JPWO2010050439A1 - Protein immobilization carrier and use thereof - Google Patents

Protein immobilization carrier and use thereof Download PDF

Info

Publication number
JPWO2010050439A1
JPWO2010050439A1 JP2010535783A JP2010535783A JPWO2010050439A1 JP WO2010050439 A1 JPWO2010050439 A1 JP WO2010050439A1 JP 2010535783 A JP2010535783 A JP 2010535783A JP 2010535783 A JP2010535783 A JP 2010535783A JP WO2010050439 A1 JPWO2010050439 A1 JP WO2010050439A1
Authority
JP
Japan
Prior art keywords
nta
immobilized
carrier
protein
polyhistidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010535783A
Other languages
Japanese (ja)
Inventor
桂 進司
進司 桂
真彦 大重
真彦 大重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Publication of JPWO2010050439A1 publication Critical patent/JPWO2010050439A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3251Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6827Total protein determination, e.g. albumin in urine
    • G01N33/683Total protein determination, e.g. albumin in urine involving metal ions

Abstract

担体上に固定化されたキトサン、該キトサンに結合したニトリロ三酢酸(NTA)を含むNTA固定化担体であって、NTAに2価金属イオンを配位させて、ポリヒスチジン含有タンパク質を結合することのできるNTA固定化担体。An NTA-immobilized carrier comprising chitosan immobilized on a carrier and nitrilotriacetic acid (NTA) bound to the chitosan, wherein a divalent metal ion is coordinated to NTA to bind a polyhistidine-containing protein. NTA immobilization carrier that can be used.

Description

本発明は、ポリヒスチジン含有タンパク質を効率よく固定化したり、精製したりすることのできる担体、該担体を含むタンパク質固定化キットまたは精製用キットおよびタンパク質の固定化方法または精製方法に関する。   The present invention relates to a carrier capable of efficiently immobilizing or purifying a polyhistidine-containing protein, a protein immobilization kit or purification kit containing the carrier, and a protein immobilization method or purification method.

組み換えタンパク質を効率よく固定化し、精製するためにアミノ末端などにポリヒスチジンタグを付加して融合タンパク質として発現させ、発現したタンパク質を2価の金属イオンとキレート結合を形成させて固定化したり精製したりする方法が知られている(特許文献1)。そして、2価の金属イオンとキレート結合を形成させるために、ニトリロ三酢酸(NTA)をゲルや基板などの担体上に直接結合させる技術が開発されている。また、プロテインアレイの作成法としてDNAアレイ上でポリヒスチジン含有タンパク質を発現し、ガラス表面に直接Ni-NTAを修飾した基板上に固定化する方法もすでに開発されている(アレイ上における転写型プロテインアレイ)。しかし、これらの方法では固定化されるタンパク質の量が十分でなく、検出感度に問題があった。   To efficiently immobilize and purify the recombinant protein, a polyhistidine tag is added to the amino terminus and expressed as a fusion protein, and the expressed protein is immobilized and purified by forming a chelate bond with a divalent metal ion. Is known (Patent Document 1). In order to form a chelate bond with a divalent metal ion, a technique for directly binding nitrilotriacetic acid (NTA) onto a carrier such as a gel or a substrate has been developed. As a method for preparing a protein array, a method has been developed in which a polyhistidine-containing protein is expressed on a DNA array and immobilized on a glass substrate directly modified with Ni-NTA (transcribed protein on the array). array). However, these methods have a problem in detection sensitivity because the amount of the immobilized protein is not sufficient.

特開2001-083155号公報Japanese Patent Laid-Open No. 2001-083155

従来の転写型によるプロテインアレイ作成において、タンパク質固定化量は検出には十分ではない。そのため、本発明は、固定化されるタンパク質の量を高めるための技術を提供することを課題とする。   In the production of a protein array by a conventional transcription type, the amount of protein immobilized is not sufficient for detection. Therefore, an object of the present invention is to provide a technique for increasing the amount of protein to be immobilized.

本発明者は上記課題を解決するために鋭意検討を行った。その結果、担体上にキトサンを固定化し、該キトサンを介してニトリロ三酢酸(NTA)を固定化し、固定化されたNTAに2価金属イオンを配位させることにより、ポリヒスチジン含有タンパク質を効率よく固定化できることを見出して本発明を完成させた。   The present inventor has intensively studied to solve the above problems. As a result, by immobilizing chitosan on a carrier, immobilizing nitrilotriacetic acid (NTA) via the chitosan, and coordinating a divalent metal ion to the immobilized NTA, polyhistidine-containing protein is efficiently produced. The present invention has been completed by finding that it can be immobilized.

すなわち、本発明は以下のとおりである。
(1)担体上に固定化されたキトサン、該キトサンに結合したニトリロ三酢酸(NTA)を含むNTA固定化担体であって、NTAに2価金属イオンを配位させて、ポリヒスチジン含有タンパク質を結合することのできるNTA固定化担体。
(2)NTAが、担体上に固定化されたキトサンのアミノ基にグルタルアルデヒドを反応させ、次いで、N-(5-Amino-1-carboxypentyl)iminodiacetic acidを反応させることにより固定化された、(1)のNTA固定化担体。
(3)担体が基板であり、基板上の複数箇所にキトサン-NTAが固定化された、(1)または(2)のNTA固定化担体。
(4)(1)〜(3)のいずれかのNTA固定化担体を含む、ポリヒスチジン含有タンパク質を精製または固定化するためのキット。
(5)さらに2価金属イオン溶液を含む、(4)のキット。
(6)さらにポリヒスチジン含有タンパク質発現ベクターを含む、(4)または(5)のキット。
(7)(3)のNTA固定化担体を含み、該NTA固定化担体上の複数箇所にポリヒスチジン含有タンパク質が結合したプロテインチップ。
(8)(1)〜(3)のいずれかのNTA固定化担体に2価金属イオンを配位させて、次いでポリヒスチジン含有タンパク質含有試料を該担体に負荷してポリヒスチジン含有タンパク質を該担体に特異的に結合させることを含む、ポリヒスチジン含有タンパク質の固定化方法。
(9)(1)〜(3)のいずれかのNTA固定化担体に2価金属イオンを配位させて、次いでポリヒスチジン含有タンパク質含有試料を該担体に負荷してポリヒスチジン含有タンパク質を該担体に特異的に結合させ、該タンパク質を溶出させることを含む、ポリヒスチジン含有タンパク質の精製方法。
That is, the present invention is as follows.
(1) An NTA-immobilized carrier containing chitosan immobilized on a carrier and nitrilotriacetic acid (NTA) bound to the chitosan, wherein a divalent metal ion is coordinated with NTA to produce a polyhistidine-containing protein. NTA immobilization carrier that can be bound.
(2) NTA was immobilized by reacting glutaraldehyde with the amino group of chitosan immobilized on a carrier and then reacting with N- (5-Amino-1-carboxypentyl) iminodiacetic acid. 1) NTA-immobilized carrier.
(3) The NTA-immobilized carrier according to (1) or (2), wherein the carrier is a substrate, and chitosan-NTA is immobilized at a plurality of locations on the substrate.
(4) A kit for purifying or immobilizing a polyhistidine-containing protein comprising the NTA-immobilized carrier according to any one of (1) to (3).
(5) The kit according to (4), further comprising a divalent metal ion solution.
(6) The kit according to (4) or (5), further comprising a polyhistidine-containing protein expression vector.
(7) A protein chip comprising the NTA-immobilized carrier according to (3) and having a polyhistidine-containing protein bound to a plurality of locations on the NTA-immobilized carrier.
(8) A bivalent metal ion is coordinated to the NTA-immobilized carrier according to any one of (1) to (3), and then a polyhistidine-containing protein-containing sample is loaded on the carrier to thereby convert the polyhistidine-containing protein into the carrier A method for immobilizing a polyhistidine-containing protein comprising specifically binding to a polyhistidine.
(9) A bivalent metal ion is coordinated to the NTA-immobilized carrier according to any one of (1) to (3), and then a polyhistidine-containing protein-containing sample is loaded on the carrier to thereby convert the polyhistidine-containing protein into the carrier A method for purifying a polyhistidine-containing protein, comprising specifically binding to a protein and eluting the protein.

各工程で得られた基板へのHis6-GFPの結合を示す蛍光像(写真)。(A)はHis6-GFPスポット直後、(B)は超純水洗浄後、(C)はイミダゾール処理後。Fluorescence image (photograph) showing the binding of His6-GFP to the substrate obtained in each step. (A) is immediately after His6-GFP spot, (B) is after washing with ultrapure water, (C) is after imidazole treatment. キトサン-NTA修飾基板、グルタルアルデヒド-NTA修飾基板およびポリアリルアミン-NTA修飾基板へのHis6-GFPの結合を示す蛍光像(写真)。(A)はHis6-GFPスポット直後、(B)は超純水洗浄後。Fluorescence image (photo) showing the binding of His6-GFP to chitosan-NTA modified substrate, glutaraldehyde-NTA modified substrate and polyallylamine-NTA modified substrate. (A) is immediately after His6-GFP spot, (B) is after washing with ultrapure water. 実施例3、4および比較例1で得られた基板へのHis6-GFPの結合を示す蛍光像(写真)。(A)はHis6-GFPスポット直後、(B)は超純水洗浄後。The fluorescence image (photograph) which shows the coupling | bonding of His6-GFP to the board | substrate obtained in Example 3, 4 and the comparative example 1. FIG. (A) is immediately after His6-GFP spot, (B) is after washing with ultrapure water. キトサン-NTA修飾された各種基板上へのHis6-GFPの結合を示す蛍光像(写真)。Fluorescence images (photos) showing the binding of His6-GFP on various substrates modified with chitosan-NTA.

本発明のNTA固定化担体は、担体上に固定化されたキトサン、該キトサンに結合したニトリロ三酢酸(NTA)を含むNTA固定化担体であって、NTAに2価金属イオンを配位させて、ポリヒスチジン含有タンパク質を結合することのできるNTA固定化担体である。   The NTA-immobilized carrier of the present invention is an NTA-immobilized carrier containing chitosan immobilized on a carrier and nitrilotriacetic acid (NTA) bound to the chitosan, wherein a divalent metal ion is coordinated to NTA. An NTA-immobilized carrier capable of binding a polyhistidine-containing protein.

担体として用いることのできる素材としては、プラスチック、無機高分子、天然高分子およびセラミックなどが挙げられる。プラスチックとして具体的には、ポリエチレン、ポリスチレン、ポリカーボネート、ポリプロピレン、ポリアミド、フェノール樹脂、エポキシ樹脂、ポリカルボジイミド樹脂、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリフッ化エチレン、ポリイミドおよびアクリル樹脂などが、無機高分子としては、ガラス、水晶、カーボン、シリカゲル、およびグラファイト等が、天然高分子としては、セルロース、セルロース誘導体、アルギン酸およびアルギン酸塩等が、セラミックとしては、アルミナ、シリカ、炭化ケイ素、窒化ケイ素および炭化ホウ素等などを例示することができる。上記担体の形状としては、例えば、フィルム、平板、粒子、成型品(ビーズ、ストリップ、マルチウェルプレート、膜、スライド、細胞培養容器など)、ラテックスを挙げることができ、またその大きさについては特に制限はない。   Examples of materials that can be used as the carrier include plastics, inorganic polymers, natural polymers, and ceramics. Specific examples of plastics include polyethylene, polystyrene, polycarbonate, polypropylene, polyamide, phenolic resin, epoxy resin, polycarbodiimide resin, polyvinyl chloride, polyvinylidene fluoride, polyethylene fluoride, polyimide, and acrylic resin as inorganic polymers. Are glass, quartz, carbon, silica gel, graphite, etc., natural polymers are cellulose, cellulose derivatives, alginic acid, alginates, etc., and ceramics are alumina, silica, silicon carbide, silicon nitride, boron carbide, etc. Etc. can be illustrated. Examples of the shape of the carrier include films, flat plates, particles, molded products (beads, strips, multiwell plates, membranes, slides, cell culture containers, etc.), and latex. There is no limit.

キトサンは天然由来でも合成物であってもよい。アミノ基がNTAの固定化用にある程度intactであれば(保存されていれば)修飾体であってもよい。分子量も特には制限されないが、分子量が1万以上の高分子キトサンが好ましい。担体上へのキトサンの固定化方法は特に制限されないが、キトサンのアミノ基を介して担体上のカルボキシル基と結合させることが好ましい。例えば、担体をアミノシラン処理して担体をアミノ基で修飾し、該アミノ基にグルタルアルデヒドを反応させて担体上にカルボキシル基を形成し、このカルボキシル基とキトサンの一部のアミノ基を反応させて、キトサンを固定化することができる。そして、キトサンの残りのアミノ基を利用してNTAを結合させることが好ましい。NTAは、好ましくは、キトサンの残りのアミノ基にグルタルアルデヒドを反応させてカルボキシル基を形成し、これにNTAを含み、かつアミノ基を含む化合物を反応させることによって結合させることができる。このような化合物としては、N-(5-Amino-1-carboxypentyl)iminodiacetic acid(AB-NTA)が挙げられる。   Chitosan may be naturally derived or synthetic. If the amino group is intact to some extent for NTA immobilization (if conserved), it may be a modified form. The molecular weight is not particularly limited, but high molecular chitosan having a molecular weight of 10,000 or more is preferable. The method for immobilizing chitosan on the carrier is not particularly limited, but it is preferably bonded to the carboxyl group on the carrier via the amino group of chitosan. For example, the carrier is treated with aminosilane, the carrier is modified with an amino group, glutaraldehyde is reacted with the amino group to form a carboxyl group on the carrier, and this carboxyl group is reacted with a part of the amino group of chitosan. The chitosan can be immobilized. And it is preferable to couple | bond NTA using the remaining amino group of chitosan. NTA can preferably be bound by reacting the remaining amino group of chitosan with glutaraldehyde to form a carboxyl group, which reacts with a compound containing NTA and containing an amino group. Examples of such a compound include N- (5-Amino-1-carboxypentyl) iminodiacetic acid (AB-NTA).

以下、本発明のNTA固定化担体の作成法を例示する。ガラスをアミノシラン、グルタルアルデヒド、キトサン、グルタルアルデヒド、AB-NTAの順で以下のように修飾する。
なお、キトサン修飾は2回以上行ってもよい。これにより、固定化量が増加し、固定化のムラも減らすことができる。
ガラス基板を洗浄するため1M水酸化ナトリウムに浸漬し3日間処理した後、超純水で3回、アセトン、エタノールで洗浄、風乾を行う。ガラス基板に3-Aminopropyltriethoxysilanを2時間蒸着反応させた後、100℃で2時間加熱処理する。ガラス基板を緩衝液HEPESでpH7に調整した2.5%グルタルアルデヒド溶液に浸漬し、一晩放置後、超純水で3回、エタノールで1回洗浄し風乾する。ガラス基板をHEPESでpH8に調整した0.05%(w/v)キトサン溶液に浸漬して一晩処理した後、超純水で洗浄する。これによりキトサンのアミノ基がグルタルアルデヒドのアルデヒド基と共有結合をし、アミノ基を豊富に含む多糖類であるキトサンで修飾されたことにより表面積が増大し、基板上に多数のアミノ基が得られる。再び緩衝液HEPESでpH7に調整したグルタルアルデヒド溶液に浸漬し、一晩処理した後、超純水で3回、エタノールで1回洗浄し風乾する。次にHEPESでpH8に調整した約150mMのAB-NTAをガラス基板上に塗布し、パラフィルムをのせ一晩反応させる。これによりアルデヒド基とNTAのアミノ基が結合し、キトサンを介してガラス基板上にNTAが固定される。
なお、基板の種類はガラス基板に限定されず、シリコンウエハ、ガラス状カーボン、ポリカーボネート、金属などの素材で作製された基板にも固定化することができる。
Hereinafter, a method for producing the NTA-immobilized carrier of the present invention will be exemplified. The glass is modified in the following order: aminosilane, glutaraldehyde, chitosan, glutaraldehyde, AB-NTA.
Chitosan modification may be performed twice or more. As a result, the amount of immobilization is increased, and uneven immobilization can be reduced.
In order to wash the glass substrate, it is immersed in 1M sodium hydroxide and treated for 3 days, then washed with ultrapure water three times with acetone and ethanol, and then air-dried. After 3-Aminopropyltriethoxysilan is vapor-deposited on a glass substrate for 2 hours, heat treatment is performed at 100 ° C. for 2 hours. The glass substrate is immersed in a 2.5% glutaraldehyde solution adjusted to pH 7 with a buffer solution HEPES, left to stand overnight, washed with ultrapure water three times and ethanol once and air-dried. The glass substrate is immersed in a 0.05% (w / v) chitosan solution adjusted to pH 8 with HEPES, treated overnight, and then washed with ultrapure water. As a result, the amino group of chitosan is covalently bonded to the aldehyde group of glutaraldehyde, and the surface area is increased by modification with chitosan, which is a polysaccharide rich in amino groups, resulting in a large number of amino groups on the substrate. . The sample is again immersed in a glutaraldehyde solution adjusted to pH 7 with buffer HEPES, treated overnight, then washed with ultrapure water three times and ethanol once and air dried. Next, about 150 mM AB-NTA adjusted to pH 8 with HEPES is applied on a glass substrate, and a parafilm is placed on the glass substrate and allowed to react overnight. As a result, the aldehyde group and the amino group of NTA are bonded, and NTA is fixed on the glass substrate via chitosan.
Note that the type of the substrate is not limited to the glass substrate, and the substrate can be fixed to a substrate made of a material such as a silicon wafer, glassy carbon, polycarbonate, or metal.

上記で得られたNTA固定化担体に2価の金属イオンの溶液を加えることにより、NTAに2価の金属イオンを配位させることができる。ここで2価の金属イオンとしては、Cu2+、Zn2+、Ni2+、Ca2+、Co2+、Mg2+などが挙げられ、Ni2+がより好ましい。これらの金属イオンは金属塩の溶液(例えば、NiCl2溶液)として加えることができる。そして、2価の金属イオンを配位させた本発明のNTA固定化担体はポリヒスチジン含有タンパク質の結合や精製に使用することができる。By adding a solution of a divalent metal ion to the NTA-immobilized support obtained above, the divalent metal ion can be coordinated with NTA. Here, examples of the divalent metal ion include Cu 2+ , Zn 2+ , Ni 2+ , Ca 2+ , Co 2+ , and Mg 2+ , and Ni 2+ is more preferable. These metal ions can be added as a metal salt solution (eg, NiCl 2 solution). The NTA-immobilized carrier of the present invention in which a divalent metal ion is coordinated can be used for binding or purification of a polyhistidine-containing protein.

ここで、ポリヒスチジンとはヒスチジンが2個以上連続したポリペプチド部位をいう。ヒスチジンの連続する個数としては、2個以上であれば、ポリヒスチジン部位を介して固定化されるタンパク質の機能に影響を及ぼさない範囲の個数でよいが、好ましくは6個である。ポリヒスチジンは固定化するタンパク質のどの部位に導入してもよいが、アミノ末端またはカルボキシ末端が好ましい。   Here, polyhistidine refers to a polypeptide site in which two or more histidines are continuous. The number of consecutive histidines may be in the range that does not affect the function of the protein immobilized via the polyhistidine site, but is preferably 6 as long as it is 2 or more. Polyhistidine may be introduced at any site of the protein to be immobilized, but the amino terminus or carboxy terminus is preferred.

固定化するタンパク質としては特に制限はないが、酵素、抗体、ペプチド、転写因子、受容体、ウイルス抗原、蛍光タンパク質、プロテインAなどが挙げられる。また、ランダムなタンパク質をタンパク質ライブラリーとして用いてもよい。なお、本発明において固定化するタンパク質は化学合成したような非天然のものであってもよい。また、本発明において固定化するタンパク質にはペプチドも含まれる。   The protein to be immobilized is not particularly limited, and examples thereof include enzymes, antibodies, peptides, transcription factors, receptors, viral antigens, fluorescent proteins, and protein A. Moreover, you may use a random protein as a protein library. In the present invention, the protein to be immobilized may be a non-natural protein that is chemically synthesized. The protein to be immobilized in the present invention includes peptides.

本発明のプロテインチップに固定化するタンパク質は、例えば、タンパク質をコードするDNAを含むベクターを、網状赤血球破砕物(Reticulocyte Lysate)などのインビトロ、または大腸菌や昆虫細胞等の宿主細胞で発現させることによって得ることができる。また、化学合成することによっても得ることができる。本発明に好適なタンパク質であるポリヒスチジンを含むタンパク質は、例えば、目的タンパク質をコードするDNAを公知のポリヒスチジン融合タンパク質発現用ベクター(ポリヒスチジンをコードする配列を含み、ポリヒスチジンとの融合タンパク質が発現するように目的タンパク質の遺伝子を組み込むためのベクター。例えば、pETシリーズ、Novagen社)に組み込み、該ベクターで大腸菌等を形質転換して融合タンパク質を発現させることによって得ることができる。また、ポリヒスチジンをコードする配列を含むオリゴヌクレオチドとその相補鎖を合成し、両鎖をハイブリダイズさせて、目的タンパク質をコードするDNAを含む発現ベクターに融合タンパク質が発現されるように組み込み、これで大腸菌等を形質転換することによって融合タンパク質を発現させることによっても得ることができる。   The protein immobilized on the protein chip of the present invention can be expressed, for example, by expressing a vector containing the DNA encoding the protein in vitro such as reticulocyte lysate, or in host cells such as E. coli or insect cells. Obtainable. It can also be obtained by chemical synthesis. A protein containing polyhistidine which is a protein suitable for the present invention includes, for example, a known polyhistidine fusion protein expression vector containing a DNA encoding a target protein (including a sequence encoding polyhistidine, and a fusion protein with polyhistidine is A vector for incorporating a gene of a target protein so as to be expressed, for example, by incorporating into a pET series (Novagen) and transforming Escherichia coli with the vector to express a fusion protein. In addition, an oligonucleotide containing a sequence encoding polyhistidine and its complementary strand are synthesized, both strands are hybridized, and incorporated into an expression vector containing DNA encoding the target protein so that the fusion protein is expressed. It can also be obtained by expressing a fusion protein by transforming E. coli or the like with

得られたポリヒスチジン含有タンパク質を含む画分を2価の金属イオンを配位させたNTA固定化担体とインキュベートし、洗浄することで、ポリヒスチジン含有タンパク質をNTA固定化担体に結合させることができる。得られたポリヒスチジン含有タンパク質結合担体は、プロテインチップとして用いることもできる。例えば、酵素の場合酵素の阻害剤のアッセイに使用することもできる。また、抗体の場合、ELISAや抗原の精製などに使用することもできる。また、基板上に複数のキトサン-NTAが固定化された基板を用い、それにタンパク質を結合させることにより、プロテインアレイとしてマルチアッセイなどに使用することができる。   The resulting fraction containing the polyhistidine-containing protein can be bound to the NTA-immobilized carrier by incubating with an NTA-immobilized carrier coordinated with a divalent metal ion and washing. . The obtained polyhistidine-containing protein binding carrier can also be used as a protein chip. For example, in the case of an enzyme, it can also be used in an assay for an inhibitor of the enzyme. In the case of an antibody, it can also be used for ELISA or antigen purification. Further, by using a substrate having a plurality of chitosan-NTA immobilized on the substrate and binding proteins thereto, it can be used as a protein array in a multi-assay or the like.

また、上記のようにしてポリヒスチジン含有タンパク質をNTA固定化担体に結合させ、洗浄を行った後、イミダゾールなどで溶出することによりポリヒスチジン含有タンパク質を精製することができる。本発明の担体を用いることにより、結合できるタンパク質の量を増やすことができるため、精製を効率よく行うことができる。   Further, the polyhistidine-containing protein can be purified by binding the polyhistidine-containing protein to the NTA-immobilized carrier as described above, washing, and then eluting with imidazole or the like. Since the amount of protein that can be bound can be increased by using the carrier of the present invention, purification can be performed efficiently.

本発明のキットは、上記NTA固定化担体を含む、ポリヒスチジン含有タンパク質を精製または固定化するためのキットである。本発明のキットはさらに、2価金属イオン溶液や、ポリヒスチジン含有タンパク質発現ベクターや、イミダゾールなどを含んでもよい。   The kit of the present invention is a kit for purifying or immobilizing a polyhistidine-containing protein containing the NTA immobilization carrier. The kit of the present invention may further contain a divalent metal ion solution, a polyhistidine-containing protein expression vector, imidazole, and the like.

以下、実施例を参照して本発明を具体的に説明する。ただし、本発明は以下の実施例の態様に制限されない。   Hereinafter, the present invention will be specifically described with reference to examples. However, this invention is not restrict | limited to the aspect of a following example.

実施例1
以下の手順で、NTA固定化基板を作成した。なお、固定化効率比較のため、各工程終了後の基板を保存した。
Example 1
An NTA-immobilized substrate was prepared by the following procedure. In addition, the board | substrate after completion | finish of each process was preserve | saved for the fixation efficiency comparison.

ガラス基板洗浄(1M NaOH)
マスク済み、未修飾ガラス基板(MATSUNAMI SLIDE GLASSリングマーク)×6枚を1M NaOH 80mlにつけ、3晩放置。

超純水(ミリQ水)で3回、アセトンで1回、エタノールで1回洗浄、風乾。GFP(Green fluorescent protein(His6付加))スポット時の比較のために1枚保存。

アミノシラン処理
デシケーター内でアミノシラン (1% 3-Aminopropyltriethoxysilane) 10mlとガラス基板5枚を入れ減圧し、アミノシランを蒸着。2時間放置。

ガラス基板を100℃で2時間ベーク。GFPスポット時の比較のために1枚保存。

グルタルアルデヒド処理
グルタルアルデヒド溶液(100mM HEPES pH7、 2.5v/v% グルタルアルデヒド)100mlにガラス基板4枚をつけ、1晩放置。

超純水×3、エタノールで洗浄、風乾。GFPスポット時の比較のために1枚保存。

キトサン処理
キトサン溶液(100mM HEPES pH8、キトサン(SIGMA Cat. No.3646、85%以上脱アセチル化済)0.5%)100mlにガラス基板3枚をつけ、バットに入れたままスターラーで撹拌しながら1晩放置。

超純水でガラス基板を洗浄。GFPスポット時の比較のために1枚保存。

グルタルアルデヒド処理
グルタルアルデヒド溶液(100mM HEPES pH7、2.5v/v% グルタルアルデヒド)80mlを作成し、ガラス基板2枚を入れバット中で撹拌しながら1晩放置。

超純水×3、エタノールで洗浄、風乾。GFPスポット時の比較のために1枚保存。

AB-NTA処理
AB-NTA(DOJINDO Cat. No. 340-08071)をエッペンドルフチューブに0.0015gはかり取ったものに、1M HEPES(pH8)を15μl、超純水を 35μlを加え、AB-NTA水溶液(300mM HEPES pH8)50μlを作成。(濃度0.11M)

溶液から2μlを採り、pH試験紙でpH8付近になっていることを確認。

ガラス基板1枚に7μl/wellでスポットし、上からパラフィルムをかけてタッパー中で一晩放置。

超純水で洗浄。

NiCl 2 処理
前もって作成した1.7M NiCl2水溶液を7μl/wellでスポットし、上からパラフィルムをかけて1時間放置。これにより、Ni2+イオンが配位したNTA固定化(Ni-NTA)基板を得た。
Glass substrate cleaning (1M NaOH)
Masked, unmodified glass substrate (MATSUNAMI SLIDE GLASS ring mark) x 6 pieces in 1M NaOH 80ml and left for 3 nights.

Wash 3 times with ultrapure water (Milli-Q water), 1 time with acetone, 1 time with ethanol, and air dry. Store one copy for comparison at the time of GFP (Green fluorescent protein (His6 addition)) spot.

Aminosilane treatment <br/> aminosilane (1% 3-Aminopropyltriethoxysilane) 10ml glass substrate 5 sheets placed under reduced pressure in a desiccator, deposited aminosilane. Leave for 2 hours.

Bake glass substrate at 100 ° C for 2 hours. Save one for comparison at the time of GFP spot.

Glutaraldehyde treatment <br/> Glutaraldehyde solution (100 mM HEPES pH7, 2.5 v / v% glutaraldehyde) 100 ml, 4 glass substrates and let stand overnight.

Ultrapure water x 3, washed with ethanol, air dried. Save one for comparison at the time of GFP spot.

Chitosan treatment <br/> Chitosan solution (100 mM HEPES pH8, Chitosan (SIGMA Cat. No.3646, 85% or more deacetylated) 0.5%) 3 glass substrates are placed in a vat and stirred with a stirrer While standing overnight.

Clean the glass substrate with ultra pure water. Save one for comparison at the time of GFP spot.

Glutaraldehyde treatment Make 80ml of glutaraldehyde solution (100mM HEPES pH7, 2.5v / v% glutaraldehyde), put two glass substrates and let stand overnight with stirring in a vat.

Ultrapure water x 3, washed with ethanol, air dried. Save one for comparison at the time of GFP spot.

AB-NTA treatment
Add AB-NTA (DOJINDO Cat. No. 340-08071) to an Eppendorf tube with 0.0015 g and add 15 μl of 1M HEPES (pH8) and 35 μl of ultrapure water to a AB-NTA aqueous solution (300 mM HEPES pH8). Make 50 μl. (Concentration 0.11M)

Take 2 μl from the solution and confirm that the pH is around 8 using a pH test paper.

Spot on a glass substrate at 7μl / well, put parafilm on top and leave in a tapper overnight.

Wash with ultra pure water.

NiCl 2 treatment A 1.7M NiCl 2 aqueous solution prepared in advance was spotted at 7 µl / well, and left for 1 hour with parafilm applied from above. As a result, an NTA-immobilized (Ni-NTA) substrate coordinated with Ni 2+ ions was obtained.

GFPスポット
保存しておいた各工程後(NaOH洗浄後、アミノシラン処理後、グルタルアルデヒド処理1後、キトサン処理後、グルタルアルデヒド処理2後、AB-NTA処理後)の基板6枚の1wellに、GFP(Green fluorescent protein(His6付加):3.0 mg/ml)それぞれ4μlをスポット、トランスイルミネーターで蛍光を確認。

一時間放置したのち、超純水で洗浄し、蛍光を確認。(紫外光365nm)

イミダゾール溶出
500mMイミダゾール30ml中に蛍光が確認できたNi-NTA基板を入れ、3晩攪拌しながら放置。

超純水で洗浄後、蛍光を観察。GFPの溶出を確認。
GFP spot 6 substrates after each step (after NaOH cleaning, after aminosilane treatment, after glutaraldehyde treatment 1, after chitosan treatment, after glutaraldehyde treatment 2 and after AB-NTA treatment) Spot 4 μl of GFP (Green fluorescent protein (His6 added): 3.0 mg / ml) in 1 well, and confirm fluorescence with a transilluminator.

After standing for 1 hour, wash with ultrapure water and check fluorescence. (UV 365nm)

Imidazole elution
Place a Ni-NTA substrate with confirmed fluorescence in 30 ml of 500 mM imidazole and leave it for 3 nights with stirring.

Fluorescence is observed after washing with ultrapure water. Confirm elution of GFP.

結果を図1に示した。
図1Aは各基板にスポットした時点での蛍光を示す。スポットした時点ではいずれの基板でもGFPの蛍光が見られた。なお、Ni-NTA修飾基板(右)ではスポットしたGFPが基板上に広がったため、蛍光が薄く見えている。
図1Bは超純水で洗浄後の蛍光を示す。Ni-NTA修飾基板ではGFPの吸着が確認できる。それ以外は超純水洗浄によってGFPが流出した。
図1Cはイミダゾール処理後の蛍光を示す。Ni-NTA修飾基板に固定化されたGFPの大部分が、イミダゾールによって溶出された。このことから、Hisタグ付きGFP(His6-GFP)タンパクがNi-NTAによって固定化されていることを確認した。
The results are shown in FIG.
FIG. 1A shows the fluorescence when spotted on each substrate. At the time of spotting, fluorescence of GFP was seen on any substrate. In the Ni-NTA modified substrate (right), the spotted GFP spread on the substrate, so that the fluorescence appears thin.
FIG. 1B shows the fluorescence after washing with ultrapure water. Adsorption of GFP can be confirmed on the Ni-NTA modified substrate. In other cases, GFP flowed out by washing with ultrapure water.
FIG. 1C shows the fluorescence after imidazole treatment. Most of the GFP immobilized on the Ni-NTA modified substrate was eluted with imidazole. From this, it was confirmed that the His-tagged GFP (His6-GFP) protein was immobilized by Ni-NTA.

実施例2
上記で作成されたキトサン-NTA修飾ガラス基板と共に、比較対象として次の2枚のNTA修飾ガラス基板にもHis6-GFPをスポットした。
グルタルアルデヒド-NTA修飾基板
1回目のグルタルアルデヒド処理の後にAB-NTA修飾をしたもの。
ポリアリルアミン(PAA)-NTA修飾基板
1回目のグルタルアルデヒド処理の後に、PAA(ポリアミン)溶液(100mM HEPES pH 8 0.15% PAA)に漬けてから、グルタルアルデヒドおよびAB-NTA修飾をしたもの。
Example 2
In addition to the chitosan-NTA modified glass substrate prepared above, His6-GFP was also spotted on the following two NTA modified glass substrates for comparison.
Glutaraldehyde-NTA modified substrate
AB-NTA modification after the first glutaraldehyde treatment.
Polyallylamine (PAA) -NTA modified substrate
After the first treatment with glutaraldehyde, soaked in a PAA (polyamine) solution (100 mM HEPES pH 8 0.15% PAA) and then modified with glutaraldehyde and AB-NTA.

キトサン-NTA修飾基板、グルタルアルデヒド-NTA修飾基板およびポリアリルアミン-NTA修飾基板のそれぞれにNi2+イオンを配位させたのちに、His6-GFPを4μlスポットし、1時間放置後、超純水で各ガラス基板を洗浄してトランスイルミネーターで蛍光を観察した(紫外光波長:365nm)。After coordinating Ni 2+ ions to each of the chitosan-NTA modified substrate, glutaraldehyde-NTA modified substrate, and polyallylamine-NTA modified substrate, 4 μl of His6-GFP was spotted, allowed to stand for 1 hour, and then ultrapure water Then, each glass substrate was washed and fluorescence was observed with a transilluminator (ultraviolet light wavelength: 365 nm).

結果を図2に示す。その結果、グルタルアルデヒド-NTA修飾基板およびポリアリルアミン-NTA修飾基板では超純水洗浄でGFPの蛍光がほとんど検出できなくなったのに対し、キトサン-NTA修飾基板では超純水洗浄後も強いGFPの蛍光が検出され、His6-GFPが効率よく固定化されていることがわかった。   The results are shown in FIG. As a result, the fluorescence of GFP was almost undetectable by washing with ultrapure water on the glutaraldehyde-NTA modified substrate and polyallylamine-NTA modified substrate, whereas strong GFP was not detected on the chitosan-NTA modified substrate even after washing with ultrapure water. Fluorescence was detected, indicating that His6-GFP was immobilized efficiently.

ガラス基板上をキトサンで修飾することにより表面積が増大し、またキトサン分子上に多数存在するアミノ基とAB−NTAがグルタルアルデヒドにより架橋されるためNi−NTAの修飾効率が増大し、より多くのHisタグ融合タンパク質の固定化が可能になった。またニッケル錯体とHisタグとの結合を用いているため、配向性があり、活性を保った状態でのタンパク質の固定化が期待できる。基板上に固定化されるタンパク量が増大することで、相互作用の検出に有効なプロテインアレイの作成ができる。実際に従来の方法では蛍光が検出できないほど少量だったGFPが、トランスイルミネーター上において肉眼で確認できるほどの量が基板上に吸着されている。   The surface area is increased by modifying the glass substrate with chitosan, and the modification efficiency of Ni-NTA is increased because the amino groups present on the chitosan molecule and AB-NTA are cross-linked by glutaraldehyde. Immobilization of His tag fusion protein became possible. In addition, since the bond between the nickel complex and the His tag is used, the protein is oriented and the protein can be immobilized while maintaining the activity. By increasing the amount of protein immobilized on the substrate, a protein array effective for detecting the interaction can be created. In fact, the amount of GFP, which was so small that fluorescence could not be detected by the conventional method, was adsorbed on the substrate on the transilluminator.

実施例3
以下の手順(洗浄工程の記載省略)で、NTA固定化基板を作成した。
ガラス基板洗浄(1M NaOH)
マスク済み、未修飾ガラス基板(MATSUNAMI SLIDE GLASSリングマーク)を1M NaOHに一日浸漬。

アミノシラン処理
デシケーター内でアミノシラン (1% 3-Aminopropyltriethoxysilane) とガラス基板を入れ減圧し、2時間放置。

ガラス基板を100℃で2時間ベーク。

グルタルアルデヒド処理
グルタルアルデヒド溶液(100mM HEPES pH7、 0.5v/v% グルタルアルデヒド)にガラス基板をつけ、37℃で撹拌しながら3日間放置。

キトサン処理
キトサン溶液(100mM HEPES pH8、キトサン(SIGMA Cat. No.3646、85%以上脱アセチル化済)0.05%)にガラス基板をつけ、37℃で撹拌しながら一日放置。

グルタルアルデヒド処理
グルタルアルデヒド溶液(100mM HEPES pH7、0.5v/v% グルタルアルデヒド)にガラス基板をつけ、37℃で撹拌しながら一日放置。

AB-NTA処理
AB-NTA溶液(300mM HEPES pH8、130mM AB-NTA濃度)をガラス基板に4箇所スポットし、上からパラフィルムをかけてタッパー中で一晩放置。

NiCl 2 処理
1.35M NiCl2水溶液をスポットし、上からパラフィルムをかけて1時間放置。

GFPスポット
GFP(His6付加:2.08 mg/ml)をスポットし一時間放置したのち、超純水で洗浄し、トランスイルミネーターで蛍光を確認。
Example 3
An NTA-immobilized substrate was prepared by the following procedure (description of the cleaning process omitted).
Glass substrate cleaning (1M NaOH)
A masked, unmodified glass substrate (MATSUNAMI SLIDE GLASS ring mark) is immersed in 1M NaOH for a day.

Aminosilane treatment <br/> the glass substrate was placed under reduced pressure with aminosilane (1% 3-Aminopropyltriethoxysilane) in a desiccator, left for two hours.

Bake glass substrate at 100 ° C for 2 hours.

Glutaraldehyde treatment A glass substrate is attached to a glutaraldehyde solution (100 mM HEPES pH 7, 0.5 v / v% glutaraldehyde) and left at 37 ° C. with stirring for 3 days.

Chitosan treatment A glass substrate is attached to a chitosan solution (100 mM HEPES pH 8, chitosan (SIGMA Cat. No. 3646, 85% deacetylated) 0.05%) and left at 37 ° C for 1 day with stirring.

Glutaraldehyde treatment A glass substrate is attached to a glutaraldehyde solution (100 mM HEPES pH 7, 0.5 v / v% glutaraldehyde) and left at 37 ° C. with stirring for one day.

AB-NTA treatment
AB-NTA solution (300 mM HEPES pH 8, 130 mM AB-NTA concentration) is spotted on a glass substrate at four locations, left on top in a tapper with parafilm from above.

NiCl 2 treatment
Spot a 1.35M NiCl 2 aqueous solution, put parafilm from the top, and let stand for 1 hour.

GFP spot
Spot GFP (His6 addition: 2.08 mg / ml), let stand for 1 hour, wash with ultrapure water, and confirm fluorescence with a transilluminator.

実施例4
以下の手順(洗浄工程の記載省略)で、NTA固定化基板を作成した。
ガラス基板洗浄(1M NaOH)
マスク済み、未修飾ガラス基板(MATSUNAMI SLIDE GLASSリングマーク)を1M NaOHに一日浸漬。

アミノシラン処理
デシケーター内でアミノシラン (1% 3-Aminopropyltriethoxysilane) とガラス基板を入れ減圧し、2時間放置。

ガラス基板を100℃で2時間ベーク。

グルタルアルデヒド処理
グルタルアルデヒド溶液(100mM HEPES pH7、 0.5v/v% グルタルアルデヒド)にガラス基板をつけ、37℃で撹拌しながら3日間放置。

キトサン処理
キトサン溶液(100mM HEPES pH8、キトサン(SIGMA Cat. No.3646、85%以上脱アセチル化済)0.05%)にガラス基板をつけ、37℃で撹拌しながら一日放置。

グルタルアルデヒド処理
グルタルアルデヒド溶液(100mM HEPES pH7、0.5v/v% グルタルアルデヒド)にガラス基板をつけ、37℃で撹拌しながら一日放置。

キトサン処理
キトサン溶液(100mM HEPES pH8、キトサン(SIGMA Cat. No.3646、85%以上脱アセチル化済)0.05%)にガラス基板をつけ、37℃で撹拌しながら一日放置。

グルタルアルデヒド処理
グルタルアルデヒド溶液(100mM HEPES pH7、0.5v/v% グルタルアルデヒド)にガラス基板をつけ、37℃で撹拌しながら一日放置。

AB-NTA処理
AB-NTA溶液(300mM HEPES pH8)(AB-NTA濃度130mM)をガラス基板に4箇所スポットし、上からパラフィルムをかけてタッパー中で一晩放置。

NiCl 2 処理
1.35M NiCl2水溶液をスポットし、上からパラフィルムをかけて1時間放置。

GFPスポット
GFP(His6付加:2.08 mg/ml)をスポットし一時間放置したのち、超純水で洗浄し、トランスイルミネーターで蛍光を確認。
Example 4
An NTA-immobilized substrate was prepared by the following procedure (description of the cleaning process omitted).
Glass substrate cleaning (1M NaOH)
A masked, unmodified glass substrate (MATSUNAMI SLIDE GLASS ring mark) is immersed in 1M NaOH for a day.

Aminosilane treatment <br/> the glass substrate was placed under reduced pressure with aminosilane (1% 3-Aminopropyltriethoxysilane) in a desiccator, left for two hours.

Bake glass substrate at 100 ° C for 2 hours.

Glutaraldehyde treatment A glass substrate is attached to a glutaraldehyde solution (100 mM HEPES pH 7, 0.5 v / v% glutaraldehyde) and left at 37 ° C. with stirring for 3 days.

Chitosan treatment A glass substrate is attached to a chitosan solution (100 mM HEPES pH 8, chitosan (SIGMA Cat. No. 3646, 85% deacetylated) 0.05%) and left at 37 ° C for 1 day with stirring.

Glutaraldehyde treatment A glass substrate is attached to a glutaraldehyde solution (100 mM HEPES pH 7, 0.5 v / v% glutaraldehyde) and left at 37 ° C. with stirring for one day.

Chitosan treatment A glass substrate is attached to a chitosan solution (100 mM HEPES pH 8, chitosan (SIGMA Cat. No. 3646, 85% deacetylated) 0.05%) and left at 37 ° C for 1 day with stirring.

Glutaraldehyde treatment A glass substrate is attached to a glutaraldehyde solution (100 mM HEPES pH 7, 0.5 v / v% glutaraldehyde) and left at 37 ° C. with stirring for one day.

AB-NTA treatment
AB-NTA solution (300mM HEPES pH8) (AB-NTA concentration 130mM) is spotted on a glass substrate at four locations, left on top in a tapper with parafilm on top.

NiCl 2 treatment
Spot a 1.35M NiCl 2 aqueous solution, put parafilm from the top, and let stand for 1 hour.

GFP spot
Spot GFP (His6 addition: 2.08 mg / ml), let stand for 1 hour, wash with ultrapure water, and confirm fluorescence with a transilluminator.

比較例1
以下の手順(洗浄工程の記載省略)で、NTA固定化基板を作成した。
ガラス基板洗浄(1M NaOH)
マスク済み、未修飾ガラス基板(MATSUNAMI SLIDE GLASSリングマーク)を1M NaOHに一日浸漬。

アミノシラン処理
デシケーター内でアミノシラン (1% 3-Aminopropyltriethoxysilane) とガラス基板を入れ減圧し、2時間放置。

ガラス基板を100℃で2時間ベーク。

グルタルアルデヒド処理
グルタルアルデヒド溶液(100mM HEPES pH7、 0.5v/v% グルタルアルデヒド)にガラス基板をつけ、37℃で撹拌しながら3日間放置。

分岐鎖ポリエチレンイミン(PEIb)処理
PEIb溶液(100mM HEPES pH8、分岐鎖ポリエチレンイミン0.5%)にガラス基板をつけ、37℃で撹拌しながら一日放置。

グルタルアルデヒド処理
グルタルアルデヒド溶液(100mM HEPES pH7、0.5v/v% グルタルアルデヒド)にガラス基板をつけ、37℃で撹拌しながら一日放置。

分岐鎖ポリエチレンイミン(PEIb)処理
PEIb溶液(100mM HEPES pH8、分岐鎖ポリエチレンイミン0.5%)にガラス基板をつけ、37℃で撹拌しながら一日放置。

グルタルアルデヒド処理
グルタルアルデヒド溶液(100mM HEPES pH7、0.5v/v% グルタルアルデヒド)にガラス基板をつけ、37℃で撹拌しながら一日放置。

AB-NTA処理
AB-NTA溶液(300mM HEPES pH8)(AB-NTA濃度130mM)をガラス基板に4箇所スポットし、上からパラフィルムをかけてタッパー中で一晩放置。

NiCl 2 処理
1.35M NiCl2水溶液をスポットし、上からパラフィルムをかけて1時間放置。

GFPスポット
GFP(His6付加:2.08 mg/ml)をスポットし一時間放置したのち、超純水で洗浄し、トランスイルミネーターで蛍光を確認。
Comparative Example 1
An NTA-immobilized substrate was prepared by the following procedure (description of the cleaning process omitted).
Glass substrate cleaning (1M NaOH)
A masked, unmodified glass substrate (MATSUNAMI SLIDE GLASS ring mark) is immersed in 1M NaOH for a day.

Aminosilane treatment <br/> the glass substrate was placed under reduced pressure with aminosilane (1% 3-Aminopropyltriethoxysilane) in a desiccator, left for two hours.

Bake glass substrate at 100 ° C for 2 hours.

Glutaraldehyde treatment A glass substrate is attached to a glutaraldehyde solution (100 mM HEPES pH 7, 0.5 v / v% glutaraldehyde) and left at 37 ° C. with stirring for 3 days.

Branched polyethyleneimine (PEIb) treatment
Place a glass substrate in PEIb solution (100 mM HEPES pH 8, branched chain polyethyleneimine 0.5%) and leave it at 37 ° C for 1 day.

Glutaraldehyde treatment A glass substrate is attached to a glutaraldehyde solution (100 mM HEPES pH 7, 0.5 v / v% glutaraldehyde) and left at 37 ° C. with stirring for one day.

Branched polyethyleneimine (PEIb) treatment
Place a glass substrate in PEIb solution (100 mM HEPES pH 8, branched chain polyethyleneimine 0.5%) and leave it at 37 ° C for 1 day.

Glutaraldehyde treatment A glass substrate is attached to a glutaraldehyde solution (100 mM HEPES pH 7, 0.5 v / v% glutaraldehyde) and left at 37 ° C. with stirring for one day.

AB-NTA treatment
AB-NTA solution (300mM HEPES pH8) (AB-NTA concentration 130mM) is spotted on a glass substrate at four locations, left on top in a tapper with parafilm on top.

NiCl 2 treatment
Spot a 1.35M NiCl 2 aqueous solution, put parafilm over the top, and let stand for 1 hour.

GFP spot
Spot GFP (His6 addition: 2.08 mg / ml), let stand for 1 hour, wash with ultrapure water, and confirm fluorescence with a transilluminator.

実施例3,4および比較例1(それぞれn=4)について洗浄前と洗浄後の蛍光測定結果を図3に示した。
また、検量線を作成し、洗浄後のGFP固定化量を数値化したところ、表1のようになった。
その結果、PEIbで二重修飾した場合、洗浄によりGFPが遊離し、ほとんど固定化できなかったのに対し、キトサン修飾では洗浄後もGFPは固定化されており、固定化効率がよいことがわかった。そして、キトサン2重修飾の場合は固定化量が2倍以上に増加し、固定化のムラも少なくなることがわかった。
The fluorescence measurement results before and after washing for Examples 3 and 4 and Comparative Example 1 (n = 4 respectively) are shown in FIG.
Moreover, when a calibration curve was prepared and the amount of GFP immobilized after washing was quantified, it was as shown in Table 1.
As a result, when double-modified with PEIb, GFP was liberated by washing and could hardly be immobilized, but with chitosan modification, GFP was immobilized after washing, indicating that the immobilization efficiency was good. It was. And in the case of chitosan double modification, it was found that the immobilization amount increased more than twice, and immobilization unevenness was reduced.

Figure 2010050439
PEIb二重修飾では固定化量が少なく検量範囲外であった。
Figure 2010050439
With PEIb double modification, the amount of immobilization was small and out of the calibration range.

実施例5
シリコンウエハ、ガラス状カーボン、ポリカーボネートおよび金箔製の各基板に対して、キトサン-NTA修飾を行い、得られた各キトサン-NTA修飾基板に対してNiCl2水溶液をスポットした後、His6-GFPを結合させた。
なお、シリコンウエハ基板に対しては、実施例3と同様の手順でキトサン-NTA修飾を行った。
また、ガラス状カーボン基板に対しては、紙やすりで研磨後、超純水およびエタノールでそれぞれ洗浄した後、実施例3のアミノシラン処理以降の手順を行ってキトサン-NTA修飾を行った。
また、ポリカーボネート基板に対しては、超純水およびエタノールでそれぞれ洗浄した後、実施例3のアミノシラン処理以降の手順を行ってキトサン-NTA修飾を行った。
また、金箔基板に対しては、アミノシラン蒸着の代わりにシステイン溶液(0.67M L-cysteine, 0.5×TBE, 10mM NaCl)をスポットし、2時間インキュベート後、超純水で洗浄した後、実施例3のグルタルアルデヒド処理以降の手順を行ってキトサン-NTA修飾を行った。
Example 5
Chitosan-NTA modification is applied to each substrate made of silicon wafer, glassy carbon, polycarbonate and gold foil, and NiCl 2 aqueous solution is spotted on each obtained chitosan-NTA modified substrate, and then His6-GFP is bound. I let you.
The silicon wafer substrate was modified with chitosan-NTA in the same procedure as in Example 3.
Further, the glassy carbon substrate was polished with sandpaper, washed with ultrapure water and ethanol, respectively, and then subjected to chitosan-NTA modification by the procedure after the aminosilane treatment in Example 3.
Further, the polycarbonate substrate was washed with ultrapure water and ethanol, respectively, and then subjected to the chitosan-NTA modification by performing the procedure after the aminosilane treatment in Example 3.
For the gold foil substrate, a cysteine solution (0.67 M L-cysteine, 0.5 × TBE, 10 mM NaCl) was spotted instead of aminosilane deposition, incubated for 2 hours, washed with ultrapure water, and then Example 3 The chitosan-NTA modification was performed by performing the procedure after treatment with glutaraldehyde.

His6-GFPをスポットし、洗浄後に蛍光顕微鏡で観察した結果を図4に示す。
その結果、いずれの基板に対してもキトサン-NTAを介してHis6-GFPが効率よく結合していることがわかった。
FIG. 4 shows the results of spotting His6-GFP and observing with a fluorescence microscope after washing.
As a result, it was found that His6-GFP was efficiently bound to any substrate via chitosan-NTA.

本発明によれば、キトサンによってガラス基板などの担体上に固定化されるタンパク量を増大させることができ、それにより、タンパク質相互作用の検出などに有効なプロテインアレイの作成が可能となる。また、タンパク質の大量精製も可能となる。   According to the present invention, it is possible to increase the amount of protein immobilized on a carrier such as a glass substrate by chitosan, thereby making it possible to produce a protein array that is effective for detecting protein interactions. In addition, a large amount of protein can be purified.

Claims (9)

担体上に固定化されたキトサン、該キトサンに結合したニトリロ三酢酸(NTA)(キトサン−NTA)を含むNTA固定化担体であって、NTAに2価金属イオンを配位させて、ポリヒスチジン含有タンパク質を結合することのできるNTA固定化担体。 An NTA-immobilized carrier comprising chitosan immobilized on a carrier and nitrilotriacetic acid (NTA) (chitosan-NTA) bound to the chitosan, containing a divalent metal ion and containing polyhistidine An NTA-immobilized carrier that can bind proteins. NTAが、担体上に固定化されたキトサンのアミノ基にグルタルアルデヒドを反応させ、次いで、N-(5-Amino-1-carboxypentyl)iminodiacetic acidを反応させることにより固定化された、請求項1記載のNTA固定化担体。 The NTA was immobilized by reacting glutaraldehyde with the amino group of chitosan immobilized on a carrier and then reacting with N- (5-Amino-1-carboxypentyl) iminodiacetic acid. NTA immobilization support. 担体が基板であり、基板上の複数箇所にキトサン-NTAが固定化された、請求項1または2記載のNTA固定化担体。 The NTA-immobilized carrier according to claim 1 or 2, wherein the carrier is a substrate, and chitosan-NTA is immobilized at a plurality of locations on the substrate. 請求項1〜3のいずれか一項に記載のNTA固定化担体を含む、ポリヒスチジン含有タンパク質を精製または固定化するためのキット。 A kit for purifying or immobilizing a polyhistidine-containing protein comprising the NTA-immobilized carrier according to any one of claims 1 to 3. さらに2価金属イオン溶液を含む、請求項4に記載のキット。 The kit according to claim 4, further comprising a divalent metal ion solution. さらにポリヒスチジン含有タンパク質発現ベクターを含む、請求項4または5に記載のキット。 The kit according to claim 4 or 5, further comprising a polyhistidine-containing protein expression vector. 請求項3のNTA固定化担体を含み、該NTA固定化担体上の複数箇所にポリヒスチジン含有タンパク質が結合したプロテインチップ。 A protein chip comprising the NTA-immobilized carrier of claim 3 and having a polyhistidine-containing protein bound to a plurality of locations on the NTA-immobilized carrier. 請求項1〜3のいずれか一項に記載のNTA固定化担体に2価金属イオンを配位させて、次いでポリヒスチジン含有タンパク質含有試料を該担体に負荷してポリヒスチジン含有タンパク質を該担体に特異的に結合させることを含む、ポリヒスチジン含有タンパク質の固定化方法。 A bivalent metal ion is coordinated to the NTA-immobilized carrier according to any one of claims 1 to 3, and then a polyhistidine-containing protein-containing sample is loaded on the carrier, so that the polyhistidine-containing protein is loaded onto the carrier. A method for immobilizing a polyhistidine-containing protein, comprising specifically binding. 請求項1〜3のいずれか一項に記載のNTA固定化担体に2価金属イオンを配位させて、次いでポリヒスチジン含有タンパク質含有試料を該担体に負荷してポリヒスチジン含有タンパク質を該担体に特異的に結合させ、該タンパク質を溶出させることを含む、ポリヒスチジン含有タンパク質の精製方法。 A bivalent metal ion is coordinated to the NTA-immobilized carrier according to any one of claims 1 to 3, and then a polyhistidine-containing protein-containing sample is loaded on the carrier, so that the polyhistidine-containing protein is loaded onto the carrier. A method for purifying a polyhistidine-containing protein, comprising specifically binding and eluting the protein.
JP2010535783A 2008-10-27 2009-10-26 Protein immobilization carrier and use thereof Pending JPWO2010050439A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008275763 2008-10-27
JP2008275763 2008-10-27
PCT/JP2009/068345 WO2010050439A1 (en) 2008-10-27 2009-10-26 Carrier for protein immobilization and use thereof

Publications (1)

Publication Number Publication Date
JPWO2010050439A1 true JPWO2010050439A1 (en) 2012-03-29

Family

ID=42128801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010535783A Pending JPWO2010050439A1 (en) 2008-10-27 2009-10-26 Protein immobilization carrier and use thereof

Country Status (2)

Country Link
JP (1) JPWO2010050439A1 (en)
WO (1) WO2010050439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797804B (en) * 2022-03-29 2023-08-04 翌圣生物科技(上海)股份有限公司 NTA chromatographic medium with long connecting arm and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012030961A2 (en) * 2010-08-31 2012-03-08 Massachusetts Institute Of Technology A nanotube array for optical detection of protein-protein interactions
WO2015052460A1 (en) * 2013-10-09 2015-04-16 Ucl Business Plc Chromatography medium
KR101672231B1 (en) * 2014-11-12 2016-11-04 한국과학기술연구원 Chitosan composite of eliminating posphorus and manufacturing method thereof
CN110687298A (en) * 2018-09-06 2020-01-14 天津美瑞特医疗科技有限公司 Novel method for preparing MHC antigen peptide multimer detection reagent by using Chitosan polysaccharide as skeleton

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617815B2 (en) * 2004-08-05 2013-12-31 The Regents Of The University Of California Molecules with effects on cellular development and function
US9040309B2 (en) * 2005-10-27 2015-05-26 Bio-Rad Haifa Ltd. Binding layer and method for its preparation and uses thereof
JP4963481B2 (en) * 2007-07-13 2012-06-27 富士フイルム株式会社 Surface plasmon resonance measurement chip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797804B (en) * 2022-03-29 2023-08-04 翌圣生物科技(上海)股份有限公司 NTA chromatographic medium with long connecting arm and preparation method thereof

Also Published As

Publication number Publication date
WO2010050439A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
CN100500837C (en) Methods for separating molecules
WO2010050439A1 (en) Carrier for protein immobilization and use thereof
US20070065869A1 (en) Methods for producing ligand arrays
JP4283666B2 (en) Water-soluble polymer metal ion affinity composition and method of use thereof
KR20080111349A (en) Protein g-oligonucleotide conjugate
KR100984735B1 (en) New concept drug developement for screening drug candidate inhibitor of target protein-protein interaction
CN103348244B (en) With the oligopeptide sequence of phenylboric acid base specific binding
EP2350659A2 (en) Nanoparticulate cell culture surface
JP2009542203A (en) Cysteine tagged staphylococcal protein G mutant
CA2599914A1 (en) Lectin isolated from bryopsis maxima that binds high-mannose-type sugar chains, used to purify chicken antibodies
JP3815621B2 (en) Biochip manufacturing method
EP1644527A1 (en) Cucurbituril derivative-bonded solid substrate and biochip using the same
JP5392682B2 (en) Immobilized protein
Kunys et al. Specificity Profiling of Protein‐Binding Domains Using One‐Bead‐One‐Compound Peptide Libraries
KR101439158B1 (en) Kit and method for detecting food-borne bacteria
KR20120101961A (en) A three-dimensional nanostructured array of protein nanoparticles
JP2008044917A (en) Method for immobilizing protein
WO2006024039A2 (en) Method for manufacturing of three dimensional composite surfaces for microarrays
Jespersen et al. Dual application of cryogel as solid support in peptide synthesis and subsequent protein‐capture
WO2007132998A1 (en) Linker molecules for substrate surface treatment and specific protein immobilization, and method for preparing the same
JP6781154B2 (en) Ligand immobilization method
JP5392683B2 (en) Activating carrier for preparing immobilized protein
JP2010259405A (en) Nucleic acid-immobilized carrier and utilization of the same
JP5392684B2 (en) Method for producing immobilized protein
US20190085390A1 (en) Flow cells having reactive surfaces for nucleic acid sequence analysis