素基又は上記一般式(VI)で表される2価の基を示し、
15は炭素数1〜10の(n+1)価の炭化水素基を示し、
16は炭素数1〜10の2価の炭化水素基を示す。
但し、nが2又は3の場合、HC=C(R13)COOR14NHCOO−基は、R15である炭化水素基を構成する2個以上の異なる炭素に結合しているものとする}
The organic group represented by the general formula (I-1) is any one of organic groups represented by the following general formula (II-1) to general formula (V-1). Silsesquioxane compound.
Figure 2010067684
{In Formula (II-1), R 2 represents a hydrogen atom or a methyl group, R 3 represents a divalent hydrocarbon group having 1 to 10 carbon atoms, R 4 represents a hydrogen atom or a methyl group, R 5 is a divalent hydrocarbon group having 1 to 10 carbon atoms or the following general formula (VI)
Figure 2010067684
[In the formula (VI), R 17 represents a divalent hydrocarbon group having 2 to 4 carbon atoms, and R 18 represents a diisocyanate residue. ]
The bivalent group represented by these is shown.
In formula (III-1), R 6 represents a hydrogen atom or a methyl group,
R 7 represents a divalent hydrocarbon group having 1 to 10 carbon atoms,
R 8 represents a hydrogen atom or a methyl group,
R 9 represents a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (VI).
In formula (IV-1), each R 10 represents a hydrogen atom or a methyl group which may be the same or different,
R 11 represents a divalent hydrocarbon group having 1 to 10 carbon atoms which may be the same or different, or a divalent group represented by the general formula (VI),
R 12 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
In formula (V-1), n represents an integer of 1 to 3,
R 13 represents a hydrogen atom or a methyl group, which may be the same or different,
R 14 represents a divalent hydrocarbon group having 1 to 10 carbon atoms which may be the same or different, or a divalent group represented by the above general formula (VI),
R 15 represents an (n + 1) -valent hydrocarbon group having 1 to 10 carbon atoms,
R 16 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
However, when n is 2 or 3, the H 2 C═C (R 13 ) COOR 14 NHCOO— group is bonded to two or more different carbons constituting the hydrocarbon group of R 15. }
重量平均分子量が1,000〜100,000である請求項1に記載のシルセスキオキサン化合物。   The silsesquioxane compound according to claim 1, which has a weight average molecular weight of 1,000 to 100,000. 請求項1に記載のシルセスキオキサン化合物、及び光重合開始剤を含有する活性エネルギー線硬化性組成物。   An active energy ray-curable composition containing the silsesquioxane compound according to claim 1 and a photopolymerization initiator. 前記シルセスキオキサン化合物以外の重合性不飽和化合物をさらに含有する請求項6記載の活性エネルギー線硬化性組成物。   The active energy ray-curable composition according to claim 6, further comprising a polymerizable unsaturated compound other than the silsesquioxane compound.
JP2010542063A 2008-12-10 2009-11-10 Silsesquioxane compound having a polymerizable functional group Pending JPWO2010067684A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008314304 2008-12-10
JP2008314304 2008-12-10
PCT/JP2009/069138 WO2010067684A1 (en) 2008-12-10 2009-11-10 Silsesquioxane compound having polymerizable functional group

Publications (1)

Publication Number Publication Date
JPWO2010067684A1 true JPWO2010067684A1 (en) 2012-05-17

Family

ID=42242676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010542063A Pending JPWO2010067684A1 (en) 2008-12-10 2009-11-10 Silsesquioxane compound having a polymerizable functional group

Country Status (3)

Country Link
JP (1) JPWO2010067684A1 (en)
TW (1) TW201030062A (en)
WO (1) WO2010067684A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270435B2 (en) * 2009-04-17 2013-08-21 関西ペイント株式会社 Silsesquioxane compound having a polymerizable functional group
JP5284869B2 (en) * 2009-05-22 2013-09-11 関西ペイント株式会社 Silsesquioxane compound having a polymerizable functional group and an ultraviolet absorbing group
CN102892518B (en) * 2010-04-14 2014-10-01 关西涂料株式会社 Method for formation of multi-layered coating film, and coated article
JP5547540B2 (en) * 2010-04-14 2014-07-16 関西ペイント株式会社 Active energy ray-curable coating composition and coated article
JP2013018848A (en) * 2011-07-09 2013-01-31 Kansai Paint Co Ltd Active energy ray-curable composition and coated article
JP6057320B2 (en) * 2011-07-13 2017-01-11 関西ペイント株式会社 Laminate and method for producing laminate
JP6219083B2 (en) * 2013-07-18 2017-10-25 新中村化学工業株式会社 Photo-curable resin composition that forms a cured product with excellent heat resistance and dimensional accuracy
WO2016047415A1 (en) * 2014-09-26 2016-03-31 Dic株式会社 Aqueous urethane resin composition, coating agent and article
CN115572567B (en) * 2022-10-27 2023-10-20 南宝树脂(佛山)有限公司 Washable environment-friendly water-based insole laminating adhesive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102812A1 (en) * 2001-06-13 2002-12-27 Konishi Co., Ltd. Unsaturated organic compounds having hydrolyzable silicon-containing groups, process for producing the same, silicon-containing polymers and emulsions thereof
WO2007148684A1 (en) * 2006-06-20 2007-12-27 Nof Corporation Inorganic-organic hybrid composition and use thereof
US20080187499A1 (en) * 2005-04-20 2008-08-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V. Tough, Long-Lasting Dental Composites

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339781B2 (en) * 2008-05-30 2013-11-13 富士フイルム株式会社 Colored curable composition, color filter, and solid-state imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102812A1 (en) * 2001-06-13 2002-12-27 Konishi Co., Ltd. Unsaturated organic compounds having hydrolyzable silicon-containing groups, process for producing the same, silicon-containing polymers and emulsions thereof
US20080187499A1 (en) * 2005-04-20 2008-08-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V. Tough, Long-Lasting Dental Composites
WO2007148684A1 (en) * 2006-06-20 2007-12-27 Nof Corporation Inorganic-organic hybrid composition and use thereof

Also Published As

Publication number Publication date
TW201030062A (en) 2010-08-16
WO2010067684A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5579072B2 (en) Silsesquioxane compound having a polymerizable functional group
JPWO2010067684A1 (en) Silsesquioxane compound having a polymerizable functional group
JP5688973B2 (en) Silsesquioxane compound having a polymerizable functional group
JP5685571B2 (en) Curable composition
KR102510268B1 (en) Fluorine-containing acrylic compound and method for producing the same, curable composition, and article
JP5484355B2 (en) Silsesquioxane compound having a polymerizable functional group
JP5393493B2 (en) Active energy ray-curable composition and coated article
JP5907588B2 (en) Silsesquioxane compound and coating composition containing the same
KR20150113882A (en) Fluorine-containing acryl compound and method for making the same, curable composition, and substrate
TWI506099B (en) Coating composition
CN113166548A (en) Resin composition, photosensitive resin composition, cured film, method for producing cured film, patterned cured film, and method for producing patterned cured film
JP2013018848A (en) Active energy ray-curable composition and coated article
CN109912798B (en) Organopolysiloxane compound and active energy ray-curable composition containing same
JP5284869B2 (en) Silsesquioxane compound having a polymerizable functional group and an ultraviolet absorbing group
JP7390682B2 (en) Coating agent, resin member and manufacturing method thereof
JP5527432B2 (en) Method for producing solvent-soluble reactive polysiloxane
JP5527433B2 (en) Method for producing reactive polysiloxane solution
JP5270435B2 (en) Silsesquioxane compound having a polymerizable functional group
JP2004225019A (en) Fluorine-containing polyether mono- or di-(meth)acrylates
JP2021017424A (en) Organic silicon compound and energy ray-curable resin composition
JP3901577B2 (en) Photocurable silphenylene composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408