JPWO2009041665A1 - Method for refining the structure of steel material, steel material having fine structure and blade - Google Patents

Method for refining the structure of steel material, steel material having fine structure and blade Download PDF

Info

Publication number
JPWO2009041665A1
JPWO2009041665A1 JP2009534445A JP2009534445A JPWO2009041665A1 JP WO2009041665 A1 JPWO2009041665 A1 JP WO2009041665A1 JP 2009534445 A JP2009534445 A JP 2009534445A JP 2009534445 A JP2009534445 A JP 2009534445A JP WO2009041665 A1 JPWO2009041665 A1 JP WO2009041665A1
Authority
JP
Japan
Prior art keywords
region
carbide
steel material
laser
refined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009534445A
Other languages
Japanese (ja)
Other versions
JP5419046B2 (en
Inventor
好昭 森貞
好昭 森貞
長岡 亨
亨 長岡
真男 福角
真男 福角
藤井 英俊
英俊 藤井
雅 水野
雅 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Municipal Technical Research Institute
AMC KK
Original Assignee
Osaka University NUC
Osaka Municipal Technical Research Institute
AMC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Municipal Technical Research Institute, AMC KK filed Critical Osaka University NUC
Priority to JP2009534445A priority Critical patent/JP5419046B2/en
Publication of JPWO2009041665A1 publication Critical patent/JPWO2009041665A1/en
Application granted granted Critical
Publication of JP5419046B2 publication Critical patent/JP5419046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

【課題】本発明は、鉄鋼材の表層部における組織微細化を行う方法を提供し、切削工具および刃物等の高性能化・高寿命化を実現し得る、微細組織を有する鉄鋼材を提供し、組織微細領域を刃先に加工した刃物を提供するものである。組織微細化とは母材結晶粒の微細化および炭化物の微細化を意味する。【解決手段】本発明の鉄鋼材の組織微細化方法は炭化物微細化領域を形成する第1工程と組織微細化領域を形成する第2工程とを有している。第1工程として、鉄鋼材の表層部をレーザによって局部的に急速加熱して溶融溜まりを形成した後、該溶融溜まりを急速凝固することで炭化物微細化領域を形成する。第2工程として、第1工程で形成した炭化物微細化領域に摩擦攪拌プロセスを施し、組織微細化領域を形成する。【選択図】 図1The present invention provides a method for refining a structure in a surface layer portion of a steel material, and provides a steel material having a fine structure capable of realizing high performance and long life of a cutting tool and a blade. The present invention provides a cutting tool in which a fine structure region is processed into a cutting edge. Structure refinement means refinement of base crystal grains and refinement of carbides. The structure refinement method of a steel material according to the present invention includes a first step for forming a carbide refined region and a second step for forming a refined region. As a first step, the surface layer portion of the steel material is rapidly heated locally by a laser to form a molten pool, and then the molten pool is rapidly solidified to form a carbide refined region. As a second step, a friction stir process is applied to the carbide refined region formed in the first step to form a microstructure refined region. [Selection] Figure 1

Description

本発明は、鉄鋼材の表層部における組織微細化により表面改質を行う方法および微細組織を有する鉄鋼材に関し、特に、微細組織を有する工具鋼および刃物とその有利な製造方法に関する。なお、「組織微細化」は金属母材の結晶粒微細化と金属母材中に存在する炭化物の微細化を意味する。   The present invention relates to a method for surface modification by refining a structure in a surface layer portion of a steel material and a steel material having a fine structure, and particularly to a tool steel and a cutting tool having a fine structure and an advantageous manufacturing method thereof. “Structural refinement” means refinement of crystal grains of a metal matrix and refinement of carbides present in the metal matrix.

各種産業界や医療業界において、切削工具および刃物等に対する高性能化・高寿命化の要求が高まっている。切れ味の点からは切削工具および刃物等を構成する材料の高硬度化が望まれるとともに、鋭い刃先を作製するためには材料の組織微細化が不可欠となる。   In various industrial and medical industries, there is an increasing demand for higher performance and longer life for cutting tools and blades. From the standpoint of sharpness, it is desired to increase the hardness of the material constituting the cutting tool, the blade, etc., and in order to produce a sharp cutting edge, it is indispensable to refine the structure of the material.

金属材の機械的特性(硬度、強度等)は、金属材を構成する結晶粒の粒径に大きく影響されることが知られており、一般的に結晶粒径が小さくなるほど金属材の機械的特性は向上する。金属材の結晶粒微細化手法としてはECAP(Equal Channel Angular Pressing)やARB(Accumulative Roll Bonding)等、種々の技術が開発されているが(特開2003−096551、特開2000−073152)、切削工具及び刃物等に用いられる鉄鋼材、特に工具鋼の結晶粒を微細化するのは極めて困難である。強ひずみを与えた金属粉末を固化成形することで微細組織を有する工具鋼を得る技術が公開されているが(新エネルギー・産業技術総合開発機構
「ナノメタル技術プロジェクト」 『ナノ組織制御による超高強度化・高耐食工具鋼の研究開発』 報告書)、この方法では切削工具および刃物等を作製するために必要な大きさを有する材料を得るのは容易ではない。
It is known that the mechanical properties (hardness, strength, etc.) of a metal material are greatly influenced by the grain size of the crystal grains constituting the metal material. In general, the smaller the crystal grain size, the more the mechanical properties of the metal material. The characteristics are improved. Various techniques such as ECAP (Equal Channel Angular Pressing) and ARB (Accumulative Roll Bonding) have been developed as methods for refining crystal grains of metal materials (JP 2003-096551, JP 2000-073152). It is extremely difficult to refine the crystal grains of steel materials, particularly tool steel, used for tools and blades. The technology to obtain tool steel with fine structure by solidifying and molding metal powder with strong strain has been released (New Energy and Industrial Technology Development Organization “Nanometal Technology Project” “Ultra High Strength by Nanostructure Control” In this method, it is not easy to obtain a material having a size necessary for manufacturing a cutting tool and a cutting tool.

また、各種工具、刃物や金型等に対して高硬度、高強度、高耐摩耗性等が要求される場合には、工具等を構成する鉄鋼材の母材にCr、Mo、W、V等の炭化物生成元素を添加し、母材中に炭化物を分散析出させている。粗大な炭化物は切削工具および刃物等の切れ味を低下させるとともに寿命を短くするため、炭化物の微細化も切削工具および刃物等の高性能化・高寿命化には重要である。 In addition, when high hardness, high strength, high wear resistance, etc. are required for various tools, knives, dies, etc., Cr, Mo, W, V can be used as the base material of the steel material constituting the tool. A carbide-forming element such as is added to disperse and precipitate the carbide in the base material. Coarse carbides reduce the sharpness of cutting tools and cutting tools and shorten the life, and therefore, miniaturization of carbides is important for improving the performance and life of cutting tools and cutting tools.

発明者は上記観点から、レーザビームによる材料表面の局部的な溶融を利用した金属材の組織微細化方法を開発した(特開2005−146378)。この技術によって、金属材表層部における炭化物の微細化が可能となった。しかしながら、微細化した炭化物は金属母材結晶粒の粒界に並んで析出し、粒界の強度を著しく低下させることから、切削工具および刃物の大幅な高性能化・高寿命化を達成するには至っていない。   From the above viewpoint, the inventor has developed a method for refining a metal material using local melting of a material surface by a laser beam (Japanese Patent Laid-Open No. 2005-146378). This technique has made it possible to refine carbides in the surface layer of the metal material. However, the refined carbide precipitates alongside the grain boundaries of the metal matrix crystal grains, and the strength of the grain boundaries is significantly reduced, so that it is possible to achieve significant improvements in performance and life of cutting tools and blades. Has not reached.

特開2003−096551JP2003-0965551 特開2000−073152JP 2000-073152 特開2005−146378JP-A-2005-146378 新エネルギー・産業技術総合開発機構 「ナノメタル技術プロジェクト」 『ナノ組織制御による超高強度化・高耐食工具鋼の研究開発』報告書New Energy and Industrial Technology Development Organization “Nanometal Technology Project” “Research and Development of Ultra-High Strength and Corrosion Resistant Tool Steel by Nanostructure Control” report

従来の技術では、鉄鋼材の結晶粒微細化および炭化物の微細化を同時に達成することは困難である。発明者が開発した技術によって炭化物の微細化は可能であるが、炭化物の均一分散および鉄鋼材の結晶粒微細化については十分でない。   In the prior art, it is difficult to simultaneously achieve grain refinement of the steel material and refinement of the carbide. Although the refinement of the carbide is possible by the technique developed by the inventor, the uniform dispersion of the carbide and the refinement of the crystal grain of the steel material are not sufficient.

本発明は上記課題に鑑みなされたものであり、鉄鋼材の表層部における組織微細化を行う方法を提供し、切削工具および刃物等の高性能化・高寿命化を実現し得る、微細組織を有する鉄鋼材を提供し、組織微細領域を刃先に加工した刃物を提供するものである。   The present invention has been made in view of the above problems, and provides a method for refining the structure in the surface layer portion of a steel material, and has a fine structure that can realize high performance and long life of cutting tools and cutting tools. The steel material which has is provided and the cutter which processed the structure | tissue micro area | region into the blade edge | tip is provided.

図1に本発明の鉄鋼材の組織微細化方法の概念図を示す。本発明の鉄鋼材の組織微細化方法は炭化物微細化領域を形成する第1工程(S01)と組織微細化領域を形成する第2工程(S02)とを有している。第1工程として、鉄鋼材の表層部をレーザによって局部的に急速加熱して溶融溜まりを形成した後、該溶融溜まりを急速凝固することで炭化物微細化領域を形成する。第2工程として、第1工程で形成した炭化物微細化領域に摩擦攪拌プロセスを施し、組織微細化領域を形成する。 FIG. 1 shows a conceptual diagram of the structure refinement method of a steel material of the present invention. The structure refinement method of a steel material according to the present invention includes a first step (S01) for forming a carbide refined region and a second step (S02) for forming a refined region. As a first step, the surface layer portion of the steel material is rapidly heated locally by a laser to form a molten pool, and then the molten pool is rapidly solidified to form a carbide refined region. As a second step, a friction stir process is applied to the carbide refined region formed in the first step to form a microstructure refined region.

炭化物微細化領域が少なくとも部分的に重なるように第1工程を複数回実行することで、より広い炭化物微細化領域を形成することができる。また、炭化物微細化領域の内側において第2工程を複数回実行することで、より広い組織微細化領域を形成することができる。   By executing the first step a plurality of times so that the carbide refined regions at least partially overlap, a wider carbide refined region can be formed. Further, by executing the second step a plurality of times inside the carbide refined region, a wider texture refined region can be formed.

第1工程で用いるレーザとして半導体レーザを用いることで、割れや欠陥等を生じることなく、良好な炭化物微細化領域を形成させることができる。また、鉄鋼材としては炭素含有量が比較的多い(例えば0.3重量%以上)ものを用いることが好ましく、工具鋼を用いることが最も好ましい。   By using a semiconductor laser as the laser used in the first step, a good carbide refined region can be formed without causing cracks or defects. Moreover, it is preferable to use a steel material having a relatively high carbon content (for example, 0.3% by weight or more), and most preferably a tool steel.

本発明の微細組織を有する鉄鋼材は5μm〜50μmの母材結晶粒径を有する工具鋼であって、母材結晶粒径が10nm〜1μmに微細化された改質領域を有する工具鋼である。改質領域と非改質領域は一体不可分であり、事後的に接合、接着等されたものではない。また、改質領域における炭化物の粒径は10nm〜1μmであることが好ましい。 The steel material having a microstructure of the present invention is a tool steel having a base crystal grain size of 5 μm to 50 μm, and a tool steel having a modified region in which the base crystal grain size is refined to 10 nm to 1 μm. . The modified region and the non-modified region are inseparable from each other, and are not joined or bonded after the fact. Moreover, it is preferable that the particle size of the carbide | carbonized_material in a modification | reformation area | region is 10 nm-1 micrometer.

本発明の刃物は組織微細化領域を刃先部分として加工されているものである。組織微細化領域は、刃物に加工される鉄鋼材の表層部をレーザによって局部的に急速加熱して溶融溜まりを形成した後、該溶融溜まりを急速凝固することで炭化物微細化領域を形成し、当該炭化物微細化領域に摩擦攪拌プロセスを施すことで形成される。組織微細化領域の母材結晶粒径は10nm〜1μm、組織微細化領域に分散している炭化物の粒径は10nm〜1μmであることが好ましいが、刃物の製造にあたっては適宜焼き入れや焼き戻し等の熱処理を加える場合があり、該熱処理によって組織微細化領域の母材結晶粒径および炭化物の粒径が増加する場合がある。   The cutting tool of the present invention is processed using the refined region of the structure as a cutting edge portion. The structure refinement region is formed by rapidly heating the surface layer of the steel material processed into the blade locally by a laser to form a molten pool, and then rapidly solidifying the molten pool to form a carbide refined region, It is formed by subjecting the carbide refined region to a friction stirring process. The base material crystal grain size in the microstructured region is preferably 10 nm to 1 μm, and the particle size of the carbide dispersed in the texture refined region is preferably 10 nm to 1 μm. In some cases, the base material crystal grain size and the carbide grain size in the microstructure refinement region may be increased by the heat treatment.

本発明の鉄鋼材の組織微細化方法では、レーザによる鉄鋼材の局所的な急速加熱および急速冷却と摩擦攪拌プロセスによる局所的な攪拌効果および結晶粒微細化効果とを利用して組織微細化領域の形成を図っているため、鉄鋼材表層近傍の任意の領域を簡便に組織微細化することができる。切削工具や刃物等の刃先に加工される部分のみを組織微細化することで、切削工具や刃物等の高性能化・長寿命化を低コストで実現することができる。また、鉄鋼材に対して高硬度、高強度、高耐摩耗性等が要求される場合に広く利用することができる。
本発明の微細組織を有する工具鋼は、母材の結晶粒および炭化物が微細化された改質領域を有しているため、該改質領域を切削工具や刃物等の刃先に用いることで切削工具や刃物等の高性能化・長寿命化を低コストで実現することができる。また、工具鋼に対して高硬度、高強度、高耐摩耗性等が要求される場合に広く利用することができる。
本発明の刃物は、母材の結晶粒および炭化物が微細化された改質領域を刃先に加工しているため、高性能化・長寿命化が低コストで実現されている。高硬度および高靭性を有する刃先は優れた切削能力を示すとともに、該切削能力を長時間維持することができる。また、刃先に存在する炭化物が微細であるため、該炭化物の脱落が刃物の寿命に及ぼす影響が極めて小さい。
In the structure refinement method of a steel material according to the present invention, the structure refinement region is utilized by utilizing local rapid heating and cooling of the steel material by laser and local stirring effect and crystal grain refining effect by friction stirring process. Therefore, it is possible to easily refine the structure of an arbitrary region in the vicinity of the steel material surface layer. By refining only the portion of the cutting edge, such as a cutting tool or cutting tool, which is processed, it is possible to realize high performance and long life of the cutting tool and cutting tool at a low cost. Further, it can be widely used when high hardness, high strength, high wear resistance and the like are required for steel materials.
Since the tool steel having a microstructure of the present invention has a modified region in which crystal grains and carbides of the base material are refined, cutting is performed by using the modified region for a cutting edge of a cutting tool or a cutting tool. High performance and long life of tools and blades can be realized at low cost. In addition, the tool steel can be widely used when high hardness, high strength, high wear resistance, etc. are required.
Since the cutting tool of the present invention processes the modified region in which the crystal grains and carbides of the base material are refined into the cutting edge, high performance and long life are realized at low cost. The cutting edge having high hardness and high toughness exhibits excellent cutting ability and can maintain the cutting ability for a long time. Further, since the carbides present at the cutting edge are fine, the influence of dropping of the carbides on the life of the blade is extremely small.

本発明の鉄鋼材の組織微細化方法の概念図である。It is a conceptual diagram of the structure refinement | miniaturization method of the steel material of this invention. 本発明の鉄鋼材の組織微細化方法の第1工程の概念図である。It is a conceptual diagram of the 1st process of the structure refinement | miniaturization method of the steel materials of this invention. 本発明の鉄鋼材の組織微細化方法の第1工程実施後における鉄鋼材の断面を示した模式図である。It is the schematic diagram which showed the cross section of the steel material after 1st process implementation of the structure refinement | miniaturization method of the steel material of this invention. 本発明の鉄鋼材の組織微細化方法の第1工程を複数回実施した後における鉄鋼材の断面を示した模式図である。It is the schematic diagram which showed the cross section of the steel material after implementing the 1st process of the structure refinement | miniaturization method of the steel material of this invention in multiple times. 本発明の鉄鋼材の組織微細化方法の第2工程の概念図である。It is a conceptual diagram of the 2nd process of the structure refinement | miniaturization method of the steel materials of this invention. 本発明の鉄鋼材の組織微細化方法の第2工程実施後における鉄鋼材の断面を示した模式図である。It is the schematic diagram which showed the cross section of the steel material after 2nd process implementation of the structure refinement | miniaturization method of the steel material of this invention. 本発明の微細組織を有する工具鋼の断面の模式図である。It is a schematic diagram of the cross section of the tool steel which has the microstructure of this invention. 本発明の刃物の断面の模式図である。It is a schematic diagram of the cross section of the cutter of this invention. 実施例1で得られた試料の全体写真である。2 is an overall photograph of the sample obtained in Example 1. 未処理のDC53板材の光学顕微鏡写真である。It is an optical microscope photograph of an unprocessed DC53 board | plate material. レーザの照射によって溶融、急速凝固した領域の光学顕微鏡写真である。It is an optical micrograph of a region melted and rapidly solidified by laser irradiation. 図11の拡大写真である。It is an enlarged photograph of FIG. 実施例2で得られた試料の全体写真である。2 is an overall photograph of a sample obtained in Example 2. 実施例2で得られた試料の断面の光学顕微鏡写真である。3 is an optical micrograph of a cross section of a sample obtained in Example 2. 実施例2で得られた試料のビッカース硬度測定結果である。It is a Vickers hardness measurement result of the sample obtained in Example 2. 組織微細化領域の走査型電子顕微鏡写真である。It is a scanning electron micrograph of a structure | tissue refinement | miniaturization area | region. 未処理のDC53板材のEDX定性分析結果である。It is an EDX qualitative analysis result of unprocessed DC53 board | plate material. 組織微細化領域のEDX定性分析結果である。It is an EDX qualitative analysis result of a structure refinement | miniaturization area | region. 実施例3で得られた試料の全体写真である。4 is an overall photograph of the sample obtained in Example 3. 実施例3で得られた試料の断面の光学顕微鏡写真である。4 is an optical micrograph of a cross section of a sample obtained in Example 3. 実施例3で得られた試料のビッカース硬度測定結果である。It is a Vickers hardness measurement result of the sample obtained in Example 3. 組織微細化領域を刃先として加工した鉋の写真である。It is the photograph of the wrinkles processed using the structure refinement | miniaturization area | region as the blade edge | tip. 組織微細化領域を刃先として加工した鉋の刃先の組織写真である。It is a structure | tissue photograph of the blade edge | tip of the scissors processed using the structure | tissue refinement | miniaturization area | region as a blade edge | tip. 組織微細化領域を刃先に加工した鉋の切削試験後の写真である。It is the photograph after the cutting test of the wrinkle which processed the structure refinement | miniaturization area | region into the blade edge | tip. 炭化物微細化領域を刃先に加工した鉋の切削試験後の写真である。It is the photograph after the cutting test of the wrinkle which processed the carbide | carbonized_material refinement | miniaturization area | region into the blade edge | tip. ベニアスライサーの写真である。It is a photograph of a veneer slicer. ベニアスライサーの刃先の組織写真である。It is an organization photograph of the cutting edge of a veneer slicer. 切削試験後のベニアスライサーの刃先の写真である。It is a photograph of the cutting edge of a veneer slicer after a cutting test. 切断試験後の作製したメスの刃先の写真である。It is the photograph of the blade edge | tip of the produced knife after a cutting test. 切断試験後の市販のメスの刃先の写真である。It is the photograph of the blade edge | tip of the commercially available scalpel after a cutting test.

符号の説明Explanation of symbols

10…レーザ光源
12…レーザビーム
14…鉄鋼材
16…溶融溜まり
18…工具鋼
20…炭化物微細化領域
22…組織微細化領域
30…ツール
DESCRIPTION OF SYMBOLS 10 ... Laser light source 12 ... Laser beam 14 ... Steel material 16 ... Molten pool 18 ... Tool steel 20 ... Carbide refinement | miniaturization area | region 22 ... Structure refinement | miniaturization area | region 30 ... Tool

本発明の鉄鋼材の組織微細化方法は、鉄鋼材の表層部をレーザによって局部的に急速加熱して溶融溜まりを形成した後、該溶融溜まりを急速凝固することで炭化物微細化領域を形成する第1工程と前記炭化物微細化領域に摩擦攪拌プロセスを施すことで組織微細化領域を形成する第2工程とを有している。なお、第1工程における鉄鋼材表層部の局所的な急速加熱および急速凝固には、マイクロプラズマ溶接等を用いることも可能である。 The structure refinement method of a steel material according to the present invention forms a carbide refined region by rapidly solidifying the surface of the steel material with a laser to form a molten pool and then rapidly solidifying the molten pool. A first step and a second step of forming a microstructure refined region by applying a friction stir process to the carbide refined region. In addition, microplasma welding etc. can also be used for the local rapid heating and rapid solidification of the steel material surface layer part in a 1st process.

図2は第1工程の実施例を示したものである。レーザ光源10から射出されたレーザビーム12を鉄鋼材14の表面近傍に集光させる。このようにレーザビーム12を鉄鋼材14に照射することで、鉄鋼材14の表層部を局部的に急速加熱し、表層部に溶融溜まり16を形成させる。また、レーザビーム12は走査方向に所定速度で走査され、レーザビーム12が溶融溜まり16から移動すると、周辺領域への熱拡散によって溶融溜まり16が急速凝固する。したがって、鉄鋼材14の表層部のうちレーザビーム12が走査された領域がレーザビーム12による急速加熱および急速凝固を受けることとなる。なお、レーザ光源10は鉄鋼材14の表層部を局部的に急速加熱することで溶融溜まり16を形成し得るレーザを発生するものであればよいが、半導体レーザを用いることが好ましい。   FIG. 2 shows an example of the first step. The laser beam 12 emitted from the laser light source 10 is condensed near the surface of the steel material 14. By irradiating the steel material 14 with the laser beam 12 in this way, the surface layer portion of the steel material 14 is rapidly heated locally, and a molten pool 16 is formed in the surface layer portion. The laser beam 12 is scanned at a predetermined speed in the scanning direction, and when the laser beam 12 moves from the melt pool 16, the melt pool 16 rapidly solidifies due to thermal diffusion to the peripheral region. Therefore, the region scanned with the laser beam 12 in the surface layer portion of the steel material 14 is subjected to rapid heating and rapid solidification by the laser beam 12. The laser light source 10 may be any laser light source that can generate a laser capable of forming the molten pool 16 by locally rapidly heating the surface layer portion of the steel material 14, but a semiconductor laser is preferably used.

図3は第1工程実施後における鉄鋼材の断面を示した模式図である。上述の溶融溜まり16が急速凝固し、鉄鋼材14の表層部に炭化物微細化領域20が形成される。より広い炭化物微細化領域20が必要な場合には、1回のレーザ走査で形成される炭化物微細化領域20が少なくとも部分的に重なるようにレーザの走査を複数回実行することで図4に示すような広い炭化物微細化領域20を得ることができる。   FIG. 3 is a schematic view showing a cross section of the steel material after the first step. The molten pool 16 is rapidly solidified, and a carbide refined region 20 is formed in the surface layer portion of the steel material 14. When a wider carbide refined region 20 is required, the laser scan is performed a plurality of times so that the carbide refined region 20 formed by one laser scan at least partially overlaps, as shown in FIG. Such a wide carbide refined region 20 can be obtained.

第2工程は第1工程で形成させた炭化物微細化領域に摩擦攪拌プロセスを施す工程である。摩擦攪拌プロセスは、1991年に英国のTWI(The
Welding Institute)で考案された接合技術である摩擦攪拌接合法を、金属材の表面改質法として応用したものである。摩擦攪拌接合は高速で回転する円柱状のツールを接合したい領域に圧入(ツール底面にプローブと呼ばれる突起を有しており、該プローブが圧入される)し、摩擦熱によって軟化した被接合材を攪拌しながら接合したい方向に走査することで接合を達成する技術である。回転するツールによって攪拌された領域は一般的に攪拌部と呼ばれ、接合条件によっては材料の均質化および結晶粒径の減少に伴う機械的特性の向上がもたらされる。摩擦攪拌による材料の均質化および結晶粒径の減少に伴う機械的特性の向上を表面改質として用いる技術が摩擦攪拌プロセスであり、近年広く研究の対象になっている。
The second step is a step of subjecting the carbide refined region formed in the first step to a friction stirring process. The friction stir process was established in 1991 by British TWI (The
The friction stir welding method, which is a joining technique devised by Welding Institute), is applied as a surface modification method for metal materials. Friction stir welding is performed by press-fitting into a region where a cylindrical tool rotating at a high speed is to be joined (having a protrusion called a probe on the bottom of the tool, and the probe is press-fitted), and softened by frictional heat This technique achieves joining by scanning in the direction of joining while stirring. The region agitated by the rotating tool is generally called an agitator, and depending on the joining conditions, the material is homogenized and the mechanical properties are improved with the reduction of the crystal grain size. A technique that uses as a surface modification a material homogenization by friction stirrer and an improvement in mechanical properties accompanying a decrease in crystal grain size is a friction stir process, and has been widely studied in recent years.

図5は第2工程の実施例を示したものである。炭化物微細化領域20に回転する円柱状のツール30を圧入し、炭化物微細化領域20に沿って走査させることで組織微細化領域22が形成される。ツール30の回転速度は100〜2000
rpm、移動速度は10〜1000 mm/min、圧縮荷重は4903〜98066N(500〜10000 kgf)が好ましいが、摩擦攪拌が達成できればこの限りではない。また、圧入されたツール30が炭化物微細化領域20の外に出てしまうと粗大な炭化物を巻き込んでしまうため、ツール30は炭化物微細化領域20の内側に圧入することが好ましい。ツール30の形状は炭化物微細化領域20に対する摩擦攪拌プロセスを達成できるものであればよく、ツール30の底面におけるプローブの有無やその形状等に制約を受けるものではない。
FIG. 5 shows an example of the second step. A columnar tool 30 that rotates into the carbide refined region 20 is press-fitted and scanned along the carbide refined region 20 to form the tissue refined region 22. The rotation speed of the tool 30 is 100 to 2000
The rpm, the moving speed is preferably 10 to 1000 mm / min, and the compressive load is preferably 4903 to 98066 N (500 to 10000 kgf), but this is not limited as long as frictional stirring can be achieved. Moreover, since the coarse carbide | carbonized_material will be involved when the press-fitted tool 30 comes out of the carbide | carbonized_material refinement | miniaturization area | region 20, it is preferable to press-fit the tool 30 inside the carbide | carbonized_material refinement | miniaturization area | region 20. The shape of the tool 30 may be any shape as long as it can achieve a friction stir process for the carbide refined region 20, and is not limited by the presence or absence of the probe on the bottom surface of the tool 30 or the shape thereof.

図6は第2工程実施後における鉄鋼材の断面を示した模式図である。炭化物微細化領域20に摩擦攪拌プロセスを施すことで、鉄鋼材14の表層部に組織微細化領域22が形成される。より広い組織微細化領域22が必要な場合には、1回のレーザ走査で形成される炭化物微細化領域20が少なくとも部分的に重なるようにレーザの走査を複数回実行することで広い炭化物微細化領域20を得た後、該炭化物微細化領域20に対して第2工程を複数回実行すればよい。   FIG. 6 is a schematic view showing a cross-section of the steel material after the second step. By subjecting the carbide refined region 20 to a friction stirring process, a microstructure refined region 22 is formed in the surface layer portion of the steel material 14. When a wider structure refinement region 22 is required, a wider carbide refinement is performed by performing laser scanning a plurality of times so that the carbide refinement region 20 formed by one laser scan at least partially overlaps. After obtaining the region 20, the second step may be performed a plurality of times on the carbide refined region 20.

本発明の微細組織を有する工具鋼は図7に示されるような断面を有している。工具鋼18の母材結晶粒径は5μm〜50μm、組織微細化領域22における母材結晶粒径は10nm〜1μmである。また、組織微細化領域22における炭化物の粒径は10nm〜1μmである。工具鋼18と組織微細化領域22は炭化物微細化領域20を介して連続的に存在しており、工具鋼18と組織微細化領域22を接合、接着等したものではない。   The tool steel having a microstructure of the present invention has a cross section as shown in FIG. The base crystal grain size of the tool steel 18 is 5 μm to 50 μm, and the base crystal grain size in the structure refinement region 22 is 10 nm to 1 μm. Moreover, the particle size of the carbide | carbonized_material in the structure | tissue refinement | miniaturization area | region 22 is 10 nm-1 micrometer. The tool steel 18 and the structure refinement region 22 are continuously present via the carbide refinement region 20, and the tool steel 18 and the structure refinement region 22 are not joined or bonded.

本発明の刃物は、例えば図8に示されるような断面を有しており、組織微細化領域22を刃先に加工している。鉄鋼材14の母材結晶粒径は5μm〜50μm、組織微細化領域22における母材結晶粒径は10nm〜1μmであることが好ましい。また、組織微細化領域22における炭化物の粒径は10nm〜1μmであることが好ましい。ここで、刃物の製造にあたっては適宜焼き入れや焼き戻し等の熱処理を加える場合があり、該熱処理によって組織微細化領域22の母材結晶粒径および炭化物の粒径が増加する場合がある。鉄鋼材14と組織微細化領域22は炭化物微細化領域20を介して連続的に存在しており、鉄鋼材14と組織微細化領域22を接合、接着等したものではない。   The cutting tool of the present invention has a cross section as shown in FIG. 8, for example, and the texture refined region 22 is processed into a cutting edge. The base material crystal grain size of the steel material 14 is preferably 5 μm to 50 μm, and the base crystal grain size in the structure refinement region 22 is preferably 10 nm to 1 μm. Moreover, it is preferable that the particle size of the carbide | carbonized_material in the structure | tissue refinement | miniaturization area | region 22 is 10 nm-1 micrometer. Here, in the manufacture of the blade, a heat treatment such as quenching and tempering may be appropriately performed, and the base material crystal grain size and the carbide grain size in the structure refinement region 22 may be increased by the heat treatment. The steel material 14 and the structure refinement region 22 exist continuously through the carbide refinement region 20, and the steel material 14 and the structure refinement region 22 are not joined, bonded, or the like.

以下に本発明の実施例及び比較例を図面を参照して説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例で被処理材として用いているDC53は汎用冷間ダイス鋼であり、優れた靭性等を有する工具鋼である。
実施例1
DC53板材に対し、半導体レーザ(出力:1kW)を用いて炭化物微細化領域を形成させた。レーザはDC53板材の表面でジャストフォーカス(DC53板材の表面におけるレーザ径は約1mm)とし、レーザの走査速度は1000mm/minとした。1回のレーザ走査で形成される炭化物微細化領域が少なくとも部分的に重なるように、1回のレーザ走査終了毎にレーザの照射位置をレーザ走査方向に対して垂直に0.7mmずつ移動させ、計5回のレーザ走査を実行した。得られた試料の写真を図9に示す。DC53板材の表面にレーザの照射によって形成された領域が存在するのが確認できる。
EXAMPLES Examples and comparative examples of the present invention will be described below with reference to the drawings, but the present invention is not limited to these examples. In addition, DC53 used as a to-be-processed material in an Example is general purpose cold die steel, and is tool steel which has the outstanding toughness etc.
Example 1
A carbide refined region was formed on the DC53 plate using a semiconductor laser (output: 1 kW). The laser was just focused on the surface of the DC53 plate (the laser diameter on the surface of the DC53 plate was about 1 mm), and the laser scanning speed was 1000 mm / min. The laser irradiation position is moved by 0.7 mm perpendicularly to the laser scanning direction at the end of each laser scan so that the carbide refined regions formed by one laser scan at least partially overlap each other. A total of 5 laser scans were performed. A photograph of the obtained sample is shown in FIG. It can be confirmed that there is a region formed by laser irradiation on the surface of the DC53 plate material.

図10に未処理のDC53板材の光学顕微鏡写真、図11にレーザの照射によって溶融、急速凝固した領域の光学顕微鏡写真をそれぞれ示す。なお、光学顕微鏡観察にあたっては組織観察を容易にするために、各試料に対して3%ナイタール液でエッチング処理を行っている。未処理領域には10μmを超えるような粗大な炭化物が確認されるが、レーザによる処理を受けた領域の炭化物は1μm以下にまで微細化されている。図12に図11で示した領域をより高倍率で観察した結果を示すが、微細化された炭化物が母材の結晶粒界に並んで存在しているのが確認される。   FIG. 10 shows an optical micrograph of an untreated DC53 plate, and FIG. 11 shows an optical micrograph of a region melted and rapidly solidified by laser irradiation. In the observation with an optical microscope, each sample is etched with a 3% nital solution in order to facilitate the observation of the structure. Coarse carbides exceeding 10 μm are confirmed in the untreated region, but the carbides in the region subjected to the laser treatment are refined to 1 μm or less. FIG. 12 shows the result of observing the region shown in FIG. 11 at a higher magnification, and it is confirmed that the refined carbides exist side by side at the crystal grain boundaries of the base material.

表1にレーザの照射によって溶融、急速凝固した領域の表面から深さ方向へのビッカース硬度を示す。ビッカース硬度は荷重2.94N(300gf)、保持時間15秒の条件で測定を行った。未処理領域のビッカース硬度は200〜300
Hv程度であるが、レーザによる処理を施した領域のビッカース硬度は500Hv前後にまで上昇している。
Table 1 shows the Vickers hardness in the depth direction from the surface of the region melted and rapidly solidified by laser irradiation. The Vickers hardness was measured under the conditions of a load of 2.94 N (300 gf) and a holding time of 15 seconds. Vickers hardness of untreated area is 200-300
Although it is about Hv, the Vickers hardness of the region subjected to the treatment with the laser has increased to around 500 Hv.

実施例2
DC53板材にレーザによる処理を施して炭化物微細化領域を形成させた後、該炭化物微細化領域に対して摩擦攪拌プロセスを施した。炭化物微細化領域の形成には半導体レーザ(出力:1kW)を用い、レーザはDC53板材の表面でジャストフォーカス(DC53板材の表面におけるレーザ径は約1mm)とした。また、レーザの走査速度は1200mm/minとした。1回のレーザ走査で形成される炭化物微細化領域が少なくとも部分的に重なるように、1回のレーザ走査終了毎にレーザの照射位置をレーザ走査方向に対して垂直に0.7mmずつ移動させ、計15回のレーザ走査を実行した。摩擦攪拌プロセスには直径が10mmの円柱形状をした超硬合金製のツールを用い、400rpmの速度で回転する該ツールを2600kgの荷重で炭化物微細化領域に圧入させた。ツールの移動速度は400mm/minとし、アルゴンガスをフローさせることでツールおよび試料の酸化を防止した。なお、ツールの挿入位置は炭化物微細化領域の中央とし、ツールが未処理のDC53板材を攪拌しないように十分留意した。
Example 2
After the DC53 plate material was treated with a laser to form a carbide refined region, a friction stirring process was applied to the carbide refined region. A semiconductor laser (output: 1 kW) was used to form the carbide refined region, and the laser was just focused on the surface of the DC53 plate (the laser diameter on the surface of the DC53 plate was about 1 mm). The laser scanning speed was 1200 mm / min. The laser irradiation position is moved by 0.7 mm perpendicularly to the laser scanning direction at the end of each laser scan so that the carbide refined regions formed by one laser scan at least partially overlap each other. A total of 15 laser scans were performed. For the friction stirring process, a cemented carbide tool having a cylindrical shape with a diameter of 10 mm was used, and the tool rotating at a speed of 400 rpm was press-fitted into the carbide refined region with a load of 2600 kg. The moving speed of the tool was set to 400 mm / min, and oxidation of the tool and the sample was prevented by flowing argon gas. The insertion position of the tool was set at the center of the carbide refined region, and sufficient care was taken so that the tool did not stir the untreated DC53 plate material.

図13に得られた試料の表面の写真を示す。レーザによって処理された領域に対して摩擦攪拌プロセスが施されている。摩擦攪拌プロセスはレーザ処理によって処理された領域内で施されており、未処理のDC53板材を摩擦攪拌していないことが確認できる。   FIG. 13 shows a photograph of the surface of the obtained sample. A friction stir process is applied to the area treated by the laser. The friction stir process is performed in the region treated by the laser treatment, and it can be confirmed that the untreated DC 53 plate material is not friction stir.

図14に得られた試料の断面の光学顕微鏡写真を示す。なお、光学顕微鏡観察にあたっては組織観察を容易にするために、3%ナイタール液でエッチング処理を行っている。DC53板材の表面から約1mmの深さにかけてレーザ処理によって形成された炭化物微細化領域が存在し、該炭化物微細化領域において表面から約200μmの深さにかけて組織微細化領域が存在している。本実施例では摩擦攪拌プロセスにプローブを有さない円柱状ツールを使用しているため炭化物微細化領域に対するツールの圧入量が小さく、摩擦攪拌の影響が炭化物微細化領域の全域には至っていない。   FIG. 14 shows an optical micrograph of a cross section of the obtained sample. In the observation with an optical microscope, an etching process is performed with a 3% nital solution in order to facilitate the observation of the structure. There is a carbide refined region formed by laser processing from the surface of the DC53 plate material to a depth of about 1 mm, and a microstructure refined region exists from the surface to a depth of about 200 μm in the carbide refined region. In this embodiment, since a cylindrical tool having no probe is used in the friction stir process, the amount of press-fitting of the tool into the carbide refined region is small, and the influence of the friction stir does not reach the entire region of the carbide refined region.

図15に得られた試料に対するビッカース硬度の測定結果を示す。ビッカース硬度は荷重2.94N(300gf)、保持時間15秒の条件で測定を行った。摩擦攪拌プロセスによって形成された組織微細化領域のビッカース硬度はレーザ処理のみで形成された炭化物微細化領域の硬度を大幅に上回っている。   FIG. 15 shows the measurement results of Vickers hardness for the obtained sample. The Vickers hardness was measured under the conditions of a load of 2.94 N (300 gf) and a holding time of 15 seconds. The Vickers hardness of the microstructure refined region formed by the friction stir process is significantly higher than the hardness of the carbide refined region formed only by the laser treatment.

図16に組織微細化領域の走査型電子顕微鏡写真を示す。なお、走査型電子顕微鏡観察にあたっては組織観察を容易にするために、3%ナイタール液でエッチング処理を行っている。母材の結晶粒径は明らかに1μmを下回っており、炭化物は母材の結晶粒径よりも微細になっているものと考えられる。   FIG. 16 shows a scanning electron micrograph of the microstructured region. In the observation with a scanning electron microscope, an etching process is performed with a 3% nital solution in order to facilitate the observation of the structure. The crystal grain size of the base material is clearly less than 1 μm, and it is considered that the carbide is finer than the crystal grain size of the base material.

図17に未処理のDC53板材のEDX定性分析結果を、図18にレーザ処理および摩擦攪拌プロセスによって形成された組織微細化領域のEDX定性分析結果をそれぞれ示す。未処理のDC53板材と組織微細化領域との構成元素は同じであり、本発明の鉄鋼材の組織微細化方法が他元素の添加等によるものでないことが明らかである。   FIG. 17 shows the EDX qualitative analysis result of the unprocessed DC53 plate material, and FIG. 18 shows the EDX qualitative analysis result of the structure refinement region formed by the laser processing and the friction stir process. The constituent elements of the unprocessed DC53 plate material and the structure refinement region are the same, and it is clear that the structure refinement method of the steel material of the present invention is not due to the addition of other elements.

実施例3
DC53板材にレーザによる処理を施して炭化物微細化領域を形成させた後、該炭化物微細化領域に対して摩擦攪拌プロセスを施した。炭化物微細化領域の形成には半導体レーザ(出力:1kW)を用い、レーザはDC53板材の表面でジャストフォーカス(DC53板材の表面におけるレーザ径は約1mm)とした。また、レーザの走査速度は1200mm/minとした。1回のレーザ走査で形成される炭化物微細化領域が少なくとも部分的に重なるように、1回のレーザ走査終了毎にレーザの照射位置をレーザ走査方向に対して垂直に0.7mmずつ移動させ、計15回のレーザ走査を実行した。摩擦攪拌プロセスには直径が10mmの円柱形状をした超硬合金製のツールを用い、400rpmの速度で回転する該ツールを2600kgの荷重で炭化物微細化領域に圧入させた。ツールの移動速度は400mm/minとし、アルゴンガスをフローさせることでツールおよび試料の酸化を防止した。なお、ツールの挿入位置は炭化物微細化領域からツールの約半分が未処理のDC53板材にかかるように調整し、ツールが未処理のDC53板材と炭化物微細化領域を同時に攪拌するようにした。
Example 3
After the DC53 plate material was treated with a laser to form a carbide refined region, a friction stirring process was applied to the carbide refined region. A semiconductor laser (output: 1 kW) was used to form the carbide refined region, and the laser was just focused on the surface of the DC53 plate (the laser diameter on the surface of the DC53 plate was about 1 mm). The laser scanning speed was 1200 mm / min. The laser irradiation position is moved by 0.7 mm perpendicularly to the laser scanning direction at the end of each laser scan so that the carbide refined regions formed by one laser scan at least partially overlap each other. A total of 15 laser scans were performed. For the friction stirring process, a cemented carbide tool having a cylindrical shape with a diameter of 10 mm was used, and the tool rotating at a speed of 400 rpm was press-fitted into the carbide refined region with a load of 2600 kg. The moving speed of the tool was set to 400 mm / min, and oxidation of the tool and the sample was prevented by flowing argon gas. The insertion position of the tool was adjusted so that about half of the tool was applied to the unprocessed DC53 plate material from the carbide refined region, and the tool stirred the unprocessed DC53 plate material and the carbide refined region simultaneously.

図19に得られた試料の表面の写真を示す。レーザによって処理された領域と未処理の領域とに対して同時に摩擦攪拌プロセスが施されている。摩擦攪拌プロセスに用いたツールのほぼ中心が、レーザによって処理された領域と未処理の領域との境界付近を通過しているのが確認できる。   FIG. 19 shows a photograph of the surface of the obtained sample. A friction stir process is simultaneously applied to the region treated by the laser and the untreated region. It can be confirmed that almost the center of the tool used in the friction stir process passes near the boundary between the region treated by the laser and the untreated region.

図20に得られた試料の断面の光学顕微鏡写真を示す。なお、光学顕微鏡観察にあたっては組織観察を容易にするために、3%ナイタール液でエッチング処理を行っている。DC53板材の表面から約1mmの深さにかけてレーザ処理によって形成された炭化物微細化領域が存在し、該炭化物微細化領域において表面から約200μmの深さにかけて組織微細化領域が存在している。また、摩擦攪拌プロセスを炭化物微細化領域と未処理のDC53板材とに対して同時に行っているため、組織微細化領域が炭化物微細化領域外にも存在していることに加え、表面近傍の組織微細化領域には比較的粗大な炭化物が存在している。摩擦攪拌プロセスによる塑性流動によって未処理のDC53板材に存在する粗大な炭化物が組織微細化領域に混入したものと考えられる。本実施例では摩擦攪拌プロセスにプローブを有さない円柱状ツールを使用しているため炭化物微細化領域に対するツールの圧入量が小さく、摩擦攪拌の影響が炭化物微細化領域の全域には至っていない。   FIG. 20 shows an optical micrograph of a cross section of the obtained sample. In the observation with an optical microscope, an etching process is performed with a 3% nital solution in order to facilitate the observation of the structure. There is a carbide refined region formed by laser processing from the surface of the DC53 plate material to a depth of about 1 mm, and a microstructure refined region exists from the surface to a depth of about 200 μm in the carbide refined region. In addition, since the friction stir process is simultaneously performed on the carbide refined region and the unprocessed DC53 plate material, the microstructure refined region exists outside the carbide refined region, and the structure in the vicinity of the surface A relatively coarse carbide exists in the miniaturized region. It is considered that coarse carbides present in the untreated DC 53 plate material are mixed into the refined region of the structure due to plastic flow by the friction stir process. In this embodiment, since a cylindrical tool having no probe is used in the friction stir process, the amount of press-fitting of the tool into the carbide refined region is small, and the influence of the friction stir does not reach the entire region of the carbide refined region.

図21に得られた試料に対するビッカース硬度の測定結果を示す。ビッカース硬度は荷重2.94N(300gf)、保持時間15秒の条件で測定を行った。摩擦攪拌プロセスによって形成された組織微細化領域のビッカース硬度はレーザ処理のみで形成された炭化物微細化領域の硬度を大幅に上回っている。   FIG. 21 shows the measurement results of Vickers hardness for the obtained sample. The Vickers hardness was measured under the conditions of a load of 2.94 N (300 gf) and a holding time of 15 seconds. The Vickers hardness of the microstructure refined region formed by the friction stir process is significantly higher than the hardness of the carbide refined region formed only by the laser treatment.

実施例4
DC53板材にレーザによる処理を施して炭化物微細化領域を形成させた後、該炭化物微細化領域に対して摩擦攪拌プロセスを施した。炭化物微細化領域の形成には半導体レーザ(出力:1kW)を用い、レーザはDC53板材の表面でジャストフォーカス(DC53板材の表面におけるレーザ径は約1mm)とした。また、レーザの走査速度は1200mm/minとした。1回のレーザ走査で形成される炭化物微細化領域が少なくとも部分的に重なるように、1回のレーザ走査終了毎にレーザの照射位置をレーザ走査方向に対して垂直に0.7mmずつ移動させ、計15回のレーザ走査を実行した。摩擦攪拌プロセスには直径が10mmの円柱形状をした超硬合金製のツールを用い、400rpmの速度で回転する該ツールを2600kgの荷重で炭化物微細化領域に圧入させた。ツールの移動速度は400mm/minとし、アルゴンガスをフローさせることでツールおよび試料の酸化を防止した。その後、摩擦攪拌プロセスを施した領域(組織微細化領域)を刃先として加工し、鉋を作製した。また比較として、摩擦攪拌プロセスを施していない炭化物微細化領域を刃先として加工した鉋も作製した。
Example 4
After the DC53 plate material was treated with a laser to form a carbide refined region, a friction stirring process was applied to the carbide refined region. A semiconductor laser (output: 1 kW) was used to form the carbide refined region, and the laser was just focused on the surface of the DC53 plate (the laser diameter on the surface of the DC53 plate was about 1 mm). The laser scanning speed was 1200 mm / min. The laser irradiation position is moved by 0.7 mm perpendicularly to the laser scanning direction at the end of each laser scan so that the carbide refined regions formed by one laser scan at least partially overlap each other. A total of 15 laser scans were performed. A cemented carbide tool having a cylindrical shape with a diameter of 10 mm was used for the friction stirring process, and the tool rotating at a speed of 400 rpm was press-fitted into the carbide refined region with a load of 2600 kg. The moving speed of the tool was set to 400 mm / min, and oxidation of the tool and the sample was prevented by flowing argon gas. Thereafter, the region subjected to the friction stir process (structure refinement region) was processed as a cutting edge to produce a scissors. For comparison, a scissor was also fabricated using a carbide refined region that had not been subjected to the friction stir process as a cutting edge.

組織微細化領域を刃先として加工した鉋の写真および刃先の組織写真を図22および図23にそれぞれ示す。刃先部分の組織は非常に微細化されており、当該領域に分散している炭化物の粒径は1μmより小さいことが確認できる。   FIGS. 22 and 23 show a photograph of a wrinkle processed with the structure refinement region as a blade edge and a structure photograph of the blade edge, respectively. It can be confirmed that the structure of the cutting edge portion is very fine, and the particle size of the carbide dispersed in the region is smaller than 1 μm.

作製した鉋でLVLと呼ばれるベニア板を切削し、鉋の特性評価を行った。切削条件は切削速度:96mm/min、切り込み量:0.15mm、刃物台角度:35°、刃物刃先角度:31°とし、長さ1.8mのLVL板を5枚切削した後、刃先形状を光学顕微鏡で観察した。組織微細化領域を刃先に加工した鉋の写真を図24、炭化物微細化領域を刃先に加工した鉋の写真を図25にそれぞれ示す。炭化物微細化領域を刃先に加工した鉋の刃先が大きく変形しているのに対し、組織微細化領域を刃先に加工した鉋の刃先はほとんど変形していない。   The veneer board called LVL was cut with the produced scissors, and the characteristics of the scissors were evaluated. Cutting conditions were as follows: cutting speed: 96 mm / min, cutting depth: 0.15 mm, tool post angle: 35 °, blade edge angle: 31 °, and after cutting 5 LVL plates with a length of 1.8 m, the shape of the blade edge was Observed with an optical microscope. FIG. 24 shows a photograph of a wrinkle processed with a texture refined region with a cutting edge, and FIG. 25 shows a photograph of a wrinkle processed with a carbide refined region with a cutting edge. The cutting edge of the scissors processed using the carbide refined region as the cutting edge is greatly deformed, whereas the cutting edge of the scissors processed using the microstructure refined region as the cutting edge is hardly deformed.

実施例5
DC53板材にレーザによる処理を施して炭化物微細化領域を形成させた後、該炭化物微細化領域に対して摩擦攪拌プロセスを施した。炭化物微細化領域の形成には半導体レーザ(出力:1kW)を用い、レーザはDC53板材の表面でジャストフォーカス(DC53板材の表面におけるレーザ径は約1mm)とした。また、レーザの走査速度は1200mm/minとした。1回のレーザ走査で形成される炭化物微細化領域が少なくとも部分的に重なるように、1回のレーザ走査終了毎にレーザの照射位置をレーザ走査方向に対して垂直に0.7mmずつ移動させ、計15回のレーザ走査を実行した。摩擦攪拌プロセスには直径が10mmの円柱形状をした超硬合金製のツールを用い、400rpmの速度で回転する該ツールを2600kgの荷重で炭化物微細化領域に圧入させた。ツールの移動速度は400mm/minとし、アルゴンガスをフローさせることでツールおよび試料の酸化を防止した。その後、摩擦攪拌プロセスを施した領域(組織微細化領域)を刃先として加工し、木工用刃物(ベニアスライサー)を作製した。
Example 5
After the DC53 plate material was treated with a laser to form a carbide refined region, a friction stirring process was applied to the carbide refined region. A semiconductor laser (output: 1 kW) was used to form the carbide refined region, and the laser was just focused on the surface of the DC53 plate (the laser diameter on the surface of the DC53 plate was about 1 mm). The laser scanning speed was 1200 mm / min. The laser irradiation position is moved by 0.7 mm perpendicularly to the laser scanning direction at the end of each laser scan so that the carbide refined regions formed by one laser scan at least partially overlap each other. A total of 15 laser scans were performed. For the friction stirring process, a cemented carbide tool having a cylindrical shape with a diameter of 10 mm was used, and the tool rotating at a speed of 400 rpm was press-fitted into the carbide refined region with a load of 2600 kg. The moving speed of the tool was set to 400 mm / min, and oxidation of the tool and the sample was prevented by flowing argon gas. Then, the area | region (structure refinement | miniaturization area | region) which gave the friction stirring process was processed as a blade edge | tip, and the woodworking cutter (Veneer slicer) was produced.

組織微細化領域を刃先として加工したベニアスライサーの写真および刃先の組織写真を図26および図27にそれぞれ示す。刃先部分の組織は非常に微細化されており、当該領域に分散している炭化物の粒径は1μmより小さいことが確認できる。 A photograph of a veneer slicer processed using the microstructured region as a cutting edge and a structure photograph of the cutting edge are shown in FIGS. 26 and 27, respectively. It can be confirmed that the structure of the cutting edge portion is very fine, and the particle size of the carbide dispersed in the region is smaller than 1 μm.

作製したベニアスライサーで杉丸太を切削し、ベニアスライサーの特性評価を行った。切削条件は切削速度:23mm/min、切り込み量:0.3mm、刃物刃先角度:20°とし、約17mの切削後、刃先形状を光学顕微鏡で観察した。切削試験後の刃先の写真を図28に示す。刃先に顕著な欠け等は観察されず、良好な形状を維持していることが確認できる。また、従来のベニアスライサーで切削された単板(削られた薄板)の薄板化は150μm程度が限界であるが、今回作製したベニアスライサーでは約75μmの単板が得られた。   Cedar logs were cut with the prepared veneer slicer, and the characteristics of the veneer slicer were evaluated. Cutting conditions were a cutting speed: 23 mm / min, a cutting amount: 0.3 mm, a blade edge angle: 20 °, and the cutting edge shape was observed with an optical microscope after cutting about 17 m. A photograph of the cutting edge after the cutting test is shown in FIG. It can be confirmed that no noticeable chipping or the like is observed on the blade edge and the good shape is maintained. Further, the thin plate of a single plate (cut thin plate) cut with a conventional veneer slicer is limited to about 150 μm, but the veneer slicer produced this time has obtained a single plate of about 75 μm.

実施例6
DC53板材にレーザによる処理を施して炭化物微細化領域を形成させた後、該炭化物微細化領域に対して摩擦攪拌プロセスを施した。炭化物微細化領域の形成には半導体レーザ(出力:1kW)を用い、レーザはDC53板材の表面でジャストフォーカス(DC53板材の表面におけるレーザ径は約1mm)とした。また、レーザの走査速度は1200mm/minとした。1回のレーザ走査で形成される炭化物微細化領域が少なくとも部分的に重なるように、1回のレーザ走査終了毎にレーザの照射位置をレーザ走査方向に対して垂直に0.7mmずつ移動させ、計15回のレーザ走査を実行した。摩擦攪拌プロセスには直径が10mmの円柱形状をした超硬合金製のツールを用い、400rpmの速度で回転する該ツールを2600kgの荷重で炭化物微細化領域に圧入させた。ツールの移動速度は400mm/minとし、アルゴンガスをフローさせることでツールおよび試料の酸化を防止した。その後、摩擦攪拌プロセスを施した領域(組織微細化領域)を刃先として加工し、メスを作製した。
Example 6
After the DC53 plate material was treated with a laser to form a carbide refined region, a friction stirring process was applied to the carbide refined region. A semiconductor laser (output: 1 kW) was used to form the carbide refined region, and the laser was just focused on the surface of the DC53 plate (the laser diameter on the surface of the DC53 plate was about 1 mm). The laser scanning speed was 1200 mm / min. The laser irradiation position is moved by 0.7 mm perpendicularly to the laser scanning direction at the end of each laser scan so that the carbide refined regions formed by one laser scan at least partially overlap each other. A total of 15 laser scans were performed. For the friction stirring process, a cemented carbide tool having a cylindrical shape with a diameter of 10 mm was used, and the tool rotating at a speed of 400 rpm was press-fitted into the carbide refined region with a load of 2600 kg. The moving speed of the tool was set to 400 mm / min, and oxidation of the tool and the sample was prevented by flowing argon gas. Then, the area | region (structure refinement | miniaturization area | region) which gave the friction stirring process was processed as a blade edge | tip, and the knife was produced.

作製したメスおよび市販のメスで一般的なコピー用紙(上質紙)を切断し、切断枚数および刃先形状の変化を観察することでメスの特性評価を行った。950gコピー用紙210枚の束を固定したメスの上に置き(刃面とコピー用紙の角度は15°)、当該束を3000mm/minで移動させ、何枚のコピー用紙が切断されているかを計測した。1つのメスについて、連続20回の切断試験を行い、切断枚数の変化を観察した。なお、1種類のメスについて、連続20回の切断試験を6回行った。   A general copy paper (high quality paper) was cut with the produced knife and a commercially available knife, and the characteristics of the knife were evaluated by observing changes in the number of cut sheets and the shape of the blade edge. Place a bundle of 210 sheets of 950g copy paper on a fixed knife (the angle between the blade surface and the copy paper is 15 °), move the bundle at 3000 mm / min, and measure how many copy sheets are cut. did. One knife was subjected to continuous 20 cutting tests, and the change in the number of cuts was observed. In addition, about 20 types of cutting | disconnection tests, it carried out 6 times about one type of knife.

作製したメスおよび市販のメスの切断枚数を表2および表3にそれぞれ示す。全ての切断試験において、作製したメスによる切断枚数は市販のメスによる切断枚数より多い。また、切断試験回数が増えるにつれて市販のメスによる切断枚数が減少するのに対し、作製したメスによる切断枚数は殆ど減少していない。この結果は、作製したメスが優れた切れ味と長寿命を兼ね備えていることを示している。   Tables 2 and 3 show the number of cuts of the produced knife and the commercially available knife, respectively. In all the cutting tests, the number of sheets cut with the produced knife is larger than the number of sheets cut with a commercially available knife. Further, as the number of cutting tests increases, the number of cuts with a commercially available scalpel decreases, whereas the number of cuts with a produced scalpel hardly decreases. This result shows that the produced knife has excellent sharpness and long life.

作製したメスの切断試験後の刃先形状を図29に、市販のメスの切断試験後の刃先形状を図30にそれぞれ示す。市販のメスの刃先が大きく潰れているのに対し、作製したメスの刃先形状は殆ど変化していない。市販のメスと比較して、製造したメスは切断試験後も刃先の鋭さを維持していることが確認できる。   The cutting edge shape after the cutting test of the produced knife is shown in FIG. 29, and the cutting edge shape after the cutting test of a commercially available knife is shown in FIG. While the blade edge of a commercially available knife is greatly crushed, the blade edge shape of the knife produced is hardly changed. Compared with a commercially available knife, it can be confirmed that the knife produced maintains the sharpness of the cutting edge even after the cutting test.

Claims (9)

鉄鋼材の表層部をレーザによって局部的に急速加熱して溶融溜まりを形成した後、該溶融溜まりを急速凝固することで炭化物微細化領域を形成する第1工程と、
前記炭化物微細化領域に摩擦攪拌プロセスを施すことで組織微細化領域を形成する第2工程と、
を有する鉄鋼材の組織微細化方法。
A first step of forming a carbide refined region by rapidly solidifying the molten pool after rapidly heating a surface layer portion of the steel material locally by a laser to form a molten pool;
A second step of forming a microstructure refined region by applying a friction stirring process to the carbide refined region;
A method for refining the structure of a steel material having
前記炭化物微細化領域が少なくとも部分的に重なるように、
前記第1工程が複数回実行されることを特徴とする請求項1に記載の鉄鋼材の組織微細化手法。
So that the carbide refined region at least partially overlaps,
The structure refinement method for a steel material according to claim 1, wherein the first step is executed a plurality of times.
前記炭化物微細化領域の内側において前記第2工程が複数回実行されることを特徴とする請求項1〜2いずれか1項に記載の鉄鋼材の組織微細化手法。 3. The structure refinement method for a steel material according to claim 1, wherein the second step is performed a plurality of times inside the carbide refined region. 前記レーザとして半導体レーザを用いることを特徴とする請求項1〜3いずれか1項に記載の鉄鋼材の組織微細化手法。 The method for refining a structure of a steel material according to any one of claims 1 to 3, wherein a semiconductor laser is used as the laser. 前記鉄鋼材として工具鋼を用いることを特徴とする請求項1〜4いずれか1項に記載の鉄鋼材の組織微細化手法。 Tool steel is used as said steel material, The structure refinement | miniaturization method of the steel material of any one of Claims 1-4 characterized by the above-mentioned. 5μm〜50μmの母材結晶粒径を有する工具鋼であって、
前記母材結晶粒径が10nm〜1μmに微細化された改質領域を有する工具鋼。
A tool steel having a base crystal grain size of 5 μm to 50 μm,
A tool steel having a modified region in which the base material crystal grain size is refined to 10 nm to 1 μm.
前記改質領域における炭化物の粒径が10nm〜1μmである請求項6に記載の工具鋼。   The tool steel according to claim 6, wherein the grain size of carbide in the modified region is 10 nm to 1 μm. 請求項1〜5いずれか1項に記載の鉄鋼材の組織微細化手法によって刃先部分の組織が微細化された刃物。   A blade in which the structure of the cutting edge portion is refined by the structure refinement method of the steel material according to any one of claims 1 to 5. 炭化物微細化領域と組織微細化領域とを有し、
前記組織微細化領域を刃先として加工した刃物。
Having a carbide refined region and a texture refined region;
A cutting tool machined with the microstructured region as a cutting edge.
JP2009534445A 2007-09-27 2008-09-26 Method for refining the structure of steel material, steel material having fine structure and blade Active JP5419046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009534445A JP5419046B2 (en) 2007-09-27 2008-09-26 Method for refining the structure of steel material, steel material having fine structure and blade

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007250587 2007-09-27
JP2007250587 2007-09-27
PCT/JP2008/067565 WO2009041665A1 (en) 2007-09-27 2008-09-26 Method for refining texture of ferrous material, and ferrous material and blade having microscopic texture
JP2009534445A JP5419046B2 (en) 2007-09-27 2008-09-26 Method for refining the structure of steel material, steel material having fine structure and blade

Publications (2)

Publication Number Publication Date
JPWO2009041665A1 true JPWO2009041665A1 (en) 2011-10-06
JP5419046B2 JP5419046B2 (en) 2014-02-19

Family

ID=40511545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009534445A Active JP5419046B2 (en) 2007-09-27 2008-09-26 Method for refining the structure of steel material, steel material having fine structure and blade

Country Status (3)

Country Link
EP (1) EP2241642A1 (en)
JP (1) JP5419046B2 (en)
WO (1) WO2009041665A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094476A (en) * 2015-11-27 2017-06-01 株式会社Amc Scissors made of cemented carbide and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704524B2 (en) * 2009-11-17 2015-04-22 高周波熱錬株式会社 Method for surface modification of metal materials
AU2011230222A1 (en) * 2010-03-25 2012-11-15 Kabushikikaisha Amc Method for forming metal membrane
JP5818411B2 (en) * 2010-08-05 2015-11-18 株式会社東芝 High corrosion resistance surface treatment method
JP5871230B2 (en) * 2011-12-27 2016-03-01 公立大学法人 滋賀県立大学 Tool having a cutting edge part, manufacturing method of a tool having a cutting edge part, and manufacturing method of a tool manufacturing intermediate having a cutting edge part
RU2566224C1 (en) * 2014-05-20 2015-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тверскй государственный технический университет" Method of strengthening of shearing die
JP7343099B2 (en) * 2019-07-18 2023-09-12 株式会社アイシン Heat treatment method
JP7432842B2 (en) 2019-12-04 2024-02-19 日本製鉄株式会社 Partial composite steel material and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2961263B1 (en) 1998-08-28 1999-10-12 大阪大学長 Manufacturing method of ultra-fine structure high strength metal sheet by repeated lap joint rolling
JP2001032058A (en) * 1999-07-22 2001-02-06 Hitachi Metals Ltd Method for modifying surface of metallic material
JP2002346770A (en) * 2001-05-24 2002-12-04 Hitachi Ltd Aluminum-based bonded structure
JP2003096551A (en) 2001-09-21 2003-04-03 Toto Ltd METHOD OF PRODUCING SUPERPLASTIC Cu-Zn ALLOY
US6913186B2 (en) * 2003-09-11 2005-07-05 The Boeing Company Apparatus and method for friction stir welding with a variable speed pin
JP2005146378A (en) * 2003-11-18 2005-06-09 Amc:Kk Surface modifying method for c-containing material
JP4335819B2 (en) * 2005-01-12 2009-09-30 三菱重工業株式会社 Metal processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094476A (en) * 2015-11-27 2017-06-01 株式会社Amc Scissors made of cemented carbide and manufacturing method thereof

Also Published As

Publication number Publication date
JP5419046B2 (en) 2014-02-19
EP2241642A1 (en) 2010-10-20
WO2009041665A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5419046B2 (en) Method for refining the structure of steel material, steel material having fine structure and blade
Khodabakhshi et al. Bonding mechanism and interface characterisation during dissimilar friction stir welding of an aluminium/polymer bi-material joint
Zhang et al. On the metallurgical joining mechanism during ultrasonic spot welding of NiTi using a Cu interlayer
Reshad Seighalani et al. Investigations on the effects of the tool material, geometry, and tilt angle on friction stir welding of pure titanium
Venkateswaran et al. Factors affecting the properties of friction stir welds between aluminum and magnesium alloys
Sato et al. FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminium alloy
WO2011118784A1 (en) Method for forming metal membrane
Roberts et al. A comparative study of microstructure and high-temperature mechanical properties of 15-5 PH stainless steel processed via additive manufacturing and traditional manufacturing
EP2692471B1 (en) Tool for friction stir processing and method for friction stir processing using same
Sanders et al. Friction stir-welded titanium alloy Ti-6Al-4V: microstructure, mechanical and fracture properties
Sharma et al. Multi-objective optimization of laser curve cutting of aluminium metal matrix composites using desirability function approach
Kumar et al. Effect of laser power and welding speed on microstructure and mechanical properties of fibre laser-welded Inconel 617 thin sheet
JP2017094474A (en) Cutter made of cemented carbide and manufacturing method thereof
JP5455009B2 (en) Tool steel surface treatment method and tool steel surface-treated by the method
Abu-Okail et al. Improving microstructural and mechanical properties of AA2024 base metal by adding reinforced strip width of AA7075 via vertical compensation friction stir welding technique
Satpathy et al. Effect of brass interlayer sheet on microstructure and joint performance of ultrasonic spot-welded copper-steel joints
Ji et al. Friction stir lap welding of Mg/Ti dissimilar alloys using a slight penetration depth
Chen et al. Effects of laser shock peening on the properties and microstructure evolution of laser-polished surface of Cr12 steel
Swarnkar et al. Enhancement of tensile and microhardness of AA 6082-T6 Friction stir welds via brass interlayers
Kistler Characterization of inconel 718 fabricated through powder bed fusion additive manufacturing
Li et al. Microstructure and Mechanical Properties of Ultrahigh‐Speed Friction‐Stir‐Welded Joints of In Situ Al3Zr Particle‐Reinforced Aluminum Matrix Composite Sheets
Telrandhe et al. Microstructural development due to laser treatment and its effect on machinability of Ti6Al4V alloy
JP2019195858A (en) Cemented carbide round blade and its manufacturing method
Bhogendro Meitei et al. Induction welding of 304L stainless steel and copper in vacuum environment
Sun et al. Influencing mechanisms of hot isostatic pressing on surface properties of additively manufactured AlSi10Mg alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R150 Certificate of patent or registration of utility model

Ref document number: 5419046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250