JPWO2009096057A1 - Optical device, optical uniform device, optical sheet, backlight unit and display device - Google Patents
Optical device, optical uniform device, optical sheet, backlight unit and display device Download PDFInfo
- Publication number
- JPWO2009096057A1 JPWO2009096057A1 JP2009551391A JP2009551391A JPWO2009096057A1 JP WO2009096057 A1 JPWO2009096057 A1 JP WO2009096057A1 JP 2009551391 A JP2009551391 A JP 2009551391A JP 2009551391 A JP2009551391 A JP 2009551391A JP WO2009096057 A1 JPWO2009096057 A1 JP WO2009096057A1
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical
- lens
- propagation layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 176
- 238000009792 diffusion process Methods 0.000 claims abstract description 144
- 239000000463 material Substances 0.000 claims abstract description 100
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 239000012788 optical film Substances 0.000 claims description 45
- 229920005989 resin Polymers 0.000 claims description 36
- 239000011347 resin Substances 0.000 claims description 36
- 238000002834 transmittance Methods 0.000 claims description 23
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 6
- 238000005286 illumination Methods 0.000 claims description 5
- 239000010408 film Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 24
- -1 polyethylene terephthalate Polymers 0.000 description 22
- 230000000694 effects Effects 0.000 description 21
- 229920000139 polyethylene terephthalate Polymers 0.000 description 21
- 239000005020 polyethylene terephthalate Substances 0.000 description 21
- 239000004973 liquid crystal related substance Substances 0.000 description 19
- 239000002245 particle Substances 0.000 description 18
- 239000000945 filler Substances 0.000 description 17
- 239000004417 polycarbonate Substances 0.000 description 17
- 239000000853 adhesive Substances 0.000 description 16
- 230000001070 adhesive effect Effects 0.000 description 16
- 229920000515 polycarbonate Polymers 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 238000001125 extrusion Methods 0.000 description 11
- 239000004925 Acrylic resin Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229920005992 thermoplastic resin Polymers 0.000 description 8
- 229920000178 Acrylic resin Polymers 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 6
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000004645 polyester resin Substances 0.000 description 4
- 229920001225 polyester resin Polymers 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000012780 transparent material Substances 0.000 description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 229920001893 acrylonitrile styrene Polymers 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000004840 adhesive resin Substances 0.000 description 2
- 229920006223 adhesive resin Polymers 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000003405 preventing effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000012463 white pigment Substances 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- UOBYKYZJUGYBDK-UHFFFAOYSA-N 2-naphthoic acid Chemical compound C1=CC=CC2=CC(C(=O)O)=CC=C21 UOBYKYZJUGYBDK-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- QQVIHTHCMHWDBS-UHFFFAOYSA-N perisophthalic acid Natural products OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0056—Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
- G02B5/045—Prism arrays
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133605—Direct backlight including specially adapted reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133611—Direct backlight including means for improving the brightness uniformity
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/54—Arrangements for reducing warping-twist
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Planar Illumination Modules (AREA)
Abstract
【課題】本発明は、複数の光源からの入射光を均一にして射出されることでランプイメージを消すことができ、さらに光源と光デバイスもしくは光均一デバイスとの距離が近づいても、光源から発せられる熱による反りが生じない光デバイス、光均一デバイス、光学シート、バックライトユニット及びディスプレイ装置の提供に関する。【解決手段】光伝搬層と二次元方向に光偏向機能を備えた光偏向要素とからなる光デバイス、もしくは光デバイスの光伝播層の光射出面側に拡散基材を一体化した光均一デバイスを、ディスプレイ装置の光源側に光デバイスもしくは光均一デバイスの光偏向要素を配置し、さらに必要であれば光デバイスの光伝搬層の上もしくは光均一デバイスの拡散基材の上に光学部材等を配置してなるディスプレイ装置。The present invention is capable of erasing a lamp image by uniformly emitting incident light from a plurality of light sources, and further from the light source even if the distance between the light source and the optical device or the light uniform device is reduced. The present invention relates to provision of an optical device, a light uniform device, an optical sheet, a backlight unit, and a display device that do not warp due to generated heat. An optical device comprising a light propagation layer and a light deflection element having a light deflection function in a two-dimensional direction, or a light uniform device in which a diffusion substrate is integrated on the light exit surface side of the light propagation layer of the optical device. The light deflection element of the optical device or the light uniform device is arranged on the light source side of the display device, and if necessary, an optical member or the like is disposed on the light propagation layer of the optical device or the diffusion base material of the light uniform device A display device arranged.
Description
本発明は、特にフラットパネルディスプレイに代表される画像表示装置における照明光路制御に用いられる光デバイス、光均一デバイス、光学シート、バックライトユニットおよびディスプレイ装置に関するものである。 The present invention relates to an optical device, a light uniform device, an optical sheet, a backlight unit, and a display device that are used for illumination light path control in an image display device represented by a flat panel display.
近年の大型液晶テレビにおいては、複数本の冷陰極管やLED(Light Emitting Diode)を配置した直下型方式のバックライトが採用されている。
このような直下型方式のバックライトには、画像表示素子と光源との間に光散乱性の強い樹脂板が用いられており、光源である、冷陰極管やLEDなどが視認されないようにされている。
上述の拡散板は、光拡散効果により光源より入射した光を全方位に拡散する。また、拡散板の板厚は、光散乱性を高めるために、また拡散板の上に構成される光学フィルムの支持をするために、通常1〜5mm程度の厚さを必要とする。そのため、拡散板による光の散乱や光の吸収により、液晶の画面表示が暗くなってしまう。In recent large-sized liquid crystal televisions, a direct type backlight having a plurality of cold cathode tubes and LEDs (Light Emitting Diodes) is employed.
In such a direct type backlight, a resin plate having a high light scattering property is used between the image display element and the light source, so that a cold cathode tube, an LED, or the like as the light source is not visually recognized. ing.
The above diffusion plate diffuses light incident from the light source in all directions due to the light diffusion effect. In addition, the thickness of the diffusion plate usually requires a thickness of about 1 to 5 mm in order to increase the light scattering property and to support the optical film formed on the diffusion plate. Therefore, the screen display of the liquid crystal becomes dark due to light scattering and light absorption by the diffusion plate.
一方、液晶テレビは年々薄型化していく傾向にあり、それに伴い拡散板自体も薄型化される傾向にあり、拡散板の厚さが薄くても拡散性が優れた拡散板が求められている。 On the other hand, liquid crystal televisions tend to be thinner year by year, and accordingly, the diffuser plate itself tends to be thinner, and there is a need for a diffuser plate having excellent diffusibility even if the diffuser plate is thin.
ここで従来より、直下型方式バックライトに使用される拡散板は、上述の通り、光源である冷陰極管から出射される光を拡散させ、輝度ムラ(ランプイメージ)を低減させることを目的としている。しかしながら、実際は完全にランプイメージを消すのは難しい。 Heretofore, the diffusion plate used in the direct type backlight is diffused as described above for the purpose of diffusing the light emitted from the cold cathode tube, which is the light source, and reducing luminance unevenness (lamp image). Yes. However, in practice, it is difficult to completely erase the lamp image.
すなわち、完全にランプイメージを消すために、無理に拡散粒子を増やした場合には、全光線透過率が下がりすぎ、輝度低下を引き起こす原因となる。
また、全光線透過率を下げないよう拡散板の拡散粒子を減らすと、拡散効果も下がってしまう。That is, when the number of diffusing particles is forcibly increased in order to completely eliminate the lamp image, the total light transmittance is excessively lowered, causing a decrease in luminance.
Further, if the diffusion particles of the diffusion plate are reduced so as not to reduce the total light transmittance, the diffusion effect is also lowered.
特許文献1〜3には、拡散性能を向上させる手段として、拡散板の出射面にレンズ形状を賦形した例が開示されている。たとえば、拡散板の上に凸型曲面を有するレンズが配置されている。
このような拡散板では、光源の配置に合わせてレンズの形状を設計し、レンズのアライメントを決定することが必要となる場合があり、製造工程が煩雑化する場合がある。また、拡散板の出射面にレンズ形状を賦形することにより、拡散板の全光線透過率が低下して、液晶表示画面を暗くする場合がある。さらにまた、拡散板の上に配置したレンズシートと液晶画素とからモアレ干渉縞が生じる場合もある。
In such a diffusing plate, it may be necessary to design the shape of the lens in accordance with the arrangement of the light sources and determine the alignment of the lens, which may complicate the manufacturing process. Further, by shaping the lens shape on the exit surface of the diffuser plate, the total light transmittance of the diffuser plate may be lowered, and the liquid crystal display screen may be darkened. Furthermore, moire interference fringes may be generated from the lens sheet and the liquid crystal pixels arranged on the diffusion plate.
液晶表示画面の輝度を向上させる手段として、米国3M社の登録商標である輝度向上フィルム(Brightness Enhancement Film:BEF)がレンズシートとして広く使用されている。
図22は、BEFの配置の一例を示す断面模式図であり、図23は、BEFの斜視図である。図22、23に示すように、BEF185は、部材186上に、断面三角形状の単位プリズム187が一方向に周期的に配列された光学フィルムである。この単位プリズム187は光の波長に比較して大きいサイズ(ピッチ)とされている。As a means for improving the brightness of the liquid crystal display screen, a brightness enhancement film (BEF), which is a registered trademark of 3M USA, is widely used as a lens sheet.
FIG. 22 is a schematic cross-sectional view showing an example of the BEF arrangement, and FIG. 23 is a perspective view of the BEF. As shown in FIGS. 22 and 23, the
BEF185は、“軸外(off-axis)”からの光を集光し、この光を視聴者に向けて“軸上(on-axis)”に方向転換(redirect)または“リサイクル(recycle)”することができる。すなわちBEF185は、ディスプレイの使用時(観察時)に、軸外輝度を低下させることによって軸上輝度を増大させることができる。ここで言う「軸上」とは、視聴者の視野方向F’に一致する方向であり、一般的にはディスプレイ画面に対する法線方向側である。 The BEF 185 collects light from “off-axis” and redirects this light “on-axis” or “recycle” toward the viewer. can do. That is, the BEF 185 can increase the on-axis luminance by reducing the off-axis luminance when the display is used (observation). Here, “on the axis” means a direction that coincides with the viewing direction F ′ of the viewer, and is generally on the normal direction side with respect to the display screen.
しかしながら、BEF185を用いた場合には、同時に反射/屈折作用による光成分が、視聴者の視覚方向F’に進むことなく横方向に無駄に出射されてしまう場合がある。
図24の線Bは、BEF185の特性を示したものだが、光強度と視野方向F’に対する角度が0°(軸上方向にあたる)における光強度が最も高められるが、F’に対する角度が±90°近辺には小さな光強度ピーク(サイドローブ)が発生し、横方向から無駄に出射される光も増えてしまう。However, when the BEF 185 is used, the light component due to the reflection / refraction action may be unnecessarily emitted in the lateral direction without proceeding to the viewer's visual direction F ′.
The line B in FIG. 24 shows the characteristics of the BEF 185. The light intensity is highest at an angle of 0 ° (corresponding to the axial direction) with respect to the light intensity and the viewing direction F ′, but the angle with respect to F ′ is ± 90. Near the angle, a small light intensity peak (side lobe) is generated, and the amount of light emitted from the lateral direction is increased.
BEF185に代表されるレンズシートを用いる際に、透明基材上に拡散フィラーが塗布され、拡散と集光の両方の機能を持つ拡散フィルム(以下、下拡散フィルムと呼ぶ)を拡散板とレンズシートとの間に配置することによって、拡散板から出射される拡散光を効率よく集光することができるとともに、拡散板だけでは消しきれないランプイメージを抑えることができる。 When a lens sheet represented by BEF185 is used, a diffusion film (hereinafter referred to as a lower diffusion film) in which a diffusion filler is applied on a transparent substrate and has both diffusion and condensing functions is used as a diffusion plate and a lens sheet. The diffused light emitted from the diffuser plate can be collected efficiently, and the lamp image that cannot be erased only by the diffuser plate can be suppressed.
さらにまた、レンズシートと液晶パネルとの間に光拡散フィルムを配置した場合には、サイドローブを低減させることができるとともに、規則的に配列されたレンズと液晶画素との間に生じるモアレ干渉縞を防ぐことができる。
しかし、下拡散フィルムおよび光拡散フィルムを用いる方式は、部材数が増加して、ディスプレイの組立て時の作業が煩雑になるとともに、光学シートの間のゴミが混入するなどの問題が生じる。Furthermore, when a light diffusing film is disposed between the lens sheet and the liquid crystal panel, side lobes can be reduced and moire interference fringes generated between the regularly arranged lenses and the liquid crystal pixels. Can be prevented.
However, the method using the lower diffusing film and the light diffusing film increases the number of members, which complicates the work for assembling the display, and causes problems such as contamination between optical sheets.
特許文献4には、このような問題を解決するための手段として、前記単位プリズムのみからの光学フィルムを用いるのではなく、単位レンズを二次元方向に一定のピッチで配列してなるアレイ構造の光学フィルムを用いたバックライトユニットが開示されている。この光学フィルムの光学特性は図24の線Aで示され、サイドローブが示されず、視野方向F’の光強度も線Bよりも向上されている。 In Patent Document 4, as a means for solving such a problem, an optical film from only the unit prism is not used, but an array structure in which unit lenses are arranged at a constant pitch in a two-dimensional direction. A backlight unit using an optical film is disclosed. The optical properties of this optical film are shown by line A in FIG. 24, no side lobe is shown, and the light intensity in the viewing direction F ′ is also improved over line B.
しかし、このような光学フィルムを用いたバックライトユニットにおいては、光学フィルムを一体積層するために拡散板の出射面を平坦にする必要があるので、拡散板の出射面にレンズを賦形して拡散効果と集光効果を高めることは難しかった。
本発明は、上述の問題を鑑みてなされたものであり、複数の光源からの入射光を均一にして射出させることで光源イメージを低減/消滅させることが可能であり、また光源と光デバイス、及び光均一デバイスとの距離が近づいても、光源から発せられる熱による反りを防止する光デバイス、及び光均一デバイスを提供することを目的とする。
更に上記光デバイス、及び光均一デバイスから射出された光を効率良く観察者側へ射出させることで観察者側への輝度を向上させる光学フィルムを、該光デバイス、及び該光均一デバイスと一体積層した光学シート、該光学シートを備えたバックライトユニットおよびディスプレイ装置を提供することを目的とする。The present invention has been made in view of the above-described problems, and it is possible to reduce / extinguish a light source image by uniformly emitting incident light from a plurality of light sources. An object of the present invention is to provide an optical device and an optical uniform device that prevent warping due to heat generated from a light source even when the distance to the optical uniform device is short.
Furthermore, the optical device and an optical film that improves the luminance toward the viewer side by efficiently emitting the light emitted from the light uniform device to the viewer side are integrally laminated with the light device and the light uniform device. It is an object of the present invention to provide an optical sheet, a backlight unit including the optical sheet, and a display device.
上述の目的を達成するために、本発明は以下の構成を採用した。すなわち、請求項1の発明は、光偏向要素と、前記光偏向要素の光射出面側に配置されてなる光伝搬層とを有する光デバイスであって、前記光偏向要素が少なくとも1種以上の凹凸形状を有する光偏向レンズであって、前記光偏向レンズが二次元に偏向面を有することを特徴とする光デバイスである。
In order to achieve the above object, the present invention employs the following configuration. That is, the invention of
請求項2の発明は、請求項1に記載の光デバイスにおいて、前記光偏向レンズが、二次元に配列された単位レンズからなることを特徴とする。 According to a second aspect of the present invention, in the optical device according to the first aspect, the light deflection lens is composed of unit lenses arranged two-dimensionally.
請求項3の発明は、請求項1に記載の光デバイスにおいて、前記光偏向レンズが、一次元に配列された第1のレンズアレイと一次元に配列された第2のレンズアレイとからなり、前記第1のレンズアレイと前記第2のレンズアレイとが、交差して配置されてなることを特徴とする。
The invention according to claim 3 is the optical device according to
請求項4の発明は、請求項1に記載の光デバイスにおいて、前記光偏向レンズの各々の最遠交点が、前記光伝搬層内に含まれることを特徴とする。 According to a fourth aspect of the present invention, in the optical device according to the first aspect, the farthest intersection point of each of the light deflection lenses is included in the light propagation layer.
請求項5の発明は、請求項1に記載の光デバイスにおいて、前記光伝搬層が少なくとも1層以上の層から構成されることを特徴とする。 According to a fifth aspect of the present invention, in the optical device according to the first aspect, the light propagation layer includes at least one layer.
請求項6の発明は、請求項1に記載の光デバイスにおいて、前記光偏向レンズは、弧状表面又は稜線を有する第一頂部と、第一頂部から前記光伝搬層の観察者側とは反対の面に至る第一傾斜部とを有し、前記光伝搬層の屈折率をnとし、前記光偏向レンズのピッチをPとし、前記第一傾斜面が前記光伝搬層に接合する接合点における前記第一傾斜面への接線が、前記光伝搬層の観察者と反対側の面となす角をθとしたとき、配列される各々の前記光偏向レンズにおいて、前記光伝搬層の厚さTが下記の数1を満たすことを特徴とする。
請求項7の発明は、請求項1記載の光デバイスと、前記光デバイスの前記光伝播層の光出射面側に光拡散基材とを有することを特徴とする光均一デバイスである。 A seventh aspect of the invention is an optical uniform device comprising the optical device according to the first aspect and a light diffusing substrate on the light emitting surface side of the light propagation layer of the optical device.
請求項8の発明は、照明光路制御用の光均一デバイスであって、前記光均一デバイスは、拡散基材と光伝搬層と光偏向要素からなり、前記拡散基材の観察者と反対側の面に前記光伝搬層の観察者側の面が重ねられて形成され、前記光伝搬層の観察者側と反対側の面には前記光偏向要素が形成されており、前記拡散基材は、透明樹脂に光拡散領域が分散されてなり、全光線透過率が30%〜80%、ヘイズ値が95%以上であり、前記伝搬層は、全光線透過率が80%以上、ヘイズ値が95%以下であることを特徴とする光均一デバイスである。 The invention of claim 8 is a light uniform device for controlling an illumination optical path, the light uniform device comprising a diffusion base material, a light propagation layer, and a light deflecting element, on the side opposite to the observer of the diffusion base material. The surface on the observer side of the light propagation layer is formed on the surface, the light deflection element is formed on the surface of the light propagation layer opposite to the observer side, and the diffusion base material is The light diffusion region is dispersed in a transparent resin, the total light transmittance is 30% to 80%, and the haze value is 95% or more. The propagation layer has a total light transmittance of 80% or more and a haze value of 95. % Uniform optical device characterized in that it is not more than%.
請求項9の発明は、ディスプレイの照明光路制御用の光学シートであって、前記光学シートは、請求項7〜8のいずれか1項に記載の光均一デバイスと光学フィルムとからなり、前記光均一デバイスの観察者側の面に前記光学フィルムの観察者と反対側の面が重ねられて形成されており、前記光学フィルムが、光透過基材と集光レンズとからなり、前記光透過基材の観察者側の面に複数の集光レンズが一定のピッチで配列されており、前記集光レンズの形状が凸曲面形状であり、弧状表面を有する第三頂部と、前記第三頂部から前記光透過基材へ至る第三傾斜面とを有しており、前記第三頂部に行くに従い、対向する前記第三傾斜面の間の距離が次第に減少するように形成されていることを特徴とする光学シート。 The invention according to claim 9 is an optical sheet for controlling an illumination optical path of a display, wherein the optical sheet comprises the light uniform device according to any one of claims 7 to 8 and an optical film, and the light. The surface on the viewer side of the uniform device is formed by overlapping the surface on the opposite side of the viewer of the optical film, and the optical film is composed of a light transmissive substrate and a condenser lens, and the light transmissive group A plurality of condensing lenses are arranged at a constant pitch on the surface of the observer side of the material, the shape of the condensing lens is a convex curved surface shape, and a third top portion having an arcuate surface, and the third top portion A third inclined surface that reaches the light-transmitting substrate, and is formed such that the distance between the opposed third inclined surfaces gradually decreases as going to the third top portion. An optical sheet.
請求項10の発明は、請求項9に記載の光学シートにおいて、前記光学フィルムと前記光均一デバイスとの間に、複数の光マスクと、前記光マスクを離間する光透過用開口部とが設けられており、前記光透過開口部が、前記集光レンズの前記第三頂部に対応して設けられ、前記光マスクを介して前記光学フィルムと前記光均一デバイスとが一体積層されていることを特徴とする。 According to a tenth aspect of the present invention, in the optical sheet according to the ninth aspect, a plurality of light masks and a light transmission opening for separating the light masks are provided between the optical film and the light uniform device. The light transmission opening is provided corresponding to the third top of the condenser lens, and the optical film and the light uniform device are integrally laminated through the optical mask. Features.
請求項11の発明は、請求項9に記載の光学シートにおいて、前記光学フィルムと前記光均一デバイスとの間にドット状または線状のリブが配列され、前記リブを介して前記光学フィルムと前記光均一デバイスとが一体積層されてなることを特徴とする。 The invention according to claim 11 is the optical sheet according to claim 9, wherein dot-like or linear ribs are arranged between the optical film and the light uniform device, and the optical film and the The optical uniform device is integrally laminated.
請求項12の発明は、請求項1〜6のいずれか1項に記載の光デバイスと、少なくとも1種以上の光学部材と、光源と、を備えることを特徴とするバックライトユニットである。
The invention of claim 12 is a backlight unit comprising the optical device according to any one of
請求項13の発明は、請求項7〜8のいずれか1項に記載の光均一デバイスと、光源と、を備えることを特徴とするバックライトユニットである。
The invention of
請求項14の発明は、請求項9〜11のいずれか1項に記載の光学シートと、光源と、を備えることを特徴とするバックライトユニットである。 The invention of claim 14 is a backlight unit comprising the optical sheet according to any one of claims 9 to 11 and a light source.
請求項15の発明は、請求項12〜14のいずれか1項に記載のバックライトユニットにおいて、前記光源が点光源であることを特徴とする。
The invention according to
請求項16の発明は、画素単位で光を透過/遮光して画像を表示する画像表示素子と、請求項12〜15のいずれか1項に記載のバックライトユニットと、を備えることを特徴とするディスプレイ装置である。
The invention of
上述の発明により、光源との距離が近づいても均一な光を射出することが可能であり、多層構成において各層の厚みや材質を変えることで、光源から発せられる熱による反りを防止することができる光デバイス、及び光均一デバイスを提供することができる。また光デバイス、及び光均一デバイスから射出された光を効率良く観察者側へと射出させることで、観察者側の輝度を向上させる光学フィルムと、該光デバイス、及び該光均一デバイスとを一体積層した光学シート、該光学シートを備えるバックライトユニットおよびディスプレイ装置を提供することができる。 According to the above-described invention, it is possible to emit uniform light even when the distance to the light source is close, and by changing the thickness and material of each layer in a multilayer structure, it is possible to prevent warping due to heat emitted from the light source. Can be provided, and an optical uniform device. Also, the optical film that improves the luminance on the viewer side by efficiently emitting the light emitted from the optical device and the light uniform device to the viewer side, and the optical device and the light uniform device are integrated. A laminated optical sheet, a backlight unit including the optical sheet, and a display device can be provided.
以下、本発明を実施するための形態について説明する。
図1は本発明の光デバイス、光均一デバイス、バックライトユニットおよびディスプレイ装置の一例を示す断面模式図である。
本発明の実施形態であるディスプレイ装置70は、画像表示素子35とバックライトユニット55とから構成されている。また、本発明の実施形態であるバックライトユニット55は、ランプハウス(反射板)43内に複数の光源41が配置され、その上(観察者側方向F)に本発明の実施形態である光デバイス、光均一デバイス25、光学部材2が単一、又は複数配置されて構成されている。
光源41から射出された光Hは、光均一デバイス25で拡散され、その上に配置された単一、又は複数の光学部材で拡散・反射・集光・カラーシフトされ、バックライトユニット55から射出される光Kが、画像表示素子35に入射し、観察者側Fへと射出される。Hereinafter, modes for carrying out the present invention will be described.
FIG. 1 is a schematic cross-sectional view illustrating an example of an optical device, a light uniform device, a backlight unit, and a display device of the present invention.
The
The light H emitted from the
光源41は、画像表示素子35へと光を供給するものである。そこで光源41としては、たとえば、複数の線光源や点光源を用いることができる。複数の線光源としては、CCFLに代表される蛍光管を、複数の点光源としては、たとえば、LEDなどを用いることができる。
The
反射板43は、複数の光源41の観察者側Fと反対側に配置され、光源41から出射された光のうち、観察者側Fと反対側の方向に出射された光と、複数の光源41の観察者側Fに配置された複数の光学部材により反射された光を反射させて観察者側Fに出射させることができる。このように反射板43を用いることによって、光の利用効率を高めることができる。反射板43としては、光を高効率で反射させる部材であればよく、たとえば、一般的な反射フィルム、反射板などを使用することができる。
The reflecting
本発明の実施形態である光デバイス24は、光偏向要素28と光伝搬層23とで構成される。また、光偏向要素28は表示装置70の光源41側に向けて配置される。光デバイス24の機能は、光偏向要素28の入射面から入射した光Hを偏向し、光伝搬層23に射出し、光伝搬層23の光射出面から拡散光を射出するものである。また、光均一デバイス25は、上述の光デバイス24に拡散基材26を有するものであり、拡散基材26の観察者側Fと反対側の面26aに光伝搬層23の観察者側Fの面23bが重ねられて形成されている。
上述のような光デバイス24、光均一デバイス25は、液晶装置のみならず、背面投射型スクリーン、太陽電池、有機又は無機EL、照明装置など、光路制御を行うものであれば、いずれのものにも使用することができる。The optical device 24 according to the embodiment of the present invention includes a
The optical device 24 and the
図2(a)は、本発明の実施形態である光均一デバイス25の機能を説明する図である。
光源41はランプハウス(反射板)43内に一定のピッチで配列されている。光源41から射出した光Hは、光均一デバイス25の観察者側Fと反対側の面、すなわち光偏向要素28より入射し、光均一デバイス25の観察者側Fの面、すなわち拡散基材26の観察者側Fの面26bより観察者側Fへ射出する。
光均一デバイス25の拡散性能が足りない場合、拡散基材26の観察者側Fの面26bには、光源41に対向する領域が明るく、光源41と光源41との間に対向する領域が暗く見え、輝度ムラ(光源イメージ)として視認される。
本発明の実施形態である光均一デバイス25は、観察者側Fとは反対側の面に光偏向要素28が配列されている。光源41から入射する強い正面光Hを光偏向要素28にて、その進行方向を偏向し、光伝搬層23において偏向された入射光を拡げ、拡散基材26において拡散し、均一な光を観察者側Fへ射出する。FIG. 2A is a diagram illustrating the function of the
The
When the
In the
光偏向要素28の各々の単位レンズの第一傾斜面28bが光伝搬層23と接合する点30における第一傾斜面への接線mと、光伝搬層23の観察者側Fとは反対側の面23aとがなす角度をθ、光偏向要素28の各々の単位レンズのピッチをP、光伝搬層23の厚みをT、光伝搬層23の屈折率をnとしたとき、以下の数式1を満たすことが望ましい。
ここで光偏向要素28の各々の単位レンズのピッチPは、光偏向要素28を断面視した際に、光伝搬層23と接合する2点間の距離と定義される。尚、数式1が有効な光偏向要素28のピッチPは10μm以上600μm以下であることが望ましい。光偏向要素28のピッチPが10μmより小さい場合は、単位レンズ周期が波長に近づくため、回折の影響が無視できなくなってくるためである。光偏向要素28のピッチPが600μmを超える場合、拡散性能上は問題ないが、結果として光伝搬層23の厚みTが非常に厚くなってしまう。この場合、光伝搬層23の厚みは2mm以下に収まるよう設定することが望ましい。
よって一定のピッチで配列された光偏向要素28に入射した正面光Hは、光偏向要素28で偏向され、隣り合う光偏向要素28によって偏向された光が光伝搬層23内で混ざり合い、拡散基材26にて拡散、観察者側Fへと射出される。光伝搬層23の厚みTが数式1を満たさない場合、隣り合う光偏向要素28にて偏向された光が交差せずに拡散基材26へ入射するため、光均一デバイス25の拡散性能が不足する。A tangent m to the first inclined surface at a
Here, the pitch P of each unit lens of the
Therefore, the front light H incident on the
さらにまた、2つ隣の光偏向要素28によって偏向された光が光伝搬層23内で交差することがより好ましい。すなわち、以下の数式2を満たすことが望ましい。
図2(c)に示されるように、2つ隣の光偏向要素28によって偏向された光が光伝搬層23内で混ざり合う厚さTであれば、その拡散性能は更に増すため、光源41との距離が近づいても、ランプイメージを低減/消滅することが可能となる。Furthermore, it is more preferable that the light deflected by the two adjacent
As shown in FIG. 2C, if the light deflected by the two adjacent
光偏向要素28としては凹凸形状を有するレンズであることが望ましい。凹凸形状を有するレンズとしては、図3(a)及び(b)に示されるような単位レンズが二次元方向に配列されたものであることが望ましい。光源41は複数の点光源が配置されるため、二次元的に光源イメージの低減を図ることが求められる。従って、光偏向要素28としては図3(a)及び(b)に示されるようなマイクロレンズ形状が望ましい。また図3(a)及び(b)は同じ大きさのマイクロレンズが規則的に配置されているが、図4(a)に示されるようにランダムに配置したり、図4(b)に示されるように、大きさの異なるマイクロレンズを配置しても良い。また、光源41の配置によっては、図5(a)に示されるように、真円ではなく楕円でも良い。楕円にすることで、一方向の光源イメージ効果を高めることが可能となるためである。
The
光偏向要素28としてマイクロレンズを用いる場合、光伝搬層23の観察者側Fと反対側の面23aの全面をマイクロレンズで覆うことは難しい。ここで光伝搬層23の観察者側Fと反対側の面23aの面積をS、配列されたマイクロレンズの底面積の和をMとしたとき、M/S≧70%であることが望ましい。M/Sが70%を下回ると、光偏向要素28を介さずに光伝搬層23へ入射する光が増えてしまい、光源イメージを消すことは難しいためである。
When a microlens is used as the
ここで、図5(b)に示されるように、光伝搬層23の観察者側Fと反対側の面23aにおいて、マイクロレンズが形成されない平坦面に光カバー層23cを形成することができる。光カバー層23cにより、平坦面に入射する光Hを反射、または拡散することで効率的に光源イメージを消すことが可能となる。
Here, as shown in FIG. 5B, the light cover layer 23 c can be formed on a flat surface on which the microlens is not formed on the
ここで光カバー層23cとしては、例えば白色顔料からなる光拡散/反射層等が挙げられる。ここで白色顔料としては、酸化チタンや酸化アルミニウム、硫酸バリウム等が挙げられ、コーティングや印刷法などによって形成する。さらにまた金属薄膜等を蒸着法や圧着法等により形成することができる。 Here, examples of the light cover layer 23c include a light diffusion / reflection layer made of a white pigment. Here, examples of the white pigment include titanium oxide, aluminum oxide, barium sulfate, and the like, which are formed by coating or printing. Furthermore, a metal thin film or the like can be formed by a vapor deposition method, a pressure bonding method, or the like.
さらにまた、光カバー層23cには蛍光材料を含んでも良い。光源41から発する光Hには、微量ながら紫外光が含まれる。従って例えば光源41の上(すなわち観察者側Fの方向を示す)に拡散板、プリズムシート、拡散フィルムの順で設定されるバックライトの構成においては、最も光源41に近い部材である拡散板にUV吸収材が含有される。本構成において、光カバー層23cは光源41の最も近い位置に配置される。従って、光源41に含まれる紫外光によって蛍光材料を発光させることで紫外光を効率的に利用することでバックライト全体の光量を増やすことができる。また、光偏向要素28より入射した紫外光は、光偏向要素28、光伝搬層23、拡散基材26のいずれかに含有されるUV吸収材により吸収されるため、観察者側Fに紫外光が漏れることはない。ここで蛍光材料としては、一般に光学用途に用いられるもの、例えば白色LED等に用いられるものであれば、その材料は問わない。
Furthermore, the light cover layer 23c may contain a fluorescent material. The light H emitted from the
光偏向要素28としてマイクロレンズを用いる場合、マイクロレンズの直径とマイクロレンズの高さの比、すなわちアスペクト比が0.4以上であることが望ましい。アスペクト比が0.4を下回ると、マイクロレンズによる拡散効果が弱くなり、光源イメージを消すことは難しいためである。
When a microlens is used as the
光偏向要素28としてマイクロレンズを用いる場合、数式1、及び数式2で定義される単位レンズピッチPは、構成されるマイクロレンズにおいて最も大きなマイクロレンズの直径をP0、面上において隣り合うマイクロレンズの中で、最も距離の離れるレンズ間距離をLmaxとすると、P=P0+Lmaxと定義される。すなわち、最も距離の離れた隣り合うマイクロレンズで偏向された光が混ざることができるだけの光伝搬層23の厚みTが必要となるためである。
When a microlens is used as the
光偏向要素28としては、図6(a)及び(b)に示されるような、第1のレンズアレイ281が一定のピッチで配列されている間に第2のレンズアレイ282が交差する方向に配列された形状であることが望ましい。二次元方向の偏向効果を容易に得ることができるためである。第1のレンズアレイ281及び第2のレンズアレイ282形状としては、図7(a)のような三角プリズム形状が望ましい。レンズ成形が容易であり、且つ正面からの入射光Hを大きく偏向することが出来るためである。
As the
また、図7(b)のような凸湾曲レンズ形状が望ましい。第一頂部281a、282a及び第一傾斜面281b、282bの各点における接線が連続的に変化しているため、正面からの入射光Hを様々な角度へ偏向することが出来るためである。
Further, a convex curved lens shape as shown in FIG. This is because the tangent line at each point of the
凸湾曲レンズ形状としては、図7(c)のような非球面形状であることが更には望ましい。第一頂部281a、282aの曲率半径が小さくできるため、拡散性能が増すためである。
さらに第1のレンズアレイ281及び第2のレンズアレイ282形状としては、図7(d)のような湾曲三角プリズムであることが望ましい。第一頂部281a、282aが稜線であるため、入射光Hがレンズのどの箇所へ入射しても必ず大きく偏向することができる。また、第一傾斜面281b、282bの各点における接線が連続的に変化しているため、正面からの入射光Hを様々な角度へ拡散することが出来るためである。このとき、図7(d)に示すように、第一傾斜面281b、282bの各点における接線が、光伝搬層23の観察者側Fとは反対側の面23bとなす角度θbが、20度〜90度の間で連続的に変化していることが更には望ましい。20度を下回る面がある場合、偏向角が非常に小さくなるため、拡散性能が弱くなってしまう。特に0度となる面がある場合、全く偏向せずに入射光Hを通すことになる。湾曲三角プリズムは第一傾斜面281b、282bの各点における接線が、光伝搬層23の観察者側Fとは反対側の面23bとなす角度が、20度より小さくなる面がないため、第一傾斜面281b、282bのどの箇所に光が入射しても大きな角度で偏向することが可能である。The convex curved lens shape is more preferably an aspherical shape as shown in FIG. This is because the radius of curvature of the first
Further, the
また、第一傾斜面281b、282bの各点における接線が、光伝搬層23の観察者側Fとは反対側の面23bとなす角度が大きく変化しない場合、第一傾斜面281b、282bのどの点に光が入射しても、偏向角がほとんど一緒となるため、同じ領域に光が集中してしまう。湾曲三角プリズムは第一傾斜面281b、282bの各点における接線が、光伝搬層23の観察者側Fとは反対側の面23bとなす角度θbが、20度〜90度の範囲で大きく変化しているため、様々な角度に入射光Hを偏向し、光を均一にすることができる。
Further, when the angle between the tangent line at each point of the first
また、第1のレンズアレイ281及び第2のレンズアレイ282形状は上記レンズ形状を複数組み合わせて用いたり、または上記レンズ形状を反転させた凹レンズ形状でも良い。例えば図8(a)に示されるように、凸湾曲レンズの上に三角プリズムを組み合わせたような形状でも良い。または図8(b)のように2つの湾曲三角プリズムをシフトさせて重ねた形状でも良い。2つ以上のレンズ形状による拡散効果により、更に拡散性能が増すためである。
Further, the
上述のように、第1のレンズアレイ281が一定のピッチで配列されている間に第2のレンズアレイ282が交差する方向に配列された形状である場合、数式1、及び数式2で定義される単位レンズピッチPは、第1のレンズアレイの配列ピッチと定義される。
As described above, when the
第1のレンズアレイ281及び第2のレンズアレイ282は、第一頂部281a、282aに、光源41からの光Hを拡散及び反射する、光カバー層を備えても良い。
図9(a)は光カバー層281c、282cの光反射の効果を示した図である。例えば凸湾曲レンズの第一頂部281a、282aに光カバー層281c、282cを形成することで、第1のレンズアレイ281及び第2のレンズアレイ282における偏向角が小さい領域に入射した光を反射することで、偏向角の大きな領域だけを選択できるため、拡散性能を高めることができる。このとき、第一傾斜面281b、282bの各点における接線と光伝搬層23の観察者側と反対側の面23bとのなす角が、20度〜90度、第一頂部281a、282aの各点における接線と光伝搬層23の観察者側Fと反対側の面23aとのなす角が、0度〜40度の範囲であることが更には望ましい。
図9(b)は光カバー層281c、282cの光拡散の効果を示した図である。例えば凸湾曲レンズの第一頂部281a、282aに光カバー層281c、282cを形成することで、第1のレンズアレイ281及び第2のレンズアレイ282における偏向角が小さい領域に入射した光を拡散することで、拡散性能を高めることができる。The
FIG. 9A is a diagram showing the light reflection effect of the light cover layers 281c and 282c. For example, the light cover layers 281c and 282c are formed on the
FIG. 9B is a diagram showing the light diffusion effect of the light cover layers 281c and 282c. For example, the light cover layers 281c and 282c are formed on the
図10(a)は凸湾曲レンズの第一頂部281a、282aに光カバー層281c、282cを形成した場合を示したものである。光カバー層281c、282cは湾曲した第一頂部281a、282aに沿う形で、丸みを帯びた形状でも良い。
第一頂部281a、282aに光カバー層281c、282cを形成しやすくするために、例えば図10(b)に示すように、第一頂部281a、282aが略平坦面であっても良い。また図10(c)に示すように、第一頂部281a、282aを凸形状に形成した上に光カバー層281c、282cを形成しても良い。光カバー層281c、282cは、その性能上、図10(d)に示されるように、第一傾斜面281b、282bに一部回り込んでも良い。しかしながら、第一傾斜面281b、282bの大部分を覆ってしまうと第1のレンズアレイ281及び第2のレンズアレイ282の拡散機能が低下するため、回り込み量Δとしては第一傾斜面281b、282bの幅pに対して30%以下であることが望ましい。ここでは凸湾曲レンズの第一頂部281a、282aに光カバー層281c、282cを形成する例を挙げたがこれに限らず、上述した三角プリズム形状や湾曲三角プリズム形状、組合せレンズ形状等の第一頂部281a、282aに形成する場合も含む。FIG. 10A shows a case where the light cover layers 281c and 282c are formed on the
In order to facilitate the formation of the light cover layers 281c and 282c on the first
光偏向要素28としては、図11(a)及び(b)に示されるように、第1のレンズアレイ281の頂部に第2のレンズアレイ282が交差する方向に形成される形状であることが望ましい。
As shown in FIGS. 11A and 11B, the
第1のレンズアレイ281、及び交差させる第2のレンズアレイ282の形状としては、図7(a)〜(d)、図8(a)〜(b)に示されるような凸レンズ形状、または凹レンズ形状を組み合わせることができ、特に第2のレンズアレイ282は、その頂部282aに光カバー層282cを設けても良い。
As the shape of the
光偏向要素28は第1のレンズアレイ281と第2のレンズアレイ282との高さを合わせることで、図12のようなピラミッド形状、または図13のようなビラミッドが陥没した形状であることが望ましい。点光源41に対して、4方向で同様な偏向効果を容易に得ることが出来るためである。
The
第1のレンズアレイ及び第2のレンズアレイは上述のような単位レンズを配列させることで、二次元的に入射光を偏向するため、点光源の光源イメージを消すことが可能となる。 By arranging the unit lenses as described above in the first lens array and the second lens array, the incident light is deflected two-dimensionally, so that the light source image of the point light source can be erased.
光偏向要素28は上述のレンズ等を、適宜複数組み合わせて配列しても良い。または図14(a)及び図14(b)では単位レンズとしてマイクロレンズの例を図示しているが、単位レンズのピッチP0や高さを変えて配列しても良い。これにより、光偏向要素28の最遠交点αは光伝搬層23内に不均一に配置されている。図14(c)には、光偏向要素28の単位レンズの配列方向に対して、最遠交点αが平行且つ直線上に配置されたものを示す。光偏向要素28に正面光Hが入射したとき、単位レンズの中心線上に集光点が生じるが、該中心線上に収差が生じる。そこで本発明においては説明を簡略化するために、最もレンズ頂点から離れた点で集光する点を最遠交点αと定義する。図14(a)〜(c)においては、単位レンズの両端に入射した光が偏向されて交わる点を最遠交点αとなる一例を示している。
図14(c)において、例えば全ての光偏向要素28が同一形状である場合は、各々の光偏向要素28に入射した光の最遠交点αの位置は、同一面上に存在する。従って、光デバイス24及び光均一デバイス25の入射面から入射した光Hは、どの領域においても同一の拡散性能が得られるため、ムラの無い光デバイス24及び光均一デバイス25を提供することができる。しかしながら、図14(a)及び図14(b)で示されるように、光偏向要素28のレンズ形状が一定ではない場合は、各々の光偏向要素28に入射した光の最遠交点αが同一面上には存在しない。したがって各々の光偏向要素28毎に光伝搬層23の厚みTが異なることとなる。このとき、光伝搬層23の厚さTは、組み合わせる各レンズの中で最も厚くなるTを選択することが望ましい。最も厚くなるTを選択することで、配列される全ての光偏向要素28において、上述の数式1及び2を満足することができるため、確実に拡散効果を得ることができる。例えば、光源41が極端に光デバイス24及び光均一デバイス25と近接する場合や、光源41間の距離が極端に離れている場合、光源41間の距離が不均一な場合などに、光偏向要素28の最遠交点αを不均一にすると有効である。とくに複数組み合わせる場合、図15に示されるように、光源41の位置に合わせて規則的に配列しても良い。このとき、光源41の真上の領域には、光伝搬層23の厚みTが最も薄く設定できる光偏向要素28を配置することが望ましい。結果として光源41の真上の領域の拡散性能を高めることが出来るため、輝度ムラをより低減することが可能となる。The
In FIG. 14C, for example, when all the
光偏向要素28は、光伝搬層23の観察者側Fと反対側の面23aに、UV硬化樹脂などのような電子線硬化樹脂を用いてUV成形、またはソフトモールド法によって成形することができる。
The
たとえば、拡散基材26と光伝搬層23とを押出法等により一体で板状部材として成形して、光伝搬層23の観察者側Fと反対側の面23aに光偏向要素28を成形することができる。さらにまた、光伝搬層23を押出法や射出成形法等により板状部材として成形して、これを拡散基材26と一体化する前/後に、光伝搬層23の観察者側Fと反対側の面23aに光偏向要素28を成形することができる。
For example, the
また、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、PMMA(ポリメチルメタクリレート)、COP(シクロオレフィンポリマー)、アクリルニトリルスチレン共重合体、アクリロニトリルポリスチレン共重合体などを用いて、射出成型法、あるいは熱プレス成型法によって光偏向要素28を形成することもできる。また、同様に作製したシート材の表面に、光偏向要素28を、放射線硬化樹脂を用いて成形することもできる。
PET (polyethylene terephthalate), PC (polycarbonate), PMMA (polymethyl methacrylate), COP (cycloolefin polymer), acrylonitrile styrene copolymer, acrylonitrile polystyrene copolymer, etc. The
本発明の光デバイス24は押出成形で作製することができる。また図16(a)に示されるように光デバイス24と拡散基材26とを多層押出等により一体で成形してもよい。一方で図12(b)に示されるように、シート状に成形した後、光伝搬層23の観察者側Fとは反対側の面23aに、ラミネート等により固定層20によって貼合することもできる。この場合、シート状に成形した光偏向要素28に紫外線吸収材を含有させることが好ましい。シート状に成形した光偏向要素28に紫外線吸収材を含有させることで、固定層20の紫外線劣化による剥れを防ぐことができる。
The optical device 24 of the present invention can be produced by extrusion. Further, as shown in FIG. 16A, the optical device 24 and the
ここで固定層20は、粘着剤、接着剤を用いて形成する。粘着剤、接着剤には、ウレタン系、アクリル系、ゴム系、シリコーン系、ビニル系の樹脂等を用いることができる。また、粘着剤、接着剤には、1液型で押圧して接着するもの、熱や光で硬化させるものを用いることができ、2液、もしくは複数の液を混合して硬化させるものを用いることができる。
さらに、固定層20内にフィラーを分散してもよい。固定層20内にフィラーを分散することで、接合層の弾性率を増加することが可能となる。
固定層20の形成方法において、接合面へ直接塗布する方法や、あらかじめドライフィルムとして準備したものを貼り合わせる方法がある。固定層20をドライフィルムとして準備した場合、製造工程上、簡易的に扱うことが可能となるため好ましい。Here, the fixed
Further, a filler may be dispersed in the fixed
As a method for forming the fixed
また固定層20は反り防止作用があることが望ましい。固定層20の熱線膨張係数を、拡散基材26の熱線膨張係数とほぼ同じになるように合せ込むことで、光均一デバイス25自体の反りを防止することができる。さらにまた、シート状に成形した光偏向要素28の熱線膨張係数を、拡散基材26の熱線膨張係数とほぼ同じになるように合せ込むことで、光均一デバイス25自体の反りを防止することができる。
シート状に成形した光偏向要素28の厚みは10μm〜1mmであることが望ましい。更には25μm〜500μmであることが望ましい。シート状に成形した光偏向要素28の厚みが薄すぎると皺等が発生し、厚すぎると光伝搬層23との貼合が容易ではなくなるためである。ここで、シート状に成形した光偏向要素28の基材領域を光伝搬層23とみなすことができる。したがって厚いシート状に光偏向要素28を成形することで、光伝搬層23の厚みを薄くすることができる。また、直接拡散基材26に貼り合わせることも可能となる。Further, it is desirable that the fixed
The thickness of the
光偏向要素28の表面に、さらに微細な凹凸を有していても良い。微細な凹凸が、光偏向レンズ28による偏向効果を更に高めることができる。このとき、表面粗さRaは、0.1μm〜10μmの範囲であることが望ましい。0.1μmを下回る凹凸構造では偏向効果は得難く、また10μmを超える凹凸構造はそれ自体が光偏向要素28となる。微細な凹凸の形成方法としては、例えば光偏向要素28自身、又は成形用金型の表面を、エッチングやサンドブラストなどによって荒らす方法、または光偏向要素28の成形用金型に、更に微細な凹凸形状を切削する等の方法が挙げられる。
The surface of the
また、光偏向要素28は、入射光Hを偏向させるものであれば、上述のようなレンズ形状でなくても良い。例えば、光偏向要素28は樹脂フィラーや気泡等による拡散層であっても良い。光偏向要素28で入射光Hを偏向し、光伝搬層23で偏向された光を拡げ、拡散基材26で更に拡散することで、拡散性能が向上するためである。
Further, the
本発明の光均一デバイス25を構成する光伝搬層23は、全光線透過率が80%以上であることが好ましい。全光線透過率が80%以上であれば、観察者側Fへ出射させる光の輝度を低下させることがない。逆に、全光線透過率が80%未満の場合には、観察者側Fへ出射させる光の輝度低下を生じさせるため好ましくない。なお、全光線透過率は、JIS K7361−1に準拠した測定値である。
The
また、光伝搬層23は、ヘイズ値が95%以下であることが好ましい。光伝搬層23は、光偏向レンズ28によって偏向された入射光を効果的に拡げて伝搬し、拡散基材26へ入射させる。従って、ヘイズ値が95%を超える場合には、十分な光拡散効果を得ることが出来ないため好ましくない。なお、ヘイズ値は、JIS K7136に準拠した測定値である。
The
光伝搬層23に用いられる材料は、熱可塑性樹脂からなる透明樹脂が好ましく、例えば、ポリカーボネート樹脂、アクリル系樹脂、フッ素系アクリル樹脂、シリコーン系アクリル樹脂、エポキシアクリレート樹脂、ポリスチレン樹脂、シクロオレフィンポリマー、メチルスチレン樹脂、フルオレン樹脂、PET、ポリプロピレン、アクリルニトリルスチレン共重合体、アクリロニトリルポリスチレン共重合体などを挙げることができる。また、光伝搬層23は、少なくとも1軸方向に延伸されていてもよい。
The material used for the
光伝搬層23には、光拡散要素が含まれていないことがより望ましい。光伝搬層23に、光拡散要素が含有されない場合、光偏向要素28によって偏向された光を効果的に拡げて伝搬することができるためである。
More preferably, the
光伝搬層23は、少なくとも2層以上の多層構造とすることができる。このとき、光偏向要素28側の層23Aの屈折率をn1、拡散基材26側の層23Bの屈折率をn2、光偏向要素28の屈折率をn0としたとき、数式3を満たすことが望ましい。
数式3について、図17(a)を用いて説明する。
光Hが光偏向要素28に入射すると、空気の屈折率と光偏向レンズ28の屈折率n0とにより光Hは偏向される。このとき光偏向要素28の屈折率n0が大きいほど屈折角は大きくなるため、光偏向要素28の屈折率n0は大きい方が望ましい。
図17(a)においては、光偏向要素28、光伝搬層23の光偏向要素28側の層23A、及び光伝搬層23の拡散基材26側の層23Bのそれぞれの界面において、光が光源41側から観察者側Fに進むにあたり、界面での屈折率が高くなる場合を2点鎖線、屈折率が変わらない場合を点線、屈折率が低くなる場合を実線で表している。
例えば、光偏向要素28により偏向された光が光伝搬層23に入射する際、n0>n1、すなわち屈折率が低くなる場合、実線で図示される方向へ偏向する。偏向された光と光伝搬層23の観察者側Fとは反対側の面23aとのなす角度が小さくなるため、拡散性能は向上する。
逆に、n0<n1、すなわち屈折率が高くなる場合、2点鎖線で図示される方向へと偏向される。偏向された光と光伝搬層23の観察者側Fと反対側の面23aとのなす角度が大きくなるため、拡散性能は低下する。
同様に、光伝搬層23の光偏向要素28側の層23Aと光伝搬層23の拡散基材26側の層23Bとの界面においても、n1>n2、すなわち屈折率が低くなる場合、拡散性能は向上することとなる。
従って、光偏向要素28の屈折率n0と光伝搬層23の光偏向要素28側の層23Aの屈折率n1とは、等しいか又は光偏向要素28の屈折率n0の方が大きいことが望ましく、光伝搬層23の光偏向要素28側の層23Aの屈折率n1と光伝搬層23の拡散基材26側の層23Bの屈折率n2とでは、等しいか又は光伝搬層23の光偏向要素28側の層23Aの屈折率n1の方が大きいことが望ましい。Equation 3 will be described with reference to FIG.
When the light H enters the
In FIG. 17A, light is emitted from the
For example, when light deflected by the
On the other hand, when n0 <n1, that is, when the refractive index becomes high, it is deflected in the direction shown by the two-dot chain line. Since the angle formed between the deflected light and the
Similarly, at the interface between the
Therefore, it is desirable that the refractive index n0 of the
ここで、光伝搬層23の光偏向要素28側の層23Aの厚さより、光伝搬層23の拡散基材26側の層23Bの厚さの方が厚いことがより望ましい。光伝搬層23の拡散基材26側の層23B内で光を大きく拡げることが可能となるためである。更には、図17(b)に示すように、光偏向要素28の単位レンズの両端に入射した光が偏向して交差する点が、光伝搬層23の光偏向要素28側の層23Aに位置することが望ましい。
また、光伝搬層23が少なくとも2層以上の多層構成である場合には、光偏向要素28の最遠交点αが光偏向要素28の光射出面(すなわち光伝搬層23の観察者側Fと反対側の面23a)と接する層内に含まれることが良い。これにより、光伝搬層23内の光偏向要素28に近い点に最遠交点があるため、大きく光を拡散することができる。Here, it is more desirable that the thickness of the
Further, when the
上述の光伝搬層23は、屈折率の異なる複数の層を多層押出法等により成形することができる。また、押出法や射出成形法によって成形した光伝搬層23に、該光伝搬層23よりも屈折率の高い材料を用いて光偏向要素28をシート状に成形し、ラミネート法等により貼合することでも実現することが出来る。
The
光伝搬層23は多層構成とすることで、反りを防止することが出来る。この場合、最も観察者側から離れた層の熱線膨張係数を、拡散基材26の熱線膨張係数とをほぼ同じ程度に合せ込むことで、光デバイス24、光均一デバイス25の反りを防止することができる。また、光伝搬層23の厚さを調整することによっても光デバイス24、光均一デバイス25の反りを防止できる。
The
拡散基材26は、全光線透過率が30%〜80%であることが好ましい。全光線透過率が30%未満の場合には、観察者側Fへの出射光の輝度低下を生じさせるので好ましくなく、逆に、全光線透過率が80%を超える場合には、拡散性能が不十分となり、面内輝度の均一性が悪化するため好ましくない。
The
拡散基材26は、ヘイズ値が95%以上であることが好ましい。ヘイズ値が95%未満の場合は、拡散性能が不十分となり、面内輝度の均一性が悪化するため好ましくない。
The
拡散基材26は、透明樹脂に光拡散領域が分散されて形成されている。
透明樹脂としては、熱可塑性樹脂、熱硬化性樹脂などを用いることができ、例えば、ポリカーボネート樹脂、アクリル系樹脂、フッ素系アクリル樹脂、シリコーン系アクリル樹脂、エポキシアクリレート樹脂、ポリスチレン樹脂、シクロオレフィンポリマー、メチルスチレン樹脂、フルオレン樹脂、ポリエチレンテレフタレート(PET)、ポリプロピレン、アクリルニトリルスチレン共重合体、アクリロニトリルポリスチレン共重合体などを用いることができる。The
As the transparent resin, a thermoplastic resin, a thermosetting resin or the like can be used. For example, a polycarbonate resin, an acrylic resin, a fluorine acrylic resin, a silicone acrylic resin, an epoxy acrylate resin, a polystyrene resin, a cycloolefin polymer, Methyl styrene resin, fluorene resin, polyethylene terephthalate (PET), polypropylene, acrylonitrile styrene copolymer, acrylonitrile polystyrene copolymer, and the like can be used.
光拡散領域は、光拡散粒子からなることが好ましい。好適な拡散性能を容易に得ることができるためである。
光拡散粒子としては、無機酸化物または樹脂からなる透明粒子を用いることができる。無機酸化物からなる透明粒子としては、例えば、シリカ、アルミナなどを用いることができる。また、樹脂からなる透明粒子としては、アクリル粒子、スチレン粒子、スチレンアクリル粒子及びその架橋体、メラミン・ホルマリン縮合物の粒子、PTFE(ポリテトラフルオロエチレン)、PFA(ペルフルオロアルコキシ樹脂)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PVDF(ポリフルオロビニリデン)、及びETFE(エチレン・テトラフルオロエチレン共重合体)等のフッ素ポリマー粒子、シリコーン樹脂粒子などを用いることができる。
また、上述した透明粒子から2種類以上の透明粒子を組み合わせて使用してもよい。さらにまた、透明粒子の大きさ、形状は、特に規定されない。The light diffusion region is preferably made of light diffusion particles. This is because suitable diffusion performance can be easily obtained.
As the light diffusing particles, transparent particles made of an inorganic oxide or a resin can be used. As the transparent particles made of an inorganic oxide, for example, silica, alumina or the like can be used. The transparent particles made of resin include acrylic particles, styrene particles, styrene acrylic particles and cross-linked products thereof, melamine / formalin condensate particles, PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxy resin), FEP (tetrafluoroethylene). Fluoropolymer particles such as fluoroethylene / hexafluoropropylene copolymer), PVDF (polyfluorovinylidene), and ETFE (ethylene / tetrafluoroethylene copolymer), silicone resin particles, and the like can be used.
Moreover, you may use combining 2 or more types of transparent particles from the transparent particle mentioned above. Furthermore, the size and shape of the transparent particles are not particularly defined.
光拡散領域として光拡散粒子を用いた場合には、拡散基材26の厚さが0.1〜5mmであることが好ましい。
拡散基材26の厚みが0.1〜5mmである場合には、最適な拡散性能と輝度を得ることができる。逆に、0.1mm未満の場合には、拡散性能が足りず、5mmを超える場合には、樹脂量が多いため吸収による輝度低下が生じる。When light diffusing particles are used as the light diffusing region, the thickness of the diffusing
When the thickness of the
なお、透明樹脂として熱可塑性樹脂を用いた場合には、光拡散領域として気泡を用いても良い。
熱可塑性樹脂の内部に形成された気泡の内部表面が光の乱反射を生じさせ、光拡散粒子を分散させた場合と同等以上の光拡散機能を発現させることができる。そのため、拡散基材26の膜厚をより薄くすることが可能となる。
このような拡散基材26として、白色PETや白色PPなどを挙げることができる。白色PETは、PETと相溶性のない樹脂や酸化チタン(TiO2)、硫酸化バリウム(BaSO4)、炭酸カルシウムのようなフィラーをPETに分散させた後、該PETを2軸延伸法で延伸することにより、該フィラーの周りに気泡を発生させて形成する。In the case where a thermoplastic resin is used as the transparent resin, air bubbles may be used as the light diffusion region.
The internal surface of the bubble formed inside the thermoplastic resin causes diffused reflection of light, and a light diffusing function equivalent to or higher than that when light diffusing particles are dispersed can be expressed. Therefore, the film thickness of the
Examples of such a
なお、熱可塑性樹脂からなる拡散基材26は、少なくとも1軸方向に延伸されてなればよい。少なくとも1軸方向に延伸させれば、フィラーの周りに気泡を発生させることができるためである。
The
熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン−2、6−ナフレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、シクロヘキサンジメタノール共重合ポリエステル樹脂、イソフタル酸共重合ポリエステル樹脂、スポログリコール共重合ポリエステル樹脂、フルオレン共重合ポリエステル樹脂等のポリエステル系樹脂、ポリエチレン、ポリプロピレン、ポリメチルペンテン、脂環式オレフィン共重合樹脂等のポリオレフィン系樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリカーボネート、ポリスチレン、ポリアミド、ポリエーテル、ポリエステルアミド、ポリエーテルエステル、ポリ塩化ビニル、シクロオレフィンポリマー、およびこれらを成分とする共重合体、またこれら樹脂の混合物などを用いることができ、特に制限されることはない。 Examples of the thermoplastic resin include polyethylene terephthalate (PET), polyethylene-2, 6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, cyclohexanedimethanol copolymer polyester resin, isophthalic acid copolymer polyester resin, sporoglycol copolymer polyester. Resins, polyester resins such as fluorene copolymer polyester resins, polyolefin resins such as polyethylene, polypropylene, polymethylpentene, and alicyclic olefin copolymer resins, acrylic resins such as polymethyl methacrylate, polycarbonate, polystyrene, polyamide, polyether , Polyester amides, polyether esters, polyvinyl chloride, cycloolefin polymers, and copolymers containing these as components, Such as a mixture of these resins can be used are not particularly limited.
光拡散領域として気泡を用いた場合には、拡散基材26の厚さが25〜500μmであることが好ましい。
拡散基材26の厚さが25μm未満の場合には、シートのこしが不足し、製造工程やディスプレイ内でしわを発生しやすくなるので好ましくない。また、拡散基材26の厚さが500μmを超える場合には、光学性能についてはとくに問題ないが、剛性が増すためロール状に加工しにくい、スリットが容易にできないなど、従来の拡散板と比較して得られる薄さの利点が少なくなるので好ましくない。When bubbles are used as the light diffusion region, the thickness of the
When the thickness of the
光均一デバイス25は、拡散基材26と光伝搬層23と光偏向要素28とを多層押出法により一体成形して形成することが製造工程上好ましい。また、光均一デバイス25は、少なくとも1軸方向に延伸されていてもよい。
多層押出法を用いることにより、製造工程を簡略化・効率化することができるとともに、製造コストを下げることができる。The
By using the multilayer extrusion method, the manufacturing process can be simplified and made more efficient, and the manufacturing cost can be reduced.
光均一デバイス25は、拡散基材26と光伝搬層23をそれぞれ別々に押出法、射出成形等により形成した後に、接着材又は粘着材により一体化して形成しても良い。
たとえば、接着材又は粘着材としては、一般的に用いられるラミネートなどを用いて拡散基材26と光伝搬層23を貼り合せることができる。The
For example, as the adhesive material or the adhesive material, the
本発明の光均一デバイス25は、拡散基材26の観察者側Fの面26bに凹凸形状を備えることができる。図18に示されるように、光均一デバイス25の射出面26bに凹凸形状が付与されることで、拡散基材26の観察者側Fの面26bが略平坦である場合と比べて、様々な角度の射出面が形成されるため、より広い範囲へ光を射出することができるため、拡散性能が向上しランプイメージが低減/消滅する。観察者側に付与する凹凸形状としては、光拡散レンズ21が挙げられる。
光拡散レンズ21に求められる機能としては、2次元方向に射出光を拡散させることが求められるため、光偏向レンズ28と同様なレンズ形状であることが望ましい。
しかしながら、拡散基材26の表面に拡散レンズ21を配置する場合、光学部材2として例えばレンズシート2を配置した場合、拡散レンズ21とレンズシート2とでモアレ干渉縞が生じる場合がある。そのため、拡散レンズ21の周期構造とレンズシート2のレンズの周期構造とを、モアレ干渉縞が生じないピッチに合わせ込むか、角度をつける、またはさらに光学部材2として拡散フィルムをのせるなどの方法が挙げられる。光学部材2として拡散フィルム、または偏向分離反射シート等、周期構造のない部材を配置する場合には、上述のような問題は生じない。The
Since the function required for the
However, when the diffusing
本発明の光均一デバイスは、射出面、すなわち拡散基材26の観察者側Fの面26bが略平坦であることが望ましい。その理由について図19を用いて説明する。
In the light uniform device of the present invention, it is desirable that the exit surface, that is, the
図19は、本発明の光学シート、バックライトユニットおよびディスプレイ装置の一例を示す断面模式図である。光学シート52は、光学フィルム1と本発明の光均一デバイス25とが固定層20によって一体積層されている。
光学フィルム1は、光透過基材17と集光レンズ16とからなり、光透過基材17の観察者側の面17bには複数の集光レンズ16が一定のピッチで配列されている。FIG. 19 is a schematic cross-sectional view illustrating an example of the optical sheet, the backlight unit, and the display device of the present invention. In the
The
集光レンズ16を、光透過基材17の観察者側の面17bに形成することにより、光均一デバイス25を通過してきた光を観察者側Fに集光させて、観察者側Fの輝度を向上させることができる。
By forming the condensing
光透過基材17の観察者側Fと反対側の面17aは略平坦な面とされており、複数の光マスク22が形成され、さらに固定層20を介して光均一デバイス25が接合されている。
光透過基材17の材料としては、熱可塑性樹脂、熱硬化性樹脂などを用いることができ、光均一デバイス25に用いた材料を用いてもよい。光均一デバイス25に用いた材料を接合することで、反りの発生を抑制することができる。A
As a material of the
なお、一つの部材の一面と他面にそれぞれ単位レンズを形成した場合には、モアレ干渉縞が生ずる場合があるが、本発明の光学シート52は、集光レンズ16と光偏向要素28との間に拡散基材26が挿入される構成であるため、モアレ干渉縞を防ぐことができる。ここで、集光レンズ16と拡散基材26との間には拡散要素がないため、また、光学フィルム1をムラなく拡散基材26の観察者側Fの面26bに貼合するために、拡散基材26の観察者側の面26bは略平坦であることが望ましい。
In addition, when unit lenses are formed on one surface and the other surface of one member, moire interference fringes may occur. However, the
集光レンズ16の形状は凸曲面形状であり、弧状表面を有する第三頂部16aと、第三頂部16aから光透過基材へ至る第三傾斜面16bとを有している。また、集光レンズ16は、第三頂部16aに行くに従い、対向する第三傾斜面16bの間の距離が次第に減少するように形成されている。さらにまた、集光レンズ16は、谷部13により離間されて一定のピッチで形成されている。
The shape of the condensing
光学フィルム1と光均一デバイス25との間には、複数の光マスク22と、光マスク22を離間する光透過用開口部(空気層)100とが設けられている。光マスク22および空気層15のピッチは、集光レンズ16のピッチとほぼ同じピッチとされている。
光マスク22の位置は、谷部13の位置に対応する位置に形成されている。そのため、空気層100の位置は、集光レンズ16の第三頂部16aに対応する位置に設けられている。Between the
The position of the
光マスク22は、遮光性の高い材料から構成されるとともに、観察者側Fの面17b上に形成された集光レンズ16を離間する谷部13の位置と対応する位置に形成されるので、光学フィルム1に入射される光の大部分は、光マスク22を離間して形成される空気層100を通り、集光レンズ16に入射するため、光均一デバイス25を通過してきた光を効率よく正面方向(観察者側)Fへ出射する。
Since the
ここで、光マスク22は、たとえば金属材料や白色反射材などの光反射性部材から構成することができる。この場合、光マスク22により反射された光は、光均一デバイス25を構成する拡散基材26に戻されて、拡散基材26で再び光拡散された後、一部は再び光学フィルム1へ入射し、一部は光均一デバイス25から光源側へ射出され、ランプハウスを構成する反射板にて反射された後、光均一デバイスに再入射、さらに拡散されて光学フィルム1へと再入射する。この工程が繰り返されることにより、光源41からの光の大部分を観察者側Fへ出射させることができる。
Here, the
光マスク22を光反射性部材で構成した場合、その反射率は80%以上であることが望ましい。反射率が80%以上であれば、光学フィルム1に入射する光の大部分を、空気層100から集光レンズ16へ入射することができるため、観察者側Fの輝度が上昇する。反射率が80%を下回ると、光マスク22を透過する光が増大し、非効率な光が集光レンズ16に入射する量が増大するため、観察者側Fの輝度低下を引き起こすためである。
When the
光学フィルム1の作製方法としては、例えばセルフアライメントによる方法が挙げられる。光透過基材17の観察者側の面17bに集光レンズ16を成形し、光透過基材17の観察者側Fとは反対側の面17aには、感光性接着樹脂を貼りあわせる。集光レンズ16側からUV光を照射することで、集光レンズ16の第三頂部16aに対応する位置の感光性接着樹脂が露光されることで硬化し接着性を失う。その後、光マスク22を転写することで、集光レンズ16の谷部13に対応する位置に光マスク22を形成することができる。
Examples of a method for producing the
上述のように作製した光学フィルム1を固定層20によって光均一デバイス25にラミネート等により貼り合わせることで、光学シート52は作製される。このとき、空気層100が保たれるよう、固定層20の材料を適宜選択する。
The
固定層20は、粘着剤、接着剤を用いて形成する。粘着剤、接着剤には、ウレタン系、アクリル系、ゴム系、シリコーン系、ビニル系の樹脂等を用いることができる。また、粘着剤、接着剤には、1液型で押圧して接着するもの、熱や光で硬化させるものを用いることができ、2液、もしくは複数の液を混合して硬化させるものを用いることができる。
さらに、固定層20内にフィラーを分散してもよい。固定層20内にフィラーを分散することで、固定層20の弾性率を増加することが可能となる。固定層20の弾性率を増加した場合、光学フィルム1と光均一デバイス25とを一体化する際に、固定層20が空気層100の領域内に侵入しないため、空気層100を保持することが容易となる。
固定層20の形成方法において、接合面へ直接塗布する方法や、あらかじめドライフィルムとして準備したものを貼り合わせる方法がある。固定層20をドライフィルムとして準備した場合、製造工程上、簡易的に扱うことが可能となるため好ましい。The fixed
Further, a filler may be dispersed in the fixed
As a method for forming the fixed
しかしながら、光学フィルム1を構成する光透過基材17をPETに代表される延伸フィルムを使用した場合、光源41から発せられる熱によって、光学シート52が光源41側に凸となる形状に反る場合がある。
このとき、2層以上の多層構成とされる光伝搬層23の光偏向要素28側の層23Aの材料を反り防止層とすることができる。すなわち、熱によって光伝搬層23の光偏向要素28側の層23Aが、光学シート52を光源側に凹となる形状に反るモーメントを発生させることで、それぞれのモーメントをキャンセルし、反りを防止することができる。例えば光偏向要素28を光透過基材17と同材料上に成形し、固定層20によって光伝搬層23の観察者側Fとは反対側の面23aに貼合することで、反りを防止することができる。However, when a stretched film typified by PET is used as the light-transmitting
At this time, the material of the
上述のように作製した光学シート52は、光源41からの光Hを均一に拡散する光均一デバイス25と、集光レンズ16へ効率よく光を入射する空気層と光マスク22を備えた光学フィルム1とで構成されるため、1枚の光学シート52で拡散・集光機能を満足することが可能となる。
The
図20は、本発明の光学シート、バックライトユニットおよびディスプレイ装置の別の一例を示す断面模式図である。光学シート52は、光学フィルム1と本発明の光均一デバイス25とが固定層20によって一体積層されている。
光学フィルム1は、光透過基材17と集光レンズ16とからなり、光透過基材17の観察者側の面17bには複数の集光レンズ16が一定のピッチで配列されている。FIG. 20 is a schematic cross-sectional view showing another example of the optical sheet, the backlight unit, and the display device of the present invention. In the
The
集光レンズ16を、光透過基材17の観察者側の面17bに形成することにより、光均一デバイス25を通過してきた光を観察者側Fに集光させて、観察者側Fの輝度を向上させることができる。
By forming the condensing
光透過基材17の観察者と反対側の面17aは略平坦な面とされており、複数のリブ29が形成され、さらに光均一デバイス25が接合されている。
光透過基材17の材料としては、熱可塑性樹脂、熱硬化性樹脂などを用いることができ、光均一デバイス25に用いた材料を用いてもよい。光均一デバイス25に用いた材料を接合することで、反りの発生を抑制することができる。The
As the material of the
集光レンズ16の形状としては例えば三角プリズム形状が挙げられる。三角プリズムは正面方向への集光性が高いため、高輝度な光学シート52を得ることができる。また集光レンズ16の形状としては、凸曲面形状が挙げられる。正面方向のみならず、様々な方向へと光を射出するため、視野範囲の広い光学シート52を得ることができる。
集光レンズ16の形状は、上述の形状に限らず、使用するディスプレイに求められる配光特性によって適宜選択することができる。例えばマイクロレンズ形状や、三角錐、四角錘を含む多角錘形状などを選択しても良い。Examples of the shape of the
The shape of the
光学フィルム1と光均一デバイス25との間には、複数のリブ29が設けられている。リブ29はドット状又は線状に配置され、光学フィルム1と光均一デバイス25との間に十分な空気層を確保する。例えば集光レンズ16の谷部13と線状リブ29とを一致させることで、輝度の低下を抑え、リブ29と集光レンズ16との間にモアレ干渉縞が生じることを防ぐことができる。
A plurality of
リブ29は、図20(a)に示されるように光学フィルム1の光透過基材17の観察者側とは反対側の面17aに形成されてもよく、また図20(b)に示されるように光均一デバイス25の拡散基材26の観察者側の面26bに形成されても良い。
また図20では光学フィルム1がプリズムシートの例を示したがこれに限らず、例えば図21に示されるようなマイクロレンズや、凸レンチキュラーレンズ、ピラミッドレンズなど、観察者側Fに集光機能を有するレンズシートであれば任意に選択することが出来る。As shown in FIG. 20A, the
20 shows an example in which the
図19から図21に示すように、本発明の実施形態であるバックライトユニット55は、直下型バックライトユニットであり、光学シート52と、複数の光源41と反射板43とから構成されている。
As shown in FIGS. 19 to 21, the
光学シート52を、複数の光源41の観察者側Fに配置することによって、光源41からの光Hをほぼ取り込むことができる。光Hは、光学シート52へ入射され、出射光Kとされる。出射光Kは、光学シート52の拡散効果により、光源41のランプイメージがなくされるとともに、光学シート52の集光効果により、観察者側Fの輝度が向上されて出射される。
By disposing the
図19〜図21に示すように、本発明の実施形態であるディスプレイ装置70は、画像表示素子35とバックライトユニット50とから構成されている。
画像表示素子35は、2枚の偏光板(偏光フィルム)31、33と、その間に狭持された液晶パネル32とからなる。液晶パネル32は、たとえば、2枚のガラス基板の間に液晶層が充填されて構成されている。
バックライトユニット50から出射された光Kは、偏光フィルター33を介して液晶部32に入射され、偏光フィルター31を介して観察者側Fに出射される。As shown in FIGS. 19-21, the
The image display element 35 includes two polarizing plates (polarizing films) 31 and 33 and a liquid crystal panel 32 sandwiched therebetween. The liquid crystal panel 32 is configured, for example, by filling a liquid crystal layer between two glass substrates.
The light K emitted from the backlight unit 50 is incident on the liquid crystal unit 32 via the
画像表示素子35は、画素単位で光を透過/遮光して画像を表示する素子であることが好ましい。画素単位で光を透過/遮光して画像を表示するものであれば、光学シート52により、観察者側Fへの輝度が向上され、光強度の視角度依存性が低減され、さらに、ランプイメージが低減された光を有効に利用して、画像品位の高い画像を表示させることができる。
画像表示素子35は、液晶表示素子であることが好ましい。液晶表示素子は、画素単位で光を透過/遮光して画像を表示する代表的な素子であり、他の表示素子に比べて、画像品位を高くすることができるとともに、製造コストを低減することができる。The image display element 35 is preferably an element that displays an image by transmitting / blocking light in pixel units. If the image is displayed by transmitting / blocking light in pixel units, the
The image display element 35 is preferably a liquid crystal display element. A liquid crystal display element is a typical element that transmits / shields light in pixel units and displays an image, and can improve image quality and reduce manufacturing cost compared to other display elements. Can do.
なお、本発明の実施形態であるディスプレイ装置70に、拡散フィルム、マイクロレンズシート、プリズムシート、偏光分離反射シートなどを配置してもよい。そうすることにより、画像品位をより向上させることができる。
In addition, you may arrange | position a diffusion film, a micro lens sheet, a prism sheet, a polarization separation reflection sheet, etc. in the
本発明の実施形態であるディスプレイ装置70は、先に記載の光学シート52により集光・拡散特性を向上させた光Kを利用する構成なので、観察者側Fの輝度を向上させ、光強度の視角方向の分布を滑らかにするとともに、光源イメージを低減した画像を画像表示素子35に表示することができる。
Since the
本発明の実施形態であるディスプレイ装置70は、画素単位での透過/遮光に応じて表示画像を規定する画像表示素子35で、先に記載のバックライトユニット55により集光・拡散特性を向上させた光Kを利用する構成なので、観察者側Fの輝度を向上させ、光強度の視角方向の分布を滑らかにするとともに、ランプイメージを低減した画像を得ることができる。
A
本発明の実施形態であるディスプレイ装置70は、画像表示素子35が液晶表示素子であり、先に記載のバックライトユニット55により集光・拡散特性を向上させた光Kを利用する構成なので、観察者側Fの輝度を向上させ、光強度の視角方向の分布を滑らかにするとともに、ランプイメージを低減した画像を得ることができる。
以下、本発明を実施例に基づいて詳細に説明する。尚、本発明はこれらの実施例のみに限定されるものではない。In the
Hereinafter, the present invention will be described in detail based on examples. In addition, this invention is not limited only to these Examples.
本例ではまず、光デバイス24を構成する各層の熱線膨張係数の違いが、光デバイス24自体の反りに及ぼす影響を確認した。
(比較例1)
光伝搬層23として、1mm厚のポリカーボネート板を用意した。光偏向要素28として、100μm厚のポリプロピレンシート上に三角プリズムをUV成形法にて作製し、1mm厚のポリカーボネート板に粘着材を用いてラミネートし、光デバイス24が得られた。
ポリカーボネートの線膨張係数は7×10−5mm/mm/℃、ポリプロピレンの線膨張係数は11×10−5mm/mm/℃であった。
(比較例2)
光伝搬層23として、1mm厚のポリカーボネート板を用意した。光偏向要素28として、100μm厚の延伸ポリエチレンテレフタレートフィルム上に三角プリズムをUV成形法にて作製し、1mm厚のポリカーボネート板に粘着材を用いてラミネートし、光デバイス24が得られた。
ポリカーボネートの線膨張係数は7×10−5mm/mm/℃、ポリエチレンテレフタレートの線膨張係数は8×10−5mm/mm/℃であった。
(実施例1)
光伝搬層23として、1mm厚のポリカーボネート板を用意した。光偏向要素28として、100μm厚の無延伸ポリエチレンテレフタレートフィルム上に三角プリズムをUV成形法にて作製し、1mm厚のポリカーボネート板に粘着材を用いてラミネートし、光デバイス24が得られた。
ポリカーボネートの線膨張係数は7×10−5mm/mm/℃、ポリエチレンテレフタレートの線膨張係数は8×10−5mm/mm/℃であった。In this example, first, the effect of the difference in the thermal expansion coefficient of each layer constituting the optical device 24 on the warpage of the optical device 24 itself was confirmed.
(Comparative Example 1)
As the
The linear expansion coefficient of polycarbonate was 7 × 10 −5 mm / mm / ° C., and the linear expansion coefficient of polypropylene was 11 × 10 −5 mm / mm / ° C.
(Comparative Example 2)
As the
The linear expansion coefficient of polycarbonate was 7 × 10 −5 mm / mm / ° C., and the linear expansion coefficient of polyethylene terephthalate was 8 × 10 −5 mm / mm / ° C.
Example 1
As the
The linear expansion coefficient of polycarbonate was 7 × 10 −5 mm / mm / ° C., and the linear expansion coefficient of polyethylene terephthalate was 8 × 10 −5 mm / mm / ° C.
比較例1〜2、及び実施例1で作製した光デバイス24を80度の高温化に24時間放置し、光デバイス24の反りの挙動を確認した。
比較例1は、ポリカーボネート板とポリプロピレンの線膨張係数が1.5倍以上差があったため、反りが生じた。
比較例2は、ポリカーボネート板とポリエチレンテレフタレートの線膨張係数はほぼ同じであったが、ポリエチレンテレフタレートが延伸フィルムであったために収縮が生じ、反りが生じた。
実施例1は、ポリエチレンテレフタレートが無延伸であったため、反りのない良好な光デバイス24が得られた。The optical devices 24 produced in Comparative Examples 1 and 2 and Example 1 were left at a high temperature of 80 degrees for 24 hours, and the warping behavior of the optical devices 24 was confirmed.
In Comparative Example 1, warpage occurred because the linear expansion coefficient between the polycarbonate plate and polypropylene was 1.5 times or more.
In Comparative Example 2, the linear expansion coefficient of the polycarbonate plate and polyethylene terephthalate was almost the same, but because the polyethylene terephthalate was a stretched film, shrinkage occurred and warpage occurred.
In Example 1, since the polyethylene terephthalate was not stretched, a good optical device 24 without warping was obtained.
(実施例2)
比較例1の構成の光デバイス24の観察者側の面に、ポリプロピレンフィルムを粘着材にてラミネートし、光デバイス25が得られた。
(実施例3)
比較例2の構成の光デバイス24の観察者側の面に、延伸白色PETフィルムを拡散基材26として粘着材にてラミネートし、光均一デバイス25が得られた。(Example 2)
A polypropylene film was laminated on the surface of the observer side of the optical device 24 having the configuration of Comparative Example 1 with an adhesive, and an
(Example 3)
A stretched white PET film was laminated as a
実施例2〜3で作製した光均一デバイス25を同様に80度高温下に24時間放置して反りの挙動を確認した。
実施例2は、反りの生じない良好な光デバイス24が得られた。
実施例3は、反りの生じない良好な光均一デバイス25が得られた。Similarly, the optical
In Example 2, a good optical device 24 free from warpage was obtained.
In Example 3, a good light
本例において、線膨張係数をほぼ同じに合わせこむことで反りの生じない光デバイスが得られることを確認した。また、延伸フィルムを使用する場合には、光デバイス24及び光均一デバイス25の両面に延伸フィルムを用いることで、反りを防止することができることを確認した。
以下、本発明の光均一デバイス25、及び光学シート52を用いたディスプレイ装置70について、詳細な実施例にてその光学特性について述べる。In this example, it was confirmed that an optical device free from warpage could be obtained by adjusting the linear expansion coefficients to be substantially the same. Moreover, when using a stretched film, it confirmed that a curvature could be prevented by using a stretched film on both surfaces of the optical device 24 and the optical
Hereinafter, the optical characteristics of the
光偏向要素28として、凸マイクロレンズを用意した。凸マイクロレンズのピッチPを80μm、光伝搬層23と凸マイクロレンズとの接合点30における接線mと、光伝搬層23の観察者側と反対側の面23aとのなす角θが85度、凸マイクロレンズの高さを38μmと設定した。
また、光偏向レンズ28、光伝搬層23、及び拡散基材26の材料は、全てポリカーボネイト(屈折率=1.59)とした。
拡散基材26は、樹脂フィラーを適量含有させることで、全光線透過率を60%、ヘイズ値を99%とし、厚みを1.5mmとした。
光伝搬層23は、樹脂フィラーを含有させず透明材料とし、全光線透過率は87%であった。以下実施例において、光伝搬層23の厚みを変えたサンプルを作製した。
(比較例3)
上記設定された光均一デバイス25において、光伝搬層23の厚みを50μmに設定し、多層押出法により光均一デバイス25を作製した。
(実施例4)
上記設定された光均一デバイス25において、光伝搬層23の厚みを300μmに設定し、多層押出法により光均一デバイス25を作製した。A convex microlens was prepared as the
The materials of the
The
The
(Comparative Example 3)
In the
Example 4
In the
(実施例5)
次に、光偏向要素28として、図11(a)に示されるような、第1の台形プリズムアレイの頂部に第2の三角プリズムアレイが形成されたレンズシートを用意した。第1の台形プリズムアレイのピッチPが100μm、頂角が90度、第2の三角プリズムアレイのピッチが30μm、頂角が90度とした。また、光偏向レンズ28、光伝搬層23、及び拡散基材26の材料は、全てポリカーボネイト(屈折率=1.59)とした。
拡散基材26は、樹脂フィラーを適量含有させることで、全光線透過率を60%、ヘイズ値を99%とし、厚みを1.5mmとした。
光伝搬層23は、樹脂フィラーを含有させず透明材料とし、厚さは500μm、全光線透過率は87%であった。(Example 5)
Next, a lens sheet having a second triangular prism array formed on the top of the first trapezoidal prism array as shown in FIG. 11A was prepared as the
The
The
(実施例6)
次に、光偏向要素28として、図6(b)に示されるような、第1の凸レンチキュラーアレイ281の単位レンズの間に略直交する形で第2の凸レンチキュラーアレイ282が形成されたレンズシートを用意した。第1の凸レンチキュラーアレイ281のピッチPが90μm、光伝搬層23と凸レンチキュラーレンズとの接合点30における接線mと、光伝搬層23の観察者側と反対側の面23aとのなす角θが65度、単位レンズ高さが50μm、第2の凸レンチキュラーアレイ282のピッチPが30μm、単位レンズ高さが18μmとした。また、光偏向レンズ28は屈折率1.52の紫外線硬化樹脂を75μm厚のPET基材上にUV成形し、光伝搬層23、及び拡散基材26の材料は、ポリスチレン(屈折率=1.58)とした。
拡散基材26は、樹脂フィラーを適量含有させることで、全光線透過率を60%、ヘイズ値を99%とし、厚みを1.5mmとした。
光伝搬層23は、樹脂フィラーを含有させず透明材料とし、厚さは500μm、全光線透過率は87%であった。(Example 6)
Next, as the
The
The
(比較例4)
次に、光偏向要素28として、図6(b)に示されるような、第1の凸レンチキュラーアレイ281の単位レンズの間に略直交する形で第2の凸レンチキュラーアレイ282が形成されたレンズシートを用意した。第1の凸レンチキュラーアレイ281のピッチPが90μm、光伝搬層23と凸レンチキュラーレンズとの接合点30における接線mと、光伝搬層23の観察者側と反対側の面23aとのなす角θが65度、単位レンズ高さが50μm、第2の凸レンチキュラーアレイ282のピッチPが30μm、単位レンズ高さが18μmとした。また、光偏向レンズ28、光伝搬層23、及び拡散基材26の材料は、全てポリカーボネイト(屈折率=1.59)とした。
拡散基材26は、樹脂フィラーを適量含有させることで、全光線透過率を80%、ヘイズ値を93%とし、厚みを1.5mmとした。
光伝搬層23は、樹脂フィラーを含有させず透明材料とし、厚さは500μm、全光線透過率は87%であった。(Comparative Example 4)
Next, as the
The
The
実施例4〜6、及び比較例3〜4で作製した光均一デバイス25の観察者側Fの面上に、拡散フィルム、90度三角プリズムシート、拡散フィルムの順番で重ねて配置した。
これらを、LED間隔が30mm、LEDと光均一デバイス25との距離が8mmとなるバックライト56に配置し、バックライト56の観察者側Fに液晶パネル35を配置することで、ディスプレイ装置70が得られた。
(実施例7)
実施例6で作製した光均一デバイス25の観察者側Fの面に、75μmPET基材上に150μmピッチで集光レンズ16を配置し、光マスク22の領域が集光レンズ16のピッチの50%となるよう形成した光学フィルム1を粘着材により一体積層して、光学シート52が得られた。On the surface of the observer side F of the
These are arranged in the backlight 56 where the LED interval is 30 mm, and the distance between the LED and the
(Example 7)
The condensing
実施例7で作製した光学シート52を、LED間隔が30mm、LEDと光均一デバイス25との距離が8mmとなるバックライト56に配置し、バックライト56の観察者側Fに液晶パネル35を配置することで、ディスプレイ装置70が得られた。
The
(光学評価)
本実施例、及び比較例のディスプレイ装置を以下の測定方法により評価した。
(正面輝度評価)
ディスプレイ装置70を全白表示とし、画面中心部を分光放射輝度計(SR−3A:トプコンテクノハウス社製)にて測定した。
(輝度ムラ評価)
ディスプレイ装置70を全白表示とし、画面全体を輝度ムラ測定機(ProMetric1200:Radiant Imaging社製)にて測定、複数の冷陰極管の並びに大して垂直方向の輝度分布データにより解析を行った。
なお、輝度分布は冷陰極管に対応した波型の分布が得られるので、中心の5本分の冷陰
極管に相当する輝度データを抽出して平均輝度を算出した後、平均輝度に対する輝度変化
(%)を算出した。この輝度変化の標準偏差σが1%以内であれば、光学シートの拡散性
が良好と判定した(OK判定)。
表1に本実施例、及び比較例の測定結果を表に示す。
The display devices of this example and comparative example were evaluated by the following measuring methods.
(Front brightness evaluation)
The
(Luminance unevenness evaluation)
The
Since the luminance distribution can be obtained as a wave distribution corresponding to the cold cathode fluorescent lamps, the luminance data corresponding to the five cold cathode fluorescent lamps at the center is extracted to calculate the average luminance, and then the luminance change with respect to the average luminance is calculated. (%) Was calculated. When the standard deviation σ of the luminance change is within 1%, it was determined that the diffusibility of the optical sheet was good (OK determination).
Table 1 shows the measurement results of this example and the comparative example.
比較例3は輝度、反り共に問題なかったが、光伝搬層23が薄すぎたため、光源イメージを消しきることができず、NGとなった。
実施例4は輝度、反り共に問題なく、光源イメージも消えた(OK判定)。
実施例5は輝度、反り共に問題なく、光源イメージも消えた(OK判定)。
実施例6は輝度、少し光源41側に凹となる反りが生じたものの、5mm以下と実使用上問題なく、光源イメージも消えた(OK判定)。
実施例7は、輝度が高く、反りも問題ない、(OK判定)。
比較例4は反りは問題なかったが、拡散基材26の全光線透過率が高く、ヘイズ値も低すぎたため拡散性能が不足し光源イメージが消しきれずNGとなった。In Comparative Example 3, there was no problem in both luminance and warpage, but the
In Example 4, there was no problem in both luminance and warpage, and the light source image disappeared (OK determination).
In Example 5, there was no problem in luminance and warpage, and the light source image disappeared (OK determination).
In Example 6, although the brightness and a slight warp on the
In Example 7, the brightness is high and there is no problem with warping (OK determination).
In Comparative Example 4, there was no problem of warpage, but the total light transmittance of the
A…BEFの光強度分布、B…光学フィルムの光強度分布、H、K…光、P…光偏向要素ピッチ、p…光偏向要素第一傾斜面ピッチ、m…接線、T…光伝搬層の厚さ、θ…光伝搬層の一面と接線mがなす角度、θb…光偏向要素の第一傾斜面における接線と光伝搬層の一面とがなす角度、n…光伝搬層の屈折率、n0…光偏向要素の屈折率、n1…光伝搬層の第1層の屈折率、n2…光伝搬層の第2層の屈折率、F、F’…観察者側、X…平面視方向、Ve…画像表示装置垂直方向、Ho…画像表示装置水平方向、Δ…光拡散/反射層回り込み量、α…最遠交点、1…光学フィルム、2…光学部材、13…谷部、16…集光レンズ、16a…第三頂部、16b…第三傾斜面、17…光透過基材、17a…観察者と反対側の面、17b…観察者側の面(平坦面)、20…固定層、21…光拡散レンズ、21a…第二頂部、21b…第二傾斜面、22…光マスク、23…光伝搬層、23a…観察者と反対側の面、23b…観察者側の面、23c…観察者側の面に形成された光拡散/反射層、23A…光伝搬層の光偏向要素側の層、23B…光伝搬層の拡散基材側の層、24…光デバイス、25…光均一デバイス、26…拡散基材、26a…観察者と反対側の面、26b…観察者側の面、28…光偏向要素、281…第一の光偏向要素、282…第二の光偏向要素、28a…第一頂部、28b…第一傾斜面、28c…光拡散/反射層、281a…第一の光偏向要素の頂部、281b…第一の光偏向要素の傾斜面、281c…第一の光偏向要素の光拡散/反射層、282a…第二の光偏向要素の頂部、282b…第二の光偏向要素の傾斜面、282c…第二の光偏向要素の光拡散/反射層、29…固定要素(リブ)、30…接合点、31、33…偏光板、32…液晶パネル、35…画像表示素子、41…光源、43…反射板(反射フィルム)、45…バックライト部、52…光学シート、55、56…バックライトユニット、70、72…ディスプレイ装置、100…空気層、182…拡散フィルム、184…光拡散フィルム、185…BEF、186…透明部材、187…単位プリズム。
A: Light intensity distribution of BEF, B: Light intensity distribution of optical film, H, K: Light, P: Light deflection element pitch, p: Light deflection element first inclined surface pitch, m: Tangent, T: Light propagation layer , Θ: an angle formed by one surface of the light propagation layer and the tangent m, θb: an angle formed by a tangent line of the first inclined surface of the light deflection element and one surface of the light propagation layer, n: a refractive index of the light propagation layer, n0: refractive index of the light deflection element, n1: refractive index of the first layer of the light propagation layer, n2: refractive index of the second layer of the light propagation layer, F, F ′: observer side, X: direction of plan view, Ve: image display device vertical direction, Ho: image display device horizontal direction, Δ: light diffusion / reflection layer wrapping amount, α: farthest intersection point, 1 ... optical film, 2 ... optical member, 13 ... valley, 16 ... collection Optical lens, 16a ... third apex, 16b ... third inclined surface, 17 ... light transmission substrate, 17a ... surface opposite to the observer, 17b ... observer side Surface (flat surface), 20 ... fixed layer, 21 ... light diffusion lens, 21a ... second apex, 21b ... second inclined surface, 22 ... light mask, 23 ... light propagation layer, 23a ... surface opposite to the observer , 23b ... an observer side surface, 23c ... a light diffusion / reflection layer formed on the observer side surface, 23A ... a layer on the light deflection element side of the light propagation layer, 23B ... on the diffusion substrate side of the light propagation layer Layers 24...
Claims (16)
前記光偏向要素の光射出面側に配置されてなる光伝搬層と、
を有する光デバイスであって、
前記光偏向要素が少なくとも1種以上の凹凸形状を有する光偏向レンズであって、
前記光偏向レンズが二次元に偏向面を有することを特徴とする光デバイス。A light deflection element;
A light propagation layer disposed on the light exit surface side of the light deflection element;
An optical device comprising:
The light deflection element is a light deflection lens having at least one or more uneven shapes,
An optical device, wherein the optical deflection lens has a deflection surface in two dimensions.
前記光伝搬層の屈折率をnとし、前記光偏向レンズのピッチをPとし、前記第一傾斜面が前記光伝搬層に接合する接合点における前記第一傾斜面への接線が、前記光伝搬層の観察者と反対側の面となす角をθとしたとき、
配列される各々の前記光偏向レンズにおいて、前記光伝搬層の厚さTが下記の数1を満たすことを特徴とする請求項1に記載の光デバイス。
The refractive index of the light propagation layer is n, the pitch of the light deflection lens is P, and the tangent to the first inclined surface at the junction where the first inclined surface is bonded to the light propagation layer is the light propagation. When the angle between the layer and the surface opposite to the observer is θ,
2. The optical device according to claim 1, wherein the thickness T of the light propagation layer satisfies the following formula 1 in each of the optical deflection lenses arranged.
前記光デバイスの前記光伝播層の光出射面側に光拡散基材と、
を有することを特徴とする光均一デバイス。An optical device according to claim 1,
A light diffusing substrate on the light exit surface side of the light propagation layer of the optical device;
An optical uniform device comprising:
前記光均一デバイスは、拡散基材と光伝搬層と光偏向要素からなり、前記拡散基材の観察者と反対側の面に前記光伝搬層の観察者側の面が重ねられて形成され、前記光伝搬層の観察者側と反対側の面には前記光偏向要素が形成されており、
前記拡散基材は、透明樹脂に光拡散領域が分散されてなり、全光線透過率が30%〜80%、ヘイズ値が95%以上であり、
前記伝搬層は、全光線透過率が80%以上、ヘイズ値が95%以下であることを特徴とする光均一デバイス。A light uniform device for controlling an illumination optical path,
The light uniform device includes a diffusion base material, a light propagation layer, and a light deflection element, and is formed by superimposing an observer side surface of the light propagation layer on a surface opposite to the observer of the diffusion base material, The light deflection element is formed on the surface of the light propagation layer opposite to the viewer side,
The diffusion base material has a light diffusion region dispersed in a transparent resin, has a total light transmittance of 30% to 80%, and a haze value of 95% or more,
The light propagation device, wherein the propagation layer has a total light transmittance of 80% or more and a haze value of 95% or less.
前記光透過開口部が、前記集光レンズの前記第三頂部に対応して設けられ、前記光マスクを介して前記光学フィルムと前記光均一デバイスとが一体積層されていることを特徴とする請求項9に記載の光学シート。Between the optical film and the light uniform device, a plurality of light masks, and a light transmission opening for separating the light mask are provided,
The light transmission opening is provided corresponding to the third top of the condenser lens, and the optical film and the light uniform device are integrally laminated through the optical mask. Item 10. The optical sheet according to Item 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009551391A JP5375618B2 (en) | 2008-01-29 | 2008-08-01 | Backlight unit and display device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008018257 | 2008-01-29 | ||
JP2008018257 | 2008-01-29 | ||
JP2009551391A JP5375618B2 (en) | 2008-01-29 | 2008-08-01 | Backlight unit and display device |
PCT/JP2008/063831 WO2009096057A1 (en) | 2008-01-29 | 2008-08-01 | Optical device, light uniforming device, optical sheet, backlight unit, and display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2009096057A1 true JPWO2009096057A1 (en) | 2011-05-26 |
JP5375618B2 JP5375618B2 (en) | 2013-12-25 |
Family
ID=40912422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009551391A Expired - Fee Related JP5375618B2 (en) | 2008-01-29 | 2008-08-01 | Backlight unit and display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5375618B2 (en) |
WO (1) | WO2009096057A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5379728B2 (en) * | 2009-03-25 | 2013-12-25 | 旭化成株式会社 | Light control unit |
JP6021292B2 (en) * | 2009-10-02 | 2016-11-09 | 恵和株式会社 | Edge light type backlight unit |
JP2012027083A (en) * | 2010-07-20 | 2012-02-09 | Toppan Printing Co Ltd | Optical sheet and display device |
JP2012027423A (en) * | 2010-07-28 | 2012-02-09 | Toppan Printing Co Ltd | Optical sheet, optical sheet laminate, backlight unit and display device |
TWI459044B (en) * | 2011-06-03 | 2014-11-01 | Innocom Tech Shenzhen Co Ltd | Optical sheet and method for manufacturing the same and liquid crystal display device using the same |
WO2012168858A2 (en) * | 2011-06-10 | 2012-12-13 | Koninklijke Philips Electronics N.V. | Light output device and method of manufacture |
WO2014065363A1 (en) * | 2012-10-26 | 2014-05-01 | シャープ株式会社 | Light-diffusing member having polarizing plate, production method for light-diffusing member having polarizing plate, and display device |
JP2014215404A (en) * | 2013-04-24 | 2014-11-17 | 凸版印刷株式会社 | Light control sheet, el element, lighting device, display device, and liquid crystal display device |
DE102014201749B4 (en) | 2014-01-31 | 2015-08-20 | Sypro Optics Gmbh | Microlens arrangement and illumination device for uniform illumination with microlens arrangement |
WO2018123543A1 (en) * | 2016-12-28 | 2018-07-05 | 日華化学株式会社 | Light diffusion film, coating agent for forming light diffusion film and method for manufacturing same, projection screen and method for manufacturing same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10160914A (en) * | 1996-11-29 | 1998-06-19 | Dainippon Printing Co Ltd | Lens film and surface light source device formed by using the same |
JP2002244572A (en) * | 2001-02-14 | 2002-08-30 | Tama Electric Co Ltd | Backlight device |
KR100962650B1 (en) * | 2003-03-05 | 2010-06-11 | 삼성전자주식회사 | Optical sheet and liquid crystal display apparatus using the same |
JP4376128B2 (en) * | 2003-05-23 | 2009-12-02 | 大日本印刷株式会社 | Optical sheet and manufacturing method thereof |
US20060103777A1 (en) * | 2004-11-15 | 2006-05-18 | 3M Innovative Properties Company | Optical film having a structured surface with rectangular based prisms |
JP2007213035A (en) * | 2005-01-31 | 2007-08-23 | Toppan Printing Co Ltd | Optical sheet, and backlight unit and display using same |
JPWO2007032469A1 (en) * | 2005-09-15 | 2009-03-19 | 日本ゼオン株式会社 | Direct backlight unit |
JP2007086098A (en) * | 2005-09-20 | 2007-04-05 | Asahi Kasei Chemicals Corp | Optical sheet and liquid crystal display device |
-
2008
- 2008-08-01 JP JP2009551391A patent/JP5375618B2/en not_active Expired - Fee Related
- 2008-08-01 WO PCT/JP2008/063831 patent/WO2009096057A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2009096057A1 (en) | 2009-08-06 |
JP5375618B2 (en) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5375618B2 (en) | Backlight unit and display device | |
WO2009128164A1 (en) | Optical device, uniform illumination device, optical sheet, backlight unit, and display unit | |
KR101617485B1 (en) | Optical component, lighting device, and display device | |
JP4380795B1 (en) | Lens sheet, optical sheet, and backlight unit and display device using the same | |
JP5423145B2 (en) | Surface light source device, backlight unit, and display device | |
JP5298569B2 (en) | Lens sheet, optical sheet for display, backlight unit using the same, and display device | |
JP5428313B2 (en) | Light uniform element and backlight unit and display device using the same | |
JP5310213B2 (en) | Light uniform element, backlight unit and display device | |
JP2009086208A (en) | Optical sheet, backlight unit, and display device | |
JP5716785B2 (en) | Backlight unit and display device | |
JP2010262038A (en) | Light deflection element and light diffusion plate | |
JP4321659B1 (en) | Optical device, optical uniform device, optical sheet, backlight unit and display device | |
JP2010266611A (en) | Optical equalizing element, optical sheet, backlight unit and display device | |
JP2010032781A (en) | Optical device, optical diffusion device, optical sheet, back light unit and display device | |
JP5391798B2 (en) | Backlight unit and display device | |
JP5245659B2 (en) | Optical device, uniform light device, backlight unit and display device | |
JP2010262770A (en) | Light emission sheet and lighting apparatus using the same, backlight unit, as well as display device | |
JP2010054995A (en) | Lens sheet, backlight unit and display apparatus | |
JP2010250987A (en) | Light uniforming element, optical sheet, backlight unit and display device | |
JP2009163123A (en) | Diffusion member, optical sheet, back light unit and display device | |
JP5125935B2 (en) | Light uniform element, optical sheet, backlight unit and display device using the same | |
JP5267098B2 (en) | Lens sheet and display device | |
JP5509532B2 (en) | Optical member, backlight unit, and display device | |
JP5315963B2 (en) | Light diffusing device, backlight unit and display device | |
JP2010072453A (en) | Optical diffuser, optical sheet, backlight unit, and display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130909 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5375618 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |