JPWO2010050416A1 - Method for dissolving water-soluble polymer - Google Patents

Method for dissolving water-soluble polymer Download PDF

Info

Publication number
JPWO2010050416A1
JPWO2010050416A1 JP2010535772A JP2010535772A JPWO2010050416A1 JP WO2010050416 A1 JPWO2010050416 A1 JP WO2010050416A1 JP 2010535772 A JP2010535772 A JP 2010535772A JP 2010535772 A JP2010535772 A JP 2010535772A JP WO2010050416 A1 JPWO2010050416 A1 JP WO2010050416A1
Authority
JP
Japan
Prior art keywords
water
aqueous solution
soluble polymer
primary
dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010535772A
Other languages
Japanese (ja)
Other versions
JP5501975B2 (en
Inventor
孝文 稲葉
孝文 稲葉
ウェイ リ
ウェイ リ
都築 哲也
哲也 都築
森 嘉男
嘉男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MT AquaPolymer Inc
Original Assignee
MT AquaPolymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MT AquaPolymer Inc filed Critical MT AquaPolymer Inc
Priority to JP2010535772A priority Critical patent/JP5501975B2/en
Publication of JPWO2010050416A1 publication Critical patent/JPWO2010050416A1/en
Application granted granted Critical
Publication of JP5501975B2 publication Critical patent/JP5501975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/20Dissolving using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/30Workflow diagrams or layout of plants, e.g. flow charts; Details of workflow diagrams or layout of plants, e.g. controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/50Pipe mixers, i.e. mixers wherein the materials to be mixed flow continuously through pipes, e.g. column mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]

Abstract

水溶性高分子が0.3〜1質量%溶解する一次水溶液8を、その使用時に希釈倍率2〜30倍の二次水溶液に希釈して高分子凝集剤、製紙用歩留り向上剤、増粘剤、紙力増強剤等の用途に供する水溶性高分子の溶解方法。一次水溶液を二次水溶液に希釈するには、インラインミキサー4を用いることが好ましい。上記溶解方法を採用することにより、水溶性高分子水溶液の粘度を減少させることなく、長期使用に耐える水溶性高分子水溶液を提供できる。A primary aqueous solution 8 in which a water-soluble polymer is dissolved in an amount of 0.3 to 1% by mass is diluted to a secondary aqueous solution having a dilution ratio of 2 to 30 at the time of use to prepare a polymer flocculant, a yield improver for papermaking, and a thickener. A method for dissolving a water-soluble polymer for use as a paper strength enhancer. In order to dilute the primary aqueous solution into the secondary aqueous solution, the in-line mixer 4 is preferably used. By employing the dissolution method, a water-soluble polymer aqueous solution that can withstand long-term use can be provided without reducing the viscosity of the water-soluble polymer aqueous solution.

Description

本発明は、水溶性高分子の溶解方法、及び水溶性高分子水溶液の製造装置に関する。   The present invention relates to a method for dissolving a water-soluble polymer and an apparatus for producing a water-soluble polymer aqueous solution.

従来、ポリアクリルアミド等の水溶性高分子は、希薄な水溶液にして、高分子凝集剤、製紙用歩留り向上剤、増粘剤、紙力増強剤等の用途に広く使用されている。   Conventionally, water-soluble polymers such as polyacrylamide have been used in dilute aqueous solutions for applications such as polymer flocculants, yield improvers for papermaking, thickeners, and paper strength enhancers.

水溶性高分子は、通常、粉体、又はゾル状液体、エマルション状液体、塩水分散体等の比較的高濃度 (通常25質量%以上の場合が多い。) の液体の形態で市場に供給されている。従って、これら水溶性高分子の粉体又は液体を上記各用途に使用する場合、通常これらを希望する濃度の希薄水溶液に更に希釈して使用する。   The water-soluble polymer is usually supplied to the market in the form of a powder or a liquid with a relatively high concentration (usually 25% by mass or more) such as a sol liquid, an emulsion liquid, or a salt water dispersion. ing. Therefore, when these water-soluble polymer powders or liquids are used in the above-mentioned applications, they are usually further diluted to a dilute aqueous solution having a desired concentration.

しかし、上記市販の水溶性高分子を水に溶解して希薄水溶液にするためには、30分間から数時間程度の比較的長時間が必要であり、操作性が悪い。更に、水溶性高分子を溶解して得られる希薄水溶液は、高分子濃度が低いため、体積が大きくなる。従って、水溶性高分子の希薄水溶液の製造装置や、製造した希薄水溶液の貯留槽等は、大型になる。その結果、これらの装置の設置面積が大きくなる。   However, in order to dissolve the commercially available water-soluble polymer in water to form a dilute aqueous solution, a relatively long time of about 30 minutes to several hours is required, and the operability is poor. Furthermore, a dilute aqueous solution obtained by dissolving a water-soluble polymer has a high volume because the polymer concentration is low. Therefore, the manufacturing apparatus of the dilute aqueous solution of water-soluble polymer, the storage tank of the manufactured dilute aqueous solution, etc. become large. As a result, the installation area of these devices increases.

特許文献1には、水溶性高分子の油中水型エマルションに希釈水を混合することにより、前記水溶性高分子を水に溶解する方法が記載されている。この方法においては、先ず、前記エマルションに水を混合して比較的高濃度の一次水溶液を得る。その後、更に希釈水を加えることにより、所望の濃度の希薄な水溶性高分子水溶液を製造している。特許文献1の場合、上記希釈方法により、比較的簡便に、水溶性高分子をより完全に希釈している。しかし、この方法は、水溶性高分子の油中水型エマルションを希釈する方法である。エマルションを形成する油の存在が問題になる用途の場合には、この方法は採用できない。
特開2001-213968号(特許請求の範囲、段落0004)
Patent Document 1 describes a method of dissolving the water-soluble polymer in water by mixing dilution water with a water-in-oil emulsion of the water-soluble polymer. In this method, first, water is mixed into the emulsion to obtain a primary aqueous solution having a relatively high concentration. Thereafter, diluting water is further added to produce a dilute water-soluble polymer aqueous solution having a desired concentration. In the case of Patent Document 1, the water-soluble polymer is more completely diluted relatively easily by the dilution method. However, this method is a method of diluting a water-in-oil emulsion of a water-soluble polymer. For applications where the presence of oil forming the emulsion is a problem, this method cannot be employed.
JP 2001-213968 (Claims, paragraph 0004)

本発明者等は、水溶性高分子の希薄水溶液の製造方法につき、種々検討した。即ち、本発明者らは、一段階で水溶性高分子を水に溶解して目的濃度の水溶液を製造する従来の方法の場合や、比較的高濃度の液体の状態で供給される水溶性高分子を更に一段階で希釈して目的濃度の水溶液を製造する従来の方法を検討した(以下、上記一段階で水溶性高分子を目的濃度に溶解する通常の溶解方法を通常溶解法と略記する場合がある。)。   The present inventors have made various studies on a method for producing a dilute aqueous solution of a water-soluble polymer. That is, the present inventors have used a conventional method for producing an aqueous solution having a target concentration by dissolving a water-soluble polymer in water in one step, or a water-soluble high-concentration supplied in a relatively high concentration liquid state. A conventional method for producing an aqueous solution with a target concentration by further diluting the molecule in one step was examined (hereinafter, a normal dissolution method in which a water-soluble polymer is dissolved in a target concentration in the above one step is abbreviated as a normal dissolution method May be.)

その結果、これらの従来の方法で得られる水溶性高分子水溶液の粘度は、本来水溶性高分子水溶液の有する粘度よりも低くなる傾向にあることに、本発明者らは気が付いた。さらに、従来の方法で得られる水溶性高分子水溶液は、凝集性等の目的とする性能(実用性能)が低下する傾向があることに、本発明者らは気が付いた。また更に、従来の方法で得られる水溶性高分子水溶液は、保存安定性が悪い傾向があることにも、本発明者らは気が付いた。この傾向は、特に鉱水等の低質水を水溶性高分子の希釈に用いる場合に顕著であった。   As a result, the present inventors have noticed that the viscosity of the water-soluble polymer aqueous solution obtained by these conventional methods tends to be lower than the inherent viscosity of the water-soluble polymer aqueous solution. Furthermore, the present inventors have noticed that the water-soluble polymer aqueous solution obtained by the conventional method tends to deteriorate the target performance (practical performance) such as cohesion. Furthermore, the present inventors have also noticed that the water-soluble polymer aqueous solution obtained by the conventional method tends to have poor storage stability. This tendency was particularly remarkable when low-quality water such as mineral water was used for diluting the water-soluble polymer.

本発明者等は、上記現象を解明するために種々検討を行った。その結果、先ず一段階目として中濃度(0.1〜1質量%)の水溶性高分子水溶液を調製し、次いで、二段階目として、水溶性高分子水溶液を使用する直前に、前記中濃度の水溶性高分子溶液を目的とする低い濃度の水溶性高分子溶液に希釈する二段溶解法に想到した。   The present inventors have conducted various studies to elucidate the above phenomenon. As a result, first, a medium concentration (0.1 to 1% by mass) water-soluble polymer aqueous solution is prepared as the first step, and then, as the second step, the medium concentration is just before using the water-soluble polymer aqueous solution. A two-stage dissolution method has been conceived in which a water-soluble polymer solution is diluted into a low-concentration water-soluble polymer solution.

本発明の二段溶解法によれば、一段階で水溶性高分子を目的濃度に直接溶解する通常の溶解方法(通常溶解法)と比較し、得られる水溶性高分子水溶液は、粘度がより高く保たれ、保存安定性も良好になる。その結果、本溶解方法により得られる水溶性高分子水溶液は、実用性能も確実に優れていることが確認された。   According to the two-stage dissolution method of the present invention, compared to a normal dissolution method (ordinary dissolution method) in which the water-soluble polymer is directly dissolved to the target concentration in one step, the resulting water-soluble polymer aqueous solution has a higher viscosity. It is kept high and the storage stability is also good. As a result, it was confirmed that the water-soluble polymer aqueous solution obtained by this dissolution method was also excellent in practical performance.

本発明は、上記知見に基づき完成するに至ったものである。従って、本発明の目的とするところは、上記問題を解決する水溶性高分子水溶液の製造方法、及びその製造装置を提供することにある。   The present invention has been completed based on the above findings. Accordingly, an object of the present invention is to provide a method for producing a water-soluble polymer aqueous solution and an apparatus for producing the same, which can solve the above problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 水溶性高分子が0.3〜1質量%溶解する一次水溶液を、その使用時に希釈倍率2〜30倍の二次水溶液に希釈して使用に供することを特徴とする水溶性高分子の溶解方法。   [1] A water-soluble polymer in which a primary aqueous solution in which 0.3 to 1% by mass of a water-soluble polymer is dissolved is diluted to a secondary aqueous solution having a dilution ratio of 2 to 30 at the time of use. Dissolution method.

・ 水溶性高分子が、固体粉末である〔1〕に記載の水溶性高分子の溶解方法。   The method for dissolving a water-soluble polymer as described in [1], wherein the water-soluble polymer is a solid powder.

〔3〕 水溶性高分子が、カチオン性高分子又は両性高分子である〔1〕に記載の水溶性高分子の溶解方法。   [3] The method for dissolving a water-soluble polymer according to [1], wherein the water-soluble polymer is a cationic polymer or an amphoteric polymer.

〔4〕 インラインミキサーを用いて一次水溶液を二次水溶液に希釈する〔1〕に記載の水溶性高分子の溶解方法。   [4] The method for dissolving a water-soluble polymer according to [1], wherein the primary aqueous solution is diluted into a secondary aqueous solution using an in-line mixer.

〔5〕 水溶性高分子が0.3〜1質量%溶解する一次水溶液を製造して使用時まで貯蔵しておく一次水溶液製造工程と、
水溶性高分子水溶液の使用時に前記貯蔵している一時水溶液を希釈倍率2〜30倍の二次水溶液に希釈して使用に供する二次水溶液製造工程と、
を有することを特徴とする水溶性高分子の溶解方法。
[5] A primary aqueous solution production process for producing a primary aqueous solution in which a water-soluble polymer is dissolved in an amount of 0.3 to 1% by mass and storing it until use;
A secondary aqueous solution production step of diluting the stored temporary aqueous solution into a secondary aqueous solution having a dilution ratio of 2 to 30 times when using the water-soluble polymer aqueous solution;
A method for dissolving a water-soluble polymer, comprising:

〔6〕 〔1〕乃至〔5〕の何れかの溶解方法で溶解した二次水溶液を、高分子凝集剤又は製紙用歩留り向上剤に用いる二次水溶液の使用方法。   [6] A method for using a secondary aqueous solution in which the secondary aqueous solution dissolved by the dissolution method according to any one of [1] to [5] is used as a polymer flocculant or a papermaking yield improver.

〔7〕 水溶性高分子を0.3〜1質量%溶解する一次水溶液を貯留する一次水溶液槽と、所定の流量で希釈水を送液する手段Aを備えた希釈水供給管と、前記希釈水供給管に介装されるインラインミキサーと、前記一次水溶液槽とインラインミキサーの上流側とを連結すると共に一次水溶液槽内の一次水溶液を所定流量でインラインミキサーの上流側に送液する手段Bを有する一次水溶液供給管と、手段A、Bの流量を制御する制御部とを有する水溶性高分子水溶液の製造装置。   [7] A primary aqueous solution tank for storing a primary aqueous solution in which 0.3 to 1% by mass of a water-soluble polymer is dissolved, a dilution water supply pipe provided with means A for feeding dilution water at a predetermined flow rate, and the dilution A means B for connecting the in-line mixer interposed in the water supply pipe, the primary aqueous solution tank and the upstream side of the in-line mixer and feeding the primary aqueous solution in the primary aqueous solution tank to the upstream side of the in-line mixer at a predetermined flow rate; An apparatus for producing a water-soluble polymer aqueous solution, comprising a primary aqueous solution supply pipe having a control unit for controlling the flow rates of means A and B.

本発明の水溶性高分子の溶解方法は、固体状の水溶性高分子を水で溶解して、又は高濃度の水溶性高分子水溶液を水で希釈して、中濃度(0.3〜1質量%)の水溶性高分子の一次水溶液を予め製造して貯蔵しておく。その後、使用する時期が到来した際に、前記貯蔵している一次水溶液を2〜30倍に希釈して、目的とする低濃度の二次水溶液を製造して各種用途に使用する。     The water-soluble polymer dissolution method of the present invention is obtained by dissolving a solid water-soluble polymer with water or diluting a high-concentration water-soluble polymer aqueous solution with water to obtain a medium concentration (0.3 to 1). (Mass%) primary aqueous solution of water-soluble polymer is prepared and stored in advance. Thereafter, when the time for use comes, the stored primary aqueous solution is diluted 2 to 30 times to produce a desired low-concentration secondary aqueous solution for use in various applications.

水溶性高分子の溶解において、固体状の高分子を溶解する場合は、長時間を要する。しかし、予め溶解されている中濃度の一次水溶液を更に希釈して、目的とする二次水溶液を製造するのに要する時間は短い。従って、本発明の溶解方法によれば、一次水溶液を希釈することにより、所望の濃度の二次水溶液を短時間に製造できる。その結果、使用現場の目的に応じて、又は使用現場の運転条件の変動に応じて、簡単に、且つ短時間内に任意の濃度の希釈水溶液を製造できる。従って、本溶解方法は水溶性高分子水溶液の使用条件の変動に容易に対応ができる。   In dissolving the water-soluble polymer, it takes a long time to dissolve the solid polymer. However, the time required for further diluting the primary aqueous solution having a medium concentration dissolved in advance to produce the desired secondary aqueous solution is short. Therefore, according to the dissolution method of the present invention, a secondary aqueous solution having a desired concentration can be produced in a short time by diluting the primary aqueous solution. As a result, a dilute aqueous solution having an arbitrary concentration can be produced easily and within a short period of time according to the purpose of the use site or according to fluctuations in operating conditions at the use site. Therefore, this dissolution method can easily cope with fluctuations in the use conditions of the water-soluble polymer aqueous solution.

本発明の水溶性高分子の二段溶解法によれば、水溶性高分子を中濃度(0.3〜1質量%)に溶解した一次水溶液を予め製造しておき、使用時に水を用いて一次水溶液を2〜30倍に希釈する。従って、大量の低濃度の二次水溶液を一度に製造する必要がない。その結果、大量の二次水溶液を貯留しておく大型の貯留槽は不要である。即ち、敷地面積が少ない製造現場においても、本溶解方法は採用できる。   According to the two-stage dissolution method of a water-soluble polymer of the present invention, a primary aqueous solution in which a water-soluble polymer is dissolved at a medium concentration (0.3 to 1% by mass) is prepared in advance, and water is used at the time of use. The primary aqueous solution is diluted 2 to 30 times. Therefore, it is not necessary to produce a large amount of a low concentration secondary aqueous solution at a time. As a result, a large storage tank that stores a large amount of the secondary aqueous solution is unnecessary. That is, this melting method can be adopted even in a manufacturing site where the site area is small.

水溶性高分子は、0.3質量%未満の低濃度の水溶液状態で保存すると、溶液粘度が低下する。この粘度の低下した水溶性高分子水溶液を凝集剤や抄紙歩留り向上剤として使用する場合は、凝集性、抄紙歩留り向上性等が減少する傾向が認められる。また、溶媒として用いる水が鉱水、硬水、河川水等の低品位水の場合も同様に粘度が低下する傾向にある。しかし、0.3質量%以上の中濃度の溶液状態で保存する場合は、水溶性高分子水溶液の粘度低下は起りにくい。従って、本溶解方法によれば、水溶性高分子水溶液の粘度を減少させることなく、長期使用に耐える水溶性高分子水溶液を提供できる。   When the water-soluble polymer is stored in a low-concentration aqueous solution state of less than 0.3% by mass, the solution viscosity decreases. When this water-soluble polymer aqueous solution with reduced viscosity is used as a flocculant or paper yield improver, there is a tendency for the cohesiveness, paper yield improvement and the like to decrease. Further, when the water used as the solvent is low grade water such as mineral water, hard water, river water, etc., the viscosity tends to decrease similarly. However, when storing in a medium concentration solution state of 0.3% by mass or more, the viscosity of the water-soluble polymer aqueous solution is unlikely to decrease. Therefore, according to this dissolution method, a water-soluble polymer aqueous solution that can withstand long-term use can be provided without reducing the viscosity of the water-soluble polymer aqueous solution.

本発明の水溶性高分子水溶液の製造装置は、簡単な構成で、任意の低濃度の水溶性高分子水溶液を連続的に製造できる。また、水溶性高分子水溶液の濃度の変更も簡単である。   The apparatus for producing a water-soluble polymer aqueous solution of the present invention can continuously produce a water-soluble polymer aqueous solution having an arbitrary low concentration with a simple configuration. In addition, it is easy to change the concentration of the water-soluble polymer aqueous solution.

図1は、本発明の水溶性高分子水溶液の製造装置の構成の一例を示すフロー図である。FIG. 1 is a flow diagram showing an example of the configuration of the water-soluble polymer aqueous solution production apparatus of the present invention.

100 水溶性高分子水溶液の製造装置
2 希釈水供給管
A 希釈水を所定の流量で送液する手段
4 インラインミキサー
X 希釈水の流れ方向
6 一次水溶液槽
8 一次水溶液
10 底壁
12 一次水溶液供給管
B 一次水溶液を送液する手段
14 制御部
DESCRIPTION OF SYMBOLS 100 Manufacturing apparatus of water-soluble polymer aqueous solution 2 Dilution water supply pipe A A means to send dilution water by predetermined flow rate 4 Inline mixer X Flow direction of dilution water 6 Primary aqueous solution tank 8 Primary aqueous solution 10 Bottom wall 12 Primary aqueous solution supply pipe B Means for sending primary aqueous solution 14 Control unit

本発明の水溶性高分子の溶解方法において、用いる水溶性高分子は、特に制限が無く、任意の水溶性高分子が使用できる。   In the water-soluble polymer dissolution method of the present invention, the water-soluble polymer used is not particularly limited, and any water-soluble polymer can be used.

本発明の水溶性高分子の溶解方法において用いる水溶性高分子としては、水溶性のカチオン性単量体、アニオン性単量体、ノニオン性単量体を、単独または共重合して得られる水溶性高分子が好ましい。これらの中でも、カチオン性単量体を必須成分とするカチオン性高分子、およびカチオン性単量体とアニオン性単量体を必須成分とする両性水溶性高分子が、より好ましい。   The water-soluble polymer used in the method for dissolving the water-soluble polymer of the present invention includes a water-soluble cationic monomer, an anionic monomer, and a nonionic monomer, which are obtained by singly or copolymerizing. Is preferred. Among these, a cationic polymer having a cationic monomer as an essential component and an amphoteric water-soluble polymer having a cationic monomer and an anionic monomer as essential components are more preferable.

カチオン性単量体としては、ラジカル重合性を有するものであれば、使用に制限はない。ジアルキルアミノアルキル(メタ)アクリレートの3級塩(塩酸塩、硫酸塩等)が例示される。具体的には、ジアルキルアミノアルキル(メタ)アクリレートとしては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート及びジエチルアミノ−2−ヒドロキシプロピル(メタ)アクリレートなどが挙げられる。   The cationic monomer is not limited in use as long as it has radical polymerizability. Examples include tertiary salts (hydrochlorides, sulfates, etc.) of dialkylaminoalkyl (meth) acrylates. Specifically, examples of the dialkylaminoalkyl (meth) acrylate include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and diethylamino-2-hydroxypropyl (meth) acrylate.

更に、カチオン性単量体としては、ジアルキルアミノアルキル(メタ)アクリルアミドの塩酸塩、硫酸塩等の3級塩が例示される。ジアルキルアミノアルキル(メタ)アクリルアミドとしては、ジメチルアミノプロピル(メタ)アクリルアミドが例示される。   Further, examples of the cationic monomer include tertiary salts such as hydrochloride and sulfate of dialkylaminoalkyl (meth) acrylamide. Dialkylaminoalkyl (meth) acrylamide is exemplified by dimethylaminopropyl (meth) acrylamide.

また更に、ジアルキルアミノアルキル(メタ)アクリレートのハロゲン化アルキル付加物や、ハロゲン化アリール付加物などのジアルキルアミノアルキル(メタ)アクリレートの4級塩が例示される。ハロゲン化アルキル付加物としては塩化メチル付加物などがある。ハロゲン化アリール付加物としては、塩化ベンジル付加物などがある。   Furthermore, quaternary salts of dialkylaminoalkyl (meth) acrylates such as halogenated alkyl adducts of dialkylaminoalkyl (meth) acrylates and aryl halide adducts are exemplified. Examples of the halogenated alkyl adduct include methyl chloride adduct. Examples of the halogenated aryl adduct include benzyl chloride adduct.

また、ジアルキルアミノアルキル(メタ)アクリルアミドのハロゲン化アルキル付加物、ハロゲン化アリール付加物等の4級塩が例示される。ハロゲン化アルキル付加物としては塩化メチル付加物が例示される。ハロゲン化アリール付加物としては、塩化ベンジル付加物が例示される。   Further, quaternary salts such as dialkylaminoalkyl (meth) acrylamide halogenated alkyl adducts and halogenated aryl adducts are exemplified. Examples of the halogenated alkyl adduct include methyl chloride adduct. Examples of the halogenated aryl adduct include a benzyl chloride adduct.

これらの中でも、ジアルキルアミノアルキル(メタ)アクリレートの3級塩又は4級塩が好ましい。なお、本明細書においては、メタクリレート及びアクリレートを(メタ)アクリレートと、またメタクリルアミド及びアクリルアミドを(メタ)アクリルアミドと、表現する場合がある。   Among these, tertiary salts or quaternary salts of dialkylaminoalkyl (meth) acrylates are preferable. In this specification, methacrylate and acrylate may be expressed as (meth) acrylate, and methacrylamide and acrylamide may be expressed as (meth) acrylamide.

アニオン性単量体としては、ラジカル重合性を有するものであれば、制限無く使用できる。アニオン性単量体としては、不飽和カルボン酸及びその塩が挙げられる。具体的には、アクリル酸、メタクリル酸、クロトン酸、イタコン酸及びマレイン酸などが挙げられる。アクリル酸及びメタクリル酸が好ましい。   Any anionic monomer can be used as long as it has radical polymerizability. As an anionic monomer, unsaturated carboxylic acid and its salt are mentioned. Specific examples include acrylic acid, methacrylic acid, crotonic acid, itaconic acid and maleic acid. Acrylic acid and methacrylic acid are preferred.

前記不飽和カルボン酸の塩としては、ナトリウム塩及びカリウム塩などのアルカリ金属塩や、アンモニウム塩が挙げられる。   Examples of the salt of the unsaturated carboxylic acid include alkali metal salts such as sodium salt and potassium salt, and ammonium salt.

ノニオン性単量体としては、(メタ)アクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ヒドロキシエチルアクリレート、メトキシエチルアクリレート、ブトキシエチルアクリレート、エチルカルビトールアクリレート、アクリロニトリル及びビニルアセテートなどが挙げられる。これらの中でも(メタ)アクリルアミドが好ましい。   Nonionic monomers include (meth) acrylamide, dimethylacrylamide, diethylacrylamide, methyl acrylate, ethyl acrylate, butyl acrylate, hydroxyethyl acrylate, methoxyethyl acrylate, butoxyethyl acrylate, ethyl carbitol acrylate, acrylonitrile and vinyl acetate. Is mentioned. Among these, (meth) acrylamide is preferable.

これらのカチオン性単量体、アニオン性単量体及びノニオン性単量体は、単独、または2種以上を混合して重合することにより、水溶性高分子を製造することができる。水溶性高分子としては、上記のように、カチオン性単量体を必須の構成とするもの、あるいはカチオン性単量体とアニオン性単量体とを必須の構成とするものが好ましい。   These cationic monomers, anionic monomers, and nonionic monomers can be used alone or in combination of two or more to produce a water-soluble polymer. As the water-soluble polymer, those having a cationic monomer as an essential component or those having a cationic monomer and an anionic monomer as essential components are preferable as described above.

水溶性高分子を製造する際に、カチオン性単量体を使用する場合、又はカチオン性単量体とアニオン性単量体との両単量体を使用する場合においては、上記単量体に加えて、ノニオン性単量体として(メタ)アクリルアミドを併用することが好ましい。ノニオン性単量体を併用することにより、得られる水溶性高分子の各種物性を調整できる。   When manufacturing a water-soluble polymer, when using a cationic monomer, or when using both monomers of a cationic monomer and an anionic monomer, In addition, it is preferable to use (meth) acrylamide in combination as a nonionic monomer. By using a nonionic monomer in combination, various physical properties of the resulting water-soluble polymer can be adjusted.

カチオン性単量体と(メタ)アクリルアミドとを併用する場合は、(メタ)アクリルアミドの併用割合は、全水溶性単量体の1〜90モル%が好ましく、10〜80モル%がより好ましく、20〜60モル%が特に好ましい。
カチオン性単量体とアニオン性単量体とを併用する場合は、(メタ)アクリルアミドの併用割合は、5〜80モル%が好ましく、10〜70モル%がより好ましく、20〜50モル%が特に好ましい。
When the cationic monomer and (meth) acrylamide are used in combination, the combined ratio of (meth) acrylamide is preferably 1 to 90 mol%, more preferably 10 to 80 mol% of the total water-soluble monomer, 20 to 60 mol% is particularly preferable.
When the cationic monomer and the anionic monomer are used in combination, the combined proportion of (meth) acrylamide is preferably 5 to 80 mol%, more preferably 10 to 70 mol%, and more preferably 20 to 50 mol%. Particularly preferred.

い。   Yes.

水溶性高分子の重量平均分子量は、特に制限はないが、高分子凝集剤などに使用する場合は、100万〜2000万が好ましく、200万〜1000万がより好ましい。   The weight average molecular weight of the water-soluble polymer is not particularly limited, but when used for a polymer flocculant or the like, 1 million to 20 million is preferable, and 2 million to 10 million is more preferable.

水溶性高分子は、通常、高分子凝集剤、高分子脱水剤、歩留り向上剤、増粘剤等の名称で市販されている。本発明においては、これら市販の水溶性高分子を利用することもできる。   Water-soluble polymers are usually marketed under the names of polymer flocculants, polymer dehydrators, yield improvers, thickeners, and the like. In the present invention, these commercially available water-soluble polymers can also be used.

本発明においては、先ず、上記水溶性高分子を水に溶解させて、0.3〜1質量%の中濃度の水溶性高分子の一次水溶液を製造する。溶解の際に使用する水としては、特に制限が無く、水道水、鉱水、工水、蒸留水、イオン交換水、井水等が使用できる。これらの水の中でも、金属イオン濃度の低い中性の水が好ましい。   In the present invention, first, the water-soluble polymer is dissolved in water to produce a primary aqueous solution of a water-soluble polymer having a medium concentration of 0.3 to 1% by mass. There is no restriction | limiting in particular as water used in the case of melt | dissolution, Tap water, mineral water, industrial water, distilled water, ion-exchange water, well water, etc. can be used. Among these waters, neutral water having a low metal ion concentration is preferable.

溶解方法としては、攪拌しながら、水に、計算量の水溶性高分子を徐々に添加して溶解する方法が好ましい。攪拌は、インペラーを用いる攪拌方法が例示される。溶解方法自体は、公知である。溶解時間は、通常30分間以上で、2〜3時間程度必要な場合がある。   As a dissolution method, a method in which a calculated amount of a water-soluble polymer is gradually added and dissolved in water while stirring is preferable. Stirring is exemplified by a stirring method using an impeller. The dissolution method itself is known. The dissolution time is usually 30 minutes or more and may be required for about 2 to 3 hours.

上記方法により製造される一次水溶液は、その状態で、直ちに希釈されて、二次水溶液が調製される。又は、一次水溶液は、使用時期が到来するまで貯蔵される。貯蔵方法は特に制限が無く、例えば雨水等の混入が防止される容器等に収納して、大気雰囲気中で保存すればよい。   The primary aqueous solution produced by the above method is immediately diluted in that state to prepare a secondary aqueous solution. Alternatively, the primary aqueous solution is stored until the time of use arrives. The storage method is not particularly limited, and may be stored in an air atmosphere by storing in a container or the like in which rainwater or the like is prevented.

一次水溶液中の水溶性高分子の濃度が1質量%を超える場合は、水溶液の粘度は高く、流動性が悪い。その結果、水溶液を撹拌する攪拌機の負荷が過大になり易い。かつ水溶性高分子を溶解するのに長時間が必要である。更に、一次水溶液の粘度が高いため、希釈して二次水溶液を得る場合に、希釈に比較的長時間を要する。この場合は、後述するインラインミキサー等の使用が困難になる。   When the concentration of the water-soluble polymer in the primary aqueous solution exceeds 1% by mass, the aqueous solution has high viscosity and poor fluidity. As a result, the load on the stirrer that stirs the aqueous solution tends to be excessive. In addition, it takes a long time to dissolve the water-soluble polymer. Furthermore, since the viscosity of the primary aqueous solution is high, when a secondary aqueous solution is obtained by dilution, a relatively long time is required for dilution. In this case, it becomes difficult to use an in-line mixer or the like which will be described later.

一方、一次水溶液中の水溶性高分子の濃度が0.3質量%未満の場合は、この水溶性高分子水溶液は時間の経過と共に、粘度低下が起きる傾向が認められる。   On the other hand, when the concentration of the water-soluble polymer in the primary aqueous solution is less than 0.3% by mass, the water-soluble polymer aqueous solution tends to decrease in viscosity with time.

次に、一次水溶液を製造した後、直ちに、又は貯蔵後、使用時期が到来した際に、前記一次水溶液を水で希釈し、使用する。希釈倍率は2〜30倍が好ましい。希釈水としては、一次水溶液を製造する際に使用する水がそのまま使用できる。二次水溶液の製造中は、希釈中の水溶性高分子水溶液を攪拌をすることが好ましい。攪拌方法としては、上記インペラーを用いる方法等が挙げられる。好ましい撹拌方法としては、インラインミキサーを用いる撹拌方法がある。インラインミキサーとしては、可動部を持たないスタティックミキサーが好ましい。   Next, after the primary aqueous solution is produced, the primary aqueous solution is diluted with water immediately after use or when the use time comes after storage. The dilution factor is preferably 2 to 30 times. As dilution water, the water used when manufacturing primary aqueous solution can be used as it is. During the production of the secondary aqueous solution, it is preferable to stir the aqueous polymer solution being diluted. Examples of the stirring method include a method using the above impeller. As a preferable stirring method, there is a stirring method using an in-line mixer. As the in-line mixer, a static mixer having no movable part is preferable.

一次水溶液中の水溶性高分子は、均一な状態で水に溶解しているので、一次水溶液の希釈に要する時間は短い。取扱う一次水溶液の量により異なるが、インペラーを備える撹拌装置を使用する場合、通常5分以内で、多くの場合は1分以内で一次水溶液は均一に希釈され、二次水溶液が得られる。特に、スタティックミキサーを用いる場合は、10秒以下で希釈される。この希釈により、低濃度の二次水溶液が得られる。   Since the water-soluble polymer in the primary aqueous solution is dissolved in water in a uniform state, the time required for dilution of the primary aqueous solution is short. Although depending on the amount of the primary aqueous solution to be handled, when a stirrer equipped with an impeller is used, the primary aqueous solution is normally diluted within 5 minutes, in many cases within 1 minute, and a secondary aqueous solution is obtained. In particular, when using a static mixer, it is diluted in 10 seconds or less. By this dilution, a low concentration secondary aqueous solution is obtained.

上記溶解方法により製造される二次水溶液は、後述する実施例のデータから明らかなように、一工程で直接所望の濃度に水溶性高分子を溶解して得られる水溶性高分子水溶液の場合と比較し、粘度が高く、且つ時間が経過しても粘度の低下が少ない。その結果、この二次水溶液を凝集剤や歩留り向上剤等として使用する場合、凝集効果の向上や、歩留り向上等の有益な性状を示す。   The secondary aqueous solution produced by the dissolution method is a water-soluble polymer aqueous solution obtained by directly dissolving a water-soluble polymer at a desired concentration in one step, as is apparent from the data of the examples described later. In comparison, the viscosity is high, and the decrease in viscosity is small over time. As a result, when this secondary aqueous solution is used as an aggregating agent, a yield improving agent, or the like, beneficial properties such as an improvement in the aggregating effect and an improved yield are exhibited.

図1は、本水溶性高分子の溶解方法に好適に使用できる水溶性高分子水溶液の製造装置の一例を示す。   FIG. 1 shows an example of an apparatus for producing a water-soluble polymer aqueous solution that can be suitably used in the method for dissolving the water-soluble polymer.

図1中、100は、水溶性高分子水溶液の製造装置である。希釈水供給管2には、希釈水を所定の流量で供給する手段A、及びインラインミキサー4が、希釈水の流れ方向Xに沿って順次介装されている。   In FIG. 1, reference numeral 100 denotes an apparatus for producing a water-soluble polymer aqueous solution. A means A for supplying dilution water at a predetermined flow rate and an in-line mixer 4 are sequentially provided in the dilution water supply pipe 2 along the flow direction X of the dilution water.

インラインミキサーとしては、その内部に攪拌羽根を有し、この攪拌羽根を回転することにより流体を攪拌する構造のものや、スタティックミキサーが好ましい。スタティックミキサーは、円筒管の内部に複数の邪魔板が流れ方向に沿って挿入されている構造を有する。スタティックミキサー内を流れる流体は、前記邪魔板で分割されることを繰返し、その結果、流体が混合される。インラインミキサー自体は、市販品が利用できる。   As the in-line mixer, a structure having a stirring blade inside thereof and a structure in which the fluid is stirred by rotating the stirring blade, or a static mixer is preferable. The static mixer has a structure in which a plurality of baffle plates are inserted along a flow direction inside a cylindrical tube. The fluid flowing in the static mixer is repeatedly divided by the baffle plate, and as a result, the fluid is mixed. A commercially available product can be used for the in-line mixer itself.

6は一次水溶液槽で、その内部には、水溶性高分子を0.3〜1質量%溶解する一次水溶液8が貯留されている。一次水溶液槽6の底壁10には、一次水溶液供給管12の一端が接続され、その他端は、前記インラインミキサー4の上流側に連結されている。   Reference numeral 6 denotes a primary aqueous solution tank in which a primary aqueous solution 8 for dissolving 0.3 to 1% by mass of a water-soluble polymer is stored. One end of a primary aqueous solution supply pipe 12 is connected to the bottom wall 10 of the primary aqueous solution tank 6, and the other end is connected to the upstream side of the in-line mixer 4.

前記一次水溶液供給管12には、一次水溶液を送液する手段Bが介装され、一次水溶液8を所定流量で、インラインミキサー4の上流側に供給する。   Means B for feeding the primary aqueous solution is interposed in the primary aqueous solution supply pipe 12 to supply the primary aqueous solution 8 to the upstream side of the in-line mixer 4 at a predetermined flow rate.

14は、手段A,Bの送液量を制御する制御部で、この制御部14の制御の下に、手段A及びBは、任意に定められた流量の希釈水及び一次水溶液8を、インラインミキサー4に供給する。   Reference numeral 14 denotes a control unit that controls the amount of liquid fed by the means A and B. Under the control of the control unit 14, the means A and B supply in-line diluted water and the primary aqueous solution 8 at an arbitrarily determined flow rate. Supply to mixer 4.

この装置においては、手段A、Bの流量を変えることにより、任意の希釈割合の二次水溶液がインラインミキサー4の出口側から取出される。   In this apparatus, by changing the flow rates of the means A and B, the secondary aqueous solution having an arbitrary dilution ratio is taken out from the outlet side of the in-line mixer 4.

この装置100を用いて、二次水溶液を製造する場合、中濃度の一次水溶液8を貯蔵する一次水溶液槽6の容積は少量でも、これを希釈することにより、多量の二次水溶液を得ることができる。従って、本発明の水溶性高分子の溶解方法によれば、装置の設置面積が少なくてすむ。その結果、本発明の水溶性高分子の溶解方法は、少量規模で二次水溶液を使用する工場や処理場に使用する場合に、好適である。   When producing a secondary aqueous solution using this apparatus 100, even if the volume of the primary aqueous solution tank 6 for storing the primary aqueous solution 8 having a medium concentration is small, a large amount of the secondary aqueous solution can be obtained by diluting it. it can. Therefore, according to the method for dissolving a water-soluble polymer of the present invention, the installation area of the apparatus can be reduced. As a result, the method for dissolving a water-soluble polymer of the present invention is suitable for use in a factory or treatment plant that uses a secondary aqueous solution on a small scale.

なお、上記説明においては、手段Aをインラインミキサー4の前段に設けたが、これに限られず、手段Aをインラインミキサー4の後段に設けても良く、その他本発明の要旨を変更しない限り種々の変形を加えても良い。   In the above description, the means A is provided at the front stage of the in-line mixer 4, but the present invention is not limited to this, and the means A may be provided at the rear stage of the in-line mixer 4. Deformation may be added.

以下、実施例により、本発明を具体的に説明する。本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described specifically by way of examples. The present invention is not limited to these examples.

検討例1 (溶解時間の検討)
水溶性高分子の溶解方法を検討するに際し、先ず、下記前提条件a)、b)を確認した。
Study Example 1 (Study of dissolution time)
In examining the method for dissolving the water-soluble polymer, first, the following preconditions a) and b) were confirmed.

(a) 本発明の二段階溶解法により水溶性高分子を溶解して一次水溶液を製造するために必要な溶解時間と、通常溶解法により水溶性高分子を一段階で溶解して目的濃度の水溶性高分子水溶液を製造するために必要な溶解時間と、の間に大きな差がないこと
(b) 一次水溶液を用いて二次水溶液を製造する時間が短く、且つ製造が容易であること
表1に記載する条件で確認試験を行った。即ち、銘柄A〜Gの水溶性高分子を用いて、通常溶解法により濃度0.1質量%の水溶性高分子水溶液を調製した。この際、溶解開始後の経過時間に対する水溶性高分子水溶液の溶解状態を観察した。一方、同様にして0.5質量%、1.0質量%、1.2質量%の一次水溶液を調製した。その際、前記通常溶解法の場合と同様にして、溶解開始後の経過時間に対する水溶性高分子水溶液の溶解状態を観察した。これらの結果を表2に示した。
(a) The dissolution time required for dissolving the water-soluble polymer by the two-step dissolution method of the present invention to produce a primary aqueous solution, and dissolving the water-soluble polymer in one step by the normal dissolution method There should be no significant difference between the dissolution time required to produce a water-soluble polymer aqueous solution.
(b) The time for producing the secondary aqueous solution using the primary aqueous solution is short and the production is easy. The confirmation test was performed under the conditions shown in Table 1. That is, a water-soluble polymer aqueous solution having a concentration of 0.1% by mass was prepared by a normal dissolution method using the water-soluble polymers of brands A to G. At this time, the dissolution state of the water-soluble polymer aqueous solution with respect to the elapsed time after the start of dissolution was observed. Meanwhile, primary aqueous solutions of 0.5 mass%, 1.0 mass%, and 1.2 mass% were prepared in the same manner. At that time, the dissolution state of the water-soluble polymer aqueous solution with respect to the elapsed time after the start of dissolution was observed in the same manner as in the normal dissolution method. These results are shown in Table 2.

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

表2の結果から、水溶性高分子を一段で目的濃度0.1質量%に溶解する通常溶解に必要な時間と、水溶性高分子を0.3〜1.0質量%の一次水溶液濃度に溶解する一次溶解に必要な時間とは、ほぼ同等であることが分った。った。従って、前記濃度範囲の場合、通常溶解時間と一次溶解時間とは、実用上差が無いことが確認された。   From the results in Table 2, the time required for normal dissolution to dissolve the water-soluble polymer to the target concentration of 0.1% by mass in one step, and the concentration of the water-soluble polymer to the primary aqueous solution concentration of 0.3 to 1.0% by mass. It was found that the time required for the primary dissolution to be dissolved is almost the same. It was. Therefore, in the case of the above-mentioned concentration range, it was confirmed that there is no practical difference between the normal dissolution time and the primary dissolution time.

なお、一次水溶液濃度が1.2質量%濃度の場合は、溶解時間が長くなることが確認された。   In addition, when the primary aqueous solution density | concentration is 1.2 mass% density | concentration, it was confirmed that dissolution time becomes long.

検討例2(二次溶解時間の検討)
一次水溶液を希釈して、均一な二次水溶液を得るために必要な時間(二次溶解時間)を検討した。検討条件を表4に、検討結果を表5に示した。
Examination example 2 (examination of secondary dissolution time)
The time required for diluting the primary aqueous solution to obtain a uniform secondary aqueous solution (secondary dissolution time) was examined. The examination conditions are shown in Table 4, and the examination results are shown in Table 5.

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

表5の二次溶解時間から明らかなように、何れの水溶性高分子も、一次水溶液を希釈して二次水溶液を調製するために必要な二次溶解時間は、いずれも10秒以内であった。即ち、一次水溶液を二次水溶液に希釈する場合、10秒以内で均一に希釈できた。従って、実機レベルの水溶性高分子水溶液の製造装置においては、希釈装置としてインラインミキサーなどの比較的短時間で混合希釈できる装置を採用できる。   As is apparent from the secondary dissolution time in Table 5, the secondary dissolution time required for diluting the primary aqueous solution to prepare the secondary aqueous solution was 10 seconds or less. It was. That is, when the primary aqueous solution was diluted to the secondary aqueous solution, it could be uniformly diluted within 10 seconds. Therefore, an apparatus capable of mixing and diluting in a relatively short time, such as an in-line mixer, can be employed as a dilution apparatus in an apparatus for producing a water-soluble polymer aqueous solution at an actual machine level.

実施例1〜10、比較例1〜7
一段階で目的水溶液濃度に溶解する通常溶解法と、一次水溶液を更に二次水溶液に希釈する本発明の二段階溶解法とを用いて、水溶性高分子水溶液を製造した。水溶性高分子水溶液を製造する際に、これらの溶解法と、これら溶解法により得られる水溶性高分子水溶液の粘度、カチオン価との関係を検討した。
Examples 1-10, Comparative Examples 1-7
A water-soluble polymer aqueous solution was prepared using a normal dissolution method in which the aqueous solution concentration was dissolved in one step and a two-step dissolution method of the present invention in which the primary aqueous solution was further diluted into a secondary aqueous solution. When manufacturing water-soluble polymer aqueous solution, the relationship between these dissolution methods and the viscosity and cation value of the water-soluble polymer aqueous solution obtained by these dissolution methods was examined.

通常溶解法を採用する場合は、先ず各銘柄の水溶性高分子の0.2質量%水溶液を調製し、次いで0.2質量%水溶液を調製後の経過時間と、粘度との関係を測定した。   When employing the normal dissolution method, first, a 0.2% by mass aqueous solution of each brand of water-soluble polymer was prepared, and then the relationship between the elapsed time after preparation of the 0.2% by mass aqueous solution and the viscosity was measured. .

二段階溶解法を採用する場合は、先ず、各銘柄の水溶性高分子の0.5又は1.0質量%水溶液(一次水溶液)を調製した。次いで、調製直後、一日後、2日後に、これらの一次水溶液を0.2質量%の二次水溶液に希釈し、それらの粘度を測定した。その後、これら0.2質量%に希釈した二次水溶液を静置し、二次水溶液を調製後の経過時間と粘度との関係を測定した。   When adopting the two-step dissolution method, first, a 0.5 or 1.0 mass% aqueous solution (primary aqueous solution) of each brand of water-soluble polymer was prepared. Then, immediately after the preparation, one day later, and two days later, these primary aqueous solutions were diluted into a secondary aqueous solution of 0.2% by mass, and their viscosities were measured. Thereafter, the secondary aqueous solution diluted to 0.2% by mass was allowed to stand, and the relationship between the elapsed time after preparing the secondary aqueous solution and the viscosity was measured.

通常溶解法で調製した0.2質量%の水溶性高分子水溶液と、二段階溶解法で調製した0.2質量%の水溶性高分子水溶液とを比較すると、高カチオン系水溶性高分子水溶液の場合、及び両性系水溶性高分子水溶液の場合の何れも、物性はより顕著な差異を示した。二段階溶解法で調製した水溶性高分子水溶液の粘度は、通常溶解法で調製した水溶性高分子水溶液の粘度よりも高い値を示した。更に、二段階溶解法で調製した0.2質量%の二次水溶液の粘度の低下速度は、通常溶解法により得られる0.2質量%の水溶性高分子水溶液の粘度の低下速度よりも小さかった。   Comparing a 0.2% by mass water-soluble polymer aqueous solution prepared by a normal dissolution method with a 0.2% by mass water-soluble polymer aqueous solution prepared by a two-step dissolution method, a highly cationic water-soluble polymer aqueous solution In both cases, and in the case of the amphoteric water-soluble polymer aqueous solution, the physical properties showed more remarkable differences. The viscosity of the water-soluble polymer aqueous solution prepared by the two-step dissolution method was higher than the viscosity of the water-soluble polymer aqueous solution prepared by the normal dissolution method. Furthermore, the rate of decrease in the viscosity of the 0.2% by mass secondary aqueous solution prepared by the two-stage dissolution method is smaller than the rate of decrease in the viscosity of the 0.2% by mass water-soluble polymer aqueous solution usually obtained by the dissolution method. It was.

表6に検討条件を記載した。表7に検討結果をまとめた。更に、カチオン価を測定した。結果を表8に記載した。   Table 6 shows the examination conditions. Table 7 summarizes the results of the study. Furthermore, the cation value was measured. The results are shown in Table 8.

本発明者らは、粘度の減少が起きる理由を、以下に記載するように考えている。即ち、水溶性高分子の希薄水溶液のpHは、高濃度水溶液と比較し、アルカリ性に近い値である。その結果、希薄水溶液中においては、水溶性高分子が加水分解され易くなる。また、両性水溶性高分子の場合は、希薄水溶液の状態においては、イオンコンプレックスを形成し易くなる。上記理由により、水溶性高分子の希薄水溶液は、経時的にその物性が大きく変化しやすくなる。これに対して、水溶性高分子の中濃度水溶液は、物性の変化が小さく保たれる。   The present inventors consider the reason why the decrease in viscosity occurs as described below. That is, the pH of the dilute aqueous solution of the water-soluble polymer is close to alkalinity as compared with the high-concentration aqueous solution. As a result, the water-soluble polymer is easily hydrolyzed in the dilute aqueous solution. In the case of an amphoteric water-soluble polymer, an ion complex is easily formed in a dilute aqueous solution. For the above reasons, the physical properties of a dilute aqueous solution of a water-soluble polymer are likely to change greatly over time. In contrast, the medium concentration aqueous solution of the water-soluble polymer keeps the change in physical properties small.

上述する理由で、中濃度の水溶性高分子水溶液の状態で貯蔵し、使用直前に貯蔵している中濃度の水溶性高分子水溶液を希釈する本発明の溶解方法(二段階溶解法)で得られる低濃度の高分子水溶液は、通常溶解法で得られる水溶性高分子水溶液よりも良好な物性を示す。   For the reasons described above, it is obtained by the dissolution method (two-stage dissolution method) of the present invention in which it is stored in the state of a medium-concentration water-soluble polymer aqueous solution, and the medium-concentration water-soluble polymer aqueous solution is stored just before use. The resulting low concentration polymer aqueous solution exhibits better physical properties than a water-soluble polymer aqueous solution usually obtained by a dissolution method.

この傾向は、イオン性の高いカチオン水溶性高分子の場合、及び両性水溶性高分子の場合に、特に顕著である。具体的には、この傾向は、全構成単量体単位を基準として、カチオン性単量体単位を40mol%以上の含む中カチオン性水溶性高分子の場合に顕著で、70mol%以上の高カチオン性水溶性高分子の場合に特に顕著である。   This tendency is particularly remarkable in the case of a highly ionic cationic water-soluble polymer and in the case of an amphoteric water-soluble polymer. Specifically, this tendency is remarkable in the case of a medium cationic water-soluble polymer containing 40 mol% or more of cationic monomer units based on the total constituent monomer units, and a high cation of 70 mol% or more. This is particularly remarkable in the case of water-soluble water-soluble polymers.

更に、カチオン性単量体単位含有量(以下Cv[mol%])と、アニオン性単量体単位含有量(以下Av[mol%])とが同じ程度の両性水溶性高分子の場合、詳しくはCv/Av≦10且つAv/Cv≦3.0の場合に、この傾向はより顕著である。   Furthermore, in the case of an amphoteric water-soluble polymer in which the cationic monomer unit content (hereinafter referred to as Cv [mol%]) and the anionic monomer unit content (hereinafter referred to as Av [mol%]) are the same, details are given. Is more pronounced when Cv / Av ≦ 10 and Av / Cv ≦ 3.0.

更に、この傾向は、メタクリレート系単量体単位を有する高カチオン性水溶性高分子の場合よりも、アクリレート系単量体単位を有する高カチオン性水溶性高分子の場合において、顕著である。この理由は明確ではないが、メタクリレート系単量体単位は、アクリレート系単量体単位よりも相対的に加水分解されにくい化学構造であるためと推定される。   Furthermore, this tendency is more conspicuous in the case of a highly cationic water-soluble polymer having an acrylate monomer unit than in the case of a highly cationic water-soluble polymer having a methacrylate monomer unit. The reason for this is not clear, but it is presumed that the methacrylate monomer unit has a chemical structure that is relatively less hydrolyzed than the acrylate monomer unit.

更に、同一濃度の水溶性高分子水溶液の場合であっても、一次水溶液を調製後、直ちに、この一次水溶液を希釈して得られる水溶性高分子水溶液の粘度は、通常溶解で得られる水溶性高分子水溶液の粘度よりも高い。前記粘度差が生じる理由は、以下に記載する理由によると、本発明者らは解釈している。即ち、通常溶解法の場合は、水溶性高分子を溶解するのに1時間を要する。さらに、通常溶解法で調製される希薄な水溶性高分子水溶液は、相対的にアルカリ性に近いpHになっており、使用に供されるまでは、このpHで保管されている。その結果、通常希釈法により調製する水溶性高分子は加水分解し、またイオンコンプレックスが生成して低粘度化する。これに対し、二段溶解法による二次水溶液の調製時間は短時間であるので、水溶液の粘度低下が起き難い。   Furthermore, even in the case of a water-soluble polymer aqueous solution having the same concentration, the viscosity of the water-soluble polymer aqueous solution obtained by diluting the primary aqueous solution immediately after preparing the primary aqueous solution is usually obtained by dissolution. It is higher than the viscosity of the aqueous polymer solution. The reason why the difference in viscosity occurs is interpreted by the present inventors according to the reason described below. That is, in the normal dissolution method, it takes 1 hour to dissolve the water-soluble polymer. Furthermore, a dilute water-soluble polymer aqueous solution usually prepared by a dissolution method has a pH that is relatively close to alkalinity, and is stored at this pH until it is used. As a result, the water-soluble polymer usually prepared by the dilution method is hydrolyzed, and an ion complex is formed to lower the viscosity. On the other hand, since the preparation time of the secondary aqueous solution by the two-stage dissolution method is short, it is difficult for the viscosity of the aqueous solution to decrease.

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

検討例3
表9に示す塩類を含む模擬鉱水を調製した。一般に、鉱水を用いて調製する水溶性高分子水溶液の粘度は、金属イオンを含まない水を用いて調製する水溶性高分子水溶液の粘度よりも低くなる。更に、鉱水を用いて調製する水溶性高分子水溶液のカチオン価は、塩が共存するため、測定し難い。
Study example 3
Simulated mineral water containing the salts shown in Table 9 was prepared. In general, the viscosity of a water-soluble polymer aqueous solution prepared using mineral water is lower than that of a water-soluble polymer aqueous solution prepared using water not containing metal ions. Furthermore, the cation value of a water-soluble polymer aqueous solution prepared using mineral water is difficult to measure because salts coexist.

この模擬鉱水に、水溶性高分子を表10に示す濃度で溶解させた。各濃度の水溶性高分子溶液を静置し、析出物の有無を観察した。   A water-soluble polymer was dissolved in the simulated mineral water at a concentration shown in Table 10. The water-soluble polymer solution at each concentration was allowed to stand and the presence or absence of precipitates was observed.

次に、これらの水溶性高分子水溶液を模擬鉱水で希釈した。希釈した水溶性高分子水溶液静置し、その濃度における析出物の有無を観察した。結果を表10に示した。   Next, these water-soluble polymer aqueous solutions were diluted with simulated mineral water. The diluted water-soluble polymer aqueous solution was allowed to stand, and the presence or absence of precipitates at that concentration was observed. The results are shown in Table 10.

高カチオン系水溶性高分子水溶液が懸濁した理由は、水溶性高分子が加水分解により両性化し、その結果沈殿やコンプレックスを形成したためと考えられる。   The reason for the suspension of the highly cationic water-soluble polymer aqueous solution is thought to be that the water-soluble polymer became amphoteric by hydrolysis, resulting in the formation of precipitates and complexes.

両性水溶性高分子水溶液は、低濃度の場合は短時間で懸濁するが、中濃度の場合は懸濁するのに長時間を要する。しかし、現象的には、水溶性高分子の中濃度水溶液を希釈する場合、希釈した低濃度水溶液は、希釈後すぐには懸濁しない(懸濁が遅延する)。現在のところ、この理由は十分に解明されていない。   The amphoteric water-soluble polymer aqueous solution suspends in a short time at a low concentration, but takes a long time to suspend at an intermediate concentration. However, phenomenologically, when diluting a medium concentration aqueous solution of a water-soluble polymer, the diluted low concentration aqueous solution is not suspended immediately after the dilution (suspension is delayed). At present, the reason for this is not fully understood.

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

実施例18、比較例15
製紙工場排水汚泥の脱水試験
水溶性高分子水溶液を用いて、製紙工場排水汚泥の脱水試験を行った。試験条件を表11に記載した。試験結果を表12に示した。ろ水量に関しては、微差ではあるが、本発明の二段溶解法が有利であった。ケーキ含水率は、比較例の方が高かった。
Example 18 and Comparative Example 15
Paper factory wastewater sludge dewatering test Paper factory wastewater sludge dewatering test was conducted using water-soluble polymer aqueous solution. The test conditions are listed in Table 11. The test results are shown in Table 12. Regarding the amount of drainage, although it is a slight difference, the two-stage dissolution method of the present invention was advantageous. The moisture content of the cake was higher in the comparative example.

なお、TSは蒸発残留物、VTSは強熱減量、SSは浮遊物質、VSSは浮遊物質強熱減量を示す。   TS represents evaporation residue, VTS represents ignition loss, SS represents suspended matter, and VSS represents suspended matter ignition loss.

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

実施例19、比較例15
水溶性高分子水溶液を用いて、下水処理場消化汚泥の脱水試験を行った。試験条件を表13に記載した。試験結果を表14に示した。
Example 19 and Comparative Example 15
A dewatering test was performed on digested sludge from a sewage treatment plant using a water-soluble polymer aqueous solution. Test conditions are listed in Table 13. The test results are shown in Table 14.

表14から、フロック径、ろ水量、ろ液濁度、ケーキ含水量に関しては、本発明の二段溶解法が有利であることが分る。ケーキ含水量は何れも実施例19の方が、比較例15よりも低い。この相違は、上記DA系中カチオンの実施例18と比較例14との相違よりも顕著である。   From Table 14, it can be seen that the two-stage dissolution method of the present invention is advantageous with respect to the floc diameter, filtrate amount, filtrate turbidity, and cake water content. The cake moisture content is lower in Example 19 than in Comparative Example 15. This difference is more conspicuous than the difference between Example 18 and Comparative Example 14 of the DA-based cation.

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

実施例20、比較例16
水溶性高分子水溶液を用いて、抄紙歩留り試験を実験室規模で行った。試験条件を表15に、結果を表16に示した。
通常希釈法よりも二段溶解法により調製した高分子水溶液を用いる方が、抄紙歩留り性能がよかった。通常希釈法による場合は、若干ながらも水溶性高分子の性能低下が生じているものと思われる。
Example 20, Comparative Example 16
A paper yield test was conducted on a laboratory scale using a water-soluble polymer aqueous solution. The test conditions are shown in Table 15 and the results are shown in Table 16.
The paper yield performance was better when the aqueous polymer solution prepared by the two-stage dissolution method was used than by the normal dilution method. In the case of the normal dilution method, it seems that the performance of the water-soluble polymer is slightly reduced.

Figure 2010050416
Figure 2010050416

表15中に記載した模擬工業用水は、水にCaSO・2HO (分子量172.17)を50mg/L、CaCl・2HO (分子量147.01)を40mg/L、NaHCO (分子量84.02)を60mg/L添加して調製した。Table 15 simulated industrial water as described in the water CaSO 4 · 2H 2 O (molecular weight 172.17) 50mg / L, CaCl 2 · 2H 2 O ( molecular weight 147.01) and 40 mg / L, NaHCO 3 ( It was prepared by adding 60 mg / L of molecular weight 84.02).

Figure 2010050416
Figure 2010050416

実施例21、22、比較例17、18
水溶性高分子水溶液を用いて、製紙マシンを用いる実機試験を行い、表18に示す項目を評価した。結果を表18に示した。なお、試験条件を表17に示した。
Examples 21 and 22, Comparative Examples 17 and 18
Using the water-soluble polymer aqueous solution, an actual machine test using a papermaking machine was performed, and the items shown in Table 18 were evaluated. The results are shown in Table 18. The test conditions are shown in Table 17.

水溶性高分子の添加量が同一であれば、通常溶解法よりも、二段溶解法の水溶性高分子水溶液を用いる方が、歩留り性、地合性とも優位の結果が得られた。この理由は、実機における水溶性高分子の溶解設備、および用いた水の水質条件が影響したものと思われる。即ち、通常希釈法の場合には、水溶性高分子水溶液の粘度低下が激しくなり、十分に水溶性高分子の機能が発揮できなかったためと考えられる。   When the addition amount of the water-soluble polymer was the same, the results obtained in the yield and formation were superior to those using the water-soluble polymer aqueous solution of the two-stage dissolution method than the normal dissolution method. The reason seems to be influenced by the water-soluble polymer dissolution equipment in the actual machine and the water quality conditions of the water used. In other words, in the case of the normal dilution method, it is considered that the viscosity of the water-soluble polymer aqueous solution was drastically decreased and the function of the water-soluble polymer could not be sufficiently exhibited.

Figure 2010050416
Figure 2010050416

Figure 2010050416
Figure 2010050416

Claims (7)

水溶性高分子が0.3〜1質量%溶解する一次水溶液を、その使用時に希釈倍率2〜30倍の二次水溶液に希釈して使用に供することを特徴とする水溶性高分子の溶解方法。 A method for dissolving a water-soluble polymer, comprising diluting a primary aqueous solution in which a water-soluble polymer is dissolved in an amount of 0.3 to 1% by mass into a secondary aqueous solution having a dilution ratio of 2 to 30 at the time of use. . 水溶性高分子が、固体粉末である請求項1に記載の水溶性高分子の溶解方法。 The method for dissolving a water-soluble polymer according to claim 1, wherein the water-soluble polymer is a solid powder. 水溶性高分子が、カチオン性高分子又は両性高分子である請求項1に記載の水溶性高分子の溶解方法。 The method for dissolving a water-soluble polymer according to claim 1, wherein the water-soluble polymer is a cationic polymer or an amphoteric polymer. インラインミキサーを用いて一次水溶液を二次水溶液に希釈する請求項1に記載の水溶性高分子の溶解方法。 The method for dissolving a water-soluble polymer according to claim 1, wherein the primary aqueous solution is diluted into a secondary aqueous solution using an in-line mixer. 水溶性高分子が0.3〜1質量%溶解する一次水溶液を製造して使用時まで貯蔵しておく一次水溶液製造工程と、
水溶性高分子水溶液の使用時に前記貯蔵している一時水溶液を希釈倍率2〜30倍の二次水溶液に希釈して使用に供する二次水溶液製造工程と、
を有することを特徴とする水溶性高分子の溶解方法。
Producing a primary aqueous solution in which a water-soluble polymer is dissolved in an amount of 0.3 to 1% by mass and storing the primary aqueous solution until use;
A secondary aqueous solution production step of diluting the stored temporary aqueous solution into a secondary aqueous solution having a dilution ratio of 2 to 30 times when using the water-soluble polymer aqueous solution;
A method for dissolving a water-soluble polymer, comprising:
請求項1乃至5の何れかの溶解方法で溶解した二次水溶液を、高分子凝集剤又は製紙用歩留り向上剤に用いる二次水溶液の使用方法。 A method for using a secondary aqueous solution in which the secondary aqueous solution dissolved by the dissolution method according to any one of claims 1 to 5 is used as a polymer flocculant or a paper production yield improver. 水溶性高分子を0.3〜1質量%溶解する一次水溶液を貯留する一次水溶液槽と、所定の流量で希釈水を送液する手段Aを備えた希釈水供給管と、前記希釈水供給管に介装されるインラインミキサーと、前記一次水溶液槽とインラインミキサーの上流側とを連結すると共に一次水溶液槽内の一次水溶液を所定流量でインラインミキサーの上流側に送液する手段Bを有する一次水溶液供給管と、手段A、Bの流量を制御する制御部とを有する水溶性高分子水溶液の製造装置。 A primary aqueous solution tank for storing a primary aqueous solution in which 0.3 to 1% by mass of a water-soluble polymer is dissolved, a dilution water supply pipe provided with means A for sending dilution water at a predetermined flow rate, and the dilution water supply pipe A primary aqueous solution having means B for connecting the primary aqueous solution tank and the upstream side of the inline mixer to the upstream side of the inline mixer at a predetermined flow rate. An apparatus for producing a water-soluble polymer aqueous solution, comprising a supply pipe and a controller for controlling the flow rates of means A and B.
JP2010535772A 2008-10-31 2009-10-23 Method for dissolving water-soluble polymer Active JP5501975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010535772A JP5501975B2 (en) 2008-10-31 2009-10-23 Method for dissolving water-soluble polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008281318 2008-10-31
JP2008281318 2008-10-31
JP2010535772A JP5501975B2 (en) 2008-10-31 2009-10-23 Method for dissolving water-soluble polymer
PCT/JP2009/068276 WO2010050416A1 (en) 2008-10-31 2009-10-23 Method of dissolving water-soluble polymer

Publications (2)

Publication Number Publication Date
JPWO2010050416A1 true JPWO2010050416A1 (en) 2012-03-29
JP5501975B2 JP5501975B2 (en) 2014-05-28

Family

ID=42128779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010535772A Active JP5501975B2 (en) 2008-10-31 2009-10-23 Method for dissolving water-soluble polymer

Country Status (3)

Country Link
JP (1) JP5501975B2 (en)
CN (1) CN102176960B (en)
WO (1) WO2010050416A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731089B1 (en) * 2015-01-14 2015-06-10 巴工業株式会社 Polymer flocculant mixing dissolution system and polymer flocculant mixing dissolution method
JP6744589B2 (en) * 2018-07-13 2020-08-19 荒川化学工業株式会社 Method for producing diluted solution of retention agent for papermaking

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118408A (en) * 1984-04-30 1986-01-27 アライド コロイズ リミテイド Flocculant and its production
JPH044004A (en) * 1990-04-19 1992-01-08 Fuji Electric Co Ltd Device for continuously supplying organic flocculant
JPH10195203A (en) * 1997-01-07 1998-07-28 Hymo Corp Production of polymer aqueous solution
JP2000126509A (en) * 1998-10-26 2000-05-09 Sumitomo Chem Co Ltd Method for dissolving polymer flocculating agent
JP2000288555A (en) * 1999-04-05 2000-10-17 Ebara Corp Fresh water treatment method
JP2001213968A (en) * 2000-02-02 2001-08-07 Kurita Water Ind Ltd Method for dissolving water-soluble polymer and dissolution apparatus therefor
JP2003001086A (en) * 2001-06-20 2003-01-07 Kurita Water Ind Ltd Chemical dissolving and supplying facilities
JP2003164742A (en) * 2001-11-30 2003-06-10 Kyushu Kankyo Setsubi:Kk Dissolving apparatus
JP2006175427A (en) * 2004-11-25 2006-07-06 Daiyanitorikkusu Kk Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating wastewater with use of polymer coagulant
JP2007069167A (en) * 2005-09-09 2007-03-22 Kurita Water Ind Ltd Apparatus for preparing primary or secondary dilution of emulsion polymer
JP2008208494A (en) * 2007-02-28 2008-09-11 Hymo Corp Papermaking method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523748B2 (en) * 1973-06-06 1977-01-29
JP3184729B2 (en) * 1995-02-24 2001-07-09 ミヤマ株式会社 Mixing and melting equipment
TW585951B (en) * 2000-09-28 2004-05-01 Jujo Paper Co Ltd Offset printing paper
US6709551B2 (en) * 2001-12-17 2004-03-23 Ondeo Nalco Company High molecular weight cationic and anionic polymers comprising zwitterionic monomers
KR100994091B1 (en) * 2002-07-19 2010-11-12 카오카부시키가이샤 Paper improver

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118408A (en) * 1984-04-30 1986-01-27 アライド コロイズ リミテイド Flocculant and its production
JPH044004A (en) * 1990-04-19 1992-01-08 Fuji Electric Co Ltd Device for continuously supplying organic flocculant
JPH10195203A (en) * 1997-01-07 1998-07-28 Hymo Corp Production of polymer aqueous solution
JP2000126509A (en) * 1998-10-26 2000-05-09 Sumitomo Chem Co Ltd Method for dissolving polymer flocculating agent
JP2000288555A (en) * 1999-04-05 2000-10-17 Ebara Corp Fresh water treatment method
JP2001213968A (en) * 2000-02-02 2001-08-07 Kurita Water Ind Ltd Method for dissolving water-soluble polymer and dissolution apparatus therefor
JP2003001086A (en) * 2001-06-20 2003-01-07 Kurita Water Ind Ltd Chemical dissolving and supplying facilities
JP2003164742A (en) * 2001-11-30 2003-06-10 Kyushu Kankyo Setsubi:Kk Dissolving apparatus
JP2006175427A (en) * 2004-11-25 2006-07-06 Daiyanitorikkusu Kk Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating wastewater with use of polymer coagulant
JP2007069167A (en) * 2005-09-09 2007-03-22 Kurita Water Ind Ltd Apparatus for preparing primary or secondary dilution of emulsion polymer
JP2008208494A (en) * 2007-02-28 2008-09-11 Hymo Corp Papermaking method

Also Published As

Publication number Publication date
CN102176960B (en) 2015-02-18
CN102176960A (en) 2011-09-07
WO2010050416A1 (en) 2010-05-06
JP5501975B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
CN104692513A (en) Sewage treatment flocculant
JP5501975B2 (en) Method for dissolving water-soluble polymer
JP5310180B2 (en) Paper making method
JP5641642B2 (en) Concentration method of sludge
JP4658873B2 (en) Aggregation treatment agent and method for stabilizing aqueous solution of aggregation treatment agent
JP5729717B2 (en) Concentration method of sludge
CN105273131A (en) Preparation method of cationic polyacrylamide emulsion
CN105153369A (en) Amphoteric polysaccharide biological flocculant and preparation method thereof
CN102765791B (en) Modified physical chemical coagulation sewage treatment method
JP2010201309A (en) Treatment method of water to be treated containing inorganic sludge
JP4479095B2 (en) Polymer flocculant and sludge dewatering method
JPWO2008047739A1 (en) Sewage sludge dewatering method
JP2014147911A (en) Scale prevention agent and scale prevention method
JP3906636B2 (en) Amphoteric polymer flocculant and sludge dewatering method
JP2010215867A (en) Water-soluble polymer composition
JP4206250B2 (en) Sludge dewatering method
JP4151922B2 (en) Acrylic acid (co) polymer dispersion and use thereof
JP2003033604A (en) Waste water treatment agent
JPH0938700A (en) Treatment of organic sludge
CN109095522A (en) Sewage deodorizing cleanser and preparation method thereof and sewage deodorizing method
JP2012115790A (en) Wastewater treatment agent
JPH11277094A (en) Sludge additive and use thereof
JP6000747B2 (en) Muddy water treatment method
JP2013071060A (en) Organic sludge processing method
JPH08188699A (en) Aqueous dispersion composition of cationic polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5501975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250