WO2016009950A1 - Fermented milk having enhanced lactobacillus bulgaricus growth and method for producing same - Google Patents

Fermented milk having enhanced lactobacillus bulgaricus growth and method for producing same Download PDF

Info

Publication number
WO2016009950A1
WO2016009950A1 PCT/JP2015/069820 JP2015069820W WO2016009950A1 WO 2016009950 A1 WO2016009950 A1 WO 2016009950A1 JP 2015069820 W JP2015069820 W JP 2015069820W WO 2016009950 A1 WO2016009950 A1 WO 2016009950A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermented milk
bacteria
base material
fermentation
bulgarian
Prior art date
Application number
PCT/JP2015/069820
Other languages
French (fr)
Japanese (ja)
Inventor
堀内 啓史
智子 市場
Original Assignee
株式会社 明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 明治 filed Critical 株式会社 明治
Priority to CN201580025611.4A priority Critical patent/CN106535645A/en
Priority to SG11201610705QA priority patent/SG11201610705QA/en
Priority to JP2016534402A priority patent/JP6641275B2/en
Publication of WO2016009950A1 publication Critical patent/WO2016009950A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt

Definitions

  • the present invention relates to a method for producing fermented milk containing Bulgarian bacteria and Thermophilus bacteria.
  • Examples of this fermented milk are plain type, hard type, soft type and drink type yogurt.
  • the present invention also relates to a fermented milk containing Bulgarian bacteria and Thermophilus bacteria.
  • yogurt obtained by inoculating raw milk (yogurt mix) as a starter with two types of lactic acid bacteria, Bulgarian bacteria and Thermophilus bacteria, has been known.
  • the ratio of the number of Bulgarian bacteria to Thermophilus bacteria is generally about 1: 4 to 1: 5, and there are overwhelmingly large numbers of Thermofilus bacteria compared to Bulgarian bacteria. is doing.
  • yogurt contains a predetermined amount of functional polysaccharide (EPS) produced by Bulgarian bacteria.
  • EPS functional polysaccharide
  • Patent Document 1 discloses a method for producing low-fat yogurt in which oleic acid or the like is added to a fermented milk base material (yogurt base). According to Patent Document 1, it is proposed that the survival of lactic acid bacteria in low-fat yogurt can be improved by using oleic acid or the like.
  • Patent Document 2 discloses a method for producing a fermented food, in which a guava leaf extract is added to a fermented milk base material (yogurt base). According to Patent Document 2, it is proposed that the use of guava leaf extract can improve the survival of lactic acid bacteria in fermented foods because it functions as a survival improver for lactic acid bacteria and a growth promoter for lactic acid bacteria. ing.
  • Patent Document 3 discloses a fermented food production method in which gum arabic is added to a fermented milk base (yogurt base). According to Patent Document 3, it is proposed that the survival rate of bifidobacteria during storage of fermented food can be increased by using gum arabic.
  • lactic acid bacteria growth promoters can increase the number of lactic acid bacteria in fermented milk, but in fermented milk containing both Bulgarian and thermophilus bacteria, conventional lactic acid bacteria growth promoters can be added. If used, the number of both Bulgarian and Thermophilus bacteria will increase together. In other words, when a conventional lactic acid bacteria growth promoter is used, the growth of Bulgarian bacteria and Thermophilus bacteria are promoted together, and thus it is difficult to relatively promote the growth of Bulgarian bacteria. It was difficult to promote the production of polysaccharides derived from bacteria. On the other hand, in the yogurt as described above, there is a product that only promotes the growth of Bulgarian bacteria and does not need to promote the growth of Thermophilus bacteria during the production process. At this time, it is possible to increase the production amount of polysaccharides derived from Bulgaria bacteria by increasing the ratio of the number of Bulgaria bacteria in fermented milk containing both Bulgaria bacteria and Thermophilus bacteria.
  • the inventors of the present invention as a result of intensive studies on the means for solving the conventional problems, added a lactic acid bacteria starter containing Bulgarian bacteria and Thermophilus bacteria to the raw milk after (heated) sterilization, and before the fermentation It was found that the growth of Bulgarian bacteria was promoted and the growth of Thermophilus was suppressed unexpectedly by carrying out the process of holding the fermented milk base at a low temperature. As a result, it has succeeded in relatively increasing the number of Bulgarian bacteria without using additives such as lactic acid bacteria growth promoters, and can produce fermented milk that is rich in polysaccharides and has no taste. did it.
  • the inventors of the present invention have conceived that the problems of the prior art can be solved based on the above knowledge, and have completed the present invention.
  • the 1st side surface of this invention is related with the manufacturing method of fermented milk.
  • the method for producing fermented milk of the present invention includes a sterilization step, a cooling step, a starter addition step, a low temperature holding step, a heating step, and a fermentation step.
  • a sterilization process is a process of sterilizing (heating) raw material milk.
  • the cooling step is a step of cooling the raw milk after the sterilization step.
  • the starter addition step is a step of obtaining a fermented milk base material by adding a lactic acid bacteria starter containing Bulgaria bacteria and Thermophilus bacteria to the raw material milk during or after the cooling process.
  • the low temperature holding step is a step of holding the fermented milk base material after the starter addition step at a temperature lower than the fermentation promoting temperature.
  • the fermentation promotion temperature means a temperature at which lactic acid bacteria are activated and fermentation of the fermented milk base is promoted. At a temperature lower than the fermentation promoting temperature, the fermented milk base does not ferment at all, and the fermented milk base may be slightly fermented.
  • a heating process is a process of heating the fermented milk base material after a low-temperature holding process to fermentation promotion temperature.
  • a fermentation process is a process of fermenting the fermented milk base material after a heating process, and obtaining fermented milk.
  • the fermented milk base material to which the lactic acid bacteria starter including Bulgarian bacteria and Thermophilus bacteria is added is set to intentionally keep at low temperature. And after keeping a fermented milk base material low temperature for a predetermined period, this fermented milk base material is heated and fermentation is accelerated
  • the number of Bulgarian bacteria contained in fermented milk is relatively increased unexpectedly by performing an operation of holding the fermented milk base material at a low temperature. Results were obtained.
  • a fermented milk containing a large amount of polysaccharides and having no miscellaneous taste is produced by relatively increasing the number of bacterial bacteria without using an additive such as a growth promoter for lactic acid bacteria. be able to.
  • a cooling process is a process of cooling raw material milk to 15 degrees C or less. More specifically, the raw material milk is preferably cooled to 1 ° C. or higher and 15 ° C. or lower.
  • the low temperature holding step is preferably a step of holding the fermented milk base material at a low temperature at 15 ° C. or lower for a period of 1 day or longer. More specifically, the fermented milk base material is preferably held at 5 ° C. or higher and 15 ° C. or lower for 1 day (24 hours) to 10 days (240 hours).
  • the activities of Bulgarian bacteria and Thermophilus bacteria can be appropriately adjusted, which is unexpected.
  • the number of Bulgarian bacteria contained in fermented milk increased relatively, and the number of Thermofilus bacteria decreased relatively.
  • the growth rate of Bulgaria bacteria was improved and the growth rate of Thermophilus bacteria was reduced in the fermentation process.
  • the heating step is preferably a step of heating the fermented milk base material to a fermentation acceleration temperature of 30 ° C. or higher and 50 ° C. or lower.
  • the fermented milk base material is set in the heating step by setting the fermentation promoting temperature to 30 ° C. or higher and 50 ° C. or lower. Is heated at least at 15 ° C. or higher. In this way, by giving a large temperature difference of 15 ° C. or more between the temperature at which the temperature is maintained and the temperature at which the fermentation is performed, the growth rate of Thermophilus is reduced while improving the growth rate of Bulgarian bacteria in the fermentation process. Can be made.
  • an anaerobic process in which an inert gas is injected into the fermented milk base material to an anaerobic state at least in the low temperature holding process.
  • an anaerobic process may be performed not only at a low temperature maintenance process but at a cooling process, a starter addition process, a heating process, and a fermentation process.
  • the fermented milk base material is anaerobically mixed with an inert gas to suppress oxidation of the fermented milk base material during the low temperature holding process.
  • the activity of Bulgarian bacteria and Thermophilus bacteria can be moderately adjusted while preventing. For this reason, in the fermentation process after the low-temperature holding process, Bulgarian bacteria and Thermophilus bacteria, particularly Bulgarian bacteria are preferably activated, and for example, fermented milk containing a large amount of polysaccharides can be produced.
  • the numerical value of the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk base material before the low-temperature holding step is ⁇ .
  • the numerical value of the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk is ⁇ .
  • it is preferable that the numerical value of ⁇ / ⁇ is 1.1 or more.
  • the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria (the number of Bulgarian bacteria / the number of Thermophilus bacteria) in the fermented milk base material before the low temperature holding step is 0.01 or more and 0. .5 or less is preferable.
  • the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria (the number of Bulgarian bacteria / the number of Thermophilus bacteria) is 0.6 or more. It is preferable.
  • the method for producing fermented milk of the present invention even when a lactic acid bacteria starter having a small ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria is used, the number of Thermofilus bacteria is Fermented milk with a large ratio of the number of Bulgarian bacteria to the above can be produced. That is, according to the method for producing fermented milk of the present invention, it is possible to dramatically improve the ratio of the number of Bulgarian bacteria to Thermophilus bacteria.
  • Lactic acid bacteria growth promoters are additives other than milk derived for the purpose of promoting the growth of lactic acid bacteria.
  • conventionally known additives such as pH buffer, oleic acid, guava leaf extract, gum arabic and the like can be mentioned as growth promoters for lactic acid bacteria.
  • fermented milk having a large number of Bulgarian bacteria can be produced without adding a lactic acid bacteria growth promoter.
  • the fermentation process may be a process of obtaining fermented milk by fermenting after filling the fermented milk base material in a container.
  • so-called post-fermentation treatment so-called set-type yogurt and plain-type yogurt can be produced.
  • the second aspect of the present invention relates to fermented milk.
  • the fermented milk of the present invention is obtained by adding a lactic acid bacteria starter containing Bulgarian bacteria and Thermophilus bacteria to raw milk to obtain a fermented milk base material, and then fermenting the fermented milk base material.
  • the value of the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk base material is ⁇ .
  • the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk is defined as ⁇ .
  • the fermented milk of the present invention has a ⁇ / ⁇ value of 1.1 or more.
  • the present invention it is possible to increase the production amount of polysaccharides derived from Bulgaria bacteria by increasing the ratio of the number of Bulgaria bacteria to the number of Thermophilus bacteria.
  • the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria is increased without adding a lactic acid bacteria growth promoter.
  • the fermented milk of the present invention preferably has a lactic acidity (acidity) of 0.9% or less.
  • the fermentation time is not lengthened, and the fermented milk has a moderate lactic acidity of 0.9% or less and maintains the mildness of the flavor and texture of the fermented milk.
  • the ratio of the number of Bulgarian bacteria can be increased.
  • the fermentation time is lengthened and the lactic acid content of the fermented milk is increased, the mildness of the flavor and the smoothness of the texture may be impaired. Therefore, the fermented milk of the present invention preferably has a ⁇ / ⁇ value of 1.1 or more under the condition that the lactic acid acidity is 0.9% or less.
  • the fermented milk of the present invention preferably has a polysaccharide concentration of 5 mg / 100 g or more.
  • the present invention it is possible to increase the concentration of polysaccharides derived from Bulgaria bacteria by increasing the ratio of the number of Bulgaria bacteria.
  • concentration of the polysaccharide derived from a Bulgaria bacterium increases, and smoothness increases rather than the case where the polysaccharide derived from a Thermophilus bacterium increases.
  • the growth of Bulgarian bacteria is relatively promoted without the use of additives such as lactic acid bacteria growth promoters. Can be suppressed.
  • FIG. 1 is a flowchart showing an embodiment of the manufacturing method of the present invention.
  • raw milk (yogurt mix) is a material of fermented milk, and consists of raw milk only, or prepared by mixing raw milk with skim milk powder, cream, water, etc. It means the previous state.
  • the “fermented milk base (yogurt base)” is a material of fermented milk obtained by adding lactic acid bacteria starter to raw material milk, and means a state before the fermentation process.
  • fermented milk means the product obtained after fermentation process obtained by fermenting a fermented milk base material.
  • a to B means “A to B”.
  • the present invention relates to fermented milk and a method for producing the same.
  • An example of fermented milk is yogurt.
  • the yogurt may be a plain type, a hard type, a soft type, or a drink type.
  • the fermented milk may be any of “fermented milk”, “dairy lactic acid bacteria beverage”, “lactic acid bacteria beverage” and the like defined by an ordinance of milk.
  • FIG. 1 is a flowchart showing each step of a manufacturing method according to an embodiment of the present invention.
  • the method for producing fermented milk according to the present invention includes a raw material milk preparation step (step S1), a sterilization step (step S2), a cooling step (step S3), a starter addition step (step S4), It is preferable to include a low temperature holding process (step S5), a heating process (step S6), a fermentation process (step S7), and a recooling process (step S8).
  • the manufacturing method of this invention includes an anaerobic process (step S9) further.
  • a raw material milk preparation step (step S1) is first performed.
  • the raw material milk preparation step is a step of preparing raw material milk as a material for fermented milk.
  • Raw milk is also called yogurt mix.
  • known milk can be used as raw material milk.
  • the raw milk may be composed only of raw milk (raw milk 100%).
  • the raw milk may be prepared by mixing raw milk with skim milk powder, cream, water, and the like.
  • raw milk includes sterilized milk, full fat milk, skim milk, full fat concentrated milk, nonfat concentrated milk, full fat powdered milk, butter milk, salted butter, unsalted butter, whey, whey powder, whey Protein concentrate (WPC), whey protein isolate (WPI), ⁇ -La (alpha-lactalbumin), ⁇ -Lg (beta-lactoglobulin), lactose and the like may be added.
  • WPC whey Protein concentrate
  • WPI whey protein isolate
  • ⁇ -La alpha-lactalbumin
  • ⁇ -Lg beta-lactoglobulin
  • lactose and the like may be added.
  • gelatin, agar, thickener, gelling agent, stabilizer, emulsifier, sucrose, sweetener, fragrance, vitamin, mineral, and the like may be appropriately added to the raw milk.
  • the raw material milk preparation step it is preferable to finely sulfurize (pulverize) fat globules and the like contained in the raw material milk by a homogenization step of homogenizing the raw material milk.
  • a homogenization step of homogenizing the raw material milk it is possible to suppress or prevent the raw milk, the fermented milk base material, and the fat content of the fermented milk from separating or rising during the manufacturing process or after the manufacturing of the fermented milk.
  • the sterilization step (step S2) is performed after the raw material milk preparation step.
  • the sterilization process is a process of sterilizing raw milk by heat treatment or the like.
  • the heating temperature and the heating time may be adjusted so as to sterilize the germs of the raw material milk.
  • a known method can be used for the sterilization step.
  • heat treatment may be performed with a plate heat exchanger, a tube heat exchanger, a steam injection heating device, a steam infusion heating device, an energizing heating device, etc., and heating is performed with a jacketed tank. Processing may be performed.
  • HTST high temperature short time sterilization treatment
  • UHT treatment
  • the high temperature short time sterilization process may be a process in which the raw material milk is heated to 80 ° C. to 100 ° C. for about 3 minutes to 15 minutes. May be any treatment that heats to 110 ° C. to 150 ° C. for about 1 to 30 seconds.
  • the cooling process is performed after the sterilization process.
  • the cooling step is a step of cooling the raw material milk that has been heat-treated to a predetermined temperature.
  • the raw milk is cooled to a temperature lower than the fermentation promotion temperature (for example, 30 ° C. to 50 ° C.).
  • the cooling process may be performed by a plate heat exchanger, a tube heat exchanger, a vacuum (reduced pressure) evaporative cooler, or a jacketed tank.
  • the raw milk is cooled to 15 ° C. or lower in the cooling step.
  • the raw milk is preferably cooled to 1 to 15 ° C., more preferably 3 to 10 ° C., and preferably 5 to 8 ° C. Further preferred.
  • the cooling process when the sterilization process is a heat treatment, it is preferable to rapidly cool the raw milk at about 100 ° C. whose temperature has increased in the sterilization process to a low temperature (15 ° C. or less).
  • the time for cooling the raw milk of about 100 ° C. whose temperature has increased in the sterilization process to 15 ° C. is preferably within 10 minutes, It is more preferably within minutes, more preferably within 1 minute, and particularly preferably within 30 seconds.
  • the starter addition process (step S4) is performed after the cooling process or during the cooling process.
  • the starter addition step is a step of obtaining a fermented milk base material by adding (mixing) lactic acid bacteria starter to raw material milk. That is, the lactic acid bacteria starter may be added after the raw milk is lowered to a predetermined temperature after the sterilization process, or the lactic acid bacteria starter is added while the raw milk is lowered to the predetermined temperature after the sterilization process. Also good.
  • a known method can be used for the starter addition step.
  • the lactic acid bacteria starter includes at least Bulgarian bacteria and Thermophilus bacteria. That is, "Bulgaria" is Lactobacillus bulgaricus (L.
  • lactic acid bacteria starter is preferably composed of only Bulgarian bacteria and Thermophilus bacteria as lactic acid bacteria.
  • amount of lactic acid bacteria starter added may be any quantity used in known fermented milk production methods, for example, preferably 0.1 to 5% by weight, and 0.5 to 4% by weight. More preferably, it is 1 to 3% by weight.
  • the number of bacteria (viable cell count) of Bulgarian bacteria and Thermophilus bacteria contained in the lactic acid bacteria starter may be a numerical value adopted in a known method for producing fermented milk.
  • the ratio of the number of Bulgarian bacteria and the number of Thermophilus bacteria contained in the lactic acid bacteria starter is generally 1: 4 to 1: 5.
  • the ratio of the number of Bulgarian bacteria when the number of Thermophilus bacteria contained in the lactic acid bacteria starter is 1 (standard) (the number of Bulgarian bacteria / the number of Thermophilus bacteria) The number) may be 0.01 to 0.8, preferably 0.05 to 0.7, more preferably 0.1 to 0.5, and 0.2 to 0.4. More preferably.
  • the number of Bulgarian and Thermofilus bacteria contained in the lactic acid bacteria starter can include a larger number of Bulgarian bacteria than the number of Thermofilus bacteria in advance.
  • the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the lactic acid bacteria starter may be 1.0 to 5.0 or 1.5 to 4.0.
  • the number of lactic acid bacteria may be measured according to a known method.
  • the low temperature holding step (step S5) is performed after the starter addition step.
  • the low temperature holding step is a step of holding the fermented milk base to which the lactic acid bacteria starter is added at a temperature lower than the fermentation promoting temperature (for example, 30 ° C. to 50 ° C.) for a predetermined period.
  • the fermentation promoting temperature for example, 30 ° C. to 50 ° C.
  • the low temperature holding process may be performed by a tank with a jacket.
  • the fermented milk base material is kept at a low temperature of 15 ° C. or lower in the low temperature holding step.
  • the fermented milk base material is preferably held at a low temperature of 1 ° C. to 20 ° C., more preferably at a low temperature of 3 ° C. to 15 ° C., and a low temperature of 5 ° C. to 10 ° C. More preferably, it is retained.
  • the fermented milk base material is preferably held in a low temperature state for one day or longer.
  • the period of holding the fermented milk base material is preferably 1 day (24 hours) to 10 days (240 hours), and 2 days (48 hours) to 8 days (192 hours). More preferably, it is 3 days (72 hours) to 6 days (144 hours).
  • the warming step (step S6) is performed after the low temperature holding step.
  • the heating step is a step of heating the fermented milk base material that has been subjected to the low-temperature holding treatment to a fermentation acceleration temperature (for example, 30 ° C. to 50 ° C.).
  • the fermentation acceleration temperature means a temperature at which microorganisms (such as lactic acid bacteria) are activated and fermentation of the fermented milk base proceeds or is promoted.
  • a known method can be used for the heating step.
  • heat treatment may be performed using a plate heat exchanger, a tube heat exchanger, or the like, or heat treatment may be performed using a tank with a jacket. For example, 30 to 50 ° C.
  • the fermented milk base material is heated to 30 degreeC or more.
  • the fermented milk base material is preferably heated to 30 ° C. to 50 ° C., more preferably 33 ° C. to 47 ° C., and it is heated to 35 ° C. to 44 ° C. More preferably, it is warm.
  • the fermented milk base of about 10 ° C. whose temperature has been lowered in the low temperature holding process is heated to a fermentation promoting temperature (for example, 30 ° C. to 50 ° C.) for a predetermined time (in a relatively short time).
  • a fermentation promoting temperature for example, 30 ° C. to 50 ° C.
  • the time for heating the fermented milk base of about 10 ° C. whose temperature has been lowered in the low temperature holding step to the fermentation accelerating temperature (eg, 30 ° C. to 50 ° C.) is within 1 hour.
  • it is within 30 minutes, more preferably within 10 minutes, and particularly preferably within 1 minute.
  • the heating step it is possible to efficiently suppress the growth of Thermophilus bacteria while efficiently promoting the growth of Bulgaria bacteria on the fermented milk base material.
  • the fermented milk base material at about 10 ° C. whose temperature has been lowered in the low temperature holding step is moved to the fermentation chamber set at a room temperature of about 30 ° C. to 50 ° C. as it is, and gradually moved in the fermentation chamber. Heating treatment can also be performed while raising the temperature.
  • the time required for the heating process may be greatly extended, and it becomes difficult to efficiently produce fermented milk in a short time.
  • the fermentation process (step S7) is performed after the heating process.
  • a fermented milk base material heated to a fermentation promoting temperature for example, 30 ° C. to 50 ° C.
  • a fermentation promoting temperature for example, 30 ° C. to 50 ° C.
  • the fermentation process may be performed in a fermentation chamber or the like, and the fermentation process may be performed in a tank with a jacket.
  • post-fermentation processing may be performed when the yogurt is a plain type or a hard type, and pre-fermentation processing may be performed when the yogurt is a soft type or a drink type.
  • the temperature in the fermentation chamber may be maintained at 30 ° C. to 50 ° C. and the fermented milk base material may be fermented in the fermentation chamber.
  • Fermentation temperature may be maintained at 30 ° C. to 50 ° C., and the fermented milk base material may be fermented in the tank.
  • the conditions for fermenting the fermented milk base material can be adjusted as appropriate, such as the fermentation temperature and fermentation time, taking into account the type and quantity of raw milk and lactic acid bacteria, the flavor and texture of the fermented milk, etc. Good.
  • the fermented milk base material is preferably held at 30 ° C. or higher.
  • the fermented milk base material is preferably maintained at 30 ° C. to 50 ° C., more preferably at 33 ° C. to 47 ° C., and at 35 ° C. to 44 ° C. More preferably.
  • the fermented milk base material is hold
  • the period for holding the fermented milk base material is preferably 1 hour to 12 hours, more preferably 2 hours to 8 hours, and 3 hours to 5 hours. More preferably.
  • the conditions for fermenting the fermented milk base material can be adjusted as appropriate by adjusting the lactic acidity (acidity), pH, etc., taking into consideration the type and quantity of raw milk and lactic acid bacteria, the flavor and texture of the fermented milk, etc. Good. Specifically, in the fermentation process, it is preferable that the lactic acid acidity reaches 0.7% or more.
  • the lactic acid acidity is preferably 0.9% or less (0.7% to 0.9%), 0.85% or less (0.7% to 0.85%) is more preferable, 0.8% or less (0.7% to 0.8%) is more preferable, and yogurt is a soft type
  • the lactic acid acidity is preferably 1.2% or less (0.7% to 1.2%), and 1.1% or less (0.7% To 1.1%), more preferably 1.0% or less (0.7% to 1.0%).
  • the fermented milk base material is preferably held at the fermentation promoting temperature.
  • the acidity (lactic acid acidity) can be measured according to the “Testing Method for Component Standards of Milk” in the Ministerial Ordinance of Milk. Specifically, 10 ml of ion exchange water not containing carbon dioxide gas is added to 10 g of a sample, and then a phenolphthalein solution is added at 0.5 ml as an indicator. While adding sodium hydroxide solution (0.1 mol / L), titration was performed up to the point where the faint red color did not disappear, and the content of lactic acid per 100 g of the sample was determined from the titration of the sodium hydroxide solution. , Lactic acid acidity. The phenolphthalein solution is prepared by dissolving 1 g of phenolphthalein in an ethanol solution (50%) and filling up to 100 ml.
  • the fermentation process may be either post-fermentation treatment or pre-fermentation treatment.
  • fermented milk base material is fermented.
  • fermented milk (fermented milk card) that is an intermediate product obtained by fermenting a container (sealed) filled with a fermented milk base material by leaving it in a fermentation chamber or the like Is cooled in a re-cooling step described later, and fermented milk (set type yogurt, plain type yogurt) as a final product may be obtained.
  • fermented milk base material is fermented.
  • the fermented milk (fermented milk card), which is the intermediate product obtained by fermenting by leaving a tank with a jacket filled with a fermented milk base, for example, is crushed or finely divided.
  • fermented milk soft type yogurt, drink type yogurt which is a product.
  • the container used for the post-fermentation process includes all containers that can be filled with fermented milk.
  • fermented milk may be a container made of plastic, paper, glass, metal, earthenware, or a composite material thereof.
  • Fermented milk may be filled in a container having an opening on the top, fermented or coagulated, the container may be covered, a plastic shrink film, a light-shielding film (for example, a metal foil laminate)
  • Each container may be covered with a film, a metal thin film layer film, a black or dark color ink coating film). You may use the said container, the said film, etc. in combination of 2 or more types.
  • Fermented milk is coated with a light-shielding film after filling into PET bottles and bottles, and sealed with a light-shielding film after filling into a paper container or light-shielding plastic container from the viewpoint of suppressing flavor deterioration due to light transmission and oxygen transmission. It is preferable to use a light-shielding lid after sealing with a plastic shrink film.
  • fermented milk that is rich in polysaccharides and not rich in taste is obtained by relatively increasing the number of bacterial bacteria without using additives such as growth promoters for lactic acid bacteria in the fermentation process. Can be manufactured.
  • the concentration of the polysaccharide in the fermented milk is preferably 5 mg / 100 g or more, and 5.5 mg / 100 g or more is more preferable, and 6 mg / 100 g or more is more preferable.
  • the polysaccharide concentration in the fermented milk is preferably 5 mg / 100 g or more. It is more preferably 5 mg / 100 g or more, and further preferably 6 mg / 100 g or more.
  • the polysaccharide concentration in the fermented milk is preferably 5 mg / 100 g or more. It is more preferably 5 mg / 100 g or more, and further preferably 6 mg / 100 g or more.
  • the recooling step (step S8) is performed after the fermentation step.
  • the recooling step is a step of cooling the fermented milk obtained in the fermentation step.
  • the progress of fermentation is suppressed.
  • the fermented milk is cooled to a temperature lower than the fermentation promoting temperature (for example, 30 ° C. to 50 ° C.).
  • a known method can be used for the recooling step.
  • the recooling process may be performed in a refrigerator room or a freezer room, and the recooling process may be performed in a plate heat exchanger, a tube heat exchanger, or a tank with a jacket.
  • the fermented milk is cooled to 15 ° C. or lower in the recooling step.
  • the fermented milk is preferably cooled to 1 to 15 ° C, more preferably 3 to 10 ° C, and 5 to 8 ° C. Is more preferable.
  • fermented milk is cooled to a temperature suitable for edible use, thereby suppressing or preventing changes in flavor (such as acidity), texture (such as tongue touch), and physical properties (such as hardness) of fermented milk. it can.
  • An anaerobic process is an arbitrary process.
  • An anaerobic process is a process which mixes inert gas, such as nitrogen, with raw material milk, fermented milk base material, and fermented milk, and makes it an anaerobic state.
  • inert gas such as nitrogen
  • a known method can be used for the anaerobic process.
  • the raw milk and fermented milk base material is mixed (injected) with an inert gas for anaerobic treatment, or the headspace in a container filled with fermented milk, in a tank filled with fermented milk
  • the oxygen present in these headspaces is removed or reduced by filling the headspace with an inert gas and performing anaerobic treatment.
  • the dissolved oxygen concentration (DO) of raw milk, fermented milk base material, and fermented milk is preferably reduced to 5 ppm or less, more preferably 4 ppm or less, and 3 ppm or less. It is more preferable to reduce it, and it is particularly preferable to reduce it to 2 ppm or less.
  • the anaerobic process may be performed at any stage including the raw material milk preparation process and the sterilization process, and as shown in FIG. 1, it may be performed at any stage after the heat sterilization process. Good. Further, the anaerobic process can be continuously performed in a plurality of process stages. In the present invention, the anaerobic process is preferably performed at least in a low temperature holding process and / or a starter addition process. Moreover, in this invention, it is preferable to perform an anaerobic process at a heating process and / or a fermentation process.
  • the fermented milk base is kept at a low temperature for a relatively long period of time (for example, 1 day or more).
  • the flavor and quality of the fermented milk base material should be maintained well, and the activities of Bulgarian bacteria and thermophilus bacteria contained in the fermented milk base material should be appropriately managed. Can do.
  • Bulgarian bacteria and Thermophilus bacteria in particular, Bulgarian bacteria are suitably activated, and fermented milk containing a large amount of polysaccharides can be obtained.
  • the fermented milk produced through each processing step has a relatively large number of Bulgarian bacteria (viable bacteria number). That is, in the production method of the present invention, the fermented milk base material to which a lactic acid bacteria starter containing Bulgarian bacteria and Thermophilus bacteria is added is intentionally set to be kept at a low temperature for a long time (predetermined period). Then, the fermented milk base material kept at a low temperature for the predetermined period is heated to promote fermentation. Thus, in the process of producing fermented milk, it was confirmed that the number of Bulgarian bacteria contained in fermented milk unexpectedly increases by performing an operation to hold the fermented milk base material at a low temperature. It was done.
  • a fermented milk containing a large amount of polysaccharides and having no miscellaneous taste is produced by relatively increasing the number of bacterial bacteria without using an additive such as a growth promoter for lactic acid bacteria. be able to.
  • the ratio of the number of Bulgarian bacteria when the number of Thermophilus bacteria contained in the fermented milk base material before the low-temperature holding step (step S5) is 1 (reference) (the number of Bulgarian bacteria / thermo
  • the value of the number of Filus bacteria is ⁇ .
  • the value of ⁇ is the number of thermophilus bacteria contained immediately after the starter addition step (step S4) (specifically, the fermented milk base material within 1 hour after adding the lactic acid bacteria starter to the raw milk). It is preferable to obtain from the number and the number of Bulgarian bacteria.
  • the ratio of the number of Bulgarian bacteria when the number of Thermophilus bacteria contained in the fermented milk after the fermentation process is 1 (standard) (the number of Bulgarian bacteria / the number of Thermofilus bacteria) ) Is ⁇ .
  • the numerical value of ⁇ is the number of thermophilus bacteria contained in fermented milk immediately after the recooling step (step S8) (specifically, fermented milk within 1 hour after recooling) and Bulgarian bacteria. It is preferable to obtain from the number of bacteria.
  • the numerical value of ⁇ / ⁇ can be 1.1 or more.
  • the numerical value of ⁇ / ⁇ is preferably 1.2 or more, more preferably 1.5 or more, and further preferably 2.0 or more. , 2.5 or more, particularly preferably 3.0 or more.
  • the upper limit of the numerical value of ⁇ / ⁇ is not particularly limited, but may be 20.0, for example.
  • the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria can be dramatically improved. That is, according to the present invention, it is possible to relatively promote the growth of Bulgarian bacteria and relatively suppress the growth of Thermophilus bacteria.
  • the ratio ( ⁇ ) of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk base material before the low-temperature holding step is 0.01 to 0.5
  • the ratio ( ⁇ ) of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk after the fermentation process can be 0.6 or more.
  • the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk base material before the low temperature holding step is determined by the fermented milk base material (specifically, in the raw milk immediately after the starter addition step).
  • the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk after the fermentation process is 1% after the recooling process (step S8). It is preferable to determine from the number of thermophilus bacteria and the number of Bulgarian bacteria contained in the fermented milk within a period of time. In this case, according to the present invention, the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk is preferably 0.65 or more, more preferably 0.7 or more.
  • the upper limit of the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk is not particularly limited, but may be, for example, 5.0. .
  • the Bulgarian bacteria it is possible to obtain fermented milk in which the number of bacteria is equal to or higher than the number of thermophilus bacteria.
  • the present invention also relates to a method for promoting the growth of Bulgaria bacteria, a method for suppressing the growth of Thermophilus bacteria, a method for improving the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria, and the like. That is, the present invention provides a sterilization process for sterilizing raw milk, a cooling process for cooling the raw milk after the sterilization process, and a Bulgarian bacterium and a thermostat in the raw milk during the cooling process or after the cooling process.
  • It includes a method for promoting the growth of Bulgaria bacteria, a method for suppressing the growth of Thermophilus bacteria, and a method for improving the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria.
  • these details shall follow the manufacturing method of fermented milk of this invention, etc.
  • the number of Bulgarian bacteria was 0.1 ⁇ 10 7 cfu / g, and the number of Thermofilus was 1.5 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / thermofilus bacterium) was 0.067.
  • the number of Bulgarian bacteria was 0.3 ⁇ 10 7 cfu / g, and the number of Thermofilus was 1.1 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / thermofilus bacterium) was 0.273.
  • the fermented milk base was kept at a low temperature at 5 to 10 ° C. for 3 days (72 hours). Further, while keeping the fermented milk base material at a low temperature, nitrogen gas (N 2 ) was injected into the fermented milk base material to make it anaerobic. Thereafter, the fermented milk base after heated to 40 ° C., a nitrogen gas (N 2) was injected, and reduced dissolved oxygen concentration in the fermented milk base material (DO) to 5 ppm. After that, the fermented milk base material is filled into a cup container (capacity: 100 g, made of plastic) and left in the fermentation room (40 ° C.) for about 3 hours until the lactic acid acidity reaches 0.8%.
  • N 2 nitrogen gas
  • Example 1 it was cooled in a refrigerator (10 ° C. or lower) to produce fermented milk (set type yogurt) [Example 1].
  • the operation for producing the fermented milk of Example 1 was performed twice using the first fermented milk base and the second fermented milk base.
  • Example 1 of the 1st time and the 2nd time the number of bacteria of Bulgaria and the number of bacteria of Thermophilus were measured.
  • Example 1 (fermented milk) for the first time, the number of Bulgarian bacteria was 38.5 ⁇ 10 7 cfu / g, and the number of Thermophilus bacteria was 40.0 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.963.
  • the number of Bulgarian bacteria was 33.5 ⁇ 10 7 cfu / g, and the number of Thermofilus was 38.0 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.882.
  • Comparative example 1 Low temperature maintenance of fermented milk base material : In order to confirm the effect of keeping low temperature non- fermented milk base material, fermented milk (set type yogurt) [comparative example 1] Manufactured. The manufacturing conditions of Comparative Example 1 were the same as those of Example 1 except for the presence or absence of holding at low temperature.
  • raw milk 500 g
  • skim milk powder 76 g
  • fresh cream 23 g
  • tap water 401 g
  • raw material milk (yogurt mix, nonfat milk solids (SNF): 9.5% by weight, milk fat content: 3.0 wt%) was prepared, sterilized by heating at 95 ° C. for 5 minutes, and then cooled to about 10 ° C. (8 ° C. to 12 ° C.).
  • lactic acid bacteria starter lactic acid bacteria isolated from Meiji Bulgaria, yogurt LB81
  • the work of producing the fermented milk base material was performed twice. For each of the first and second fermented milk bases, the number of Bulgarian bacteria and the number of Thermofilus bacteria were measured.
  • the number of Bulgarian bacteria was 0.6 ⁇ 10 7 cfu / g, and the number of Thermofilus was 2.0 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / thermofilus bacterium) was 0.300.
  • the number of Bulgarian bacteria was 0.3 ⁇ 10 7 cfu / g, and the number of Thermofilus was 2.2 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / thermofilus bacterium) was 0.136.
  • this fermented milk base is heated to 40 ° C., and then nitrogen gas (N 2 ) is injected to reduce the dissolved oxygen concentration (DO) of the fermented milk base to 5 ppm. did.
  • N 2 nitrogen gas
  • the fermented milk base material is filled into a cup container (capacity: 100 g, made of plastic) and left in the fermentation room (40 ° C.) for about 3 hours until the lactic acid acidity reaches 0.8%. And it cooled in the refrigerator compartment (10 degrees C or less), and fermented milk (set type yogurt) [comparative example 1] was manufactured.
  • Example 1 Using the first fermented milk base material and the second fermented milk base material, the operation for producing the fermented milk of Comparative Example 1 was performed twice. About each of Example 1 of the 1st time and the 2nd time, the number of bacteria of Bulgaria and the number of bacteria of Thermophilus were measured.
  • the number of Bulgarian bacteria was 16.5 ⁇ 10 7 cfu / g, and the number of Thermofilus was 91.5 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.180.
  • the number of Bulgarian bacteria was 10.0 ⁇ 10 7 cfu / g, and the number of Thermofilus was 86.0 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacteria / Thermophilus bacteria) was 0.116.
  • Table 1 shows the comparison of the numbers of Bulgarian bacteria and Thermophilus bacteria in the fermented milk base material used in Example 1 and the fermented milk base material used in Comparative Example 1.
  • Table 2 shows the comparison of the numbers of Bulgarian bacteria and Thermophilus bacteria in the fermented milk of Example 1 and the fermented milk of Comparative Example 1.
  • Example 1 when the bacterial count ratio ( ⁇ ) of the fermented milk base material and the bacterial count ratio ( ⁇ ) of the fermented milk base material were compared, the bacterial count ratio ( ⁇ ) of the fermented milk base material was The numerical value was larger than the number ratio ( ⁇ ) ( ⁇ > ⁇ ).
  • Example 2 Low temperature retention of fermented milk base material: skim milk powder: 124 g, unsalted butter: 4, sugar: 54 g, tap water: 818 g are mixed, and raw milk (yogurt mix, non-fat milk solids ( SNF): 9.5% by weight, milk fat content: 3.0% by weight), sterilized by heating at 95 ° C. for 5 minutes, and then cooled to about 10 ° C. (8 ° C. to 12 ° C.). Lactic acid bacteria starter (produced by Meiji Co., Ltd., lactic acid bacteria separated from Meiji Yogurt R-1) was added (inoculated) at 2% by weight to the cooled raw material milk to obtain a fermented milk base material (yogurt base). In order to confirm the reproducibility of the experiment, the operation for producing the fermented milk base material was performed twice. For each of the first and second fermented milk bases, the number of Bulgarian bacteria and the number of Thermofilus bacteria were measured.
  • the number of Bulgarian bacteria was 0.4 ⁇ 10 7 cfu / g, and the number of Thermofilus was 1.1 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.364.
  • the number of Bulgarian bacteria was 0.3 ⁇ 10 7 cfu / g, and the number of Thermofilus was 1.1 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / thermofilus bacterium) was 0.273.
  • the fermented milk base was kept at a low temperature at 5 to 10 ° C. for 2 days (48 hours). Further, while keeping the fermented milk base material at a low temperature, nitrogen gas (N 2 ) was injected into the fermented milk base material to make it anaerobic. Then, after warming the fermented milk base material to 38 ° C., nitrogen (N 2 ) was injected, and the dissolved oxygen concentration (DO) of the fermented milk base material was reduced to 3 ppm. 2 kg, made of stainless steel), left in the fermentation chamber (38 ° C.) for about 4 hours until the lactic acid acidity reached 0.8%, and then the curd of fermented milk was crushed.
  • N 2 nitrogen gas
  • DO dissolved oxygen concentration
  • Example 2 the obtained fermented milk was filled into a cup container (capacity: 100 g, made of plastic) and cooled in a refrigerator (10 ° C. or lower) to produce fermented milk (soft type yogurt) [Example 2].
  • the operation for producing the fermented milk of Example 2 was performed twice using the first fermented milk base material and the second fermented milk base material.
  • the number of bacteria of Bulgaria and the number of bacteria of Thermophilus were measured.
  • Example 2 (fermented milk) for the first time, the number of Bulgarian bacteria was 43.0 ⁇ 10 7 cfu / g, and the number of Thermofilus was 51.0 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacteria / Thermophilus bacteria) was 0.843.
  • the number of Bulgarian bacteria was 41.0 ⁇ 10 7 cfu / g, and the number of Thermofilus was 46.5 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.882.
  • Comparative example 2 Low temperature maintenance of fermented milk base material : In order to confirm the effect of keeping low temperature non- fermented milk base material, fermented milk (soft type yogurt) [comparative example 2] Manufactured. The manufacturing conditions of Comparative Example 2 were the same as those of Example 2 except for the presence or absence of holding at low temperature.
  • skim milk powder 124 g
  • unsalted butter: 4 sugar: 54 g
  • tap water: 818 g are mixed, and raw milk (yogurt mix, nonfat milk solids (SNF): 9.5% by weight, milk fat content) : 3.0 wt%) was prepared, sterilized by heating at 95 ° C for 5 minutes, and then cooled to about 10 ° C (8 ° C to 12 ° C).
  • Lactic acid bacteria starter produced by Meiji Co., Ltd., lactic acid bacteria separated from Meiji Yogurt R-1
  • the operation for producing the fermented milk base material was performed twice. For each of the first and second fermented milk bases, the number of Bulgarian bacteria and the number of Thermofilus bacteria were measured.
  • the number of Bulgarian bacteria was 0.2 ⁇ 10 7 cfu / g, and the number of Thermofilus was 0.7 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.286.
  • the number of Bulgarian bacteria was 0.3 ⁇ 10 7 cfu / g, and the number of Thermophilus was 1.3 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.231.
  • the fermented milk base material was heated to 38 ° C., and then nitrogen (N 2 ) was injected to reduce the dissolved oxygen concentration (DO) of the fermented milk base material to 3 ppm. , Packed in a small vat (capacity: 2 kg, made of stainless steel), left in the fermentation chamber (38 ° C) for about 4 hours until the lactic acid acidity reached 0.8%, and then the fermented milk card Was crushed. Then, the obtained fermented milk was filled into a cup container (capacity: 100 g, made of plastic) and cooled in a refrigerator (10 ° C. or lower) to produce fermented milk (soft type yogurt) [Comparative Example 2].
  • the operation for producing the fermented milk of Comparative Example 2 was performed twice using the first fermented milk base material and the second fermented milk base material. About each of Example 2 of the 1st time and the 2nd time, the number of bacteria of Bulgaria and the number of bacteria of Thermophilus were measured.
  • the number of Bulgarian bacteria was 28.0 ⁇ 10 7 cfu / g, and the number of Thermofilus was 73.5 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.381.
  • the number of Bulgarian bacteria was 21.5 ⁇ 10 7 cfu / g, and the number of Thermofilus was 111.5 ⁇ 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.193.
  • Table 3 shows the comparison of the numbers of Bulgarian bacteria and Thermophilus bacteria in the fermented milk base material used in Example 2 and the fermented milk base material used in Comparative Example 2.
  • Table 4 shows the comparison of the numbers of Bulgarian bacteria and Thermophilus bacteria in the fermented milk of Example 2 and the fermented milk of Comparative Example 2.
  • Example 2 when the bacterial count ratio ( ⁇ ) of the fermented milk base and the bacterial count ratio ( ⁇ ) of the fermented milk base are compared, the bacterial count ratio ( ⁇ ) of the fermented milk base is The numerical value was larger than the number ratio ( ⁇ ) ( ⁇ > ⁇ ).
  • Table 5 shows a comparison between the concentration (production amount) of the polysaccharide contained in the fermented milk of Example 2 and the concentration (production amount) of the polysaccharide contained in the fermented milk of Comparative Example 2.
  • the fermented milk of Example 2 had a higher polysaccharide concentration than the fermented milk of Comparative Example 2. As shown in Table 4, this result is considered to be due to the fact that the fermented milk of Example 2 has a larger number of Bulgarian bacteria than the fermented milk of Comparative Example 2.
  • the polysaccharide When measuring the concentration of the polysaccharide contained in the fermented milk, the polysaccharide was separated from 100 g of fermented milk, and the polysaccharide outside the cell was quantified by the phenol-sulfuric acid method.
  • the following steps a) to d) were carried out as a method for separating polysaccharides from fermented milk. a) Deproteinization using trichloroacetic acid. b) The polysaccharide is precipitated by ethanol precipitation. c) Dialyze the polysaccharide aqueous solution using a dialysis membrane. d) An aqueous solution on the polymer side is obtained.
  • the steps such as deproteinization, ethanol precipitation, and dialysis, the operating conditions can be appropriately adjusted according to the lactic acid bacteria, the culture solution, the culture conditions, and the like.
  • Example 2 in which the fermented milk base material before fermentation was subjected to the low-temperature holding treatment was compared with Comparative Example 2 in which the fermented milk base material prior to fermentation was not subjected to the low-temperature holding treatment.
  • the total amount of polysaccharides contained in fermented milk increased. From this, it was confirmed that fermented milk containing a large amount of polysaccharides derived from Bulgaria bacteria can be produced by fermenting the fermented milk base material at a temperature lower than the fermentation promoting temperature before fermentation.
  • the present invention relates to a method for producing fermented milk such as yogurt. Therefore, the present invention can be suitably used in the manufacturing industry of fermented milk such as yogurt.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)

Abstract

[Problem] To enhance the growth of Lactobacillus bulgaricus and minimize the growth of Streptococcus thermophilus relative to each other. [Solution] A method for producing fermented milk, said method comprising: a sterilization step in which a starting milk is sterilized; a cooling step in which the starting milk is cooled after heat sterilization thereof; a starter addition step in which a lactic acid bacteria starter containing Lactobacillus bulgaricus and Streptococcus thermophiles is added to the starting milk during the cooling step or after the cooling step in order to obtain a fermented milk base material; a low temperature holding step in which, after the starter addition step, the fermented milk base material is held at a temperature that is lower than a temperature that promotes the fermentation thereof; a heating step in which, after the low temperature holding step, the fermented milk base material is heated to a temperature that promotes the fermentation thereof; and a fermentation step in which, after the heating step, the fermented milk base material is fermented in order to obtain fermented milk.

Description

ブルガリア菌の増殖が促進された発酵乳及びその製造方法Fermented milk with enhanced growth of Bulgarian bacteria and method for producing the same
 本発明は,ブルガリア菌とサーモフィルス菌を含む発酵乳の製造方法に関する。この発酵乳の例は,プレーンタイプ,ハードタイプ,ソフトタイプ及びドリンクタイプなどのヨーグルトである。また,本発明は,ブルガリア菌とサーモフィルス菌を含む発酵乳に関する。 The present invention relates to a method for producing fermented milk containing Bulgarian bacteria and Thermophilus bacteria. Examples of this fermented milk are plain type, hard type, soft type and drink type yogurt. The present invention also relates to a fermented milk containing Bulgarian bacteria and Thermophilus bacteria.
 以前から,原料乳(ヨーグルトミックス)に,ブルガリア菌とサーモフィルス菌の2種の乳酸菌をスタータとして接種して,発酵させることにより得られるヨーグルトが知られている。このようなヨーグルトでは,一般的に,ブルガリア菌とサーモフィルス菌の菌数の比率が,1:4~1:5程度であり,ブルガリア菌に対して,サーモフィルス菌が圧倒的に多数で存在している。 For some time, yogurt obtained by inoculating raw milk (yogurt mix) as a starter with two types of lactic acid bacteria, Bulgarian bacteria and Thermophilus bacteria, has been known. In such yogurt, the ratio of the number of Bulgarian bacteria to Thermophilus bacteria is generally about 1: 4 to 1: 5, and there are overwhelmingly large numbers of Thermofilus bacteria compared to Bulgarian bacteria. is doing.
 ところで,ヨーグルトには,ブルガリア菌の菌数に規格(例えば,16日間の保存後で,10cfu/g以上)が設定されている製品がある。また,ヨーグルトには,ブルガリア菌によって産出される機能性の多糖体(EPS:Exopolysaccharide)が所定量で含有されていることを特徴とする製品も存在する。このようなヨーグルトでは,その製造過程において,ブルガリア菌の菌数を増加させることが望まれる。 By the way, there is a product in which a standard (for example, 10 6 cfu / g or more after storage for 16 days) is set for the number of Bulgarian bacteria in yogurt. In addition, there is a product characterized in that yogurt contains a predetermined amount of functional polysaccharide (EPS) produced by Bulgarian bacteria. In such a yogurt, it is desired to increase the number of Bulgarian bacteria in the production process.
 この点,以前から,原料乳(ヨーグルトミックス)や発酵乳基材(ヨーグルトベース)や培地などに,pH緩衝剤を添加して発酵や培養させることで,乳酸菌の増殖を促進させる方法が知られている。 In this regard, a method for promoting the growth of lactic acid bacteria by adding a pH buffering agent to raw milk (yogurt mix), fermented milk base (yogurt base), medium, etc. has been known. ing.
 また,例えば,特許文献1には,発酵乳基材(ヨーグルトベース)に,オレイン酸などを添加する,低脂肪ヨーグルトの製造方法が開示されている。特許文献1によれば,オレイン酸などを用いることで,低脂肪ヨーグルトにおける乳酸菌の生残性を向上させることができると提案されている。 For example, Patent Document 1 discloses a method for producing low-fat yogurt in which oleic acid or the like is added to a fermented milk base material (yogurt base). According to Patent Document 1, it is proposed that the survival of lactic acid bacteria in low-fat yogurt can be improved by using oleic acid or the like.
 また,例えば,特許文献2には,発酵乳基材(ヨーグルトベース)に,グァバ葉エキスを添加する,発酵食品の製造方法が開示されている。特許文献2によれば,グァバ葉エキスを用いることで,乳酸菌の生残性改善剤や乳酸菌の増殖促進剤として機能するため,発酵食品における乳酸菌の生残性を向上させることができると提案されている。 For example, Patent Document 2 discloses a method for producing a fermented food, in which a guava leaf extract is added to a fermented milk base material (yogurt base). According to Patent Document 2, it is proposed that the use of guava leaf extract can improve the survival of lactic acid bacteria in fermented foods because it functions as a survival improver for lactic acid bacteria and a growth promoter for lactic acid bacteria. ing.
 また,例えば,特許文献3には,発酵乳基材(ヨーグルトベース)に,アラビアガムを添加する,発酵食品の製造方法が開示されている。特許文献3によれば,アラビアガムを用いることで,発酵食品の保存中におけるビフィズス菌の生存率を増加させることができると提案されている。 For example, Patent Document 3 discloses a fermented food production method in which gum arabic is added to a fermented milk base (yogurt base). According to Patent Document 3, it is proposed that the survival rate of bifidobacteria during storage of fermented food can be increased by using gum arabic.
特開2001-045968号公報JP 2001-045968 A 特開2010-119305号公報JP 2010-119305 A 特表2010-505390号公報Special table 2010-505390
 しかしながら,上記した従来技術のように,乳酸菌の菌数を増加させるために,原料乳や発酵乳基材に,pH緩衝剤などの乳酸菌の増殖促進剤を添加すると,この増殖促進剤が原因となって,乳本来の風味とは異なる雑味,苦味,酸味などが発生するという問題があった。このため,従来の乳酸菌の増殖促進剤を用いる場合,発酵乳の風味の調整が困難であった。 However, if the growth promoter of lactic acid bacteria such as pH buffer is added to the raw milk or fermented milk base material to increase the number of lactic acid bacteria as in the above-mentioned prior art, this growth promoter causes As a result, there was a problem that miscellaneous taste, bitterness, acidity, etc. different from the original flavor of milk occurred. For this reason, when using the conventional lactic acid bacteria growth promoter, it is difficult to adjust the flavor of the fermented milk.
 また,乳酸菌の増殖促進剤を添加すると,発酵乳に含まれる乳酸菌の菌数を増加させることはできるが,ブルガリア菌とサーモフィルス菌の両方を含む発酵乳において,従来の乳酸菌の増殖促進剤を用いる場合,ブルガリア菌とサーモフィルス菌の両方の菌数が一緒に増加することとなる。つまり,従来の乳酸菌の増殖促進剤を用いる場合,ブルガリア菌とサーモフィルス菌の増殖が一緒に促進されるため,ブルガリア菌の増殖を相対的に促進することが困難であり,その結果として,ブルガリア菌に由来する多糖体の産生を促進することが困難であった。これに対し,上述したようなヨーグルトでは,その製造過程において,ブルガリア菌の増殖のみを促進させて,サーモフィルス菌の増殖を促進させなくてもよい製品も存在する。このとき,ブルガリア菌とサーモフィルス菌の両方を含む発酵乳において,ブルガリア菌の菌数の比率を高めることで,ブルガリア菌に由来する多糖体の生産量を増やすことが可能となる。 The addition of lactic acid bacteria growth promoters can increase the number of lactic acid bacteria in fermented milk, but in fermented milk containing both Bulgarian and thermophilus bacteria, conventional lactic acid bacteria growth promoters can be added. If used, the number of both Bulgarian and Thermophilus bacteria will increase together. In other words, when a conventional lactic acid bacteria growth promoter is used, the growth of Bulgarian bacteria and Thermophilus bacteria are promoted together, and thus it is difficult to relatively promote the growth of Bulgarian bacteria. It was difficult to promote the production of polysaccharides derived from bacteria. On the other hand, in the yogurt as described above, there is a product that only promotes the growth of Bulgarian bacteria and does not need to promote the growth of Thermophilus bacteria during the production process. At this time, it is possible to increase the production amount of polysaccharides derived from Bulgaria bacteria by increasing the ratio of the number of Bulgaria bacteria in fermented milk containing both Bulgaria bacteria and Thermophilus bacteria.
 このため,現在では,ブルガリア菌とサーモフィルス菌を含む発酵乳において,乳酸菌の増殖促進剤などの添加物を用いずに,ブルガリア菌の増殖を相対的に促進し,サーモフィルス菌の増殖を相対的に抑制することができる技術が求められている。 Therefore, at present, in fermented milk containing Bulgarian bacteria and Thermophilus bacteria, the growth of Bulgarian bacteria is relatively promoted and the growth of Thermophilus bacteria is relatively promoted without using additives such as lactic acid bacteria growth promoters. There is a need for a technique that can be effectively controlled.
 そこで,本発明の発明者らは,従来の問題を解決する手段について鋭意検討した結果,(加熱)殺菌後の原料乳に,ブルガリア菌とサーモフィルス菌を含む乳酸菌スタータを添加し,その発酵前の発酵乳基材を低温で保持する工程を行うことで,予想外にも,ブルガリア菌の増殖が促進され,サーモフィルス菌の増殖が抑制されるという知見を得た。その結果として,乳酸菌の増殖促進剤などの添加物を用いることなく,ブルガリア菌の菌数を相対的に増加させることに成功し,多糖体を多く含む雑味のない発酵乳を製造することができた。そして,本発明者らは,上記の知見に基づけば,従来技術の課題を解決できることに想到し,本発明を完成させた。 Therefore, the inventors of the present invention, as a result of intensive studies on the means for solving the conventional problems, added a lactic acid bacteria starter containing Bulgarian bacteria and Thermophilus bacteria to the raw milk after (heated) sterilization, and before the fermentation It was found that the growth of Bulgarian bacteria was promoted and the growth of Thermophilus was suppressed unexpectedly by carrying out the process of holding the fermented milk base at a low temperature. As a result, it has succeeded in relatively increasing the number of Bulgarian bacteria without using additives such as lactic acid bacteria growth promoters, and can produce fermented milk that is rich in polysaccharides and has no taste. did it. The inventors of the present invention have conceived that the problems of the prior art can be solved based on the above knowledge, and have completed the present invention.
 本発明の第1の側面は,発酵乳の製造方法に関する。
 本発明の発酵乳の製造方法は,殺菌工程と,冷却工程と,スタータ添加工程と,低温保持工程と,加温工程と,発酵工程と,を含む。
 殺菌工程は,原料乳を(加熱)殺菌する工程である。
 冷却工程は,殺菌工程後の原料乳を冷却する工程である。
 スタータ添加工程は,冷却工程中又は冷却工程後の原料乳に,ブルガリア菌及びサーモフィルス菌を含む乳酸菌スタータを添加して,発酵乳基材を得る工程である。
 低温保持工程は,スタータ添加工程後の発酵乳基材を,発酵促進温度よりも低温で保持する工程である。なお,発酵促進温度とは,乳酸菌が活性化して,発酵乳基材の発酵が促進される温度を意味する。発酵促進温度よりも低温では,発酵乳基材が全く発酵しないというわけではなく,発酵乳基材が僅かに発酵されていてもよい。
 加温工程は,低温保持工程後の発酵乳基材を,発酵促進温度まで加温する工程である。
 発酵工程は,加温工程後の発酵乳基材を発酵させて,発酵乳を得る工程である。
The 1st side surface of this invention is related with the manufacturing method of fermented milk.
The method for producing fermented milk of the present invention includes a sterilization step, a cooling step, a starter addition step, a low temperature holding step, a heating step, and a fermentation step.
A sterilization process is a process of sterilizing (heating) raw material milk.
The cooling step is a step of cooling the raw milk after the sterilization step.
The starter addition step is a step of obtaining a fermented milk base material by adding a lactic acid bacteria starter containing Bulgaria bacteria and Thermophilus bacteria to the raw material milk during or after the cooling process.
The low temperature holding step is a step of holding the fermented milk base material after the starter addition step at a temperature lower than the fermentation promoting temperature. The fermentation promotion temperature means a temperature at which lactic acid bacteria are activated and fermentation of the fermented milk base is promoted. At a temperature lower than the fermentation promoting temperature, the fermented milk base does not ferment at all, and the fermented milk base may be slightly fermented.
A heating process is a process of heating the fermented milk base material after a low-temperature holding process to fermentation promotion temperature.
A fermentation process is a process of fermenting the fermented milk base material after a heating process, and obtaining fermented milk.
 上記のように,本発明では,ブルガリア菌とサーモフィルス菌を含む乳酸菌スタータが添加された発酵乳基材を,意図的に低温保持するように設定している。そして,発酵乳基材を所定期間で低温保持した後に,この発酵乳基材を加温して発酵を促進する。このように,発酵乳の製造過程において,あえて発酵乳基材を一旦低温保持するという操作を行うことにより,予想外にも,発酵乳に含まれるブルガリア菌の菌数が相対的に増加するという結果が得られた。つまり,低温保持工程(低温保持処理)を行った場合の発酵乳と,低温保持工程(低温保持処理)を行わなかった場合の発酵乳を比較すると,後者よりも前者で,ブルガリア菌の菌数が多くなり,しかも,後者よりも前者で,サーモフィルス菌の菌数が少なくなっていた。このため,低温保持工程を行うことで,ブルガリア菌の増殖を促進しつつ,サーモフィルス菌の増殖を抑制することに成功したといえる。そして,ブルガリア菌には,機能性の多糖体(EPS:Exopolysaccharide)を生産するものがある。従って,本発明によれば,乳酸菌の増殖促進剤などの添加物を用いることなく,ブルガリア菌の菌数を相対的に増加させることで,多糖体を多く含む雑味のない発酵乳を製造することができる。 As described above, in the present invention, the fermented milk base material to which the lactic acid bacteria starter including Bulgarian bacteria and Thermophilus bacteria is added is set to intentionally keep at low temperature. And after keeping a fermented milk base material low temperature for a predetermined period, this fermented milk base material is heated and fermentation is accelerated | stimulated. In this way, in the process of producing fermented milk, the number of Bulgarian bacteria contained in fermented milk is relatively increased unexpectedly by performing an operation of holding the fermented milk base material at a low temperature. Results were obtained. In other words, comparing the fermented milk with the low-temperature holding process (low-temperature holding process) with the fermented milk without the low-temperature holding process (low-temperature holding process), However, the number of Thermophilus bacteria was smaller in the former than in the latter. For this reason, it can be said that it succeeded in suppressing the proliferation of Thermophilus bacteria, promoting the proliferation of Bulgaria bacteria by performing the low temperature maintenance process. Some Bulgarian bacteria produce functional polysaccharides (EPS: Exopolysaccharide). Therefore, according to the present invention, a fermented milk containing a large amount of polysaccharides and having no miscellaneous taste is produced by relatively increasing the number of bacterial bacteria without using an additive such as a growth promoter for lactic acid bacteria. be able to.
 本発明において,冷却工程は,原料乳を15℃以下まで冷却する工程であることが好ましい。より具体的には,原料乳を,1℃以上15℃以下まで冷却することが好ましい。
 また,低温保持工程は,発酵乳基材を,15℃以下に,1日以上の期間で低温保持する工程であることが好ましい。より具体的には,発酵乳基材を,5℃以上15℃以下に,1日間(24時間)~10日間(240時間)で保持することが好ましい。
In this invention, it is preferable that a cooling process is a process of cooling raw material milk to 15 degrees C or less. More specifically, the raw material milk is preferably cooled to 1 ° C. or higher and 15 ° C. or lower.
The low temperature holding step is preferably a step of holding the fermented milk base material at a low temperature at 15 ° C. or lower for a period of 1 day or longer. More specifically, the fermented milk base material is preferably held at 5 ° C. or higher and 15 ° C. or lower for 1 day (24 hours) to 10 days (240 hours).
 上記のように,発酵工程前に,発酵乳基材を,15℃以下に,1日以上で低温保持することで,ブルガリア菌とサーモフィルス菌の活性を適度に調整することができ,予想外にも,発酵乳に含まれるブルガリア菌の菌数が相対的に増加し,サーモフィルス菌の菌数が相対的に減少した。つまり,低温保持工程を行うことで,発酵工程において,ブルガリア菌の増殖率が向上し,サーモフィルス菌の増殖率が低下した。このような操作を行うことで,発酵乳に含まれるブルガリア菌とサーモフィルス菌の菌数の比率を,好ましい数値に調整することが可能となる。 As described above, by keeping the fermented milk base material at a low temperature at 15 ° C. or lower for 1 day or more before the fermentation step, the activities of Bulgarian bacteria and Thermophilus bacteria can be appropriately adjusted, which is unexpected. In addition, the number of Bulgarian bacteria contained in fermented milk increased relatively, and the number of Thermofilus bacteria decreased relatively. In other words, by performing the low-temperature holding process, the growth rate of Bulgaria bacteria was improved and the growth rate of Thermophilus bacteria was reduced in the fermentation process. By performing such an operation, it becomes possible to adjust the ratio of the number of Bulgarian bacteria and Thermophilus bacteria contained in the fermented milk to a preferable value.
 本発明において,加温工程は,発酵乳基材を,30℃以上50℃以下の発酵促進温度まで加温する工程であることが好ましい。 In the present invention, the heating step is preferably a step of heating the fermented milk base material to a fermentation acceleration temperature of 30 ° C. or higher and 50 ° C. or lower.
 上記のように,低温保持工程後に,発酵乳基材の温度が15℃以下である場合において,発酵促進温度を30℃以上50℃以下に設定することで,加温工程において,発酵乳基材を,少なくとも15℃以上で加温することとなる。このように,低温保持を行う温度と発酵を行う温度に15℃以上の大きな温度差を持たせることで,発酵工程において,ブルガリア菌の増殖率を向上させつつ,サーモフィルス菌の増殖率を低下させることができる。 As described above, when the temperature of the fermented milk base material is 15 ° C. or lower after the low temperature holding step, the fermented milk base material is set in the heating step by setting the fermentation promoting temperature to 30 ° C. or higher and 50 ° C. or lower. Is heated at least at 15 ° C. or higher. In this way, by giving a large temperature difference of 15 ° C. or more between the temperature at which the temperature is maintained and the temperature at which the fermentation is performed, the growth rate of Thermophilus is reduced while improving the growth rate of Bulgarian bacteria in the fermentation process. Can be made.
 本発明において,少なくとも低温保持工程において,発酵乳基材に不活性ガスを注入して嫌気状態とする嫌気工程をさらに含むことが好ましい。なお,嫌気工程は,低温保持工程だけでなく,冷却工程,スタータ添加工程,加温工程,及び発酵工程に行われてもよい。 In the present invention, it is preferable to further include an anaerobic process in which an inert gas is injected into the fermented milk base material to an anaerobic state at least in the low temperature holding process. In addition, an anaerobic process may be performed not only at a low temperature maintenance process but at a cooling process, a starter addition process, a heating process, and a fermentation process.
 上記のように,発酵乳基材を低温保持している間,発酵乳基材に不活性ガスを混入して嫌気状態とすることで,低温保持工程中に,発酵乳基材の酸化を抑制や防止しながら,ブルガリア菌とサーモフィルス菌の活性を適度に調整することができる。このため,低温保持工程後の発酵工程において,ブルガリア菌とサーモフィルス菌,特にブルガリア菌が好適に活性化されて,例えば,多糖体を多く含む発酵乳を製造することができる。 As mentioned above, while keeping the fermented milk base material at a low temperature, the fermented milk base material is anaerobically mixed with an inert gas to suppress oxidation of the fermented milk base material during the low temperature holding process. The activity of Bulgarian bacteria and Thermophilus bacteria can be moderately adjusted while preventing. For this reason, in the fermentation process after the low-temperature holding process, Bulgarian bacteria and Thermophilus bacteria, particularly Bulgarian bacteria are preferably activated, and for example, fermented milk containing a large amount of polysaccharides can be produced.
 本発明において,低温保持工程前の発酵乳基材に含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率(ブルガリア菌の菌数/サーモフィルス菌の菌数)の数値をαとする。そして,本発明において,発酵乳に含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率(ブルガリア菌の菌数/サーモフィルス菌の菌数)の数値をβとする。この場合において,β/αの数値が,1.1以上であることが好ましい。 In the present invention, the numerical value of the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk base material before the low-temperature holding step (the number of Bulgarian bacteria / the number of Thermophilus bacteria) is α. . In the present invention, the numerical value of the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk (the number of Bulgarian bacteria / the number of Thermophilus bacteria) is β. In this case, it is preferable that the numerical value of β / α is 1.1 or more.
 本発明において,低温保持工程前の発酵乳基材は,サーモフィルス菌の菌数に対するブルガリア菌の菌数の比率(ブルガリア菌の菌数/サーモフィルス菌の菌数)が,0.01以上0.5以下であることが好ましい。そして,これに対し,本発明において,発酵乳は,サーモフィルス菌の菌数に対するブルガリア菌の菌数の比率(ブルガリア菌の菌数/サーモフィルス菌の菌数)が,0.6以上であることが好ましい。 In the present invention, the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria (the number of Bulgarian bacteria / the number of Thermophilus bacteria) in the fermented milk base material before the low temperature holding step is 0.01 or more and 0. .5 or less is preferable. In contrast, in the present invention, in the fermented milk, the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria (the number of Bulgarian bacteria / the number of Thermophilus bacteria) is 0.6 or more. It is preferable.
 上記のように,本発明の発酵乳の製造方法によれば,サーモフィルス菌の菌数に対するブルガリア菌の菌数の比率が小さい乳酸菌スタータを用いた場合であっても,サーモフィルス菌の菌数に対するブルガリア菌の菌数の比率が大きい発酵乳を製造することができる。つまり,本発明の発酵乳の製造方法によれば,サーモフィルス菌に対するブルガリア菌の菌数の比率を飛躍的に向上させることが可能である。 As described above, according to the method for producing fermented milk of the present invention, even when a lactic acid bacteria starter having a small ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria is used, the number of Thermofilus bacteria is Fermented milk with a large ratio of the number of Bulgarian bacteria to the above can be produced. That is, according to the method for producing fermented milk of the present invention, it is possible to dramatically improve the ratio of the number of Bulgarian bacteria to Thermophilus bacteria.
 本発明において,乳酸菌の増殖促進剤を添加しないことが好ましい。乳酸菌の増殖促進剤とは,乳酸菌の増殖を促進することを目的とした乳由来以外の添加物である。例えば,乳酸菌の増殖促進剤としては,pH緩衝剤,オレイン酸,グァバ葉エキス,アラビアガムなどの従来公知の添加剤が挙げられる。 In the present invention, it is preferable not to add a growth promoter for lactic acid bacteria. Lactic acid bacteria growth promoters are additives other than milk derived for the purpose of promoting the growth of lactic acid bacteria. For example, conventionally known additives such as pH buffer, oleic acid, guava leaf extract, gum arabic and the like can be mentioned as growth promoters for lactic acid bacteria.
 上記のように,本発明の発酵乳の製造方法によれば,乳酸菌の増殖促進剤を添加しなくても,ブルガリア菌の菌数が多い発酵乳を製造することができる。その結果として,本発明によれば,この増殖促進剤に由来する雑味,苦味,酸味などの発生を防止することができ,乳本来の風味を損なうことなく,発酵乳を製造することができる。 As described above, according to the method for producing fermented milk of the present invention, fermented milk having a large number of Bulgarian bacteria can be produced without adding a lactic acid bacteria growth promoter. As a result, according to the present invention, it is possible to prevent the occurrence of miscellaneous taste, bitterness, acidity and the like derived from this growth promoter, and fermented milk can be produced without impairing the original flavor of milk. .
 本発明において,発酵工程は,発酵乳基材を容器に充填した後に発酵させて,発酵乳を得る工程であってもよい。いわゆる後発酵処理を行うことで,いわゆるセットタイプヨーグルトやプレーンタイプヨーグルトを製造することができる。 In the present invention, the fermentation process may be a process of obtaining fermented milk by fermenting after filling the fermented milk base material in a container. By performing so-called post-fermentation treatment, so-called set-type yogurt and plain-type yogurt can be produced.
 本発明の第2の側面は,発酵乳に関する。
 本発明の発酵乳は,原料乳にブルガリア菌及びサーモフィルス菌を含む乳酸菌スタータを添加して発酵乳基材を得てから,この発酵乳基材を発酵させることにより得られる。ここで,発酵乳基材に含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率の値をαとする。そして,発酵乳に含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率の値をβとする。この場合において,本発明の発酵乳は,β/αの数値が1.1以上である。
The second aspect of the present invention relates to fermented milk.
The fermented milk of the present invention is obtained by adding a lactic acid bacteria starter containing Bulgarian bacteria and Thermophilus bacteria to raw milk to obtain a fermented milk base material, and then fermenting the fermented milk base material. Here, the value of the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk base material is α. The ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk is defined as β. In this case, the fermented milk of the present invention has a β / α value of 1.1 or more.
 上記のように,本発明において,サーモフィルス菌の菌数に対するブルガリア菌の菌数の比率を高めることで,ブルガリア菌に由来する多糖体の生産量を増やすことが可能となる。特に,本発明において,乳酸菌の増殖促進剤を添加せずに,サーモフィルス菌の菌数に対するブルガリア菌の菌数の比率を高めたものであることが好ましい。 As described above, in the present invention, it is possible to increase the production amount of polysaccharides derived from Bulgaria bacteria by increasing the ratio of the number of Bulgaria bacteria to the number of Thermophilus bacteria. In particular, in the present invention, it is preferable that the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria is increased without adding a lactic acid bacteria growth promoter.
 本発明の発酵乳は,乳酸酸度(酸度)が0.9%以下であることが好ましい。 The fermented milk of the present invention preferably has a lactic acidity (acidity) of 0.9% or less.
 上記のように,本発明において,発酵時間を長くせず,発酵乳の乳酸酸度が0.9%以下という適度な乳酸酸度で,発酵乳の風味のまろやかさや食感のなめらかさなどを維持しつつ,ブルガリア菌の菌数の比率を高めることが可能となる。一般的に,発酵時間を長くし,発酵乳の乳酸酸度が0.9%超になるまで,乳酸酸度を高めれば,ブルガリア菌に由来する多糖体の生産量を十分に増やすことが可能となると考えられる。ただし,発酵時間を長くし,発酵乳の乳酸酸度が高まると,風味のまろやかさや食感のなめらかさが損なわれる恐れがある。そこで,本発明の発酵乳は,乳酸酸度が0.9%以下という条件において,β/αの数値が1.1以上であることが好ましい。 As described above, in the present invention, the fermentation time is not lengthened, and the fermented milk has a moderate lactic acidity of 0.9% or less and maintains the mildness of the flavor and texture of the fermented milk. However, the ratio of the number of Bulgarian bacteria can be increased. In general, if the lactic acid acidity is increased until the fermentation time is increased and the lactic acid acidity of the fermented milk exceeds 0.9%, the production of polysaccharides derived from Bulgarian bacteria can be sufficiently increased. Conceivable. However, if the fermentation time is lengthened and the lactic acid content of the fermented milk is increased, the mildness of the flavor and the smoothness of the texture may be impaired. Therefore, the fermented milk of the present invention preferably has a β / α value of 1.1 or more under the condition that the lactic acid acidity is 0.9% or less.
 本発明の発酵乳は,多糖体の濃度が5mg/100g以上であることが好ましい。 The fermented milk of the present invention preferably has a polysaccharide concentration of 5 mg / 100 g or more.
 上記のように,本発明において,ブルガリア菌の菌数の比率を高めることで,このブルガリア菌に由来する多糖体の濃度を高めることが可能となる。本発明において,ブルガリア菌由来の多糖体の濃度が高まって,サーモフィラス菌由来の多糖体が高まる場合よりもなめらかさが増大する。 As described above, in the present invention, it is possible to increase the concentration of polysaccharides derived from Bulgaria bacteria by increasing the ratio of the number of Bulgaria bacteria. In this invention, the density | concentration of the polysaccharide derived from a Bulgaria bacterium increases, and smoothness increases rather than the case where the polysaccharide derived from a Thermophilus bacterium increases.
 本発明によれば,ブルガリア菌とサーモフィルス菌を含む発酵乳において,乳酸菌の増殖促進剤などの添加物を用いずに,ブルガリア菌の増殖を相対的に促進し,サーモフィルス菌の増殖を相対的に抑制することができる。 According to the present invention, in fermented milk containing Bulgarian bacteria and Thermophilus bacteria, the growth of Bulgarian bacteria is relatively promoted without the use of additives such as lactic acid bacteria growth promoters. Can be suppressed.
図1は,本発明の製造方法の一実施形態を示した流れ図である。FIG. 1 is a flowchart showing an embodiment of the manufacturing method of the present invention.
 以下,図面を用いて,本発明を実施するための形態について説明する。ただし,本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments described below, and includes those appropriately modified by those skilled in the art from the following embodiments.
 本願明細書において,「原料乳(ヨーグルトミックス)」とは,発酵乳の材料であり,生乳のみからなるものや,生乳に,脱脂粉乳,クリーム,水などを混合して調製した,スタータ添加工程前の状態のものを意味する。また,「発酵乳基材(ヨーグルトベース)」とは,原料乳に乳酸菌スタータを添加した発酵乳の材料であり,発酵工程前の状態のものを意味する。また,「発酵乳」とは,発酵乳基材を発酵させることにより得られる,発酵工程後の状態の製造結果物を意味する。
 なお,本願明細書において,「A~B」とは,「A以上B以下」であることを意味する。
In the present specification, “raw milk (yogurt mix)” is a material of fermented milk, and consists of raw milk only, or prepared by mixing raw milk with skim milk powder, cream, water, etc. It means the previous state. The “fermented milk base (yogurt base)” is a material of fermented milk obtained by adding lactic acid bacteria starter to raw material milk, and means a state before the fermentation process. Moreover, "fermented milk" means the product obtained after fermentation process obtained by fermenting a fermented milk base material.
In this specification, “A to B” means “A to B”.
 本発明は,発酵乳及びその製造方法に関する。発酵乳の例は,ヨーグルトである。ヨーグルトは,プレーンタイプやハードタイプやソフトタイプであってもよいし,ドリンクタイプであってもよい。また,本発明によって製造された発酵乳を,フローズンヨーグルトの材料として用いることが可能である。また,本発明によって製造された発酵乳を,チーズの材料として用いることも可能である。本発明において,発酵乳とは,乳等省令で定義される「発酵乳」,「乳製品乳酸菌飲料」,「乳酸菌飲料」などのいずれであってもよい。 The present invention relates to fermented milk and a method for producing the same. An example of fermented milk is yogurt. The yogurt may be a plain type, a hard type, a soft type, or a drink type. Moreover, it is possible to use the fermented milk manufactured by this invention as a material of frozen yogurt. It is also possible to use the fermented milk produced according to the present invention as a cheese material. In the present invention, the fermented milk may be any of “fermented milk”, “dairy lactic acid bacteria beverage”, “lactic acid bacteria beverage” and the like defined by an ordinance of milk.
 図1は,本発明の一実施形態に係る製造方法の各工程を示した流れ図である。図1に示されるように,本発明に係る発酵乳の製造方法は,原料乳調製工程(ステップS1),殺菌工程(ステップS2),冷却工程(ステップS3),スタータ添加工程(ステップS4),低温保持工程(ステップS5),加温工程(ステップS6),発酵工程(ステップS7),再冷却工程(ステップS8)を含むことが好ましい。また,本発明の製造方法は,さらに,嫌気工程(ステップS9)を含むことが好ましい。 FIG. 1 is a flowchart showing each step of a manufacturing method according to an embodiment of the present invention. As shown in FIG. 1, the method for producing fermented milk according to the present invention includes a raw material milk preparation step (step S1), a sterilization step (step S2), a cooling step (step S3), a starter addition step (step S4), It is preferable to include a low temperature holding process (step S5), a heating process (step S6), a fermentation process (step S7), and a recooling process (step S8). Moreover, it is preferable that the manufacturing method of this invention includes an anaerobic process (step S9) further.
 図1に示されるように,発酵乳の製造にあたり,最初に,原料乳調製工程(ステップS1)が行われる。原料乳調製工程は,発酵乳の材料となる原料乳を調製する工程である。原料乳は,ヨーグルトミックスとも呼ばれる。本発明において,原料乳には,公知のものを用いることができる。例えば,原料乳は,生乳のみからなるもの(生乳100%)であってもよい。また,原料乳は,生乳に,脱脂粉乳,クリーム,水などを混合して調製したものであってもよい。また,原料乳には,その他に,殺菌乳,全脂乳,脱脂乳,全脂濃縮乳,脱脂濃縮乳,全脂粉乳,バターミルク,有塩バター,無塩バター,ホエー,ホエー粉,ホエータンパク質濃縮物(WPC),ホエータンパク質単離物(WPI),α-La(アルファ-ラクトアルブミン),β-Lg(ベータ-ラクトグロブリン),乳糖などを添加してもよい。また,原料乳には,予め温めたゼラチン,寒天,増粘剤,ゲル化剤,安定剤,乳化剤,ショ糖,甘味料,香料,ビタミン,ミネラルなどを適宜添加してもよい。原料乳調製工程では,原料乳を均質化する均質化工程により,原料乳に含まれる脂肪球などを微硫化(粉砕)することが好ましい。この均質化工程により,発酵乳の製造過程や製造後において,原料乳,発酵乳基材,発酵乳の脂肪分が分離することや浮上することを抑制や防止できる。 As shown in FIG. 1, in producing fermented milk, a raw material milk preparation step (step S1) is first performed. The raw material milk preparation step is a step of preparing raw material milk as a material for fermented milk. Raw milk is also called yogurt mix. In the present invention, known milk can be used as raw material milk. For example, the raw milk may be composed only of raw milk (raw milk 100%). The raw milk may be prepared by mixing raw milk with skim milk powder, cream, water, and the like. In addition, raw milk includes sterilized milk, full fat milk, skim milk, full fat concentrated milk, nonfat concentrated milk, full fat powdered milk, butter milk, salted butter, unsalted butter, whey, whey powder, whey Protein concentrate (WPC), whey protein isolate (WPI), α-La (alpha-lactalbumin), β-Lg (beta-lactoglobulin), lactose and the like may be added. In addition, gelatin, agar, thickener, gelling agent, stabilizer, emulsifier, sucrose, sweetener, fragrance, vitamin, mineral, and the like may be appropriately added to the raw milk. In the raw material milk preparation step, it is preferable to finely sulfurize (pulverize) fat globules and the like contained in the raw material milk by a homogenization step of homogenizing the raw material milk. By this homogenization process, it is possible to suppress or prevent the raw milk, the fermented milk base material, and the fat content of the fermented milk from separating or rising during the manufacturing process or after the manufacturing of the fermented milk.
 殺菌工程(ステップS2)は,原料乳調製工程後に行われる。殺菌工程は,原料乳を加熱処理などして殺菌する工程である。例えば,殺菌工程では,原料乳の雑菌を殺菌できる程度に,加熱温度及び加熱時間を調整して加熱処理すればよい。本発明において,殺菌工程には,公知の方法を用いることができる。例えば,殺菌工程では,プレート式熱交換器,チューブ式熱交換器,スチームインジェクション式加熱装置,スチームインフュージョン式加熱装置,通電式加熱装置などによって加熱処理を行えばよく,ジャケット付のタンクによって加熱処理を行ってもよい。そして,殺菌工程では,ヨーグルトがプレーンタイプやハードタイプやソフトタイプの場合などにおいて,高温短時間殺菌処理(HTST)などの加熱処理を行えばよく,ヨーグルトがドリンクタイプの場合などにおいて,超高温殺菌処理(UHT)などの加熱処理を行ってもよい。さらに,例えば,殺菌工程では,高温短時間殺菌処理(HTST)は,原料乳を80℃~100℃に,3分~15分間程度で加熱する処理であればよく,超高温殺菌処理(UHT)は,110℃~150℃に,1秒~30秒間程度で加熱する処理であればよい。 The sterilization step (step S2) is performed after the raw material milk preparation step. The sterilization process is a process of sterilizing raw milk by heat treatment or the like. For example, in the sterilization process, the heating temperature and the heating time may be adjusted so as to sterilize the germs of the raw material milk. In the present invention, a known method can be used for the sterilization step. For example, in the sterilization process, heat treatment may be performed with a plate heat exchanger, a tube heat exchanger, a steam injection heating device, a steam infusion heating device, an energizing heating device, etc., and heating is performed with a jacketed tank. Processing may be performed. In the sterilization process, when the yogurt is plain type, hard type or soft type, heat treatment such as high temperature short time sterilization treatment (HTST) may be performed. When yogurt is drink type, ultra high temperature sterilization is performed. Heat treatment such as treatment (UHT) may be performed. Further, for example, in the sterilization process, the high temperature short time sterilization process (HTST) may be a process in which the raw material milk is heated to 80 ° C. to 100 ° C. for about 3 minutes to 15 minutes. May be any treatment that heats to 110 ° C. to 150 ° C. for about 1 to 30 seconds.
 冷却工程(ステップS3)は,殺菌工程後に行われる。冷却工程は,加熱処理などされた原料乳を,所定温度に冷却などする工程である。冷却工程では,原料乳を発酵促進温度(例えば,30℃~50℃)よりも低温になるまで冷却する。本発明において,冷却工程には,公知の方法を用いることができる。例えば,冷却工程では,プレート式熱交換器,チューブ式熱交換器,真空(減圧)蒸発冷却器によって冷却処理を行えばよく,ジャケット付のタンクによって冷却処理を行ってもよい。なお,具体的に,冷却工程では,原料乳が15℃以下まで冷却されていることが好ましい。そして,冷却工程では,原料乳が1℃~15℃に冷却されていることが好ましく,3℃~10℃に冷却されていることがより好ましく,5℃~8℃に冷却されていることがさらに好ましい。 The cooling process (step S3) is performed after the sterilization process. The cooling step is a step of cooling the raw material milk that has been heat-treated to a predetermined temperature. In the cooling step, the raw milk is cooled to a temperature lower than the fermentation promotion temperature (for example, 30 ° C. to 50 ° C.). In the present invention, a known method can be used for the cooling step. For example, in the cooling process, the cooling process may be performed by a plate heat exchanger, a tube heat exchanger, a vacuum (reduced pressure) evaporative cooler, or a jacketed tank. Specifically, it is preferable that the raw milk is cooled to 15 ° C. or lower in the cooling step. In the cooling step, the raw milk is preferably cooled to 1 to 15 ° C., more preferably 3 to 10 ° C., and preferably 5 to 8 ° C. Further preferred.
 冷却工程では,殺菌工程が加熱処理の場合において,その殺菌工程で温度が上昇した100℃程度の原料乳を低温(15℃以下)まで急速に冷却することが好ましい。そして,例えば,冷却工程では,殺菌工程が加熱処理の場合において,その殺菌工程で温度が上昇した100℃程度の原料乳を15℃まで冷却する時間は,10分間以内であることが好ましく,5分間以内であることがより好ましく,1分間以内であることがさらに好ましく,30秒間以内であることが特に好ましい。この冷却工程により,原料乳において,タンパク質が変性することや糖質が褐変化することを抑制や防止できる。 In the cooling process, when the sterilization process is a heat treatment, it is preferable to rapidly cool the raw milk at about 100 ° C. whose temperature has increased in the sterilization process to a low temperature (15 ° C. or less). And, for example, in the cooling process, when the sterilization process is a heat treatment, the time for cooling the raw milk of about 100 ° C. whose temperature has increased in the sterilization process to 15 ° C. is preferably within 10 minutes, It is more preferably within minutes, more preferably within 1 minute, and particularly preferably within 30 seconds. By this cooling step, it is possible to suppress or prevent the protein from being denatured or the sugar from being browned in the raw material milk.
 スタータ添加工程(ステップS4)は,冷却工程後又は冷却工程中に行われる。スタータ添加工程は,原料乳に乳酸菌スタータを添加(混合)して,発酵乳基材を得る工程である。すなわち,殺菌工程後に,原料乳が所定温度まで低下した後に,乳酸菌スタータを添加してもよいし,殺菌工程後に,原料乳が所定温度まで低下している最中に,乳酸菌スタータを添加してもよい。本発明において,スタータ添加工程には,公知の方法を用いることができる。ただし,本発明において,乳酸菌スタータには,少なくとも,ブルガリア菌とサーモフィルス菌が含まれる。すなわち,「ブルガリア菌」とは,ラクトバチルス・ブルガリカス(L. bulgaricus)であり,「サーモフィルス菌」とは,ストレプトコッカス・サーモフィルス(S.t hermophilus)である。また,本発明において,スタータ添加工程では,ブルガリア菌とサーモフィルス菌の他に,公知の乳酸菌を添加(混合)してもよい。例えば,スタータ添加工程では,ガセリ菌(ラクトバチルス・ガッセリ(L. gasseri)),ラクティス菌(ラクトコッカス・ラクティス(L. lactis)),クレモリス菌(ラクトコッカス・クレモリス(L. cremoris)),ビフィズス菌(ビフィドバクテリウム(Bifidobacterium)など)を添加(混合)してもよい。なお,乳酸菌スタータは,乳酸菌として,ブルガリア菌とサーモフィルス菌のみからなるものが好ましい。一方,乳酸菌スタータの添加量は,公知の発酵乳の製造方法において採用されている数量であればよく,例えば,0.1~5重量%であることが好ましく,0.5~4重量%であることがより好ましく,1~3重量%であることがさらに好ましい。 The starter addition process (step S4) is performed after the cooling process or during the cooling process. The starter addition step is a step of obtaining a fermented milk base material by adding (mixing) lactic acid bacteria starter to raw material milk. That is, the lactic acid bacteria starter may be added after the raw milk is lowered to a predetermined temperature after the sterilization process, or the lactic acid bacteria starter is added while the raw milk is lowered to the predetermined temperature after the sterilization process. Also good. In the present invention, a known method can be used for the starter addition step. However, in the present invention, the lactic acid bacteria starter includes at least Bulgarian bacteria and Thermophilus bacteria. That is, "Bulgaria" is Lactobacillus bulgaricus (L. bulgaricus) and "Thermophyllus" is Streptococcus thermophilus (S.t hermophilus). In the present invention, a known lactic acid bacterium may be added (mixed) in addition to the Bulgarian bacterium and Thermophilus bacterium in the starter addition step. For example, in the starter addition process, gasseri (L. gasseri), lactis (L. lactis), cremollis (L. Bacteria (such as Bifidobacterium) may be added (mixed). The lactic acid bacteria starter is preferably composed of only Bulgarian bacteria and Thermophilus bacteria as lactic acid bacteria. On the other hand, the amount of lactic acid bacteria starter added may be any quantity used in known fermented milk production methods, for example, preferably 0.1 to 5% by weight, and 0.5 to 4% by weight. More preferably, it is 1 to 3% by weight.
 スタータ添加工程では,乳酸菌スタータに含まれるブルガリア菌とサーモフィルス菌の菌数(生菌数)は,公知の発酵乳の製造方法において採用されている数値であればよい。そして,例えば,乳酸菌スタータに含まれるブルガリア菌の菌数とサーモフィルス菌の菌数の比率では,1:4~1:5が一般的である。なお,具体的に,スタータ添加工程では,乳酸菌スタータに含まれるサーモフィルス菌の菌数を1(基準)としたときのブルガリア菌の菌数の比率(ブルガリア菌の菌数/サーモフィルス菌の菌数)は,0.01~0.8であればよく,0.05~0.7であることが好ましく,0.1~0.5であることがより好ましく,0.2~0.4であることがさらに好ましい。一方,スタータ添加工程では,乳酸菌スタータに含まれるブルガリア菌とサーモフィルス菌の菌数(生菌数)は,予め,サーモフィルス菌の菌数よりもブルガリア菌の菌数を多く含ませることもできる。例えば,乳酸菌スタータに含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率は,1.0~5.0,又は1.5~4.0などであってもよい。なお,乳酸菌の菌数は,公知の方法に従って測定すればよい。 In the starter addition step, the number of bacteria (viable cell count) of Bulgarian bacteria and Thermophilus bacteria contained in the lactic acid bacteria starter may be a numerical value adopted in a known method for producing fermented milk. For example, the ratio of the number of Bulgarian bacteria and the number of Thermophilus bacteria contained in the lactic acid bacteria starter is generally 1: 4 to 1: 5. Specifically, in the starter addition step, the ratio of the number of Bulgarian bacteria when the number of Thermophilus bacteria contained in the lactic acid bacteria starter is 1 (standard) (the number of Bulgarian bacteria / the number of Thermophilus bacteria) The number) may be 0.01 to 0.8, preferably 0.05 to 0.7, more preferably 0.1 to 0.5, and 0.2 to 0.4. More preferably. On the other hand, in the starter addition step, the number of Bulgarian and Thermofilus bacteria contained in the lactic acid bacteria starter (viable cell count) can include a larger number of Bulgarian bacteria than the number of Thermofilus bacteria in advance. . For example, the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the lactic acid bacteria starter may be 1.0 to 5.0 or 1.5 to 4.0. The number of lactic acid bacteria may be measured according to a known method.
 低温保持工程(ステップS5)は,スタータ添加工程後に行われる。低温保持工程は,乳酸菌スタータが添加されている発酵乳基材を,発酵促進温度(例えば,30℃~50℃)よりも低温に,所定期間で保持する工程である。例えば,低温保持工程では,冷却工程において発酵乳基材が15℃以下まで冷却されているため,そのまま15℃以下の状態で保持すればよい。ただし,冷却工程から低温保持工程までの間に,発酵乳基材の温度が上昇していても,発酵促進温度(例えば,30℃~50℃)よりも低温に保持されていれば問題はない。本発明において,低温保持工程には,公知の方法を用いることができる。例えば,低温保持工程では,ジャケット付のタンクによって低温保持処理を行ってもよい。なお,具体的に,低温保持工程では,発酵乳基材が15℃以下に低温保持されていることが好ましい。そして,低温保持工程では,発酵乳基材が1℃~20℃に低温保持されていることが好ましく,3℃~15℃に低温保持されていることがより好ましく,5℃~10℃に低温保持されていることがさらに好ましい。また,具体的に,低温保持工程では,発酵乳基材が低温の状態に,1日以上で保持されていることが好ましい。そして,低温保持工程では,発酵乳基材を保持する期間は,1日間(24時間)~10日間(240時間)であることが好ましく,2日間(48時間)~8日間(192時間)であることがより好ましく,3日間(72時間)~6日間(144時間)であることがさらに好ましい。 The low temperature holding step (step S5) is performed after the starter addition step. The low temperature holding step is a step of holding the fermented milk base to which the lactic acid bacteria starter is added at a temperature lower than the fermentation promoting temperature (for example, 30 ° C. to 50 ° C.) for a predetermined period. For example, in the low temperature holding process, since the fermented milk base material is cooled to 15 ° C. or lower in the cooling process, it may be held as it is at 15 ° C. or lower. However, even if the temperature of the fermented milk base material rises between the cooling step and the low temperature holding step, there is no problem as long as the temperature is kept lower than the fermentation promoting temperature (for example, 30 ° C. to 50 ° C.). . In the present invention, a known method can be used for the low temperature holding step. For example, in the low temperature holding process, the low temperature holding process may be performed by a tank with a jacket. Specifically, it is preferable that the fermented milk base material is kept at a low temperature of 15 ° C. or lower in the low temperature holding step. In the low temperature holding step, the fermented milk base material is preferably held at a low temperature of 1 ° C. to 20 ° C., more preferably at a low temperature of 3 ° C. to 15 ° C., and a low temperature of 5 ° C. to 10 ° C. More preferably, it is retained. Further, specifically, in the low temperature holding step, the fermented milk base material is preferably held in a low temperature state for one day or longer. In the low temperature holding step, the period of holding the fermented milk base material is preferably 1 day (24 hours) to 10 days (240 hours), and 2 days (48 hours) to 8 days (192 hours). More preferably, it is 3 days (72 hours) to 6 days (144 hours).
 加温工程(ステップS6)は,低温保持工程後に行われる。加温工程は,低温保持処理されていた発酵乳基材を,発酵促進温度(例えば,30℃~50℃)まで加温などする工程である。ここで,発酵促進温度とは,微生物(乳酸菌など)が活性化して,発酵乳基材の発酵が進行や促進される温度を意味する。本発明において,加温工程には,公知の方法を用いることができる。例えば,加温工程では,プレート式熱交換器,チューブ式熱交換器などによって加熱処理を行えばよく,ジャケット付のタンクによって加熱処理を行ってもよい。そして,例えば,乳酸菌の発酵促進温度では,30℃~50℃が一般的である。なお,具体的に,加温工程では,発酵乳基材が30℃以上まで加温されていることが好ましい。さらに,加温工程では,発酵乳基材が30℃~50℃に加温されていることが好ましく,33℃~47℃に加温されていることがより好ましく,35℃~44℃に加温されていることがさらに好ましい。 The warming step (step S6) is performed after the low temperature holding step. The heating step is a step of heating the fermented milk base material that has been subjected to the low-temperature holding treatment to a fermentation acceleration temperature (for example, 30 ° C. to 50 ° C.). Here, the fermentation acceleration temperature means a temperature at which microorganisms (such as lactic acid bacteria) are activated and fermentation of the fermented milk base proceeds or is promoted. In the present invention, a known method can be used for the heating step. For example, in the heating step, heat treatment may be performed using a plate heat exchanger, a tube heat exchanger, or the like, or heat treatment may be performed using a tank with a jacket. For example, 30 to 50 ° C. is generally used as a fermentation promoting temperature for lactic acid bacteria. In addition, specifically, in a heating process, it is preferable that the fermented milk base material is heated to 30 degreeC or more. Furthermore, in the heating step, the fermented milk base material is preferably heated to 30 ° C. to 50 ° C., more preferably 33 ° C. to 47 ° C., and it is heated to 35 ° C. to 44 ° C. More preferably, it is warm.
 加温工程では,低温保持工程で温度が低下した10℃程度の発酵乳基材を発酵促進温度(例えば,30℃~50℃)まで所定時間で(比較的に短時間で)加温することが好ましい。そして,例えば,加温工程では,低温保持工程で温度が低下した10℃程度の発酵乳基材を発酵促進温度(例えば,30℃~50℃)まで加温する時間は,1時間以内であることが好ましく,30分間以内であることが好ましく,10分間以内であることがさらに好ましく,1分間以内であることが特に好ましい。この加温工程により,発酵乳基材において,ブルガリア菌の増殖を効率的に促進しつつ,サーモフィルス菌の増殖を効率的に抑制することができる。なお,加温工程では,低温保持工程で温度が低下した10℃程度の発酵乳基材を,そのまま30℃~50℃程度の室温に設定された発酵室に移動させて,発酵室内で徐々に昇温させながら加温処理を行うこともできる。ただし,その結果として,加温工程の所要時間が大幅に延長される可能性があり,発酵乳を短時間で効率的に製造することが困難となる。 In the warming process, the fermented milk base of about 10 ° C. whose temperature has been lowered in the low temperature holding process is heated to a fermentation promoting temperature (for example, 30 ° C. to 50 ° C.) for a predetermined time (in a relatively short time). Is preferred. And, for example, in the heating step, the time for heating the fermented milk base of about 10 ° C. whose temperature has been lowered in the low temperature holding step to the fermentation accelerating temperature (eg, 30 ° C. to 50 ° C.) is within 1 hour. Preferably, it is within 30 minutes, more preferably within 10 minutes, and particularly preferably within 1 minute. By this heating step, it is possible to efficiently suppress the growth of Thermophilus bacteria while efficiently promoting the growth of Bulgaria bacteria on the fermented milk base material. In the warming step, the fermented milk base material at about 10 ° C. whose temperature has been lowered in the low temperature holding step is moved to the fermentation chamber set at a room temperature of about 30 ° C. to 50 ° C. as it is, and gradually moved in the fermentation chamber. Heating treatment can also be performed while raising the temperature. However, as a result, the time required for the heating process may be greatly extended, and it becomes difficult to efficiently produce fermented milk in a short time.
 発酵工程(ステップS7)は,加温工程後に行われる。発酵工程は,発酵促進温度(例えば,30℃~50℃)に加温された発酵乳基材を,発酵促進温度(例えば,30℃~50℃)に保持しながら発酵させて,発酵乳を得る工程である。本発明において,発酵工程には,公知の方法を用いることができる。例えば,発酵工程では,発酵室などによって発酵処理を行えばよく,ジャケット付のタンクによって発酵処理を行ってもよい。そして,発酵工程では,ヨーグルトがプレーンタイプやハードタイプの場合などにおいて,後発酵処理を行えばよく,ヨーグルトがソフトタイプやドリンクタイプの場合などにおいて,前発酵処理を行ってもよい。さらに,例えば,発酵工程では,発酵室内の温度(発酵温度)を30℃~50℃に維持し,その発酵室内で発酵乳基材を発酵する処理であればよく,ジャケット付のタンク内の温度(発酵温度)を30℃~50℃に維持し,そのタンク内で発酵乳基材を発酵する処理であってもよい。ここで,発酵工程では,発酵乳基材を発酵させる条件を,原料乳や乳酸菌の種類や数量,発酵乳の風味や食感などを考慮して,発酵温度や発酵時間などを適宜調整すればよい。なお,具体的に,発酵工程では,発酵乳基材が30℃以上で保持されていることが好ましい。さらに,発酵工程では,発酵乳基材が30℃~50℃に保持されていることが好ましく,33℃~47℃で保持されていることがより好ましく,35℃~44℃で保持されていることがさらに好ましい。また,具体的に,発酵工程では,発酵乳基材が発酵促進温度の状態に,1時間以上で保持されていることが好ましい。そして,発酵工程では,発酵乳基材を保持する期間(発酵時間)は,1時間~12時間であることが好ましく,2時間~8時間であることがより好ましく,3時間~5時間であることがさらに好ましい。 The fermentation process (step S7) is performed after the heating process. In the fermentation process, a fermented milk base material heated to a fermentation promoting temperature (for example, 30 ° C. to 50 ° C.) is fermented while being maintained at the fermentation promoting temperature (for example, 30 ° C. to 50 ° C.). It is a process to obtain. In the present invention, a known method can be used for the fermentation step. For example, in the fermentation process, the fermentation process may be performed in a fermentation chamber or the like, and the fermentation process may be performed in a tank with a jacket. In the fermentation process, post-fermentation processing may be performed when the yogurt is a plain type or a hard type, and pre-fermentation processing may be performed when the yogurt is a soft type or a drink type. Further, for example, in the fermentation process, the temperature in the fermentation chamber (fermentation temperature) may be maintained at 30 ° C. to 50 ° C. and the fermented milk base material may be fermented in the fermentation chamber. (Fermentation temperature) may be maintained at 30 ° C. to 50 ° C., and the fermented milk base material may be fermented in the tank. Here, in the fermentation process, the conditions for fermenting the fermented milk base material can be adjusted as appropriate, such as the fermentation temperature and fermentation time, taking into account the type and quantity of raw milk and lactic acid bacteria, the flavor and texture of the fermented milk, etc. Good. Specifically, in the fermentation process, the fermented milk base material is preferably held at 30 ° C. or higher. Further, in the fermentation process, the fermented milk base material is preferably maintained at 30 ° C. to 50 ° C., more preferably at 33 ° C. to 47 ° C., and at 35 ° C. to 44 ° C. More preferably. Moreover, specifically, in a fermentation process, it is preferable that the fermented milk base material is hold | maintained in the state of fermentation promotion temperature in 1 hour or more. In the fermentation process, the period for holding the fermented milk base material (fermentation time) is preferably 1 hour to 12 hours, more preferably 2 hours to 8 hours, and 3 hours to 5 hours. More preferably.
 発酵工程では,発酵乳基材を発酵させる条件を,原料乳や乳酸菌の種類や数量,発酵乳の風味や食感などを考慮して,乳酸酸度(酸度)やpHなどを適宜調節してもよい。なお,具体的に,発酵工程では,乳酸酸度が0.7%以上まで到達していることが好ましい。さらに,発酵工程では,ヨーグルトがプレーンタイプやハードタイプの場合などにおいて,後発酵処理を行うときには,乳酸酸度が0.9%以下(0.7%~0.9%)であることが好ましく,0.85%以下(0.7%~0.85%)であることがより好ましく,0.8%以下(0.7%~0.8%)であることがさらに好ましく,ヨーグルトがソフトタイプやドリンクタイプの場合などにおいて,前発酵処理を行うときには,乳酸酸度が1.2%以下(0.7%~1.2%)であることが好ましく,1.1%以下(0.7%~1.1%)であることがより好ましく,1.0%以下(0.7%~1.0%)であることがさらに好ましい。なお,このとき,上記のように,発酵乳基材が発酵促進温度で保持されていることが好ましい。 In the fermentation process, the conditions for fermenting the fermented milk base material can be adjusted as appropriate by adjusting the lactic acidity (acidity), pH, etc., taking into consideration the type and quantity of raw milk and lactic acid bacteria, the flavor and texture of the fermented milk, etc. Good. Specifically, in the fermentation process, it is preferable that the lactic acid acidity reaches 0.7% or more. Furthermore, in the fermentation process, when the post-fermentation treatment is performed when the yogurt is a plain type or a hard type, the lactic acid acidity is preferably 0.9% or less (0.7% to 0.9%), 0.85% or less (0.7% to 0.85%) is more preferable, 0.8% or less (0.7% to 0.8%) is more preferable, and yogurt is a soft type When the pre-fermentation treatment is performed in the case of a drink type or the like, the lactic acid acidity is preferably 1.2% or less (0.7% to 1.2%), and 1.1% or less (0.7% To 1.1%), more preferably 1.0% or less (0.7% to 1.0%). At this time, as described above, the fermented milk base material is preferably held at the fermentation promoting temperature.
 本願明細書において,酸度(乳酸酸度)は,乳等省令の「乳等の成分規格の試験法」に従って測定することができる。具体的には,試料の10gに,炭酸ガスを含まないイオン交換水を10mlで添加してから,指示薬として,フェノールフタレイン溶液を0.5mlで添加する。そして,水酸化ナトリウム溶液(0.1mol/L)を添加しながら,微紅色が消失しないところを限度として滴定し,その水酸化ナトリウム溶液の滴定量から試料の100g当たりの乳酸の含量を求めて,乳酸酸度とする。なお,フェノールフタレイン溶液は,フェノールフタレインの1gをエタノール溶液(50%)に溶かして100mlにフィルアップして調製する。 In the present specification, the acidity (lactic acid acidity) can be measured according to the “Testing Method for Component Standards of Milk” in the Ministerial Ordinance of Milk. Specifically, 10 ml of ion exchange water not containing carbon dioxide gas is added to 10 g of a sample, and then a phenolphthalein solution is added at 0.5 ml as an indicator. While adding sodium hydroxide solution (0.1 mol / L), titration was performed up to the point where the faint red color did not disappear, and the content of lactic acid per 100 g of the sample was determined from the titration of the sodium hydroxide solution. , Lactic acid acidity. The phenolphthalein solution is prepared by dissolving 1 g of phenolphthalein in an ethanol solution (50%) and filling up to 100 ml.
 発酵工程は,後発酵処理と前発酵処理のどちらであってもよい。そして,後発酵処理を行うときには,実際に製品として販売するための容器に発酵乳基材を充填した後に,発酵乳基材を発酵させる。例えば,後発酵処理を行うときには,発酵乳基材が充填された(密閉)容器を発酵室内に静置するなどして発酵させ,その得られた中間生成物である発酵乳(発酵乳カード)を,後述する再冷却工程にて冷却し,最終生成物である発酵乳(セットタイプヨーグルト,プレーンタイプヨーグルト)を得ればよい。また,前発酵処理を行うときには,実際に製品として販売するための容器に発酵乳基材を充填する前に,発酵乳基材を発酵させる。例えば,前発酵を行うときには,発酵乳基材が充填されたジャケット付のタンクを静置するなどして発酵させ,その得られた中間生成物である発酵乳(発酵乳カード)を破砕や微粒化してから,後述する再冷却工程にて冷却し,必要に応じて,果肉,野菜,果汁,野菜汁,ジャム,ソース,プレパレーションなどを混合した後に,(密閉)容器に充填して,最終生成物である発酵乳(ソフトタイプヨーグルト,ドリンクタイプヨーグルト)を得ればよい。 The fermentation process may be either post-fermentation treatment or pre-fermentation treatment. And when performing a post-fermentation process, after fermenting milk base material is filled into the container for actually selling as a product, fermented milk base material is fermented. For example, when post-fermentation treatment is performed, fermented milk (fermented milk card) that is an intermediate product obtained by fermenting a container (sealed) filled with a fermented milk base material by leaving it in a fermentation chamber or the like Is cooled in a re-cooling step described later, and fermented milk (set type yogurt, plain type yogurt) as a final product may be obtained. Moreover, when performing a pre-fermentation process, before filling a fermented milk base material into the container for actually selling as a product, fermented milk base material is fermented. For example, when pre-fermentation is carried out, the fermented milk (fermented milk card), which is the intermediate product obtained by fermenting by leaving a tank with a jacket filled with a fermented milk base, for example, is crushed or finely divided. After cooling, it is cooled in the re-cooling process described later, and if necessary, after mixing pulp, vegetables, fruit juice, vegetable juice, jam, sauce, preparation, etc., it is filled into a (sealed) container, and finally What is necessary is just to obtain fermented milk (soft type yogurt, drink type yogurt) which is a product.
 本実施形態において,後発酵処理に用いる容器には,発酵乳を詰めることが可能な全部の入れ物が含まれる。例えば,発酵乳は,プラスチック製,紙製,ガラス製,金属製,陶器製又はその複合材料からなる容器でよい。また,発酵乳は,上面に開口を有する容器に充填されて,発酵や凝固させてもよく,容器に蓋が付けられてもよいし,プラスチック製のシュリンクフィルム,遮光フィルム(例えば,金属箔積層フィルム,金属薄膜層フィルム,黒色または暗色インク塗布フィルム)で,容器ごとが被覆されてもよい。上記容器や上記フィルム等を二種類以上で組み合わせて用いてもよい。発酵乳は,光透過や酸素透過による風味劣化の抑制の観点から,ペットボトルや瓶に充填後に遮光フィルムを被覆すること,紙製容器や遮光性のあるプラスチック容器に充填後に遮光フィルムで密封する,プラスチック製のシュリンクフィルムで密封した後に遮光性蓋を用いることが好ましい。 In this embodiment, the container used for the post-fermentation process includes all containers that can be filled with fermented milk. For example, fermented milk may be a container made of plastic, paper, glass, metal, earthenware, or a composite material thereof. Fermented milk may be filled in a container having an opening on the top, fermented or coagulated, the container may be covered, a plastic shrink film, a light-shielding film (for example, a metal foil laminate) Each container may be covered with a film, a metal thin film layer film, a black or dark color ink coating film). You may use the said container, the said film, etc. in combination of 2 or more types. Fermented milk is coated with a light-shielding film after filling into PET bottles and bottles, and sealed with a light-shielding film after filling into a paper container or light-shielding plastic container from the viewpoint of suppressing flavor deterioration due to light transmission and oxygen transmission. It is preferable to use a light-shielding lid after sealing with a plastic shrink film.
 発酵工程では,機能性の多糖体を生産するブルガリア菌の増殖を促進しつつ,サーモフィルス菌の増殖を抑制することで,多糖体を多く生産することが可能となる。つまり,本発明において,発酵工程では,乳酸菌の増殖促進剤などの添加物を用いることなく,ブルガリア菌の菌数を相対的に増加させることで,多糖体を多く含む雑味のない発酵乳を製造することができる。このとき,乳酸酸度が0.9%以下(0.7%~0.9%のいずれか)のときに,発酵乳における多糖体の濃度が5mg/100g以上であることが好ましく,5.5mg/100g以上であることがより好ましく,6mg/100g以上であることがさらに好ましい。また,例えば,乳酸酸度が0.85%以下(0.7%~0.85%のいずれか)のときに,発酵乳における多糖体の濃度が5mg/100g以上であることが好ましく,5.5mg/100g以上であることがより好ましく,6mg/100g以上であることがさらに好ましい。また,例えば,乳酸酸度が0.8%以下(0.7%~0.8%のいずれか)のときに,発酵乳における多糖体の濃度が5mg/100g以上であることが好ましく,5.5mg/100g以上であることがより好ましく,6mg/100g以上であることがさらに好ましい。 In the fermentation process, it is possible to produce a large amount of polysaccharides by suppressing the growth of Thermophilus bacteria while promoting the growth of Bulgarian bacteria that produce functional polysaccharides. In other words, in the present invention, fermented milk that is rich in polysaccharides and not rich in taste is obtained by relatively increasing the number of bacterial bacteria without using additives such as growth promoters for lactic acid bacteria in the fermentation process. Can be manufactured. At this time, when the lactic acid acidity is 0.9% or less (any of 0.7% to 0.9%), the concentration of the polysaccharide in the fermented milk is preferably 5 mg / 100 g or more, and 5.5 mg / 100 g or more is more preferable, and 6 mg / 100 g or more is more preferable. For example, when the lactic acid acidity is 0.85% or less (any of 0.7% to 0.85%), the polysaccharide concentration in the fermented milk is preferably 5 mg / 100 g or more. It is more preferably 5 mg / 100 g or more, and further preferably 6 mg / 100 g or more. For example, when the lactic acid acidity is 0.8% or less (any of 0.7% to 0.8%), the polysaccharide concentration in the fermented milk is preferably 5 mg / 100 g or more. It is more preferably 5 mg / 100 g or more, and further preferably 6 mg / 100 g or more.
 再冷却工程(ステップS8)は,発酵工程後に行われる。再冷却工程は,発酵工程で得られた発酵乳を冷却する工程である。再冷却工程では,発酵の進行が抑制される。このとき,再冷却工程では,発酵乳を発酵促進温度(例えば,30℃~50℃)よりも低温になるまで冷却する。本発明において,再冷却工程には,公知の方法を用いることができる。例えば,再冷却工程では,冷蔵室,冷凍室によって再冷却処理を行えばよく,プレート式熱交換器,チューブ式熱交換器,ジャケット付のタンクによって再冷却処理を行ってもよい。なお,具体的に,再冷却工程では,発酵乳が15℃以下まで冷却されていることが好ましい。そして,再冷却工程では,発酵乳が1℃~15℃に冷却されていることが好ましく,3℃~10℃に冷却されていることがより好ましく,5℃~8℃に冷却されていることがさらに好ましい。この再冷却工程により,発酵乳を食用に適した温度に冷却することで,発酵乳の風味(酸味など)や食感(舌触りなど)や物性(硬さなど)が変化することを抑制や防止できる。 The recooling step (step S8) is performed after the fermentation step. The recooling step is a step of cooling the fermented milk obtained in the fermentation step. In the recooling process, the progress of fermentation is suppressed. At this time, in the recooling step, the fermented milk is cooled to a temperature lower than the fermentation promoting temperature (for example, 30 ° C. to 50 ° C.). In the present invention, a known method can be used for the recooling step. For example, in the recooling process, the recooling process may be performed in a refrigerator room or a freezer room, and the recooling process may be performed in a plate heat exchanger, a tube heat exchanger, or a tank with a jacket. Specifically, it is preferable that the fermented milk is cooled to 15 ° C. or lower in the recooling step. In the recooling step, the fermented milk is preferably cooled to 1 to 15 ° C, more preferably 3 to 10 ° C, and 5 to 8 ° C. Is more preferable. By this re-cooling process, fermented milk is cooled to a temperature suitable for edible use, thereby suppressing or preventing changes in flavor (such as acidity), texture (such as tongue touch), and physical properties (such as hardness) of fermented milk. it can.
 嫌気工程(ステップS9)は,任意の工程である。嫌気工程は,原料乳,発酵乳基材,発酵乳に,窒素などの不活性ガスを混合して,嫌気状態とする工程である。本発明において,嫌気工程には,公知の方法を用いることができる。例えば,嫌気工程では,原料乳,発酵乳基材に,不活性ガスを混入(注入)して嫌気処理する,又は発酵乳が充填された容器内のヘッドスペース,発酵乳が充填されたタンク内のヘッドスペースに,不活性ガスを充満(充填)して嫌気処理することで,これらに存在している酸素を除去や低減する。この嫌気工程により,原料乳などに含まれる酸素が除去や低減され,原料乳などに含まれる脂質やタンパク質の酸化が抑制や防止される,又は乳酸菌の活性が促進される。そして,例えば,不活性ガスでは,窒素の他に,ヘリウム,ネオン,アルゴン,キセノンの希ガスを用いることができる。なお,具体的に,嫌気工程では,原料乳,発酵乳基材,発酵乳の溶存酸素濃度(DO)を5ppm以下に低減させることが好ましく,4ppm以下に低減させることがより好ましく,3ppm以下に低減させることがさらに好ましく,2ppm以下に低減させることが特に好ましい。 An anaerobic process (step S9) is an arbitrary process. An anaerobic process is a process which mixes inert gas, such as nitrogen, with raw material milk, fermented milk base material, and fermented milk, and makes it an anaerobic state. In the present invention, a known method can be used for the anaerobic process. For example, in the anaerobic process, the raw milk and fermented milk base material is mixed (injected) with an inert gas for anaerobic treatment, or the headspace in a container filled with fermented milk, in a tank filled with fermented milk The oxygen present in these headspaces is removed or reduced by filling the headspace with an inert gas and performing anaerobic treatment. By this anaerobic process, oxygen contained in the raw milk is removed or reduced, and oxidation of lipids and proteins contained in the raw milk is suppressed or prevented, or the activity of lactic acid bacteria is promoted. For example, as an inert gas, a rare gas such as helium, neon, argon, or xenon can be used in addition to nitrogen. Specifically, in the anaerobic process, the dissolved oxygen concentration (DO) of raw milk, fermented milk base material, and fermented milk is preferably reduced to 5 ppm or less, more preferably 4 ppm or less, and 3 ppm or less. It is more preferable to reduce it, and it is particularly preferable to reduce it to 2 ppm or less.
 嫌気工程は,原料乳調製工程,殺菌工程を含めて,どの工程の段階で行ってもよいし,図1に示されるように,加熱殺菌工程以降であれば,どの工程の段階で行ってもよい。また,嫌気工程は,複数の工程の段階で継続的に行うこともできる。本発明において,嫌気工程は,少なくとも,低温保持工程及び/又はスタータ添加工程で行うことが好ましい。また,本発明において,嫌気工程は,加温工程及び/又は発酵工程で行うことが好ましい。そして,低温保持工程及び/又はスタータ添加工程の(低温保持処理されている)発酵乳基材に,窒素などの不活性ガスを混入して,発酵乳基材の溶存酸素濃度を低減させると共に,加温工程及び/又は発酵工程の(加温処理されている)発酵乳基材に,窒素などの不活性ガスを混入して,発酵乳基材の溶存酸素濃度を低減させ,さらに,発酵乳基材が充填されている(密閉)容器内のヘッドスペースに,不活性ガスを充満することがより好ましい。上記のように,本発明において,発酵乳基材は比較的に長期間(例えば,1日間以上)で,低温保持される。このとき,嫌気処理を行うことによって,発酵乳基材の風味や品質を良好に維持すると共に,発酵乳基材に含まれているブルガリア菌の活性及びサーモフィルス菌の活性を適切に管理することができる。この嫌気工程により,発酵乳基材を低温保持後に発酵させると,ブルガリア菌及びサーモフィルス菌,特に,ブルガリア菌が好適に活性化されて,多糖体を多く含む発酵乳を得ることができる。 The anaerobic process may be performed at any stage including the raw material milk preparation process and the sterilization process, and as shown in FIG. 1, it may be performed at any stage after the heat sterilization process. Good. Further, the anaerobic process can be continuously performed in a plurality of process stages. In the present invention, the anaerobic process is preferably performed at least in a low temperature holding process and / or a starter addition process. Moreover, in this invention, it is preferable to perform an anaerobic process at a heating process and / or a fermentation process. And, in addition to reducing the concentration of dissolved oxygen in the fermented milk base material by mixing an inert gas such as nitrogen into the fermented milk base material (which has been kept at a low temperature) in the low temperature holding step and / or the starter addition step, An inert gas such as nitrogen is mixed into the fermented milk base material (heated) in the heating step and / or fermentation step to reduce the dissolved oxygen concentration of the fermented milk base material. It is more preferable to fill the head space in the container filled with the substrate (sealed) with an inert gas. As described above, in the present invention, the fermented milk base is kept at a low temperature for a relatively long period of time (for example, 1 day or more). At this time, by performing anaerobic treatment, the flavor and quality of the fermented milk base material should be maintained well, and the activities of Bulgarian bacteria and thermophilus bacteria contained in the fermented milk base material should be appropriately managed. Can do. When fermented milk base material is fermented after being kept at a low temperature by this anaerobic process, Bulgarian bacteria and Thermophilus bacteria, in particular, Bulgarian bacteria are suitably activated, and fermented milk containing a large amount of polysaccharides can be obtained.
 上記のように,本発明において,各処理工程を経て製造された発酵乳は,ブルガリア菌の菌数(生菌数)が相対的に多くなっている。すなわち,本発明の製造方法では,ブルガリア菌とサーモフィルス菌を含む乳酸菌スタータが添加された発酵乳基材を,意図的に長時間(所定期間)で低温保持するように設定している。そして,この所定期間で低温保持した発酵乳基材を加温処理して発酵を促進する。このように,発酵乳の製造過程において,あえて発酵乳基材を一旦低温保持する操作を行うことによって,予想外にも,発酵乳に含まれているブルガリア菌の菌数が増加する現状が確認された。つまり,低温保持工程(低温保持処理)を行った場合の発酵乳と,低温保持工程(低温保持処理)を行わなかった場合の発酵乳を比較すると,後者よりも前者で,ブルガリア菌の菌数が多くなり,しかも,後者よりも前者で,サーモフィルス菌の菌数が少なくなっていた。このため,低温保持工程を行うことで,ブルガリア菌の増殖を促進しつつ,サーモフィルス菌の増殖を抑制することに成功したといえる。そして,ブルガリア菌には,機能性の多糖体(EPS:Exopolysaccharide)を生産するものがある。従って,本発明によれば,乳酸菌の増殖促進剤などの添加物を用いることなく,ブルガリア菌の菌数を相対的に増加させることで,多糖体を多く含む雑味のない発酵乳を製造することができる。 As described above, in the present invention, the fermented milk produced through each processing step has a relatively large number of Bulgarian bacteria (viable bacteria number). That is, in the production method of the present invention, the fermented milk base material to which a lactic acid bacteria starter containing Bulgarian bacteria and Thermophilus bacteria is added is intentionally set to be kept at a low temperature for a long time (predetermined period). Then, the fermented milk base material kept at a low temperature for the predetermined period is heated to promote fermentation. Thus, in the process of producing fermented milk, it was confirmed that the number of Bulgarian bacteria contained in fermented milk unexpectedly increases by performing an operation to hold the fermented milk base material at a low temperature. It was done. In other words, comparing the fermented milk with the low-temperature holding process (low-temperature holding process) with the fermented milk without the low-temperature holding process (low-temperature holding process), However, the number of Thermophilus bacteria was smaller in the former than in the latter. For this reason, it can be said that it succeeded in suppressing the proliferation of Thermophilus bacteria, promoting the proliferation of Bulgaria bacteria by performing the low temperature maintenance process. Some Bulgarian bacteria produce functional polysaccharides (EPS: Exopolysaccharide). Therefore, according to the present invention, a fermented milk containing a large amount of polysaccharides and having no miscellaneous taste is produced by relatively increasing the number of bacterial bacteria without using an additive such as a growth promoter for lactic acid bacteria. be able to.
 本発明において,低温保持工程(ステップS5)前の発酵乳基材に含まれるサーモフィルス菌の菌数を1(基準)としたときのブルガリア菌の菌数の比率(ブルガリア菌の菌数/サーモフィルス菌の菌数)の数値をαとする。ここで,このαの数値は,スタータ添加工程(ステップS4)の直後(具体的に,原料乳に乳酸菌スタータを添加してから1時間以内の発酵乳基材)に含まれるサーモフィルス菌の菌数とブルガリア菌の菌数から求めることが好ましい。また,発酵工程(ステップS7)後の発酵乳に含まれるサーモフィルス菌の菌数を1(基準)としたときのブルガリア菌の菌数の比率(ブルガリア菌の菌数/サーモフィルス菌の菌数)の数値をβとする。ここで,このβの数値は,再冷却工程(ステップS8)の直後の発酵乳(具体的に,再冷却してから1時間以内の発酵乳)に含まれるサーモフィルス菌の菌数とブルガリア菌の菌数から求めることが好ましい。この場合において,本発明によれば,β/αの数値は,1.1以上とすることができる。そして,この場合において,本発明によれば,β/αの数値は,1.2以上となることが好ましく,1.5以上となることがより好ましく,2.0以上となることがさらに好ましく,2.5以上となることが特に好ましく,3.0以上となることが最も好ましい。なお,この場合において,本発明によれば,β/αの数値の上限値は,特に限定されないが,例えば,20.0とすればよい。このように,本発明によれば,サーモフィルス菌の菌数に対するブルガリア菌の菌数の比率を飛躍的に向上させることができる。すなわち,本発明によれば,ブルガリア菌の増殖を相対的に促進し,サーモフィルス菌の増殖を相対的に抑制することが可能となる。 In the present invention, the ratio of the number of Bulgarian bacteria when the number of Thermophilus bacteria contained in the fermented milk base material before the low-temperature holding step (step S5) is 1 (reference) (the number of Bulgarian bacteria / thermo The value of the number of Filus bacteria is α. Here, the value of α is the number of thermophilus bacteria contained immediately after the starter addition step (step S4) (specifically, the fermented milk base material within 1 hour after adding the lactic acid bacteria starter to the raw milk). It is preferable to obtain from the number and the number of Bulgarian bacteria. The ratio of the number of Bulgarian bacteria when the number of Thermophilus bacteria contained in the fermented milk after the fermentation process (step S7) is 1 (standard) (the number of Bulgarian bacteria / the number of Thermofilus bacteria) ) Is β. Here, the numerical value of β is the number of thermophilus bacteria contained in fermented milk immediately after the recooling step (step S8) (specifically, fermented milk within 1 hour after recooling) and Bulgarian bacteria. It is preferable to obtain from the number of bacteria. In this case, according to the present invention, the numerical value of β / α can be 1.1 or more. In this case, according to the present invention, the numerical value of β / α is preferably 1.2 or more, more preferably 1.5 or more, and further preferably 2.0 or more. , 2.5 or more, particularly preferably 3.0 or more. In this case, according to the present invention, the upper limit of the numerical value of β / α is not particularly limited, but may be 20.0, for example. Thus, according to the present invention, the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria can be dramatically improved. That is, according to the present invention, it is possible to relatively promote the growth of Bulgarian bacteria and relatively suppress the growth of Thermophilus bacteria.
 本発明において,例えば,低温保持工程前の発酵乳基材に含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率(α)が,0.01~0.5であるときに,本発明によれば,発酵工程後の発酵乳に含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率(β)を0.6以上とすることができる。ここで,この低温保持工程前の発酵乳基材に含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率は,スタータ添加工程の直後の発酵乳基材(具体的に,原料乳に乳酸菌スタータを添加してから1時間以内の発酵乳基材)に含まれるサーモフィルス菌の菌数とブルガリア菌の菌数から求めることが好ましい。また,発酵工程後の発酵乳に含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率は,再冷却工程(ステップS8)の直後の発酵乳(具体的に,再冷却してから1時間以内の発酵乳)に含まれるサーモフィルス菌の菌数とブルガリア菌の菌数から求めることが好ましい。そして,この場合において,本発明によれば,発酵乳に含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率は,0.65以上となることが好ましく,0.7以上となることがより好ましく,0.8以上となることがさらに好ましく,0.9以上となることが特に好ましく,1.0以上となることが最も好ましい。なお,この場合において,本発明によれば,発酵乳に含まれるサーモフィルス菌の菌数に対するブルガリア菌の菌数の比率の上限値は,特に限定されないが,例えば,5.0とすればよい。このように,本発明によれば,発酵乳基材の段階において,ブルガリア菌の菌数がサーモフィルス菌の菌数の半分以下であっても,発酵乳の段階において,最終的に,ブルガリア菌の菌数がサーモフィルス菌の菌数と同等である,又は同等以上に高められた発酵乳を得ることが可能となる。 In the present invention, for example, when the ratio (α) of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk base material before the low-temperature holding step is 0.01 to 0.5, According to the invention, the ratio (β) of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk after the fermentation process can be 0.6 or more. Here, the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk base material before the low temperature holding step is determined by the fermented milk base material (specifically, in the raw milk immediately after the starter addition step). It is preferable to obtain from the number of Thermophilus bacteria and the number of Bulgarian bacteria contained in the fermented milk base material (within 1 hour after adding the lactic acid bacteria starter). Further, the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk after the fermentation process is 1% after the recooling process (step S8). It is preferable to determine from the number of thermophilus bacteria and the number of Bulgarian bacteria contained in the fermented milk within a period of time. In this case, according to the present invention, the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk is preferably 0.65 or more, more preferably 0.7 or more. Is more preferably 0.8 or more, particularly preferably 0.9 or more, and most preferably 1.0 or more. In this case, according to the present invention, the upper limit of the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria contained in the fermented milk is not particularly limited, but may be, for example, 5.0. . Thus, according to the present invention, at the stage of the fermented milk base, even if the number of Bulgarian bacteria is less than half of the number of the Thermophilus bacteria, finally, at the stage of fermented milk, the Bulgarian bacteria It is possible to obtain fermented milk in which the number of bacteria is equal to or higher than the number of thermophilus bacteria.
 本発明は,ブルガリア菌の増殖の促進方法,サーモフィルス菌の増殖の抑制方法,サーモフィルス菌の菌数に対するブルガリア菌の菌数の比率の向上方法などにも関する。すなわち,本発明は,原料乳を殺菌する殺菌工程と,前記殺菌工程後の前記原料乳を,冷却する冷却工程と,前記冷却工程中又は前記冷却工程後の前記原料乳に,ブルガリア菌及びサーモフィルス菌を含む乳酸菌スタータを添加して,発酵乳基材を得るスタータ添加工程と,前記スタータ添加工程後の前記発酵乳基材を,発酵促進温度よりも低温で保持する低温保持工程と,前記低温保持工程後の前記発酵乳基材を,前記発酵促進温度まで加温する加温工程と,前記加温工程後の前記発酵乳基材を発酵させて,発酵乳を得る発酵工程と,を含む,ブルガリア菌の増殖の促進方法,サーモフィルス菌の増殖の抑制方法,サーモフィルス菌の菌数に対するブルガリア菌の菌数の比率の向上方法などでもある。なお,これらの詳細は,本発明の発酵乳の製造方法などに従うものとする。 The present invention also relates to a method for promoting the growth of Bulgaria bacteria, a method for suppressing the growth of Thermophilus bacteria, a method for improving the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria, and the like. That is, the present invention provides a sterilization process for sterilizing raw milk, a cooling process for cooling the raw milk after the sterilization process, and a Bulgarian bacterium and a thermostat in the raw milk during the cooling process or after the cooling process. A starter addition step of adding a lactic acid bacteria starter containing Filus bacteria to obtain a fermented milk base, a low temperature holding step of holding the fermented milk base after the starter addition step at a temperature lower than the fermentation promoting temperature, and A heating step of heating the fermented milk base material after the low temperature holding step to the fermentation accelerating temperature; and a fermentation step of fermenting the fermented milk base material after the heating step to obtain fermented milk. It includes a method for promoting the growth of Bulgaria bacteria, a method for suppressing the growth of Thermophilus bacteria, and a method for improving the ratio of the number of Bulgarian bacteria to the number of Thermophilus bacteria. In addition, these details shall follow the manufacturing method of fermented milk of this invention, etc.
 以下,実施例を用いて,本発明を具体的に説明する。ただし,本発明は,以下の実施例に限定されることなく,公知の手法に基づく様々な改良を加えることができるものである。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and various improvements based on known methods can be added.
<実施例1> 発酵乳基材の低温保持:有
 生乳:500g,脱脂粉乳:76g,生クリーム:23g,水道水:401gを混合して,原料乳(ヨーグルトミックス,無脂乳固形分(SNF):9.5重量%,乳脂肪分:3.0重量%)を調製し,95℃に5分間で加熱殺菌した後に,約10℃(8℃~12℃)に冷却した。冷却後の原料乳に,乳酸菌スタータ(明治社製,明治ブルガリア ヨーグルトLB81から分離した乳酸菌)を2重量%で添加(接種)して,発酵乳基材(ヨーグルトベース)を得た。実験の再現性の確認のため,発酵乳基材を製造する操作を2回で行った。1回目と2回目の発酵乳基材のそれぞれについて,ブルガリア菌の菌数とサーモフィルス菌の菌数を測定した。
<Example 1> Low temperature retention of fermented milk base: Raw milk: 500 g, skim milk powder: 76 g, fresh cream: 23 g, tap water: 401 g are mixed to produce raw milk (yogurt mix, non-fat milk solids (SNF ): 9.5% by weight, milk fat content: 3.0% by weight), sterilized by heating at 95 ° C. for 5 minutes, and then cooled to about 10 ° C. (8 ° C. to 12 ° C.). Lactic acid bacteria starter (produced by Meiji Co., Ltd., lactic acid bacteria isolated from Meiji Bulgaria yogurt LB81) was added (inoculated) at 2% by weight to the cooled raw material milk to obtain a fermented milk base material (yogurt base). In order to confirm the reproducibility of the experiment, the operation for producing the fermented milk base material was performed twice. For each of the first and second fermented milk bases, the number of Bulgarian bacteria and the number of Thermofilus bacteria were measured.
 1回目の発酵乳基材では,ブルガリア菌の菌数が0.1×10cfu/gであり,サーモフィルス菌の菌数が1.5×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.067であった。
 2回目の発酵乳基材では,ブルガリア菌の菌数が0.3×10cfu/gであり,サーモフィルス菌の菌数が1.1×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.273であった。
In the first fermented milk base, the number of Bulgarian bacteria was 0.1 × 10 7 cfu / g, and the number of Thermofilus was 1.5 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / thermofilus bacterium) was 0.067.
In the second fermented milk base, the number of Bulgarian bacteria was 0.3 × 10 7 cfu / g, and the number of Thermofilus was 1.1 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / thermofilus bacterium) was 0.273.
 そして,この発酵乳基材を,5~10℃に,3日間(72時間)で低温保持した。また,発酵乳基材を低温保持している間,発酵乳基材に対して窒素ガス(N)を注入して嫌気状態とした。その後,この発酵乳基材を40℃に加温してから,窒素ガス(N)を注入し,発酵乳基材の溶存酸素濃度(DO)を5ppmに低減した。その後,この発酵乳基材をカップ容器(容量:100g,プラスチック製)へ充填し,発酵室(40℃)に,乳酸酸度が0.8%に到達するまで,約3時間で静置してから,冷蔵室(10℃以下)で冷却して,発酵乳(セットタイプヨーグルト)[実施例1]を製造した。上記1回目の発酵乳基材と2回目の発酵乳基材を用いて,実施例1の発酵乳を製造する操作を2回で行った。1回目と2回目の実施例1のそれぞれについて,ブルガリア菌の菌数とサーモフィルス菌の菌数を測定した。 The fermented milk base was kept at a low temperature at 5 to 10 ° C. for 3 days (72 hours). Further, while keeping the fermented milk base material at a low temperature, nitrogen gas (N 2 ) was injected into the fermented milk base material to make it anaerobic. Thereafter, the fermented milk base after heated to 40 ° C., a nitrogen gas (N 2) was injected, and reduced dissolved oxygen concentration in the fermented milk base material (DO) to 5 ppm. After that, the fermented milk base material is filled into a cup container (capacity: 100 g, made of plastic) and left in the fermentation room (40 ° C.) for about 3 hours until the lactic acid acidity reaches 0.8%. Then, it was cooled in a refrigerator (10 ° C. or lower) to produce fermented milk (set type yogurt) [Example 1]. The operation for producing the fermented milk of Example 1 was performed twice using the first fermented milk base and the second fermented milk base. About each of Example 1 of the 1st time and the 2nd time, the number of bacteria of Bulgaria and the number of bacteria of Thermophilus were measured.
 1回目の実施例1(発酵乳)では,ブルガリア菌の菌数が38.5×10cfu/gであり,サーモフィルス菌の菌数が40.0×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.963であった。
 2回目の実施例1(発酵乳)では,ブルガリア菌の菌数が33.5×10cfu/gであり,サーモフィルス菌の菌数が38.0×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.882であった。
In Example 1 (fermented milk) for the first time, the number of Bulgarian bacteria was 38.5 × 10 7 cfu / g, and the number of Thermophilus bacteria was 40.0 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.963.
In the second example 1 (fermented milk), the number of Bulgarian bacteria was 33.5 × 10 7 cfu / g, and the number of Thermofilus was 38.0 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.882.
<比較例1> 発酵乳基材の低温保持:無
 発酵乳基材を低温保持することの効果を確認するために,低温保持せずに,発酵乳(セットタイプヨーグルト)[比較例1]を製造した。低温保持の有無以外について,比較例1の製造条件は,上記実施例1と同じ条件とした。
<Comparative example 1> Low temperature maintenance of fermented milk base material : In order to confirm the effect of keeping low temperature non- fermented milk base material, fermented milk (set type yogurt) [comparative example 1] Manufactured. The manufacturing conditions of Comparative Example 1 were the same as those of Example 1 except for the presence or absence of holding at low temperature.
 すなわち,生乳:500g,脱脂粉乳:76g,生クリーム:23g,水道水:401gを混合して,原料乳(ヨーグルトミックス,無脂乳固形分(SNF):9.5重量%,乳脂肪分:3.0重量%)を調製し,95℃に5分間で加熱殺菌した後に,約10℃(8℃~12℃)に冷却した。そして,冷却後の原料乳に,乳酸菌スタータ(明治社製,明治ブルガリア ヨーグルトLB81から分離した乳酸菌)を2重量%で添加(接種)して,発酵乳基材(ヨーグルトベース)を得た。実験の再現性の確認のため,発酵乳基材を製造する作業を2回で行った。1回目と2回目の発酵乳基材のそれぞれについて,ブルガリア菌の菌数とサーモフィルス菌の菌数を測定した。 That is, raw milk: 500 g, skim milk powder: 76 g, fresh cream: 23 g, tap water: 401 g are mixed, and raw material milk (yogurt mix, nonfat milk solids (SNF): 9.5% by weight, milk fat content: 3.0 wt%) was prepared, sterilized by heating at 95 ° C. for 5 minutes, and then cooled to about 10 ° C. (8 ° C. to 12 ° C.). Then, lactic acid bacteria starter (lactic acid bacteria isolated from Meiji Bulgaria, yogurt LB81) was added (inoculated) at 2% by weight to the cooled raw material milk to obtain a fermented milk base (yogurt base). In order to confirm the reproducibility of the experiment, the work of producing the fermented milk base material was performed twice. For each of the first and second fermented milk bases, the number of Bulgarian bacteria and the number of Thermofilus bacteria were measured.
 1回目の発酵乳基材では,ブルガリア菌の菌数が0.6×10cfu/gであり,サーモフィルス菌の菌数が2.0×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.300であった。
 2回目の発酵乳基材では,ブルガリア菌の菌数が0.3×10cfu/gであり,サーモフィルス菌の菌数が2.2×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.136であった。
In the first fermented milk base, the number of Bulgarian bacteria was 0.6 × 10 7 cfu / g, and the number of Thermofilus was 2.0 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / thermofilus bacterium) was 0.300.
In the second fermented milk base, the number of Bulgarian bacteria was 0.3 × 10 7 cfu / g, and the number of Thermofilus was 2.2 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / thermofilus bacterium) was 0.136.
 乳酸菌スタータの添加後,すぐに,この発酵乳基材を40℃にまで加温してから,窒素ガス(N)を注入し,発酵乳基材の溶存酸素濃度(DO)を5ppmに低減した。その後,この発酵乳基材をカップ容器(容量:100g,プラスチック製)へ充填し,発酵室(40℃)に,乳酸酸度が0.8%に到達するまで,約3時間で静置してから,冷蔵室(10℃以下)で冷却して,発酵乳(セットタイプヨーグルト)[比較例1]を製造した。上記1回目の発酵乳基材と2回目の発酵乳基材を用いて,比較例1の発酵乳を製造する操作を2回で行った。1回目と2回目の実施例1のそれぞれについて,ブルガリア菌の菌数とサーモフィルス菌の菌数を測定した。 Immediately after adding the lactic acid bacteria starter, this fermented milk base is heated to 40 ° C., and then nitrogen gas (N 2 ) is injected to reduce the dissolved oxygen concentration (DO) of the fermented milk base to 5 ppm. did. After that, the fermented milk base material is filled into a cup container (capacity: 100 g, made of plastic) and left in the fermentation room (40 ° C.) for about 3 hours until the lactic acid acidity reaches 0.8%. And it cooled in the refrigerator compartment (10 degrees C or less), and fermented milk (set type yogurt) [comparative example 1] was manufactured. Using the first fermented milk base material and the second fermented milk base material, the operation for producing the fermented milk of Comparative Example 1 was performed twice. About each of Example 1 of the 1st time and the 2nd time, the number of bacteria of Bulgaria and the number of bacteria of Thermophilus were measured.
 1回目の比較例1(発酵乳)では,ブルガリア菌の菌数が16.5×10cfu/gであり,サーモフィルス菌の菌数が91.5×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.180であった。
 2回目の比較例1(発酵乳)では,ブルガリア菌の菌数が10.0×10cfu/gであり,サーモフィルス菌の菌数が86.0×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.116であった。
In the first comparative example 1 (fermented milk), the number of Bulgarian bacteria was 16.5 × 10 7 cfu / g, and the number of Thermofilus was 91.5 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.180.
In the second comparative example 1 (fermented milk), the number of Bulgarian bacteria was 10.0 × 10 7 cfu / g, and the number of Thermofilus was 86.0 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacteria / Thermophilus bacteria) was 0.116.
[発酵乳基材の菌数の比較]
 以下の表1は,実施例1で用いた発酵乳基材と比較例1で用いた発酵乳基材における,ブルガリア菌とサーモフィルス菌の菌数の対比を示している。
[Comparison of number of bacteria in fermented milk base]
Table 1 below shows the comparison of the numbers of Bulgarian bacteria and Thermophilus bacteria in the fermented milk base material used in Example 1 and the fermented milk base material used in Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[発酵乳の菌数の比較]
 以下の表2は,実施例1の発酵乳と比較例1の発酵乳における,ブルガリア菌とサーモフィルス菌の菌数の対比を示している。
[Comparison of number of bacteria in fermented milk]
Table 2 below shows the comparison of the numbers of Bulgarian bacteria and Thermophilus bacteria in the fermented milk of Example 1 and the fermented milk of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1において,発酵乳基材の菌数比(α)と発酵乳基材の菌数比(β)を比較すると,発酵乳基材の菌数比(β)が発酵乳基材の菌数比(α)よりも大きい数値となった(β>α)。1回目の実施例1では,β/αの値が,0.963÷0.067=14.373…となった。2回目の実施例1では,β/αの値が,0.882÷0.273=3.230…となった。 In Example 1, when the bacterial count ratio (α) of the fermented milk base material and the bacterial count ratio (β) of the fermented milk base material were compared, the bacterial count ratio (β) of the fermented milk base material was The numerical value was larger than the number ratio (α) (β> α). In Example 1 for the first time, the value of β / α was 0.963 ÷ 0.067 = 14.373. In Example 2 for the second time, the value of β / α was 0.882 ÷ 0.273 = 3.230.
<実施例2> 発酵乳基材の低温保持:有
 脱脂粉乳:124g,無塩バター:4,砂糖:54g,水道水:818gを混合して,原料乳(ヨーグルトミックス,無脂乳固形分(SNF):9.5重量%,乳脂肪分:3.0重量%)を調製し,95℃に5分間で加熱殺菌した後に,約10℃(8℃~12℃)に冷却した。冷却後の原料乳に,乳酸菌スタータ(明治社製,明治ヨーグルトR-1から分離した乳酸菌)を2重量%で添加(接種)して,発酵乳基材(ヨーグルトベース)を得た。実験の再現性の確認のため,発酵乳基材を製造する操作を2回で行った。1回目と2回目の発酵乳基材のそれぞれについて,ブルガリア菌の菌数とサーモフィルス菌の菌数を測定した。
<Example 2> Low temperature retention of fermented milk base material: skim milk powder: 124 g, unsalted butter: 4, sugar: 54 g, tap water: 818 g are mixed, and raw milk (yogurt mix, non-fat milk solids ( SNF): 9.5% by weight, milk fat content: 3.0% by weight), sterilized by heating at 95 ° C. for 5 minutes, and then cooled to about 10 ° C. (8 ° C. to 12 ° C.). Lactic acid bacteria starter (produced by Meiji Co., Ltd., lactic acid bacteria separated from Meiji Yogurt R-1) was added (inoculated) at 2% by weight to the cooled raw material milk to obtain a fermented milk base material (yogurt base). In order to confirm the reproducibility of the experiment, the operation for producing the fermented milk base material was performed twice. For each of the first and second fermented milk bases, the number of Bulgarian bacteria and the number of Thermofilus bacteria were measured.
 1回目の発酵乳基材では,ブルガリア菌の菌数が0.4×10cfu/gであり,サーモフィルス菌の菌数が1.1×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.364であった。
 2回目の発酵乳基材では,ブルガリア菌の菌数が0.3×10cfu/gであり,サーモフィルス菌の菌数が1.1×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.273であった。
In the first fermented milk base, the number of Bulgarian bacteria was 0.4 × 10 7 cfu / g, and the number of Thermofilus was 1.1 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.364.
In the second fermented milk base, the number of Bulgarian bacteria was 0.3 × 10 7 cfu / g, and the number of Thermofilus was 1.1 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / thermofilus bacterium) was 0.273.
 そして,この発酵乳基材を,5~10℃に,2日間(48時間)で低温保持した。また,発酵乳基材を低温保持している間,発酵乳基材に対して窒素ガス(N)を注入して嫌気状態とした。その後,発酵乳基材を38℃にまで加温してから,窒素(N)を注入し,発酵乳基材の溶存酸素濃度(DO)を3ppmに低減した後に,小型のバット(容量:2kg,ステンレス製)へ充填し,発酵室(38℃)に,乳酸酸度が0.8%に到達するまで,約4時間で静置してから,発酵乳のカードを破砕した。その後,得られた発酵乳をカップ容器(容量:100g,プラスチック製)へ充填し,冷蔵室(10℃以下)で冷却して,発酵乳(ソフトタイプヨーグルト)[実施例2]を製造した。上記1回目の発酵乳基材と2回目の発酵乳基材を用いて,実施例2の発酵乳を製造する操作を2回で行った。1回目と2回目の実施例2のそれぞれについて,ブルガリア菌の菌数とサーモフィルス菌の菌数を測定した。 The fermented milk base was kept at a low temperature at 5 to 10 ° C. for 2 days (48 hours). Further, while keeping the fermented milk base material at a low temperature, nitrogen gas (N 2 ) was injected into the fermented milk base material to make it anaerobic. Then, after warming the fermented milk base material to 38 ° C., nitrogen (N 2 ) was injected, and the dissolved oxygen concentration (DO) of the fermented milk base material was reduced to 3 ppm. 2 kg, made of stainless steel), left in the fermentation chamber (38 ° C.) for about 4 hours until the lactic acid acidity reached 0.8%, and then the curd of fermented milk was crushed. Then, the obtained fermented milk was filled into a cup container (capacity: 100 g, made of plastic) and cooled in a refrigerator (10 ° C. or lower) to produce fermented milk (soft type yogurt) [Example 2]. The operation for producing the fermented milk of Example 2 was performed twice using the first fermented milk base material and the second fermented milk base material. About each of Example 2 of the 1st time and the 2nd time, the number of bacteria of Bulgaria and the number of bacteria of Thermophilus were measured.
 1回目の実施例2(発酵乳)では,ブルガリア菌の菌数が43.0×10cfu/gであり,サーモフィルス菌の菌数が51.0×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.843であった。
 2回目の実施例2(発酵乳)では,ブルガリア菌の菌数が41.0×10cfu/gであり,サーモフィルス菌の菌数が46.5×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.882であった。
In Example 2 (fermented milk) for the first time, the number of Bulgarian bacteria was 43.0 × 10 7 cfu / g, and the number of Thermofilus was 51.0 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacteria / Thermophilus bacteria) was 0.843.
In the second example 2 (fermented milk), the number of Bulgarian bacteria was 41.0 × 10 7 cfu / g, and the number of Thermofilus was 46.5 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.882.
<比較例2> 発酵乳基材の低温保持:無
 発酵乳基材を低温保持することの効果を確認するために,低温保持せずに,発酵乳(ソフトタイプヨーグルト)[比較例2]を製造した。低温保持の有無以外について,比較例2の製造条件は,上記実施例2と同じ条件とした。
<Comparative example 2> Low temperature maintenance of fermented milk base material : In order to confirm the effect of keeping low temperature non- fermented milk base material, fermented milk (soft type yogurt) [comparative example 2] Manufactured. The manufacturing conditions of Comparative Example 2 were the same as those of Example 2 except for the presence or absence of holding at low temperature.
 すなわち,脱脂粉乳:124g,無塩バター:4,砂糖:54g,水道水:818gを混合して,原料乳(ヨーグルトミックス,無脂乳固形分(SNF):9.5重量%,乳脂肪分:3.0重量%)を調製し,95℃に5分間で加熱殺菌した後に,約10℃(8℃~12℃)に冷却した。冷却後の原料乳に,乳酸菌スタータ(明治社製,明治ヨーグルトR-1から分離した乳酸菌)を2重量%で添加(接種)して,発酵乳基材(ヨーグルトベース)を得た。実験の再現性の確認のため,発酵乳基材を製造する操作を2回で行った。1回目と2回目の発酵乳基材のそれぞれについて,ブルガリア菌の菌数とサーモフィルス菌の菌数を測定した。 That is, skim milk powder: 124 g, unsalted butter: 4, sugar: 54 g, tap water: 818 g are mixed, and raw milk (yogurt mix, nonfat milk solids (SNF): 9.5% by weight, milk fat content) : 3.0 wt%) was prepared, sterilized by heating at 95 ° C for 5 minutes, and then cooled to about 10 ° C (8 ° C to 12 ° C). Lactic acid bacteria starter (produced by Meiji Co., Ltd., lactic acid bacteria separated from Meiji Yogurt R-1) was added (inoculated) at 2% by weight to the cooled raw material milk to obtain a fermented milk base material (yogurt base). In order to confirm the reproducibility of the experiment, the operation for producing the fermented milk base material was performed twice. For each of the first and second fermented milk bases, the number of Bulgarian bacteria and the number of Thermofilus bacteria were measured.
 1回目の発酵乳基材では,ブルガリア菌の菌数が0.2×10cfu/gであり,サーモフィルス菌の菌数が0.7×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.286であった。
 2回目の発酵乳基材では,ブルガリア菌の菌数が0.3×10cfu/gであり,サーモフィルス菌の菌数が1.3×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.231であった。
In the first fermented milk base, the number of Bulgarian bacteria was 0.2 × 10 7 cfu / g, and the number of Thermofilus was 0.7 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.286.
In the second fermented milk base, the number of Bulgarian bacteria was 0.3 × 10 7 cfu / g, and the number of Thermophilus was 1.3 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.231.
 乳酸菌スタータの添加後,すぐに,発酵乳基材を38℃にまで加温してから,窒素(N)を注入し,発酵乳基材の溶存酸素濃度(DO)を3ppmに低減した後に,小型のバット(容量:2kg,ステンレス製)へ充填し,発酵室(38℃)に,乳酸酸度が0.8%に到達するまで,約4時間で静置してから,発酵乳のカードを破砕した。その後,得られた発酵乳をカップ容器(容量:100g,プラスチック製)へ充填し,冷蔵室(10℃以下)で冷却して,発酵乳(ソフトタイプヨーグルト)[比較例2]を製造した。上記1回目の発酵乳基材と2回目の発酵乳基材を用いて,比較例2の発酵乳を製造する操作を2回で行った。1回目と2回目の実施例2のそれぞれについて,ブルガリア菌の菌数とサーモフィルス菌の菌数を測定した。 Immediately after the addition of the lactic acid bacteria starter, the fermented milk base material was heated to 38 ° C., and then nitrogen (N 2 ) was injected to reduce the dissolved oxygen concentration (DO) of the fermented milk base material to 3 ppm. , Packed in a small vat (capacity: 2 kg, made of stainless steel), left in the fermentation chamber (38 ° C) for about 4 hours until the lactic acid acidity reached 0.8%, and then the fermented milk card Was crushed. Then, the obtained fermented milk was filled into a cup container (capacity: 100 g, made of plastic) and cooled in a refrigerator (10 ° C. or lower) to produce fermented milk (soft type yogurt) [Comparative Example 2]. The operation for producing the fermented milk of Comparative Example 2 was performed twice using the first fermented milk base material and the second fermented milk base material. About each of Example 2 of the 1st time and the 2nd time, the number of bacteria of Bulgaria and the number of bacteria of Thermophilus were measured.
 1回目の比較例2(発酵乳)では,ブルガリア菌の菌数が28.0×10cfu/gであり,サーモフィルス菌の菌数が73.5×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.381であった。
 2回目の比較例2(発酵乳)では,ブルガリア菌の菌数が21.5×10cfu/gであり,サーモフィルス菌の菌数が111.5×10cfu/gであった。そして,この菌数比(ブルガリア菌/サーモフィルス菌)は,0.193であった。
In the first comparative example 2 (fermented milk), the number of Bulgarian bacteria was 28.0 × 10 7 cfu / g, and the number of Thermofilus was 73.5 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.381.
In the second comparative example 2 (fermented milk), the number of Bulgarian bacteria was 21.5 × 10 7 cfu / g, and the number of Thermofilus was 111.5 × 10 7 cfu / g. And this bacteria count ratio (Bulgaria bacterium / Thermophilus bacterium) was 0.193.
[発酵乳基材の菌数の比較]
 以下の表3は,実施例2で用いた発酵乳基材と比較例2で用いた発酵乳基材における,ブルガリア菌とサーモフィルス菌の菌数の対比を示している。
[Comparison of number of bacteria in fermented milk base]
Table 3 below shows the comparison of the numbers of Bulgarian bacteria and Thermophilus bacteria in the fermented milk base material used in Example 2 and the fermented milk base material used in Comparative Example 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[発酵乳の菌数の比較]
 以下の表4は,実施例2の発酵乳と比較例2の発酵乳における,ブルガリア菌とサーモフィルス菌の菌数の対比を示している。
[Comparison of number of bacteria in fermented milk]
Table 4 below shows the comparison of the numbers of Bulgarian bacteria and Thermophilus bacteria in the fermented milk of Example 2 and the fermented milk of Comparative Example 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例2において,発酵乳基材の菌数比(α)と発酵乳基材の菌数比(β)を比較すると,発酵乳基材の菌数比(β)が発酵乳基材の菌数比(α)よりも大きい数値となった(β>α)。1回目の実施例2では,β/αの値が,0.843÷0.364=2.315…となった。2回目の実施例2では,β/αの値が,0.882÷0.273=3.230…となった。 In Example 2, when the bacterial count ratio (α) of the fermented milk base and the bacterial count ratio (β) of the fermented milk base are compared, the bacterial count ratio (β) of the fermented milk base is The numerical value was larger than the number ratio (α) (β> α). In Example 2 for the first time, the value of β / α was 0.843 ÷ 0.364 = 2.315. In the second example 2, the value of β / α was 0.882 ÷ 0.273 = 3.230.
[発酵乳の多糖体の濃度の比較]
 以下の表5は,実施例2の発酵乳に含まれる多糖体の濃度(産生量)と,比較例2の発酵乳に含まれる多糖体の濃度(産生量)の対比を示している。
Figure JPOXMLDOC01-appb-T000005
[Comparison of polysaccharide concentration in fermented milk]
Table 5 below shows a comparison between the concentration (production amount) of the polysaccharide contained in the fermented milk of Example 2 and the concentration (production amount) of the polysaccharide contained in the fermented milk of Comparative Example 2.
Figure JPOXMLDOC01-appb-T000005
 上記の表5に示されるように,実施例2の発酵乳では,比較例2の発酵乳よりも,多糖体の濃度が高くなっていた。この結果は,表4に示されるように,実施例2の発酵乳では,比較例2の発酵乳よりも,ブルガリア菌の菌数が多いことに起因するものであると考えられる。 As shown in Table 5 above, the fermented milk of Example 2 had a higher polysaccharide concentration than the fermented milk of Comparative Example 2. As shown in Table 4, this result is considered to be due to the fact that the fermented milk of Example 2 has a larger number of Bulgarian bacteria than the fermented milk of Comparative Example 2.
 なお,発酵乳に含まれる多糖体の濃度を測定する際には,100gの発酵乳から多糖体を分離し,この菌体外の多糖体をフェノール-硫酸法により定量した。なお,発酵乳から多糖体を分離する方法には,以下の工程a)~d)を行なった。
  a)トリクロロ酢酸を用いて,除タンパクする。
  b)エタノール沈殿法により,多糖体を沈澱させる。
  c)透析膜を用いて,前記の多糖体の水溶液を透析する。
  d)高分子側の水溶液を得る。
 ただし,除タンパクや,エタノール沈殿法,透析などの工程では,乳酸菌,培養液,培養条件などに応じて,その操作条件などを適宜調整して行うことができる。
When measuring the concentration of the polysaccharide contained in the fermented milk, the polysaccharide was separated from 100 g of fermented milk, and the polysaccharide outside the cell was quantified by the phenol-sulfuric acid method. The following steps a) to d) were carried out as a method for separating polysaccharides from fermented milk.
a) Deproteinization using trichloroacetic acid.
b) The polysaccharide is precipitated by ethanol precipitation.
c) Dialyze the polysaccharide aqueous solution using a dialysis membrane.
d) An aqueous solution on the polymer side is obtained.
However, in the steps such as deproteinization, ethanol precipitation, and dialysis, the operating conditions can be appropriately adjusted according to the lactic acid bacteria, the culture solution, the culture conditions, and the like.
 上記の表1~表4に示されるとおり,発酵前の発酵乳基材に低温保持処理を行った実施例1及び2では,発酵前の発酵乳基材に低温保持処理を行わなかった比較例1及び2と比較して,いずれも,ブルガリア菌の菌数が多くなり,サーモフィルス菌の菌数が少なくなった。このことから,発酵前に発酵乳基材を,発酵促進温度(例えば,30℃~40℃)よりも低温(例えば,15℃以下)で保持することにより,ブルガリア菌の増殖が促進されて,サーモフィルス菌の増殖が抑制されることが確認された。一方,上記表5に示されるとおり,発酵前の発酵乳基材に低温保持処理を行った実施例2では,発酵前の発酵乳基材に低温保持処理を行わなかった比較例2と比較して,発酵乳に含まれる多糖体の総量が多くなった。このことから,発酵前に発酵乳基材を,発酵促進温度よりも低温で保持してから発酵させることにより,ブルガリア菌に由来する多糖体を多く含む発酵乳を製造できることが確認された。 As shown in Tables 1 to 4 above, in Examples 1 and 2 in which the fermented milk base material before fermentation was subjected to a low temperature holding treatment, Comparative Examples in which the fermented milk base material before fermentation was not subjected to the low temperature holding treatment Compared with 1 and 2, the number of Bulgarian bacteria increased, and the number of Thermofilus bacteria decreased. From this fact, by maintaining the fermented milk base material at a lower temperature (for example, 15 ° C. or less) than the fermentation promoting temperature (for example, 30 ° C. to 40 ° C.) before fermentation, the growth of Bulgarian bacteria is promoted, It was confirmed that the growth of Thermophilus was suppressed. On the other hand, as shown in Table 5 above, Example 2 in which the fermented milk base material before fermentation was subjected to the low-temperature holding treatment was compared with Comparative Example 2 in which the fermented milk base material prior to fermentation was not subjected to the low-temperature holding treatment. As a result, the total amount of polysaccharides contained in fermented milk increased. From this, it was confirmed that fermented milk containing a large amount of polysaccharides derived from Bulgaria bacteria can be produced by fermenting the fermented milk base material at a temperature lower than the fermentation promoting temperature before fermentation.
 本発明は,ヨーグルトなどの発酵乳の製造方法に関する。従って,本発明は,ヨーグルトなどの発酵乳の製造業において好適に利用しうる。 The present invention relates to a method for producing fermented milk such as yogurt. Therefore, the present invention can be suitably used in the manufacturing industry of fermented milk such as yogurt.

Claims (11)

  1.  原料乳を殺菌する殺菌工程と,
     前記殺菌工程後の前記原料乳を,冷却する冷却工程と,
     前記冷却工程中又は前記冷却工程後の前記原料乳に,ブルガリア菌及びサーモフィルス菌を含む乳酸菌スタータを添加して,発酵乳基材を得るスタータ添加工程と,
     前記スタータ添加工程後の前記発酵乳基材を,発酵促進温度よりも低温で保持する低温保持工程と,
     前記低温保持工程後の前記発酵乳基材を,前記発酵促進温度まで加温する加温工程と,
     前記加温工程後の前記発酵乳基材を発酵させて,発酵乳を得る発酵工程と,を含む
     発酵乳の製造方法。
    A sterilization process to sterilize raw milk;
    A cooling step for cooling the raw milk after the sterilization step;
    A starter addition step of obtaining a fermented milk base material by adding a lactic acid bacteria starter containing Bulgaria bacteria and Thermophilus bacteria to the raw milk during the cooling step or after the cooling step;
    A low temperature holding step for holding the fermented milk base material after the starter addition step at a temperature lower than the fermentation promoting temperature;
    A heating step of heating the fermented milk base material after the low-temperature holding step to the fermentation acceleration temperature;
    Fermenting the fermented milk base material after the heating step to obtain fermented milk. A method for producing fermented milk.
  2.  前記冷却工程は,前記原料乳を,15℃以下まで冷却する工程であり,
     前記低温保持工程は,前記発酵乳基材を,15℃以下で1日以上保持する工程である
     請求項1に記載の発酵乳の製造方法。
    The cooling step is a step of cooling the raw milk to 15 ° C. or less,
    The method for producing fermented milk according to claim 1, wherein the low temperature holding step is a step of holding the fermented milk base material at 15 ° C. or lower for 1 day or longer.
  3.  前記加温工程は,前記発酵乳基材を,30℃以上50℃以下の発酵促進温度まで加温する工程である
     請求項1に記載の発酵乳の製造方法。
    The method for producing fermented milk according to claim 1, wherein the heating step is a step of heating the fermented milk base material to a fermentation acceleration temperature of 30 ° C. or higher and 50 ° C. or lower.
  4.  少なくとも前記低温保持工程において,前記発酵乳基材に不活性ガスを注入して嫌気状態とする嫌気工程をさらに含む
     請求項1に記載の発酵乳の製造方法。
    The method for producing fermented milk according to claim 1, further comprising an anaerobic process in which an inert gas is injected into the fermented milk base material to an anaerobic state at least in the low temperature holding process.
  5.  前記低温保持工程前の前記発酵乳基材に含まれる前記サーモフィルス菌の菌数に対する前記ブルガリア菌の菌数の比率の数値をαとし,
     前記発酵乳に含まれる前記サーモフィルス菌の菌数に対する前記ブルガリア菌の菌数の比率の数値をβとしたときに,
     β/αの数値が,1.1以上である
     請求項1に記載の発酵乳の製造方法。
    The numerical value of the ratio of the number of Bulgarian bacteria to the number of the Thermophilus bacteria contained in the fermented milk base material before the low-temperature holding step is α,
    When the numerical value of the ratio of the number of Bulgarian bacteria to the number of the Thermophilus bacteria contained in the fermented milk is β,
    The method for producing fermented milk according to claim 1, wherein the numerical value of β / α is 1.1 or more.
  6.  前記低温保持工程前の前記発酵乳基材は,前記サーモフィルス菌の菌数に対する前記ブルガリア菌の菌数の比率が,0.01以上0.5以下であり,
     前記発酵乳は,前記サーモフィルス菌の菌数に対する前記ブルガリア菌の菌数の比率が,0.6以上である
     請求項1に記載の発酵乳の製造方法。
    The fermented milk base material before the low-temperature holding step has a ratio of the number of Bulgarian bacteria to the number of the Thermophilus bacteria of 0.01 or more and 0.5 or less,
    The method for producing fermented milk according to claim 1, wherein the fermented milk has a ratio of the number of Bulgarian bacteria to the number of the thermophilus bacteria of 0.6 or more.
  7.  乳酸菌の増殖促進剤を添加しない
     請求項1に記載の発酵乳の製造方法。
    The method for producing fermented milk according to claim 1, wherein a growth promoter for lactic acid bacteria is not added.
  8.  前記発酵工程は,前記発酵乳基材を容器に充填した後に発酵させて,発酵乳を得る工程である
     請求項1に記載の発酵乳の製造方法。
    The method for producing fermented milk according to claim 1, wherein the fermentation step is a step of obtaining fermented milk by filling the fermented milk base material into a container and then fermenting the fermented milk base material.
  9.  原料乳にブルガリア菌及びサーモフィルス菌を含む乳酸菌スタータを添加した発酵乳基材を,発酵させることにより得られる発酵乳であって,
     前記発酵乳基材に含まれる前記サーモフィルス菌の菌数に対する前記ブルガリア菌の菌数の比率の数値をαとし,
     前記発酵乳に含まれる前記サーモフィルス菌の菌数に対する前記ブルガリア菌の菌数の比率の数値をβとしたときに,
     β/αの数値が,1.1以上である
     発酵乳。
    Fermented milk obtained by fermenting a fermented milk base material in which lactic acid bacteria starter containing Bulgarian bacteria and Thermophilus bacteria is added to raw milk,
    The numerical value of the ratio of the number of Bulgarian bacteria to the number of the Thermophilus bacteria contained in the fermented milk base material is α,
    When the numerical value of the ratio of the number of Bulgarian bacteria to the number of the Thermophilus bacteria contained in the fermented milk is β,
    Fermented milk with a β / α value of 1.1 or more.
  10.  乳酸酸度が0.9%以下である
     請求項9に記載の発酵乳。
    The fermented milk according to claim 9, wherein the lactic acid acidity is 0.9% or less.
  11.  多糖体の濃度が5mg/100g以上である
     請求項9に記載の発酵乳。
    The fermented milk of Claim 9. The density | concentration of a polysaccharide is 5 mg / 100g or more.
PCT/JP2015/069820 2014-07-14 2015-07-10 Fermented milk having enhanced lactobacillus bulgaricus growth and method for producing same WO2016009950A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580025611.4A CN106535645A (en) 2014-07-14 2015-07-10 Fermented milk having enhanced lactobacillus bulgaricus growth and method for producing same
SG11201610705QA SG11201610705QA (en) 2014-07-14 2015-07-10 Fermented milk having enhanced lactobacillus bulgaricus growth and method for producing same
JP2016534402A JP6641275B2 (en) 2014-07-14 2015-07-10 Fermented milk with enhanced growth of Bulgarian bacteria and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-143885 2014-07-14
JP2014143885 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016009950A1 true WO2016009950A1 (en) 2016-01-21

Family

ID=55078444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069820 WO2016009950A1 (en) 2014-07-14 2015-07-10 Fermented milk having enhanced lactobacillus bulgaricus growth and method for producing same

Country Status (5)

Country Link
JP (1) JP6641275B2 (en)
CN (1) CN106535645A (en)
SG (1) SG11201610705QA (en)
TW (1) TWI580359B (en)
WO (1) WO2016009950A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181455A1 (en) * 2017-03-29 2018-10-04 株式会社明治 Methods for producing lactobacillus starter and yoghurt

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396948B2 (en) * 2016-06-16 2018-09-26 株式会社明治 Streptococcus thermophilus fermentation promoter
KR102404714B1 (en) * 2019-08-28 2022-06-07 주식회사 요즘 Manufacturing method of greek yogurt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263044A (en) * 1987-04-22 1988-10-31 Snow Brand Milk Prod Co Ltd Preparation of low alcohol-containing carbonated fermented milk
JP2008289413A (en) * 2007-05-24 2008-12-04 Meiji Milk Prod Co Ltd Method for producing cheese
WO2014084340A1 (en) * 2012-11-29 2014-06-05 株式会社 明治 Yogurt and production method therefor, production method for extracellular functional product of lactic acid bacteria, and production-increasing agent for extracellular functional product of lactic acid bacteria

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263044A (en) * 1987-04-22 1988-10-31 Snow Brand Milk Prod Co Ltd Preparation of low alcohol-containing carbonated fermented milk
JP2008289413A (en) * 2007-05-24 2008-12-04 Meiji Milk Prod Co Ltd Method for producing cheese
WO2014084340A1 (en) * 2012-11-29 2014-06-05 株式会社 明治 Yogurt and production method therefor, production method for extracellular functional product of lactic acid bacteria, and production-increasing agent for extracellular functional product of lactic acid bacteria

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MURAMALLA T. ET AL.: "Some low homogenization pressures improve certain probiotic characteristics of yogurt culture bacteria and Lactobacillus acidophilus LA-K 1", JOURNAL OF DAIRY SCIENCE, vol. 94, no. 8, 2011, pages 3725 - 3738, XP055252301, ISSN: 0022-0302 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181455A1 (en) * 2017-03-29 2018-10-04 株式会社明治 Methods for producing lactobacillus starter and yoghurt

Also Published As

Publication number Publication date
TW201601635A (en) 2016-01-16
CN106535645A (en) 2017-03-22
JP6641275B2 (en) 2020-02-05
TWI580359B (en) 2017-05-01
SG11201610705QA (en) 2017-01-27
JPWO2016009950A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6656191B2 (en) Fermented milk with improved flavor and method for producing the same
CN105247039B (en) Fermented milk with suppressed increase in acidity and method for producing same
JP6110301B2 (en) Low calorie fermented milk and method for producing the same
SG189311A1 (en) Method for manufacturing liquid fermented milk
JP7046492B2 (en) Method for producing low-sour fermented milk
EP1929875B1 (en) Process for producing fermented milk and fermented milk
JP6641275B2 (en) Fermented milk with enhanced growth of Bulgarian bacteria and method for producing the same
WO2016009951A1 (en) Fermented milk having enhanced lactobacillus bulgaricus growth and method for producing same
JP2018134023A (en) Low-acid fermented milk production method
US20200045985A1 (en) Choline ester-containing composition for oral ingestion
JP7232177B2 (en) Method for producing lactic acid bacteria starter and fermented milk
JP7085303B2 (en) Fermented milk production method
JP6901837B2 (en) Method of producing fermented milk using pasteurized raw material mix
JP7385984B2 (en) High pH production method for fermented milk and fermented milk produced by the method
JP7471046B2 (en) Method for producing fermented milk by low-temperature fermentation and fermented milk produced by said method
JP2018038357A (en) Method for producing fermented milk
CN116076568A (en) Fermented milk with long shelf life and processing method thereof
WO2018056455A1 (en) Method for producing fermented milk using raw material mix containing material sterilized at ultra-high temperature
JP2018038356A (en) Method of producing bulk starter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822276

Country of ref document: EP

Kind code of ref document: A1