JP2010215867A - Water-soluble polymer composition - Google Patents

Water-soluble polymer composition Download PDF

Info

Publication number
JP2010215867A
JP2010215867A JP2009067150A JP2009067150A JP2010215867A JP 2010215867 A JP2010215867 A JP 2010215867A JP 2009067150 A JP2009067150 A JP 2009067150A JP 2009067150 A JP2009067150 A JP 2009067150A JP 2010215867 A JP2010215867 A JP 2010215867A
Authority
JP
Japan
Prior art keywords
water
soluble polymer
soluble
aqueous solution
cationic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009067150A
Other languages
Japanese (ja)
Inventor
Shogo Wakatsuki
将吾 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2009067150A priority Critical patent/JP2010215867A/en
Publication of JP2010215867A publication Critical patent/JP2010215867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge dehydrating agent, which satisfies a need to lower the water content of a dehydration cake of namely sludge with low fiber contents, for which dehydration is performed with difficulty, such as excess sludge and digested sludge at sewage works, can cope with a need to increase the amount of an agent to be added, which is also thought to be a drawback of crosslinked or branched water-soluble polymers, and can suppress an increase in cost. <P>SOLUTION: A water soluble polymer composition comprises (A) a water soluble cationic polymer having a specific composition and structure, (B) a water soluble amphoteric polymer having a specific composition, (C) a water soluble amphoteric polymer having a cationic functional group and an anionic functional group and the composition ratio differing from that of (B), and (D) an acidic substance. The water-soluble polymer composition can be produced by compounding the water soluble cationic polymer (A) having a charge inclusion ratio of 35% or more and 90% or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水溶性高分子組成物に関するものであり、詳しくは特定の構造を有する電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子(A)、カチオン性官能基およびアニオン性官能基を有する両性水溶性高分子(B)、(B)とは異なる組成比のイオン性官能基を有する両性水溶性高分子(C)および酸性物質(D)からなることを特徴とする水溶性高分子組成物に関する。 The present invention relates to a water-soluble polymer composition, and more specifically, a water-soluble polymer (A) having a specific structure and a cationic functional group having a charge inclusion rate of 35% to 90%, and a cationic functional group And an amphoteric water-soluble polymer (B) having an anionic functional group, an amphoteric water-soluble polymer (C) having an ionic functional group having a composition ratio different from that of (B), and an acidic substance (D) And a water-soluble polymer composition.

従来、下水、し尿等で生じる有機性汚泥の脱水に対しては、カチオン性高分子凝集剤が広く使用され、その後両性高分子凝集剤が提案されている(特許文献1)。近年では下水処理場が脱水ケーキの含水率低下を要求する傾向が強く、上記の単なるカチオン性あるいは両性高分子では対応ができない状況である。また下水余剰汚泥や下水消化汚泥のように繊維分の少ない所謂難脱水汚泥では、特別の性能を要する凝集剤が必要になり、二種以上配合凝集剤が提案される所以である。 Conventionally, a cationic polymer flocculant has been widely used for dehydration of organic sludge generated in sewage, human waste, etc., and an amphoteric polymer flocculant has been proposed (Patent Document 1). In recent years, there is a strong tendency for sewage treatment plants to require a reduction in the moisture content of the dehydrated cake, which is not possible with the simple cationic or amphoteric polymers described above. Moreover, in the so-called hardly dewatered sludge with a small amount of fiber such as sewage surplus sludge and sewage digested sludge, a flocculant requiring special performance is required, and two or more kinds of flocculants are proposed.

例えば特許文献2は、メタアクリル系カチオンポリマー(A)と(メタ)アクリル系両性ポリマーが、特許文献3ではカチオン性高分子(A)と、酸基の3〜30モル%がアルカリにより中和されてなるアニオン性単量体単位を含む両性高分子(B)の配合が、さらに特許文献4では、カチオン化度を規定し、カチオン性基とアニオン性基の比率を規定した両性高分子との配合をそれぞれ提案している。 For example, in Patent Document 2, methacrylic cationic polymer (A) and (meth) acrylic amphoteric polymer are neutralized, and in Patent Document 3, cationic polymer (A) and 3 to 30 mol% of acid groups are neutralized by alkali. The formulation of the amphoteric polymer (B) containing an anionic monomer unit is further disclosed in Patent Document 4 in which the degree of cationization is defined and the ratio of the cationic group to the anionic group is defined. Each formulation is proposed.

これらは上記謂難脱水汚泥の処理を意図したものであるが、下水処理場の脱水ケーキ含水率低下の要求には到底満足されるものではない。また上記謂難脱水汚泥には、架橋あるいは分岐した水溶性高分子が有効とされているが(特許文献5など)、薬剤添加量が増加し処理コストを押し上げるのが問題となっている。
特開昭63−260928号公報 特開平8−112504号公報 特開2000−218297号公報 特開平9−57299号公報 特許3218578号公報
These are intended for the treatment of the so-called hardly dewatered sludge, but are not completely satisfied with the demand for reducing the moisture content of the dewatered cake at the sewage treatment plant. In addition, a crosslinked or branched water-soluble polymer is effective for the so-called hardly dehydrated sludge (Patent Document 5, etc.), but the problem is that the amount of chemicals added increases and processing costs are increased.
JP-A 63-260928 JP-A-8-112504 JP 2000-218297 A JP-A-9-57299 Japanese Patent No. 3218578

本発明の課題は、下水処理場における下水余剰汚泥や下水消化汚泥のように繊維分の少ない所謂難脱水汚泥に対し、脱水ケーキ含水率低下の性能を満足し、
同時に架橋あるいは分岐した水溶性高分子の難点とされる薬剤添加量の増加にも対応可能な汚泥脱水剤を開発することである。
The object of the present invention is to satisfy the performance of dewatering cake moisture content reduction for so-called hardly dewatered sludge with low fiber content such as sewage surplus sludge and sewage digested sludge in a sewage treatment plant,
At the same time, it is to develop a sludge dewatering agent that can cope with an increase in the amount of chemicals added, which is a difficulty of water-soluble polymers that are crosslinked or branched.

本発明者らは、上記課題を解決するため鋭意検討をした結果、以下に述べる発明に到達した。 As a result of intensive studies to solve the above problems, the present inventors have reached the invention described below.

すなわち請求項1の発明は、下記(定義1)あるいは(定義2)で表される電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子(A)、カチオン性官能基およびアニオン性官能基を有する水溶性高分子(B)、(B)とは異なる組成比のカチオン性官能基およびアニオン性官能基を有する水溶性高分子(C)および酸性物質(D)からなる水溶性高分子組成物である。 That is, the invention of claim 1 includes a water-soluble polymer (A) having a cationic functional group represented by the following (Definition 1) or (Definition 2) having a charge inclusion ratio of 35% to 90%, and a cationic functional group: And a water-soluble polymer (B) having an anionic functional group, a water-soluble polymer (C) having a composition ratio different from that of (B), a water-soluble polymer (C) having an anionic functional group, and an acidic substance (D) It is a water-soluble polymer composition.

(定義1)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性両性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
(Definition 1) In the case of a water-soluble cationic polymer and an amphoteric and water-soluble amphoteric polymer having a positive difference in the copolymerization rate between a cationic monomer and an anionic monomer, the charge inclusion rate [%] = (1 −α / β) × 100
α is a titration amount obtained by titrating a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid with a potassium polyvinyl sulfonate aqueous solution. β is a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid, and an aqueous polyvinyl sulfonate potassium solution is used to neutralize the charge of the water-soluble cationic polymer or amphoteric water-soluble polymer. A titration amount obtained by adding a sufficient amount to perform, and then subtracting the titration amount titrated with an aqueous polydiallyldimethylammonium chloride solution from the blank value. Here, the blank value is a titration amount obtained by titrating a potassium polyvinylsulfonate aqueous solution with a polydiallyldimethylammonium chloride aqueous solution when no water-soluble cationic polymer or amphoteric water-soluble polymer aqueous solution was added.

(定義2)両性でかつカチオン性単量体とアニオン性単量体の共重合率の差が負である水溶性高分子の場合
電荷内包率[%]=(1−α/β)×100
αはアンモニアにてpH10.0に調整した水溶性両性高分子水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量。βはアンモニアにてpH10.0に調整した水溶性両性高分子水溶液にポリジアリルジメチルアンモニウムクロライド水溶液を前記水溶性両性高分子の電荷の中和を行うに十分な量加え、その後ポリビニルスルホン酸カリウム水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性両性高分子水溶液無添加時にジアリルジメチルアンモニウムクロライド水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量である。
(Definition 2) In the case of a water-soluble polymer that is amphoteric and has a negative difference in copolymerization rate between a cationic monomer and an anionic monomer, the charge inclusion rate [%] = (1−α / β) × 100
α is a titration amount obtained by titrating a water-soluble amphoteric polymer aqueous solution adjusted to pH 10.0 with ammonia with a polydiallyldimethylammonium chloride aqueous solution. β is a water-soluble amphoteric polymer aqueous solution adjusted to pH 10.0 with ammonia, and a polydiallyldimethylammonium chloride aqueous solution is added in an amount sufficient to neutralize the charge of the water-soluble amphoteric polymer, and then a potassium polyvinyl sulfonate aqueous solution Titration volume obtained by subtracting the titration volume titrated with the blank value. Here, the blank value is a titration amount obtained by titrating a diallyldimethylammonium chloride aqueous solution with a potassium polyvinyl sulfonate aqueous solution when no water-soluble amphoteric polymer aqueous solution was added.

請求項2の発明は、前記水溶性高分子(A)が、下記一般式(1)および/または一般式(2)で表される単量体1mol%以上100mol%以下、下記一般式(3)で表される単量体0mol%以上50mol%以下および非イオン性単量体0mol%以上99mol%以下の範囲からなる単量体混合物の共重合物であることを特徴とした、請求項1に記載の水溶性高分子組成物である。
一般式(1)
は水素又はメチル基、R、RおよびRは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X は陰イオンをそれぞれ表わす。
一般式(2)
、Rは水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X は陰イオンをそれぞれ表す。
一般式(3)
は水素またはCHCOOY、R10は水素、メチル基またはCOOY、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOOであり、Y、Yは水素または陽イオンをそれぞれ表す。
The invention of claim 2 is characterized in that the water-soluble polymer (A) is a monomer represented by the following general formula (1) and / or general formula (2): And a monomer mixture consisting of 0 mol% to 50 mol% and a nonionic monomer in a range of 0 mol% to 99 mol%. The water-soluble polymer composition as described in 1. above.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 , R 3 and R 4 are alkyl groups having 1 to 3 carbon atoms, alkoxy groups or benzyl groups, which may be the same or different. A is oxygen or NH, B is an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, X 1 - represents each an anion.
General formula (2)
R 5 and R 6 each represent hydrogen or a methyl group, R 7 and R 8 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X 2 represents an anion.
General formula (3)
R 9 is hydrogen or CH 2 COOY 2 , R 10 is hydrogen, methyl group or COOY 2 , Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO , and Y 1 and Y 2 each represent hydrogen or a cation.

請求項3の発明は、前記水溶性高分子(B)および(C)が、前記一般式(1)および/または一般式(2)で表される単量体1mol%以上99mol%以下、前記一般式(3)で表される単量体1mol%以上99mol%以下および、非イオン性単量体0mol%以上98mol%以下の範囲からなる単量体混合物の共重合物であることを特徴とする、請求項1および2に記載の水溶性高分子組成物である。 The invention of claim 3 is characterized in that the water-soluble polymers (B) and (C) are 1 mol% or more and 99 mol% or less of the monomer represented by the general formula (1) and / or the general formula (2), It is a copolymer of a monomer mixture composed of a monomer represented by the general formula (3) in a range of 1 mol% to 99 mol% and a nonionic monomer in a range of 0 mol% to 98 mol%. The water-soluble polymer composition according to claim 1 or 2.

請求項4の発明は、前記水溶性高分子(B)を構成するカチオン性構成単位(a)とアニオン性構成単位(b)のモル比が10≧(a)/(b)≧1であり、かつ水溶性高分子(C)を構成するカチオン性構成単位(c)とアニオン性構成単位(d)のモル比が1>(c)/(d)≧0.1であることを特徴とする、請求項1から3に記載の水溶性高分子組成物である。 In the invention of claim 4, the molar ratio of the cationic structural unit (a) and the anionic structural unit (b) constituting the water-soluble polymer (B) is 10 ≧ (a) / (b) ≧ 1. And the molar ratio of the cationic structural unit (c) and the anionic structural unit (d) constituting the water-soluble polymer (C) is 1> (c) / (d) ≧ 0.1 The water-soluble polymer composition according to claim 1.

請求項5の発明は、前記水溶性高分子組成物の0.1重量%水溶液のpHが4.0以下であることを特徴とする、請求項1から4に記載の水溶性高分子組成物である。 The water-soluble polymer composition according to claim 1, wherein the pH of a 0.1 wt% aqueous solution of the water-soluble polymer composition is 4.0 or less. It is.

請求項6の発明は、前記水溶性高分子(A)、水溶性高分子(B)および水溶性高分子(C)の質量混合比が、(A):(B):(C)=40〜90:5〜55:5〜55の範囲であることを特徴とする、請求項1から5に記載の水溶性高分子組成物である。 In the invention of claim 6, the mass mixing ratio of the water-soluble polymer (A), the water-soluble polymer (B) and the water-soluble polymer (C) is (A) :( B) :( C) = 40. It is the range of -90: 5-55: 5-55, The water-soluble polymer composition of Claim 1 to 5 characterized by the above-mentioned.

請求項7の発明は、粉末からなることを特徴とする、請求項1から6に記載の水溶性高分子組成物である。 The invention according to claim 7 is the water-soluble polymer composition according to claims 1 to 6, wherein the water-soluble polymer composition is made of powder.

請求項8の発明は、前記水溶性高分子(A)が、界面活性剤により水に非混和性有機液体を連続相、カチオン性単量体および複数の不飽和二重結合を有する多官能性単量体を必須として含む単量体混合物水溶液を分散相となるよう乳化し、重合した後得られる油中水滴型エマルジョン状液体を乾燥し得られるものであることを特徴とする、請求項1から7に記載の水溶性高分子組成物である。 The invention according to claim 8 is characterized in that the water-soluble polymer (A) is a polyfunctional compound having a non-miscible organic liquid in water by a surfactant, a continuous phase, a cationic monomer, and a plurality of unsaturated double bonds. 2. A water-in-oil emulsion liquid obtained by emulsifying an aqueous monomer mixture containing a monomer as an essential component so as to form a dispersed phase and polymerizing it, wherein the liquid is obtained by drying. To 7. The water-soluble polymer composition according to item 7.

請求項9の発明は、前記水溶性高分子組成物を汚泥脱水剤として使用することを特徴とする、請求項1から8に記載の水溶性高分子組成物の使用方法である。 The invention of claim 9 is the method of using the water-soluble polymer composition according to claim 1, wherein the water-soluble polymer composition is used as a sludge dehydrating agent.

本発明は、(定義1)あるいは(定義2)で表示される電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子(A)、カチオン性官能基およびアニオン性官能基を有する両性水溶性高分子(B)、(B)とは異なる組成比のカチオン性官能基およびアニオン性官能基を有する両性水溶性高分子(C)および酸性物質(D)を組み合わせた水溶性高分子組成物からなることを特徴とする。 The present invention relates to a water-soluble polymer (A) having a cationic functional group represented by (Definition 1) or (Definition 2) having a charge inclusion rate of 35% to 90%, a cationic functional group and an anionic functional group Water-soluble polymer combining amphoteric water-soluble polymer (C) and acidic substance (D) having a cationic functional group and an anionic functional group having a composition ratio different from that of (B) It is characterized by comprising a polymer composition.

本発明の水溶性高分子組成物は、下水処理場における下水余剰汚泥や下水消化汚泥のように繊維分の少ない所謂難脱水汚泥に対し、脱水ケーキ含水率低下の性能を満足し、同時に架橋あるいは分岐した水溶性高分子の難点とされる薬剤添加量の増加にも対応を可能とする。 The water-soluble polymer composition of the present invention satisfies the performance of reducing the moisture content of a dehydrated cake with respect to a so-called hardly dewatered sludge having a small amount of fibers such as sewage surplus sludge and sewage digested sludge in a sewage treatment plant, and at the same time cross-linking or It is also possible to cope with an increase in the amount of drug added, which is a difficulty of branched water-soluble polymers.

電荷内包率35%未満、5%以上のカチオン性官能基を有する水溶性高分子は、大部分の電荷が高分子表面に露出しているため懸濁粒子との接触サイトが多く、その結果見かけ上の電荷的飽和になりやすい。 A water-soluble polymer having a cationic functional group with a charge inclusion ratio of less than 35% and 5% or more has many contact sites with suspended particles because most of the charge is exposed on the polymer surface, and as a result, apparent It tends to become the upper charge saturation.

一般にカチオン性の水溶性高分子では、添加量の増大とともに脱水ケーキの含水率は低下するが、大部分の電荷が高分子表面に露出しているカチオン性水溶性高分子は、電荷的飽和しやすいがため過剰な水溶性高分子が未吸着となり、遊離した水溶性高分子が汚泥粘性の増加を引き起こし、さらには強いせん断をかけ分散させた後の再凝集の阻害を生じせしめるため、強固なフロックは生成し難い。 In general, with cationic water-soluble polymers, the water content of the dehydrated cake decreases as the amount added increases, but cationic water-soluble polymers with most of the charge exposed on the polymer surface are charged and saturated. However, excess water-soluble polymer becomes unadsorbed, and the released water-soluble polymer causes an increase in sludge viscosity. Further, it causes inhibition of re-aggregation after dispersion by applying strong shearing. Flock is difficult to generate.

一方で、電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子は、微細な粒子を形成しているため、粒子内部に電荷を封じ込めていると推察される。 On the other hand, since the water-soluble polymer having a cationic functional group having a charge inclusion rate of 35% or more and 90% or less forms fine particles, it is presumed that charges are contained inside the particles.

粒子状のカチオン性官能基を有する水溶性高分子が汚泥中に添加されると懸濁粒子に吸着し、粒子同士の接着剤として作用し結果として粒子の凝集が起こるが、この時「密度の詰まった」凝集状態を生じることで、より締った強度の高いフロックを形成し、脱水ケーキの含水率をより有効に低下せしめると推定される。 When a water-soluble polymer having a cationic cationic functional group is added to the sludge, it adsorbs to the suspended particles and acts as an adhesive between the particles, resulting in particle aggregation. It is presumed that the formation of a “clogged” agglomerated state forms a tighter and stronger floc and more effectively reduces the moisture content of the dewatered cake.

電荷内包率35%未満、5%以上のカチオン性官能基を有する水溶性高分子では、電荷的飽和になりうる領域でも、電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子は、効率的に懸濁粒子への吸着し、そのため未吸着の水溶性高分子が少なく、汚泥中に遊離せず汚泥粘性の増加が発生しない。 In a water-soluble polymer having a cationic functional group having a charge inclusion ratio of less than 35% and 5% or more, a water-soluble polymer having a cationic functional group having a charge inclusion ratio of 35% or more and 90% or less even in a region where charge inclusion is possible. The polymer is efficiently adsorbed on the suspended particles, so that there is little unadsorbed water-soluble polymer, it is not liberated in the sludge, and sludge viscosity does not increase.

配合した両性水溶性高分子は、分子内にカチオン性基とアニオン性基を有するためにこの分子を吸着し凝集した凝集粒子同士の結合もあり、さらにカチオン性水溶性高分子によって生成した凝集粒子同士の結合役もあり、その分カチオン性水溶性高分子単独の場合よりも添加量が節約できると考えられる。 The blended amphoteric water-soluble polymer has a cationic group and an anionic group in the molecule, so there is also a bond between the aggregated particles that have adsorbed and agglomerated this molecule, and also aggregated particles generated by the cationic water-soluble polymer It is considered that the amount added can be saved as compared with the case of the cationic water-soluble polymer alone.

両性水溶性高分子の主な役割は、分子同士あるいは凝集粒子同士の仲立ちと系内イオン性のバランスを保持することであり、特にカチオン性の多い両性水溶性高分子とアニオン性の多い両性水溶性高分子を組み合わせることで、凝集粒子同士の仲立ちを強化することが可能で、さらには複雑な組成の水溶性高分子を導入することでイオン的な緩衝状態を生成し、カチオン性過多を防止し凝集性能低下を防ぐことであると考えられる。 The main role of the amphoteric water-soluble polymer is to maintain the balance between intermolecular or aggregated particles and ionicity in the system. It is possible to reinforce the intermediation between aggregated particles by combining a cationic polymer. Furthermore, by introducing a water-soluble polymer with a complex composition, an ionic buffer state is generated, and excessive cationicity is prevented. Therefore, it is considered to prevent a decrease in the aggregation performance.

酸性物質は、両性水溶性高分子の分子内イオンコンプレックスの形成による溶解不全を防止し、本組成物の水溶液中での加水分解反応を防止する。 The acidic substance prevents incomplete dissolution due to the formation of an intramolecular ion complex of the amphoteric water-soluble polymer, and prevents hydrolysis of the composition in an aqueous solution.

はじめに電荷内包率35%以上90%以下であるカチオン性水溶性高分子(A)に関して説明する。 First, the cationic water-soluble polymer (A) having a charge inclusion rate of 35% or more and 90% or less will be described.

電荷内包率は、以下のように定義される。
(定義1)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性両性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
The charge inclusion rate is defined as follows.
(Definition 1) In the case of a water-soluble cationic polymer and an amphoteric and water-soluble amphoteric polymer having a positive difference in the copolymerization rate between a cationic monomer and an anionic monomer, the charge inclusion rate [%] = (1 −α / β) × 100
α is a titration amount obtained by titrating a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid with a potassium polyvinyl sulfonate aqueous solution. β is a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid, and an aqueous polyvinyl sulfonate potassium solution is used to neutralize the charge of the water-soluble cationic polymer or amphoteric water-soluble polymer. A titration amount obtained by adding a sufficient amount to perform, and then subtracting the titration amount titrated with an aqueous polydiallyldimethylammonium chloride solution from the blank value. Here, the blank value is a titration amount obtained by titrating a potassium polyvinylsulfonate aqueous solution with a polydiallyldimethylammonium chloride aqueous solution when no water-soluble cationic polymer or amphoteric water-soluble polymer aqueous solution was added.

(定義2)両性でかつカチオン性単量体とアニオン性単量体の共重合率の差が負である水溶性高分子の場合
電荷内包率[%]=(1−α/β)×100
αはアンモニアにてpH10.0に調整した水溶性両性高分子水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量。βはアンモニアにてpH10.0に調整した水溶性両性高分子水溶液にポリジアリルジメチルアンモニウムクロライド水溶液を前記水溶性両性高分子の電荷の中和を行うに十分な量加え、その後ポリビニルスルホン酸カリウム水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性両性高分子水溶液無添加時にジアリルジメチルアンモニウムクロライド水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量である。
(Definition 2) In the case of a water-soluble polymer that is amphoteric and has a negative difference in copolymerization rate between a cationic monomer and an anionic monomer, the charge inclusion rate [%] = (1−α / β) × 100
α is a titration amount obtained by titrating a water-soluble amphoteric polymer aqueous solution adjusted to pH 10.0 with ammonia with a polydiallyldimethylammonium chloride aqueous solution. β is a water-soluble amphoteric polymer aqueous solution adjusted to pH 10.0 with ammonia, and a polydiallyldimethylammonium chloride aqueous solution is added in an amount sufficient to neutralize the charge of the water-soluble amphoteric polymer, and then a potassium polyvinyl sulfonate aqueous solution Titration volume obtained by subtracting the titration volume titrated with the blank value. Here, the blank value is a titration amount obtained by titrating a diallyldimethylammonium chloride aqueous solution with a potassium polyvinyl sulfonate aqueous solution when no water-soluble amphoteric polymer aqueous solution was added.

電荷内包率の高い水溶性高分子は、溶液中において粒子状の丸まった形状をしていて、粒子状の内部に存在するイオン性基は、外側には現われにくく、反対電荷との反応も緩慢に起こると考えられ、35%以上90%以下の電荷内包率を有する水溶性高分子は特に架橋が高まった場合を示す。 A water-soluble polymer with a high charge inclusion rate has a rounded shape in solution, and the ionic groups present inside the particle are unlikely to appear on the outside, and the reaction with the opposite charge is slow. The water-soluble polymer having a charge inclusion rate of 35% or more and 90% or less shows a case where the crosslinking is particularly enhanced.

すなわち、希薄溶液中において伸び切った状態の水溶性高分子は、表面のカチオン性電荷だけでなく、内部の電荷まで静電的な中和反応が行われると考えられ電荷内包率は小さくなり、架橋が高ければ、粒子内部の電荷中和が阻害されると考えられ、電荷内包率は大きくなる。 In other words, the water-soluble polymer in a dilute solution is considered to undergo an electrostatic neutralization reaction not only to the cationic charge on the surface but also to the internal charge, resulting in a small charge inclusion rate. If the cross-linking is high, charge neutralization inside the particles is considered to be inhibited, and the charge inclusion rate increases.

本発明における、電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子(A)を製造するためには、一般式(1)および/または一般式(2)で表されるカチオン性単量体を必須とする。 In order to produce the water-soluble polymer (A) having a cationic functional group having a charge inclusion ratio of 35% or more and 90% or less in the present invention, it is represented by the general formula (1) and / or the general formula (2). A cationic monomer is essential.

一般式(1)で表される単量体の例としては、(メタ)アクリロイルオキシアルキル4級アンモニウム塩、すなわち(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルトリメチルアンモニウムブロマイドなど、あるいは(メタ)アクリロイルオキシアルキル3級アミン塩、すなわち(メタ)アクリロイルオキシエチルジメチルアミン硫酸塩、(メタ)アクリロイルオキシプロピルジメチルアミン塩酸塩など、あるいは(メタ)アクリロイルアミノアルキル4級アンモニウム塩、すなわち(メタ)アクリロイルアミノプロピルトリメチルアンモニウムクロライド、(メタ)アクリロイルアミノプロピルトリメチルアンモニウムメチルサルフェートなど、さらには(メタ)アクリロイルアミノ(ヒドロキシ)アルキル3級アミン塩、すなわち、(メタ)アクリロイルアミノエチルジメチルアミン塩酸塩などがあげられる。 Examples of the monomer represented by the general formula (1) include (meth) acryloyloxyalkyl quaternary ammonium salts, that is, (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (Meth) acryloyloxy-2-hydroxypropyltrimethylammonium bromide or the like, or (meth) acryloyloxyalkyl tertiary amine salt, that is, (meth) acryloyloxyethyldimethylamine sulfate, (meth) acryloyloxypropyldimethylamine hydrochloride, etc. Or (meth) acryloylaminoalkyl quaternary ammonium salts, ie (meth) acryloylaminopropyltrimethylammonium chloride, (meth) acryloyl Such as amino propyl trimethyl ammonium methylsulfate, more (meth) acryloyl amino (hydroxy) alkyl tertiary amine salts, i.e., and (meth) acryloyl-aminoethyl dimethylamine hydrochloride.

一般式(2)で表される単量体の例としては、ジ(メタ)アリルジメチルアンモニウムクロライド、ジ(メタ)アリルジメチルアンモニウムブロマイド、ジ(メタ)アリルジエチルアンモニウムクロライド、ジ(メタ)アリルジプロピルアンモニウムクロライドなどがあげられる。 Examples of the monomer represented by the general formula (2) include di (meth) allyldimethylammonium chloride, di (meth) allyldimethylammonium bromide, di (meth) allyldiethylammonium chloride, di (meth) allyldi Examples thereof include propylammonium chloride.

一般式(3)で表されるアニオン性単量体の例としては、ビニルスルホン酸、ビニルベンゼンスルホン酸あるいは2−アクリルアミド2−メチルプロパンスルホン酸、メタクリル酸、アクリル酸、イタコン酸、マレイン酸あるいはp−カルボキシスチレンなどがあげられる。 Examples of the anionic monomer represented by the general formula (3) include vinyl sulfonic acid, vinyl benzene sulfonic acid or 2-acrylamido 2-methylpropane sulfonic acid, methacrylic acid, acrylic acid, itaconic acid, maleic acid or Examples thereof include p-carboxystyrene.

非イオン性単量体としては、アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド、アクリロイルモルホリンなどが例示できる。 Nonionic monomers include acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N-vinylpyrrolidone, N-vinylformamide. , N-vinylacetamide, acryloylmorpholine and the like.

本発明では、電荷内包率35%以上90%以下であるカチオン性水溶性高分子(A)を製造するため重合時あるいは重合後、架橋性単量体を単量体総量に対し0.0005〜0.0050モル%、また好ましくは0.0008〜0.002モル%存在させる。 In the present invention, in order to produce the cationic water-soluble polymer (A) having a charge encapsulation rate of 35% or more and 90% or less, the crosslinkable monomer is added to 0.0005 to 0.0050 mol%, preferably 0.0008 to 0.002 mol% is present.

架橋性単量体の例としては、N,N−メチレンビス(メタ)アクリルアミド、トリアリルアミン、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸―1,3−ブチレングリコール、ジ(メタ)アクリル酸ポリエチレングリコール、N−ビニル(メタ)アクリルアミド、N−メチルアリルアクリルアミド、アクリル酸グリシジル、ポリエチレングリコールジグリシジルエーテル、アクロレイン、グリオキザール、ビニルトリメトキシシランなどがあるが、この場合の架橋剤としては、水溶性ポリビニル化合物がより好ましく、最も好ましいのはN,N−メチレンビス(メタ)アクリルアミドである。 Examples of the crosslinkable monomer include N, N-methylenebis (meth) acrylamide, triallylamine, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, and dimethacrylic acid. Acid-1,3-butylene glycol, polyethylene glycol di (meth) acrylate, N-vinyl (meth) acrylamide, N-methylallylacrylamide, glycidyl acrylate, polyethylene glycol diglycidyl ether, acrolein, glyoxal, vinyltrimethoxysilane In this case, the crosslinking agent is more preferably a water-soluble polyvinyl compound, and most preferably N, N-methylenebis (meth) acrylamide.

ギ酸ナトリウム、イソプロピルアルコール等の連鎖移動剤を併用して使用することも架橋性を調節する手法として効果的である。 Use of a chain transfer agent such as sodium formate or isopropyl alcohol in combination is also effective as a method for adjusting the crosslinkability.

水溶性高分子(A)を構成するカチオン性単量体の範囲としては特に制限はなく、1mol%以上100mol%以下の範囲であり、アニオン性単量体の範囲としては、0mol%以上50mol%以下好ましくは0mol%以上30mol%以下の範囲で、非イオン性単量体の範囲は0mol%以上99mol%以下好ましくは0mol%以上95mol%以下の範囲である。 There is no restriction | limiting in particular as the range of the cationic monomer which comprises water-soluble polymer (A), It is the range of 1 mol% or more and 100 mol% or less, The range of anionic monomer is 0 mol% or more and 50 mol% In the following, it is preferably in the range of 0 mol% to 30 mol%, and the range of the nonionic monomer is in the range of 0 mol% to 99 mol%, preferably 0 mol% to 95 mol%.

また水溶性高分子(A)の分子量は、重量平均分子量で500万〜2000万であり、好ましくは500万〜1200万であり、最も好ましくは700〜1000万の範囲である。 The molecular weight of the water-soluble polymer (A) is 5 to 20 million in terms of weight average molecular weight, preferably 5 to 12 million, and most preferably 7 to 10 million.

水溶性高分子(A)の重合方法に特に制限はなく、単量体混合物の水溶液中での重合、塩水溶液中あるいは水に非混和性有機液体中での分散重合した分散液などどのような方法でも可能であるが、電荷内包率が高いものほど架橋が高いことから、ゲル状生成物を防ぐ観点から塩水溶液中あるいは水に非混和性有機液体中での分散重合であることが好ましく、塩や水など不純物の除去を考慮すると特に水に非混和性有機液体中での分散重合が特に好ましい。 There is no particular limitation on the polymerization method of the water-soluble polymer (A), and there is no particular limitation such as polymerization of the monomer mixture in an aqueous solution, dispersion in a salt solution or water-immiscible organic liquid. Although it is possible by the method, since the higher the charge inclusion rate, the higher the cross-linking, from the viewpoint of preventing the gel-like product, it is preferably dispersion polymerization in a salt aqueous solution or in a water-immiscible organic liquid, Considering the removal of impurities such as salt and water, dispersion polymerization in a water-immiscible organic liquid is particularly preferable.

水溶性高分子(A)の性状は液体、固体などの形態をとることができるが、塩、水、水に非混和性有機液体などの不純物が少なく、水への溶解性が良好な粉末状固体が好ましい。 The water-soluble polymer (A) can be in the form of a liquid, a solid, etc., but it has a small amount of impurities such as salt, water, water, an immiscible organic liquid, and has a good solubility in water. Solid is preferred.

粉末状の水溶性高分子(A)を得る方法に特に制限はなく、高濃度水溶液を重合開始剤存在下で溶液重合した後、ミートチョッパーなどでゲル状物をミンチ化し、それを乾燥後、粉砕し粉末とする方法、水に非混和性有機溶媒中で分散剤の存在下縣濁重合を行いビーズ状の粉末を得る方法、あるいは塩水溶液中あるいは水に非混和性有機液体中での分散重合後、乾燥造粒して粉末を得る方法などが挙げられるが、ゲル状生成物を防ぐ観点、あるいは塩や水など不純物の除去を考慮すると特に水に非混和性有機液体中で乳化剤存在下重合した油中水型エマルジョン重合物を乾燥して造粒し粉末を得る方法が特に好ましい。 There is no particular limitation on the method for obtaining the powdery water-soluble polymer (A). After polymerizing a high concentration aqueous solution in the presence of a polymerization initiator, the gelled material is minced with a meat chopper and the like, dried, A method of pulverizing into powder, a method of obtaining a bead-like powder by suspension polymerization in water in a non-miscible organic solvent, or a dispersion in a salt solution or water immiscible organic liquid Examples include a method of obtaining a powder by dry granulation after polymerization, but in the presence of an emulsifier in a water-immiscible organic liquid, especially from the viewpoint of preventing gel-like products or considering removal of impurities such as salt and water. A method of obtaining a powder by drying and granulating a polymerized water-in-oil emulsion polymer is particularly preferred.

乾燥し造粒する方法に特に制限はなく、油中水型エマルジョン重合物を噴霧乾燥し造粒する方法、液状の分散重合物をシート状に乾燥した乾燥物を粉砕後造粒する方法などが挙げられる。 There is no particular limitation on the method of drying and granulating, such as a method of spray-drying and granulating a water-in-oil emulsion polymer, a method of granulating after drying a dried product obtained by drying a liquid dispersion polymer into a sheet, and the like. Can be mentioned.

油中水型エマルジョン重合物は、イオン性単量体、あるいはイオン性単量体と共重合可能な単量体及びこれら単量体に対し生成した重合体が水溶性を保つモル比で添加した架橋性単量体を含有する単量体混合物を水、少なくとも水と非混和性の炭化水素からなる油状物質、油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤を混合し、強攪拌し油中水型エマルジョンを形成させ重合することにより合成する。 The water-in-oil emulsion polymer was added in a molar ratio that maintains the water solubility of the ionic monomer or the monomer copolymerizable with the ionic monomer and the polymer produced for these monomers. A monomer mixture containing a crosslinkable monomer is water, an oily substance comprising at least water-immiscible hydrocarbons, an amount effective to form a water-in-oil emulsion and at least one interface having an HLB It is synthesized by mixing the activator, stirring vigorously to form a water-in-oil emulsion and polymerizing.

分散媒として使用する炭化水素からなる油状物質の例としては、パラフィン類あるいは灯油、軽油、中油などの鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度などの特性を有する炭化水素系合成油、あるいはこれらの混合物があげられる。含有量としては、油中水型エマルジョン全量に対して20質量%〜50質量%の範囲であり、好ましくは20質量%〜35質量%の範囲である。 Examples of oily substances composed of hydrocarbons used as a dispersion medium include paraffins, mineral oils such as kerosene, light oil, and middle oil, or hydrocarbon-based synthetic oils having characteristics such as boiling point and viscosity substantially in the same range as these. Or a mixture thereof. As content, it is the range of 20 mass%-50 mass% with respect to the water-in-oil type emulsion whole quantity, Preferably it is the range of 20 mass%-35 mass%.

油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤の例としては、HLB1〜8のノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレ−ト、ソルビタンモノステアレ−ト、ソルビタンモノパルミテ−トなどがあげられる。これら界面活性剤の添加量としては、油中水型エマルジョン全量に対して0.5〜10質量%であり、好ましくは1〜5質量%の範囲である。 Examples of at least one surfactant having an amount effective to form a water-in-oil emulsion and HLB are HLB 1-8 nonionic surfactants, specific examples of which include sorbitan monooleate Sorbitan monostearate, sorbitan monopalmitate and the like. The addition amount of these surfactants is 0.5 to 10% by mass, preferably 1 to 5% by mass, based on the total amount of the water-in-oil emulsion.

この場合、高HLB界面活性剤により乳化させ油中水型エマルジョンを形成させ重合したエマルジョンは、このままで水となじむので転相剤を添加する必用がない。これら界面活性剤のHLBは、9〜20のもの、好ましくは11〜20のものを使用する。そのような界面活性剤の例としては、カチオン性界面活性剤やHLB9〜15のノニオン性界面活性剤であり、ポリオキシエチレンポリオキシプロピレンアルキルエ−テル系、ポリオキシエチレンアルコールエ−テル系などである。 In this case, the emulsion emulsified with a high HLB surfactant to form a water-in-oil emulsion and polymerized is compatible with water as it is, so there is no need to add a phase inversion agent. The HLB of these surfactants is 9-20, preferably 11-20. Examples of such surfactants are cationic surfactants and HLB 9-15 nonionic surfactants, such as polyoxyethylene polyoxypropylene alkyl ether systems, polyoxyethylene alcohol ether systems, and the like It is.

低HLBの界面活性剤により乳化、重合した場合は重合後転相剤と呼ばれる親水性界面化成剤を添加して油の膜で被われたエマルジョン粒子が水になじみ易くし、中の水溶性高分子が溶解しやすくする処理を行い、水で希釈しそれぞれの用途に用いる。親水性界面活性剤の例としては、カチオン性界面活性剤やHLB9〜15のノニオン性界面活性剤であり、ポリオキシエチレンポリオキシプロピレンアルキルエ−テル系、ポリオキシエチレンアルコールエ−テル系などである。 When emulsified and polymerized with a low-HLB surfactant, a hydrophilic interfacial modifier called a phase inversion agent is added after the polymerization to make the emulsion particles covered with the oil film easy to adapt to water, The molecule is treated so that it is easily dissolved, diluted with water and used for each application. Examples of hydrophilic surfactants are cationic surfactants and nonionic surfactants of HLB 9-15, such as polyoxyethylene polyoxypropylene alkyl ether systems and polyoxyethylene alcohol ether systems. is there.

水溶性高分子(B)および水溶性高分子(C)は、一般式(1)および/または一般式(2)で表される単量体と一般式(3)で表される単量体混合物の共重合物で、単量体混合物の組成は、一般式(1)および/または一般式(2)で表される単量体1mol%以上99mol%以下、前記一般式(3)で表される単量体1mol%以上99mol%以下および、非イオン性単量体0mol%以上98mol%以下の範囲である。 The water-soluble polymer (B) and the water-soluble polymer (C) are a monomer represented by the general formula (1) and / or the general formula (2) and a monomer represented by the general formula (3). The composition of the monomer mixture of the mixture is 1 mol% or more and 99 mol% or less of the monomer represented by the general formula (1) and / or the general formula (2), and is represented by the general formula (3). The monomer ranges from 1 mol% to 99 mol% and nonionic monomers from 0 mol% to 98 mol%.

水溶性高分子(B)における一般式(1)および/または一般式(2)で表されるカチオン性単量体と一般式(3)で表される単量体の組成のモル比は、水溶性高分子(B)を構成するカチオン性構成単位(a)とアニオン性構成単位(b)のモル比(a)/(b)に対応し、10≧(a)/(b)≧1であることが特に好ましい。この理由は、後に述べる水溶性高分子(C)と組み合わせた場合、水溶性高分子(B)が10≧(a)/(b)≧1の範囲であると(A)、(B)及び(c)を配合した本発明の水溶性高分子組成物が、全体として非常に顕著な効果を発揮するからである。10≦(a)/(b)であると両性の効果が発現せず実用的ではない。 The molar ratio of the composition of the cationic monomer represented by the general formula (1) and / or the general formula (2) and the monomer represented by the general formula (3) in the water-soluble polymer (B) is: Corresponding to the molar ratio (a) / (b) of the cationic structural unit (a) and the anionic structural unit (b) constituting the water-soluble polymer (B), 10 ≧ (a) / (b) ≧ 1 It is particularly preferred that The reason for this is that when combined with the water-soluble polymer (C) described later, the water-soluble polymer (B) is in the range of 10 ≧ (a) / (b) ≧ 1 (A), (B) and This is because the water-soluble polymer composition of the present invention blended with (c) exhibits a very remarkable effect as a whole. When 10 ≦ (a) / (b), the effect of amphoteric is not manifested and it is not practical.

水溶性高分子(C)における一般式(1)および/または一般式(2)で表されるカチオン性単量体と一般式(3)で表される単量体の組成のモル比は、水溶性高分子(B)を構成するカチオン性構成単位(a)とアニオン性構成単位(b)のモル比(a)/(b)に対応し水溶性高分子(C)と異なれば特に制限はないが、1>(c)/(d)≧0.1であることが特に好ましい。この理由も上記に述べたように水溶性高分子(B)が10≧(a)/(b)≧1の範囲であると(A)、(B)及び(c)を配合した本発明の水溶性高分子組成物が、全体として非常に顕著な効果を発揮するからである。(c)/(d)≦0.1であるとアニオン性が高すぎて効果が低下し実用的ではない。 The molar ratio of the composition of the cationic monomer represented by the general formula (1) and / or the general formula (2) and the monomer represented by the general formula (3) in the water-soluble polymer (C) is: Corresponding to the molar ratio (a) / (b) of the cationic structural unit (a) and the anionic structural unit (b) constituting the water-soluble polymer (B), there is a particular limitation if it is different from the water-soluble polymer (C). However, it is particularly preferable that 1> (c) / (d) ≧ 0.1. The reason for this is that, as described above, when the water-soluble polymer (B) is in the range of 10 ≧ (a) / (b) ≧ 1, (A), (B) and (c) are blended. This is because the water-soluble polymer composition exhibits a very remarkable effect as a whole. When (c) / (d) ≦ 0.1, the anionicity is too high and the effect is lowered, which is not practical.

水溶性高分子(B)および(C)の電荷内包率について特に制限はないが、電化内包率は35%未満、5%以上であることが望ましい。 Although there is no particular limitation on the charge inclusion rate of the water-soluble polymers (B) and (C), the electrification inclusion rate is preferably less than 35% and 5% or more.

水溶性高分子(B)および(C)の分子量については特に制限はないが、重量平均分子量で200万以上2500万の範囲で、特に400万から1500万の範囲であることが好ましい。 Although there is no restriction | limiting in particular about the molecular weight of water-soluble polymer (B) and (C), It is preferable that it is the range of 2 million to 25 million in a weight average molecular weight, and is especially the range of 4 million to 15 million.

水溶性高分子(B)および(C)の製造方法について特に制限はなく、水溶性高分子(A)と同様な方法で得ることができるが、電荷内包率が35%未満、5%以上である場合、製造効率や不純物除去効率を考慮すると、単量体混合物の水溶液を重合開始剤存在下溶液重合し、乾燥粉砕し、造粒して粉末としてものであることが好ましい。 There is no particular limitation on the method for producing the water-soluble polymers (B) and (C), and the water-soluble polymers (B) and (C) can be obtained by the same method as that for the water-soluble polymer (A), but the charge inclusion rate is less than 35% and 5% or more. In some cases, considering production efficiency and impurity removal efficiency, an aqueous solution of the monomer mixture is preferably solution-polymerized in the presence of a polymerization initiator, dried and pulverized, and granulated to form a powder.

一般に電荷内包率35%未満、5%以上のカチオン性官能基を有する水溶性高分子は、大部分の電荷が高分子表面に露出しているため懸濁粒子との接触サイトが多く、その結果見かけ上の電荷的飽和になりやすい。 In general, a water-soluble polymer having a cationic functional group having a charge inclusion ratio of less than 35% and 5% or more has many contact sites with suspended particles because most of the charge is exposed on the polymer surface. It tends to be apparently charge saturation.

また、カチオン性の水溶性高分子では、添加量の増大とともに脱水ケーキの含水率は低下するが、大部分の電荷が高分子表面に露出しているカチオン性水溶性高分子は、電荷的飽和しやすいがため過剰な水溶性高分子が未吸着となり、遊離した水溶性高分子が汚泥粘性の増加を引き起こし、さらには強いせん断をかけ分散させた後の再凝集の阻害を生じせしめるため、強固なフロックは生成し難い。 In addition, with cationic water-soluble polymers, the water content of the dehydrated cake decreases with increasing amount of addition, but cationic water-soluble polymers with most of the charge exposed on the polymer surface are charged with saturation. However, the excess water-soluble polymer becomes unadsorbed, and the released water-soluble polymer causes an increase in the sludge viscosity, and further inhibits reaggregation after dispersion by applying strong shearing. It is hard to generate a frock.

一方で、電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子は、微細な粒子を形成しているため、粒子内部に電荷を封じ込めていると推察される。 On the other hand, since the water-soluble polymer having a cationic functional group having a charge inclusion rate of 35% or more and 90% or less forms fine particles, it is presumed that charges are contained inside the particles.

粒子状のカチオン性官能基を有する水溶性高分子が汚泥中に添加されると懸濁粒子に吸着し、粒子同士の接着剤として作用し結果として粒子の凝集が起こるが、この時「密度の詰まった」凝集状態を生じることで、より締った強度の高いフロックを形成し、脱水ケーキの含水率をより有効に低下せしめると推定される。 When a water-soluble polymer having a cationic cationic functional group is added to the sludge, it adsorbs to the suspended particles and acts as an adhesive between the particles, resulting in particle aggregation. It is presumed that the formation of a “clogged” agglomerated state forms a tighter and stronger floc and more effectively reduces the moisture content of the dewatered cake.

電荷内包率35%未満、5%以上のカチオン性官能基を有する水溶性高分子では、電荷的飽和になりうる領域でも、電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子は、効率的に懸濁粒子への吸着し、そのため未吸着の水溶性高分子が少なく、汚泥中に遊離せず汚泥粘性の増加が発生しない。 In a water-soluble polymer having a cationic functional group having a charge inclusion ratio of less than 35% and 5% or more, a water-soluble polymer having a cationic functional group having a charge inclusion ratio of 35% or more and 90% or less even in a region where charge inclusion is possible. The polymer is efficiently adsorbed on the suspended particles, so that there is little unadsorbed water-soluble polymer, it is not liberated in the sludge, and sludge viscosity does not increase.

しかしながら、電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子は電荷を内包している分、電荷の中和という面からはカチオン性が不足しがちである。 However, a water-soluble polymer having a cationic functional group having a charge inclusion rate of 35% or more and 90% or less tends to be insufficient in terms of charge neutralization in view of charge inclusion.

これらは、カチオン性の水溶性高分子を単独で用いた場合に生じる現象で、電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子に両性高分子を配合することで解決可能である。 These are phenomena that occur when a cationic water-soluble polymer is used alone. By mixing amphoteric polymers with water-soluble polymers having a cationic functional group with a charge encapsulation rate of 35% or more and 90% or less. It can be solved.

配合した両性水溶性高分子は、分子内にカチオン性基とアニオン性基を有するためにこの分子を吸着し凝集した凝集粒子同士の結合もあり、さらにカチオン性水溶性高分子によって生成した凝集粒子同士の結合役もあり、その分カチオン性水溶性高分子単独の場合よりも添加量が節約できると考えられる。 The blended amphoteric water-soluble polymer has a cationic group and an anionic group in the molecule, so there is also a bond between the aggregated particles that have adsorbed and agglomerated this molecule, and also aggregated particles generated by the cationic water-soluble polymer It is considered that the amount added can be saved as compared with the case of the cationic water-soluble polymer alone.

両性水溶性高分子の主な役割は、分子同士あるいは凝集粒子同士の仲立ちと系内イオン性のバランスを保持することであり、特にカチオン性の多い両性水溶性高分子とアニオン性の多い両性水溶性高分子を組み合わせることで、凝集粒子同士の仲立ちを強化することが可能で、さらには複雑な組成の水溶性高分子を導入することでイオン的な緩衝状態を生成し、カチオン性過多を防止し凝集性能低下を防ぐことであると考えられる。 The main role of the amphoteric water-soluble polymer is to maintain the balance between intermolecular or aggregated particles and ionicity in the system. It is possible to reinforce the intermediation between aggregated particles by combining a cationic polymer. Furthermore, by introducing a water-soluble polymer with a complex composition, an ionic buffer state is generated, and excessive cationicity is prevented. Therefore, it is considered to prevent a decrease in the aggregation performance.

したがって、水溶性高分子組成物は、水溶性高分子(A)、水溶性高分子(B)、水溶性高分子(C)および酸性物質(D)を組み合わせたものであり、水溶性高分子(A)、水溶性高分子(B)および水溶性高分子(C)の質量混合比が、(A):(B):(C)=40〜90:5〜55:5〜55の範囲であることが好ましい。 Therefore, the water-soluble polymer composition is a combination of the water-soluble polymer (A), the water-soluble polymer (B), the water-soluble polymer (C) and the acidic substance (D). The mass mixing ratio of (A), water-soluble polymer (B) and water-soluble polymer (C) is in the range of (A) :( B) :( C) = 40-90: 5-55: 5-55. It is preferable that

水溶性高分子(A)の割合が40重量%以下では、汚泥脱水剤として用いた場合汚泥の含水率が上昇傾向にあり不適当で、90重量%以上では多量の添加が必要になる。 When the proportion of the water-soluble polymer (A) is 40% by weight or less, the moisture content of the sludge tends to increase when used as a sludge dehydrating agent, and when it is 90% by weight or more, a large amount of addition is required.

水溶性高分子(B)および(C)の割合には特に制限はないが、重量混合比が近い方が好ましく(B):(C)=30〜70:70〜30の範囲であることが特に好ましい。 Although there is no restriction | limiting in particular in the ratio of water-soluble polymer (B) and (C), the one where a weight mixing ratio is near is preferable, and it is the range of (B) :( C) = 30-70: 70-30. Particularly preferred.

本発明の水溶性高分子組成物は、処理対照に添加する場合の下限に近い溶液濃度0.1質量%濃度の水溶液とした時の水溶液pHが通常4.0以下、好ましくは3.0以下であり、水溶液pHが4.0を上回ると十分な性能が得られないため酸性物質を配合する。 The water-soluble polymer composition of the present invention has an aqueous solution pH of usually 4.0 or less, preferably 3.0 or less when an aqueous solution having a solution concentration of 0.1% by mass close to the lower limit when added to a treated control is obtained. When the aqueous solution pH exceeds 4.0, sufficient performance cannot be obtained, so an acidic substance is blended.

両性水溶性高分子を配合するため溶液pHが約5〜約9の範囲でイオンコンプレックスを形成し溶液が白濁するが、このイオンコンプレックスが生成した状態で汚泥など処理対照に添加すると、性能が低下すること、またpHが5付近より高い範囲では本発明で使用する(メタ)アクリル系水溶性高分子が加水分解を受け、劣化しやすくなることが原因である。 Since an amphoteric water-soluble polymer is added, an ion complex is formed when the solution pH is in the range of about 5 to about 9, and the solution becomes cloudy. However, when this ion complex is formed, the performance decreases when added to a treatment control such as sludge. In addition, when the pH is higher than about 5, the (meth) acrylic water-soluble polymer used in the present invention is subject to hydrolysis and easily deteriorates.

このような酸性物質(D)としては、無機酸、有機酸いずれも可能であり、塩酸、硫酸、硝酸、スルファミン酸、コハク酸、クエン酸、アジピン酸などが例示でき、特にスルファミン酸、コハク酸、クエン酸、アジピン酸など単体で固体の酸性物質が好ましく、添加量として水溶性高分子の固形分換算として、5〜20質量%であり、好ましくは7〜15質量%の範囲であり、0.1質量%濃度に溶解してもpHが4以下を確保するよう添加量を調整することが好ましい。 As such an acidic substance (D), any of an inorganic acid and an organic acid can be used, and examples thereof include hydrochloric acid, sulfuric acid, nitric acid, sulfamic acid, succinic acid, citric acid, adipic acid, and the like, and particularly sulfamic acid and succinic acid. , Citric acid, adipic acid, and the like are preferably solid acidic substances, and the addition amount is 5 to 20% by mass, preferably 7 to 15% by mass in terms of solid content of the water-soluble polymer. It is preferable to adjust the addition amount so as to ensure that the pH is 4 or less even when dissolved at a concentration of 1% by mass.

本発明の水溶性高分子組成物の形態に特に制限はなく、液状、粉末状固体いずれの形態も可能であるが、製造や輸送にかかる手間、コストなどを考慮すると粉末状固体であることが好ましい。 There is no particular limitation on the form of the water-soluble polymer composition of the present invention, and any form of liquid or powdered solid is possible, but it may be a powdered solid in consideration of labor and costs for production and transportation. preferable.

水溶性高分子組成物を得る方法には特に制限はなく、液体として得られた水溶性高分子(A)、(B)および(C)に酸性物質(D)を混合して水溶性高分子組成物液体を得る方法、水溶液として得られた水溶性高分子(A)、(B)および(C)に酸性物質(D)を混合後、乾燥粉砕して造粒して得る方法、粉末状の水溶性高分子(A)、(B)および(C)に粉末状の酸性物質(D)を混合して得る方法などいずれの形態も可能であるが、粉末状の水溶性高分子(A)、(B)および(C)に粉末状の酸性物質(D)を混合して得る方法が好ましい。 The method for obtaining the water-soluble polymer composition is not particularly limited, and the water-soluble polymer (A), (B) and (C) obtained as a liquid is mixed with the acidic substance (D) to form a water-soluble polymer. A method for obtaining a composition liquid, a method for obtaining a water-soluble polymer (A), (B) and (C) obtained as an aqueous solution by mixing an acidic substance (D), followed by drying and pulverizing and granulating, a powder form Any form of the water-soluble polymer (A), (B) and (C) obtained by mixing the powdered acidic substance (D) with the powdered water-soluble polymer (A) is possible. ), (B) and (C) are preferably mixed with a powdered acidic substance (D).

本発明の水溶性高分子組成物は、高分子凝集剤として用いることが可能であり、汚泥脱水剤、縣濁液中の縣濁物質の沈降、浮上剤、製紙原料の歩留向上剤、濾水性向上剤などに利用することが可能であるが、汚泥脱水剤として使用した場合、汚泥の含水率低下、強固なフロック形成、添加量の削減など良好な性能をしめす。 The water-soluble polymer composition of the present invention can be used as a polymer flocculant, such as sludge dewatering agent, sedimentation of suspended substances in suspension, flotation agent, yield improver for papermaking raw materials, filter. It can be used as a water-based improver, but when used as a sludge dewatering agent, it shows good performance such as lowering the moisture content of sludge, forming strong flocs, and reducing the amount added.

本発明の水溶性高分子組成物を汚泥脱水剤として使用した場合の推奨の脱水機は、スクリュープレスや回転式圧縮濾過機など初期の濾過工程において圧搾、せん断などの作用をフロックが受ける脱水機であって、本発明の水溶性高分子組成物は被処理原水の迅速な濾過性、以後の圧搾、せん断への作用を効率よく行ない、フロックが破壊せず効率よく脱水を行うことに特に有効である。 The recommended dehydrator when the water-soluble polymer composition of the present invention is used as a sludge dewatering agent is a dehydrator in which the floc is subjected to actions such as squeezing and shearing in the initial filtration process such as a screw press and a rotary compression filter. Thus, the water-soluble polymer composition of the present invention is particularly effective for quick filterability of raw water to be treated, subsequent pressing and shearing, and effective dehydration without breaking the floc. It is.

本発明の水溶性高分子組成物は、下水、し尿、産業排水の処理で生じる有機性汚泥(いわゆる生汚泥、余剰汚泥、混合生汚泥、消化汚泥、凝沈・浮上汚泥およびこれらの混合物)に通常0.1〜0.2%水溶液として添加される。本発明の水溶性高分子組成物が対象とする汚泥にはとくに限定ないが、繊維分の少ない汚泥、有機分含有量(VSS/SS)の高い汚泥、腐敗度の高い汚泥に対し特に有効であり好ましい。 The water-soluble polymer composition of the present invention is used for organic sludge (so-called raw sludge, surplus sludge, mixed raw sludge, digested sludge, sedimentation / floating sludge, and mixtures thereof) generated by treatment of sewage, human waste, and industrial wastewater. Usually, it is added as a 0.1-0.2% aqueous solution. The sludge targeted by the water-soluble polymer composition of the present invention is not particularly limited, but is particularly effective for sludge with a low fiber content, sludge with a high organic content (VSS / SS), and sludge with a high degree of spoilage. It is preferable.

また、本発明の水溶性高分子組成物は、単独で汚泥脱水に使用しても良いが、脱水効果面からより好ましいのは、鉄塩、アルミ塩等の無機多価金属塩と併用する方法である。該無機多価金属塩としては、塩鉄、硫鉄、ポリ鉄、PAC、硫酸バンド、石灰などが挙げられる。汚泥に対する本発明の水溶性高分子組成物の添加量は、通常汚泥固形分に対し0.3〜2質量%、好ましくは0.7〜1.5質量%である。また、併用される無機多価金属塩の添加量は、通常汚泥固形分に対し0.2〜0.6質量%である。 In addition, the water-soluble polymer composition of the present invention may be used alone for sludge dehydration, but more preferable from the viewpoint of dewatering effect is a method of using in combination with an inorganic polyvalent metal salt such as iron salt or aluminum salt. It is. Examples of the inorganic polyvalent metal salt include iron salt, iron sulfate, polyiron, PAC, sulfate band, and lime. The amount of the water-soluble polymer composition of the present invention to be added to the sludge is usually 0.3-2% by mass, preferably 0.7-1.5% by mass, based on the sludge solid content. Moreover, the addition amount of the inorganic polyvalent metal salt used in combination is usually 0.2 to 0.6 mass% with respect to the sludge solid content.

使用する脱水機の種類は、デカンター、スクリュープレス、ベルトプレス、ロータリープレスなど通常の脱水機が可能である。 The type of dehydrator used can be a normal dehydrator such as a decanter, a screw press, a belt press, or a rotary press.

(実施例)以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

(水溶性高分子組成物の調整例)下記表1で示される形態、組成および物性を有する水溶性高分子(A)、水溶性の両性高分子(B)および(C)を表1で示される比率で配合し、さらに酸性物質(D)としてクエン酸を、表1で示される比率で配合し、水溶性高分子組成物を調整した。なお各水溶性高分子を構成する単量体組成は全単量体モル数に対するモル%で、酸性物質(D)の配合割合は、水溶性高分子組成物の総重量に対する重量%により表されている。また、配合する水溶性高分子(A)、水溶性の両性高分子(B)および(C)の性状が液体で、かつ水溶性高分子組成物の性状が粉末である場合は、配合する水溶性高分子(A)、水溶性の両性高分子(B)および(C)を50℃、50mmHgの条件下で3時間減圧乾燥を行い粉砕した後、配合した。 (Example of preparation of water-soluble polymer composition) Table 1 shows the water-soluble polymer (A) having the form, composition and physical properties shown in Table 1 below, and the water-soluble amphoteric polymers (B) and (C). In addition, citric acid as an acidic substance (D) was blended in a ratio shown in Table 1 to prepare a water-soluble polymer composition. In addition, the monomer composition which comprises each water-soluble polymer is mol% with respect to the total monomer mole number, and the compounding ratio of an acidic substance (D) is represented by the weight% with respect to the total weight of a water-soluble polymer composition. ing. Further, when the water-soluble polymer (A) to be blended, the water-soluble amphoteric polymers (B) and (C) are liquid, and the water-soluble polymer composition is powder, the water-soluble polymer to be blended The soluble polymer (A), the water-soluble amphoteric polymers (B) and (C) were dried under reduced pressure for 3 hours under conditions of 50 ° C. and 50 mmHg, and then blended.

(水溶性高分子組成物の比較調整例)水溶性高分子(A)からなる水溶性高分子組成物を比較試料1、水溶性高分子(A)、(B)および酸性物質(D)であるクエン酸からなる水溶性高分子組成物を比較試料2、水溶性高分子(A)、(B)および(C)からなる水溶性高分子組成物を比較試料3とし、下記表1で示される比率で配合し、水溶性高分子組成物を水溶性高分子組成物の調整例と同様に調整した。 (Comparison and adjustment example of water-soluble polymer composition) A water-soluble polymer composition comprising a water-soluble polymer (A) was compared with Comparative Sample 1, water-soluble polymers (A), (B) and acidic substance (D). A water-soluble polymer composition composed of a certain citric acid is referred to as Comparative Sample 2, and a water-soluble polymer composition composed of the water-soluble polymers (A), (B) and (C) is referred to as Comparative Sample 3, and is shown in Table 1 below. The water-soluble polymer composition was prepared in the same manner as in the preparation example of the water-soluble polymer composition.

(表1)
EM:油中水型エマルジョン状、PW:粉末状、DP:塩水中分散液状、DAC:アクリロイルオキシエチルトリメチルアンモニウムクロリド、DMC:メタクリロイルオキシエチルトリメチルアンモニウムクロリド、AC:アクリル酸、AM:アクリルアミド、MW:重量平均分子量、電荷内包率(単位:%)
(Table 1)
EM: Water-in-oil emulsion, PW: Powder, DP: Dispersed in brine, DAC: Acrylyloxyethyltrimethylammonium chloride, DMC: Methacryloyloxyethyltrimethylammonium chloride, AC: Acrylic acid, AM: Acrylamide, MW: Weight average molecular weight, charge inclusion rate (unit:%)

(汚泥脱水試験1)下水オキシデーションデイッチ余剰汚泥(pH6.23、電気伝導度68mS/m、ss分重量濃度14,300ppm)を対象として、本発明の水溶性高分子組成物を用いて汚泥脱水試験を実施した。汚泥200mLをポリビ−カ−に採取し、表1の試料−1および試料−2をそれぞれ対汚泥SS分0.3%、0.4%および0.5%(懸濁粒子質量%)加え、スパチュラ攪拌40回行い生成したフロックの大きさを測定した。その後、T−1179Lの濾布(ナイロン製)により濾過し、10秒後の濾液量を測定した。60秒間濾過した汚泥をプレス圧3Kg/m2で1分間脱水し、濾布剥離性を目視によりチェックし、ケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表2に示す。 (Sludge dewatering test 1) For sewage oxidation ditch surplus sludge (pH 6.23, electrical conductivity 68 mS / m, ss component weight concentration 14,300 ppm), the sludge is produced using the water-soluble polymer composition of the present invention. A dehydration test was performed. 200 mL of sludge was collected in a polycarbonate, and samples 1 and 2 in Table 1 were added to the sludge SS content 0.3%, 0.4% and 0.5% (mass% of suspended particles), respectively. The size of the generated floc was measured by performing spatula stirring 40 times. Thereafter, the mixture was filtered through a T-1179L filter cloth (made of nylon), and the filtrate amount after 10 seconds was measured. 60 seconds filtered sludge press pressure 3 Kg / m 2 and dried for 1 minute, check visually filter cloth peelability, Ke - key moisture content (20 hr drying at 105 ° C.) was measured. The results are shown in Table 2.

(比較試験1)水溶性高分子組成物の添加量を、0.4%、0.6%および0.8%としたこと以外は汚泥脱水試験1と同様な操作により、比較試料−1、比較試料−2および比較試料−3に関してそれぞれ試験を実施した。結果を表2に示す。 (Comparative Test 1) Comparative Sample-1, except that the amount of the water-soluble polymer composition added was 0.4%, 0.6% and 0.8%. Tests were performed on Comparative Sample-2 and Comparative Sample-3, respectively. The results are shown in Table 2.

比較試料−1、比較試料−2および比較試料−3は、試料−1および試料−2と比較し格段に添加量が多いにもかかわらず、汚泥の含水率が低下しない事が明白であり、また酸性物質(D)を配合していない比較試料−3は極度に凝集性能が低下していることがわかる。さらに製品性状が異なる試料−1と試料−2の汚泥脱水効果は差が無いことがわかる。すなわち、水溶性高分子(B)、水溶性高分子(D)および酸性物質(D)が必須であることを示している。 It is clear that Comparative Sample-1, Comparative Sample-2 and Comparative Sample-3 do not decrease the moisture content of sludge, although the amount of addition is much larger than Sample-1 and Sample-2. Moreover, it turns out that the aggregating performance has fallen extremely for the comparative sample-3 which is not mix | blending the acidic substance (D). Furthermore, it turns out that there is no difference in the sludge dehydration effect of sample-1 and sample-2 which have different product properties. That is, it shows that the water-soluble polymer (B), the water-soluble polymer (D), and the acidic substance (D) are essential.

(表2)
濾布剥離性:○は良好、○−は一部付着、△は接触面の半数に付着
(Table 2)
Filter cloth peelability: ○ is good, ○-is partly attached, △ is attached to half of the contact surface

(汚泥脱水試験2)下水消化汚泥(pH6.22、電気伝導度188mS/m、ss分重量濃度11,800ppm)を対象として、本発明の水溶性高分子組成物を用いて汚泥脱水試験を実施した。汚泥200mLをポリビ−カ−に採取し、表1の試料−2を対汚泥SS分0.9%、1.1%および1.3%(懸濁粒子質量%)加え、ビーカー移し変え攪拌20回行い生成したフロックの大きさを測定した。その後、T−1179Lの濾布(ナイロン製)により濾過し、10秒後の濾液量と濾液状態を測定した。60秒間濾過した汚泥をプレス圧3Kg/m2で1分間脱水し、ケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表3に示す。 (Sludge dewatering test 2) A sludge dewatering test was conducted using the water-soluble polymer composition of the present invention for sewage digested sludge (pH 6.22, electric conductivity 188 mS / m, ss weight concentration 11,800 ppm). did. 200 mL of sludge was collected in a poly-bicker, and sample-2 in Table 1 was added to the sludge SS content 0.9%, 1.1% and 1.3% (mass% of suspended particles), transferred to a beaker and stirred 20 The size of the generated floc was measured. Then, it filtered with the T-1179L filter cloth (product made from nylon), and measured the filtrate amount and filtrate state after 10 second. The sludge filtered for 60 seconds was dehydrated at a press pressure of 3 kg / m 2 for 1 minute, and the cake water content (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 3.

(比較試験2)汚泥脱水試験2と同様な操作により、比較試料−4、比較試料−5および比較試料−6に関して試験を実施した。結果を表3に示す。 (Comparative Test 2) Tests were performed on Comparative Sample-4, Comparative Sample-5, and Comparative Sample-6 by the same operation as the sludge dehydration test 2. The results are shown in Table 3.

比較試料−4は試料−2と比較し濾液状態が悪く脱水ケーキの含水率も高い。比較試料−5は比較試料−4と比較し、若干盧液状態が改善するが、試料−2には及ばず、脱水ケーキの含水率も高い。さらに比較試料−6は、濾液状態は試料−2と同程度となったが、脱水ケーキの含水率は試料−2ほど低下しないことが明白である。すなわち水溶性高分子(A)として電荷内包率が35%未満5%以上の水溶性高分子を用いても、薬剤添加量は低下できるが脱水ケーキの含水率低下が不十分であることを示している。 Comparative Sample-4 has a poor filtrate state and a high moisture content of the dehydrated cake as compared with Sample-2. Compared with Comparative Sample-4, Comparative Sample-5 has a slightly improved liquid smoke state, but does not reach Sample-2 and has a high water content in the dehydrated cake. Furthermore, although the comparative sample-6 became a filtrate state comparable as the sample-2, it is clear that the moisture content of a dewatering cake does not fall like a sample-2. In other words, even when a water-soluble polymer (A) having a charge encapsulation rate of less than 35% and 5% or more is used, the amount of drug added can be reduced but the moisture content of the dehydrated cake is insufficiently reduced. ing.

(表3)
濾液状態:○は取りこぼし目視できず、○−はわずかに取りこぼしがある
(Table 3)
Filtrate state: ○ is missing and not visible, ○-is slightly missing

Claims (9)

下記(定義1)あるいは(定義2)で表される電荷内包率35%以上90%以下のカチオン性官能基を有する水溶性高分子(A)、カチオン性官能基およびアニオン性官能基を有する水溶性高分子(B)、(B)とは異なる組成比のカチオン性官能基およびアニオン性官能基を有する水溶性高分子(C)および酸性物質(D)からなる水溶性高分子組成物。
(定義1)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性両性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
(定義2)両性でかつカチオン性単量体とアニオン性単量体の共重合率の差が負である水溶性高分子の場合
電荷内包率[%]=(1−α/β)×100
αはアンモニアにてpH10.0に調整した水溶性両性高分子水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量。βはアンモニアにてpH10.0に調整した水溶性両性高分子水溶液にポリジアリルジメチルアンモニウムクロライド水溶液を前記水溶性両性高分子の電荷の中和を行うに十分な量加え、その後ポリビニルスルホン酸カリウム水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性両性高分子水溶液無添加時にジアリルジメチルアンモニウムクロライド水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量である。
Water-soluble polymer (A) having a cationic functional group having a charge inclusion ratio of 35% or more and 90% or less represented by the following (Definition 1) or (Definition 2), a water-soluble polymer having a cationic functional group and an anionic functional group Water-soluble polymer composition comprising a water-soluble polymer (C) and an acidic substance (D) having a cationic functional group and an anionic functional group having a composition ratio different from those of the water-soluble polymer (B) and (B).
(Definition 1) In the case of a water-soluble cationic polymer and an amphoteric and water-soluble amphoteric polymer having a positive difference in the copolymerization rate between a cationic monomer and an anionic monomer, the charge inclusion rate [%] = (1 −α / β) × 100
α is a titration amount obtained by titrating a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid with a potassium polyvinyl sulfonate aqueous solution. β is a water-soluble cationic polymer or an amphoteric water-soluble polymer aqueous solution adjusted to pH 4.0 with acetic acid, and an aqueous polyvinyl sulfonate potassium solution is used to neutralize the charge of the water-soluble cationic polymer or amphoteric water-soluble polymer. A titration amount obtained by adding a sufficient amount to perform, and then subtracting the titration amount titrated with an aqueous polydiallyldimethylammonium chloride solution from the blank value. Here, the blank value is a titration amount obtained by titrating a potassium polyvinylsulfonate aqueous solution with a polydiallyldimethylammonium chloride aqueous solution when no water-soluble cationic polymer or amphoteric water-soluble polymer aqueous solution was added.
(Definition 2) In the case of a water-soluble polymer that is amphoteric and has a negative difference in copolymerization rate between a cationic monomer and an anionic monomer, the charge inclusion rate [%] = (1−α / β) × 100
α is a titration amount obtained by titrating a water-soluble amphoteric polymer aqueous solution adjusted to pH 10.0 with ammonia with a polydiallyldimethylammonium chloride aqueous solution. β is a water-soluble amphoteric polymer aqueous solution adjusted to pH 10.0 with ammonia, and a polydiallyldimethylammonium chloride aqueous solution is added in an amount sufficient to neutralize the charge of the water-soluble amphoteric polymer, and then a potassium polyvinyl sulfonate aqueous solution Titration volume obtained by subtracting the titration volume titrated with the blank value. Here, the blank value is a titration amount obtained by titrating a diallyldimethylammonium chloride aqueous solution with a potassium polyvinyl sulfonate aqueous solution when no water-soluble amphoteric polymer aqueous solution was added.
前記水溶性高分子(A)が、下記一般式(1)および/または一般式(2)で表される単量体1mol%以上100mol%以下、下記一般式(3)で表される単量体0mol%以上50mol%以下および非イオン性単量体0mol%以上99mol%以下の範囲からなる単量体混合物の共重合物であることを特徴とした、請求項1に記載の水溶性高分子組成物。
一般式(1)
は水素又はメチル基、R、RおよびRは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X は陰イオンをそれぞれ表わす。
一般式(2)
、Rは水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X は陰イオンをそれぞれ表す。
一般式(3)
は水素またはCHCOOY、R10は水素、メチル基またはCOOY、QはSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOOであり、Y、Yは水素または陽イオンをそれぞれ表す。
The water-soluble polymer (A) is a monomer represented by the following general formula (1) and / or the general formula (2) 1 mol% or more and 100 mol% or less, a single amount represented by the following general formula (3) 2. The water-soluble polymer according to claim 1, wherein the water-soluble polymer is a copolymer of a monomer mixture consisting of 0 mol% to 50 mol% of the body and 0 mol% to 99 mol% of the nonionic monomer. Composition.
General formula (1)
R 1 is hydrogen or a methyl group, R 2, R 3 and R 4 is an alkyl group, an alkoxy group or a benzyl group having 1 to 3 carbon atoms, it may be the same or different. A is oxygen or NH, B is an alkylene group or an alkoxylene group having 2 to 4 carbon atoms, X 1 - represents each an anion.
General formula (2)
R 5 and R 6 each represent hydrogen or a methyl group, R 7 and R 8 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X 2 represents an anion.
General formula (3)
R 9 is hydrogen or CH 2 COOY 2 , R 10 is hydrogen, methyl group or COOY 2 , Q is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 , C 6 H 4 COO or COO , and Y 1 and Y 2 each represent hydrogen or a cation.
前記水溶性高分子(B)および(C)が、前記一般式(1)および/または一般式(2)で表される単量体1mol%以上99mol%以下、前記一般式(3)で表される単量体1mol%以上99mol%以下および、非イオン性単量体0mol%以上98mol%以下の範囲からなる単量体混合物の共重合物であることを特徴とする、請求項1および2に記載の水溶性高分子組成物。 The water-soluble polymers (B) and (C) are represented by the general formula (1) and / or the monomer represented by the general formula (2) in an amount of 1 mol% to 99 mol%, and the general formula (3). A monomer mixture comprising 1 mol% to 99 mol% of a monomer and a nonionic monomer in a range of 0 mol% to 98 mol%. The water-soluble polymer composition described in 1. 前記水溶性高分子(B)を構成するカチオン性構成単位(a)とアニオン性構成単位(b)のモル比が10≧(a)/(b)≧1であり、かつ水溶性高分子(C)を構成するカチオン性構成単位(c)とアニオン性構成単位(d)のモル比が1>(c)/(d)≧0.1であることを特徴とする、請求項1から3に記載の水溶性高分子組成物。 The molar ratio of the cationic structural unit (a) and the anionic structural unit (b) constituting the water-soluble polymer (B) is 10 ≧ (a) / (b) ≧ 1, and the water-soluble polymer ( The molar ratio of the cationic structural unit (c) and the anionic structural unit (d) constituting C) is 1> (c) / (d) ≧ 0.1, The water-soluble polymer composition described in 1. 前記水溶性高分子組成物の0.1質量%水溶液のpHが4.0以下であることを特徴とする、請求項1から4に記載の水溶性高分子組成物。 The water-soluble polymer composition according to any one of claims 1 to 4, wherein the pH of a 0.1% by mass aqueous solution of the water-soluble polymer composition is 4.0 or less. 前記水溶性高分子(A)、水溶性高分子(B)および水溶性高分子(C)の質量混合比が、(A):(B):(C)=40〜90:5〜55:5〜55の範囲であることを特徴とする、請求項1から5に記載の水溶性高分子組成物。 The mass mixing ratio of the water-soluble polymer (A), the water-soluble polymer (B) and the water-soluble polymer (C) is (A) :( B) :( C) = 40 to 90: 5-55: The water-soluble polymer composition according to claim 1, wherein the water-soluble polymer composition is in the range of 5 to 55. 粉末からなることを特徴とする、請求項1から6に記載の水溶性高分子組成物。 The water-soluble polymer composition according to claim 1, comprising a powder. 前記水溶性高分子(A)が、界面活性剤により水に非混和性有機液体を連続相、カチオン性単量体および複数の不飽和二重結合を有する多官能性単量体を必須として含む単量体混合物水溶液を分散相となるよう乳化し、重合した後得られる油中水滴型エマルジョン状液体を乾燥し得られるものであることを特徴とする、請求項1から7に記載の水溶性高分子組成物。 The water-soluble polymer (A) essentially contains a water-immiscible organic liquid in a continuous phase, a cationic monomer, and a polyfunctional monomer having a plurality of unsaturated double bonds by a surfactant. 8. The water-soluble composition according to claim 1, wherein the water-in-oil emulsion liquid obtained by emulsifying the monomer mixture aqueous solution into a dispersed phase and polymerizing the mixture is dried. 9. Polymer composition. 前記水溶性高分子組成物を汚泥脱水剤として使用することを特徴とする、請求項1から8に記載の水溶性高分子組成物の使用方法。 The method for using a water-soluble polymer composition according to claim 1, wherein the water-soluble polymer composition is used as a sludge dehydrating agent.
JP2009067150A 2009-03-19 2009-03-19 Water-soluble polymer composition Pending JP2010215867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067150A JP2010215867A (en) 2009-03-19 2009-03-19 Water-soluble polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067150A JP2010215867A (en) 2009-03-19 2009-03-19 Water-soluble polymer composition

Publications (1)

Publication Number Publication Date
JP2010215867A true JP2010215867A (en) 2010-09-30

Family

ID=42975030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067150A Pending JP2010215867A (en) 2009-03-19 2009-03-19 Water-soluble polymer composition

Country Status (1)

Country Link
JP (1) JP2010215867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170945A (en) * 2011-02-24 2012-09-10 Hymo Corp Sludge dewatering agent, and method of dewatering sludge
JP2012245464A (en) * 2011-05-27 2012-12-13 Hymo Corp Sludge dehydration method
WO2017094709A1 (en) * 2015-12-01 2017-06-08 株式会社リコー Water-disintegrable resin composition, and three-dimensional modeling material set and method for producing three-dimensional model using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223000A (en) * 1994-02-15 1995-08-22 Kurita Water Ind Ltd Sludge dewatering agent and method for dewatering sludge using the same
JPH08112504A (en) * 1994-10-17 1996-05-07 Sanyo Chem Ind Ltd Polymer flocculant
JP2005144346A (en) * 2003-11-17 2005-06-09 Hymo Corp Coagulating agent and its usage
WO2008015769A1 (en) * 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223000A (en) * 1994-02-15 1995-08-22 Kurita Water Ind Ltd Sludge dewatering agent and method for dewatering sludge using the same
JPH08112504A (en) * 1994-10-17 1996-05-07 Sanyo Chem Ind Ltd Polymer flocculant
JP2005144346A (en) * 2003-11-17 2005-06-09 Hymo Corp Coagulating agent and its usage
WO2008015769A1 (en) * 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170945A (en) * 2011-02-24 2012-09-10 Hymo Corp Sludge dewatering agent, and method of dewatering sludge
JP2012245464A (en) * 2011-05-27 2012-12-13 Hymo Corp Sludge dehydration method
WO2017094709A1 (en) * 2015-12-01 2017-06-08 株式会社リコー Water-disintegrable resin composition, and three-dimensional modeling material set and method for producing three-dimensional model using same
JPWO2017094709A1 (en) * 2015-12-01 2018-09-13 株式会社リコー Water-disintegrating resin composition, three-dimensional modeling material set using the same, and three-dimensional modeling manufacturing method

Similar Documents

Publication Publication Date Title
JP2005144346A (en) Coagulating agent and its usage
JP2012254430A (en) Flocculant, and sludge dehydration method using the same
JP5348757B2 (en) Water-soluble polymer composition
JP5780632B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5279024B2 (en) Sludge dewatering method
JP6465435B2 (en) Sludge dewatering method using water-in-oil type emulsion coagulant
JP5305443B2 (en) Water-soluble polymer composition
JP2010215867A (en) Water-soluble polymer composition
JP5692911B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP5729717B2 (en) Concentration method of sludge
JP5967705B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP2009072754A (en) Method for dehydrating sludge
JP5283253B2 (en) Method for dewatering paper sludge
JP6308585B2 (en) Yield improver and method for improving yield of papermaking raw material using the same
JP6257079B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5601704B2 (en) Sludge dewatering agent and sludge dewatering method
JP2012170943A (en) Sludge dewatering agent, and method of dewatering sludge
JP2010195915A (en) Powdery water-soluble polymer
JP2005177666A (en) Organic sludge dehydration method
JP2000159969A (en) Emulsion and its use
JP2012206023A (en) Coagulation treatment agent and sludge dehydration method using the same
JP5258647B2 (en) Sludge dewatering method
JP2013248583A (en) Flocculant and wastewater treatment method
JP5709257B2 (en) Sludge treatment agent and sludge dewatering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130926