JP2007086098A - Optical sheet and liquid crystal display device - Google Patents

Optical sheet and liquid crystal display device Download PDF

Info

Publication number
JP2007086098A
JP2007086098A JP2005271273A JP2005271273A JP2007086098A JP 2007086098 A JP2007086098 A JP 2007086098A JP 2005271273 A JP2005271273 A JP 2005271273A JP 2005271273 A JP2005271273 A JP 2005271273A JP 2007086098 A JP2007086098 A JP 2007086098A
Authority
JP
Japan
Prior art keywords
resin layer
optical sheet
convex lens
transparent resin
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005271273A
Other languages
Japanese (ja)
Inventor
Masahiro Miyauchi
雅弘 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005271273A priority Critical patent/JP2007086098A/en
Publication of JP2007086098A publication Critical patent/JP2007086098A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical sheet suitable for a high-brightness direct backlight liquid crystal display device capable of preventing a linear light source from being seen through and improving a light-condensing function by a concave and convex lens shape part, and to provide a liquid crystal display device provided with the optical sheet. <P>SOLUTION: The optical sheet 7 is constituted by integrally laminating a resin layer 1 in which light-scattering fine particles are compounded, to a transparent resin layer 2 which has the linear concave and convex lens shape part 2a formed on the surface thereof. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学シート及び液晶ディスプレイ装置に係り、特に直下型バックライト式液晶ディスプレイ装置に好適な光学シート及びそれを備えた液晶ディスプレイ装置に関するものである。   The present invention relates to an optical sheet and a liquid crystal display device, and more particularly to an optical sheet suitable for a direct backlight type liquid crystal display device and a liquid crystal display device including the same.

ブラウン管に代わる大型で薄型なディスプレイ装置として近年、液晶ディスプレイ装置が急速に拡大している。液晶はそれ自体が発光しないので必ずバックライトと呼ばれる背面光源が一体化されている。   In recent years, liquid crystal display devices are rapidly expanding as large-sized and thin display devices replacing CRTs. Since the liquid crystal itself does not emit light, a back light source called a backlight is always integrated.

バックライトには大きく2つの方式がある。その1つは冷陰極管に代表される線状光源を導光板と呼ばれる透明樹脂板の端面に配置し、導光板表面を光らせて液晶の背面光源とするいわゆるエッジライト型バックライトである。他の1つは線状光源を多数本並べ、その上に拡散板や光散乱性光学シートと呼ばれる光散乱微粒子が配合された乳半樹脂板(乳白色の半透明樹脂板)を配置し、線状光源が直接液晶の背面光源となったいわゆる直下型バックライトである。   There are two types of backlights. One of them is a so-called edge light type backlight in which a linear light source represented by a cold cathode tube is disposed on an end face of a transparent resin plate called a light guide plate, and the light guide plate surface is illuminated to make a liquid crystal back light source. The other is a large number of linear light sources, on which a milk semi-resin plate (milk-white translucent resin plate) containing light scattering fine particles called a diffusion plate or a light-scattering optical sheet is placed. This is a so-called direct type backlight in which the light source directly becomes the back light source of the liquid crystal.

エッジライト型バックライトは、ノートパソコンの画面や液晶モニター、携帯電話画面等で要求される小型化薄型化に伴って幅広く使われているものの、導光板と呼ばれる透明樹脂板に光を通すため、大画面化、高輝度化が困難で、TV(テレビジョン)のように20インチ、30インチ、40インチサイズになると適用が難しい。   Edge-light type backlights are widely used in connection with downsizing and thinning required for notebook computer screens, LCD monitors, mobile phone screens, etc., but light passes through a transparent resin plate called a light guide plate. It is difficult to increase the screen size and brightness, and it is difficult to apply when the size is 20 inches, 30 inches, or 40 inches like TV (television).

一方、直下型バックライトは、小型化薄型化の要望には応えられなかったが、線状光源さえ増やせば大画面化、高輝度化への対応が非常に容易であることから、近年市場が拡大している大型液晶TV用のバックライトとして急速に伸びてきている。   On the other hand, direct-type backlights have not been able to meet the demands for miniaturization and thinning, but the market has been growing in recent years because it is very easy to handle large screens and high brightness by increasing the number of linear light sources. It is growing rapidly as a backlight for large LCD TVs that are expanding.

直下型バックライトに用いられている拡散板は、線状光源の光を散乱させ、なおかつ光源が透けて見えないことが求められるため光散乱微粒子を配合した乳半樹脂板が多く、近年の直下型バックライト急増に合わせて様々な開発が行われてきた。その多くは高透過高拡散を目的とし、光散乱微粒子の種類や粒径、配合量を制御するものである(例えば特許文献1〜3参照。)。   Diffusers used in direct type backlights often scatter light from a linear light source and are not required to be seen through the light source. Various developments have been made in response to the rapid increase in type backlights. Many of them aim at high transmission and high diffusion, and control the kind, particle size, and blending amount of the light scattering fine particles (see, for example, Patent Documents 1 to 3).

一方で、拡散板を光学シートととらえ、表面にプリズム形状部を形成する技術開発も盛んに行われてきた(例えば特許文献4〜8参照。)。
特開平01−172801号公報 特開平02−194058号公報 特開平07−100985号公報 特開平02−257188号公報 特開平05−045505号公報 特開平06−018707号公報 特開平07−294709号公報 特開平08−211230号公報
On the other hand, technical development has been actively performed in which a diffusion plate is regarded as an optical sheet and a prism-shaped portion is formed on the surface (see, for example, Patent Documents 4 to 8).
Japanese Patent Laid-Open No. 01-172801 Japanese Patent Laid-Open No. 02-194058 Japanese Patent Application Laid-Open No. 07-100755 Japanese Patent Laid-Open No. 02-257188 JP 05-0455505 A Japanese Patent Application Laid-Open No. 06-018707 JP 07-294709 A Japanese Patent Laid-Open No. 08-211230

しかしながら、前述の特許文献1〜3に開示された光散乱微粒子による拡散板技術では、高輝度を目指すと線状光源が透けて見え、線状光源の透けを消すと輝度が下がるという相反する課題が達成出来ず高透過高拡散性能に限界があった。   However, in the diffusion plate technique using light scattering fine particles disclosed in Patent Documents 1 to 3, the linear light source is seen through when aiming at high luminance, and the luminance decreases when the transparent light from the linear light source is turned off. However, the high transmission and diffusion performance was limited.

また、前述の特許文献4〜8の技術であっても線状光源の透け防止と高輝度を同時に達成することが出来なかった。   Further, even with the techniques of the above-mentioned Patent Documents 4 to 8, it has not been possible to achieve prevention of see-through of the linear light source and high luminance at the same time.

本発明は前記課題を解決するものであり、その目的とするところは、線状光源の透けを防止しなおかつ凹凸レンズ形状部による集光機能を高め高輝度な直下型バックライト式液晶ディスプレイ装置に好適な光学シート及びそれを備えた液晶ディスプレイ装置を提供せんとするものである。   The present invention solves the above-mentioned problems, and an object of the present invention is to provide a high-brightness direct-type backlight type liquid crystal display device that prevents the linear light source from being seen through and enhances the light collecting function by the concave-convex lens shape portion. A suitable optical sheet and a liquid crystal display device including the same are provided.

本発明者は、前記課題を解決するために光散乱粒子が配合された樹脂層からなる拡散層と、表面に凹凸レンズ形成部が形成された透明樹脂層からなる集光機能層とを分けて一体的に積層し、集光機能層の層厚みを制御することによって、線状光源の透けを防止し、なおかつ高輝度な光学シートが設計出来ることを見出し、本発明を完成するに至ったものである。   In order to solve the above problems, the present inventor has divided a diffusion layer made of a resin layer in which light scattering particles are blended and a light collecting functional layer made of a transparent resin layer having a concave-convex lens forming portion formed on the surface. It has been found that by laminating the layers and controlling the layer thickness of the light condensing function layer, it is possible to design a high-brightness optical sheet that prevents the transmission of the linear light source and has completed the present invention. It is.

即ち、前記目的を達成するための本発明に係る光学シートの第1の構成は、光散乱微粒子が配合された樹脂層(1)の表面に透明樹脂層(2)が積層された光学シートであって、前記透明樹脂層(2)の表面に直線状の凹凸レンズ形状部が形成されたことを特徴とする。   That is, the first configuration of the optical sheet according to the present invention for achieving the above object is an optical sheet in which the transparent resin layer (2) is laminated on the surface of the resin layer (1) in which the light scattering fine particles are blended. In addition, a linear concavo-convex lens-shaped portion is formed on the surface of the transparent resin layer (2).

また、本発明に係る光学シートの第2の構成は、前記第1の構成において、前記透明樹脂層(2)の厚みが前記凹凸レンズ形状部の高さの1.1倍以上、且つ3.0倍以下であることを特徴とする。   In addition, in the second configuration of the optical sheet according to the present invention, in the first configuration, the thickness of the transparent resin layer (2) is 1.1 times or more the height of the concave-convex lens-shaped portion, and It is 0 times or less.

また、本発明に係る光学シートの第3の構成は、前記第1、第2の構成において、前記透明樹脂層(2)の全光線透過率が80%以上であることを特徴とする。   The third configuration of the optical sheet according to the present invention is characterized in that, in the first and second configurations, the total light transmittance of the transparent resin layer (2) is 80% or more.

また、本発明に係る光学シートの第4の構成は、前記第1〜第3の構成において、前記樹脂層(1)の全光線透過率が前記透明樹脂層(2)の全光線透過率に対して60%以上、且つ90%以下であることを特徴とする。   Moreover, the 4th structure of the optical sheet which concerns on this invention is the said 1st-3rd structure. WHEREIN: The total light transmittance of the said resin layer (1) is set to the total light transmittance of the said transparent resin layer (2). It is characterized by being 60% or more and 90% or less.

また、本発明に係る液晶ディスプレイ装置は、線状光源、請求項1〜4の何れか1項に記載の光学シート、液晶パネルシートの順に設置される直下型バックライト式液晶ディスプレイ装置であって、前記光学シートの前記凹凸レンズ形状部の凹凸レンズ面が前記線状光源側に向けて設置されることを特徴とする。   Moreover, the liquid crystal display device according to the present invention is a direct-type backlight type liquid crystal display device that is installed in the order of a linear light source, the optical sheet according to any one of claims 1 to 4, and a liquid crystal panel sheet. The concave-convex lens surface of the concave-convex lens-shaped portion of the optical sheet is installed toward the linear light source side.

本発明に係る光学シートの第1の構成によれば、光散乱粒子が配合された樹脂層からなる拡散層と、表面に凹凸レンズ形成部が形成された透明樹脂層からなる集光機能層とを分けて一体的に積層し、集光機能層の層厚みを制御することによって、線状光源の透けを防止しなおかつ高輝度な光学シートとすることが出来る。   According to the first configuration of the optical sheet according to the present invention, a diffusion layer composed of a resin layer in which light scattering particles are blended, and a condensing functional layer composed of a transparent resin layer having a concave-convex lens forming portion formed on the surface, By separately stacking layers and controlling the layer thickness of the light collecting functional layer, it is possible to obtain a high-brightness optical sheet that prevents the linear light source from being seen through.

また、本発明に係る光学シートの第2の構成によれば、透明樹脂層(2)の厚みを凹凸レンズ形状部の高さの1.1倍以上、且つ3.0倍以下に設定したことで、線状光源の透けを効果的に防止しつつ輝度向上を図ることが出来る。   Moreover, according to the 2nd structure of the optical sheet which concerns on this invention, the thickness of the transparent resin layer (2) was set to 1.1 times or more and 3.0 times or less of the height of an uneven | corrugated lens shape part. Thus, the luminance can be improved while effectively preventing the linear light source from being seen through.

また、本発明に係る光学シートの第3の構成によれば、前記透明樹脂層(2)の全光線透過率を80%以上に設定したことで、光の損失を防止して輝度向上に寄与出来る。   Further, according to the third configuration of the optical sheet according to the present invention, the total light transmittance of the transparent resin layer (2) is set to 80% or more, thereby preventing light loss and contributing to luminance improvement. I can do it.

また、本発明に係る光学シートの第4の構成によれば、前記樹脂層(1)の全光線透過率を透明樹脂層(2)の全光線透過率に対して60%以上、且つ90%以下に設定したことで、更に線状光源の透けを防止しなおかつ高輝度を得ることが出来る。   Moreover, according to the 4th structure of the optical sheet which concerns on this invention, the total light transmittance of the said resin layer (1) is 60% or more with respect to the total light transmittance of a transparent resin layer (2), and 90%. By setting as follows, it is possible to further prevent the linear light source from being seen through and to obtain high luminance.

また、本発明に係る液晶ディスプレイ装置によれば、前述の光学シートを直下型バックライト式液晶ディスプレイ装置に設置することで、線状光源の透けを防止しなおかつ高輝度化が実現出来る。   In addition, according to the liquid crystal display device according to the present invention, the above-described optical sheet is installed in the direct-type backlight type liquid crystal display device, so that the linear light source can be prevented from being transparent and high brightness can be realized.

図により本発明に係る光学シート及び液晶ディスプレイ装置の一実施形態を具体的に説明する。図1及び図2は本発明に係る光学シートを備えた液晶ディスプレイ装置の構成を示す側面図及び斜視説明図である。   An embodiment of an optical sheet and a liquid crystal display device according to the present invention will be specifically described with reference to the drawings. 1 and 2 are a side view and a perspective explanatory view showing a configuration of a liquid crystal display device including an optical sheet according to the present invention.

図1及び図2において、1は光散乱微粒子が配合された樹脂層であり、該樹脂層1の表面に透明樹脂層2が積層されて光学シート3を構成している。透明樹脂層2の表面には直線状の凹凸レンズ形状部2aが形成されている。   1 and 2, reference numeral 1 denotes a resin layer in which light scattering fine particles are blended, and a transparent resin layer 2 is laminated on the surface of the resin layer 1 to constitute an optical sheet 3. On the surface of the transparent resin layer 2, a linear concavo-convex lens shape portion 2 a is formed.

液晶ディスプレイ装置6は、線状光源4、光学シート3、液晶パネルシート5の順に設置される直下型バックライト式液晶ディスプレイ装置として構成されており、透明樹脂層2の凹凸レンズ形状部2aの凹凸レンズ面が線状光源4側に向けて設置されている。   The liquid crystal display device 6 is configured as a direct-type backlight liquid crystal display device that is installed in the order of the linear light source 4, the optical sheet 3, and the liquid crystal panel sheet 5, and the unevenness of the uneven lens shape portion 2 a of the transparent resin layer 2. The lens surface is installed toward the linear light source 4 side.

光学シート3の樹脂層1及び透明樹脂層2に用いられる樹脂としては次のものが挙げられる。例えばアクリル樹脂、MS樹脂(メタクリル酸エステルとスチレンの共重合体樹脂)、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエチレン、ポリプロピレン、AS樹脂(ポリスチレン、アクリロニトリルとスチレンの共重合体樹脂)、ABS樹脂(アクリロニトリル、ブタジエン、スチレンの共重合体樹脂)、PET(ポリエチレンテレフタレート;ポリエステル)、COP(シクロオレフィンポリマー)、アルファメチルスチレン、ポリ乳酸、フッ素樹脂、フェノール樹脂、エポキシ樹脂、ポリウレタン等でこれらを単独もしくは共重合した樹脂である。尚、樹脂層1と透明樹脂層2に用いられる樹脂は機能に応じて同じであっても異なっていても良い。   Examples of the resin used for the resin layer 1 and the transparent resin layer 2 of the optical sheet 3 include the following. For example, acrylic resin, MS resin (methacrylic ester and styrene copolymer resin), polystyrene resin, polycarbonate resin, polyethylene, polypropylene, AS resin (polystyrene, copolymer resin of acrylonitrile and styrene), ABS resin (acrylonitrile, butadiene) Styrene copolymer resin), PET (polyethylene terephthalate; polyester), COP (cycloolefin polymer), alpha methyl styrene, polylactic acid, fluororesin, phenol resin, epoxy resin, polyurethane, etc. Resin. The resin used for the resin layer 1 and the transparent resin layer 2 may be the same or different depending on the function.

樹脂層1には光散乱微粒子が配合される。光散乱微粒子としては次のものが挙げられる。例えばアクリル系架橋微粒子、スチレン系架橋微粒子、シリコーン系架橋微粒子、フッ素系微粒子、ガラス微粒子、SiO微粒子、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ、タルク(滑石という鉱石を微粉砕した無機粉末)、マイカ等でありこれらを単独もしくは併用しても良い。 The resin layer 1 is mixed with light scattering fine particles. Examples of the light scattering fine particles include the following. For example, acrylic crosslinked fine particles, styrene crosslinked fine particles, silicone crosslinked fine particles, fluorine fine particles, glass fine particles, SiO 2 fine particles, calcium carbonate, barium sulfate, titanium oxide, alumina, talc (inorganic powder obtained by finely pulverizing ore called talc) Mica and the like, and these may be used alone or in combination.

光散乱微粒子の粒径は平均粒径0.01μm以上、且つ100μm以下の間で任意に選択すれば良く、形状も真球状、楕円状、球状、不定形状、針状、燐片(花びら)状、中空状、立方体上、三角錐状等のいずれの状態でも構わない。   The particle size of the light scattering fine particles may be arbitrarily selected between an average particle size of 0.01 μm and 100 μm, and the shape is also a true sphere, an ellipse, a sphere, an indeterminate shape, a needle shape, a flake shape (petal) shape Any of a hollow shape, a cubic shape, a triangular pyramid shape, and the like may be used.

樹脂層1に配合する光散乱微粒子の配合量は、微粒子の粒径と樹脂層1の厚みによって異なるが0.001重量%以上、且つ30重量%以下が好ましく、より好ましくは0.01重量%以上、且つ20重量%以下である。   The blending amount of the light scattering fine particles to be blended in the resin layer 1 varies depending on the particle size of the fine particles and the thickness of the resin layer 1, but is preferably 0.001% by weight or more and 30% by weight or less, more preferably 0.01% by weight. Above and 20% by weight or less.

樹脂層1が厚ければ高輝度化のため光拡散微粒子は少ない方が良く、逆に樹脂層1が薄くなると線状光源の透け防止のため光散乱微粒子の配合を増やす必要がある。光学シート3全体での全光線透過率は50%以上、且つ90%以下が好ましく、必要に応じて、樹脂層1に配合する光散乱微粒子の配合量で全光線透過率を調節することが出来る。   If the resin layer 1 is thick, it is better to have less light diffusing fine particles in order to increase the luminance. Conversely, if the resin layer 1 is thin, it is necessary to increase the amount of light scattering fine particles in order to prevent the linear light source from being seen through. The total light transmittance of the entire optical sheet 3 is preferably 50% or more and 90% or less, and the total light transmittance can be adjusted by the blending amount of the light scattering fine particles blended in the resin layer 1 as necessary. .

一方、凹凸レンズ形状部2aが形成される透明樹脂層2は透明であることが重要である。凹凸レンズ形状部2aはプリズムやレンズとしての機能を持ち、光を集光させたり反射させたり屈折させたりするため透明性が必要なのである。この透明樹脂層2の透過率が低いということは光を損失していることに他ならず、本発明に於いて透明樹脂層2の全光線透過率は80%以上でなくてはならない。また、その際に、より高輝度、線状光源の透け防止のために樹脂層1の全光線透過率は透明樹脂層2の全光線透過率に対して60%以上、且つ90%以下に調整することがより好ましい。   On the other hand, it is important that the transparent resin layer 2 on which the concave and convex lens-shaped portion 2a is formed is transparent. The concave / convex lens-shaped portion 2a has a function as a prism or a lens, and needs to be transparent in order to condense, reflect or refract light. The low transmittance of the transparent resin layer 2 means that light is lost. In the present invention, the total light transmittance of the transparent resin layer 2 must be 80% or more. At that time, the total light transmittance of the resin layer 1 is adjusted to 60% or more and 90% or less with respect to the total light transmittance of the transparent resin layer 2 in order to prevent the bright light and the linear light source from being seen through. More preferably.

透明樹脂層2には全光線透過率80%以上が維持出来る範囲で添加剤を配合しても良い。例えば、紫外線吸収剤や光安定剤、酸化防止剤、滑剤、帯電防止剤、色剤、蛍光増白剤、マット化剤等である。   You may mix | blend an additive with the transparent resin layer 2 in the range which can maintain 80% or more of total light transmittance. For example, ultraviolet absorbers, light stabilizers, antioxidants, lubricants, antistatic agents, colorants, fluorescent whitening agents, matting agents, and the like.

透明樹脂層2は樹脂層1の表面に積層され、片面積層であっても両面積層されても良い。樹脂層1と透明樹脂層2を積層する方法としては、共押出法、フィルム状ラミネート法、塗工法、熱圧着法等が挙げられる。共押出法は複数種類の樹脂(本発明の場合、樹脂層1の樹脂と透明樹脂層2の樹脂)をそれぞれ押出機で溶融押出し、溶融樹脂同士を金型内で接合融着させる方法であり、積層シート作製の一般的な方法である。   The transparent resin layer 2 is laminated on the surface of the resin layer 1 and may be a single-area layer or a double-sided laminate. Examples of a method for laminating the resin layer 1 and the transparent resin layer 2 include a coextrusion method, a film-like laminating method, a coating method, and a thermocompression bonding method. The coextrusion method is a method in which a plurality of types of resins (in the case of the present invention, the resin of the resin layer 1 and the resin of the transparent resin layer 2) are melt-extruded with an extruder, and the molten resins are joined and fused in a mold. This is a general method for producing a laminated sheet.

フィルム状ラミネート法は樹脂層1の樹脂と透明樹脂層2の樹脂を予めフィルム状に加工しておき、熱もしくは接着剤で貼り合わせる方法である。   The film-like laminating method is a method in which the resin of the resin layer 1 and the resin of the transparent resin layer 2 are processed in advance into a film shape and bonded together with heat or an adhesive.

本発明の光学シート3は、透明樹脂層2の表面に直線状の凹凸レンズ形状部2aが形成されていることが特徴の一つである。凹凸レンズ形状部2aは集光、反射、屈折の機能を有し、その形状は、例えば、図1に示すように、頂角θが40度以上、且つ150度以下の三角柱レンズ形状、或いは、図示しないが、曲率半径が3μm以上、且つ500μm以下の円柱レンズ形状、多角柱レンズ形状、曲率半径が3μm以上、且つ500μm以下の波状形状、またはこれ等のレンズ形状を重ね合わせた組み合わせレンズ形状であり、そのレンズ形状部が0.1μm以上、且つ500μm以下のピッチで、直下型バックライトの線状光源4と平行に直線状に凹凸レンズ形状部2aが配列されていることが望ましい。図1及び図2では複数の線状光源4が直線状に配置され、凹凸レンズ形状部2aが該線状光源4と平行に直線状に配置された一例である。   The optical sheet 3 of the present invention is characterized in that a linear concavo-convex lens-shaped portion 2 a is formed on the surface of the transparent resin layer 2. The concave-convex lens shape portion 2a has functions of condensing, reflecting, and refraction, and the shape thereof is, for example, a triangular prism lens shape having an apex angle θ of 40 degrees or more and 150 degrees or less, as shown in FIG. Although not shown, a cylindrical lens shape having a curvature radius of 3 μm or more and 500 μm or less, a polygonal prism lens shape, a wave shape having a curvature radius of 3 μm or more and 500 μm or less, or a combination lens shape in which these lens shapes are superimposed. It is desirable that the lens-shaped portions are arranged in a straight line in parallel with the linear light source 4 of the direct type backlight at a pitch of 0.1 μm or more and 500 μm or less. 1 and 2 show an example in which a plurality of linear light sources 4 are arranged in a straight line, and the concavo-convex lens-shaped portion 2 a is arranged in a straight line in parallel with the linear light source 4.

本発明での透明樹脂層2の厚みtは、凹凸レンズ形状部2aの高さhの1.1倍以上、且つ3.0倍以下が必要である。ここでいう凹凸レンズ形状部2aの高さhとは、レンズ高さ、レンズ厚み、或いは波状レンズの波高さのことをいい、組み合わせレンズの場合はその最大高さ、或いは最大厚みのことをいう。   The thickness t of the transparent resin layer 2 in the present invention needs to be 1.1 times or more and 3.0 times or less of the height h of the concavo-convex lens shape portion 2a. The height h of the concave-convex lens shape portion 2a here means the lens height, the lens thickness, or the wave height of the corrugated lens, and in the case of a combination lens, it means the maximum height or the maximum thickness. .

透明樹脂層2の厚みtが凹凸レンズ形状部2aの高さhの1.1倍未満、つまり透明樹脂層2が薄く、すぐに光散乱微粒子が配合された樹脂層1と接合している状態では、線状光源4が透けて見え、なおかつレンズとしての集光、反射、屈折効果が小さく、輝度向上効果が小さい。逆に透明樹脂層2の厚みtが凹凸レンズ形状部2aの高さhの3.0倍を超えて透明樹脂層2が厚くなると透明樹脂層2中での光散乱が強くなり樹脂層1との積層界面反射が増し、輝度向上効果が小さくなってしまう。   The thickness t of the transparent resin layer 2 is less than 1.1 times the height h of the concave-convex lens-shaped portion 2a, that is, the transparent resin layer 2 is thin and immediately joined with the resin layer 1 containing light scattering fine particles. Then, the linear light source 4 can be seen through, and the condensing, reflection and refraction effects as a lens are small, and the luminance improvement effect is small. Conversely, when the thickness t of the transparent resin layer 2 exceeds 3.0 times the height h of the concave-convex lens-shaped portion 2a and the transparent resin layer 2 becomes thicker, light scattering in the transparent resin layer 2 becomes stronger and the resin layer 1 The reflection at the laminated interface increases, and the effect of improving the brightness is reduced.

透明樹脂層2への凹凸レンズ形状部2aの形成方法は、例えば透明樹脂層2と樹脂層1とを積層したシートを、予め凹凸レンズ形状部2aの形状が彫刻された金型に押付けてその形状を転写させる方法やUV(紫外線)硬化樹脂によるいわゆるUV造型、レーザーや彫刻機、エッチング等で直接彫り込む方法等がある。また、透明樹脂層2だけをフィルム状にして上述の方法で凹凸レンズ形状部2aを形成し、その後、樹脂層1と接合する方法もある。   The method for forming the concave / convex lens shape portion 2a on the transparent resin layer 2 is, for example, by pressing a sheet in which the transparent resin layer 2 and the resin layer 1 are laminated onto a mold in which the shape of the concave / convex lens shape portion 2a is engraved in advance. There are a method of transferring the shape, a so-called UV molding using a UV (ultraviolet) curable resin, a method of directly engraving with a laser, an engraving machine, etching or the like. There is also a method in which only the transparent resin layer 2 is formed into a film and the concave / convex lens-shaped portion 2a is formed by the above-described method, and then the resin layer 1 is joined.

凹凸レンズ形状部2aが形成された光学シート3は、拡散板として直下型バックライトに組み込まれるが、その際、凹凸レンズ形状部2aの凹凸レンズ面を線状光源4側に向けて設置することがより好ましい。   The optical sheet 3 on which the concavo-convex lens shape portion 2a is formed is incorporated as a diffuser in a direct type backlight, and at that time, the concavo-convex lens shape portion 2a is placed with the concavo-convex lens surface facing the linear light source 4 side. Is more preferable.

凹凸レンズ形状部2aの凹凸レンズ面を線状光源4側に向けて設置すると、線状光源4から出射された光はまず凹凸レンズ形状部2aに入射することで、レンズの屈折、反射機能によって効率的に前方(図1の上方向)、つまり液晶パネルシート5側に集光される。平滑な拡散板と比べて全反射で線状光源4側に戻る光が少なくなるため明らかに高輝度になり、また、レンズの屈折、反射機能により1本の線状光源4が見かけ上複数本に見えるため線状光源4の透け、つまり明暗が小さくなり透けも見えなくなる。   When the concave / convex lens surface of the concave / convex lens shape portion 2a is placed toward the linear light source 4 side, the light emitted from the linear light source 4 first enters the concave / convex lens shape portion 2a. The light is efficiently condensed (upward in FIG. 1), that is, toward the liquid crystal panel sheet 5 side. Compared to a smooth diffuser plate, the amount of light returning to the linear light source 4 side by total reflection is reduced, so that the brightness is clearly increased. In addition, a plurality of apparent linear light sources 4 are formed by the refraction and reflection functions of the lens. Therefore, the transparency of the linear light source 4, that is, the brightness becomes small and the transparency is not visible.

凹凸レンズ形状部2aにより集光された光は樹脂層1に配合された光散乱微粒子によって光散乱されることにより線状光源4の透けを小さくすることが出来るのである。逆に凹凸レンズ形状部2aの凹凸レンズ面を液晶パネルシート5側に向けて光学シート3を設置すると、線状光源4から出射された光はまず樹脂層1の光散乱微粒子によって光散乱され、透明樹脂層2の凹凸レンズ形状部2aに入射する。この場合、散乱光が凹凸レンズ形状部2aに入射すると集光するどころか逆にレンズ面で全反射をおこすため光が出射せず暗くなってしまう。従って、光学シート3の凹凸レンズ形状部2aの凹凸レンズ面が線状光源4側に向いて設置されることが好ましいのである。   The light collected by the concave-convex lens-shaped portion 2a is scattered by the light scattering fine particles blended in the resin layer 1, whereby the transparency of the linear light source 4 can be reduced. Conversely, when the optical sheet 3 is placed with the concave / convex lens surface of the concave / convex lens shape portion 2a facing the liquid crystal panel sheet 5, the light emitted from the linear light source 4 is first scattered by the light scattering fine particles of the resin layer 1, The light enters the concave-convex lens-shaped portion 2 a of the transparent resin layer 2. In this case, when the scattered light enters the concavo-convex lens shape portion 2a, the light is not emitted but dark because it is totally reflected on the lens surface. Therefore, it is preferable that the concavo-convex lens surface of the concavo-convex lens shape portion 2a of the optical sheet 3 is installed facing the linear light source 4 side.

以下に具体的な実施例と比較例に基づいて説明する。   The following description is based on specific examples and comparative examples.

線状光源4として直径3mm、長さ450mmの冷陰極管12本を20mm間隔になるよう配置し、その上に冷陰極管から15mm間隙をあけて光学シート3からなる拡散板を設置し、更に2mmの間隙をあけて液晶パネルシート5からなる液晶パネルを設置し、直下型バックライト式評価用液晶ディスプレイ装置6を作製した。   As the linear light source 4, 12 cold cathode tubes having a diameter of 3 mm and a length of 450 mm are arranged at intervals of 20 mm, and a diffusion plate made of the optical sheet 3 is installed on the cold cathode tube with a 15 mm gap therebetween. A liquid crystal panel composed of the liquid crystal panel sheet 5 was installed with a gap of 2 mm, and a direct backlight type liquid crystal display device 6 for evaluation was produced.

冷陰極管に16Vの電圧をかけて点灯し、光学シート3からなる拡散板中央部の輝度を500mm離れた位置から輝度計(トプコン株式会社製 BM−7)で測定する。以下の各実施例及び比較例で行った評価は、冷陰極管の透けは明暗筋の有無を目視にて確認し、透け無しを「○」、透け有りを「×」として判定し、以下の表1に示す通りである。   The cold cathode tube is turned on by applying a voltage of 16 V, and the luminance at the center of the diffusion plate made of the optical sheet 3 is measured with a luminance meter (BM-7 manufactured by Topcon Corporation) from a position 500 mm away. The evaluation performed in each of the following Examples and Comparative Examples is to visually check the presence or absence of bright and dark streaks of the cold cathode tube, determine that there is no show as `` ○ '', and show through as `` X '', As shown in Table 1.

[実施例1]
樹脂層1用の樹脂としてアクリル樹脂(旭化成ケミカルズ株式会社製 商品名『デルペットLP−1』)にシリコーン系架橋微粒子として平均粒径2μmのポリメチルシルセスオキサン微粒子を1重量%配合した全光線透過率が70%の樹脂と、透明樹脂層2用樹脂として全光線透過率が93%のアクリル樹脂(旭化成ケミカルズ株式会社製 商品名『デルペットLP−1』)を使用し、樹脂層1の片面に透明樹脂層2が積層された2種2層積層シートを共押出法により成形した。
[Example 1]
As a resin for the resin layer 1, an acrylic resin (trade name “Delpet LP-1” manufactured by Asahi Kasei Chemicals Co., Ltd.) is blended with 1% by weight of polymethylsilsesoxane fine particles having an average particle diameter of 2 μm as silicone-based crosslinked fine particles. Resin layer 1 using a resin having a light transmittance of 70% and an acrylic resin having a total light transmittance of 93% as a resin for transparent resin layer 2 (trade name “Delpet LP-1” manufactured by Asahi Kasei Chemicals Corporation) A two-type two-layer laminated sheet in which the transparent resin layer 2 was laminated on one side was molded by a coextrusion method.

このとき樹脂層1の厚みは1.8mm、透明樹脂層2の厚みtは200μm、合計2.0mmになるよう共押出成形条件を調整した。積層シート全体の全光線透過率は65%であった。この積層シートを約150℃に加熱し、透明樹脂層2の表面側に、頂角60度でピッチ100μmの三角柱レンズ形状が線状に彫り込まれた金型を熱圧着して、透明樹脂層2の表面に凹凸レンズ形状部2aとして頂角60度、ピッチ100μmの三角柱レンズ形状を線状に形成した光学シート3を得た。   At this time, the coextrusion molding conditions were adjusted so that the thickness of the resin layer 1 was 1.8 mm, and the thickness t of the transparent resin layer 2 was 200 μm, for a total of 2.0 mm. The total light transmittance of the entire laminated sheet was 65%. The laminated sheet is heated to about 150 ° C., and a mold in which a triangular prism lens shape having a vertex angle of 60 degrees and a pitch of 100 μm is linearly formed on the surface side of the transparent resin layer 2 is thermocompression bonded. An optical sheet 3 was obtained in which a triangular prism lens shape having an apex angle of 60 degrees and a pitch of 100 μm was formed in a linear shape on the surface of the concave-convex lens shape portion 2a.

凹凸レンズ形状部2aの高さhを86.6μmとし、透明樹脂層2の厚みtが200μmであるから、透明樹脂層2の厚みtは凹凸レンズ形状部2aの高さhのちょうど2.3倍に設定された。また凹凸レンズ形状部2aを形成した光学シート3で全光線透過率を測定したが、凹凸レンズ形状部2aを形成する前と変わらず65%であった。   Since the height h of the concave / convex lens shape portion 2a is 86.6 μm and the thickness t of the transparent resin layer 2 is 200 μm, the thickness t of the transparent resin layer 2 is just 2.3 of the height h of the concave / convex lens shape portion 2a. Set to double. Further, the total light transmittance was measured with the optical sheet 3 on which the concave / convex lens shape portion 2a was formed, but it was 65% as before the formation of the concave / convex lens shape portion 2a.

上記光学シート3を上述の評価用液晶ディスプレイ装置6の拡散板として凹凸レンズ形状部2aの凹凸レンズ面が線状光源4側に向くよう設置し、輝度評価と線状光源4の透けの有無を確認した。評価結果を比較例と共に以下の表1に示す。   The optical sheet 3 is installed as a diffusion plate of the above-described liquid crystal display device 6 for evaluation so that the concavo-convex lens surface of the concavo-convex lens shape portion 2a faces the linear light source 4 side. confirmed. The evaluation results are shown in Table 1 below together with comparative examples.

[実施例2]
透明樹脂層2の厚みtが100μmで、凹凸レンズ形状部2aの高さhの1.15倍になるよう積層シートを作製した以外は、前記実施例1と同様に行った。評価結果を以下の表1に示す。
[Example 2]
The same procedure as in Example 1 was performed except that the laminated sheet was prepared so that the thickness t of the transparent resin layer 2 was 100 μm and 1.15 times the height h of the concave-convex lens-shaped portion 2a. The evaluation results are shown in Table 1 below.

[実施例3]
透明樹脂層2の厚みtが150μmで、凹凸レンズ形状部2aの高さhの1.7倍になるよう積層シートを作製した以外は、前記実施例1と同様に行った。評価結果を以下の表1に示す。
[Example 3]
The same procedure as in Example 1 was performed except that the laminated sheet was prepared so that the thickness t of the transparent resin layer 2 was 150 μm and the height h of the concave-convex lens-shaped portion 2a was 1.7 times. The evaluation results are shown in Table 1 below.

[比較例1]
上記実施例1と同様に樹脂層1用の樹脂としてアクリル樹脂(旭化成ケミカルズ株式会社製 商品名『デルペットLP−1』)にシリコーン系架橋微粒子として平均粒径2μmのポリメチルシルセスオキサン微粒子を1重量%配合した樹脂と、透明樹脂層2用樹脂として全光線透過率が93%のアクリル樹脂(旭化成ケミカルズ株式会社製 商品名『デルペットLP−1』)を使用し、樹脂層1の片面に透明樹脂層2が積層された2種2層積層シートを共押出法により成形した。
[Comparative Example 1]
As in Example 1 above, an acrylic resin (trade name “Delpet LP-1” manufactured by Asahi Kasei Chemicals Corporation) as a resin for the resin layer 1 and polymethylsilsesoxane fine particles having an average particle diameter of 2 μm as silicone-based crosslinked fine particles 1% by weight of resin and acrylic resin having a total light transmittance of 93% (trade name “Delpet LP-1” manufactured by Asahi Kasei Chemicals Corporation) as a resin for the transparent resin layer 2, A two-type two-layer laminated sheet in which the transparent resin layer 2 was laminated on one side was molded by a coextrusion method.

上記実施例1と同様に樹脂層1の厚みは1.8mm、透明樹脂層2の厚みtは200μm、合計2.0mmになるよう共押出成形条件を調整した。積層シート全体の全光線透過率は前記実施例1と同様に65%であった。凹凸レンズ形状部2aを形成していない該積層シートを、透明樹脂層2が線状光源4側に向くように前記実施例1と同様に評価用の液晶ディスプレイ装置6に設置し、輝度評価と線状光源4の透けの有無を確認した。評価結果を以下の表1に示す。   Similarly to Example 1, the coextrusion molding conditions were adjusted so that the thickness of the resin layer 1 was 1.8 mm, and the thickness t of the transparent resin layer 2 was 200 μm, for a total of 2.0 mm. The total light transmittance of the entire laminated sheet was 65% as in Example 1. The laminated sheet on which the concave / convex lens-shaped portion 2a is not formed is placed on the evaluation liquid crystal display device 6 in the same manner as in Example 1 so that the transparent resin layer 2 faces the linear light source 4 side. The presence or absence of see-through of the linear light source 4 was confirmed. The evaluation results are shown in Table 1 below.

[比較例2]
透明樹脂層2の厚みtが90μmで、凹凸レンズ形状部2aの高さhの1.04倍になるように積層シートを作製した以外は、前記実施例1と同様に行った。評価結果を以下の表1に示す。
[Comparative Example 2]
The same procedure as in Example 1 was conducted, except that the laminated sheet was prepared so that the thickness t of the transparent resin layer 2 was 90 μm and 1.04 times the height h of the concave-convex lens-shaped portion 2a. The evaluation results are shown in Table 1 below.

[比較例3]
透明樹脂層2の厚みtが300μmで、凹凸レンズ形状部2aの高さhの3.46倍になるように積層シートを作製した以外は、前記実施例1と同様に行った。評価結果を以下の表1に示す。
[Comparative Example 3]
The same procedure as in Example 1 was performed except that the laminated sheet was prepared so that the thickness t of the transparent resin layer 2 was 300 μm and the height h of the concave-convex lens-shaped portion 2a was 3.46 times. The evaluation results are shown in Table 1 below.

[比較例4]
透明樹脂層2用の樹脂としてアクリル樹脂(旭化成ケミカルズ株式会社製 商品名『デルペットLP−1』)にシリコーン系架橋微粒子である平均粒径2μmのポリメチルシルセスオキサン微粒子を0.1重量%配合した。このときの透明樹脂層2の全光線透過率は70%であった。透明樹脂層2を変更した以外は前記実施例1と同様に行った。評価結果を以下の表1に示す。
[Comparative Example 4]
0.1 weight of polymethylsilsesoxane fine particles having an average particle diameter of 2 μm as silicone-based crosslinked fine particles are added to an acrylic resin (trade name “Delpet LP-1” manufactured by Asahi Kasei Chemicals Corporation) as a resin for the transparent resin layer 2. % Blended. At this time, the total light transmittance of the transparent resin layer 2 was 70%. The same procedure as in Example 1 was performed except that the transparent resin layer 2 was changed. The evaluation results are shown in Table 1 below.

[実施例4]
樹脂層1及び透明樹脂層2用の樹脂としてアクリル樹脂に代わりスチレン樹脂(PSジャパン株式会社製G9504)に変えた以外は前記実施例1と同様に行った。評価結果を以下の表1に示す。
[Example 4]
It carried out similarly to the said Example 1 except having changed to the styrene resin (PS950 Co., Ltd. G9504) instead of an acrylic resin as resin for the resin layer 1 and the transparent resin layer 2. FIG. The evaluation results are shown in Table 1 below.

[実施例5]
凹凸レンズ形状部2aを頂角90度ピッチ200μmの三角柱レンズ形状に変えた以外は前記実施例1と同様に行った。このときの凹凸レンズ形状部2aの高さhは100μmで、透明樹脂層2の厚みtは凹凸レンズ形状部2aの高さhの2倍であった。評価結果を以下の表1に示す。
[Example 5]
The same procedure as in Example 1 was performed except that the concave-convex lens shape portion 2a was changed to a triangular prism lens shape having an apex angle of 90 degrees and a pitch of 200 μm. At this time, the height h of the concave-convex lens shape portion 2a was 100 μm, and the thickness t of the transparent resin layer 2 was twice the height h of the concave-convex lens shape portion 2a. The evaluation results are shown in Table 1 below.

[実施例6]
凹凸レンズ形状部2aを頂角85度の三角柱レンズ形状が2つ組み合わされたレンズ形状でピッチ200μmに変えた以外は前記実施例1と同様に行った。このときの凹凸レンズ形状部2aの高さhは100μmで、透明樹脂層2の厚みtは凹凸レンズ形状部2aの高さhの2倍であった。評価結果を以下の表1に示す。
[Example 6]
The same procedure as in Example 1 was performed except that the concave-convex lens shape portion 2a was changed to a lens shape in which two triangular prism lens shapes having an apex angle of 85 degrees were combined to a pitch of 200 μm. At this time, the height h of the concave-convex lens shape portion 2a was 100 μm, and the thickness t of the transparent resin layer 2 was twice the height h of the concave-convex lens shape portion 2a. The evaluation results are shown in Table 1 below.

[実施例7]
凹凸レンズ形状部2aを曲率100μm、ピッチ200μmの円柱レンズ形状に変えた以外は前記実施例1と同様に行った。このときの凹凸レンズ形状部2aの高さhは100μmで、透明樹脂層2の厚みtは凹凸レンズ形状部2aの高さhの2倍であった。評価結果を以下の表1に示す。
[Example 7]
The same procedure as in Example 1 was performed except that the concave-convex lens shape portion 2a was changed to a cylindrical lens shape having a curvature of 100 μm and a pitch of 200 μm. At this time, the height h of the concave-convex lens shape portion 2a was 100 μm, and the thickness t of the transparent resin layer 2 was twice the height h of the concave-convex lens shape portion 2a. The evaluation results are shown in Table 1 below.

[比較例5]
前記実施例1と同じ凹凸レンズ形状部2aが形成された光学シート3を用い、凹凸レンズ形状部2aの凹凸レンズ面を線状光源4とは逆側、つまり図1の上向きである液晶パネルシート5側に設置して前記実施例1と同様の評価を行った。評価結果を以下の表1に示す。
[Comparative Example 5]
A liquid crystal panel sheet using the optical sheet 3 on which the same concave / convex lens-shaped portion 2a as in Example 1 is formed, with the concave / convex lens surface of the concave / convex lens-shaped portion 2a facing away from the linear light source 4, that is, upward in FIG. The same evaluation as in Example 1 was performed by installing on the 5th side. The evaluation results are shown in Table 1 below.

Figure 2007086098
Figure 2007086098

本発明の活用例として、直下型バックライト式液晶ディスプレイ装置用の拡散板として好適に利用出来る。   As an application example of the present invention, it can be suitably used as a diffusion plate for a direct type backlight type liquid crystal display device.

本発明に係る光学シートを備えた液晶ディスプレイ装置の構成を示す側面図である。It is a side view which shows the structure of the liquid crystal display device provided with the optical sheet which concerns on this invention. 本発明に係る光学シートを備えた液晶ディスプレイ装置の構成を示す斜視説明図である。It is a perspective explanatory view showing the composition of the liquid crystal display device provided with the optical sheet concerning the present invention.

符号の説明Explanation of symbols

1…樹脂層
2…透明樹脂層
2a…凹凸レンズ形状部
3…光学シート
4…線状光源
5…液晶パネルシート
6…液晶ディスプレイ装置
DESCRIPTION OF SYMBOLS 1 ... Resin layer 2 ... Transparent resin layer 2a ... Concave and convex lens shape part 3 ... Optical sheet 4 ... Linear light source 5 ... Liquid crystal panel sheet 6 ... Liquid crystal display device

Claims (5)

光散乱微粒子が配合された樹脂層(1)の表面に透明樹脂層(2)が積層された光学シートであって、
前記透明樹脂層(2)の表面に直線状の凹凸レンズ形状部が形成されたことを特徴とする光学シート。
An optical sheet in which a transparent resin layer (2) is laminated on the surface of a resin layer (1) containing light scattering fine particles,
An optical sheet, wherein a linear concavo-convex lens-shaped portion is formed on the surface of the transparent resin layer (2).
前記透明樹脂層(2)の厚みが前記凹凸レンズ形状部の高さの1.1倍以上、且つ3.0倍以下であることを特徴とする請求項1に記載の光学シート。 The optical sheet according to claim 1, wherein the thickness of the transparent resin layer (2) is 1.1 times or more and 3.0 times or less of the height of the concave-convex lens-shaped portion. 前記透明樹脂層(2)の全光線透過率が80%以上であることを特徴とする請求項1または請求項2に記載の光学シート。 The optical sheet according to claim 1 or 2, wherein the total light transmittance of the transparent resin layer (2) is 80% or more. 前記樹脂層(1)の全光線透過率が前記透明樹脂層(2)の全光線透過率に対して60%以上、且つ90%以下であることを特徴とする請求項1〜3の何れか1項に記載の光学シート。 The total light transmittance of the resin layer (1) is 60% or more and 90% or less with respect to the total light transmittance of the transparent resin layer (2). The optical sheet according to item 1. 線状光源、請求項1〜4の何れか1項に記載の光学シート、液晶パネルシートの順に設置される直下型バックライト式液晶ディスプレイ装置であって、
前記光学シートの前記凹凸レンズ形状部の凹凸レンズ面が前記線状光源側に向けて設置されることを特徴とする液晶ディスプレイ装置。
It is a direct type backlight type liquid crystal display device installed in the order of a linear light source, the optical sheet according to any one of claims 1 to 4, and a liquid crystal panel sheet,
The liquid crystal display device, wherein the concave-convex lens surface of the concave-convex lens-shaped portion of the optical sheet is installed toward the linear light source side.
JP2005271273A 2005-09-20 2005-09-20 Optical sheet and liquid crystal display device Withdrawn JP2007086098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005271273A JP2007086098A (en) 2005-09-20 2005-09-20 Optical sheet and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271273A JP2007086098A (en) 2005-09-20 2005-09-20 Optical sheet and liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2007086098A true JP2007086098A (en) 2007-04-05

Family

ID=37973186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271273A Withdrawn JP2007086098A (en) 2005-09-20 2005-09-20 Optical sheet and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2007086098A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149919A1 (en) * 2007-06-05 2008-12-11 Asahi Kasei E-Materials Corporation Reflective sheet
WO2009096057A1 (en) * 2008-01-29 2009-08-06 Toppan Printing Co., Ltd. Optical device, light uniforming device, optical sheet, backlight unit, and display device
JP2010072556A (en) * 2008-09-22 2010-04-02 Toppan Printing Co Ltd Optical equalizing element, optical sheet, backlight unit using the same, and display device
JP2010072192A (en) * 2008-09-17 2010-04-02 Toppan Printing Co Ltd Optical element, and backlight unit and display device using the same
JP2010072131A (en) * 2008-09-17 2010-04-02 Toppan Printing Co Ltd Light diffusion plate, optical sheet, backlight unit and display apparatus
JP2010096916A (en) * 2008-10-15 2010-04-30 Keiwa Inc Optical sheet and backlight unit using the same
JP2010134429A (en) * 2008-09-19 2010-06-17 Skc Haas Display Films Co Ltd Multifunction light redirecting film
JP2010134345A (en) * 2008-12-08 2010-06-17 Toppan Printing Co Ltd Light uniforming element, and back light unit and display device using the same
JP2012104437A (en) * 2010-11-12 2012-05-31 Dainippon Printing Co Ltd Surface light source device, picture source module, and liquid crystal display device
CN105158830B (en) * 2008-04-18 2017-12-05 凸版印刷株式会社 Display body and labeled article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392601U (en) * 1989-10-05 1991-09-20
JPH07230001A (en) * 1993-05-17 1995-08-29 Sekisui Chem Co Ltd Optical control sheet and its manufacture
JPH07270603A (en) * 1994-03-29 1995-10-20 Enplas Corp Optical control member
JP2001124910A (en) * 2000-08-29 2001-05-11 Dainippon Printing Co Ltd Lenticular lens, planar light source and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392601U (en) * 1989-10-05 1991-09-20
JPH07230001A (en) * 1993-05-17 1995-08-29 Sekisui Chem Co Ltd Optical control sheet and its manufacture
JPH07270603A (en) * 1994-03-29 1995-10-20 Enplas Corp Optical control member
JP2001124910A (en) * 2000-08-29 2001-05-11 Dainippon Printing Co Ltd Lenticular lens, planar light source and liquid crystal display device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149919A1 (en) * 2007-06-05 2008-12-11 Asahi Kasei E-Materials Corporation Reflective sheet
US8358468B2 (en) 2007-06-05 2013-01-22 Asahi Kasei Kabushiki Kaisha Reflecting sheet
WO2009096057A1 (en) * 2008-01-29 2009-08-06 Toppan Printing Co., Ltd. Optical device, light uniforming device, optical sheet, backlight unit, and display device
JP5375618B2 (en) * 2008-01-29 2013-12-25 凸版印刷株式会社 Backlight unit and display device
CN105158830B (en) * 2008-04-18 2017-12-05 凸版印刷株式会社 Display body and labeled article
JP2010072192A (en) * 2008-09-17 2010-04-02 Toppan Printing Co Ltd Optical element, and backlight unit and display device using the same
JP2010072131A (en) * 2008-09-17 2010-04-02 Toppan Printing Co Ltd Light diffusion plate, optical sheet, backlight unit and display apparatus
JP2010134429A (en) * 2008-09-19 2010-06-17 Skc Haas Display Films Co Ltd Multifunction light redirecting film
JP2010072556A (en) * 2008-09-22 2010-04-02 Toppan Printing Co Ltd Optical equalizing element, optical sheet, backlight unit using the same, and display device
JP2010096916A (en) * 2008-10-15 2010-04-30 Keiwa Inc Optical sheet and backlight unit using the same
JP2010134345A (en) * 2008-12-08 2010-06-17 Toppan Printing Co Ltd Light uniforming element, and back light unit and display device using the same
JP2012104437A (en) * 2010-11-12 2012-05-31 Dainippon Printing Co Ltd Surface light source device, picture source module, and liquid crystal display device

Similar Documents

Publication Publication Date Title
JP2007086098A (en) Optical sheet and liquid crystal display device
TWI378270B (en) Diffuser prism sheet comprising light diffuser in the valley of prism and lcd back light unit thereby
JP2009150981A (en) Optical sheet, backlight unit and display device
JPWO2009139084A1 (en) Lens sheet, optical sheet, and backlight unit and display device using the same
JP5428313B2 (en) Light uniform element and backlight unit and display device using the same
US7428027B2 (en) Optical sheet, and backlight unit and display having plural microlenses on lens sheet with respective light transmission parts and pairs of reflection layers sandwiching the light transmission parts
JP5104459B2 (en) Optical member and backlight unit and display using it
JP2010192246A (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP2011033643A (en) Optical path changing sheet, backlight unit and display device
JP2009080357A (en) Light control sheet, backlight unit using the same, and display device
JP2010256431A (en) Laminated resin sheet, and backlight unit and display device using the same
JP2009123397A (en) Illumination device, and image display device using it
JP5287009B2 (en) LENS SHEET, OPTICAL SHEET FOR DISPLAY, LIGHTING DEVICE, ELECTRONIC SIGNATURE, BACKLIGHT UNIT USING THE SAME, DISPLAY DEVICE
JP2011064745A (en) Optical sheet, backlight unit and display apparatus
JP5593653B2 (en) Light guide plate, backlight unit and display device
JP5256723B2 (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP2008233708A (en) Diffusion plate with double-sided configuration
JP2007094112A (en) Diffusing plate
JP2001154004A (en) Optical sheet and backlight unit using the same
KR101015996B1 (en) Optical element backlight unit and liquid crystal including the same
JP5195069B2 (en) Backlight unit and display device
JP2012204136A (en) Light guide plate, backlight unit, and display device
JP2008305585A (en) Surface light source and transmission type display device
JP5023928B2 (en) Optical sheet, backlight unit and display device
JP2008305590A (en) Surface light source device and transmission type display device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110329