JPWO2009041045A1 - Method for producing fermented milk - Google Patents

Method for producing fermented milk Download PDF

Info

Publication number
JPWO2009041045A1
JPWO2009041045A1 JP2009534180A JP2009534180A JPWO2009041045A1 JP WO2009041045 A1 JPWO2009041045 A1 JP WO2009041045A1 JP 2009534180 A JP2009534180 A JP 2009534180A JP 2009534180 A JP2009534180 A JP 2009534180A JP WO2009041045 A1 JPWO2009041045 A1 JP WO2009041045A1
Authority
JP
Japan
Prior art keywords
milk
fermented milk
sterilization
deoxygenation
skim milk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009534180A
Other languages
Japanese (ja)
Other versions
JP5189102B2 (en
Inventor
活 豊田
活 豊田
堀内 啓史
啓史 堀内
宗徳 福井
宗徳 福井
浩 越膳
浩 越膳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Meiji Dairies Corp
Original Assignee
Meiji Co Ltd
Meiji Dairies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd, Meiji Dairies Corp filed Critical Meiji Co Ltd
Priority to JP2009534180A priority Critical patent/JP5189102B2/en
Publication of JPWO2009041045A1 publication Critical patent/JPWO2009041045A1/en
Application granted granted Critical
Publication of JP5189102B2 publication Critical patent/JP5189102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C7/00Other dairy technology
    • A23C7/04Removing unwanted substances other than lactose or milk proteins from milk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C1/00Concentration, evaporation or drying
    • A23C1/04Concentration, evaporation or drying by spraying into a gas stream
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C1/00Concentration, evaporation or drying
    • A23C1/06Concentration by freezing out the water
    • A23C1/08Freeze-drying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C1/00Concentration, evaporation or drying
    • A23C1/12Concentration by evaporation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Dairy Products (AREA)

Abstract

【課題】発酵乳の製造に脱脂乳を用いる際に,脱脂乳の加熱処理の条件にかかわらず,十分な硬さを有する発酵乳を製造する方法を提供する。【解決手段】第1の脱酸素工程において,脱脂乳に含まれる酸素濃度を低減し,第1の殺菌工程において,前記第1の脱酸素工程の後の脱脂乳を加熱殺菌し,水分除去工程において前記第1の殺菌工程の後の脱脂乳から水分を除去し,ヨーグルトミックス調製工程において,前記水分除去後の脱脂乳を用いてヨーグルトミックスを調製し,発酵工程において,前記調製したヨーグルトミックスを発酵させる。【選択図】図1[Problem] To provide a method for producing fermented milk having sufficient hardness when skim milk is used for the production of fermented milk, regardless of the heat treatment conditions of the skim milk. In the first deoxygenation step, the oxygen concentration contained in the skim milk is reduced, and in the first sterilization step, the skim milk after the first deoxygenation step is heat sterilized, and the water removal step. In the yogurt mix preparation step, the yogurt mix is prepared using the skimmed milk after the water removal, and in the fermentation step, the prepared yogurt mix is removed from the skim milk after the first sterilization step. Ferment. [Selection] Figure 1

Description

本発明は,十分な硬さを有する発酵乳の製造方法などに関する。より具体的に説明すると,本発明は,加熱殺菌処理を施す前後に,あえて脱酸素処理や水分除去処理を施した脱脂乳を,ヨーグルトミックスに用いる発酵乳の製造方法などに関する。   The present invention relates to a method for producing fermented milk having sufficient hardness. More specifically, the present invention relates to a method for producing fermented milk that uses skim milk that has been deoxygenated or moisture-removed before and after heat sterilization, in a yogurt mix.

発酵乳とは,乳またはこれと同等以上の無脂乳固形分を含む乳等を乳酸菌または酵母で発酵させ,固形状,糊状または液状にしたもの,またはこれを凍結したもので,前発酵タイプと後発酵タイプの二つのタイプに大別できる。   Fermented milk is milk or milk containing non-fat milk solids equal to or higher than this, fermented with lactic acid bacteria or yeast, and solidified, pasty or liquid, or frozen and pre-fermented It can be broadly divided into two types: type and post-fermentation type.

前発酵タイプとは,容器に詰める前のタンク内で発酵・冷却を完了させた発酵乳を破砕して,流通用の個食容器に充填したものであり,果肉入りのフルーツヨーグルトや飲むヨーグルト等に代表される。   The pre-fermentation type is a fermented milk that has been fermented and cooled in a tank before being packed in a container, and then packed into a single-use container for distribution, such as fruit yogurt containing pulp or yogurt to drink Represented by

一方,後発酵タイプとは,セットタイプとも呼ばれ,一定量のスターターを接種したヨーグルトミックスを紙容器等の流通用の個食容器に充填した後,発酵室にて所定の乳酸酸度に到達するまで発酵させてプリン状に固化させてから冷却したものである。後発酵タイプとは,いわゆるハードタイプやプレーンタイプのヨーグルト等に代表される。   On the other hand, post-fermentation type is also called set type, and after filling yogurt mix inoculated with a certain amount of starter into individual food containers for distribution such as paper containers, it reaches a predetermined lactic acidity in the fermentation room Until it is fermented and solidified into a pudding form and then cooled. The post-fermentation type is represented by so-called hard type or plain type yogurt.

特に後発酵タイプの発酵乳については,輸送される際に型崩れが起こらないように,ある程度の硬さを有することが望ましい。一方,発酵乳が硬すぎると,食感が優れないので,滑らかさのある発酵乳が望まれる。   Particularly for post-fermented fermented milk, it is desirable to have a certain degree of hardness so that it does not lose its shape when transported. On the other hand, if the fermented milk is too hard, the texture is not excellent, so a smooth fermented milk is desired.

以前より,適度な硬さと滑らかさのある発酵乳の開発が進んでおり,例えば,ヨーグルトミックスの発酵開始直前に,不活性気体(窒素等)で置換してヨーグルトミックスの溶存酸素濃度(DO)を5ppm以下に低減してから,発酵温度を30〜37℃とする発酵乳の製造方法が知られている(例えば,特許文献1参照)。   Development of fermented milk with moderate hardness and smoothness has been progressing from before, for example, just before the start of fermentation of yogurt mix, it is replaced with inert gas (nitrogen etc.) and dissolved oxygen concentration (DO) of yogurt mix A method for producing fermented milk with a fermentation temperature of 30 to 37 ° C. after reducing the content to 5 ppm or less is known (for example, see Patent Document 1).

また,特許文献1と同様に,ヨーグルトミックスの発酵開始直前に,不活性気体(窒素等)で置換してヨーグルトミックスの溶存酸素濃度(DO)を5ppm以下に低減してから,発酵温度を38〜40℃とする発酵乳の製造方法がある(例えば,特許文献2参照)。   Moreover, just like the patent document 1, immediately before the start of the fermentation of the yogurt mix, after replacing with an inert gas (nitrogen or the like) to reduce the dissolved oxygen concentration (DO) of the yogurt mix to 5 ppm or less, the fermentation temperature is set to 38. There exists a manufacturing method of fermented milk set to -40 degreeC (for example, refer patent document 2).

これらの特許文献1又は2に開示された方法によれば,発酵時間を短縮することができ,発酵乳の物性(カード)が緻密で滑らかなものとなり,硬さも十分なものが得られる。   According to the methods disclosed in these Patent Documents 1 and 2, the fermentation time can be shortened, the physical properties (curd) of the fermented milk become dense and smooth, and the hardness is sufficient.

上記の方法では,発酵前のヨーグルトミックスを対象として溶存酸素濃度を低減させる処理を施しているが,脱脂乳から水分を除去した脱脂濃縮乳や脱脂粉乳を用いてヨーグルトミックスを調製する場合には,脱脂乳そのものの加熱処理(殺菌)条件によっても,発酵乳の物性(組織の硬さ:カードテンション)が異なることが知られている。   In the above method, the pre-fermented yogurt mix is processed to reduce the dissolved oxygen concentration. However, when preparing a yogurt mix using skim concentrated milk or skim milk powder from which water has been removed from skim milk. It is known that the physical properties (tissue hardness: card tension) of fermented milk differ depending on the heat treatment (sterilization) conditions of the skim milk itself.

具体的には,脱脂乳に対して高温短時間殺菌(HTST)処理(例えば90℃,15秒間)を施してから水分を除去した脱脂粉乳でヨーグルトミックスを調製すると,それから得られる発酵乳の硬さ(カードテンション)は妥当な大きさとなる。   Specifically, when yogurt mix is prepared with skim milk powder that has been subjected to high-temperature and short-term sterilization (HTST) treatment (eg, 90 ° C., 15 seconds) on skim milk and then removed moisture, the hardened fermented milk obtained therefrom is hardened. The (card tension) is a reasonable size.

図2(a)は,この場合の製造工程を示したものである。すなわち,脱脂乳にHTST処理を施し(ステップS11),水分を除去することにより脱脂粉乳を製造する(ステップS12)。この場合に,HTST処理を施して得られた脱脂粉乳をローヒート(low heat)脱脂粉乳と呼ぶことがある。ステップS12で得られたローヒート脱脂粉乳を用いてヨーグルトミックスを調製(ステップS13)した後,ヨーグルトミックスにスターターを接種して発酵させる(ステップS14)。このようにして十分な硬さ(カードテンション)の発酵乳を得ることができる(ステップS15)。   FIG. 2 (a) shows the manufacturing process in this case. That is, the skim milk is subjected to HTST treatment (step S11), and the skim milk is produced by removing moisture (step S12). In this case, the skim milk powder obtained by performing the HTST process may be referred to as low heat skim milk powder. After preparing a yogurt mix using the low heat skim milk powder obtained at step S12 (step S13), a starter is inoculated into the yogurt mix and fermented (step S14). Thus, fermented milk with sufficient hardness (card tension) can be obtained (step S15).

一方,超高温殺菌(UHT)処理(例えば125℃,15秒間)を施してから水分を除去した脱脂粉乳でヨーグルトミックスを調製すると,それから得られる発酵乳の硬さ(カードテンション)は小さくなる。   On the other hand, when yogurt mix is prepared with skim milk powder from which moisture has been removed after performing ultra-high temperature sterilization (UHT) treatment (for example, 125 ° C. for 15 seconds), the hardness (card tension) of the fermented milk obtained therefrom becomes small.

図2(b)は,この場合の製造工程を示したものである。この場合には,図2(a)と異なり,脱脂乳にUHT処理を施し(ステップS21),水分を除去することにより脱脂粉乳を製造する(ステップS22)。UHT処理を施して得られた脱脂粉乳をハイヒート(high heat)脱脂粉乳と呼ぶことがある。ステップS22で得られたハイヒート脱脂粉乳を用いてヨーグルトミックスを調製(ステップS23)した後,ヨーグルトミックスにスターターを接種して発酵させる(ステップS24)。この場合に,発酵乳は軟弱で硬さ(カードテンション)が不十分である(ステップS25)。   FIG. 2B shows the manufacturing process in this case. In this case, unlike FIG. 2 (a), the skim milk is subjected to UHT treatment (step S21), and water is removed to produce skim milk powder (step S22). The skim milk powder obtained by performing the UHT treatment may be referred to as high heat skim milk powder. After preparing the yogurt mix using the high heat skim milk powder obtained in step S22 (step S23), the yogurt mix is inoculated with a starter and fermented (step S24). In this case, the fermented milk is soft and has insufficient hardness (card tension) (step S25).

UHT処理した脱脂粉乳がHTST処理した脱脂粉乳に比べて,衛生面(細菌的な観点)で勝ることは明かである。しかしながら,上記のように,UHT処理した脱脂粉乳でヨーグルトミックスを調製し,発酵乳を製造すると,その組織が軟化して製品を流通する際の衝撃に耐えられなかった。   It is clear that UHT-treated skim milk is superior in terms of hygiene (bacterial viewpoint) compared to HTST-treated skim milk. However, as described above, when yogurt mix was prepared from skim milk powder treated with UHT and fermented milk was produced, the tissue was softened and could not withstand the impact when the product was distributed.

そのため,後発酵タイプの発酵乳を製造する場合に,UHT処理した脱脂粉乳をヨーグルトミックスへ使用することを,従来は品質面で断念せざるを得なかった。
なお,特許文献1又は2と同様に乳製品の製造過程で原料の溶存酸素濃度を低減させる処理を施す技術として,乳,又は乳を含有する未加熱液を,加熱処理する前に溶存酸素濃度を5ppm以下に低減し,UHT処理を施すものがある(例えば,特許文献3参照)。
Therefore, when producing post-fermentation type fermented milk, the use of UHT-treated skimmed milk powder for yogurt mix has to be given up in the past in terms of quality.
As in the case of Patent Document 1 or 2, as a technique for reducing the dissolved oxygen concentration of raw materials in the production process of dairy products, dissolved oxygen concentration before milk or unheated liquid containing milk is heated. Is reduced to 5 ppm or less, and UHT treatment is performed (see, for example, Patent Document 3).

これにより,ジメチルサルファイドの発生を抑制することができるだけでなく,生乳又は未加熱液に近似した風味を有する乳性飲料を製造することができる。しかしながら,この技術は発酵乳に関するものではなく,この技術を発酵乳の製造に用いる脱脂乳に適用した場合に,発酵乳の組織の硬さを改良することが出来るか否か明らかではなかった。
特開2005−176603号公報 特開2005−348703号公報 特開平10−295341号公報
Thereby, not only can generation | occurrence | production of a dimethyl sulfide be suppressed, but the dairy drink which has the flavor close | similar to raw milk or an unheated liquid can be manufactured. However, this technology is not related to fermented milk, and it was not clear whether or not the tissue hardness of fermented milk could be improved when this technology was applied to skim milk used in the production of fermented milk.
JP 2005-176603 A JP 2005-348703 A JP-A-10-295341

本発明は,発酵乳の製造に脱脂乳を用いる際に,脱脂乳の加熱処理の条件にかかわらず,十分な硬さを有する発酵乳を製造する方法を提供することを目的とする。
また,本発明は,発酵乳の製造に脱脂乳を用いる際に,脱脂乳の加熱処理の条件にかかわらず,十分な硬さと共に滑らかさを有する発酵乳を製造する方法を提供することを目的とする。
An object of this invention is to provide the method of manufacturing fermented milk which has sufficient hardness, regardless of the conditions of heat processing of skim milk, when using skim milk for manufacture of fermented milk.
Another object of the present invention is to provide a method for producing fermented milk having sufficient hardness and smoothness regardless of the heat treatment conditions of skim milk when skim milk is used for the production of fermented milk. And

本発明者らは,脱脂乳に脱酸素処理(溶存酸素濃度:5ppm以下)を施してから加熱処理した後に,水分を除去して製造した脱脂濃縮乳や脱脂粉乳でヨーグルトミックスを調製して発酵乳を製造した場合には,脱脂乳に脱酸素処理を施さない場合に比べて,発酵乳の組織(発酵乳のカード)が強固になるという知見を得た。   The present inventors apply a deoxygenation treatment (dissolved oxygen concentration: 5 ppm or less) to skim milk, then heat-treat, then prepare a yogurt mix with skim-concentrated milk or skim milk powder produced by removing water and ferment. When milk was manufactured, the knowledge that the structure | tissue of fermented milk (card | curd of fermented milk) became firm compared with the case where deoxidation processing was not performed to skim milk.

さらに,上記の脱酸素処理を施してから加熱処理した後に,水分を除去して製造した脱脂濃縮乳や脱脂粉乳で調製したヨーグルトミックスの発酵前に脱酸素処理を施してから,通常より低い温度(30℃〜40℃)で発酵させると,発酵乳の組織がさらに強固で滑らかになるという知見を得た。   Furthermore, after performing the above-mentioned deoxygenation treatment, after the heat treatment, the deoxygenation treatment is performed before the fermentation of the yogurt mix prepared with the degreased concentrated milk or the nonfat dry milk produced by removing water, and the temperature is lower than usual. It was found that when fermented at (30 ° C. to 40 ° C.), the structure of the fermented milk becomes stronger and smoother.

すなわち,本発明の発酵乳の製造方法は,脱脂乳及び/又は全脂乳(生乳)に含まれる酸素濃度を低減する第1の脱酸素工程と,前記第1の脱酸素工程の後の脱脂乳及び/又は全脂乳を加熱殺菌する第1の殺菌工程と,前記第1の殺菌工程の後の脱脂乳及び/又は全脂乳から水分を除去する水分除去工程と,前記水分除去後の脱脂乳及び/又は全脂乳を用いてヨーグルトミックスを調製するヨーグルトミックス調製工程と,前記調製したヨーグルトミックスを発酵させる発酵工程と,を含む。   That is, the method for producing fermented milk of the present invention includes a first deoxygenation step for reducing the oxygen concentration contained in skim milk and / or whole fat milk (raw milk), and defatting after the first deoxygenation step. A first sterilization step for heat-sterilizing milk and / or whole milk, a water removal step for removing water from the skim milk and / or whole milk after the first sterilization step, and a step after the water removal A yoghurt mix preparation step of preparing a yoghurt mix using skim milk and / or whole fat milk, and a fermentation step of fermenting the prepared yoghurt mix.

このように,脱酸素処理を施した後に,加熱殺菌し,さらに水分を除去した脱脂乳及び/又は全脂乳を用いて調製したヨーグルトミックスを発酵させて発酵乳を製造することで,実施例1及び2で示されるとおり,十分な硬さを有する発酵乳を製造することができる。   Thus, after giving deoxygenation treatment, fermented yogurt mix prepared using skim milk and / or whole fat milk which was sterilized by heating and further removed water, produced fermented milk. As shown by 1 and 2, fermented milk having sufficient hardness can be produced.

前記第1の脱酸素工程の後の脱脂乳及び/又は全脂乳の溶存酸素濃度は,実施例1〜6で示されるとおり,5ppm以下であることが好ましい。溶存酸素濃度を5ppm以下とすることで,発酵乳の硬さ(硬度)を確実に増すことができる。   As shown in Examples 1 to 6, the dissolved oxygen concentration of skim milk and / or whole fat milk after the first deoxygenation step is preferably 5 ppm or less. By setting the dissolved oxygen concentration to 5 ppm or less, the hardness (hardness) of fermented milk can be reliably increased.

前記第1の殺菌工程における加熱殺菌処理は,高温短時間殺菌(HTST)処理であっても超高温殺菌(UHT)処理であっても良いが,衛生面から超高温殺菌処理が好ましい。   The heat sterilization treatment in the first sterilization step may be a high temperature short time sterilization (HTST) treatment or an ultra high temperature sterilization (UHT) treatment, but an ultra high temperature sterilization treatment is preferable from the viewpoint of hygiene.

高温短時間殺菌処理及び超高温殺菌処理のいずれを施す場合においても,それぞれ実施例1及び実施例2で示されるとおり,先に脱酸素処理を施した場合には,施さない場合(比較例1及び比較例2参照)と比べて最終的に得られる発酵乳の組織が強固となる。従って,従来は十分な硬さの発酵乳が得られないために使用することができなかった超高温殺菌処理した濃縮乳及び/又は粉乳を用いることができる。   In both cases of high temperature short time sterilization treatment and ultra high temperature sterilization treatment, as shown in Example 1 and Example 2, respectively, when deoxidation treatment was performed first, when not performed (Comparative Example 1) And the structure | tissue of the fermented milk finally obtained compared with comparative example 2) becomes firm. Accordingly, it is possible to use concentrated milk and / or powdered milk that has been subjected to ultra-high temperature sterilization treatment, which could not be used because fermented milk with sufficient hardness has not been obtained.

前記水分除去後の脱脂乳は,脱脂濃縮乳又は脱脂粉乳であれば良い。一方、前記水分除去後の全脂乳は,全脂濃縮乳又は全脂粉乳であれば良い。実施例5などで示されるとおり,脱脂濃縮乳を用いることで,又は実施例1などで示されるように脱脂粉乳を用いることで,特に他の液体等と混合する場合に,ヨーグルトミックスの調製が容易になる。   The skim milk after the water removal may be skim concentrated milk or skim milk powder. On the other hand, the whole fat milk after the water removal may be full fat concentrated milk or whole fat milk powder. As shown in Example 5 and the like, the yogurt mix can be prepared by using nonfat concentrated milk or by using nonfat dry milk as shown in Example 1 and particularly when mixing with other liquids. It becomes easy.

前記水分除去工程は,真空蒸発濃縮工程,噴霧乾燥工程,及び凍結乾燥処理の少なくともいずれか一つの工程を含めば良い。例えば,脱脂乳に真空蒸発濃縮工程を施すことにより,実施例5などで使用した脱脂濃縮乳を得ることができ,真空蒸発濃縮工程及び噴霧乾燥工程を施すことにより,実施例9などで使用した脱脂粉乳を得ることができる。また,脱脂乳に噴霧乾燥工程又は凍結乾燥工程を直接で施すことにより,実施例11などで使用した脱脂粉乳を得ることもできる。   The moisture removal process may include at least one of a vacuum evaporation concentration process, a spray drying process, and a freeze drying process. For example, the non-fat concentrated milk used in Example 5 can be obtained by subjecting the skim milk to a vacuum evaporation and concentration process, and the non-fat milk used in Example 9 and the like by performing the vacuum evaporation and concentration process and the spray drying process. Non-fat dry milk can be obtained. Moreover, the skim milk powder used in Example 11 etc. can also be obtained by performing a spray-drying process or a freeze-drying process directly to skim milk.

前記ヨーグルトミックス調製工程において,前記ヨーグルトミックスの全固形分又は無脂乳固形分に対する前記水分除去後の脱脂乳の配合割合が70重量%以上とすれば良い。このような配合割合とすることで,実施例4で示されるとおり,脱酸素処理を施した後に殺菌処理し,さらに水分除去した脱脂乳(脱脂粉乳)と通常の脱脂粉乳を配合してヨーグルトミックスを調製しても,十分な硬さの発酵乳を得ることができる。また,実施例13及び実施例14で示されるとおり,前記水分除去後の脱脂乳と超高温殺菌処理を施した牛乳を,この配合割合で配合してヨーグルトミックスを調整することにより,脱酸素処理を施さずに殺菌処理した後に,水分除去した脱脂乳と超高温殺菌処理を施した牛乳を,この配合割合で配合してヨーグルトミックスを調整したものに比べて,より硬い発酵乳を得ることができる。   In the yogurt mix preparation step, the blended ratio of the skimmed milk after the removal of water relative to the total solid content or the non-fat milk solid content of the yogurt mix may be 70% by weight or more. By using such a blending ratio, as shown in Example 4, the yogurt mix was prepared by blending skim milk (defatted milk powder) which was sterilized after deoxidizing treatment and further removing water and normal skimmed milk powder. Even if it prepares, fermented milk of sufficient hardness can be obtained. Moreover, as shown in Example 13 and Example 14, the deoxygenation treatment was carried out by adjusting the yogurt mix by blending the skimmed milk after moisture removal and the milk subjected to ultra-high temperature sterilization at this blending ratio. It is possible to obtain a fermented milk that is harder than the one prepared by mixing yogurt mix with milk blended with skimmed milk that has been dehydrated and milk that has been subjected to ultra-high temperature sterilization after sterilization without being applied. it can.

また,前記ヨーグルトミックス調製工程の後,前記発酵工程の前に,前記ヨーグルトミックスに含まれる酸素濃度を低減する第2の脱酸素工程と,前記第2の脱酸素工程の後のヨーグルトミックスを加熱殺菌する第2の殺菌工程と,をさらに含んでも良い。   In addition, after the yogurt mix preparation step and before the fermentation step, the second deoxygenation step for reducing the oxygen concentration contained in the yogurt mix and the yogurt mix after the second deoxygenation step are heated. And a second sterilization step for sterilization.

実施例15で示されるとおり,第2の殺菌工程を含むことにより,より確実な殺菌効果が得られ衛生面で好ましいばかりでなく,実施例16で示されるとおり,第2の殺菌工程の前に第2の脱酸素工程を含むことで,より発酵乳の硬さ(硬度)を増すことができる。   As shown in Example 15, by including the second sterilization step, a more reliable sterilization effect can be obtained, which is preferable in terms of hygiene, and as shown in Example 16, before the second sterilization step. By including a 2nd deoxygenation process, the hardness (hardness) of fermented milk can be increased more.

さらには,前記第2の殺菌工程の後,前記発酵工程の前に,前記ヨーグルトミックスに含まれる酸素濃度を低減する第3の脱酸素工程をさらに含んでも良い。
第3の脱酸素工程を含むことで,実施例18で示されるとおり,さらに発酵乳の硬さ(硬度)を増すことができると共に,より滑らかな発酵乳が得られる。
Furthermore, you may further include the 3rd deoxygenation process which reduces the oxygen concentration contained in the said yogurt mix after the said 2nd disinfection process and before the said fermentation process.
By including the third deoxygenation step, as shown in Example 18, the hardness (hardness) of the fermented milk can be further increased, and a smoother fermented milk can be obtained.

さらに,前記第3の脱酸素工程の後の発酵工程における発酵温度は,30℃以上40℃以下が好ましい。発酵温度は乳酸菌が活動しやすい30℃以上50℃以下にすることが一般的であるが,実施例18で示されるように,低めの温度である30℃以上40℃以下(実施例18では37℃)とすることで,さらに発酵乳の硬さ(硬度)を増すことができると共に,より滑らかな発酵乳が得られる。   Furthermore, the fermentation temperature in the fermentation step after the third deoxygenation step is preferably 30 ° C. or higher and 40 ° C. or lower. The fermentation temperature is generally 30 ° C. or more and 50 ° C. or less at which lactic acid bacteria can easily act. However, as shown in Example 18, the lower temperature is 30 ° C. or more and 40 ° C. or less (37 in Example 18). (° C.), the hardness (hardness) of the fermented milk can be further increased, and a smoother fermented milk can be obtained.

本発明の発酵乳の製造方法によれば,発酵乳の製造に脱脂乳を用いる際に,脱脂乳の加熱処理の条件にかかわらず,十分な硬さを有する発酵乳を製造することができ,さらには,十分な硬さと共に滑らかさも有する発酵乳を製造することができる。   According to the method for producing fermented milk of the present invention, when skim milk is used for the production of fermented milk, fermented milk having sufficient hardness can be produced regardless of the heat treatment conditions of skim milk, Furthermore, fermented milk having sufficient hardness and smoothness can be produced.

本発明の発酵乳の製造方法の処理フローを示した,フローチャート図である。It is the flowchart figure which showed the processing flow of the manufacturing method of fermented milk of this invention. 従来の発酵乳の製造方法の処理フローを示した,フローチャート図である。図2(a)は,脱脂乳に高温短時間殺菌処理を施す場合の処理フローを示し,図2(b)は,脱脂乳に超高温菌処理を施す場合の処理フローを示す。It is the flowchart figure which showed the processing flow of the manufacturing method of the conventional fermented milk. FIG. 2 (a) shows a processing flow when high-temperature short-time sterilization treatment is applied to skim milk, and FIG. 2 (b) shows a processing flow when ultra-high temperature bacteria treatment is applied to skim milk.

本発明の第一の態様
以下,本発明の実施形態を説明する。本発明の第一の実施態様である発酵乳の製造方法は,基本的には,脱脂乳に含まれる酸素濃度を低減する第1の脱酸素工程と,前記第1の脱酸素工程の後の脱脂乳を加熱殺菌する第1の殺菌工程と,前記第1の殺菌工程の後の脱脂乳から水分を除去する水分除去工程と,前記水分除去後の脱脂乳を用いてヨーグルトミックスを調製するヨーグルトミックス調製工程と,前記調製したヨーグルトミックスを発酵させる発酵工程と,を含む発酵乳の製造方法に関する。
First Embodiment of the Invention Hereinafter, embodiments of the present invention will be described. The method for producing fermented milk according to the first embodiment of the present invention basically includes a first deoxygenation step for reducing the oxygen concentration contained in skim milk, and a step after the first deoxygenation step. A first sterilization step for heat-sterilizing skim milk, a water removal step for removing water from skim milk after the first sterilization step, and a yogurt for preparing a yogurt mix using the skim milk after the water removal The present invention relates to a method for producing fermented milk comprising a mix preparation step and a fermentation step for fermenting the prepared yogurt mix.

図1は,本発明の第一の実施態様の概要を示したものである。すなわち,脱脂乳に第1の脱酸素工程として脱酸素処理を施し(ステップS1),第1の殺菌工程としてUHT処理を施し(ステップS2),水分を除去することにより脱脂粉乳(ハイヒート脱脂粉乳)を製造する(ステップS3)。ステップS3で得られたハイヒート脱脂粉乳を用いてヨーグルトミックスを調製(ステップS4)した後,ヨーグルトミックスにスターターを接種して発酵させる(ステップS5)。このようにして十分な硬さの発酵乳のカードを得ることができる(ステップS6)。   FIG. 1 shows an outline of the first embodiment of the present invention. That is, deoxidized milk is subjected to deoxygenation treatment as a first deoxidation process (step S1), UHT treatment is performed as a first sterilization process (step S2), and water is removed to remove skimmed milk powder (high heat skimmed milk powder). Is manufactured (step S3). After preparing the yogurt mix using the high heat skim milk powder obtained in step S3 (step S4), the yogurt mix is inoculated with a starter and fermented (step S5). Thus, the card | curd of fermented milk of sufficient hardness can be obtained (step S6).

なお,発酵乳を製造するための原料,装置,製造条件などは,例えば,特開2004−180526号公報,特開2005−176603号公報,特開2006−288309号公報,米国特許第6025008号明細書,米国特許第5482723号明細書,米国特許第5096731号明細書,米国特許第4938973号明細書(これらの文献は,参照することにより本明細書に取り入れられる。)などに開示されており,適宜採用することができる。   In addition, the raw material, apparatus, manufacturing conditions, etc. for manufacturing fermented milk are Unexamined-Japanese-Patent No. 2004-180526, Unexamined-Japanese-Patent No. 2005-176603, Unexamined-Japanese-Patent No. 2006-288309, US Patent 6025008 specification, for example. , U.S. Pat. No. 5,482,723, U.S. Pat. No. 5,096,731, U.S. Pat. No. 4,938,973 (these documents are incorporated herein by reference), and the like. It can be adopted as appropriate.

本明細書において「発酵乳」とは,ヨーグルト,乳等省令で定義される「発酵乳」を指す。本発明における好ましい発酵乳は,プレーンヨーグルトなどのセットタイプヨーグルト(固形状発酵乳)である。一般に,プレーンヨーグルトは,容器に原料を充填させた後に,発酵させること(後発酵)により製造される。   In the present specification, “fermented milk” refers to “fermented milk” defined by ordinances such as yogurt and milk. A preferable fermented milk in the present invention is a set type yogurt (solid fermented milk) such as plain yogurt. In general, plain yogurt is manufactured by filling a container with raw materials and then fermenting (post-fermentation).

従来,ヨーグルトミックスの原料としてUST処理を施した脱脂粉乳(ハイヒート脱脂粉乳)を用いると,発酵乳のカードの十分な硬さが得られないため,セットタイプの発酵乳の製造にはUST処理を施した脱脂粉乳を用いることができなかった。本発明では,UST処理を施す前に,あえて不活性ガスを混入するなどして酸素を脱気した脱脂粉乳を用いることで,商品として十分な硬さを有するヨーグルトを得ることができると考えられる。以下,本発明の各工程について詳細に説明する。   Conventionally, when using skim milk powder (high heat skim milk powder) that has been subjected to UST treatment as a raw material for yogurt mix, sufficient hardness of the card of fermented milk cannot be obtained. The applied nonfat dry milk could not be used. In the present invention, it is considered that yogurt having sufficient hardness as a product can be obtained by using skim milk powder that is degassed with oxygen by intentionally mixing an inert gas before the UST treatment. . Hereafter, each process of this invention is demonstrated in detail.

第1の脱酸素工程
第1の脱酸素工程は,脱脂乳に不活性ガスを混入するか,低圧や真空で脱気するなどして,脱脂乳中に存在している酸素を取り除くための工程である。この工程により,酸素が除かれる他,タンパク質が保護されると推測される。
First deoxygenation step The first deoxygenation step is a step for removing oxygen present in the skim milk by mixing inert gas in the skim milk or by degassing under low pressure or vacuum. It is. It is presumed that this process not only removes oxygen but also protects proteins.

「脱脂乳」とは,生乳,牛乳又は特別牛乳から乳脂肪分を除去したものをいう。脱脂乳から水分を除去することにより,脱脂濃縮乳(脱脂乳を濃縮したもの)又は脱脂粉乳(脱脂乳から,ほとんどすべての水分を除去し,粉末状にしたもの)を得ることができ,このように水分を除去した脱脂乳はヨーグルトミックスの調製に好適に用いることができる。   “Skim milk” means milk, milk or special milk from which milk fat has been removed. By removing water from skim milk, skim-concentrated milk (concentrated skim milk) or skim milk powder (from skim milk, almost all water removed and powdered) can be obtained. Thus, the skim milk from which water has been removed can be suitably used for the preparation of yogurt mix.

「ヨーグルトミックス」は,ヨーグルトなどの発酵乳の原料となるもので,原料乳や発酵乳ミックスなどとも呼ばれる。本発明では,水分を除去した脱脂乳(脱脂濃縮乳又は脱脂粉乳)及び/又は水分を除去した全脂乳(全脂濃縮乳又は全脂粉乳)を必ず含むヨーグルトミックスを用いる。ヨーグルトミックスには,殺菌前のものも,殺菌後のものも含まれる。脱脂乳以外のヨーグルトミックスの具体的な原料としては,水,生乳,殺菌処理した乳,全脂粉乳,バターミルク,バター,クリーム,ホエータンパク質濃縮物(WPC),ホエータンパク質単離物(WPI),α(アルファ)−La(ラクトアルブミン),β(ベータ)−Lg(ラクトグロブリン)などがあげられる。あらかじめ温めたゼラチンなどを適宜添加しても良い。ヨーグルトミックスは,公知であり,公知の方法に従って調製すれば良い。   "Yogurt mix" is a raw material for fermented milk such as yogurt, and is also called raw milk or fermented milk mix. In the present invention, a yoghurt mix that always contains skim milk from which water has been removed (fat concentrate milk or skim milk powder) and / or full fat milk from which water has been removed (whole fat concentrate milk or whole milk powder) is used. The yogurt mix includes those before and after sterilization. Specific raw materials for yogurt mix other than skim milk are water, raw milk, pasteurized milk, whole milk powder, buttermilk, butter, cream, whey protein concentrate (WPC), whey protein isolate (WPI) , Α (alpha) -La (lactalbumin), β (beta) -Lg (lactoglobulin), and the like. Prewarmed gelatin or the like may be added as appropriate. The yogurt mix is known and may be prepared according to a known method.

脱酸素工程では,例えば,脱脂乳中の溶存酸素を不活性ガスにより置換するための公知の装置を適宜用いることができる。具体的には,例えば,特開2001−78665号公報,特開2001−9206号公報,又は特開2005−110527号公報(これらの文献は,参照することにより本明細書に取り入れられる。)に開示される装置を適宜用いて不活性ガスにより脱脂乳中に溶解している酸素を追い出せば良い。   In the deoxygenation step, for example, a known apparatus for replacing dissolved oxygen in skim milk with an inert gas can be used as appropriate. Specifically, for example, in Japanese Patent Application Laid-Open No. 2001-78665, Japanese Patent Application Laid-Open No. 2001-9206, or Japanese Patent Application Laid-Open No. 2005-110527 (these documents are incorporated herein by reference). What is necessary is just to drive out the oxygen which melt | dissolves in skim milk by inert gas using the disclosed apparatus suitably.

特開2001−78665号公報には,以下の装置が開示されている。すなわち,同公報には,「牛乳等の溶存酸素を窒素ガスと置換する装置において,原料タンクと送液パイプで連結された窒素ガス置換タンクを設けると共に,前記送液パイプには,原料タンク側に窒素ガス供給手段を連結すると共に,前記窒素ガス置換タンク側に窒素ガス混合分散機を介装して,送液パイプの窒素ガス供給手段より上流側に連接した分岐送液パイプの他端を窒素ガス置換タンク内に導き,該部に噴霧ノズルを連接し,前記各送液パイプ,窒素ガス供給手段及び連接分岐パイプに流量制御装置を備えたことを特徴とした牛乳等の窒素ガス置換装置」が開示されている。   Japanese Patent Laid-Open No. 2001-78665 discloses the following apparatus. That is, in the publication, “in an apparatus for replacing dissolved oxygen such as milk with nitrogen gas, a nitrogen gas replacement tank connected to a raw material tank and a liquid feeding pipe is provided, and the liquid feeding pipe includes a raw material tank side. The other end of the branch liquid supply pipe connected upstream of the nitrogen gas supply means of the liquid supply pipe by connecting a nitrogen gas supply means to the nitrogen gas replacement tank side. A nitrogen gas replacement device for milk or the like, characterized in that it is introduced into a nitrogen gas replacement tank, a spray nozzle is connected to the tank, and each liquid feed pipe, nitrogen gas supply means and connected branch pipe are provided with a flow rate control device. Is disclosed.

特開2001−9206号公報には,以下の装置が開示されている。すなわち,同公報には,「真空チャンバー内に分散盤が垂直軸を中心にして回転可能に支持され,高速回転中の前記分散盤上に供給された処理液を遠心力の作用により分散させて,液中の気泡類を脱泡・脱気する構成の装置において,前記分散盤を多段に配設して,各分散盤に処理液を分配供給することを特徴とする多段式脱泡・脱気装置」が開示されている。   Japanese Patent Laid-Open No. 2001-9206 discloses the following apparatus. That is, the publication discloses that a dispersion plate is supported in a vacuum chamber so as to be rotatable about a vertical axis, and the processing liquid supplied on the dispersion plate during high-speed rotation is dispersed by the action of centrifugal force. In a device configured to degas and deaerate bubbles in the liquid, the dispersion plates are arranged in multiple stages, and the treatment liquid is distributed and supplied to each dispersion plate. A "gas apparatus" is disclosed.

特開2005−110527号公報には,以下の装置が開示されている。すなわち,同公報には,「脱気手段と,気泡の破泡手段とを具備する飲料製造装置」が開示されている。   Japanese Patent Laid-Open No. 2005-110527 discloses the following apparatus. That is, the publication discloses a “beverage production apparatus including a deaeration unit and a bubble breaking unit”.

「不活性ガス」は,ヘリウム,ネオン,アルゴン,キセノンなどの希ガスの他,窒素などのガスであっても良い。   The “inert gas” may be a rare gas such as helium, neon, argon, or xenon, or a gas such as nitrogen.

なお,不活性ガスを混入する代わりに,脱脂乳中に溶解している酸素を脱気により取り除いても構わない。このような脱気装置としては,特開2002−370006号公報,又は特開2005−304390号公報(これらの文献は,参照することにより本明細書に取り入れられる。)に開示される装置を適宜用いることができる。   Instead of mixing inert gas, oxygen dissolved in skim milk may be removed by degassing. As such a deaeration apparatus, an apparatus disclosed in Japanese Patent Application Laid-Open No. 2002-370006 or Japanese Patent Application Laid-Open No. 2005-304390 (these documents are incorporated herein by reference) is appropriately used. Can be used.

特開2002−370006号公報には,以下の装置が開示されている。すなわち,同公報には,「中空糸膜を用いて脱気する装置であって,該中空糸膜が非多孔質中空糸膜からなり,かつ膜密度が2000〜7000m/mの範囲であることを特徴とする液体処理装置」が開示されている。Japanese Patent Laid-Open No. 2002-370006 discloses the following apparatus. That is, in the publication, “a device for deaeration using a hollow fiber membrane, wherein the hollow fiber membrane is a non-porous hollow fiber membrane and the membrane density is in the range of 2000 to 7000 m 2 / m 3 . There is disclosed a "liquid processing apparatus characterized in that".

特開2005−304390号公報には,以下の装置が開示されている。すなわち,同公報には,「飲料を微粒子化し減圧雰囲気に曝すことにより,前記飲料中の溶存酸素濃度を低下させる装置であって,前記飲料の微粒子化は,前記飲料を加圧噴霧させることにより平均粒子径50μ(マイクロ)m以上1000μm以下の微粒子とすることを特徴とする,飲料中の溶存酸素濃度を低下させる装置」が開示されている。   Japanese Unexamined Patent Application Publication No. 2005-304390 discloses the following apparatus. That is, the publication discloses that “a device for reducing the dissolved oxygen concentration in the beverage by subjecting the beverage to fine particles and exposing to a reduced-pressure atmosphere, wherein the beverage is made fine by spraying the beverage under pressure. An apparatus for reducing the dissolved oxygen concentration in beverages, characterized by having fine particles having an average particle diameter of 50 μm (micro) m to 1000 μm, is disclosed.

第1の脱酸素工程は,上記の装置などを用いて適宜行えば良い。脱脂乳に溶解している酸素の量(溶存酸素濃度,DO)は,脱酸素処理前では通常8ppm程度であり,具体的には,これを5ppm以下,好ましくは3ppm以下,より好ましくは2ppm以下となる程度まで脱酸素を行えば良い。   The first deoxygenation step may be appropriately performed using the above-described apparatus. The amount of oxygen dissolved in skim milk (dissolved oxygen concentration, DO) is usually about 8 ppm before deoxygenation treatment. Specifically, this is 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less. Deoxygenation should be performed to such an extent that

例えば,上記の特開2005−110527号公報に開示された装置を用い,不活性ガスとして窒素を用いれば,溶存酸素濃度が8ppm程度の脱脂乳に対して15分程度脱酸素処理を行うことにより,溶存酸素濃度を2ppm以下まで下げることができる。また,60分程度脱酸素処理を行えば,溶存酸素濃度を0.4ppm程度まで下げることが可能であるが,製造コスト等を勘案し,15分から20分で必要な溶存酸素濃度が得られるように処理時間を調節すれば良い。   For example, if nitrogen is used as an inert gas using the apparatus disclosed in the above Japanese Patent Application Laid-Open No. 2005-110527, deoxidation treatment is performed for skim milk having a dissolved oxygen concentration of about 8 ppm for about 15 minutes. , The dissolved oxygen concentration can be lowered to 2 ppm or less. In addition, if the deoxygenation treatment is performed for about 60 minutes, the dissolved oxygen concentration can be lowered to about 0.4 ppm, but the necessary dissolved oxygen concentration can be obtained in 15 to 20 minutes in consideration of manufacturing costs. It is sufficient to adjust the processing time.

また,上記の特開2005−304390号公報に開示された装置を用い,脱脂乳に対して脱気処理を行う場合には,温度20℃以下とした脱脂乳を,平均粒子径が50μ(マイクロ)m以上1000μm以下の微粒子となるように加圧噴霧し,−0.098MPa(ゲージ圧)〜−0.09MPa(ゲージ圧)程度の減圧雰囲気に曝すことにより,処理前では8ppm程度であった脱脂乳の溶存酸素濃度を,5ppm以下,好ましくは3ppm以下とすることができる。この場合にも,平均粒子径や減圧雰囲気の圧力を適宜制御して所望の溶存酸素濃度に調節すれば良い。   In addition, when performing deaeration treatment on skim milk using the apparatus disclosed in the above Japanese Patent Application Laid-Open No. 2005-304390, skim milk having a temperature of 20 ° C. or less has an average particle size of 50 μm (micrometer ) It was about 8 ppm before treatment by spraying under pressure to form fine particles of m to 1000 μm and exposing to a reduced pressure atmosphere of about −0.098 MPa (gauge pressure) to −0.09 MPa (gauge pressure). The dissolved oxygen concentration of skim milk can be 5 ppm or less, preferably 3 ppm or less. In this case as well, the average particle diameter and the pressure in the reduced-pressure atmosphere may be appropriately controlled to adjust the desired dissolved oxygen concentration.

第1の殺菌工程
第1の殺菌工程は,脱脂乳を加熱殺菌する殺菌工程であり,ここでは,高温短時間殺菌(HTST)処理又は超高温殺菌(UHT)処理を行なう。HTST処理は,基本的には72℃以上の温度にて,脱脂乳を15秒以上加熱し,殺菌する処理であり,UHT処理は,基本的には,110℃以上の温度にて,脱脂乳を1秒間以上加熱し,殺菌する処理である。
HTST処理の温度として,好ましくは,80℃以上100℃以下であり,より好ましくは90℃以上95℃以下である。また,HTST処理の時間として,好ましくは15秒間以上15分間以下であり,より好ましくは15秒間以上5分間以下である。処理温度が低い場合には,十分な殺菌効果を得るために,より長時間処理を行なう必要がある。逆に,処理温度を高くすると,より短時間で十分な殺菌効果が得られるが,高い温度で処理するほど,最終的に得られる発酵乳の硬さや滑らかさが損なわれる。これらの条件を勘案すると,HTST処理の温度を90℃以上95℃以下とし,時間を15秒間以上20秒間以下とするのが好ましい。
1st sterilization process The 1st sterilization process is a sterilization process which heat-sterilizes skim milk, and performs high temperature short time sterilization (HTST) processing or ultra-high temperature sterilization (UHT) processing here. The HTST process is basically a process of heating and sterilizing skim milk at a temperature of 72 ° C. or higher for 15 seconds or more, and the UHT process is basically a skim milk at a temperature of 110 ° C. or higher. Is a process of heating and sterilizing for more than 1 second.
The temperature of the HTST treatment is preferably 80 ° C. or higher and 100 ° C. or lower, more preferably 90 ° C. or higher and 95 ° C. or lower. The time for the HTST treatment is preferably 15 seconds or longer and 15 minutes or shorter, and more preferably 15 seconds or longer and 5 minutes or shorter. When the treatment temperature is low, it is necessary to perform treatment for a longer time in order to obtain a sufficient sterilizing effect. Conversely, if the treatment temperature is increased, a sufficient sterilizing effect can be obtained in a shorter time, but the hardness and smoothness of the finally obtained fermented milk are impaired as the treatment is performed at a higher temperature. Considering these conditions, it is preferable that the temperature of the HTST treatment is 90 ° C. or more and 95 ° C. or less and the time is 15 seconds or more and 20 seconds or less.

一方,UHT処理の温度として,好ましくは120℃以上140℃以下であり,より好ましくは120℃以上130℃以下である。また,UHT処理の時間として,好ましくは1秒間以上5分間以下であり,より好ましくは1秒間以上2分間以下であり,さらに好ましくは,1秒以上1分間以下である。   On the other hand, the temperature of the UHT treatment is preferably 120 ° C. or higher and 140 ° C. or lower, more preferably 120 ° C. or higher and 130 ° C. or lower. Further, the UHT treatment time is preferably 1 second or more and 5 minutes or less, more preferably 1 second or more and 2 minutes or less, and further preferably 1 second or more and 1 minute or less.

UHT処理の場合にも,殺菌効果と最終的に得られる発酵乳の硬さや滑らかさを勘案すると,温度は125℃以上130℃以下とし,処理時間を1秒間以上15秒間以下とするのが好ましい。   Also in the case of UHT treatment, considering the bactericidal effect and the hardness and smoothness of the finally obtained fermented milk, the temperature is preferably 125 ° C. or higher and 130 ° C. or lower, and the treatment time is preferably 1 second or longer and 15 seconds or shorter. .

上記の高温短時間殺菌処理及び超高温殺菌処理は,公知の装置を用いて適宜行えば良い。なお,第1の殺菌工程の後に適宜冷却を行っても良い。すなわち,殺菌工程の後に冷却工程を行っても良い。冷却工程は,加熱殺菌工程で加熱されたヨーグルトミックスを発酵温度近くの温度まで冷却するための工程である。冷却方法は,発酵乳の冷却工程において用いられる公知の方法を採用すれば良く,例えば,加熱されたヨーグルトミックスを熱交換器により冷却すれば良い。   The above high temperature short time sterilization treatment and ultra high temperature sterilization treatment may be appropriately performed using a known apparatus. In addition, you may cool suitably after a 1st sterilization process. That is, you may perform a cooling process after a sterilization process. The cooling step is a step for cooling the yogurt mix heated in the heat sterilization step to a temperature close to the fermentation temperature. The cooling method should just employ | adopt the well-known method used in the cooling process of fermented milk, for example, what is necessary is just to cool the heated yoghurt mix with a heat exchanger.

水分除去工程
水分除去工程は,脱脂乳から水分を除去する工程であり,真空蒸発濃縮,噴霧乾燥,及び凍結乾燥といった公知の技術を用いても良い。
Moisture removal step The moisture removal step is a step of removing moisture from skim milk, and known techniques such as vacuum evaporation, spray drying, and freeze drying may be used.

真空蒸発濃縮は,真空下で液体を加熱して水分を蒸発させる濃縮方法であり,真空下では液体の沸点が下がることから,液温を低いままで蒸発させることが可能なことを利用したものである。脱脂乳に真空蒸発濃縮を施すには,運転圧力を調節することにより,液体の蒸発温度を任意に調節することが可能な公知の真空蒸発濃縮装置を用いることができる。   Vacuum evaporation concentration is a concentration method that evaporates moisture by heating the liquid under vacuum. Since the boiling point of the liquid decreases under vacuum, it can be evaporated at a low liquid temperature. It is. In order to subject the skim milk to vacuum evaporation and concentration, a known vacuum evaporation and concentration apparatus capable of arbitrarily adjusting the evaporation temperature of the liquid by adjusting the operating pressure can be used.

通常の脱脂乳は水分を88%程度で含んでいるが,真空蒸発濃縮により,50〜70%まで水分を除去することが可能である。しかしながら,真空蒸発濃縮のみにより5%以下まで水分を除去して脱脂粉乳を得ることは難しいことから,脱脂濃縮乳を製造するために真空蒸発濃縮を用いることが好ましい。また,水分を完全に除去して脱脂粉乳を製造するための前処理として真空蒸発濃縮を用いても良い。例えば,脱脂濃縮乳(固形分濃度:45重量%)を得るには,真空蒸発濃縮の蒸発温度は60〜65℃とし,2〜5分間,加熱すれば良い。   Ordinary skim milk contains about 88% of water, but it is possible to remove water up to 50-70% by vacuum evaporation and concentration. However, it is difficult to obtain nonfat dry milk by removing water to 5% or less only by vacuum evaporation and concentration. Therefore, it is preferable to use vacuum evaporation and concentration to produce nonfat concentrated milk. Moreover, you may use vacuum evaporation concentration as pre-processing for removing a water | moisture content completely and manufacturing skim milk powder. For example, to obtain defatted concentrated milk (solid content concentration: 45% by weight), the evaporation temperature of vacuum evaporation concentration may be 60-65 ° C. and heated for 2-5 minutes.

噴霧乾燥は,スプレードライとも呼ばれ,熱気流中に一気に液体を噴霧して瞬間的に粉状の乾燥物を得る方法であり,液体を霧状にする方法としては,回転円盤による遠心噴霧と圧力ノズルによる加圧噴霧がある。脱脂乳に噴霧乾燥を施すには,これらの噴霧方法を採用した公知の噴霧乾燥装置を用いることができる。   Spray drying, also called spray drying, is a method in which a liquid is sprayed at once in a hot air stream to obtain a powdery dried product instantaneously. There is pressurized spraying with a pressure nozzle. In order to spray-dry skimmed milk, a known spray-drying apparatus employing these spraying methods can be used.

脱脂乳を噴霧乾燥することにより直接,脱脂粉乳を製造することも可能ではあるが,前処理として上記の真空蒸発濃縮を施すことにより,あらかじめ水分を50〜70%まで除去しておき,その後,噴霧乾燥により水分を5%以下,好ましくは2%以下となるまで除去し,粉末状にすることにより,脱脂粉乳を製造する方が,効率が良い。噴霧乾燥の温度は,例えば160〜170℃があげられ,上記のような真空蒸発濃縮の前処理を行っておけば,噴霧乾燥を2〜6秒間程度,行うことにより,水分をほぼ完全に除去した脱脂粉乳を得ることができる。   It is possible to produce skim milk powder directly by spray drying skim milk, but by applying the above-mentioned vacuum evaporation and concentration as a pretreatment, the water is previously removed to 50 to 70%, It is more efficient to produce skim milk powder by removing the moisture by spray drying until it is 5% or less, preferably 2% or less, and making it into powder. The temperature of spray drying is, for example, 160 to 170 ° C. If the pretreatment for vacuum evaporation and concentration as described above is performed, moisture is almost completely removed by performing spray drying for about 2 to 6 seconds. Skimmed milk powder can be obtained.

凍結乾燥は,フリーズドライとも呼ばれ,材料をいったん凍結させ,減圧下で水分を昇華させて乾燥物を得る方法である。減圧下で水分を蒸発させる際には,加熱が必要となり,凍結乾燥の加熱温度としては,例えば40℃があげられ,この場合の凍結乾燥の時間には,約2日間があげられる。脱脂乳に凍結乾燥を施すには,公知の凍結乾燥装置を用いることができる。   Freeze-drying, also called freeze-drying, is a method of obtaining a dried product by freezing the material once and sublimating moisture under reduced pressure. When evaporating the water under reduced pressure, heating is required. The heating temperature for freeze drying is, for example, 40 ° C., and the freeze drying time in this case is about 2 days. A known freeze-drying apparatus can be used to freeze-dry skim milk.

以上,説明したように,脱脂乳に真空蒸発濃縮を施すことにより,水分を50〜70%まで除去すれば,脱脂濃縮乳が得られる。また,脱脂乳に真空蒸発濃縮を施した後,噴霧乾燥を施すことにより,水分を5%以下まで除去し,粉末状にすれば脱脂粉乳を得ることができる。あるいは,脱脂乳を直接噴霧乾燥又は凍結乾燥して,水分を5%以下まで除去して,粉末状にすれば脱脂粉乳を得ることもできる。   As described above, if the moisture is removed by vacuum evaporation and concentration to 50% to 70%, the defatted concentrated milk can be obtained. In addition, after evaporating and concentrating the skim milk in a vacuum, spray drying is performed to remove moisture to 5% or less, and powdered milk can be obtained. Alternatively, skim milk can also be obtained by directly spray-drying or freeze-drying skim milk to remove moisture up to 5% or less and powdering it.

ヨーグルトミックス調製工程
本発明では,少なくとも脱脂乳(水分を除去したもの,脱脂濃縮乳又は脱脂粉乳)を用いてヨーグルトミックスを調製する。例えば脱脂濃縮乳又は脱脂粉乳を用いて10重量%の還元脱脂乳を調製してヨーグルトミックスとすることができる。また,脱脂粉乳に牛乳やイオン交換水を加えてヨーグルトミックスを調製しても良い。この場合に,本発明ではヨーグルトミックスの全固形分又は無脂固形分に対する水分除去後の脱脂乳の配合割合が70重量%以上となるようにするのが好ましい。この段において,スターターを接種しても良い。
Yogurt mix preparation step In the present invention, a yogurt mix is prepared using at least skim milk (water removed, skim concentrated milk or skim milk powder). For example, 10% by weight of reduced skim milk can be prepared using skim concentrated milk or skim milk powder to obtain a yogurt mix. Alternatively, yogurt mix may be prepared by adding milk or ion exchange water to skim milk powder. In this case, in the present invention, it is preferable that the blending ratio of the skim milk after removing water with respect to the total solid content or the non-fat solid content of the yogurt mix is 70% by weight or more. At this stage, starters may be inoculated.

「スターター」として,公知のスターターを適宜用いることができる。好ましいスターターとして乳酸菌スターターがあげられ,乳酸菌スターターとして,ラクトバチルス・ブルガリカス(L.bulgaricus),ストレプトコッカス・サーモフィルス(S.thermophilus),ラクトバチルス・ラクティス(L.lactis),ラクトバチルス・ガッセリ(L.gasseri)又はビフィドバクテリウム(Bifidobacterium)の他,発酵乳の製造に一般的に用いられる乳酸菌や酵母の中から1種又は2種以上を用いることできる。これらの中では,コーデックス規格でヨーグルトスターターとして規格化されているラクトバチルス・ブルガリカス(L.bulgaricus)とストレプトコッカス・サーモフィルス(S.thermophilus)の混合スターターをベースとするスターターが好ましい。このヨーグルトスターターをベースとして,さらに得ようとする発酵乳に応じて,ラクトバチルス・ガッセリ(L.gasseri)やビフィドバクテリウム(Bifidobacterium)などの他の乳酸菌を加えても良い。スターターの接種量は,公知の発酵乳の製造方法において採用されている量などを適宜採用すれば良い。スターターの接種方法は,発酵乳を製造する際に用いられる公知の方法に従って行えば良い。   As the “starter”, a known starter can be appropriately used. Preferred starters include lactic acid bacteria starters, and lactic acid bacteria starters include Lactobacillus bulgaricus (L. bulgaricus), Streptococcus thermophilus (S. thermophilus), Lactobacillus lactis (L. lactis), Lactobacillus gasseri (L .Gasseri) or Bifidobacterium, or one or more of lactic acid bacteria and yeasts commonly used in the production of fermented milk. Among these, a starter based on a mixed starter of Lactobacillus bulgaricus (L. bulgaricus) and Streptococcus thermophilus (S. thermophilus), which is standardized as a yogurt starter in the Codex standard, is preferable. Based on this yogurt starter, other lactic acid bacteria such as Lactobacillus gasseri (L. gasseri) and Bifidobacterium may be added according to the fermented milk to be obtained. The inoculation amount of the starter may be appropriately selected from the amount employed in known fermented milk production methods. The starter inoculation method may be performed according to a known method used in producing fermented milk.

発酵工程
発酵工程は,ヨーグルトミックスを発酵させるための工程である。発酵工程は,2段階発酵などであっても構わない。発酵工程を経ることで,商品価値のある発酵乳を得ることができる。なお,発酵工程の前にヨーグルトミックスに対して脱酸素工程や殺菌工程を施しても良い。また,冷却工程や冷却工程以外の工程が含まれていても構わない。
Fermentation process The fermentation process is a process for fermenting the yogurt mix. The fermentation process may be two-stage fermentation. Through the fermentation process, fermented milk with commercial value can be obtained. In addition, you may give a deoxygenation process and a disinfection process with respect to a yogurt mix before a fermentation process. Further, a cooling process or a process other than the cooling process may be included.

発酵温度などの発酵条件は,ヨーグルトミックスに接種された乳酸菌の種類や,要求される発酵乳の風味などを考慮して適宜調整すれば良い。具体的には,発酵室内の温度(発酵温度)を30℃以上50℃以下に維持するものがあげられる。この温度であれば,一般的に乳酸菌が活動しやすいので,効果的に発酵を進めることができる。このときの発酵温度として,より好ましくは40℃以上45℃以下,さらに好ましくは41℃以上44℃以下があげられる。この温度であれば,超高温殺菌処理する前に脱脂乳の酸素濃度を低減することによる,発酵乳の食感や硬さ(硬度)を改善する効果が大きな意味を持つこととなる。すなわち,この温度では,このような処理を施さないで得られる発酵乳に比べて,より優れた発酵乳を得ることができた。超高温殺菌処理する前に脱脂乳の酸素濃度を低減しないで,従来の超高温殺菌処理をした脱脂乳を用いると,得られる発酵乳が実用上で必要な所定の硬さとならない。これに対して,超高温殺菌処理する前に脱脂乳の酸素濃度を低減したものを用いると,得られる発酵乳が実用上で必要な所定の硬さとなる。   Fermentation conditions such as fermentation temperature may be appropriately adjusted in consideration of the type of lactic acid bacteria inoculated into the yogurt mix and the required flavor of fermented milk. Specifically, the thing which maintains the temperature (fermentation temperature) in a fermentation chamber at 30 to 50 degreeC is mention | raise | lifted. At this temperature, lactic acid bacteria are generally active, so that fermentation can proceed effectively. The fermentation temperature at this time is more preferably 40 ° C. or higher and 45 ° C. or lower, and further preferably 41 ° C. or higher and 44 ° C. or lower. If it is this temperature, the effect which improves the food texture and hardness (hardness) of fermented milk by reducing the oxygen concentration of skim milk before super high temperature sterilization processing has a big meaning. That is, at this temperature, it was possible to obtain more excellent fermented milk than fermented milk obtained without such treatment. If skim milk subjected to conventional ultra-high temperature sterilization treatment is used without reducing the oxygen concentration of the skim milk before ultra-high temperature sterilization treatment, the obtained fermented milk does not have a predetermined hardness necessary for practical use. On the other hand, if the thing which reduced the oxygen concentration of skim milk before carrying out an ultra-high-temperature sterilization process is used, the fermented milk obtained will become the predetermined | prescribed hardness required practically.

発酵時間は,スターターや発酵温度などに応じて適宜調整すれば良く,具体的には1時間以上5時間以下があげられ,2時間以上4時間以下であっても良い。   The fermentation time may be appropriately adjusted according to the starter, the fermentation temperature, and the like. Specifically, the fermentation time is 1 hour or more and 5 hours or less, and may be 2 hours or more and 4 hours or less.

例えば,後発酵の場合には,ヨーグルトミックスとスターターとの混合物を容器に充填する。そして,その容器を所定温度の発酵室に入れ,所定時間で維持して,ヨーグルトミックスを発酵させる。これにより発酵乳を得ることができる。   For example, in the case of post-fermentation, a container is filled with a mixture of yogurt mix and starter. Then, the container is placed in a fermentation chamber at a predetermined temperature and maintained for a predetermined time to ferment the yogurt mix. Thereby, fermented milk can be obtained.

本発明の第二の態様
本発明の第二の実施態様である発酵乳の製造方法は,上記の第一の実施態様である発酵乳の製造方法において,前記ヨーグルトミックス調製工程の後,前記発酵工程の前に,前記ヨーグルトミックスに含まれる酸素濃度を低減する第2の脱酸素工程と,前記第2の脱酸素工程の後のヨーグルトミックスを加熱殺菌する第2の殺菌工程と,をさらに含む発酵乳の製造方法である。
2nd aspect of this invention The manufacturing method of fermented milk which is the 2nd embodiment of this invention is the manufacturing method of fermented milk which is said 1st embodiment, The said fermentation after the said yogurt mix preparation process. Before the step, further includes a second deoxygenation step for reducing the oxygen concentration contained in the yogurt mix, and a second sterilization step for heat-sterilizing the yogurt mix after the second deoxygenation step It is a manufacturing method of fermented milk.

より具体的に説明すると,脱脂乳に含まれる酸素濃度を低減する第1の脱酸素工程と,前記第1の脱酸素工程の後の脱脂乳を加熱殺菌する第1の殺菌工程と,前記第1の殺菌工程の後の脱脂乳から水分を除去する水分除去工程と,前記水分除去後の脱脂乳を用いて脱脂乳を用いてヨーグルトミックスを調製するヨーグルトミックス調製工程と,前記ヨーグルトミックスに含まれる酸素濃度を低減する第2の脱酸素工程と,前記第2の脱酸素工程の後のヨーグルトミックスを加熱殺菌する第2の殺菌工程と,前記第2の殺菌工程の後のヨーグルトミックスを発酵させる発酵工程と,を含む発酵乳の製造方法である。   More specifically, a first deoxygenation step for reducing the oxygen concentration contained in skim milk, a first sterilization step for heat-sterilizing skim milk after the first deoxygenation step, and the first Included in the yogurt mix, a water removal step for removing water from skim milk after the sterilization step, a yogurt mix preparation step for preparing a yogurt mix using skim milk using the skimmed milk after the water removal, and A second deoxygenation step for reducing the oxygen concentration produced, a second sterilization step for heat-sterilizing the yogurt mix after the second deoxygenation step, and fermenting the yogurt mix after the second sterilization step A fermented milk production method comprising a fermentation step.

この発酵乳の製造方法は,基本的には先に説明した第一の実施態様である発酵乳の製造方法と同様であるので繰り返しを避けるため,記載を引用することとして省略する。なお,ヨーグルトミックスを対象とした第2の脱酸素工程及び第2の殺菌工程についても,上記の脱脂乳を対象とした第1の脱酸素工程及び第1の殺菌工程と同様の装置を用いて,同様の条件の下に行えば良い。   The method for producing fermented milk is basically the same as the method for producing fermented milk according to the first embodiment described above, and therefore, the description thereof is omitted for the sake of avoiding repetition. In addition, also about the 2nd deoxygenation process and 2nd sterilization process which aimed at yogurt mix, using the apparatus similar to the 1st deoxygenation process and 1st sterilization process which were intended for said skim milk. , Under the same conditions.

実施例16で示されたように,このようにして,発酵工程の前にヨーグルトミックスに対して脱酸素及び殺菌の処理を施すことにより,より硬く滑らかな食感の発酵乳を得ることができる。第二の態様における発酵温度などの発酵条件は,第一の態様におけるものと同様であれば良い。   As shown in Example 16, in this way, fermented milk having a harder and smoother texture can be obtained by subjecting the yogurt mix to deoxygenation and sterilization before the fermentation step. . The fermentation conditions such as the fermentation temperature in the second aspect may be the same as those in the first aspect.

本発明の第三の態様
本発明の第三の実施態様である発酵乳の製造方法は,上記の第二の実施態様である発酵乳の製造方法において,前記第2の殺菌工程の後,前記発酵工程の前に,前記ヨーグルトミックスに含まれる酸素濃度を低減する第3の脱酸素工程をさらに含む発酵乳の製造方法である。
3rd aspect of this invention The manufacturing method of fermented milk which is 3rd embodiment of this invention is the manufacturing method of fermented milk which is said 2nd embodiment, In said manufacturing method of fermented milk, after said 2nd disinfection process, It is a manufacturing method of fermented milk further including the 3rd deoxidation process which reduces the oxygen concentration contained in the said yogurt mix before a fermentation process.

この発酵乳の製造方法も,基本的には先に説明した第一及び第二の実施態様である発酵乳の製造方法と同様であるので繰り返しを避けるため,記載を引用することとして省略する。なお,ヨーグルトミックスを対象とした第3の脱酸素工程についても,上記の脱脂乳を対象とした第1の脱酸素工程と同様の装置を用いて,同様の条件の下に行えば良い。   The method for producing fermented milk is basically the same as the method for producing fermented milk according to the first and second embodiments described above, and therefore, the description is omitted as a citation for avoiding repetition. In addition, what is necessary is just to perform on the same conditions using the apparatus similar to the 1st deoxygenation process for the above-mentioned skim milk also about the 3rd deoxygenation process for the yogurt mix.

実施例18で示されたように,脱酸素処理の後に殺菌処理を施したヨーグルトミックスに対し,さらに脱酸素(脱気)処理したものを用いると,このような処理を施さないで得られる発酵乳に比べて,より滑らかな発酵乳を得ることができる。   As shown in Example 18, when yogurt mix that has been subjected to sterilization after deoxygenation is further deoxygenated (degassed), fermentation obtained without such treatment is performed. Compared with milk, smoother fermented milk can be obtained.

第三の態様における発酵温度などの発酵条件は,ヨーグルトミックスに接種された乳酸菌の種類や,求める発酵乳の風味などを考慮して適宜調整すれば良い。具体的な例として,発酵室内の温度(発酵温度)を30℃以上50℃以下に維持するものがあげられる。このときの発酵温度として,より好ましくは30℃以上40℃以下があげられ,さらに好ましくは30℃以上37℃以下が挙げられる。この温度であれば,殺菌処理する前にヨーグルトミックスの酸素濃度を低減し,酸素濃度低減後のヨーグルトミックスを殺菌処理した後,さらに発酵する前にヨーグルトミックスの酸素濃度を低減することによる,発酵乳の食感や滑らかさを改善する効果が大きな意味を持つこととなる。すなわち,この温度では,このような処理を施さないで得られる発酵乳に比べて,より優れた発酵乳及びその製造方法を得ることができた。殺菌処理する前にヨーグルトミックスの酸素濃度を低減しない,あるいは殺菌処理する前にヨーグルトミックスの酸素濃度を低減するが,発酵する前にヨーグルトミックスの酸素濃度を低減しないで発酵すると,得られる発酵乳が十分に滑らかとならないこともあり,その製造方法においては,実用上で必要な一定の発酵時間で,発酵をコントロールしにくい。これに対して,殺菌処理する前にヨーグルトミックスの酸素濃度を低減し,酸素濃度低減後のヨーグルトミックスを殺菌処理した後,さらに発酵する前にヨーグルトミックスの酸素濃度を低減して発酵すると,得られる発酵乳が十分に滑らかとなり,その製造方法においては,実用上で必要な一定の発酵時間で,発酵をコントロールできることとなる。   Fermentation conditions such as fermentation temperature in the third aspect may be appropriately adjusted in consideration of the type of lactic acid bacteria inoculated into the yogurt mix, the desired flavor of fermented milk, and the like. A specific example is one that maintains the temperature in the fermentation chamber (fermentation temperature) at 30 ° C. or more and 50 ° C. or less. As fermentation temperature at this time, More preferably, 30 degreeC or more and 40 degrees C or less are mention | raise | lifted, More preferably, 30 degreeC or more and 37 degrees C or less are mentioned. At this temperature, the oxygen concentration of the yogurt mix is reduced before the sterilization treatment, and after the sterilization treatment of the yogurt mix after the oxygen concentration reduction, the oxygen concentration of the yogurt mix is reduced before further fermentation. The effect of improving the texture and smoothness of milk will have great significance. That is, at this temperature, it was possible to obtain a fermented milk and a method for producing the same superior to fermented milk obtained without such treatment. Fermented milk obtained when fermenting without reducing the oxygen concentration of the yogurt mix before sterilization, but without reducing the oxygen concentration of the yogurt mix before fermentation May not be smooth enough, and in the production method, it is difficult to control fermentation in a certain fermentation time necessary for practical use. On the other hand, reducing the oxygen concentration of the yogurt mix before sterilization, sterilizing the yogurt mix after the oxygen concentration reduction, and further reducing the oxygen concentration of the yogurt mix before fermentation, The resulting fermented milk becomes sufficiently smooth, and in the production method, the fermentation can be controlled within a certain fermentation time necessary for practical use.

本発明の発酵乳(ヨーグルト)は,十分な硬さと滑らかさの食感や物性を有することが特徴である。これらの特徴は,その発酵乳を車両などで運んだり,実際に食したりして,従来品と比較することで,明らかに認識できるが,カードメーターの解析結果からも説明できる。つまり,発酵乳の物性は例えば,ネオカードメーターM302(アイテクノエンジニアリング社製:旧・飯尾電機社製)を使用して評価できる。このカードメーターでは,100gの重りを付けたヨーグルトナイフで,発酵乳の侵入角度を測定し,この測定値を曲線で表現する。この際,ナイフの高さを縦軸をとし,100gにさらに加えた加重を横軸とする。そして,縦軸の10mmと横軸の10gとを同じ距離とする。その侵入角度曲線の破断に至るまでの距離が硬さ(硬度,弾力性,カードテンション(CT))(g)の指標であり,角度(度)が滑らかさの指標である。   The fermented milk (yogurt) of the present invention is characterized by having sufficient hardness and smooth texture and physical properties. These features can be clearly recognized by carrying the fermented milk in a vehicle or by actually eating it and comparing it with the conventional product, but it can also be explained from the analysis results of the card meter. That is, the physical properties of fermented milk can be evaluated using, for example, Neocard Meter M302 (manufactured by iTechno Engineering Co., Ltd .: former Iio Electric Co., Ltd.). In this card meter, the invasion angle of fermented milk is measured with a yogurt knife with a weight of 100 g, and the measured value is expressed by a curve. At this time, the vertical axis represents the height of the knife, and the horizontal axis represents the weight added to 100 g. The same distance is 10 mm on the vertical axis and 10 g on the horizontal axis. The distance to the break of the penetration angle curve is an indicator of hardness (hardness, elasticity, card tension (CT)) (g), and the angle (degree) is an indicator of smoothness.

以下,実施例を用いて本発明を具体的に説明する。本発明は,以下の実施例に限定されることなく,公知の手法に基づく様々な改良を加えることができるものである。
以下に示す実施例においては,上記のカードメーターで測定した硬さ及び滑らかさを用いて本発明の有効性を検証する。
以下に説明する実施例1〜18の内,実施例1〜14までは,様々な条件の下で,脱脂乳に対する脱酸素処理の有無と発酵乳の物性(硬さ、滑らかさなど)の関係を検証し,実施例15〜18では,脱脂乳に対する脱酸素処理及び殺菌処理を同じ条件で行った後,この脱脂乳を用いて調製したヨーグルトミックスに対する脱酸素処理,殺菌処理,及び発酵処理の条件を様々に変えた場合の,発酵乳の物性を検証した。
Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to the following examples, and various improvements based on known methods can be added.
In the following examples, the effectiveness of the present invention is verified using the hardness and smoothness measured by the card meter.
Of Examples 1 to 18 described below, Examples 1 to 14 are related to the presence or absence of deoxygenation treatment for skim milk and the physical properties (hardness, smoothness, etc.) of fermented milk under various conditions. In Examples 15 to 18, after deoxidation treatment and sterilization treatment for skim milk were performed under the same conditions, deoxygenation treatment, sterilization treatment, and fermentation treatment of yogurt mix prepared using this skim milk were performed. We verified the physical properties of fermented milk when various conditions were changed.

実施例1.脱脂粉乳に対する脱酸素処理(第一の脱酸素工程)の有無と発酵乳の物性の関係(その1)
脱脂乳を,溶存酸素濃度(DO)が5ppm以下となるまで脱酸素処理をしてから,高温短時間(HTST)殺菌処理し,噴霧乾燥により水分除去処理して製造した脱脂粉乳を10重量%で溶解してヨーグルトミックスを調製し,約43℃で保持して発酵乳を製造した。この場合に,得られた発酵乳の硬さは100g以上であった。
Example 1. Relationship between presence / absence of deoxygenation treatment (first deoxygenation step) for skim milk powder and physical properties of fermented milk (part 1)
10% by weight of skim milk produced by subjecting skim milk to deoxygenation treatment until the dissolved oxygen concentration (DO) is 5 ppm or less, then sterilizing at high temperature for a short time (HTST) and removing moisture by spray drying. A yogurt mix was prepared by dissolving the mixture at a temperature of about 43 ° C. to produce fermented milk. In this case, the hardness of the obtained fermented milk was 100 g or more.

(比較例1)
脱酸素処理を行わなかった以外は実施例1と同様にして発酵乳を製造した場合に,得られた発酵乳の硬さは約60gであった。
実施例1と比較例1より,殺菌方法がHTSTである場合に,脱脂乳に脱酸素処理を施すことにより,より硬い発酵乳を得ることができることが示された。
(Comparative Example 1)
When fermented milk was produced in the same manner as in Example 1 except that the deoxygenation treatment was not performed, the hardness of the obtained fermented milk was about 60 g.
From Example 1 and Comparative Example 1, it was shown that harder fermented milk can be obtained by subjecting skim milk to deoxygenation when the sterilization method is HTST.

実施例2.脱脂粉乳に対する脱酸素処理(第一の脱酸素工程)の有無と発酵乳の物性の関係(その2)
脱脂乳を,溶存酸素濃度(DO)が5ppm以下となるまで脱酸素処理をしてから,超高温(UHT)殺菌処理し,噴霧乾燥により水分除去処理して製造した脱脂粉乳を10重量%で溶解してヨーグルトミックスを調製し,約43℃で保持して発酵乳を製造した。この場合に,得られた発酵乳の硬さは約55gであった。
Example 2 Relationship between presence / absence of deoxygenation treatment (first deoxygenation step) for skim milk powder and physical properties of fermented milk (part 2)
The skim milk was deoxygenated until the dissolved oxygen concentration (DO) was 5 ppm or less, then sterilized by ultra-high temperature (UHT), and the water was removed by spray drying. A yogurt mix was prepared by dissolution and maintained at about 43 ° C. to produce fermented milk. In this case, the hardness of the obtained fermented milk was about 55 g.

(比較例2)
脱酸素処理を行わなかった以外は実施例2と同様にして発酵乳を製造した場合に,得られた発酵乳の硬さは約40gであった。
実施例2と比較例2より,殺菌方法がUHTである場合にも,脱脂乳に脱酸素処理を施すことにより,より硬い発酵乳を得ることができることが示された。
(Comparative Example 2)
When fermented milk was produced in the same manner as in Example 2 except that the deoxygenation treatment was not performed, the hardness of the obtained fermented milk was about 40 g.
From Example 2 and Comparative Example 2, it was shown that even when the sterilization method is UHT, harder fermented milk can be obtained by subjecting skim milk to deoxygenation treatment.

脱脂乳に脱酸素処理を施した場合の発酵乳について得られた約55gの硬さは,製品の流通段階で崩れることのない十分な硬さであると考えられるため,発酵乳の製造にUHT殺菌した脱脂粉乳を用いることが可能になる。   Since the hardness of about 55 g obtained for fermented milk when skim milk is subjected to deoxygenation treatment is considered to be sufficient hardness that does not collapse in the product distribution stage, UHT is used for the production of fermented milk. Sterilized skim milk can be used.

実施例3.脱脂粉乳に対する脱酸素処理(第一の脱酸素工程)の有無と発酵乳の物性の関係(その3)
脱脂乳を,溶存酸素濃度(DO)が5ppm以下となるまで脱酸素処理してから,UHT処理し,噴霧乾燥により水分除去処理して製造した脱脂粉乳を10重量%で溶解してヨーグルトミックスを調製し,このヨーグルトミックスを脱酸素処理(第二の脱酸素工程)してから,約37℃で保持して発酵乳を製造した。この場合に,得られた発酵乳の硬さは約75gであった。
Example 3 Relationship between presence / absence of deoxygenation treatment (first deoxygenation step) for skim milk powder and physical properties of fermented milk (part 3)
The skim milk is deoxygenated until the dissolved oxygen concentration (DO) is 5 ppm or less, then UHT-treated, and dehydrated milk produced by removing moisture by spray drying is dissolved at 10% by weight to prepare a yogurt mix. The yogurt mix was prepared and deoxygenated (second deoxygenation step), and then maintained at about 37 ° C. to produce fermented milk. In this case, the hardness of the obtained fermented milk was about 75 g.

(比較例3)
脱酸素処理を行わなかった以外は実施例3と同様にして発酵乳を製造した場合に,得られた発酵乳の硬さは約65gであった。
実施例3と比較例3より,やはり,脱脂乳に脱酸素処理を施すことにより,より硬い発酵乳を得ることができることが示された。
さらに,上記の実施例2と実施例3を比較すると,同じように脱脂乳を,溶存酸素濃度(DO)が5ppm以下となるまで脱酸素処理してから,UHT処理し,水分除去処理して製造した脱脂粉乳を用いて調製したヨーグルトミックスであっても,ヨーグルトミックスを脱酸素処理する(第二の脱酸素工程)ことと,発酵温度を43℃から37℃に下げたことで,より硬い発酵乳が得られることが分かった。
(Comparative Example 3)
When fermented milk was produced in the same manner as in Example 3 except that the deoxygenation treatment was not performed, the hardness of the obtained fermented milk was about 65 g.
From Example 3 and Comparative Example 3, it was shown that harder fermented milk can be obtained by subjecting skim milk to deoxidation treatment.
Further, comparing Example 2 and Example 3 above, similarly, skimmed milk was deoxygenated until the dissolved oxygen concentration (DO) was 5 ppm or less, then UHT-treated, and water-removed. Even yogurt mix prepared using the produced skim milk powder is harder by deoxidizing the yogurt mix (second deoxygenation step) and lowering the fermentation temperature from 43 ° C to 37 ° C. It was found that fermented milk can be obtained.

実施例4.脱脂粉乳に対する脱酸素処理(第一の脱酸素工程)の有無と発酵乳の物性の関係(その4)
脱脂乳を,溶存酸素濃度(DO)が5ppm以下となるまで脱酸素処理してから,UHT処理し,噴霧乾燥により水分除去処理して製造した脱脂粉乳を8重量%,通常の脱脂粉乳を2重量%で溶解してヨーグルトミックスを調製したものを用いて,約43℃で保持して発酵乳を製造した。この場合に,得られた発酵乳の硬さは約55gであった。
Example 4 Relationship between presence / absence of deoxygenation treatment (first deoxygenation step) for skim milk powder and physical properties of fermented milk (part 4)
The skim milk is deoxygenated until the dissolved oxygen concentration (DO) is 5 ppm or less, then UHT-treated, and water-removed by spray drying. Fermented milk was produced by holding at about 43 ° C. using a yogurt mix prepared by dissolving at a weight percentage. In this case, the hardness of the obtained fermented milk was about 55 g.

(比較例4)
脱脂乳を脱酸素処理せずに,UHT処理し,水分除去処理して製造した脱脂粉乳を,10重量%で溶解してヨーグルトミックスを調製したものを用いて,実施例4と同様に約43℃で保持して発酵乳を製造した場合に,発酵乳の硬さは約40gであった。
(Comparative Example 4)
The skim milk was not deoxygenated, UHT-treated, and water-removed. The skim milk powder produced by dissolving at 10% by weight was used to prepare a yogurt mix, and about 43 in the same manner as in Example 4. When fermented milk was produced by holding at 0 ° C., the hardness of the fermented milk was about 40 g.

実施例4と比較例4より,UHT処理して製造した脱脂粉乳と通常の脱脂粉乳とを混合してヨーグルトミックスを調製する場合であっても,脱脂乳に脱酸素処理を施した後にUHT処理して製造した脱脂粉乳をある程度で含めることにより,発酵乳の硬さを高めることができることが示された。   From Example 4 and Comparative Example 4, even when preparing a yogurt mix by mixing skimmed milk powder produced by UHT treatment and ordinary skimmed milk powder, UHT treatment is performed after deoxidizing the skimmed milk. It was shown that the hardness of fermented milk can be increased by including skimmed milk powder produced in a certain amount.

実施例5.脱脂濃縮乳に対する脱酸素処理(第一の脱酸素工程)の有無と発酵乳の物性の関係
脱脂乳を,溶存酸素濃度(DO)が5ppm以下となるまで脱酸素処理してから,UHT処理し,真空蒸発濃縮により水分除去処理して製造した脱脂濃縮乳を10重量%で溶解してヨーグルトミックスを調製し,約43℃で保持して発酵乳を製造した。この場合に,得られた発酵乳の硬さは約65g以上であった。
Embodiment 5 FIG. Relationship between the presence or absence of deoxygenation treatment (first deoxygenation process) and the physical properties of fermented milk Degreased milk is deoxygenated until the dissolved oxygen concentration (DO) is 5 ppm or less, and then UHT treatment is performed. The yoghurt mix was prepared by dissolving 10% by weight of the defatted concentrated milk produced by removing water by vacuum evaporation, and the fermented milk was produced by maintaining at about 43 ° C. In this case, the hardness of the obtained fermented milk was about 65 g or more.

(比較例5)
脱酸素処理を行わなかった以外は実施例5と同様にして発酵乳を製造した場合に,得られた発酵乳の硬さは約50gであった。
実施例5と比較例5より,脱脂濃縮乳を用いてヨーグルトミックスを調製する場合にも,脱脂乳に脱酸素処理を施した脱脂濃縮乳を用いたものの方が,脱酸素処理を施さない脱脂濃縮乳を用いたものより,より硬い発酵乳を得ることができることが示された。なお,上記の実施例2と実施例5を比較して,脱脂粉乳よりも脱脂濃縮乳を用いる場合の方が,硬さが大きいことも示された。
(Comparative Example 5)
When fermented milk was produced in the same manner as in Example 5 except that the deoxygenation treatment was not performed, the hardness of the obtained fermented milk was about 50 g.
From Example 5 and Comparative Example 5, when preparing a yoghurt mix using nonfat concentrated milk, the nonfat non-degreased product is also used in the case of using a nonfat concentrated milk obtained by deoxidizing the nonfat milk. It was shown that harder fermented milk can be obtained than that using concentrated milk. In addition, comparing the above Example 2 and Example 5, it was also shown that the hardness was higher in the case of using the defatted concentrated milk than the defatted milk powder.

実施例6.脱脂粉乳に対する脱酸素処理(第一の脱酸素工程)の有無と発酵乳の物性の関係(その5)
脱脂乳を,溶存酸素濃度(DO)が5ppm以下となるまで脱酸素処理してから,HTST処理し,凍結乾燥により水分除去処理して製造した脱脂粉乳を10重量%で溶解してヨーグルトミックスを調製し,約43℃で保持して発酵乳を製造した。この場合に,得られた発酵乳の硬さは約70gであった。
Example 6 Relationship between presence / absence of deoxygenation treatment (first deoxygenation step) on skim milk powder and physical properties of fermented milk (part 5)
The skim milk is deoxygenated until the dissolved oxygen concentration (DO) is 5 ppm or less, then HTST-treated, and the skim milk powder produced by removing moisture by freeze-drying is dissolved at 10% by weight to prepare a yogurt mix. Prepared and kept at about 43 ° C. to produce fermented milk. In this case, the hardness of the obtained fermented milk was about 70 g.

(比較例6)
脱酸素処理を行わなかった以外は実施例6と同様にして発酵乳を製造した場合に,得られた発酵乳の硬さは約60gであった。
(Comparative Example 6)
When fermented milk was produced in the same manner as in Example 6 except that the deoxygenation treatment was not performed, the hardness of the obtained fermented milk was about 60 g.

実施例6と比較例6より,脱脂粉乳を得る際の水分除去処理の方法が凍結乾燥によるものである場合にも,脱酸素処理を施した脱脂粉乳を用いたものの方が,脱酸素処理を施さない脱脂粉乳を用いたものより,より硬い発酵乳を得ることができることが示された。
また,上記の実施例1と実施例6を比較すると,水分除去処理として凍結乾燥を採用した実施例6による発酵乳の硬さは,噴霧乾燥による水分除去処理を採用した実施例1による発酵乳の硬さよりも減少するが,それでも,脱酸素処理をしない場合と比較して脱酸素処理をしたものは,より硬い発酵乳を得ることができることが示された。
From Example 6 and Comparative Example 6, even when the method of moisture removal treatment when obtaining skim milk is by freeze-drying, the one using degreased milk powder subjected to deoxidation treatment is more deoxygenated. It was shown that a harder fermented milk can be obtained than using non-fat dry milk.
In addition, when Example 1 and Example 6 are compared, the hardness of the fermented milk according to Example 6 adopting freeze-drying as the moisture removal treatment is the same as the fermented milk according to Example 1 employing the moisture removal treatment by spray drying. However, it was shown that the hardened fermented milk can be obtained with the deoxygenated treatment compared with the case without the deoxygenated treatment.

溶存酸素濃度(DO)が8ppmである脱脂乳の約30kgに対し,第一の脱酸素工程として脱酸素処理によりDOを4ppmとし,第一の殺菌工程としてUHT処理による殺菌(125℃,15秒間,予熱処理:85℃,3分間)を行い,真空蒸発濃縮(60〜65℃,数分間)により水分除去処理して脱脂濃縮乳(固形分濃度:45重量%)を製造した。   About 30 kg of skim milk with a dissolved oxygen concentration (DO) of 8 ppm, DO is 4 ppm by deoxygenation treatment as the first deoxygenation step, and sterilization by UHT treatment as the first sterilization step (125 ° C., 15 seconds) , Pre-heat treatment: 85 ° C., 3 minutes), and removal of water by vacuum evaporation (60-65 ° C., several minutes) to produce skim concentrated milk (solid content concentration: 45% by weight).

この脱脂濃縮乳で10重量%の還元脱脂乳を調製して,ヨーグルトミックスとし,このヨーグルトミックスに対し,第二の脱酸素工程として脱酸素処理によりDOを3ppmとしてから,第二の殺菌工程として沸騰水の浴槽を用いて間接的に95℃の達温で殺菌した後に,乳酸菌スターター(ラクトバチルス・ブルガリカス(L. bulgaricus JCM 1002T)とストレプトコッカス・サーモフィルス(S. thermophilus ATCC 19258)の混合培養物)を2重量%で接種した。   Prepare 10% by weight of reduced skim milk with this concentrated skim milk to make a yogurt mix, and then to this yogurt mix, DO as 3ppm by deoxygenation as the second deoxygenation process, as the second sterilization process Mixed culture of lactic acid bacteria starter (L. bulgaricus JCM 1002T) and Streptococcus thermophilus (S. thermophilus ATCC 19258) after sterilization indirectly at a temperature of 95 ° C. using a bath of boiling water Inoculated at 2% by weight.

このヨーグルトミックス(未発酵乳)を容器へ充填した後に,43℃で保持して,乳酸酸度が0.7%に到達した段階(約3〜5時間)で発酵を終了した。そして,この発酵乳を10℃に冷却して,物性測定用の試料(製品)とした。なお,乳酸酸度(%)はフェノールフタレインを指示薬とし,0.1規定の水酸化ナトリウムで滴定して算出した。この場合に,得られた発酵乳の硬さは62gであり,滑らかさは約60度であった。   After filling this yogurt mix (unfermented milk) into a container, it was kept at 43 ° C. and the fermentation was terminated when the lactic acid acidity reached 0.7% (about 3 to 5 hours). And this fermented milk was cooled at 10 degreeC, and it was set as the sample (product) for a physical-property measurement. The lactic acid acidity (%) was calculated by titration with 0.1N sodium hydroxide using phenolphthalein as an indicator. In this case, the hardness of the obtained fermented milk was 62 g, and the smoothness was about 60 degrees.

(比較例7)
第一の脱酸素工程を行わなかった以外は実施例7と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは50gであり,滑らかさは約60度であった。
(Comparative Example 7)
A sample for measuring physical properties was obtained in the same manner as in Example 7 except that the first deoxygenation step was not performed. In this case, the hardness of the obtained fermented milk was 50 g, and the smoothness was about 60 degrees.

第一の脱酸素工程として脱酸素処理によりDOを4ppmではなく2ppmとしたことと,第一の殺菌工程としてUHT処理に代えてHTST処理による殺菌(90℃,15秒間,予熱処理:85℃,3分間)を行った以外は,実施例7と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは100g超であり,滑らかさは約60度であった。   In the first deoxygenation step, DO was changed to 2 ppm instead of 4 ppm by deoxygenation treatment, and in the first sterilization step, sterilization by HTST treatment instead of UHT treatment (90 ° C., 15 seconds, preheat treatment: 85 ° C., A sample for measuring physical properties was obtained in the same manner as in Example 7, except that 3 minutes) was performed. In this case, the hardness of the obtained fermented milk was over 100 g, and the smoothness was about 60 degrees.

(比較例8)
第一の脱酸素工程を行わなかった以外は,実施例8と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは100g超であり,滑らかさは約60度であった。
(Comparative Example 8)
A sample for measuring physical properties was obtained in the same manner as in Example 8 except that the first deoxygenation step was not performed. In this case, the hardness of the obtained fermented milk was over 100 g, and the smoothness was about 60 degrees.

表1は,上記の実施例7及び8並びに比較例7及び8で得られたそれぞれの発酵乳の硬さ(CT)と滑らかさ(角度)の測定結果をまとめたものである。すなわち,表1は脱脂濃縮乳の殺菌条件(第一の殺菌工程前の第一の脱酸素工程の有無)が発酵乳の物性に及ぼす影響をまとめたものである。   Table 1 summarizes the measurement results of hardness (CT) and smoothness (angle) of each fermented milk obtained in Examples 7 and 8 and Comparative Examples 7 and 8. That is, Table 1 summarizes the effects of the sterilization conditions of skim concentrated milk (the presence or absence of the first deoxygenation step before the first sterilization step) on the physical properties of the fermented milk.

Figure 2009041045
Figure 2009041045

表1の比較例7と実施例7から,第一の殺菌工程としてUHTにより殺菌処理を施した場合には,第一の脱酸素工程を施した脱脂濃縮乳を用いて調製したヨーグルトミックスを発酵して得られた発酵乳の方が,第一の脱酸素工程を施さない脱脂濃縮乳を用いたものよりもカードの硬さが優れていることが分かった。   From Comparative Example 7 and Example 7 in Table 1, when sterilizing by UHT as the first sterilization step, fermented yogurt mix prepared using the defatted concentrated milk subjected to the first deoxygenation step It was found that the fermented milk obtained in this way had better curd hardness than that using the non-fat concentrated milk not subjected to the first deoxidation step.

また,表1の比較例8と実施例8から,第一の殺菌工程としてHTSTにより殺菌処理を施した場合に,第一の脱酸素工程を施した脱脂濃縮乳を用いて調製したヨーグルトミックスを発酵して得られた発酵乳も第一の脱酸素工程を施さない脱脂濃縮乳を用いたものも,いずれもカードの硬さが優れていることが分かった。   Further, from Comparative Example 8 and Example 8 in Table 1, when the sterilization treatment was performed by HTST as the first sterilization step, the yogurt mix prepared using the degreased concentrated milk subjected to the first deoxygenation step was It was found that the fermented milk obtained by fermentation and the one using nonfat concentrated milk not subjected to the first deoxygenation step were excellent in the hardness of the card.

また,脱脂乳に対する第一の殺菌工程の有無にかかわらず,ヨーグルトミックスに対する第二の脱酸素工程を施した後に,第二の殺菌工程を施したものは,カードの硬さと滑らかさが優れていることが分かった。   In addition, regardless of the presence or absence of the first sterilization step for skim milk, the second sterilization step for the yogurt mix followed by the second sterilization step is excellent in curd hardness and smoothness. I found out.

溶存酸素濃度(DO)が8ppmである脱脂乳の約15kgに対し,第一の脱酸素工程として脱酸素処理によりDOを3ppmとし,第一の殺菌工程としてUHT処理による殺菌(125℃,15秒間)を行い,真空蒸発濃縮(60〜65℃,数分間)を行った後,さらに噴霧乾燥(160〜170℃,数秒間)を行うことにより水分除去処理して脱脂粉乳を製造した。   About 15 kg of skim milk with a dissolved oxygen concentration (DO) of 8 ppm, DO is 3 ppm by deoxygenation as the first deoxygenation step, and sterilization by UHT treatment (125 ° C, 15 seconds) as the first sterilization step ), Vacuum evaporation and concentration (60 to 65 ° C., several minutes), and further spray drying (160 to 170 ° C., several seconds) to remove moisture to produce skim milk powder.

この脱脂粉乳で10重量%の還元脱脂乳を調製して,ヨーグルトミックスとした。このヨーグルトミックスを,沸騰水の浴槽を用いて間接的に95℃の達温で殺菌した後に,それぞれのヨーグルトミックスへ乳酸菌スターター(L. bulgaricus JCM 1002TとS. thermophilus ATCC 19258の混合培養物)を2重量%で接種した。   10% by weight of reduced skim milk was prepared from this skim milk powder to obtain a yogurt mix. The yogurt mix was sterilized indirectly using a bath of boiling water at a temperature of 95 ° C., and then a lactic acid bacteria starter (mixed culture of L. bulgaricus JCM 1002T and S. thermophilus ATCC 19258) was added to each yogurt mix. Inoculated at 2% by weight.

この未発酵乳を容器へ充填した後に,43℃で保持して,乳酸酸度が0.7%に到達した段階(約3〜5時間)で発酵を終了した。そして,この発酵乳を10℃に冷却して,物性測定用の試料(製品)とした。この場合に,得られた発酵乳の硬さは55gであり,滑らかさは約60度であった。   After filling this unfermented milk into a container, it hold | maintained at 43 degreeC and complete | finished fermentation in the stage (about 3 to 5 hours) when the lactic acid acidity reached | attained 0.7%. And this fermented milk was cooled at 10 degreeC, and it was set as the sample (product) for a physical-property measurement. In this case, the hardness of the obtained fermented milk was 55 g, and the smoothness was about 60 degrees.

(比較例9)
第一の脱酸素工程を行わなかった以外は,実施例9と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは37gであり,滑らかさは約60度であった。
(Comparative Example 9)
A sample for measuring physical properties was obtained in the same manner as in Example 9 except that the first deoxygenation step was not performed. In this case, the hardness of the obtained fermented milk was 37 g, and the smoothness was about 60 degrees.

第一の脱酸素工程として脱酸素処理によりDOを3ppmではなく2ppmとしたことと,第一の殺菌工程としてUHT処理に代えてHTST処理による殺菌(90℃,15秒間)を行った以外は,実施例9と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは72g超であり,滑らかさは約60度であった。   Except that DO was set to 2 ppm instead of 3 ppm by deoxygenation treatment as the first deoxygenation step, and sterilization by HTST treatment (90 ° C., 15 seconds) instead of UHT treatment as the first sterilization step, A sample for measuring physical properties was obtained in the same manner as in Example 9. In this case, the hardness of the obtained fermented milk was over 72 g, and the smoothness was about 60 degrees.

(比較例10)
第一の脱酸素工程を行わなかった以外は,実施例10と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは63gであり,滑らかさは約60度であった。
(Comparative Example 10)
A sample for measuring physical properties was obtained in the same manner as in Example 10 except that the first deoxygenation step was not performed. In this case, the hardness of the obtained fermented milk was 63 g, and the smoothness was about 60 degrees.

水分除去処理として,真空蒸発濃縮と噴霧乾燥の組み合わせに代えて凍結乾燥(40℃,約2日間)を行ったこと以外は,実施例9と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは46gであり,滑らかさは約60度であった。   A sample for measuring physical properties was obtained in the same manner as in Example 9 except that freeze-drying (40 ° C., about 2 days) was performed instead of the combination of vacuum evaporation and spray drying as the water removal treatment. In this case, the hardness of the obtained fermented milk was 46 g, and the smoothness was about 60 degrees.

(比較例11)
第一の脱酸素工程を行わなかった以外は,実実施例11と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは40gであり,滑らかさは約60度であった。
(Comparative Example 11)
A sample for measuring physical properties was obtained in the same manner as in Example 11 except that the first deoxygenation step was not performed. In this case, the hardness of the obtained fermented milk was 40 g, and the smoothness was about 60 degrees.

水分除去処理として真空蒸発濃縮と噴霧乾燥の組み合わせに代えて凍結乾燥(40℃,約2日間)を行ったこと以外は,実実施例10と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは67gであり,滑らかさは約60度であった。   A sample for measuring physical properties was obtained in the same manner as in Example 10 except that freeze-drying (40 ° C., about 2 days) was performed instead of the combination of vacuum evaporation and spray drying as the water removal treatment. In this case, the hardness of the obtained fermented milk was 67 g, and the smoothness was about 60 degrees.

(比較例12)
第一の脱酸素工程を行わなかった以外は,実施例11と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは62gであり,滑らかさは約60度であった。
(Comparative Example 12)
A sample for measuring physical properties was obtained in the same manner as in Example 11 except that the first deoxygenation step was not performed. In this case, the hardness of the obtained fermented milk was 62 g, and the smoothness was about 60 degrees.

表2は,上記の実施例9〜12及び比較例9〜12で得られたそれぞれの発酵乳の硬さ(CT)と滑らかさ(角度)の測定結果をまとめたものである。すなわち,表2は脱脂粉乳の殺菌条件(第一の殺菌工程前の第一の脱酸素工程の有無)及び乾燥条件(水分除去処理の方法)が発酵乳の物性に及ぼす影響を示している。   Table 2 summarizes the measurement results of hardness (CT) and smoothness (angle) of each fermented milk obtained in Examples 9-12 and Comparative Examples 9-12. That is, Table 2 shows the influence of the sterilization conditions (presence / absence of the first deoxygenation process before the first sterilization process) and the drying conditions (method of water removal treatment) on the physical properties of the fermented milk.

Figure 2009041045
Figure 2009041045

表2の実施例9〜12と比較例9〜12をそれぞれ比較すると,脱脂乳に第一の脱酸素工程を施して得られた脱脂粉乳を用いて調製したヨーグルトミックスを発酵して得られた発酵乳の方が,第一の脱酸素工程を施さずに得られた脱脂粉乳を用いたものよりも,カードの硬さが優れていることが分かった。   When Example 9-12 of Table 2 and Comparative Examples 9-12 were compared, respectively, it was obtained by fermenting a yogurt mix prepared using skim milk powder obtained by subjecting skim milk to the first deoxygenation step. It was found that the fermented milk had better curd hardness than that using skim milk powder obtained without the first deoxygenation step.

一方,脱脂乳を真空蒸発濃縮してから噴霧乾燥して得られた脱脂粉乳を用いても,脱脂乳を凍結乾燥して得られた脱脂粉乳を用いても,脱脂乳に第一の脱酸素工程を施して得られた脱脂粉乳を用いて調製したヨーグルトミックスを発酵して得られた発酵乳の方が第一の脱酸素工程を施さずに得られた脱脂粉乳を用いたものよりも,カードの硬さが優れていることが分かった。つまり,脱脂粉乳を得る際の水分除去処理の条件(乾燥温度など)にかかわらず,第一の脱酸素工程の有無が,発酵乳の物性に影響することが分かった。   On the other hand, whether skim milk obtained by spray-drying skim milk after vacuum evaporation or using skim milk obtained by freeze-drying skim milk, The fermented milk obtained by fermenting the yogurt mix prepared using the skim milk powder obtained by applying the process than the one using the skim milk powder obtained without performing the first deoxygenation process, It turns out that the hardness of the card is excellent. In other words, it was found that the presence or absence of the first deoxygenation step affects the physical properties of fermented milk, regardless of the water removal treatment conditions (drying temperature, etc.) when obtaining skim milk powder.

なお,実施例9と11,実施例10と12,比較例10と12から,脱脂乳を真空蒸発濃縮した後に,噴霧乾燥して得られた脱脂粉乳を用いた場合の発酵乳が,脱脂乳を凍結乾燥して得られた脱脂粉乳を用いた場合の発酵乳よりも,カードの硬さで幾らか優れていることが分かる。この原因として,凍結乾燥では噴霧乾燥よりも,タンパク質は保護されにくくなり,変性しやすかったことが考えられる。凍結乾燥では加熱温度が約40℃であるのに対して,噴霧乾燥では約160℃であり,凍結乾燥では噴霧乾燥よりも加熱温度は低い。一方,凍結乾燥では加熱時間が数日間であるのに対して,噴霧乾燥では数秒間である。凍結乾燥では噴霧乾燥よりも,加熱温度は低いが,加熱時間が長いため,タンパク質は変性しやすかったことが考えられる。   In addition, fermented milk when using skim milk powder obtained by spray drying after vacuum evaporating and concentrating skim milk from Examples 9 and 11, Examples 10 and 12, and Comparative Examples 10 and 12 is skim milk. It can be seen that the curd hardness is somewhat better than fermented milk using skim milk powder obtained by freeze-drying. This may be because freeze-drying is less prone to protection and denaturation than spray drying. In freeze drying, the heating temperature is about 40 ° C., whereas in spray drying, it is about 160 ° C., and in freeze drying, the heating temperature is lower than that in spray drying. On the other hand, freeze-drying takes a few days, while spray-drying takes a few seconds. In freeze-drying, the heating temperature is lower than in spray-drying, but because the heating time is long, the protein may be easily denatured.

溶存酸素濃度(DO)が8ppmである脱脂乳の約30kgに対し,第一の脱酸素工程として脱酸素処理によりDOを4ppmとし,第一の殺菌工程としてUHT処理による殺菌(125℃,15秒間,予熱処理:85℃,3分間)を行い,真空蒸発濃縮(60〜65℃,数分間)を行なった後に,噴霧乾燥(160〜170℃,数秒間)を行なうことにより,水分除去処理して,脱脂粉乳を製造した。   About 30 kg of skim milk with a dissolved oxygen concentration (DO) of 8 ppm, DO is 4 ppm by deoxygenation treatment as the first deoxygenation step, and sterilization by UHT treatment as the first sterilization step (125 ° C., 15 seconds) , Pre-heat treatment: 85 ° C., 3 minutes), vacuum evaporation (60-65 ° C., several minutes), and then spray drying (160-170 ° C., several seconds) to remove moisture. Thus, skim milk powder was produced.

市販の牛乳(UHT処理した牛乳)を35重量%,上記の脱脂粉乳を7.2重量%,イオン交換水を57.8重量%で混合することにより,脂肪分を1.5重量%,無脂乳固形分を10重量%に調製して,ヨーグルトミックスとした。   By mixing commercial milk (UHT-treated milk) at 35% by weight, skimmed milk powder at 7.2% by weight, and ion-exchanged water at 57.8% by weight, the fat content is 1.5% by weight. The milk solid content was adjusted to 10% by weight to obtain a yogurt mix.

このヨーグルトミックスを,沸騰水の浴槽を用いて間接的に95℃の達温で殺菌した後に,それぞれのヨーグルトミックスへ乳酸菌スターター(ラクトバチルス・ブルガリカス(L. bulgaricus JCM 1002T)とストレプトコッカス・サーモフィルス(S. thermophilus ATCC 19258)の混合培養物)を2重量%で接種した。   The yogurt mix was sterilized indirectly using a bath of boiling water at a temperature of 95 ° C., and then the yogurt mix was mixed with a lactic acid bacteria starter (L. bulgaricus JCM 1002T) and Streptococcus thermophilus. (S. thermophilus ATCC 19258) inoculated at 2% by weight.

この未発酵乳を容器へ充填した後に43℃で保持して,乳酸酸度が0.7%に到達した段階(約3〜5時間)で発酵を終了した。そして,この発酵乳を10℃に冷却して,物性測定用の試料(製品)とした。なお,乳酸酸度(%)はフェノールフタレインを指示薬とし,0.1規定の水酸化ナトリウムで滴定して算出した。この場合に,得られた発酵乳の硬さは35gであり,滑らかさは約60度であった。   After filling this unfermented milk into a container, it hold | maintained at 43 degreeC and complete | finished fermentation in the stage (about 3 to 5 hours) when the lactic acid acidity reached | attained 0.7%. And this fermented milk was cooled at 10 degreeC, and it was set as the sample (product) for a physical-property measurement. The lactic acid acidity (%) was calculated by titration with 0.1N sodium hydroxide using phenolphthalein as an indicator. In this case, the hardness of the obtained fermented milk was 35 g, and the smoothness was about 60 degrees.

(比較例13)
第一の脱酸素工程を行わなかった以外は,実施例13と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは29gであり,滑らかさは約60度であった。
(Comparative Example 13)
A sample for measuring physical properties was obtained in the same manner as in Example 13 except that the first deoxygenation step was not performed. In this case, the hardness of the obtained fermented milk was 29 g, and the smoothness was about 60 degrees.

第一の脱酸素工程として脱酸素処理によりDOを4ppmではなく2ppmとしたことと,第一の殺菌工程としてUHT処理に代えてHTST処理による殺菌(90℃,15秒間,予熱処理:85℃,3分間)を行った以外は,実施例13と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは約40gであり,滑らかさは約60度であった。   In the first deoxygenation step, DO was changed to 2 ppm instead of 4 ppm by deoxygenation treatment, and in the first sterilization step, sterilization by HTST treatment instead of UHT treatment (90 ° C., 15 seconds, preheat treatment: 85 ° C., A sample for measuring physical properties was obtained in the same manner as in Example 13 except that 3 minutes) was performed. In this case, the hardness of the obtained fermented milk was about 40 g, and the smoothness was about 60 degrees.

(比較例14)
第一の脱酸素工程を行わなかった以外は,実施例13と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは38gであり,滑らかさは約60度であった。
(Comparative Example 14)
A sample for measuring physical properties was obtained in the same manner as in Example 13 except that the first deoxygenation step was not performed. In this case, the hardness of the obtained fermented milk was 38 g, and the smoothness was about 60 degrees.

表3は,上記の実施例13及び14並びに比較例13及び14で得られた,それぞれの発酵乳の硬さ(CT)と滑らかさ(角度)の測定結果をまとめたものである。すなわち,表3は,ヨーグルトミックスの組成(第一の脱酸素工程を経た脱脂粉乳の配合の有無)が発酵乳の物性に及ぼす影響をまとめたものである。   Table 3 summarizes the measurement results of hardness (CT) and smoothness (angle) of each fermented milk obtained in Examples 13 and 14 and Comparative Examples 13 and 14. That is, Table 3 summarizes the influence of the composition of yogurt mix (whether or not skim milk powder is mixed through the first deoxygenation step) on the physical properties of fermented milk.

Figure 2009041045
Figure 2009041045

表3から,ヨーグルトミックスの組成では,全固形分の11.5重量%あるいは無脂乳固形分の10重量%に対して,脱酸素処理してから殺菌して得られた脱脂粉乳を7.2重量%で配合すれば,カードの硬さや滑らかさが優れていることが分かった。
つまり,ヨーグルトミックスの組成(第一の脱酸素工程を経た脱脂粉乳の配合の有無)が,発酵乳の物性に影響することが分かった。
From Table 3, in the composition of the yogurt mix, the skim milk powder obtained by sterilization after deoxidizing with respect to 11.5 wt% of the total solid content or 10 wt% of the non-fat milk solid content is 7. It was found that when blended at 2% by weight, the hardness and smoothness of the card were excellent.
In other words, it was found that the composition of yogurt mix (presence / absence of blending of skim milk powder after the first deoxygenation step) affects the physical properties of fermented milk.

なお,上記の実施例では,脱酸素処理してから殺菌して得られた濃縮乳や粉乳と,脱酸素処理せずに殺菌して得られた濃縮乳や粉乳との混合割合を変えて,ヨーグルトミックスを調製し,その発酵乳の物性を比較した実験結果を示していない。ただし,脱酸素処理してから殺菌して得られた濃縮乳や粉乳の割合を高めることで,発酵乳のカードが硬くなることは当然に予測できる。   In the above embodiment, the mixing ratio of concentrated milk or powdered milk obtained by sterilization after deoxygenation treatment and concentrated milk or powdered milk obtained by sterilization without deoxygenation treatment is changed, Experimental results comparing the properties of fermented milk prepared from yogurt mix are not shown. However, it can be naturally predicted that the curd of fermented milk becomes harder by increasing the ratio of concentrated milk or powdered milk obtained by sterilization after deoxygenation treatment.

溶存酸素濃度(DO)が8ppmである脱脂乳の約120kgに対し,第一の脱酸素工程として脱酸素処理によりDOを4ppmとし,第一の殺菌工程としてUHT処理による殺菌(125℃,15秒間)を行い,真空蒸発濃縮(60〜65℃,数分間)を行った後,さらに噴霧乾燥(160〜170℃,数秒間)を行うことにより,水分除去処理して脱脂粉乳を製造した。   About 120 kg of skim milk with a dissolved oxygen concentration (DO) of 8 ppm, DO is 4 ppm by deoxygenation treatment as the first deoxygenation step, and sterilization by UHT treatment as the first sterilization step (125 ° C., 15 seconds) ), Vacuum evaporation and concentration (60 to 65 ° C., several minutes), and further spray drying (160 to 170 ° C., several seconds) to remove moisture and produce skim milk powder.

この脱脂粉乳で10重量%の還元脱脂乳を調製して,ヨーグルトミックスとした。このヨーグルトミックスのDOは8ppmであった。このヨーグルトミックスの約2kgを,未調整のまま(すなわち,第二の脱酸素工程を行なわず),オートクレーブを用いて121℃の達温で殺菌した後に,ヨーグルトミックスへ乳酸菌スターター(L. bulgaricus JCM 1002TとS. thermophilus ATCC 19258の混合培養物)を2重量%で接種した。   10% by weight of reduced skim milk was prepared from this skim milk powder to obtain a yogurt mix. The yogurt mix had a DO of 8 ppm. About 2 kg of this yogurt mix was sterilized using an autoclave at a temperature of 121 ° C. without adjustment (ie, without performing the second deoxygenation step), and then mixed with the lactic acid bacteria starter (L. bulgaricus JCM). 1002T and S. thermophilus ATCC 19258) was inoculated at 2% by weight.

この未発酵乳を容器へ充填した後に,43℃で保持し,乳酸酸度が0.7%に到達した段階(約3〜5時間)で発酵を終了した。そして,この発酵乳を10℃に冷却して,物性測定用の試料(製品)とした。この場合に,得られた発酵乳の硬さは48gであり,滑らかさは約50度であった。   After filling this unfermented milk into a container, it hold | maintained at 43 degreeC and complete | finished fermentation in the stage (about 3 to 5 hours) when the lactic acid acidity reached | attained 0.7%. And this fermented milk was cooled at 10 degreeC, and it was set as the sample (product) for a physical-property measurement. In this case, the hardness of the obtained fermented milk was 48 g, and the smoothness was about 50 degrees.

実施例15と同様にして調整したヨーグルトミックスの約2kgに対し,オートクレーブを用いた殺菌処理の前に第二の脱酸素工程を行なうことによりDOを3ppmとしたこと以外は,実施例15と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは54gであり,滑らかさは約50度であった。   The same as in Example 15, except that about 2 kg of the yogurt mix prepared in the same manner as in Example 15 was subjected to a second deoxygenation step prior to sterilization using an autoclave, so that DO was 3 ppm. Thus, a sample for measuring physical properties was obtained. In this case, the hardness of the obtained fermented milk was 54 g, and the smoothness was about 50 degrees.

実施例15と同様にして調整したヨーグルトミックスの約2kgに対し,未調整のまま(すなわち,第二の脱酸素工程を行なわず),沸騰水の浴槽を用いて間接的に95℃の達温で殺菌し,乳酸菌スターター(L. bulgaricus JCM 1002TとS. thermophilus ATCC 19258の混合培養物)を2重量%で接種した。   About 2 kg of the yogurt mix prepared in the same manner as in Example 15, the temperature reached 95 ° C. indirectly using a bath of boiling water while leaving unadjusted (ie, without performing the second deoxygenation step). And inoculated with 2% by weight of a lactic acid bacteria starter (mixed culture of L. bulgaricus JCM 1002T and S. thermophilus ATCC 19258).

この未発酵乳を容器へ充填した後に,第三の脱酸素工程を行い,DOを3ppmとした後,37℃で保持し,乳酸酸度が0.7%に到達した段階(約3〜5時間)で発酵を終了した。そして,この発酵乳を10℃に冷却して,物性測定用の試料(製品)とした。この場合に,得られた発酵乳の硬さは66gであり,滑らかさは約40度であった。   After filling this unfermented milk into the container, a third deoxygenation step is performed, the DO is adjusted to 3 ppm, and the temperature is maintained at 37 ° C., and the lactic acid acidity reaches 0.7% (about 3 to 5 hours) ) To complete the fermentation. And this fermented milk was cooled at 10 degreeC, and it was set as the sample (product) for a physical-property measurement. In this case, the hardness of the obtained fermented milk was 66 g, and the smoothness was about 40 degrees.

実施例15と同様にして調整したヨーグルトミックスの約2kgに対し,沸騰水の浴槽を用いた殺菌処理の前に第二の脱酸素工程を行なうことによりDOを3ppmとしたこと以外は,実施例17と同様にして物性測定用の試料を得た。この場合に,得られた発酵乳の硬さは76gであり,滑らかさは約40度であった。   Example 2 Except that about 2 kg of yogurt mix prepared in the same manner as in Example 15 was subjected to a second deoxygenation step prior to sterilization using a boiling water bath, so that DO was 3 ppm. In the same manner as in Example 17, a sample for measuring physical properties was obtained. In this case, the hardness of the obtained fermented milk was 76 g, and the smoothness was about 40 degrees.

表4は,上記の実施例15〜18で得られた,それぞれの発酵乳の硬さ(CT)と滑らかさ(角度)の測定結果をまとめたものである。すなわち,表4は,ヨーグルトミックスの殺菌条件(第二の殺菌工程前の第二の脱酸素工程の有無)や発酵条件(発酵工程の前の第三の脱酸素工程の有無,及び発酵温度)が発酵乳の物性に及ぼす影響をまとめたものである。   Table 4 summarizes the measurement results of hardness (CT) and smoothness (angle) of each fermented milk obtained in Examples 15-18. That is, Table 4 shows the sterilization conditions (presence / absence of the second deoxygenation step before the second sterilization step) and fermentation conditions (presence / absence of the third deoxygenation step before the fermentation step and fermentation temperature) of the yogurt mix. This is a summary of the effects of the fermented milk on the physical properties of fermented milk.

Figure 2009041045
Figure 2009041045

表4から,実施例15と16及び実施例17と18をそれぞれ比較すると,ヨーグルトミックスに第二の脱酸素工程を行なってから殺菌処理をして得られた発酵乳が,ヨーグルトミックスに第二の脱酸素工程を行なわずに殺菌処理をして得られた発酵乳よりも,カードの硬さや滑らかさが優れていることが分かった。   From Table 4, when comparing Examples 15 and 16 and Examples 17 and 18, respectively, the fermented milk obtained by performing the second deoxygenation step on the yogurt mix and then sterilizing was added to the yogurt mix. It was found that the curd had better hardness and smoothness than fermented milk obtained by sterilization without performing the deoxygenation step.

一方,実施例17と18から,ヨーグルトミックスを殺菌(第二の殺菌工程)してから発酵工程の前に第三の脱酸素工程を行なうと共に,発酵温度を実施例15及び16よりも低い,37℃とすることにより,カードの硬さと滑らかさが優れた発酵乳が得られたことが分かった。つまり,第一の脱酸素工程,第一の殺菌工程及び水分除去処理を経て得られた脱脂粉乳を用いてヨーグルトミックスを調整した場合に,ヨーグルトミックスの殺菌条件(第二の殺菌工程の前に第二の脱酸素工程を行なうか否か)や発酵条件(発酵工程の前に第三の脱酸素工程を行なうか否か,及び発酵温度)が,発酵乳の物性に影響することが分かった。   On the other hand, from Examples 17 and 18, the yogurt mix is sterilized (second sterilization step) and then the third deoxygenation step is performed before the fermentation step, and the fermentation temperature is lower than in Examples 15 and 16. It was found that fermented milk having excellent curd hardness and smoothness was obtained by adjusting the temperature to 37 ° C. That is, when the yogurt mix is adjusted using the skim milk powder obtained through the first deoxygenation step, the first sterilization step and the water removal treatment, the sterilization conditions of the yogurt mix (before the second sterilization step) It was found that the second deoxygenation step) and fermentation conditions (whether the third deoxygenation step is performed before the fermentation step and the fermentation temperature) affect the physical properties of the fermented milk. .

本発明により,多種の濃縮乳や粉乳を利用できるため,発酵乳の製造工程や原料の制約を減少できる。一方,UHT殺菌した脱脂粉乳であるハイヒート脱脂粉乳を発酵乳へ適用できれば,衛生面で,より好ましいばかりでなく,脱脂粉乳の殺菌条件を統一して,製造原価などを低減できる可能性もある。   According to the present invention, since various types of concentrated milk and powdered milk can be used, the production process of fermented milk and raw material constraints can be reduced. On the other hand, if high heat skim milk powder, which is skim milk powder sterilized by UHT, can be applied to fermented milk, it is not only preferable in terms of hygiene, but also there is a possibility that manufacturing costs can be reduced by unifying the sterilization conditions of skim milk powder.

本発明の発酵乳の製造方法は,ヨーグルトなどの発酵乳を製造できるので,食品産業などの分野において利用されうる。   The method for producing fermented milk of the present invention can be used in fields such as the food industry because fermented milk such as yogurt can be produced.

Claims (10)

脱脂乳及び/又は全脂乳に含まれる酸素濃度を低減する第1の脱酸素工程と,
前記第1の脱酸素工程の後の脱脂乳及び/又は全脂乳を加熱殺菌する第1の殺菌工程と,
前記第1の殺菌工程の後の脱脂乳及び/又は全脂乳から水分を除去する水分除去工程と,
前記水分除去後の脱脂乳及び/又は全脂乳を用いてヨーグルトミックスを調製するヨーグルトミックス調製工程と,
前記調製したヨーグルトミックスを発酵させる発酵工程と,
を含む発酵乳の製造方法。
A first deoxygenation step for reducing the oxygen concentration contained in skim milk and / or whole milk;
A first sterilization step of heat-sterilizing skim milk and / or whole fat milk after the first deoxygenation step;
A moisture removal step of removing moisture from skim milk and / or whole milk after the first sterilization step;
A yoghurt mix preparation step of preparing a yoghurt mix using the skim milk and / or whole fat milk after removing the water;
A fermentation process for fermenting the prepared yogurt mix;
The manufacturing method of fermented milk containing this.
前記第1の脱酸素工程の後の脱脂乳及び/又は全脂乳の溶存酸素濃度が5ppm以下であることを特徴とする,請求項1に記載の発酵乳の製造方法。   The method for producing fermented milk according to claim 1, wherein the dissolved oxygen concentration of skim milk and / or whole fat milk after the first deoxygenation step is 5 ppm or less. 前記第1の殺菌工程における加熱殺菌は,超高温殺菌である請求項1又は2に記載の発酵乳の製造方法。   The method for producing fermented milk according to claim 1 or 2, wherein the heat sterilization in the first sterilization step is ultra-high temperature sterilization. 前記水分除去後の脱脂乳及び/又は全脂乳が濃縮乳又は粉乳である,請求項1に記載の発酵乳の製造方法。   The method for producing fermented milk according to claim 1, wherein the skim milk and / or the whole milk after the water removal is concentrated milk or powdered milk. 前記水分除去工程は,真空蒸発濃縮工程,噴霧乾燥工程,及び凍結乾燥工程の少なくともいずれか一つの工程を含む請求項1に記載の発酵乳の製造方法。   The method for producing fermented milk according to claim 1, wherein the moisture removing step includes at least one of a vacuum evaporation and concentration step, a spray drying step, and a freeze drying step. 前記ヨーグルトミックス調製工程において,前記ヨーグルトミックスの全固形分又は無脂乳固形分に対する前記水分除去後の脱脂乳及び/又は全脂乳の配合割合が70重量%以上である請求項1に記載の発酵乳の製造方法。   The said yoghurt mix preparation process WHEREIN: The mixture ratio of the skim milk after the said water removal with respect to the total solid or non-fat milk solid content of the said yoghurt mix and / or whole milk is 70 weight% or more. A method for producing fermented milk. 前記ヨーグルトミックス調製工程の後,前記発酵工程の前に,
前記ヨーグルトミックスに含まれる酸素濃度を低減する第2の脱酸素工程と,
前記第2の脱酸素工程の後のヨーグルトミックスを加熱殺菌する第2の殺菌工程と,
をさらに含む,請求項1から6のいずれか1項に記載の発酵乳の製造方法。
After the yogurt mix preparation step and before the fermentation step,
A second deoxygenation step for reducing the oxygen concentration contained in the yogurt mix;
A second sterilization step of heat-sterilizing the yogurt mix after the second deoxygenation step;
The method for producing fermented milk according to any one of claims 1 to 6, further comprising:
前記第2の殺菌工程の後,前記発酵工程の前に,前記ヨーグルトミックスに含まれる酸素濃度を低減する第3の脱酸素工程をさらに含む請求項7に記載の発酵乳の製造方法。   The method for producing fermented milk according to claim 7, further comprising a third deoxygenation step for reducing the oxygen concentration contained in the yogurt mix after the second sterilization step and before the fermentation step. 前記発酵工程における発酵温度が,30℃以上40℃以下である請求項8に記載の発酵乳の製造方法。   The method for producing fermented milk according to claim 8, wherein a fermentation temperature in the fermentation step is 30 ° C. or higher and 40 ° C. or lower. 請求項1〜9のいずれかに記載の発酵乳の製造方法を用いて製造される発酵乳。   The fermented milk manufactured using the manufacturing method of fermented milk in any one of Claims 1-9.
JP2009534180A 2007-09-26 2008-09-25 Method for producing fermented milk Active JP5189102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009534180A JP5189102B2 (en) 2007-09-26 2008-09-25 Method for producing fermented milk

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007250292 2007-09-26
JP2007250292 2007-09-26
PCT/JP2008/002665 WO2009041045A1 (en) 2007-09-26 2008-09-25 Method of producing fermented milk
JP2009534180A JP5189102B2 (en) 2007-09-26 2008-09-25 Method for producing fermented milk

Publications (2)

Publication Number Publication Date
JPWO2009041045A1 true JPWO2009041045A1 (en) 2011-01-20
JP5189102B2 JP5189102B2 (en) 2013-04-24

Family

ID=40510950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009534180A Active JP5189102B2 (en) 2007-09-26 2008-09-25 Method for producing fermented milk

Country Status (4)

Country Link
JP (1) JP5189102B2 (en)
KR (2) KR20150041189A (en)
CN (1) CN101808526A (en)
WO (1) WO2009041045A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096724A (en) * 2010-08-21 2013-05-08 株式会社明治 Fermented milk having little lactose and method for producing same
CN102626136B (en) * 2012-04-28 2013-09-04 光明乳业股份有限公司 Additive-free fermented milk and preparation method thereof
KR20160030188A (en) * 2013-07-25 2016-03-16 로께뜨프레르 Method for optimising the production efficiency, organoleptic quality and stability over time of a protein-rich microalgae biomass
CN107836520A (en) * 2017-10-18 2018-03-27 绿雪生物工程(深圳)有限公司 A kind of optimal Ganderwa is to drink type acidified milk and preparation method thereof in postprandial one hour
EP3732986A4 (en) * 2017-12-25 2021-12-01 Meiji Co., Ltd Skim milk powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125701A (en) * 2001-10-24 2003-05-07 Morinaga Milk Ind Co Ltd Method for sterilizing fermented milk material and method for producing fermented milk
JP2005176603A (en) * 2002-12-03 2005-07-07 Meiji Milk Prod Co Ltd Method for producing fermented milk and fermented milk
WO2007029565A1 (en) * 2005-08-29 2007-03-15 Meiji Dairies Corporation Milk material excelling in flavor and property and process for producing the same
JP2007104995A (en) * 2005-10-14 2007-04-26 Meiji Milk Prod Co Ltd Delicious fermented milk with less milk fat, and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491362B (en) * 2006-12-01 2015-07-11 Meiji Co Ltd A method of manufacture fermented milk, and fermented milk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125701A (en) * 2001-10-24 2003-05-07 Morinaga Milk Ind Co Ltd Method for sterilizing fermented milk material and method for producing fermented milk
JP2005176603A (en) * 2002-12-03 2005-07-07 Meiji Milk Prod Co Ltd Method for producing fermented milk and fermented milk
WO2007029565A1 (en) * 2005-08-29 2007-03-15 Meiji Dairies Corporation Milk material excelling in flavor and property and process for producing the same
JP2007104995A (en) * 2005-10-14 2007-04-26 Meiji Milk Prod Co Ltd Delicious fermented milk with less milk fat, and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
竹内幸成,ET AL.: "3Ja6 加熱殺菌時の溶存酸素濃度が牛乳の風味に与える影響(4)", 日本食品科学工学会第52回大会講演集(2005.08.20発行),P.155, JPN6008057281, ISSN: 0002391849 *
竹内幸成,ET AL.: "脱酸素処理による牛乳風味改善技術の開発", 日本食品科学工学会第54回大会講演集(2007.09.06発行),P.8-9, JPN6008057278, ISSN: 0002391848 *

Also Published As

Publication number Publication date
JP5189102B2 (en) 2013-04-24
WO2009041045A1 (en) 2009-04-02
KR20150041189A (en) 2015-04-15
KR20100059997A (en) 2010-06-04
CN101808526A (en) 2010-08-18
KR101522751B1 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
JP5802697B2 (en) Method for producing fermented milk
JP5666541B2 (en) Method for improving texture of fermented milk
EP0696426A1 (en) Process for preparing a texture forming agent for milk products
JP5189102B2 (en) Method for producing fermented milk
JP6110301B2 (en) Low calorie fermented milk and method for producing the same
TW201711568A (en) Fermented milk and method for producing same
CN103153075A (en) Method for manufacturing liquid fermented milk
US20200045985A1 (en) Choline ester-containing composition for oral ingestion
JP6656963B2 (en) Post-fermentation type drink yogurt and method for producing the same
WO2015041194A1 (en) Method for producing fermented milk having improved physical properties
JP6901837B2 (en) Method of producing fermented milk using pasteurized raw material mix
WO2016009950A1 (en) Fermented milk having enhanced lactobacillus bulgaricus growth and method for producing same
JP7471046B2 (en) Method for producing fermented milk by low-temperature fermentation and fermented milk produced by said method
JP7385984B2 (en) High pH production method for fermented milk and fermented milk produced by the method
WO2019064955A1 (en) Method for producing fermented milk
WO2018056455A1 (en) Method for producing fermented milk using raw material mix containing material sterilized at ultra-high temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350