JPWO2009028261A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JPWO2009028261A1
JPWO2009028261A1 JP2009530016A JP2009530016A JPWO2009028261A1 JP WO2009028261 A1 JPWO2009028261 A1 JP WO2009028261A1 JP 2009530016 A JP2009530016 A JP 2009530016A JP 2009530016 A JP2009530016 A JP 2009530016A JP WO2009028261 A1 JPWO2009028261 A1 JP WO2009028261A1
Authority
JP
Japan
Prior art keywords
oil
pressure
refrigerant
rotary compressor
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009530016A
Other languages
Japanese (ja)
Other versions
JP5300727B2 (en
Inventor
哲英 横山
哲英 横山
利秀 幸田
利秀 幸田
関屋 慎
慎 関屋
佐々木 圭
圭 佐々木
英明 前山
英明 前山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009530016A priority Critical patent/JP5300727B2/en
Publication of JPWO2009028261A1 publication Critical patent/JPWO2009028261A1/en
Application granted granted Critical
Publication of JP5300727B2 publication Critical patent/JP5300727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0872Vane tracking; control therefor by fluid means the fluid being other than the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation

Abstract

摺動部の潤滑およびシール性能を確保し、高圧側貯油量を低減した自然冷媒低圧シェル型ロータリ圧縮機を得るために、ロータリ圧縮機は、低圧密閉容器内に設けられ、ベーンを有するロータリ型の冷媒圧縮機構と、冷媒から潤滑油を分離する油分離要素と、分離された潤滑油を、圧縮機構のベーン背圧室ならびにクランク軸、軸受、シリンダ、ピストンおよびベーン間の給油隙間に供給する給油経路とを備えている。ベーン飛びを抑え、摺動部の潤滑確保、摺動部のシール性能確保および高圧側に貯蔵する油量の低減を同時に満たし、高信頼性、低コスト、高性能、少冷媒量となる。In order to obtain a natural refrigerant low-pressure shell-type rotary compressor that secures lubrication and sealing performance of the sliding portion and reduces the amount of oil stored on the high-pressure side, the rotary compressor is provided in a low-pressure hermetic container and has a vane. The refrigerant compression mechanism, the oil separation element that separates the lubricating oil from the refrigerant, and the separated lubricating oil are supplied to the vane back pressure chamber of the compression mechanism and the oil supply gap between the crankshaft, the bearing, the cylinder, the piston, and the vane. And an oil supply path. The vane fly is suppressed, and the lubrication of the sliding portion, the sealing performance of the sliding portion, and the reduction of the amount of oil stored on the high pressure side are satisfied at the same time, resulting in high reliability, low cost, high performance, and a small amount of refrigerant.

Description

本発明はロータリ圧縮機に関し、特に自然冷媒低圧シェル型のロータリ圧縮機に関するものである。   The present invention relates to a rotary compressor, and more particularly to a natural refrigerant low-pressure shell type rotary compressor.

ロータリ圧縮機は、小型化が可能なこと、また、構造が簡単であることから、冷凍冷蔵庫、空調機、ヒートポンプ式給湯機等に広く用いられている(非特許文献1参照)。近年、地球温暖化防止を図る観点から、フロンに代わる新たな冷媒として、オゾン層破壊係数がゼロで地球温暖化係数の小さな自然冷媒が注目されており、特に、毒性がなくて不燃性の二酸化炭素(CO2)冷媒と、可燃性であるが冷媒特性に優れた炭化水素(HC)冷媒が期待されている。表1には、フロン冷媒(R22、R410A)とHC冷媒(イソブタン、プロパン)、CO2冷媒を用いたロータリ圧縮機の運転条件を比較表として示し、Ashrae−T条件基準(凝縮温度(CT)/蒸発温度(ET)=54.4/7.2[℃]℃]、サブクール/スーパ−ヒート=8.3/27.8[K])から圧縮機吸入温度(Ts)=35℃、膨張弁前温度(Texp)=46.1℃の条件での圧縮機の運転条件を示す。Rotary compressors are widely used in refrigerators, air conditioners, heat pump water heaters, and the like because they can be miniaturized and have a simple structure (see Non-Patent Document 1). In recent years, from the viewpoint of preventing global warming, natural refrigerants with a low ozone depletion coefficient and a small global warming coefficient have attracted attention as new refrigerants that can replace CFCs. Carbon (CO 2 ) refrigerants and hydrocarbon (HC) refrigerants that are flammable but have excellent refrigerant characteristics are expected. Table 1 shows, as a comparison table, operating conditions of a rotary compressor using chlorofluorocarbon refrigerants (R22, R410A), HC refrigerants (isobutane, propane), and CO 2 refrigerant, and is based on the Ashrae-T condition standard (condensation temperature (CT)). / Evaporation temperature (ET) = 54.4 / 7.2 [° C.] ° C., subcool / super-heat = 8.3 / 27.8 [K]) to compressor suction temperature (Ts) = 35 ° C., expansion The operating conditions of the compressor under the condition of the temperature before the valve (Texp) = 46.1 ° C. are shown.

図1の表1のようにフロン冷媒を用いた圧縮機に比べて、CO2冷媒を用いた圧縮機は動作圧力が高い。例えば、ヒートポンプ式給湯機の吸入圧力(Ps)は4MPa、吐出圧力(Pd)は10MPa程度である。そのため、従来のロータリ圧縮機ではシリンダ内で偏心回転する回転ピストンに圧接してシリンダ内を吸入室(低圧)と圧縮室(低圧から高圧)に仕切っているベーンに大きな押しつけ荷重がかかる問題があった。また、高圧シェル型圧縮機の密閉容器は吐出圧力(Ps)に耐えうる強度が必要なため、肉厚が増して重量とコストが上昇する問題があった。その解決策として、低圧シェル型二段ロータリ圧縮機で、高圧冷媒を油分離器で分離した油をベーン背圧室に導入する発明が提案されている(例えば特許文献1参照)。As shown in Table 1 of FIG. 1, the operating pressure of the compressor using the CO 2 refrigerant is higher than that of the compressor using the CFC refrigerant. For example, the suction pressure (Ps) of the heat pump water heater is about 4 MPa and the discharge pressure (Pd) is about 10 MPa. For this reason, the conventional rotary compressor has a problem that a large pressing load is applied to the vane that is in pressure contact with the rotating piston that rotates eccentrically in the cylinder and partitions the cylinder into a suction chamber (low pressure) and a compression chamber (low pressure to high pressure). It was. Further, since the sealed container of the high-pressure shell type compressor needs to have strength capable of withstanding the discharge pressure (Ps), there is a problem that the thickness and the weight and cost increase. As a solution, an invention has been proposed in which oil obtained by separating a high-pressure refrigerant with an oil separator is introduced into a vane back pressure chamber in a low-pressure shell-type two-stage rotary compressor (see, for example, Patent Document 1).

ロータリ圧縮機を低圧シェル化するためには大きな課題が3つあり、(1)ベーン飛びを抑えること、(2)摺動部の潤滑性能の確保、(3)漏れシール性能の確保が必要である。   There are three major issues to make a rotary compressor into a low-pressure shell: (1) to suppress vane jumping, (2) to ensure sliding section lubrication performance, and (3) to ensure leakage seal performance. is there.

特許文献1記載の発明により課題(1)は解決したが、低圧の密閉容器内の潤滑油を圧縮機構部に給油する構造のため課題(2)と(3)は未解決であった。   Although the problem (1) has been solved by the invention described in Patent Document 1, the problems (2) and (3) have not been solved because of the structure in which the lubricating oil in the low-pressure sealed container is supplied to the compression mechanism.

一方、炭化水素は摺動部潤滑性能、漏れシール性能、理論冷凍サイクルCOPの観点からフロン冷媒と同等の冷媒特性を備えており、しかも従来のフロン冷媒と同等圧力で動作可能である。既にイソブタンを用いた冷凍冷蔵庫が量産されているが、可燃性冷媒の危険性から、国際規格で冷媒許容充填量が制限されている(非特許文献2参照)。例えば、IEC規格によると、家庭用エアコンに充填できる炭化水素冷媒量は約150kg以内となる。   On the other hand, hydrocarbons have refrigerant characteristics equivalent to those of chlorofluorocarbon refrigerants from the viewpoint of sliding portion lubrication performance, leakage seal performance, and theoretical refrigeration cycle COP, and can operate at the same pressure as conventional chlorofluorocarbon refrigerants. Refrigerated refrigerators using isobutane have already been mass-produced, but due to the danger of flammable refrigerants, the allowable refrigerant filling amount is limited by international standards (see Non-Patent Document 2). For example, according to the IEC standard, the amount of hydrocarbon refrigerant that can be charged into a home air conditioner is within about 150 kg.

この解決手段としても密閉容器の低圧シェル化は有効であり、密閉容器内の冷媒と貯蔵した潤滑油の運転時の圧力を低く抑えて、潤滑油に溶け込んだ冷媒量と溶け込まない冷媒量をともに低減することができる。   As a solution to this problem, the use of a low-pressure shell in the sealed container is effective, and the pressure during operation of the refrigerant in the sealed container and the stored lubricating oil is kept low, so that both the amount of refrigerant dissolved in the lubricating oil and the amount of refrigerant not dissolved Can be reduced.

特許文献2には、密閉容器内に圧縮機構部を備え、該圧縮機構部にて圧縮された冷媒を冷媒吐出管により密閉容器外に吐出するロータリ圧縮機において、冷媒吐出管に接続された油分離器、油分離器の油戻し管を密閉容器内に連通させる構造が開示されている。この提案においては、高圧の油分離器側に貯まる油量を調整する手段を備えていないため、高圧側油量が増加しすぎると潤滑油に溶解する冷媒量が増えるので、冷媒を所定より多めに充填しなければならないので冷媒封入量を低減する効果が得られない可能性がある。一方、高圧側油量が減少しすぎると、高圧の冷媒を低圧側に戻すことになり、性能が急激に低下することが危惧される。以上より低圧シェル型圧縮機においてHC冷媒充填量を低減するためには課題として、(4)高圧側に貯蔵する油量を適量に調整する手段が必要である。   Patent Document 2 discloses an oil connected to a refrigerant discharge pipe in a rotary compressor that includes a compression mechanism section in a sealed container and discharges the refrigerant compressed by the compression mechanism section to the outside of the sealed container by a refrigerant discharge pipe. The structure which makes the oil return pipe | tube of a separator and an oil separator communicate in an airtight container is disclosed. In this proposal, since there is no means for adjusting the amount of oil stored on the high pressure oil separator side, the amount of refrigerant dissolved in the lubricating oil increases if the amount of oil on the high pressure side increases too much. Therefore, there is a possibility that the effect of reducing the refrigerant filling amount cannot be obtained. On the other hand, if the amount of high-pressure side oil decreases too much, the high-pressure refrigerant is returned to the low-pressure side, and there is a concern that the performance will deteriorate rapidly. From the above, in order to reduce the amount of HC refrigerant charged in the low-pressure shell compressor, (4) means for adjusting the amount of oil stored on the high-pressure side to an appropriate amount is required.

特開2006−200504号公報JP 2006-200504 A 特開2004−239204号公報JP 2004-239204 A 財団法人日本冷凍空調学会編、上級標準テキスト冷凍空調技術:冷凍編(平成12年)第100頁Japan Society of Refrigerating and Air Conditioning Engineers, Advanced Standard Text Refrigerating and Air Conditioning Technology: Refrigeration (2000), page 100 財団法人ヒートポンプ・蓄熱センター編、ノンフロン技術:自然冷媒の新潮流(平成16年)第172頁Non-Freon Technology: New Trend of Natural Refrigerant (2004), page 172

従ってこの発明の目的は、(2)摺動部(軸受、ベーン)の潤滑性能確保、(3)回転ピストン及びベーンのシール性能確保、(4)高圧側に貯蔵する油量低減の3つの課題を解決し、CO2冷媒あるいはHC冷媒を用いた低圧シェル型ロータリ圧縮機を得ることである。Therefore, the objects of the present invention are (3) ensuring lubrication performance of sliding parts (bearings, vanes), (3) ensuring sealing performance of rotating pistons and vanes, and (4) reducing the amount of oil stored on the high pressure side. To obtain a low-pressure shell-type rotary compressor using CO 2 refrigerant or HC refrigerant.

このような目的を達成するため、本発明のロータリ圧縮機は、外部冷媒回路に吸入管および吐出管で接続され、低圧の冷媒を封入する密閉容器と、上記密閉容器内に設けられた電動機と、上記密閉容器内に設けられ、低圧の冷媒を吸入し圧縮する圧縮機構とを備え、上記圧縮機構は、上記電動機に連結されて軸受で支持されたクランク軸、上記クランク軸によって駆動され、シリンダ内を偏心回転する回転ピストン、シリンダ内に吸入室および圧縮室を形成し、背後にベーン背圧室を形成するベーンを有し、上記圧縮室から吐出する圧力を調整する吐出弁と高圧吐出マフラ、上記圧縮室から高圧の冷媒が外部冷媒回路へ導く前に経由する油分離要素を1個以上備え、そのうち、少なくとも1個の油分離要素は前記高圧吐出マフラの機能を兼ねる、さらに、少なくとも1個の油分離要素から分離した潤滑油を上記ベーン背圧室に供給する給油手段と給油経路を備えたことを特徴とするロータリ圧縮機である。   In order to achieve such an object, a rotary compressor of the present invention is connected to an external refrigerant circuit through a suction pipe and a discharge pipe, and includes a sealed container that encloses a low-pressure refrigerant, and an electric motor provided in the sealed container. A compression mechanism that is provided in the sealed container and sucks and compresses a low-pressure refrigerant. The compression mechanism is connected to the electric motor and supported by a bearing, and is driven by the crankshaft. A discharge piston and a high-pressure discharge muffler having a rotary piston that eccentrically rotates inside, a vane that forms a suction chamber and a compression chamber in the cylinder, and a vane back pressure chamber in the back, and that adjusts the pressure discharged from the compression chamber And one or more oil separation elements through which high-pressure refrigerant passes from the compression chamber to the external refrigerant circuit, and at least one oil separation element also functions as the high-pressure discharge muffler. Further, a rotary compressor, characterized in that the lubricating oil separated from at least one oil separation element equipped with the fuel supply path and the fuel supply means for supplying to the vane back pressure chamber.

このような構成を備えた自然冷媒(CO2冷媒及びHC冷媒)低圧シェル型ロータリ圧縮機は、(1)ベーン飛びを抑えること、(2)摺動部の潤滑性能確保、(3)摺動部のシール性能確保、(4)高圧側に貯蔵する油量の低減の要求を同時に満たし、高信頼性化、低コスト化、高性能化、及び冷媒量の低減が可能である。The natural refrigerant (CO 2 refrigerant and HC refrigerant) low-pressure shell-type rotary compressor having such a configuration includes (1) suppressing vane jump, (2) ensuring lubrication performance of the sliding portion, and (3) sliding. It is possible to satisfy the requirements of securing the sealing performance of the parts and (4) reducing the amount of oil stored on the high pressure side at the same time, and to achieve high reliability, low cost, high performance, and reduction of the refrigerant amount.

フロン冷媒、HC冷媒、CO2冷媒を用いたロータリ圧縮機の運転条件を比較して示す表である。CFC refrigerant is a table showing a comparison of the operating conditions of the rotary compressor using the HC refrigerant, CO 2 refrigerant. この発明の実施の形態1に係るロータリ圧縮機の全体構成を示す組立て図である。(実施の形態1)It is an assembly figure showing the whole rotary compressor composition concerning Embodiment 1 of this invention. (Embodiment 1) 図1のロータリ圧縮機の第1の圧縮機構の構成を示す概略横断面図である。(実施の形態1)FIG. 2 is a schematic cross-sectional view showing a configuration of a first compression mechanism of the rotary compressor of FIG. 1. (Embodiment 1) 図2に示す高段側の圧縮機構における給油隙間を誇張して示す横断面図である。(実施の形態1)FIG. 3 is a cross-sectional view exaggeratingly showing an oil supply gap in the high-stage compression mechanism shown in FIG. 2. (Embodiment 1) 図2に示す高段側の圧縮機構における給油隙間を誇張して示す縦断面図である。(実施の形態1)FIG. 3 is a longitudinal sectional view exaggeratingly showing an oil supply gap in the high-stage compression mechanism shown in FIG. 2. (Embodiment 1) プロパン冷媒を用いた場合の本発明のロータリ圧縮機の効果を従来技術と比較して示す表である。(実施の形態1)It is a table | surface which shows the effect of the rotary compressor of this invention at the time of using a propane refrigerant | coolant compared with a prior art. (Embodiment 1) CO2冷媒を用いた場合の本発明のロータリ圧縮機の効果を従来技術と比較して示す表である。(実施の形態1)The effect of the rotary compressor of the present invention is a table showing a comparison of the prior art in the case of using CO 2 refrigerant. (Embodiment 1) この発明の実施の形態2に係るロータリ圧縮機の全体構成を示す組立て図である。(実施の形態2)It is an assembly figure which shows the whole structure of the rotary compressor which concerns on Embodiment 2 of this invention. (Embodiment 2) この発明の実施の形態3に係るロータリ圧縮機の全体構成を示す組立て図である。(実施の形態3)It is an assembly figure which shows the whole structure of the rotary compressor which concerns on Embodiment 3 of this invention. (Embodiment 3) この発明の実施の形態4に係るロータリ圧縮機の全体構成を示す組立て図である。(実施の形態4)It is an assembly figure which shows the whole structure of the rotary compressor which concerns on Embodiment 4 of this invention. (Embodiment 4)

以下、添付図面を参照して本発明をベーン式ロータリ圧縮機に適用した例として複数の実施の形態を説明する。なお、以下の説明では、「低圧」、「中間圧」および「高圧」の用語を用いるが、これらは冷媒圧力について、相対的な大きさの程度を表したものであって、絶対的な値を示すものではない。「低圧」、「中間圧」および「高圧」は、それぞれ第1段圧縮前の圧力、第1段圧縮後で第2段圧縮前の圧力および第2段圧縮後の圧力を表すものである。また、二段圧縮機は、密閉容器内の圧力レベルによって大きく三種類に分類される。密閉容器内圧力(但し、ここでは密閉容器の主要部分の圧力を指す。部分的に圧力が異なる場合もある。)が蒸発器圧力、または、第1の圧縮機構の吸入圧力に等しい場合は「低圧シェル型」、第1の圧縮機構の吐出圧力、または、第2の圧縮機構の吸入圧力に等しい場合は「中間圧シェル型」、ガスクーラ(超臨界以下で用いる場合はフロン冷媒と同様の凝縮器)圧力、または、第2の圧縮機構の吐出圧力に等しい場合は「高圧シェル型」である。
また、二段圧縮機で第1の圧縮機構とは低段側圧縮機構、第2の圧縮機構とは高段側圧縮機構を意味する。
Hereinafter, a plurality of embodiments will be described as an example in which the present invention is applied to a vane type rotary compressor with reference to the accompanying drawings. In the following description, the terms “low pressure”, “intermediate pressure”, and “high pressure” are used. These represent the relative magnitude of the refrigerant pressure, and are absolute values. It does not indicate. “Low pressure”, “intermediate pressure” and “high pressure” represent the pressure before the first stage compression, the pressure after the first stage compression and before the second stage compression, and the pressure after the second stage compression, respectively. Two-stage compressors are roughly classified into three types according to the pressure level in the sealed container. If the pressure in the sealed container (here, it refers to the pressure of the main part of the sealed container; the pressure may be partially different) is equal to the evaporator pressure or the suction pressure of the first compression mechanism. “Low-pressure shell type”, “intermediate-pressure shell type” when equal to the discharge pressure of the first compression mechanism, or suction pressure of the second compression mechanism, and gas cooler (condensation similar to chlorofluorocarbon refrigerant when used below supercriticality) If the pressure is equal to the discharge pressure of the second compression mechanism, it is a “high pressure shell type”.
In the two-stage compressor, the first compression mechanism means a low-stage compression mechanism, and the second compression mechanism means a high-stage compression mechanism.

実施の形態1Embodiment 1

図2は本発明の実施の形態1による低圧シェル型二段ロータリ圧縮機の全体構成を示す組立て図である。本発明のロータリ圧縮機は、密閉容器8と、密閉容器8内に設けられた電動機9と、電動機9によって駆動されるクランク軸6と、クランク軸6の両端を支持する長軸側軸受7aと短軸側軸受7bと、第1及び第2の圧縮機構10、20を備え、密閉容器8外に油分離要素40を備えている。   FIG. 2 is an assembly diagram showing the overall configuration of the low-pressure shell type two-stage rotary compressor according to the first embodiment of the present invention. The rotary compressor of the present invention includes a hermetic container 8, an electric motor 9 provided in the hermetic container 8, a crankshaft 6 driven by the electric motor 9, and a long shaft side bearing 7a that supports both ends of the crankshaft 6. A short shaft side bearing 7 b and first and second compression mechanisms 10 and 20 are provided, and an oil separation element 40 is provided outside the sealed container 8.

図3は図2に示す低段側圧縮機構(第1の圧縮機構)の構成を示す横断面図である。高段側圧縮機構(第2の圧縮機構)の構成も低段側と同様であり、括弧内の参照符号で示す。クランク軸6が軸心6dまわりに回転するに伴い、クランク軸偏心部6aと低段側回転ピストン12は低段側シリンダ11内で偏心方向に接するように偏心しながら矢印で示す方向に回転する。ベーン位置を基点に圧縮方向に回転して、偏心方向の角度がシリンダ吸入口15aのときに圧縮を開始し、吐出圧力に達すると吐出弁17が開いて冷媒ガスの吐出を開始する。なお、図3の横断面図に示す給油経路用穴51aと51bの穴は実施の形態4で用いるものであり、本実施の形態1では不要である。   FIG. 3 is a cross-sectional view showing the configuration of the low-stage compression mechanism (first compression mechanism) shown in FIG. The configuration of the high-stage compression mechanism (second compression mechanism) is the same as that of the low-stage side, and is indicated by reference numerals in parentheses. As the crankshaft 6 rotates about the axis 6d, the crankshaft eccentric portion 6a and the low-stage side rotary piston 12 rotate in the direction indicated by the arrow while being eccentrically in contact with the eccentric direction in the low-stage side cylinder 11. . Rotating in the compression direction with the vane position as a base point, compression starts when the angle in the eccentric direction is the cylinder suction port 15a. When the discharge pressure is reached, the discharge valve 17 is opened and refrigerant gas discharge is started. Note that the holes of the oil supply passage holes 51a and 51b shown in the cross-sectional view of FIG. 3 are used in the fourth embodiment, and are not required in the first embodiment.

図4および図5は、図2に示す本発明の回転ピストン型二段ロータリ圧縮機の冷媒圧縮機の高段側の圧縮機構20において給油される隙間を誇張して示す断面図である。給油される隙間の第1は、短軸側軸受7bとクランク軸6との間の軸受隙間70bであり、クランク軸6の短軸部の表面は縦油溝56cがある部分とない部分がある。縦油溝56cのない軸受先端部分は、隙間シール部73aの機能を兼ねる。第2は圧縮機構20の給油を受けるべき隙間である給油隙間である。給油隙間は、図示の例では、回転ピストン22の上下端面が中間プレート5及び下側支持部材82との間にそれぞれ形成するシール隙間72a、72b、回転ピストン22の偏心方向の周面とシリンダ21の内周面との間のシール隙間72cと、ベーン24の側面とベーン24を案内するシリンダ21のベーン溝との間の摺動隙間24cとを含むものである。図4および図5では、高段側の圧縮機構20について説明した。低段側の圧縮機構10も同様の構成であり説明を省略する。   4 and 5 are cross-sectional views exaggeratingly showing a gap to be supplied in the high-stage compression mechanism 20 of the refrigerant compressor of the rotary piston type two-stage rotary compressor of the present invention shown in FIG. The first gap to be lubricated is a bearing gap 70b between the short shaft side bearing 7b and the crankshaft 6, and the surface of the short shaft portion of the crankshaft 6 has a portion with and without a vertical oil groove 56c. . The bearing front end portion without the vertical oil groove 56c also functions as the gap seal portion 73a. The second is an oil supply gap that is a gap to be supplied with oil from the compression mechanism 20. In the illustrated example, the oil supply gap includes seal gaps 72 a and 72 b formed by the upper and lower end surfaces of the rotary piston 22 between the intermediate plate 5 and the lower support member 82, the eccentric circumferential surface of the rotary piston 22, and the cylinder 21. And a sliding clearance 24c between the side surface of the vane 24 and the vane groove of the cylinder 21 that guides the vane 24. 4 and 5, the high-stage compression mechanism 20 has been described. The low-stage compression mechanism 10 has the same configuration and will not be described.

図2において、低圧の冷媒は圧縮機吸入管1から一旦、密閉容器8内を経由したのちに、低段側吸入管15b(本実施の形態では、密閉容器8内に設置した電動機9の隙間を通る経路である密閉容器内の配管15b1と通らない密閉容器外の配管15b2を用いた)から第1の圧縮機構10のシリンダ11内の吸入室15に吸入される。第1の圧縮機構10により低圧から中間圧に圧縮された冷媒は、吐出弁17から吐出マフラ18aに吐出される。中間圧の冷媒は、中間連結部4を経て第2の圧縮機構20のシリンダ21内の吸入室25に吸入され、圧縮された後、高圧の冷媒として吐出弁27から吐出マフラ28aに吐出される。高圧の冷媒は、高段側吐出管26bから密閉容器8の外部にある油分離器40の高圧容器41内に入って潤滑油が分離され、油分離後の高圧冷媒は圧縮機吐出管2から図示してない冷媒回路高圧熱交換器(凝縮器)側に送られる。図示の例では、旋回流入による遠心分離とデミスタ47を組み合わせた油分離方式が用いられている。   In FIG. 2, the low-pressure refrigerant once passes from the compressor suction pipe 1 through the inside of the sealed container 8, and then the low-stage side suction pipe 15 b (in this embodiment, the gap between the motor 9 installed in the sealed container 8). Is taken into the suction chamber 15 in the cylinder 11 of the first compression mechanism 10 from the pipe 15b2 outside the sealed container that does not pass through the pipe 15b1 inside the sealed container, which is a path passing through. The refrigerant compressed from the low pressure to the intermediate pressure by the first compression mechanism 10 is discharged from the discharge valve 17 to the discharge muffler 18a. The intermediate-pressure refrigerant is sucked into the suction chamber 25 in the cylinder 21 of the second compression mechanism 20 through the intermediate connecting portion 4, compressed, and then discharged from the discharge valve 27 to the discharge muffler 28 a as a high-pressure refrigerant. . The high-pressure refrigerant enters the high-pressure container 41 of the oil separator 40 outside the sealed container 8 from the high-stage discharge pipe 26b, and the lubricating oil is separated. The high-pressure refrigerant after oil separation is discharged from the compressor discharge pipe 2. It is sent to the refrigerant circuit high-pressure heat exchanger (condenser) side not shown. In the example shown in the figure, an oil separation method in which centrifugal separation by swirling inflow and a demister 47 are combined is used.

油分離後の高圧の潤滑油は一旦高圧容器41内の油貯蔵部42に貯蔵された後、給油調整穴43から給油経路44を通って低段側ベーン背圧室14aと高段側ベーン背圧室24aに送られる。給油経路44に接続されたキャピラリ管44aには流量調整効果があり、逆止弁44bは停止時にシリンダ内に潤滑油が溜まることを防ぐ。   The high-pressure lubricating oil after the oil separation is once stored in the oil storage section 42 in the high-pressure vessel 41, and then passes through the oil supply passage 44 from the oil supply adjustment hole 43 and the low-stage vane back pressure chamber 14 a and the high-stage vane back. It is sent to the pressure chamber 24a. The capillary tube 44a connected to the oil supply path 44 has a flow rate adjusting effect, and the check valve 44b prevents the lubricating oil from accumulating in the cylinder when stopped.

低段側ベーン背圧室14aと高段側ベーン背圧室24aに送られた潤滑油は、中間プレート5に形成された給油経路53内で絞り52により減圧調整されてから、一旦、クランク軸6と中間プレート5内側で形成する空間54に送られ、そこから、回転ピストン12、22それぞれのシリンダ内シール隙間71、72に給油される。シリンダ内シール隙間71、72は、高段側圧縮機構20の回転ピストン22については、図4および5に示されるように、回転ピストン端面と中間プレート6とのシール隙間72a、回転ピストン端面と短軸側軸受7bとのシール隙間72b、回転ピストン偏心方向のシール隙間72cに分類される。図2において、空間54に供給された油は、高段側回転ピストンの端面と中間プレートとのシール隙間70aに給油される経路と、クランク軸偏心部6a、6bの表面に形成された縦油溝56b、軸受柔構造用溝57に潤滑油が送られる。従って、回転ピストン12、22のシリンダ内シール隙間70、71には充分な量の油が潤沢に供給され、高いシール性能が確保できる。潤滑油はさらに、クランク軸6と長軸側軸受7aおよび短軸側軸受7bとの間の軸受隙間70aおよび軸受隙間70bを通って、低圧シェル型の密閉容器8内に流出し、油貯蔵部58に潤滑油が貯蔵される。   The lubricating oil sent to the low-stage vane back pressure chamber 14a and the high-stage vane back pressure chamber 24a is pressure-reduced by the throttle 52 in the oil supply passage 53 formed in the intermediate plate 5, and then temporarily crankshaft. 6 and the space 54 formed inside the intermediate plate 5, and from there, the oil is supplied to the in-cylinder seal gaps 71 and 72 of the rotary pistons 12 and 22. As shown in FIGS. 4 and 5, the in-cylinder seal gaps 71 and 72 are short for the rotary piston 22 of the high-stage compression mechanism 20, as shown in FIGS. 4 and 5. It is classified into a seal gap 72b with the shaft side bearing 7b and a seal gap 72c in the direction of eccentricity of the rotary piston. In FIG. 2, the oil supplied to the space 54 is the vertical oil formed on the path of the seal gap 70 a between the end face of the high-stage side rotary piston and the intermediate plate and the surfaces of the crankshaft eccentric parts 6 a and 6 b. Lubricating oil is sent to the groove 56b and the bearing flexible structure groove 57. Therefore, a sufficient amount of oil is sufficiently supplied to the in-cylinder seal gaps 70 and 71 of the rotary pistons 12 and 22, and high sealing performance can be secured. The lubricating oil further flows out into the low-pressure shell-type hermetic container 8 through the bearing gap 70a and the bearing gap 70b between the crankshaft 6 and the long-axis side bearing 7a and the short-axis side bearing 7b. The lubricating oil is stored at 58.

このように、潤滑油の貯蔵部は、低圧シェルである密閉容器8側の油貯蔵部58と、高圧の油分離器40側の油貯蔵部42とに分かれている。本発明ではHC冷媒貯蔵量を低減するため、定常運転時に低圧シェル側の油貯蔵部58に所定量(例えば2/3)の潤滑油が貯蔵され、高圧の油分離器側の油貯蔵部42に所定量(例えば1/3)以下の潤滑油が貯蔵されるように給油経路の隙間や絞りを設計されている。これを実現するためには、以下の機能が必要である。   As described above, the lubricating oil storage section is divided into the oil storage section 58 on the closed container 8 side, which is a low-pressure shell, and the oil storage section 42 on the high-pressure oil separator 40 side. In the present invention, in order to reduce the amount of HC refrigerant stored, a predetermined amount (for example, 2/3) of lubricating oil is stored in the oil storage unit 58 on the low pressure shell side during steady operation, and the oil storage unit 42 on the high pressure oil separator side. In addition, the gap and throttle of the oil supply path are designed so that a predetermined amount (for example, 1/3) or less of the lubricating oil is stored. In order to realize this, the following functions are required.

(1)高圧側潤滑油の漏れ低減
油分離器40を含む給油経路内を循環する高圧側油がこの循環経路から流出する経路は、圧縮機吐出管2から外部回路に流出するか、クランク軸6と軸受7a、7bの軸受隙間70a、70bから密閉容器8内に流出するかのいずれかである。高圧側油量が安定するためには、油分離器40の油分離効率が高いことと、軸受隙間70a、70bからの漏れが少ないことが必要である。軸受隙間70a、70bからの漏れを少なくするため、クランク軸6と軸受7a、7bの間に軸受シール部73a、73bを設ける。本実施の形態では軸受隙間70a、70bが軸受シール部73a、73bを兼ねる場合で示したが、独立して設けることもできる。軸受シール部73は、隙間シール、ラビリンスシール、市販の回転運動用オイルシール(JIS、B2402)やキャップシール(例えば、三菱電線製)がある。
(1) Reduction of leakage of high-pressure side lubricating oil The path through which the high-pressure side oil circulating in the oil supply path including the oil separator 40 flows out from the circulation path flows out from the compressor discharge pipe 2 to the external circuit, or crankshaft 6 and the bearing gaps 70a and 70b between the bearings 7a and 7b, either flows out into the sealed container 8. In order to stabilize the amount of oil on the high-pressure side, it is necessary that the oil separator 40 has high oil separation efficiency and that there is little leakage from the bearing gaps 70a and 70b. In order to reduce leakage from the bearing gaps 70a and 70b, bearing seal portions 73a and 73b are provided between the crankshaft 6 and the bearings 7a and 7b. In the present embodiment, the bearing gaps 70a and 70b are shown as the bearing seal portions 73a and 73b. However, they can be provided independently. The bearing seal portion 73 includes a gap seal, a labyrinth seal, a commercially available oil seal for rotational motion (JIS, B2402) and a cap seal (for example, manufactured by Mitsubishi Electric Cable).

(2)油面調整機能
油貯蔵のバランスが崩れる場合がありうるので、以下のような油面調整機能を設ける。
(例1)油分離器油貯蔵部42の油面が許容値以上に上昇した場合
油面調整器45が動作して潤滑油を油戻し回路48を通って密閉容器8側へ戻す。図示の例では、油面調整器45は、潤滑油中で浮力を有する浮き45aを備えていて、定常運転時には浮き5aが差圧で下側に押し付けられていて油戻し回路46に通ずる小穴45bは塞がれているが、許容油面を超えると浮力が差圧に勝って浮き45aが浮き上がり、小穴45bが開いて潤滑油が油戻し回路48を通って密閉容器8側へ戻される。
(2) Oil level adjustment function Since the oil storage balance may be lost, the following oil level adjustment function is provided.
(Example 1) When the oil level of the oil separator oil storage unit 42 rises above the allowable value The oil level adjuster 45 operates to return the lubricating oil to the closed container 8 side through the oil return circuit 48. In the illustrated example, the oil level adjuster 45 is provided with a float 45a having buoyancy in lubricating oil, and the small hole 45b through which the float 5a is pressed downward by a differential pressure and communicates with the oil return circuit 46 during steady operation. However, when the oil level exceeds the permissible oil level, the buoyancy is greater than the differential pressure, the float 45a is lifted, the small hole 45b is opened, and the lubricating oil is returned to the sealed container 8 side through the oil return circuit 48.

あるいは、以下のような油面調整機能(例1’)を用いる。圧縮機吐出管2に開けた小穴に接続した細官37が、油分離器油貯蔵部42の油面が許容値以上に上昇した場合に、潤滑油を吸い上げて、冷媒といっしょに圧縮外の回路へ吐出することによって、油面高さを調整し油分離器油貯蔵量を所定量以下に保つ。   Alternatively, the following oil level adjustment function (Example 1 ') is used. When the oil level of the oil separator oil storage section 42 rises above the allowable value, the finer 37 connected to the small hole opened in the compressor discharge pipe 2 sucks up the lubricating oil and out of compression with the refrigerant. By discharging to the circuit, the oil surface height is adjusted and the oil separator oil storage amount is kept below a predetermined amount.

(例2)密閉容器8側の油面が許容値以上になる(油分離器40側の潤滑油の枯渇が危惧される)場合
低段側吸入管15bのうち密閉容器8内を通る配管15b1には油吸入用調整穴59があけてあり、ここから潤滑油をインジェクション吸入して冷媒混合状態で圧縮機シリンダ内に供給し、潤滑性能とシール性能を維持する。また、低段側から吸入する潤滑油量が増加すると、いずれ油分離器40内に溜まる潤滑油量が回復する。
(Example 2) When the oil level on the closed container 8 side exceeds the allowable value (the lubricating oil on the oil separator 40 side may be depleted) In the low-stage suction pipe 15b, the pipe 15b1 passing through the sealed container 8 Is provided with an oil suction adjusting hole 59, from which lubricating oil is sucked and supplied into the compressor cylinder in a refrigerant mixed state to maintain lubrication performance and sealing performance. Further, when the amount of lubricating oil sucked from the lower stage side increases, the amount of lubricating oil accumulated in the oil separator 40 will be recovered.

(例3)密閉容器8側の油面が許容値以下になる(冷媒回路で滞留が危惧される)場合
クランク軸6の中空部60の下端に油ポンプ用回転体61が付けられており、密閉容器8側の油貯蔵部58の底にある潤滑油を汲み上げ、中空部60の上端の貫通穴62から電動機下側に潤滑油を拡散させ、低段吐出マフラ18のフタ18bの上面に形成した油だまり63の潤滑油を低段吸入管である配管15b1の油面調整用きり穴59から吸入して冷媒と混合した状態で圧縮機シリンダ内に供給し、潤滑性能とシール性能とを保持する。
(Example 3) When the oil level on the airtight container 8 side is less than the allowable value (there is a risk of stagnation in the refrigerant circuit) The oil pump rotor 61 is attached to the lower end of the hollow portion 60 of the crankshaft 6 to The lubricating oil at the bottom of the oil storage section 58 on the container 8 side is pumped up, and the lubricating oil is diffused from the through hole 62 at the upper end of the hollow section 60 to the lower side of the motor, and formed on the upper surface of the lid 18 b of the low-stage discharge muffler 18. Lubricating oil in the oil sump 63 is sucked from the oil level adjustment drill hole 59 of the pipe 15b1, which is a low-stage suction pipe, and is supplied to the compressor cylinder in a state mixed with the refrigerant to maintain lubrication performance and sealing performance. .

(例4)さらに、低段側吸入管15b2に開けた小穴に接続した細管39が、密閉容器内油貯蔵部58の底まで導かれており、密閉容器8側の油面が許容値以下になる(冷媒回路で滞留が危惧される)場合においても、吸入管15b2の油面調整用穴59から一定量の潤滑油を吸入して冷媒といっしょに圧縮機シリンダ内に供給し、潤滑性能とシール性能とを保持する。 (Example 4) Furthermore, the thin tube 39 connected to the small hole opened in the low-stage side suction pipe 15b2 is led to the bottom of the oil storage section 58 in the sealed container 8 so that the oil level on the side of the sealed container 8 is below the allowable value. Even in the case where there is a risk of stagnation in the refrigerant circuit, a certain amount of lubricating oil is sucked from the oil level adjusting hole 59 of the suction pipe 15b2 and is supplied into the compressor cylinder together with the refrigerant. Keeps performance.

この実施の形態1では、冷媒が密閉容器8内を経由して低段側シリンダ内に吸入される経路として、密閉容器内に設置した電動機の隙間を通る経路である配管15b1と、一旦、密閉容器から外部に出て電動機の隙間を通らない経路15b2の二つの経路を設けた。後者の経路には開度を調整するバルブ32が付いており、二つの経路を通る流量の割合を調整して、低段側に吸入される冷媒の温度を調整する。   In the first embodiment, as a path through which the refrigerant is sucked into the low-stage cylinder via the sealed container 8, the pipe 15b1 that is a path passing through the gap of the electric motor installed in the sealed container is temporarily sealed. Two paths 15b2 are provided which go out of the container and do not pass through the gap of the electric motor. The latter path is provided with a valve 32 for adjusting the opening, and the ratio of the flow rate through the two paths is adjusted to adjust the temperature of the refrigerant sucked into the lower stage.

図6の表2はプロパン冷媒を用いた場合の本発明の効果を示す。Ashrae−T条件基準で1kw入力相当で空調用圧縮機を設計する。潤滑油はパラフィン系鉱油を用いて、密閉容器(低圧側)油貯蔵部の圧力は0.59MPa、油温は50℃、冷媒溶解度15wt%、密閉容器(高圧側)油貯蔵部の圧力は1.88MPa、温度は80℃、冷媒溶解度33wt%、である。従来一般の(例えば特開2006−200504の方法の比較例1に示すような)高圧シェル型二段ロータリ圧縮機である。従来の発明1とは特開2006−200504の方法に従って設計した低圧シェル型二段ロータリ圧縮機である。実施の形態1で設計した場合は、圧縮機効率75%、体積効率90%、圧縮機内冷媒量72gと予測される。従来一般例の高圧シェル型ロータリ圧縮機に比べると、圧縮機効率と体積効率は同等を維持しながら、圧縮機内冷媒封入量を約1/2に低減し、密閉容器肉厚を約1/2に低減できる。また、従来の発明1の低圧シェル型ロータリ圧縮機に比べると、圧縮機効率と体積効率を約10%改善でき、圧縮機内冷媒封入量を一定に保つことができる。   Table 2 in FIG. 6 shows the effect of the present invention when a propane refrigerant is used. An air conditioning compressor is designed with an input of 1 kW according to the Ashrae-T condition standard. The lubricating oil is paraffinic mineral oil, the pressure in the closed container (low pressure side) oil storage section is 0.59 MPa, the oil temperature is 50 ° C., the refrigerant solubility is 15 wt%, the pressure in the closed container (high pressure side) oil storage section is 1. .88 MPa, temperature is 80 ° C., and refrigerant solubility is 33 wt%. This is a conventional high-pressure shell type two-stage rotary compressor (for example, as shown in Comparative Example 1 of the method of Japanese Patent Application Laid-Open No. 2006-200504). The conventional invention 1 is a low-pressure shell type two-stage rotary compressor designed according to the method of Japanese Patent Application Laid-Open No. 2006-200504. When designed in the first embodiment, it is predicted that the compressor efficiency is 75%, the volume efficiency is 90%, and the refrigerant amount in the compressor is 72g. Compared to the conventional high-pressure shell type rotary compressor, while maintaining the same compressor efficiency and volumetric efficiency, the amount of refrigerant inside the compressor is reduced to about 1/2, and the thickness of the sealed container is about 1/2. Can be reduced. Further, compared with the conventional low pressure shell type rotary compressor of the invention 1, the compressor efficiency and the volume efficiency can be improved by about 10%, and the refrigerant filling amount in the compressor can be kept constant.

図7の表3はCO2冷媒を用いた場合の本発明の効果を示す。CO2冷媒の場合もプロパン冷媒の場合と同様の効果が得られる。特に、高圧で動作するCO2冷媒の場合、密閉容器(シェル外径120mm、鋳鉄)の肉厚が加工費と材料費に占める割合が高い。約1/2に薄肉化できるので大幅なコスト低減が可能である。Table 3 in FIG. 7 shows the effect of the present invention when a CO 2 refrigerant is used. In the case of CO 2 refrigerant, the same effect as in the case of propane refrigerant can be obtained. In particular, in the case of a CO 2 refrigerant operating at high pressure, the thickness of the sealed container (shell outer diameter 120 mm, cast iron) accounts for a high proportion of processing costs and material costs. Since the thickness can be reduced to about 1/2, the cost can be significantly reduced.

以上のように構成を備えた自然冷媒(CO2冷媒及びHC冷媒)低圧シェル型ロータリ圧縮機は、(1)ベーン飛び防止、(2)摺動部(軸受、ベーン)の潤滑性能確保、(3)回転ピストン及びベーンのシール性能確保、(4)高圧側の油貯蔵量の低減、以上を同時に満足し、信頼性化、低コスト化、高性能化、及び冷媒量の低減を可能にする。The natural refrigerant (CO 2 refrigerant and HC refrigerant) low-pressure shell-type rotary compressor having the above-described configuration includes (1) vane jump prevention, (2) ensuring lubrication performance of sliding parts (bearings, vanes), ( 3) Ensuring sealing performance of rotating pistons and vanes, (4) Reducing the amount of oil stored on the high-pressure side, satisfying the above simultaneously, enabling higher reliability, lower costs, higher performance, and reduced refrigerant volume .

本実施の形態では、プロパン冷媒とパラフィン系鉱油を用いて比較したが、HC冷媒やCO2冷媒に対して潤滑性良好な弱相溶性の冷凍機油として、PAG改油(PAG(ポリアリキルグリコール)にEO(エチレンオキサイド)成分を調合したもので、例えば、松村石油株式会社のバーレルフリーズ(R)PAGシリーズなど)が実用化されており、これを用いれば、油中溶解冷媒量をパラフィン系鉱油に比べて半減でき、圧縮機内冷媒封入量を大幅に低減することができる。   In this embodiment, propane refrigerant and paraffinic mineral oil were used for comparison. However, as a weakly compatible refrigerating machine oil having good lubricity to HC refrigerant and CO2 refrigerant, PAG modified oil (PAG (polyalkylene glycol)) EO (Ethylene Oxide) component is blended, and for example, the Barrel Freeze (R) PAG series of Matsumura Oil Co., Ltd.) has been put to practical use. As compared with the above, the refrigerant filling amount in the compressor can be greatly reduced.

この実施の形態1においては、潤滑油を圧縮機構に供給する給油手段は、潤滑油を、油貯蔵部42から給油調製穴43、給油経路44を通って低段側ベーン背圧室14aおよび高段側ベーン背圧室24aに供給する第1の給油経路(ベーン背圧室に供給する給油経路)を備えている。また、低段側および高段側ベーン背圧室14aおよび24aから更に、給油経路53を通ってクランク軸6と中間プレート5との間の空間54に供給され、この空間54から圧縮機構10、20の軸受隙間およびシール隙間を含む様々な給油隙間に供給する第2の給油経路(圧縮機構の給油隙間に供給する給油経路)を備えている。第2の給油経路は、(1)空間54から低段側回転ピストンと中間プレートとの間のシール隙間70a、70b、シリンダ11、21との間のシール隙間70cに給油する経路と、(2)空間54からクランク軸偏心部6a、6bと回転ピストン12、22との間のすきま流、クランクシャフト油溝56bおよび軸受柔構造用溝57を通りシリンダ内シール隙間70cに給油する経路と、(3)空間54から回転ピストンのシリンダとの間のシール隙間71を通ってクランク軸6と短軸側軸受7bおよび長軸側軸受7aとの間の軸受隙間70a、70bに給油する経路とを備えている。   In the first embodiment, the oil supply means for supplying the lubricating oil to the compression mechanism supplies the lubricating oil from the oil storage section 42 through the oil supply preparation hole 43 and the oil supply path 44 to the low-stage vane back pressure chamber 14a and the high pressure side. A first oil supply path (oil supply path supplied to the vane back pressure chamber) for supplying to the stage side vane back pressure chamber 24a is provided. Further, the low-stage side and high-stage vane back pressure chambers 14a and 24a are further supplied to the space 54 between the crankshaft 6 and the intermediate plate 5 through the oil supply path 53, and the compression mechanism 10, A second oil supply path (oil supply path supplied to the oil supply gap of the compression mechanism) for supplying various oil supply gaps including 20 bearing gaps and seal gaps is provided. The second oil supply path includes (1) a path for supplying oil from the space 54 to the seal gaps 70a and 70b between the low-stage side rotary piston and the intermediate plate, and the seal gap 70c between the cylinders 11 and 21; ) A path for supplying oil from the space 54 to the in-cylinder seal gap 70c through the clearance between the crankshaft eccentric portions 6a and 6b and the rotary pistons 12 and 22, the crankshaft oil groove 56b and the bearing flexible structure groove 57; 3) A path for supplying oil to the bearing gaps 70a and 70b between the crankshaft 6, the short shaft side bearing 7b, and the long shaft side bearing 7a through the seal gap 71 between the space 54 and the cylinder of the rotary piston. ing.

実施の形態2Embodiment 2

図8は実施の形態2に係る低圧シェル型二段ロータリ圧縮機の全体構成を示す組立て図である。このロータリ圧縮機が図1〜図7に示されている実施の形態1のロータリ圧縮機に対して構成上で相違している点は、低段吐出マフラ18、低段吐出弁17および中間連結部を中間プレート5内に構成したことと、油分離器90を密閉容器8内の高段吐出マフラ容器28の内部空間28bに設けて、高段吐出マフラを兼ねた構造であり、従って油分離器90によって分離された高圧の潤滑油の給油経路が異なっていることである。これ以外の構成は実施の形態1と同様であるので説明を省略する。   FIG. 8 is an assembly diagram showing the overall configuration of the low-pressure shell type two-stage rotary compressor according to the second embodiment. The rotary compressor is different in configuration from the rotary compressor of the first embodiment shown in FIGS. 1 to 7 in that a low-stage discharge muffler 18, a low-stage discharge valve 17 and an intermediate connection are provided. And the oil separator 90 is provided in the internal space 28b of the high-stage discharge muffler container 28 in the sealed container 8 so that it also serves as a high-stage discharge muffler. The oil supply path of the high-pressure lubricating oil separated by the vessel 90 is different. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted.

すなわち、中間プレート5は上下2枚の合わせ板すなわち第1中間プレート5aおよび第2中間プレート5bで構成されており、低段側の第1の圧縮機構10のシリンダ11内で低圧の冷媒を圧縮して中間圧にされた冷媒は、第1中間プレート5aに取り付けた低段吐出弁17から、第1および第2中間プレート5aと5bの間に形成された低段吐出マフラ空間18a内に吐出される。ここで中間インジェクション配管31から注入される冷媒と合流し、シリンダ吸入口15aから高段側の第2の圧縮機構20のシリンダ内に流入する。   That is, the intermediate plate 5 includes two upper and lower laminated plates, that is, a first intermediate plate 5a and a second intermediate plate 5b, and compresses low-pressure refrigerant in the cylinder 11 of the first compression mechanism 10 on the lower stage side. Then, the intermediate pressure refrigerant is discharged from a low-stage discharge valve 17 attached to the first intermediate plate 5a into a low-stage discharge muffler space 18a formed between the first and second intermediate plates 5a and 5b. Is done. Here, it merges with the refrigerant injected from the intermediate injection pipe 31 and flows into the cylinder of the second compression mechanism 20 on the higher stage side from the cylinder suction port 15a.

この実施の形態では、冷媒は高段側の第2の圧縮機構20のシリンダ21内で高圧まで圧縮された後、吐出弁27から油分離器90の機能を兼ねる高段吐出マフラ空間28aに吐出される。冷媒がデミスタ97を通過するときに潤滑油が吸着されて、吸着された潤滑油は重力で高圧容器の下方の油貯蔵部92に集められる。   In this embodiment, the refrigerant is compressed to a high pressure in the cylinder 21 of the second compression mechanism 20 on the high stage side, and then discharged from the discharge valve 27 to the high stage discharge muffler space 28a that also functions as the oil separator 90. Is done. Lubricating oil is adsorbed when the refrigerant passes through the demister 97, and the adsorbed lubricating oil is collected by gravity in the oil storage section 92 below the high-pressure vessel.

油貯蔵部92の潤滑油は、油用消波板92aで囲われており、給油細管94cから差圧で、クランクシャフト中空部60内を通ってクランク軸中空部貫通穴62から軸受7a、7bとクランク軸6との間の軸受隙間70a、70b、軸受シール部73a、73b、及び、回転ピストン12、22を上下面で挟む軸受7b、中間プレート5、軸受7aとのシール隙間71a、71b、72a、72bに給油され、さらに、シリンダ11、21内の回転ピストン偏心方向シール隙間71c、72cに給油され、これら可動部の潤滑とシールに寄与する。また、これらの軸受隙間70a、70b、軸受シール部73a、73b、及び、ピストンシール隙間71、72から溢れて、中間プレート5の内側空間に供給された油は、中間プレート内の給油経路53を通ってベーン背圧室14aと24bに供給される。ベーン背圧は高段側を高圧、低段側を中間圧にするのが適正であり、絞り流路52を使って低段側ベーン背圧を高圧から減圧してある。また、軸受7a、7bに供給された潤滑油は長軸側軸受7aとクランク軸6との隙間70aの上端から低圧シェル容器である密閉容器8内に噴出する。これ以外の各摺動部(回転ピストン、ベーン)に供給された潤滑油は、シリンダ内に入り冷媒と混合されて、高段側吐出部26から油分離器90に吐出され、分離された油は圧縮機内を、分離されない油は冷凍サイクル回路内をそれぞれ循環する。   The lubricating oil in the oil storage portion 92 is surrounded by the oil wave breaker plate 92a, and the bearings 7a and 7b are passed through the crankshaft hollow portion 60 from the crankshaft hollow portion through hole 62 by differential pressure from the oil supply thin tube 94c. Bearing gaps 70a and 70b between the shaft 6 and the crankshaft 6, bearing seal portions 73a and 73b, and a bearing 7b sandwiching the rotary pistons 12 and 22 between upper and lower surfaces, seal gaps 71a and 71b between the intermediate plate 5 and the bearing 7a, The oil is supplied to 72a and 72b and further supplied to the rotary piston eccentric direction seal gaps 71c and 72c in the cylinders 11 and 21, and contributes to lubrication and sealing of these movable parts. The oil that overflows from the bearing gaps 70a and 70b, the bearing seal portions 73a and 73b, and the piston seal gaps 71 and 72 and is supplied to the inner space of the intermediate plate 5 passes through the oil supply path 53 in the intermediate plate. Passed through to the vane back pressure chambers 14a and 24b. As for the vane back pressure, it is appropriate to set the high stage side to a high pressure and the low stage side to an intermediate pressure, and the low stage vane back pressure is reduced from the high pressure by using the throttle channel 52. The lubricating oil supplied to the bearings 7a and 7b is ejected from the upper end of the gap 70a between the long shaft side bearing 7a and the crankshaft 6 into the sealed container 8 which is a low pressure shell container. Lubricating oil supplied to the other sliding portions (rotary pistons, vanes) enters the cylinder, is mixed with the refrigerant, and is discharged from the high-stage discharge portion 26 to the oil separator 90 and separated. Circulates in the compressor and unseparated oil circulates in the refrigeration cycle circuit.

この実施の形態においては、定常運転時に低圧シェル側油貯蔵部58に2/3の油が貯蔵されるように給油経路の隙間や絞り流路を設計するが、過渡的に油貯蔵バランスが崩れる場合がありうるので、以下のように、実施の形態1の(例4)と同様な記載密閉容器側油面調整機能を設ける。低段側吸入管15b1の小穴に接続した細官39が、密閉容器内油貯蔵部58の底まで導かれており、密閉容器8側の油面が許容値以下になる場合においても、配管15b1の油面調整用きり穴59から一定量の潤滑油を吸入して冷媒といっしょに圧縮機シリンダ内に供給し、潤滑性能とシール性能を保持する。   In this embodiment, the gap and throttle passage of the oil supply path are designed so that 2/3 of oil is stored in the low pressure shell side oil storage section 58 during steady operation, but the oil storage balance is transiently lost. Since there may be a case, the description closed-case side oil level adjustment function similar to (Example 4) of the first embodiment is provided as follows. Even when the fine officer 39 connected to the small hole of the low-stage side suction pipe 15b1 is led to the bottom of the oil storage section 58 in the sealed container 8 and the oil level on the side of the sealed container 8 becomes less than the allowable value, the pipe 15b1 A predetermined amount of lubricating oil is sucked from the oil level adjusting drill hole 59 and supplied into the compressor cylinder together with the refrigerant to maintain the lubricating performance and the sealing performance.

また、以下のような油面調整機能を用いる。高圧側吐出管26bに開けた小穴に接続した細官37が、油分離器油貯蔵部92の油面が許容値以上に上昇した場合に、潤滑油を吸い上げて、冷媒といっしょに圧縮外の回路へ吐出することによって、油面高さを調整し油分離器油貯蔵量を所定量以下に保つ。   The following oil level adjustment function is used. When the oil level of the oil separator oil storage part 92 rises above the allowable value, the finer 37 connected to the small hole opened in the high-pressure side discharge pipe 26b sucks up the lubricating oil, By discharging to the circuit, the oil surface height is adjusted and the oil separator oil storage amount is kept below a predetermined amount.

図6の表2はプロパン冷媒を用いた場合の本発明の効果を示す。Ashrae−T条件基準で1kw入力相当で空調用圧縮機を設計する。潤滑油はパラフィン系鉱油を用いて、密閉容器(低圧側)油貯蔵部の圧力は0.59MPa、油温は50℃、冷媒溶解度10wt%、密閉容器(高圧側)油貯蔵部の圧力は1.88
MPa、温度は80℃、冷媒溶解度33wt%、である。従来一般例とは例えば特開2006−200504の方法の比較例1に示すような高圧シェル型二段ロータリ圧縮機に吸入マフラを低段側圧縮機構に吸入前にマフラを備えたものである。従来の発明1とは特開2006−200504の方法に従って設計した低圧シェル型二段ロータリ圧縮機である。実施の形態2で設計した場合は、圧縮機効率75%、体積効率90%、圧縮機内冷媒量90gと予測される。従来一般例の高圧シェル型ロータリ圧縮機に比べると、圧縮機効率と体積効率は同等を維持しながら、冷媒封入量を約2/3に低減し、密閉容器肉厚を約1/2に低減できる。また、従来の発明1の低圧シェル型ロータリ圧縮機に比べると、圧縮機効率と体積効率を約10%改善し、圧縮機内冷媒封入量を一定に保つことができる。
Table 2 in FIG. 6 shows the effect of the present invention when a propane refrigerant is used. An air conditioning compressor is designed with an input of 1 kW according to the Ashrae-T condition standard. The lubricating oil is paraffinic mineral oil, the pressure in the closed container (low pressure side) oil storage section is 0.59 MPa, the oil temperature is 50 ° C., the refrigerant solubility is 10 wt%, and the pressure in the closed container (high pressure side) oil storage section is 1. .88
MPa, temperature is 80 ° C., refrigerant solubility is 33 wt%. In the conventional general example, for example, a high-pressure shell type two-stage rotary compressor as shown in Comparative Example 1 of the method disclosed in Japanese Patent Application Laid-Open No. 2006-200504 is provided with a suction muffler, and a low-stage compression mechanism is provided with a muffler before suction. The conventional invention 1 is a low-pressure shell type two-stage rotary compressor designed according to the method of Japanese Patent Application Laid-Open No. 2006-200504. When designed in the second embodiment, it is predicted that the compressor efficiency is 75%, the volume efficiency is 90%, and the refrigerant amount in the compressor is 90 g. Compared with the conventional high-pressure shell type rotary compressor, while maintaining the same compressor efficiency and volumetric efficiency, the refrigerant filling amount is reduced to about 2/3, and the closed container thickness is reduced to about 1/2. it can. Moreover, compared with the conventional low pressure shell type rotary compressor of the invention 1, the compressor efficiency and the volume efficiency can be improved by about 10%, and the refrigerant filling amount in the compressor can be kept constant.

この実施の形態2においては、潤滑油を圧縮機構に供給する給油手段は、潤滑油を、ベーン背圧室14a、24aに供給する第1の給油経路と、圧縮機構の給油隙間に供給する第2の給油経路とを備えている。第2の給油経路は、(1)油貯蔵部92から給油細管94c、クランクシャフト中空部60およびクランク軸中空部貫通穴62を通して軸受7a、7bとクランク軸6との間の軸受隙間70a、70bに供給する経路と、(2)クランク軸中空部貫通穴62から、回転ピストン12の上下端面が上側支持部材81及び中間プレート5との間にそれぞれ形成するシール隙間71a、71bに供給する経路、または、回転ピストン22の上下端面が中間プレート5及び下側支持部材82との間にそれぞれ形成するシール隙間72a、72bに供給する経路と、(3)クランク軸中空部貫通穴62からシリンダ11、21との間のシール隙間70、71を通して(即ち回転ピストン12、22を上下面で挟む軸受7b、中間プレート5、軸受7aを通して)シリンダ11、21内の回転ピストン偏心方向シール隙間13、23に供給する経路とを備えている。第1の給油経路は、潤滑油を、軸受隙間70a、70b及びシール隙間71、72から更に、中間プレート内の給油経路53を通してベーン背圧室14aおよび24aに供給する給油経路である。   In the second embodiment, the oil supply means for supplying the lubricating oil to the compression mechanism includes the first oil supply path for supplying the lubricating oil to the vane back pressure chambers 14a and 24a and the oil supply gap of the compression mechanism. 2 oil supply paths. The second oil supply path consists of (1) bearing gaps 70a, 70b between the bearings 7a, 7b and the crankshaft 6 from the oil storage part 92 through the oil supply thin tube 94c, the crankshaft hollow part 60 and the crankshaft hollow part through hole 62. And (2) a path for supplying from the crankshaft hollow portion through hole 62 to seal gaps 71a and 71b formed between the upper support member 81 and the intermediate plate 5 by the upper and lower end surfaces of the rotary piston 12, Or a path for supplying upper and lower end surfaces of the rotary piston 22 to seal gaps 72a and 72b formed between the intermediate plate 5 and the lower support member 82, respectively, and (3) the cylinder 11, The bearings 7b, the intermediate plate 5, and the bearings 7a sandwiching the rotary pistons 12 and 22 between the upper and lower surfaces are sealed through the seal gaps 70 and 71 between them 21. To) and a path for supplying the rotary piston eccentric direction sealing gap 13, 23 in the cylinder 11, 21. The first oil supply path is an oil supply path that supplies lubricating oil from the bearing gaps 70a and 70b and the seal gaps 71 and 72 to the vane back pressure chambers 14a and 24a through the oil supply path 53 in the intermediate plate.

以上のような構成を備えた自然冷媒(CO2冷媒及びHC冷媒)低圧シェル型二段ロータリ圧縮機は、実施の形態1と同様な効果が得られ、(1)ベーン飛び防止、(2)摺動部(軸受、ベーン)の潤滑性能確保、(3)回転ピストン及びベーンのシール性能確保、および(4)高圧側の油貯蔵量の低減の課題を同時に満足し、信頼性化、低コスト化、高性能化、及び冷媒量の低減を可能にする。The natural refrigerant (CO 2 refrigerant and HC refrigerant) low-pressure shell-type two-stage rotary compressor having the above-described configuration can achieve the same effects as those of the first embodiment, (1) prevention of vane jumping, (2) Satisfying the lubrication performance of sliding parts (bearings, vanes), (3) ensuring the sealing performance of rotating pistons and vanes, and (4) reducing the amount of oil stored on the high pressure side at the same time. , Increase performance, and reduce the amount of refrigerant.

実施の形態3Embodiment 3

図9は実施の形態2に係る低圧シェル型単段ロータリ圧縮機の全体構成を示す組立て図である。実施の形態2のロータリ圧縮機との構成上の相違点は、1つの圧縮機構からなる単段ロータリ圧縮機であること、さらに、密閉容器8の底部シェル構造が油分離器用高圧容器41と吐出マフラ18を兼ねる構造にし、この容器41内にクランク軸6の下端に油分離手段として作用する旋回流発生用回転体64を設け、給油手段として油ポンプ用回転体61を取り付けたことである。これ以外の点は実施の形態2と同様であり説明を省略する。ただし、単段の圧縮機構自体は図3〜5に示す実施の形態1の圧縮機構と同様であり、単段の圧縮機構の図符号は、実施の形態2の第1の(低段側)圧縮機構の参照符号を用いて表わす。   FIG. 9 is an assembly diagram showing the overall configuration of the low-pressure shell type single-stage rotary compressor according to the second embodiment. The difference in configuration from the rotary compressor of the second embodiment is that it is a single-stage rotary compressor composed of one compression mechanism, and further, the bottom shell structure of the hermetic container 8 is different from the high pressure container 41 for oil separator. This structure also serves as the muffler 18, and a rotating flow generating rotating body 64 acting as oil separating means is provided at the lower end of the crankshaft 6 in the container 41, and an oil pump rotating body 61 is attached as oil supplying means. The other points are the same as in the second embodiment, and a description thereof is omitted. However, the single-stage compression mechanism itself is the same as the compression mechanism of the first embodiment shown in FIGS. 3 to 5, and the symbol of the single-stage compression mechanism is the first (lower stage) of the second embodiment. Represented using reference numerals of the compression mechanism.

このロータリ圧縮機は、密閉容器8内に、電動機9と、電動機9によって駆動されるクランク軸6と、クランク軸6の両端を支持する短軸側軸受7aおよび長軸側軸受7bと、圧縮機構10とを備えている。低圧の冷媒は、密閉容器8内を経由して吸入管15b1から圧縮機構10のシリンダ11内に吸入され、圧縮機構10で高圧にまで圧縮され、吐出弁17から油分離器90を備えた吐出マフラ空間18a内に吐出される。   The rotary compressor includes an electric motor 9, a crankshaft 6 driven by the electric motor 9, a short shaft side bearing 7a and a long shaft side bearing 7b that support both ends of the crankshaft 6, and a compression mechanism. 10. The low-pressure refrigerant is sucked into the cylinder 11 of the compression mechanism 10 from the suction pipe 15b1 via the sealed container 8, compressed to a high pressure by the compression mechanism 10, and discharged from the discharge valve 17 with the oil separator 90. It is discharged into the muffler space 18a.

クランク軸6の下端には、そこに取り付けた旋回流発生用回転体64により冷媒の旋回流が発生し、油分離器用高圧容器91内でサイクロン方式の油分離が行われる。遠心力で外周に飛ばされた潤滑油は壁面を伝って、重力で高圧容器の下方の油貯蔵部92に集められる。油貯蔵部92内の油は油用消波板92aで囲われており、クランク軸6の下端に取り付けられて共に回転する油ポンプの揚力と差圧で、油ポンプ用回転体61からクランク軸中空部60内を通り、クランク軸中空部貫通穴62から軸受7a、7bとクランク軸6の軸受隙間72、73、及び回転ピストン12のシリンダとのシール隙間70に給油され、各摺動部の潤滑とシールに寄与する。また、短軸側軸受7bを兼ねる下部支持部材82に形成した給油経路85を通ってベーン背圧室14aにも給油される。   A swirl flow of the refrigerant is generated at the lower end of the crankshaft 6 by a swirl flow generating rotating body 64 attached thereto, and cyclone oil separation is performed in the high pressure vessel 91 for the oil separator. The lubricating oil blown to the outer periphery by centrifugal force travels along the wall surface and is collected by gravity in the oil storage part 92 below the high-pressure vessel. The oil in the oil storage section 92 is surrounded by an oil wave-dissipating plate 92a, and is attached to the lower end of the crankshaft 6 and lifted and differential pressure of the oil pump rotating together. The oil passes through the hollow portion 60 and is supplied from the crankshaft hollow portion through-hole 62 to the bearing gaps 72 and 73 between the bearings 7a and 7b and the crankshaft 6 and the seal gap 70 between the cylinder of the rotary piston 12 and Contributes to lubrication and sealing. Further, oil is supplied also to the vane back pressure chamber 14a through an oil supply passage 85 formed in the lower support member 82 that also serves as the short shaft side bearing 7b.

長軸側軸受7a側に供給された潤滑油はクランク軸6との軸受隙間70aの上端から低圧シェル容器である密閉容器8内に噴出する。また、短軸受7bの内側には螺旋溝55bがきってあり、クランク軸6が回転すると油が上から下へ巻き下げられる構造であり、短軸側軸受7b側に供給された潤滑油は、クランク軸6との軸受隙間70bの下端から油分離器用高圧容器91内に戻る。これ以外の各摺動部(回転ピストン、ベーン)に給油された潤滑油は、シリンダ内に入り冷媒と混合されて、高段側吐出部26から油分離器90へ吐出され、分離された潤滑油は油貯蔵部92にもどるが、分離されない潤滑油は冷凍サイクル回路内をそれぞれ循環する。   The lubricating oil supplied to the long shaft side bearing 7a is ejected from the upper end of the bearing gap 70a with the crankshaft 6 into the sealed container 8 which is a low pressure shell container. Further, a spiral groove 55b is formed inside the short bearing 7b, and when the crankshaft 6 rotates, the oil is wound down from the top to the bottom, and the lubricating oil supplied to the short shaft side bearing 7b side is: It returns to the oil separator high-pressure vessel 91 from the lower end of the bearing gap 70b with the crankshaft 6. Lubricating oil supplied to the other sliding parts (rotary pistons, vanes) enters the cylinder, is mixed with the refrigerant, and is discharged from the high-stage discharge part 26 to the oil separator 90 and separated. The oil returns to the oil reservoir 92, but the unseparated lubricating oil circulates in the refrigeration cycle circuit.

この実施の形態3においても、定常運転時に低圧シェル側油貯蔵部58に1/3の油が貯蔵されるように給油経路の隙間や絞り流路を設計するが、油貯蔵のバランスが崩れる場合がありうるので、実施の形態2と同様な油面調整機能(例1’)および(例3’)を設ける。   Even in this third embodiment, the gap or throttle channel of the oil supply path is designed so that 1/3 of the oil is stored in the low pressure shell side oil storage section 58 during steady operation, but the balance of oil storage is lost. Therefore, oil level adjustment functions (Example 1 ′) and (Example 3 ′) similar to those of the second embodiment are provided.

この実施の形態3においては、潤滑油を圧縮機構に供給する給油手段は、潤滑油を、短軸側軸受7bを兼ねる下部支持部材82に形成した給油経路85を通してベーン背圧室14aに供給する第1の給油経路と、油貯蔵部42内の潤滑油を油ポンプ用回転体61からクランク軸中空部60、クランク軸中空部貫通穴62を通して(1)軸受7a、7bに供給する経路、(2)クランク軸6の隙間、および(3)回転ピストン12のシリンダの隙間に供給する経路を有する第2の給油経路とを備えている。   In the third embodiment, the oil supply means for supplying the lubricating oil to the compression mechanism supplies the lubricating oil to the vane back pressure chamber 14a through the oil supply passage 85 formed in the lower support member 82 that also serves as the short shaft side bearing 7b. (1) A path for supplying the lubricating oil in the oil storage section 42 from the oil pump rotor 61 to the bearings 7a and 7b through the crankshaft hollow section 60 and the crankshaft hollow section through hole 62 (1) 2) a gap between the crankshafts 6 and (3) a second oil supply path having a path for supplying the gaps between the cylinders of the rotary piston 12.

以上のように構成を備えた自然冷媒(CO2冷媒及びHC冷媒)低圧シェル型単段ロータリ圧縮機は、実施の形態2と同様な効果が得られるので、(1)ベーン飛び防止、(2)摺動部(軸受、ベーン)の潤滑性能確保、(3)回転ピストン及びベーンのシール性能確保、(4)高圧側の油貯蔵量の低減、以上の課題を同時に満足し、信頼性化、低コスト化、高性能化、及び冷媒量の低減を可能にする。Since the natural refrigerant (CO 2 refrigerant and HC refrigerant) low-pressure shell type single-stage rotary compressor having the configuration as described above can achieve the same effects as those of the second embodiment, (1) prevention of vane skipping, (2 ) Ensuring lubrication performance of sliding parts (bearings, vanes), (3) Ensuring sealing performance of rotating pistons and vanes, (4) Reducing oil storage on the high-pressure side, satisfying the above issues at the same time, improving reliability, Enables cost reduction, higher performance, and reduced refrigerant volume.

実施の形態4Embodiment 4

図10は実施の形態4に係る低圧シェル型二段ロータリ圧縮機の全体構成を示す組立て図である。このロータリ圧縮機は、油分離要素90を密閉容器8内の高段吐出マフラ28を兼ねる点で、実施の形態2のロータリ圧縮機と同様であるが、これに加えて、密閉容器外にも油分離要素40も設けた点が異なる。   FIG. 10 is an assembly diagram showing the overall configuration of the low-pressure shell type two-stage rotary compressor according to the fourth embodiment. This rotary compressor is the same as the rotary compressor of the second embodiment in that the oil separation element 90 also serves as the high-stage discharge muffler 28 in the sealed container 8, but in addition to this, the rotary compressor is also installed outside the sealed container. The difference is that an oil separation element 40 is also provided.

第2の圧縮機構のシリンダ21内の吸入室25に吸入され、圧縮された後、高圧の冷媒として吐出弁27から吐出マフラ28の内部空間28aに吐出され、ここで、旋回流入による遠心分離とデミスタ101を組み合わせた油分離方式で分離された油は、パンチメタル102を伝って、一旦、92に貯蔵され、油分離器容器91と下側支持部材82に開けられた給油経路86を通って高段ベーン背圧室24aに供給され、さらに、下側支持部材82に開けられた給油経路85を通って、高段側回転ピストン22の上下端面シール隙間72aと72bに給油される。22の上下端面には給油溝22a、22bがリング状に切ってあり、ここに給油する。92に貯蔵された油量が基準値を超えると、高段側吐出配管26bに繋がる細管38を通って26b内を流れる冷媒に油が吸入され、26bから密閉容器外の油分離器40に供給される。40で分離された油は給油経路44から低段ベーン背圧室14aに供給される。油分離要素40の油量を少ない状態で安定に保つため、油量が少なくなると戻り量を抑制する手段が用いられ、例えば、給油経路にはキャピラリー細管を用いてガス混じり状態で流動抵抗を大きくしたり、あるいは、油貯蔵部42に浮き45aを浮かべて、油面が下がると給油経路口の流動抵抗を大きくしたりする手段を用いる。また、軸受7a、7bの隙間シール73aと73bは、軸受隙間70a、70bとは区別できるように配置した。この隙間シール73aと73bは回転ピストン上下端面の隙間から軸受隙間に油が漏れにくくする効果がある。   After being sucked into the suction chamber 25 in the cylinder 21 of the second compression mechanism and compressed, it is discharged as a high-pressure refrigerant from the discharge valve 27 to the internal space 28a of the discharge muffler 28, where centrifugal separation by swirling inflow is performed. The oil separated by the oil separation method combined with the demister 101 passes through the punch metal 102 and is temporarily stored in 92 and passes through an oil supply path 86 opened in the oil separator container 91 and the lower support member 82. The high stage vane back pressure chamber 24a is supplied to the upper stage lower end face seal gaps 72a and 72b through the oil supply path 85 opened in the lower support member 82. Oil supply grooves 22a and 22b are cut in a ring shape on the upper and lower end surfaces of the oil 22 and oil is supplied here. When the amount of oil stored in 92 exceeds the reference value, the oil is sucked into the refrigerant flowing in 26b through the narrow pipe 38 connected to the high-stage discharge pipe 26b, and supplied from 26b to the oil separator 40 outside the sealed container. Is done. The oil separated at 40 is supplied from the oil supply path 44 to the low-stage vane back pressure chamber 14a. In order to keep the oil amount of the oil separating element 40 stable in a small state, means for suppressing the return amount is used when the oil amount decreases. For example, a capillary capillary is used in the oil supply path to increase the flow resistance in a gas-mixed state. Alternatively, a means for floating the oil storage unit 42 to float 45a and increasing the flow resistance of the oil supply passage port when the oil level is lowered is used. Further, the clearance seals 73a and 73b of the bearings 7a and 7b are arranged so as to be distinguished from the bearing clearances 70a and 70b. The gap seals 73a and 73b have an effect of making it difficult for oil to leak into the bearing gap from the gap between the upper and lower end surfaces of the rotary piston.

また、クランク軸6の中空部60の下端に油ポンプ用回転体61が付けられており、密閉容器8側の油貯蔵部58の底にある低圧状態の潤滑油を汲み上げ、中空部貫通穴62a、60bからクランク軸6と主軸受7a、7bとの隙間70a、70bに給油する。軸受7aの内周側には螺旋溝55aがきってあり、クランク軸6が回転すると油を下から上方に巻き上げることができるので、軸受隙間7aの上端まで給油可能である。   An oil pump rotator 61 is attached to the lower end of the hollow portion 60 of the crankshaft 6 to pump up the low-pressure lubricating oil at the bottom of the oil storage portion 58 on the closed container 8 side, and to pass through the hollow portion through hole 62a. 60b, oil is supplied to the gaps 70a and 70b between the crankshaft 6 and the main bearings 7a and 7b. A spiral groove 55a is formed on the inner peripheral side of the bearing 7a. When the crankshaft 6 rotates, the oil can be wound up from the bottom to the top, so that the oil can be supplied to the upper end of the bearing gap 7a.

また、62bから軸受隙間70bに給油し、軸受7bの内周側に設けた流路55dを通って、軸受隙間7b全体に給油可能である。本実施の形態4のような軸受給油方法を用いれば、過渡的に密閉容器内の低圧側油量が極端に低下しても、主軸受け7a、7bへの給油が可能であるので、信頼性をできる。   Further, oil can be supplied to the bearing gap 70b from 62b, and can be supplied to the entire bearing gap 7b through a flow path 55d provided on the inner peripheral side of the bearing 7b. If the bearing oil supply method as in the fourth embodiment is used, the main bearings 7a and 7b can be supplied with oil even if the low-pressure side oil amount in the sealed container is excessively reduced. Can do.

以上の実施の形態4で設計した場合は、圧縮機効率70%、体積効率85%となり、圧縮機内冷媒量72gと予測される。従来一般例の高圧シェル型ロータリ圧縮機に比べると、圧縮機効率と体積効率は少し低下するものの、冷媒封入量を約1/2に低減し、密閉容器肉厚を約1/2に低減できる。また、従来の発明1の低圧シェル型ロータリ圧縮機に比べると、圧縮機効率と体積効率を約5%改善し、圧縮機内冷媒封入量を一定に保つことができる。   In the case of designing in the fourth embodiment, the compressor efficiency is 70% and the volume efficiency is 85%, and the refrigerant amount in the compressor is predicted to be 72 g. Compared with the conventional high-pressure shell type rotary compressor, although the compressor efficiency and volumetric efficiency are slightly reduced, the amount of refrigerant filled can be reduced to about 1/2, and the thickness of the sealed container can be reduced to about 1/2. . Further, compared with the conventional low pressure shell type rotary compressor of the invention 1, the compressor efficiency and the volume efficiency can be improved by about 5%, and the refrigerant filling amount in the compressor can be kept constant.

以上のような構成を備えた自然冷媒(CO2冷媒及びHC冷媒)低圧シェル型単段ロータリ圧縮機は、実施の形態1と同様な効果が得られるので、(1)ベーン飛び防止、(2)摺動部(軸受、ベーン)の潤滑性能確保、(3)回転ピストン及びベーンのシール性能確保、(4)高圧側の油貯蔵量の低減、以上の課題を同時に満足し、信頼性化、低コスト化、高性能化、及び冷媒量の低減を可能にする。Since the natural refrigerant (CO 2 refrigerant and HC refrigerant) low-pressure shell type single-stage rotary compressor having the above-described configuration can obtain the same effects as those of the first embodiment, (1) prevention of vane skipping, (2 ) Ensuring lubrication performance of sliding parts (bearings, vanes), (3) Ensuring sealing performance of rotating pistons and vanes, (4) Reducing oil storage on the high-pressure side, satisfying the above issues at the same time, improving reliability, Enables cost reduction, higher performance, and reduced refrigerant volume.

以上の実施の形態では、本発明の低圧シェル型ロータリ圧縮機にHC冷媒を用いた場合の効果を示したが、HC冷媒以外のCO2冷媒、フロン冷媒などの種々の冷媒を用いることができ、それぞれ、(1)ベーン飛びを防止、(2)摺動部(軸受、ベーン)の潤滑性能確保、(3)回転ピストン及びベーンのシール性能確保、(4)高圧側の油貯蔵量の低減、以上を同時に満足し、信頼性化、低コスト化、高性能化、及び冷媒量の低減が可能である。フロン冷媒使用量を低減することは地球温暖化対策に有効であり、また、可燃性や毒性がある場合には安全性の観点から有効である。In the above embodiment, the effect of using the HC refrigerant in the low-pressure shell-type rotary compressor of the present invention has been shown. However, various refrigerants such as a CO 2 refrigerant and a chlorofluorocarbon refrigerant other than the HC refrigerant can be used. , Respectively (1) prevent vane jumping, (2) ensure lubrication performance of sliding parts (bearings, vanes), (3) ensure sealing performance of rotating pistons and vanes, (4) reduce oil storage on the high pressure side The above can be satisfied at the same time, and reliability, cost reduction, high performance, and reduction of the refrigerant amount can be achieved. Reducing the amount of chlorofluorocarbon refrigerant is effective for global warming countermeasures, and is effective from the viewpoint of safety when there is flammability or toxicity.

以上の実施の形態1、2、3に示したように、低圧シェル型二段ロータリ圧縮機において、高圧側潤滑油を摺動部(軸受、ベーン)やシール部に供給する経路を中間プレート内に設けることにより、コンパクトな構成を低コストで実現することが可能になった。   As shown in the first, second, and third embodiments, in the low-pressure shell type two-stage rotary compressor, the path for supplying the high-pressure side lubricating oil to the sliding part (bearing, vane) and the seal part is provided in the intermediate plate. As a result, a compact configuration can be realized at low cost.

以上の実施の形態では、低圧シェル型ロータリ圧縮機として、回転ピストン式の場合について説明したが、本発明は、スライディングベーン式やスイング式などの様々なロータリ圧縮機に適用できるものである。スライディングベーン式の場合は回転ピストン式と同様の効果が得られ、スイング式の場合は(1)ベーン飛びの防止以外の同様の効果が得られる。   In the above embodiment, the case of the rotary piston type has been described as the low pressure shell type rotary compressor. However, the present invention can be applied to various rotary compressors such as a sliding vane type and a swing type. In the case of the sliding vane type, the same effect as that of the rotary piston type is obtained, and in the case of the swing type, the same effect other than (1) prevention of vane jumping is obtained.

Claims (11)

外部冷媒回路に吸入管および吐出管で接続され、低圧の冷媒を封入する密閉容器と、上記密閉容器内に設けられた電動機と、上記密閉容器内に設けられ、低圧の冷媒を吸入し圧縮する圧縮機構とを備え、
上記圧縮機構は、上記電動機に連結されて軸受で支持されたクランク軸、上記クランク軸によって駆動され、シリンダ内を偏心回転する回転ピストン、シリンダ内に吸入室および圧縮室を形成し、背後にベーン背圧室を形成するベーンを有し、上記圧縮室から吐出する圧力を調整する吐出弁と高圧吐出マフラ、上記圧縮室から高圧の冷媒が外部冷媒回路へ導く前に経由する油分離要素を1個以上備え、そのうち、少なくとも1個の油分離要素は前記高圧吐出マフラの機能を兼ねる、さらに、少なくとも1個の油分離要素から分離した潤滑油を上記ベーン背圧室に供給する給油手段と給油経路を備えたことを特徴とするロータリ圧縮機。
A sealed container that is connected to an external refrigerant circuit by a suction pipe and a discharge pipe and encloses a low-pressure refrigerant; an electric motor provided in the closed container; and a suction container that is provided in the closed container and sucks and compresses the low-pressure refrigerant. A compression mechanism,
The compression mechanism is connected to the electric motor and supported by a bearing, and is driven by the crankshaft. The rotary piston rotates eccentrically in the cylinder, and a suction chamber and a compression chamber are formed in the cylinder. A discharge valve and a high-pressure discharge muffler that have a vane that forms a back pressure chamber, adjust the pressure discharged from the compression chamber, and an oil separation element that passes before high-pressure refrigerant from the compression chamber leads to an external refrigerant circuit. More than one, of which at least one oil separation element also functions as the high-pressure discharge muffler, and further, an oil supply means and an oil supply for supplying lubricating oil separated from at least one oil separation element to the vane back pressure chamber A rotary compressor comprising a path.
外部冷媒回路に吸入管および吐出管で接続され、低圧の冷媒を封入する密閉容器と、上記密閉容器内に設けられた電動機と、上記密閉容器内に設けられ、低圧の冷媒を吸入し圧縮する第1圧縮機構、第1圧縮機構で昇圧した中間圧の冷媒を吸入し圧縮する第2の圧縮機構とを備え、
上記第1及び第2の圧縮機構は、上記電動機に連結されて軸受で支持されたクランク軸、上記クランク軸によって駆動され、シリンダ内を偏心回転する回転ピストン、シリンダ内に吸入室および圧縮室を形成し、背後にベーン背圧室を形成するベーンを有し、上記圧縮室から吐出する圧力を調整する吐出弁を備え、上記第2の圧縮機構により圧縮した高圧の冷媒が外部冷媒回路へ吐出される前に経由する油分離要素を1個以上備え、そのうち、少なくとも1個の油分離要素は上記油分離要素で分離した潤滑油を上記ベーン背圧室への給油経路および上記軸受隙間と上記給油隙間との少なくともいずれか一方に供給する給油経路が、上記中間プレート内に形成されていることを特徴とするロータリ圧縮機。

A sealed container that is connected to an external refrigerant circuit by a suction pipe and a discharge pipe and encloses a low-pressure refrigerant; an electric motor provided in the closed container; and a suction container that is provided in the closed container and sucks and compresses the low-pressure refrigerant. A first compression mechanism, a second compression mechanism that sucks and compresses the intermediate-pressure refrigerant that has been boosted by the first compression mechanism,
The first and second compression mechanisms are connected to the electric motor and supported by a bearing, a crankshaft driven by the crankshaft, a rotating piston that rotates eccentrically in the cylinder, a suction chamber and a compression chamber in the cylinder. A high pressure refrigerant compressed by the second compression mechanism is discharged to the external refrigerant circuit. The discharge valve adjusts the pressure discharged from the compression chamber. Including at least one oil separation element through which the oil is separated, and at least one of the oil separation elements includes lubricating oil separated by the oil separation element, an oil supply path to the vane back pressure chamber, the bearing gap, and the above A rotary compressor characterized in that an oil supply path for supplying at least one of an oil supply gap is formed in the intermediate plate.
.
上記圧縮機構が中間プレートで仕切られた第1および第2の圧縮機構を備えた二段式圧縮機構であり、
上記第1の圧縮機構の吐出弁および圧縮した冷媒を吐出する空間が、上記中間プレート内に形成されていることを特徴とする請求項2に記載のロータリ圧縮機
The compression mechanism is a two-stage compression mechanism including first and second compression mechanisms partitioned by an intermediate plate;
The rotary compressor according to claim 2, wherein a discharge valve of the first compression mechanism and a space for discharging the compressed refrigerant are formed in the intermediate plate.
上記油分離要素は、前記密閉容器と圧力的に区画された同一空間内に、上記吐出弁、油分離機能、及び、油貯蔵部を備えて、高圧吐出マフラの機能を兼ねることを特徴とする請求項1または2に記載のロータリ圧縮機。
The oil separation element includes the discharge valve, an oil separation function, and an oil storage unit in the same space that is pressure-divided with the hermetic container, and also serves as a high-pressure discharge muffler. The rotary compressor according to claim 1 or 2.
上記圧縮室から高圧の冷媒を外部冷媒回路へ導く前に経由する上記油分離要素の少なくとも1個からは分離した潤滑油を上記ベーン背圧室に供給する給油手段と給油経路、さらに、上記給油経路以外で上記圧縮機構の給油隙間に供給する給油経路とを備えたことを特徴とする請求項1または2に記載のロータリ圧縮機。
An oil supply means and an oil supply path for supplying lubricating oil separated from at least one of the oil separation elements via the high pressure refrigerant from the compression chamber to the external refrigerant circuit to the vane back pressure chamber, and the oil supply The rotary compressor according to claim 1, further comprising an oil supply path that supplies the oil supply gap of the compression mechanism other than the path.
上記密閉容器側に低圧の潤滑油、及び、上記油分離要素側と高圧の潤滑油をそれぞれ油貯蔵部を有し、上記油分離要素側の油貯蔵部の油貯蔵量が所定値以上になったときに、冷媒を上記密閉容器側の油貯蔵部に戻す油戻し経路を備えていることを特徴とする請求項1または2に記載のロータリ圧縮機。
The closed container side has a low-pressure lubricating oil, and the oil separation element side and the high-pressure lubricating oil each have an oil storage part, and the oil storage amount of the oil storage part on the oil separation element side becomes a predetermined value or more. The rotary compressor according to claim 1 or 2, further comprising an oil return path for returning the refrigerant to the oil storage section on the closed container side.
上記密閉容器側に潤滑油を貯蔵する油貯蔵部を備え、上記油貯蔵部の油貯蔵量が所定値以上になったときに、冷媒を、上記密閉容器内を経由して、上記圧縮機構の上記シリンダ内に低圧の冷媒を吸入する経路に、混入させる手段を備えていることを特徴とする請求項1または2に記載のロータリ圧縮機。
An oil storage section for storing lubricating oil is provided on the closed container side, and when the oil storage amount of the oil storage section reaches a predetermined value or more, the refrigerant is passed through the closed container to 3. The rotary compressor according to claim 1, further comprising means for mixing in a path for sucking low-pressure refrigerant into the cylinder.
上記油分離要素が、上記圧縮機構の上記クランク軸の軸端に設けられ、上記油分離要素内で回転して、上記油分離要素内に旋回流れを発生させる回転体を備えて遠心分離機能を促進することを特徴とする請求項1または2に記載のロータリ圧縮機。
The oil separation element is provided at a shaft end of the crankshaft of the compression mechanism, and includes a rotating body that rotates in the oil separation element and generates a swirling flow in the oil separation element, and has a centrifugal separation function. The rotary compressor according to claim 1, wherein the rotary compressor is accelerated.
上記圧縮機構により圧縮した高圧の冷媒が外部冷媒回路へ吐出される前に経由する油分離要素を複数個有し、そのうち2個以上の油分離要素を直列に配管接続したことを特徴とする請求項1または2に記載のロータリ圧縮機。
A plurality of oil separation elements through which the high-pressure refrigerant compressed by the compression mechanism passes before being discharged to the external refrigerant circuit, and two or more oil separation elements are connected in series by piping. Item 3. The rotary compressor according to Item 1 or 2.
上記2個の油分離要素が直列に配管接続され、前段油分離要素の油貯蔵部の側面には、所定の高さに前記配管に繋がる吐出口が設けられ、前記の油貯蔵部の油面高さが所定以上のとき前記配管から冷媒といっしょに後段油分離要素に吐出される油面高さ調整機能を有することを特徴とする請求項9に記載のロータリ圧縮機。
The two oil separation elements are connected in series with a pipe, and a discharge port connected to the pipe is provided at a predetermined height on the side surface of the oil storage section of the preceding stage oil separation element, and the oil level of the oil storage section 10. The rotary compressor according to claim 9, wherein the rotary compressor has a function of adjusting an oil level that is discharged from the pipe to a downstream oil separation element together with a refrigerant when the height is equal to or greater than a predetermined value.
上記冷媒の主成分は炭酸ガスまたは炭化水素ガスであり、かつ、上記潤滑油の主成分はポリアルキルグリコールであることを特徴とする請求項1または2に記載のロータリ圧縮機。   The rotary compressor according to claim 1 or 2, wherein the main component of the refrigerant is carbon dioxide gas or hydrocarbon gas, and the main component of the lubricating oil is polyalkyl glycol.
JP2009530016A 2007-08-28 2008-07-03 Rotary compressor Active JP5300727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009530016A JP5300727B2 (en) 2007-08-28 2008-07-03 Rotary compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007221082 2007-08-28
JP2007221082 2007-08-28
PCT/JP2008/062080 WO2009028261A1 (en) 2007-08-28 2008-07-03 Rotary compressor
JP2009530016A JP5300727B2 (en) 2007-08-28 2008-07-03 Rotary compressor

Publications (2)

Publication Number Publication Date
JPWO2009028261A1 true JPWO2009028261A1 (en) 2010-11-25
JP5300727B2 JP5300727B2 (en) 2013-09-25

Family

ID=40386990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009530016A Active JP5300727B2 (en) 2007-08-28 2008-07-03 Rotary compressor

Country Status (3)

Country Link
JP (1) JP5300727B2 (en)
CN (1) CN101743404B (en)
WO (1) WO2009028261A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131328A1 (en) * 2009-05-12 2010-11-18 三菱電機株式会社 Two-stage compressor and refrigeration air-conditioner
KR101679860B1 (en) * 2010-07-14 2016-11-25 엘지전자 주식회사 Compressor
CN102374168A (en) * 2010-08-10 2012-03-14 广东美芝制冷设备有限公司 Rotary compressor of hydrocarbon refrigeration agent
JP2012159008A (en) * 2011-01-31 2012-08-23 Sanyo Electric Co Ltd Machining hole structure of metal member, and refrigerating cycle device formed by using the machining hole structure
JP5844980B2 (en) * 2011-02-15 2016-01-20 株式会社神戸製鋼所 Two-stage screw compression refrigeration system
CN102878082B (en) * 2012-09-21 2015-05-20 广东美芝制冷设备有限公司 Rotating compressor of low pressure structure in shell
DE102013203268A1 (en) * 2013-02-27 2014-08-28 Bitzer Kühlmaschinenbau Gmbh Refrigerant compressor
CN103511265A (en) * 2013-08-01 2014-01-15 广东美芝制冷设备有限公司 Rotary compressor
CN103452842A (en) * 2013-08-22 2013-12-18 广东美芝制冷设备有限公司 Compressor
EP2927499B1 (en) * 2013-10-31 2020-04-29 Guangdong Meizhi Compressor Co., Ltd. Rotation type compressor and refrigeration cycle apparatus
CA2979254C (en) * 2015-03-30 2023-10-24 Hicor Technologies, Inc. Compressor with liquid injection cooling
CN105952648A (en) * 2016-06-17 2016-09-21 广东美芝制冷设备有限公司 Compressor
JP6753336B2 (en) * 2017-02-28 2020-09-09 株式会社豊田自動織機 Vane compressor
JP7009188B2 (en) * 2017-12-05 2022-01-25 東芝キヤリア株式会社 Motors, sealed compressors and refrigeration cycle equipment
CN111287970A (en) * 2018-12-10 2020-06-16 广东美芝精密制造有限公司 Compressor and refrigeration equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366767U (en) * 1986-10-20 1988-05-06
JPS6383483U (en) * 1986-11-21 1988-06-01
JPS63205489A (en) * 1987-02-23 1988-08-24 Hitachi Ltd Enclosed scroll compressor
JPH04134196A (en) * 1990-09-27 1992-05-08 Daikin Ind Ltd Hermetic compressor
JPH0561487U (en) * 1992-01-23 1993-08-13 三菱電機株式会社 Oil separation device for hermetic electric compressor
JP3114418B2 (en) * 1993-03-24 2000-12-04 ダイキン工業株式会社 Compressor and refrigeration apparatus provided with the compressor
JP3418470B2 (en) * 1994-12-20 2003-06-23 東芝キヤリア株式会社 Rotary compressor
JPH11118272A (en) * 1997-10-14 1999-04-30 Matsushita Electric Ind Co Ltd Refrigeration cycle unit employing inflammable refrigerant
JP2002276578A (en) * 2001-03-14 2002-09-25 Matsushita Electric Ind Co Ltd Rotary type multi-stage compressor
JP2005256669A (en) * 2004-03-10 2005-09-22 Sanyo Electric Co Ltd Lateral rotary compressor and air conditioner for vehicle
JP4815808B2 (en) * 2005-01-24 2011-11-16 三菱電機株式会社 Rotary compressor
JP2006258002A (en) * 2005-03-17 2006-09-28 Toshiba Kyaria Kk Hermetic compressor

Also Published As

Publication number Publication date
JP5300727B2 (en) 2013-09-25
WO2009028261A1 (en) 2009-03-05
CN101743404A (en) 2010-06-16
CN101743404B (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5300727B2 (en) Rotary compressor
JP4875484B2 (en) Multistage compressor
JP6594707B2 (en) Two-stage compression refrigeration system
EP2565460B1 (en) Rotary compressor
JPH07180685A (en) Two-cylinder rotary closed compressor
JP4969646B2 (en) Fluid machine and refrigeration cycle apparatus including the same
JPWO2008023694A1 (en) Expander-integrated compressor and refrigeration cycle apparatus including the same
JP2003139420A (en) Refrigeration unit
JP2020051662A (en) Refrigeration air conditioner and hermetic electric compressor used in the same
JP5269192B2 (en) Two-stage compressor and refrigeration air conditioner
CN112752934B (en) Multi-stage compression system
US20130189080A1 (en) Rotary compressor
JP2009092060A (en) Oil separator
JP2009052497A (en) Refrigerant compressor
JP2008138572A (en) Scroll type fluid machine
JP6702401B1 (en) Multi-stage compression system
EP2565459B1 (en) Rotary compressor
JP4722173B2 (en) Refrigeration cycle equipment
Ogata et al. Reduction of oil discharge for rolling piston compressor using CO2 refrigerant
JP2020094761A (en) Multi-stage compression system
JP2014118954A (en) Scroll compressor
JP2019002611A (en) Refrigeration cycle device
WO2023139829A1 (en) Rotary compressor
Zhang et al. Transcritical Carbon Dioxide Compressors
JP6429943B2 (en) Scroll compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250