JPWO2009025382A1 - Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same - Google Patents

Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same Download PDF

Info

Publication number
JPWO2009025382A1
JPWO2009025382A1 JP2009529086A JP2009529086A JPWO2009025382A1 JP WO2009025382 A1 JPWO2009025382 A1 JP WO2009025382A1 JP 2009529086 A JP2009529086 A JP 2009529086A JP 2009529086 A JP2009529086 A JP 2009529086A JP WO2009025382 A1 JPWO2009025382 A1 JP WO2009025382A1
Authority
JP
Japan
Prior art keywords
ruthenium complex
acid
aqueous solution
complex dye
dinuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009529086A
Other languages
Japanese (ja)
Other versions
JP5493857B2 (en
Inventor
剛久 角田
剛久 角田
貴文 岩佐
貴文 岩佐
青木 崇
崇 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009529086A priority Critical patent/JP5493857B2/en
Publication of JPWO2009025382A1 publication Critical patent/JPWO2009025382A1/en
Application granted granted Critical
Publication of JP5493857B2 publication Critical patent/JP5493857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

一般式(1)(式中、Yは、ハロゲン原子を示す。)で示されるルテニウム錯体(1)と式(2−1)または式(2−2)で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整して単離させることによって二核ルテニウム錯体色素を得る。A ruthenium complex (1) represented by general formula (1) (wherein Y represents a halogen atom) and a ruthenium complex (2) represented by formula (2-1) or formula (2-2). After the reaction, the dinuclear ruthenium complex dye is obtained by adding an acid to adjust the pH of the reaction solution to be greater than 2.5 and 5 or less and to isolate.

Description

本発明は、光電変換効率及び耐久性に優れた二核ルテニウム錯体色素、及び当該錯体によって光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池に関する。   The present invention relates to a dinuclear ruthenium complex dye excellent in photoelectric conversion efficiency and durability, a photoelectric conversion element using semiconductor fine particles photosensitized by the complex, and a photochemical battery using the same.

太陽電池はクリーンな再生型エネルギー源として大きく期待されており、例えば、単結晶シリコン系、多結晶シリコン系、アモルファスシリコン系の太陽電池や、テルル化カドミウム、セレン化インジウム銅等の化合物からなる太陽電池の実用化をめざした研究がなされている。しかしながら、家庭用電源として普及させるためには、いずれの電池も製造コストが高いことや、原材料の確保が困難なことやリサイクルの問題、又、大面積化が困難であるなど克服しなければならない多くの問題を抱えている。そこで、大面積化や低価格化を目指し、有機材料を用いた太陽電池が提案されてきたが、いずれも変換効率が1%程度と実用化にはほど遠いものであった。   Solar cells are highly expected as clean renewable energy sources. For example, solar cells made of single crystal silicon, polycrystalline silicon, amorphous silicon, or compounds such as cadmium telluride and indium copper selenide Research aimed at putting batteries into practical use has been conducted. However, in order to disseminate as a household power source, it is necessary to overcome the high manufacturing costs, difficulty in securing raw materials, recycling problems, and difficulty in increasing the area. Have many problems. Thus, solar cells using organic materials have been proposed with the aim of increasing the area and reducing the price, but all of them have a conversion efficiency of about 1% and are far from practical use.

こうした状況の中、グレッツェルらにより、色素によって増感された半導体微粒子を用いた光電変換素子及び太陽電池、並びにこの太陽電池の作製に必要な材料及び製造技術が開示された(例えば、非特許文献1、特許文献1参照)。当該電池は、ルテニウム色素によって増感された多孔質チタニア薄膜を作用電極とする湿式太陽電池である。この太陽電池の利点は、安価な材料を高純度に精製する必要がなく用いられるため、安価な光電変換素子として提供できること、更に用いられる色素の吸収がブロードであり、広い可視光の波長域にわたって太陽光を電気に変換できることである。しかしながら、実用化のためには更なる変換効率の向上が必要であり、より高い吸光係数を有し、より高波長域まで光を吸収する色素の開発が依然として望まれている。   Under such circumstances, Gretzel et al. Disclosed a photoelectric conversion element and a solar cell using semiconductor fine particles sensitized with a dye, and materials and manufacturing techniques necessary for the production of the solar cell (for example, non-patent literature). 1, see Patent Document 1). The battery is a wet solar battery using a porous titania thin film sensitized with a ruthenium dye as a working electrode. The advantage of this solar cell is that it is possible to provide an inexpensive photoelectric conversion element because it is not necessary to purify an inexpensive material with high purity, and furthermore, the absorption of the dye used is broad, over a wide visible light wavelength range. It can convert sunlight into electricity. However, further improvement in conversion efficiency is necessary for practical use, and development of a dye having a higher extinction coefficient and absorbing light up to a higher wavelength region is still desired.

特許文献2には、光電変換素子として有用な金属錯体色素であるジピリジル配位子含有金属単核錯体が開示されており、非特許文献2には、多核β−ジケトナート錯体色素が開示されている。   Patent Document 2 discloses a metal mononuclear complex containing a dipyridyl ligand that is a metal complex dye useful as a photoelectric conversion element, and Non-Patent Document 2 discloses a polynuclear β-diketonate complex dye. .

特許文献3には、光等の活性光線のエネルギーを受けて電子を取り出す光電変換機能の優れた新規な複核錯体として、複数の金属と複数の配位子を有し、その複数の金属に配位する橋かけ配位子(BL)が複素共役環を有する配位構造と複素共役環を有しない配位構造を有する複核錯体が開示されている。   Patent Document 3 discloses a novel multinuclear complex having an excellent photoelectric conversion function for extracting electrons by receiving energy of actinic rays such as light, and has a plurality of metals and a plurality of ligands. A binuclear complex having a coordination structure in which the bridging ligand (BL) positioned has a heteroconjugated ring and a coordination structure having no heteroconjugated ring is disclosed.

又、特許文献4には、高い光電変換効率を有する光電変換素子が得られる金属錯体色素として、複素共役環を有する配位構造を有する二核金属錯体が開示されており、実施例では、合成後、反応液に酸を加えてpHを2.5として二核金属錯体を単離している。   Patent Document 4 discloses a binuclear metal complex having a coordination structure having a heteroconjugated ring as a metal complex dye capable of obtaining a photoelectric conversion element having high photoelectric conversion efficiency. Thereafter, an acid is added to the reaction solution to adjust the pH to 2.5, and the binuclear metal complex is isolated.

しかしながら、光電変換素子に用いる色素として、さらに高い光電変換効率を有し、且つ優れた耐久性を有する光電変換素子を実現できる金属錯体色素が望まれている。   However, a metal complex dye capable of realizing a photoelectric conversion element having higher photoelectric conversion efficiency and excellent durability is desired as a dye used for the photoelectric conversion element.

また、通常、色素増感された半導体微粒子を得るためには、色素の有機溶媒溶液に半導体微粒子を浸漬して、色素を半導体微粒子に吸着させるが、有機溶媒の使用は環境の面から好ましくない。そのため、有機溶媒溶液に代えて、色素の水溶液を用いることが望まれている。
特開平1−220380号公報 特開2003−261536号公報 特開2004−359677号公報 国際公開第2006/038587号パンフレット Nature,737,353(1991) 色素増感太陽電池の最新技術,株式会社シーエムシー発行、117頁(2001年)
Usually, in order to obtain dye-sensitized semiconductor fine particles, the semiconductor fine particles are immersed in an organic solvent solution of the dye to adsorb the dye to the semiconductor fine particles. However, the use of the organic solvent is not preferable from the viewpoint of the environment. . Therefore, it is desired to use an aqueous dye solution instead of the organic solvent solution.
Japanese Patent Laid-Open No. 1-220380 JP 2003-261536 A Japanese Patent Application Laid-Open No. 2004-359677 International Publication No. 2006/038587 Pamphlet Nature, 737, 353 (1991) The latest technology of dye-sensitized solar cells, issued by CMC Co., Ltd., page 117 (2001)

本発明の目的は、上記問題点を解決し、光電変換効率が高く、耐久性にも優れた光電変換素子及び光化学電池を実現できる二核ルテニウム錯体色素、及び当該色素によって光増感された半導体微粒子を提供することである。   An object of the present invention is to solve the above-mentioned problems, a photoelectric conversion element having high photoelectric conversion efficiency and excellent durability, and a binuclear ruthenium complex dye capable of realizing a photochemical battery, and a semiconductor photosensitized by the dye It is to provide fine particles.

さらには、色素を半導体微粒子に吸着させるのに用いられ、得られる色素によって増感された半導体微粒子を用いて光電変換効率が高い光電変換素子及び光化学電池が得られる二核ルテニウム錯体色素酸性水溶液を提供することである。   Furthermore, a dinuclear ruthenium complex dye acidic aqueous solution that is used for adsorbing the dye to the semiconductor fine particles and that can obtain a photoelectric conversion element and a photochemical battery having high photoelectric conversion efficiency using the semiconductor fine particles sensitized by the obtained dye. Is to provide.

本発明は以下の事項に関する。   The present invention relates to the following matters.

1. 一般式(1)   1. General formula (1)

Figure 2009025382
(式中、Yは、ハロゲン原子を示す。)
で示されるルテニウム錯体(1)と、一般式(2−A)
Figure 2009025382
(In the formula, Y represents a halogen atom.)
And a ruthenium complex (1) represented by general formula (2-A)

Figure 2009025382
(式中、R111、R112、R113及びR114は、それぞれ独立に、水素原子、メチル基またはエチル基を示し、
121、R122、R123、R124、R125、R126、R127、R128、R129、R130、R131、R132、R133、R134、R135及びR136は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R121〜R136の隣接する二つ、もしくはR124とR125、R132とR133が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。
ただし、NH基は脱プロトン化されて、Nとなっていてもよい。)
または、一般式(2−B)
Figure 2009025382
(Wherein R 111 , R 112 , R 113 and R 114 each independently represent a hydrogen atom, a methyl group or an ethyl group,
R 121 , R 122 , R 123 , R 124 , R 125 , R 126 , R 127 , R 128 , R 129 , R 130 , R 131 , R 132 , R 133 , R 134 , R 135, and R 136 are respectively Independently represents a hydrogen atom, a methyl group or an ethyl group, or adjacent two of R 121 to R 136 , or carbon to which R 124 and R 125 , R 132 and R 133 are bonded together A 6-membered aromatic hydrocarbon ring is formed together with the atoms.
However, NH groups are deprotonated, N - may become a. )
Or general formula (2-B)

Figure 2009025382
(式中、R211、R212、R213及びR214は、それぞれ独立に、水素原子、メチル基またはエチル基を示し、
221、R222、R223、R224、R225、R226、R227、R228、R229、R230、R231、R232、R233、R234、R235及びR236は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R221〜R236の隣接する二つ、もしくはR224とR225、R232とR233が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。
ただし、NH基は脱プロトン化されて、Nとなっていてもよい。)
または、一般式(2−C)
Figure 2009025382
(Wherein R 211 , R 212 , R 213 and R 214 each independently represents a hydrogen atom, a methyl group or an ethyl group,
R 221 , R 222 , R 223 , R 224 , R 225 , R 226 , R 227 , R 228 , R 229 , R 230 , R 231 , R 232 , R 233 , R 234 , R 235 and R 236 are respectively Independently represents a hydrogen atom, a methyl group or an ethyl group, or adjacent two of R 221 to R 236 , or carbons to which R 224 and R 225 , R 232 and R 233 are bonded together A 6-membered aromatic hydrocarbon ring is formed together with the atoms.
However, NH groups are deprotonated, N - may become a. )
Or general formula (2-C)

Figure 2009025382
(式中、R311、R312、R313、R314、R315及びR316は、それぞれ独立に、水素原子、メチル基またはエチル基を示し、
321、R322、R323、R324、R325、R326、R327、R328、R329、R330、R331、R332、R333、R334、R335及びR336は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R321〜R336の隣接する二つ、もしくはR324とR325、R332とR333が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。)
で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整して単離させることによって得られる二核ルテニウム錯体色素。
Figure 2009025382
(Wherein R 311 , R 312 , R 313 , R 314 , R 315 and R 316 each independently represents a hydrogen atom, a methyl group or an ethyl group,
R 321 , R 322 , R 323 , R 324 , R 325 , R 326 , R 327 , R 328 , R 329 , R 330 , R 331 , R 332 , R 333 , R 334 , R 335 and R 336 are respectively Independently represents a hydrogen atom, a methyl group or an ethyl group, or adjacent two of R 321 to R 336 , or carbon to which R 324 and R 325 , R 332 and R 333 are bonded together A 6-membered aromatic hydrocarbon ring is formed together with the atoms. )
A binuclear ruthenium complex dye obtained by reacting with the ruthenium complex (2) represented by the formula (2) and then isolating it by adjusting the pH of the reaction solution to be greater than 2.5 and less than or equal to 5 .

2. ルテニウム錯体(1)とルテニウム錯体(2)とを水と有機溶媒の混合溶媒中で反応させる上記1記載の二核ルテニウム錯体色素。   2. 2. The binuclear ruthenium complex dye according to 1 above, wherein the ruthenium complex (1) and the ruthenium complex (2) are reacted in a mixed solvent of water and an organic solvent.

3. 反応液に加える酸が、ヘキサフルオロリン酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、過塩素酸、テトラフルオロホウ酸、テトラフェニルホウ酸、トリフルオロメタンスルホン酸または酢酸のいずれか1種以上である上記1または2記載の二核ルテニウム錯体色素。   3. The acid added to the reaction solution is any one of hexafluorophosphoric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, perchloric acid, tetrafluoroboric acid, tetraphenylboric acid, trifluoromethanesulfonic acid or acetic acid. 3. The binuclear ruthenium complex dye according to 1 or 2, which is a species or more.

4. 前記ルテニウム錯体(2)が、下記式(2−1)で示されるルテニウム錯体または下記式(2−2)で示されるルテニウム錯体である上記1〜3のいずれかに記載の二核ルテニウム錯体色素。   4). The binuclear ruthenium complex dye according to any one of 1 to 3, wherein the ruthenium complex (2) is a ruthenium complex represented by the following formula (2-1) or a ruthenium complex represented by the following formula (2-2). .

Figure 2009025382
Figure 2009025382

Figure 2009025382
Figure 2009025382

5. 前記一般式(1)で示されるルテニウム錯体(1)と、前記一般式(2−A)、一般式(2−B)または一般式(2−C)で示されるルテニウム錯体(2)とを水と有機溶媒の混合溶媒中で反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整して、析出した固体を取得することを特徴とする、上記1〜4のいずれかに記載の二核ルテニウム錯体色素の製造方法。   5. A ruthenium complex (1) represented by the general formula (1) and a ruthenium complex (2) represented by the general formula (2-A), the general formula (2-B) or the general formula (2-C). After reacting in a mixed solvent of water and an organic solvent, an acid is added to adjust the pH of the reaction solution to be greater than 2.5 and 5 or less to obtain a precipitated solid, The manufacturing method of the binuclear ruthenium complex dye in any one of said 1-4.

6. ルテニウム錯体(1)とルテニウム錯体(2)との反応を塩基の存在下で行う上記5記載の二核ルテニウム錯体色素の製造方法。   6). 6. The method for producing a binuclear ruthenium complex dye according to 5 above, wherein the reaction between the ruthenium complex (1) and the ruthenium complex (2) is carried out in the presence of a base.

7. 前記一般式(1)で示されるルテニウム錯体(1)と、前記一般式(2−A)、一般式(2−B)または一般式(2−C)で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5〜5となるように調整することによって二核ルテニウム錯体を単離した後、当該錯体、水及び塩基(塩基性水溶液を含む)を混合して二核ルテニウム錯体色素水溶液とし、次いで、これに酸を加えることによって得られる二核ルテニウム錯体色素酸性水溶液。   7). A ruthenium complex (1) represented by the general formula (1) and a ruthenium complex (2) represented by the general formula (2-A), the general formula (2-B) or the general formula (2-C). After the reaction, the dinuclear ruthenium complex is isolated by adjusting the pH of the reaction solution to 2.5 to 5 by adding an acid, and then the complex, water and base (including basic aqueous solution). Are mixed into a dinuclear ruthenium complex dye aqueous solution, and then an acid is added to the dinuclear ruthenium complex dye aqueous solution.

8. 二核ルテニウム錯体色素の濃度が0.1〜1mmol/lである上記7記載の二核ルテニウム錯体色素酸性水溶液。   8). 8. The dinuclear ruthenium complex dye acidic aqueous solution according to 7 above, wherein the concentration of the dinuclear ruthenium complex dye is 0.1 to 1 mmol / l.

9. 酸を加える前の二核ルテニウム錯体色素水溶液の二核ルテニウム錯体色素の濃度が0.1〜1mmol/lである上記7または8記載の二核ルテニウム錯体色素酸性水溶液。   9. The dinuclear ruthenium complex dye acidic aqueous solution according to 7 or 8 above, wherein the concentration of the dinuclear ruthenium complex dye in the dinuclear ruthenium complex dye aqueous solution before adding the acid is 0.1 to 1 mmol / l.

10. pHが4.0〜5.0である上記7〜9のいずれかに記載の二核ルテニウム錯体色素酸性水溶液。   10. The dinuclear ruthenium complex dye acidic aqueous solution according to any one of the above 7 to 9, wherein the pH is 4.0 to 5.0.

11. 加える酸が、ヘキサフルオロリン酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、過塩素酸、テトラフルオロホウ酸、テトラフェニルホウ酸、トリフルオロメタンスルホン酸または酢酸のいずれか1種以上である上記7〜10のいずれかに記載の二核ルテニウム錯体色素酸性水溶液。   11. The acid to be added is at least one of hexafluorophosphoric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, perchloric acid, tetrafluoroboric acid, tetraphenylboric acid, trifluoromethanesulfonic acid or acetic acid. The binuclear ruthenium complex dye acidic aqueous solution according to any one of 7 to 10 above.

12. 前記ルテニウム錯体(2)が、前記式(2−1)で示されるルテニウム錯体または前記式(2−2)で示されるルテニウム錯体である上記7〜11のいずれかに記載の二核ルテニウム錯体色素酸性水溶液。   12 The binuclear ruthenium complex dye according to any one of 7 to 11 above, wherein the ruthenium complex (2) is a ruthenium complex represented by the formula (2-1) or a ruthenium complex represented by the formula (2-2). Acidic aqueous solution.

13. 前記一般式(1)で示されるルテニウム錯体(1)と、前記一般式(2−A)、一般式(2−B)または一般式(2−C)で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5〜5となるように調整することによって二核ルテニウム錯体を単離した後、当該錯体、水及び塩基(塩基性水溶液を含む)を混合して二核ルテニウム錯体色素水溶液とし、次いで、これに酸を加えることを特徴とする、上記7〜12のいずれかに記載の二核ルテニウム錯体色素酸性水溶液の製造方法。   13. A ruthenium complex (1) represented by the general formula (1) and a ruthenium complex (2) represented by the general formula (2-A), the general formula (2-B) or the general formula (2-C). After the reaction, the dinuclear ruthenium complex is isolated by adjusting the pH of the reaction solution to 2.5 to 5 by adding an acid, and then the complex, water and base (including basic aqueous solution). The method for producing an acidic aqueous solution of a binuclear ruthenium complex dye according to any one of 7 to 12 above, wherein an aqueous solution of the dinuclear ruthenium complex dye is mixed, and then an acid is added thereto.

14. ルテニウム錯体(1)とルテニウム錯体(2)との反応を塩基の存在下で行う上記13記載の二核ルテニウム錯体色素酸性水溶液の製造方法。   14 14. The method for producing an acidic aqueous solution of a dinuclear ruthenium complex dye according to the above 13, wherein the reaction between the ruthenium complex (1) and the ruthenium complex (2) is carried out in the presence of a base.

15. 前記一般式(1)で示されるルテニウム錯体(1)と、前記一般式(2−A)、一般式(2−B)または一般式(2−C)で示されるルテニウム錯体(2)とを反応させた後、酸を加えて二核ルテニウム錯体を単離した後、当該錯体、水及び塩基(塩基性水溶液を含む)を混合して二核ルテニウム錯体色素水溶液とし、次いで、これに酸を加えることによって得られる二核ルテニウム錯体色素酸性水溶液であって、
pHが4.0〜5.0であることを特徴とする二核ルテニウム錯体色素酸性水溶液。
15. A ruthenium complex (1) represented by the general formula (1) and a ruthenium complex (2) represented by the general formula (2-A), the general formula (2-B) or the general formula (2-C). After the reaction, an acid is added to isolate the binuclear ruthenium complex, and then the complex, water and a base (including a basic aqueous solution) are mixed to obtain a dinuclear ruthenium complex dye aqueous solution. A dinuclear ruthenium complex dye acidic aqueous solution obtained by adding,
A dinuclear ruthenium complex dye acidic aqueous solution having a pH of 4.0 to 5.0.

16. 加える酸が、ヘキサフルオロリン酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、過塩素酸、テトラフルオロホウ酸、テトラフェニルホウ酸、トリフルオロメタンスルホン酸または酢酸のいずれか1種以上である上記15記載の二核ルテニウム錯体色素酸性水溶液。   16. The acid to be added is at least one of hexafluorophosphoric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, perchloric acid, tetrafluoroboric acid, tetraphenylboric acid, trifluoromethanesulfonic acid or acetic acid. 16. An acidic aqueous solution of the binuclear ruthenium complex dye according to 15 above.

17. 上記1〜4のいずれかに記載の二核ルテニウム錯体色素によって増感された半導体微粒子。   17. Semiconductor fine particles sensitized by the binuclear ruthenium complex dye described in any one of 1 to 4 above.

18. 上記7〜12、15または16のいずれかに記載の二核ルテニウム錯体色素酸性水溶液を用いて色素を吸着させた、二核ルテニウム錯体色素によって増感された半導体微粒子。   18. Semiconductor fine particles sensitized with a dinuclear ruthenium complex dye, wherein the dye is adsorbed using the acidic aqueous solution of the dinuclear ruthenium complex dye according to any one of 7 to 12, 15 or 16.

19. 半導体微粒子が、酸化チタン、酸化亜鉛、酸化スズ、又はそれらの混合物である上記17または18記載の二核ルテニウム錯体色素によって増感された半導体微粒子。   19. 19. Semiconductor fine particles sensitized by the binuclear ruthenium complex dye according to 17 or 18 above, wherein the semiconductor fine particles are titanium oxide, zinc oxide, tin oxide, or a mixture thereof.

20. 上記17または18記載の二核ルテニウム錯体色素によって増感された半導体微粒子を含む光電変換素子。   20. 19. A photoelectric conversion element comprising semiconductor fine particles sensitized with the binuclear ruthenium complex dye described in 17 or 18 above.

21. 上記20記載の光電変換素子と電解質溶液を備える光化学電池。   21. 21. A photochemical battery comprising the photoelectric conversion element as described in 20 above and an electrolyte solution.

合成後、反応液のpHを2.5より大きく5以下となるように調整して単離した本発明の二核ルテニウム錯体色素を吸着させた半導体微粒子(本発明の二核ルテニウム錯体色素によって増感された半導体微粒子)を用いることにより、pH2.5で単離した二核ルテニウム錯体色素を用いたものと比べて、光電変換効率が高い光電変換素子及び光化学電池を得ることができる。なお、当該光化学電池は、光電変換効率が高いことに加えて、安定性が極めて高く、高耐久性を有しており、そのために、実用化に適したものであると考えられる。   After the synthesis, the semiconductor fine particles adsorbed with the dinuclear ruthenium complex dye of the present invention isolated by adjusting the pH of the reaction solution to be greater than 2.5 and 5 or less (increased by the dinuclear ruthenium complex dye of the present invention). By using the sensed semiconductor fine particles), it is possible to obtain a photoelectric conversion element and a photochemical battery having a higher photoelectric conversion efficiency than those using a dinuclear ruthenium complex dye isolated at pH 2.5. In addition to the high photoelectric conversion efficiency, the photochemical battery has extremely high stability and high durability. Therefore, it is considered that the photochemical battery is suitable for practical use.

さらに、本発明によれば、有機溶媒の代わりに、環境適応性が優れた水を用いて、光電変換効率が高い光電変換素子及び光化学電池を製造することができる。具体的には、本発明の二核ルテニウム錯体色素の酸性水溶液、好ましくは二核ルテニウム錯体色素の濃度が0.1〜1mmol/l、pHが4.0〜5.0である水溶液に半導体微粒子を浸漬して、色素を半導体微粒子に吸着させて得られる色素増感半導体微粒子を用いることにより、光電変換効率が高い光電変換素子及び光化学電池を得ることができる。   Furthermore, according to the present invention, a photoelectric conversion element and a photochemical battery with high photoelectric conversion efficiency can be manufactured using water having excellent environmental adaptability instead of an organic solvent. Specifically, the semiconductor fine particles are added to an acidic aqueous solution of the dinuclear ruthenium complex dye of the present invention, preferably an aqueous solution having a dinuclear ruthenium complex dye concentration of 0.1 to 1 mmol / l and pH of 4.0 to 5.0. Is used, and dye-sensitized semiconductor fine particles obtained by adsorbing the dye to the semiconductor fine particles are used, whereby a photoelectric conversion element and a photochemical battery having high photoelectric conversion efficiency can be obtained.

水溶液を用いて本発明の二核ルテニウム錯体色素を半導体微粒子に吸着させる場合、合成後に反応液のpHを2.5となるように調整して単離したものを用いても、光電変換効率が高い光電変換素子及び光化学電池を得ることができる。   When the binuclear ruthenium complex dye of the present invention is adsorbed to the semiconductor fine particles using an aqueous solution, the photoelectric conversion efficiency is improved even if an isolated product is prepared by adjusting the pH of the reaction solution to 2.5 after synthesis. High photoelectric conversion elements and photochemical batteries can be obtained.

さらに、pHが4〜5の二核ルテニウム錯体色素酸性水溶液にする場合は、二核ルテニウム錯体を単離する際の反応液のpHは特に限定されず、反応液のpHを2.5未満となるように調整して二核ルテニウム錯体色素を単離しても、光電変換効率が高い光電変換素子及び光化学電池を得ることができる。   Further, when the dinuclear ruthenium complex dye acidic aqueous solution having a pH of 4 to 5 is used, the pH of the reaction solution when isolating the dinuclear ruthenium complex is not particularly limited, and the pH of the reaction solution is less than 2.5. Even if it adjusts so that it may become and isolates a binuclear ruthenium complex pigment | dye, a photoelectric conversion element and a photochemical cell with high photoelectric conversion efficiency can be obtained.

本発明の二核ルテニウム錯体色素は、一般式(1)   The binuclear ruthenium complex dye of the present invention has the general formula (1)

Figure 2009025382
Figure 2009025382

(式中、Yは、ハロゲン原子を示す。)
で示されるルテニウム錯体(1)と、一般式(2−A)
(In the formula, Y represents a halogen atom.)
And a ruthenium complex (1) represented by general formula (2-A)

Figure 2009025382
(式中、R111、R112、R113及びR114は、それぞれ独立に、水素原子、メチル基またはエチル基を示し、R121、R122、R123、R124、R125、R126、R127、R128、R129、R130、R131、R132、R133、R134、R135及びR136は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R121〜R136の隣接する二つ、もしくはR124とR125、R132とR133が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。)
Figure 2009025382
(Wherein R 111 , R 112 , R 113 and R 114 each independently represent a hydrogen atom, a methyl group or an ethyl group, and R 121 , R 122 , R 123 , R 124 , R 125 , R 126 , R 127 , R 128 , R 129 , R 130 , R 131 , R 132 , R 133 , R 134 , R 135 and R 136 each independently represent a hydrogen atom, a methyl group or an ethyl group, or R 121 two adjacent to R 136, or R 124 and R 125, R 132 and R 133 forms an aromatic hydrocarbon ring 6 membered together with the carbon atoms to which they are attached together.)

または、一般式(2−B) Or general formula (2-B)

Figure 2009025382
(式中、R211、R212、R213及びR214は、それぞれ独立に、水素原子、メチル基またはエチル基を示し、R221、R222、R223、R224、R225、R226、R227、R228、R229、R230、R231、R232、R233、R234、R235及びR236は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R221〜R236の隣接する二つ、もしくはR224とR225、R232とR233が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。)
Figure 2009025382
(Wherein R 211 , R 212 , R 213 and R 214 each independently represent a hydrogen atom, a methyl group or an ethyl group, and R 221 , R 222 , R 223 , R 224 , R 225 , R 226 , R 227 , R 228 , R 229 , R 230 , R 231 , R 232 , R 233 , R 234 , R 235 and R 236 each independently represent a hydrogen atom, a methyl group or an ethyl group, or R Two adjacent to 221 to R 236 , or R 224 and R 225 , or R 232 and R 233 together form a 6-membered aromatic hydrocarbon ring with the carbon atom to which they are attached.

または、一般式(2−C) Or general formula (2-C)

Figure 2009025382
(式中、R311、R312、R313、R314、R315及びR316は、それぞれ独立に、水素原子、メチル基またはエチル基を示し、R321、R322、R323、R324、R325、R326、R327、R328、R329、R330、R331、R332、R333、R334、R335及びR336は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R321〜R336の隣接する二つ、もしくはR324とR325、R332とR333が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。)
Figure 2009025382
(In the formula, R 311 , R 312 , R 313 , R 314 , R 315 and R 316 each independently represent a hydrogen atom, a methyl group or an ethyl group, and R 321 , R 322 , R 323 , R 324 , R 325 , R 326 , R 327 , R 328 , R 329 , R 330 , R 331 , R 332 , R 333 , R 334 , R 335 and R 336 are each independently a hydrogen atom, a methyl group or an ethyl group. Or two adjacent R 321 to R 336 , or R 324 and R 325 , R 332 and R 333 together form a 6-membered aromatic hydrocarbon ring with the carbon atom to which they are attached is doing.)

で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整することによって得られるものである。ただし、前述の通り、本発明の二核ルテニウム錯体色素酸性水溶液として色素を半導体微粒子に吸着させるのに用いる場合は、反応液のpHを2.5〜5となるように調整する。また、pHが4〜5の二核ルテニウム錯体色素酸性水溶液にする場合は、このときの反応液のpHは特に限定されないが、好ましくは2.5〜5である。 After reacting with the ruthenium complex (2) represented by formula (1), an acid is added to adjust the pH of the reaction solution to be greater than 2.5 and 5 or less. However, as described above, the pH of the reaction solution is adjusted to 2.5 to 5 when used to adsorb the dye to the semiconductor fine particles as the dinuclear ruthenium complex dye acidic aqueous solution of the present invention. In addition, when the dinuclear ruthenium complex dye acidic aqueous solution having a pH of 4 to 5 is used, the pH of the reaction solution at this time is not particularly limited, but is preferably 2.5 to 5.

一般式(1)において、Yは、ハロゲン原子を示すが、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子であり、好ましくは塩素原子、臭素原子である。なお、ふたつのYは同一でも異なっていても良い。   In the general formula (1), Y represents a halogen atom, and is, for example, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom or a bromine atom. The two Ys may be the same or different.

一般式(2−A)において、R111、R112、R113及びR114は、それぞれ独立に、水素原子、メチル基またはエチル基を示すが、R111、R112、R113及びR114は全て水素原子であることが好ましい。In the general formula (2-A), R 111 , R 112 , R 113 and R 114 each independently represent a hydrogen atom, a methyl group or an ethyl group, but R 111 , R 112 , R 113 and R 114 are All are preferably hydrogen atoms.

121、R122、R123、R124、R125、R126、R127、R128、R129、R130、R131、R132、R133、R134、R135及びR136は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R121〜R136の隣接する二つ、もしくはR124とR125、R132とR133が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。R 121 , R 122 , R 123 , R 124 , R 125 , R 126 , R 127 , R 128 , R 129 , R 130 , R 131 , R 132 , R 133 , R 134 , R 135, and R 136 are respectively Independently represents a hydrogen atom, a methyl group or an ethyl group, or adjacent two of R 121 to R 136 , or carbon to which R 124 and R 125 , R 132 and R 133 are bonded together A 6-membered aromatic hydrocarbon ring is formed together with the atoms.

123、R126、R131及びR134は、水素原子、メチル基またはエチル基であることが好ましく、全て水素原子であることが特に好ましい。R 123 , R 126 , R 131 and R 134 are preferably a hydrogen atom, a methyl group or an ethyl group, particularly preferably all hydrogen atoms.

121、R122、R124、R125、R127、R128、R129、R130、R132、R133、R135及びR136は、水素原子であるか、または、隣接する二つ(R121とR122、R127とR128、R129とR130、R135とR136)もしくはR124とR125、R132とR133が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成していることが好ましく、全て水素原子であることが特に好ましい。また、R121、R122、R127、R128、R129、R130、R135及びR136が全て水素原子であり、R124とR125、R132とR133が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成していることも特に好ましい。R 121 , R 122 , R 124 , R 125 , R 127 , R 128 , R 129 , R 130 , R 132 , R 133 , R 135, and R 136 are hydrogen atoms or two adjacent ( R 121 and R 122 , R 127 and R 128 , R 129 and R 130 , R 135 and R 136 ) or R 124 and R 125 , R 132 and R 133 together, and the 6-membered carbon atom to which they are attached The aromatic hydrocarbon ring is preferably formed, and all of them are particularly preferably hydrogen atoms. R 121 , R 122 , R 127 , R 128 , R 129 , R 130 , R 135, and R 136 are all hydrogen atoms, and R 124 and R 125 , R 132 and R 133 are combined to form It is particularly preferable that a 6-membered aromatic hydrocarbon ring is formed together with the carbon atoms to be bonded.

一般式(2−B)において、R211、R212、R213及びR214は、それぞれ独立に、水素原子、メチル基またはエチル基を示すが、R211、R212、R213及びR214は全て水素原子であることが好ましい。In the general formula (2-B), R 211 , R 212 , R 213 and R 214 each independently represent a hydrogen atom, a methyl group or an ethyl group, but R 211 , R 212 , R 213 and R 214 are All are preferably hydrogen atoms.

221、R222、R223、R224、R225、R226、R227、R228、R229、R230、R231、R232、R233、R234、R235及びR236は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R221〜R236の隣接する二つ、もしくはR224とR225、R232とR233が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。R 221 , R 222 , R 223 , R 224 , R 225 , R 226 , R 227 , R 228 , R 229 , R 230 , R 231 , R 232 , R 233 , R 234 , R 235 and R 236 are respectively Independently represents a hydrogen atom, a methyl group or an ethyl group, or adjacent two of R 221 to R 236 , or carbons to which R 224 and R 225 , R 232 and R 233 are bonded together A 6-membered aromatic hydrocarbon ring is formed together with the atoms.

223、R226、R231及びR234は、水素原子、メチル基またはエチル基であることが好ましく、全て水素原子であることが特に好ましい。R 223 , R 226 , R 231 and R 234 are preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably all hydrogen atoms.

221、R222、R224、R225、R227、R228、R229、R230、R232、R233、R235及びR236は、水素原子であるか、または、隣接する二つ(R221とR222、R227とR228、R229とR230、R235とR236)もしくはR224とR225、R232とR233が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成していることが好ましく、全て水素原子であることが特に好ましい。また、R221、R222、R227、R228、R229、R230、R235及びR236が全て水素原子であり、R224とR225、R232とR233が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成していることも特に好ましい。R 221 , R 222 , R 224 , R 225 , R 227 , R 228 , R 229 , R 230 , R 232 , R 233 , R 235 and R 236 are hydrogen atoms or two adjacent ( R 221 and R 222 , R 227 and R 228 , R 229 and R 230 , R 235 and R 236 ) or R 224 and R 225 , R 232 and R 233 together, together with the carbon atom to which they are attached, 6 members The aromatic hydrocarbon ring is preferably formed, and all of them are particularly preferably hydrogen atoms. R 221 , R 222 , R 227 , R 228 , R 229 , R 230 , R 235, and R 236 are all hydrogen atoms, and R 224 and R 225 , R 232 and R 233 are combined to form It is particularly preferable that a 6-membered aromatic hydrocarbon ring is formed together with the carbon atoms to be bonded.

一般式(2−C)において、R311、R312、R313、R314、R315及びR316は、それぞれ独立に、水素原子、メチル基またはエチル基を示すが、R311、R312、R313、R314、R315及びR316は全て水素原子であることが好ましい。In General Formula (2-C), R 311 , R 312 , R 313 , R 314 , R 315, and R 316 each independently represent a hydrogen atom, a methyl group, or an ethyl group, but R 311 , R 312 , R 313 , R 314 , R 315 and R 316 are preferably all hydrogen atoms.

321、R322、R323、R324、R325、R326、R327、R328、R329、R330、R331、R332、R333、R334、R335及びR336は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R321〜R336の隣接する二つ、もしくはR324とR325、R332とR333が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。R 321 , R 322 , R 323 , R 324 , R 325 , R 326 , R 327 , R 328 , R 329 , R 330 , R 331 , R 332 , R 333 , R 334 , R 335 and R 336 are respectively Independently represents a hydrogen atom, a methyl group or an ethyl group, or adjacent two of R 321 to R 336 , or carbon to which R 324 and R 325 , R 332 and R 333 are bonded together A 6-membered aromatic hydrocarbon ring is formed together with the atoms.

323、R326、R331及びR334は、水素原子、メチル基またはエチル基であることが好ましく、全て水素原子であることが特に好ましい。R 323 , R 326 , R 331 and R 334 are preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably all hydrogen atoms.

321、R322、R324、R325、R327、R328、R329、R330、R332、R333、R335及びR336は、水素原子であるか、または、隣接する二つ(R321とR322、R327とR328、R329とR330、R335とR336)もしくはR324とR325、R332とR333が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成していることが好ましく、全て水素原子であることが特に好ましい。また、R321、R322、R327、R328、R329、R330、R335及びR336が全て水素原子であり、R324とR325、R332とR333が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成していることも特に好ましい。R 321 , R 322 , R 324 , R 325 , R 327 , R 328 , R 329 , R 330 , R 332 , R 333 , R 335 and R 336 are hydrogen atoms or two adjacent ( R 321 and R 322 , R 327 and R 328 , R 329 and R 330 , R 335 and R 336 ) or R 324 and R 325 , R 332 and R 333 together, together with the carbon atom to which they are attached, six members The aromatic hydrocarbon ring is preferably formed, and all of them are particularly preferably hydrogen atoms. R 321 , R 322 , R 327 , R 328 , R 329 , R 330 , R 335 and R 336 are all hydrogen atoms, and R 324 and R 325 , R 332 and R 333 are combined together. It is particularly preferable that a 6-membered aromatic hydrocarbon ring is formed together with the carbon atoms to be bonded.

一般式(2−A)、一般式(2−B)または一般式(2−C)で示されるルテニウム錯体(2)としては、一般式(2−A)で示されるもの、一般式(2−B)で示されるものが好ましく、下記式(2−1)で示されるもの、下記式(2−2)で示されるものが特に好ましい。   As the ruthenium complex (2) represented by the general formula (2-A), the general formula (2-B) or the general formula (2-C), those represented by the general formula (2-A), the general formula (2) -B) is preferred, and those represented by the following formula (2-1) and those represented by the following formula (2-2) are particularly preferred.

Figure 2009025382
Figure 2009025382

Figure 2009025382
Figure 2009025382

本発明の二核ルテニウム錯体色素は、以下のふたつの工程によって得られる。
(A)ルテニウム錯体(1)とルテニウム錯体(2)とを反応させる第1工程。
(B)次いで、酸を加えて反応液のpHを2.5より大きく5以下(二核ルテニウム錯体色素酸性水溶液にする場合は特に限定されないが、好ましくは2.5〜5)となるように調整する第2工程。
The dinuclear ruthenium complex dye of the present invention can be obtained by the following two steps.
(A) The 1st process with which a ruthenium complex (1) and a ruthenium complex (2) are made to react.
(B) Next, an acid is added so that the pH of the reaction solution is greater than 2.5 and 5 or less (in particular, the dinuclear ruthenium complex dye acidic aqueous solution is not limited, but preferably 2.5 to 5). Second step to adjust.

(A)第1工程
本発明の第1工程は、ルテニウム錯体(1)とルテニウム錯体(2)とを反応させる工程であり、好ましくは水と有機溶媒の混合溶媒中で反応を行う。
(A) 1st process The 1st process of this invention is a process with which a ruthenium complex (1) and a ruthenium complex (2) are made to react, Preferably it reacts in the mixed solvent of water and an organic solvent.

ルテニウム錯体(2)が一般式(2−A)で示されるもの、または一般式(2−B)で示されるものである場合、ルテニウム錯体(1)とルテニウム錯体(2)との反応は、更に好ましくは、例えば式(3−1)、(3−2)で示されるように、予めルテニウム錯体(2)を脱プロトン化させた後に、脱プロトン化されたルテニウム錯体(2)とルテニウム錯体(1)を反応させる方法によって行われる。この場合、ルテニウム錯体(2)の脱プロトン化は有機溶媒中で行い、ルテニウム錯体(1)と脱プロトン化後のルテニウム錯体(2)との反応は水と有機溶媒の混合溶媒中で行うことが好ましい。   When the ruthenium complex (2) is represented by the general formula (2-A) or the general formula (2-B), the reaction between the ruthenium complex (1) and the ruthenium complex (2) is: More preferably, for example, as shown by the formulas (3-1) and (3-2), after the ruthenium complex (2) is deprotonated in advance, the deprotonated ruthenium complex (2) and the ruthenium complex are obtained. It is carried out by a method of reacting (1). In this case, deprotonation of the ruthenium complex (2) is performed in an organic solvent, and the reaction between the ruthenium complex (1) and the ruthenium complex (2) after deprotonation is performed in a mixed solvent of water and an organic solvent. Is preferred.

なお、式(3−1)において、ルテニウム錯体(2)は式(2−1)で示されるものであり、式(3−2)において、ルテニウム錯体(2)は式(2−2)で示されるものである。また、式(3−1)及び式(3−2)において、二核ルテニウム錯体中の四つの−COOHのHの一つ以上が脱離し、COOとなっていてもよい。二核ルテニウム錯体を単離する際の反応液のpHを高くすると、四つのカルボキシル基の水素が一つ、二つ、三つ、四つと多く脱離したものが得られる傾向がある。In the formula (3-1), the ruthenium complex (2) is represented by the formula (2-1). In the formula (3-2), the ruthenium complex (2) is represented by the formula (2-2). It is shown. In the formulas (3-1) and (3-2), one or more of four —COOHs in the dinuclear ruthenium complex may be eliminated to form COO . When the pH of the reaction solution at the time of isolating the binuclear ruthenium complex is increased, there is a tendency that a large amount of one, two, three, and four hydrogens of four carboxyl groups are eliminated.

Figure 2009025382
Figure 2009025382

Figure 2009025382
Figure 2009025382

ルテニウム錯体(2)の脱プロトン化の反応、およびルテニウム錯体(1)と脱プロトン化後のルテニウム錯体(2)との反応(あるいは、ルテニウム錯体(1)と脱プロトン化されていないルテニウム錯体(2)との反応)において使用する有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、t−ブチルアルコール、エチレングリコール等のアルコール類;アセトニトリル、プロピオニトリル等のニトリル類;N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等のアミド類;N−メチルピロリドン等の尿素類;ジメチルスルホキシド等のスルホキシド類が挙げられるが、ルテニウム錯体(2)の脱プロトン化の反応においては、好ましくはアルコール類であり、更に好ましくはメタノール、エタノールが使用される。ルテニウム錯体(1)と脱プロトン化後のルテニウム錯体(2)との反応(あるいは、ルテニウム錯体(1)と脱プロトン化されていないルテニウム錯体(2)との反応)においては、好ましくはエタノール、N,N−ジメチルホルムアミドであり、更に好ましくはエタノールが使用される。なお、これらの有機溶媒は、単独又は二種以上を混合して使用しても良い。   Reaction of deprotonation of ruthenium complex (2) and reaction of ruthenium complex (1) with ruthenium complex (2) after deprotonation (or ruthenium complex (1) and undeprotonated ruthenium complex ( Examples of the organic solvent used in the reaction with 2) include alcohols such as methanol, ethanol, isopropyl alcohol, t-butyl alcohol and ethylene glycol; nitriles such as acetonitrile and propionitrile; N, N-dimethyl Amides such as acetamide and N, N-dimethylformamide; ureas such as N-methylpyrrolidone; and sulfoxides such as dimethyl sulfoxide. In the deprotonation reaction of ruthenium complex (2), alcohol is preferable. More preferably, methanol, ethanol Nord is used. In the reaction between the ruthenium complex (1) and the deprotonated ruthenium complex (2) (or the reaction between the ruthenium complex (1) and the non-deprotonated ruthenium complex (2)), ethanol, N, N-dimethylformamide, more preferably ethanol is used. In addition, you may use these organic solvents individually or in mixture of 2 or more types.

ルテニウム錯体(2)の脱プロトン化における有機溶媒の使用量は、ルテニウム錯体(2)1ミリモルに対して、好ましくは10〜100ml、更に好ましくは20〜40mlである。   The amount of the organic solvent used in the deprotonation of the ruthenium complex (2) is preferably 10 to 100 ml, more preferably 20 to 40 ml, per 1 mmol of the ruthenium complex (2).

ルテニウム錯体(1)と脱プロトン化後のルテニウム錯体(2)との反応(あるいは、ルテニウム錯体(1)と脱プロトン化されていないルテニウム錯体(2)との反応)における水と有機溶媒の混合溶媒の使用量は、ルテニウム錯体(1)1ミリモルに対して、好ましくは60〜360ml、更に好ましくは120〜180mlであり、その混合比(容量比)は、水1に対して、有機溶媒が好ましくは1〜5倍、更に好ましくは1〜2倍である。   Mixing of water and organic solvent in the reaction between the ruthenium complex (1) and the deprotonated ruthenium complex (2) (or the reaction between the ruthenium complex (1) and the non-deprotonated ruthenium complex (2)) The amount of the solvent used is preferably 60 to 360 ml, more preferably 120 to 180 ml, with respect to 1 mmol of the ruthenium complex (1), and the mixing ratio (volume ratio) thereof is as follows. Preferably it is 1 to 5 times, more preferably 1 to 2 times.

ルテニウム錯体(2)の使用量は、ルテニウム錯体(1)1モルに対して、好ましくは0.9〜1.5モル、更に好ましくは1.0〜1.2モル、特に好ましくは1.0〜1.1モルである。   The amount of the ruthenium complex (2) used is preferably 0.9 to 1.5 mol, more preferably 1.0 to 1.2 mol, and particularly preferably 1.0 to 1 mol of the ruthenium complex (1). -1.1 mol.

本発明の第1工程は、塩基の存在下で行うことが望ましい。使用される塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩;水酸化アンモニウム;水酸化テトラブチルアンモニウム等の水酸化四級アンモニウム塩;ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムt−ブトキシド、カリウムt−ブトキシド等のアルカリ金属アルコキシド;水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム等のアルカリ金属水素化物またはアルカリ土類金属水素化物;トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン等のアミン類;ピリジン、キノリン等の複素環式アミン類が挙げられるが、ルテニウム錯体(2)を脱プロトン化する際には、好ましくはアルカリ金属アルコキシド、更に好ましくはナトリウムメトキシド、リチウムメトキシドが使用され、ルテニウム錯体(1)と脱プロトン化後のルテニウム錯体(2)との反応(あるいは、ルテニウム錯体(1)と脱プロトン化されていないルテニウム錯体(2)との反応)においては、好ましくはアルカリ金属水酸化物、水酸化四級アンモニウム塩、更に好ましくは水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化テトラブチルアンモニウムが使用される。ルテニウム錯体(2)の脱プロトン化において使用する塩基と、ルテニウム錯体(1)と脱プロトン化後のルテニウム錯体(2)との反応において使用する塩基とは同一であっても、異なっていても良い。なお、これらの塩基は、単独又は二種以上を混合して使用しても良く、水や各種有機溶媒に溶解しているものを使用しても良い。   The first step of the present invention is desirably performed in the presence of a base. Examples of the base to be used include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkalis such as sodium hydrogen carbonate and potassium hydrogen carbonate Metal bicarbonate; ammonium hydroxide; quaternary ammonium salt such as tetrabutylammonium hydroxide; sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium t-butoxide, potassium t-butoxide, etc. Alkali metal alkoxides; alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride, calcium hydride or alkaline earth metal hydrides; amines such as triethylamine, diisopropylethylamine, tributylamine; In the deprotonation of the ruthenium complex (2), preferably an alkali metal alkoxide, more preferably sodium methoxide or lithium methoxide is used, and ruthenium In the reaction between the complex (1) and the deprotonated ruthenium complex (2) (or the reaction between the ruthenium complex (1) and the non-deprotonated ruthenium complex (2)), preferably an alkali metal water Oxides, quaternary ammonium hydroxide salts, more preferably lithium hydroxide, sodium hydroxide, potassium hydroxide, tetrabutylammonium hydroxide are used. The base used in the deprotonation of the ruthenium complex (2) and the base used in the reaction of the ruthenium complex (1) with the ruthenium complex (2) after deprotonation may be the same or different. good. In addition, these bases may be used individually or in mixture of 2 or more types, and what is melt | dissolved in water and various organic solvents may be used.

塩基の使用量は、ルテニウム錯体(2)の脱プロトン化においては、ルテニウム錯体(2)1モルに対して、好ましくは2〜20モル、更に好ましくは4〜10モルであり、ルテニウム錯体(1)と脱プロトン化後のルテニウム錯体(2)との反応(あるいは、ルテニウム錯体(1)と脱プロトン化されていないルテニウム錯体(2)との反応)においては、ルテニウム錯体(1)1モルに対して、好ましくは3〜5モル、更に好ましくは3.7〜4.5モルである。   In the deprotonation of the ruthenium complex (2), the amount of the base used is preferably 2 to 20 mol, more preferably 4 to 10 mol, relative to 1 mol of the ruthenium complex (2). ) And the deprotonated ruthenium complex (2) (or the reaction between the ruthenium complex (1) and the non-deprotonated ruthenium complex (2)), 1 mol of the ruthenium complex (1) is added. On the other hand, it is preferably 3 to 5 mol, more preferably 3.7 to 4.5 mol.

本発明の第1工程では、例えば、まず、ルテニウム錯体(2)、塩基及び有機溶媒を混合して、攪拌しながら、好ましくは20〜200℃、更に好ましくは50〜90℃で反応させてルテニウム錯体(2)を脱プロトン化させる。脱プロトン化されたルテニウム錯体(2)は、例えば、反応液を濾過することにより単離することができる。次いで、ルテニウム錯体(1)、脱プロトン化されたルテニウム錯体(2)、塩基、水及び有機溶媒を混合して、攪拌しながら、好ましくは50〜200℃、更に好ましくは80〜100℃で反応させることが好ましい。ルテニウム錯体(2)を脱プロトン化させずにルテニウム錯体(1)と反応させる場合も、同様に、ルテニウム錯体(1)、ルテニウム錯体(2)、塩基、水及び有機溶媒を混合して、攪拌しながら、好ましくは50〜200℃、更に好ましくは80〜100℃で反応させることが好ましい。なお、反応圧力は特に制限されない。   In the first step of the present invention, for example, first, ruthenium complex (2), a base and an organic solvent are mixed and stirred, and preferably reacted at 20 to 200 ° C., more preferably 50 to 90 ° C. Complex (2) is deprotonated. The deprotonated ruthenium complex (2) can be isolated by, for example, filtering the reaction solution. Next, the ruthenium complex (1), the deprotonated ruthenium complex (2), the base, water and an organic solvent are mixed and stirred, preferably at 50 to 200 ° C., more preferably at 80 to 100 ° C. It is preferable to make it. Similarly, when the ruthenium complex (2) is reacted with the ruthenium complex (1) without deprotonation, the ruthenium complex (1), the ruthenium complex (2), the base, water and an organic solvent are mixed and stirred. However, the reaction is preferably performed at 50 to 200 ° C, more preferably at 80 to 100 ° C. The reaction pressure is not particularly limited.

ルテニウム錯体(1)及びルテニウム錯体(2)は、公知の方法によって合成することができる(例えば、国際公開第2006/038587号参照)。   The ruthenium complex (1) and the ruthenium complex (2) can be synthesized by a known method (see, for example, WO 2006/038587).

(B)第2工程
本発明の第2工程は、第1工程で得られた反応液に酸を加えて、反応液のpHを2.5より大きく5以下となるように調整し、二核ルテニウム錯体色素を単離する工程である。ただし、二核ルテニウム錯体色素酸性水溶液にして用いる場合は、反応液のpHを好ましくは2.5〜5となるように調整して二核ルテニウム錯体色素を単離させればよい。
(B) Second Step In the second step of the present invention, an acid is added to the reaction solution obtained in the first step, and the pH of the reaction solution is adjusted to be greater than 2.5 and 5 or less. This is a step of isolating a ruthenium complex dye. However, in the case of using an aqueous dinuclear ruthenium complex dye solution, the dinuclear ruthenium complex dye may be isolated by adjusting the pH of the reaction solution to preferably 2.5 to 5.

使用される酸としては、例えば、ヘキサフルオロリン酸、過塩素酸、テトラフェニルホウ酸、テトラフルオロホウ酸、トリフルオロメタンスルホン酸、チオシアン酸、硫酸、硝酸、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、酢酸等が挙げられるが、好ましくはヘキサフルオロリン酸、テトラフルオロホウ酸、トリフルオロメタンスルホン酸、硝酸、ヨウ化水素酸であり、更に好ましくはヘキサフルオロリン酸、テトラフルオロホウ酸、硝酸、ヨウ化水素酸が使用される。なお、これらの酸は、単独又は二種以上を混合して使用しても良い。   Examples of the acid used include hexafluorophosphoric acid, perchloric acid, tetraphenylboric acid, tetrafluoroboric acid, trifluoromethanesulfonic acid, thiocyanic acid, sulfuric acid, nitric acid, hydrofluoric acid, hydrochloric acid, hydrogen bromide Acid, hydroiodic acid, acetic acid and the like can be mentioned, preferably hexafluorophosphoric acid, tetrafluoroboric acid, trifluoromethanesulfonic acid, nitric acid, hydroiodic acid, more preferably hexafluorophosphoric acid, tetrafluoro Boric acid, nitric acid, hydriodic acid are used. In addition, you may use these acids individually or in mixture of 2 or more types.

酸の使用量(加える酸の量)は、反応液のpHを2.5より大きく5以下(二核ルテニウム錯体色素酸性水溶液にする場合は2.5〜5)となるように調整することができる量であれば特に制限されない。反応液のpHは、二核ルテニウム錯体色素酸性水溶液にする場合は2.5〜5の範囲内であれば特に制限されないが、有機溶媒溶液にする場合は、3より大きく5以下となるように調整することが更に好ましい。さらに、pHが4〜5の二核ルテニウム錯体色素酸性水溶液にする場合は、反応液のpHは2.5〜5の範囲内でなくてもよく、例えば反応液のpHを2.5未満となるように調整してもよい。   The amount of acid used (the amount of acid to be added) can be adjusted so that the pH of the reaction solution is greater than 2.5 and less than or equal to 5 (2.5 to 5 for a dinuclear ruthenium complex dye aqueous solution). There is no particular limitation as long as it can be used. The pH of the reaction solution is not particularly limited as long as it is in the range of 2.5 to 5 in the case of an aqueous dinuclear ruthenium complex dye solution, but in the case of an organic solvent solution, it is greater than 3 and 5 or less. It is more preferable to adjust. Furthermore, when the dinuclear ruthenium complex dye acidic aqueous solution having a pH of 4 to 5 is used, the pH of the reaction solution may not be in the range of 2.5 to 5, for example, the pH of the reaction solution is less than 2.5. You may adjust so that it may become.

本発明の第2工程では、第1工程で得られた反応液に酸を加えて、反応液のpHを2.5より大きく5以下(二核ルテニウム錯体色素酸性水溶液にする場合は5以下、好ましくは2.5〜5)となるように調整する。反応液のpHをこの範囲内に調整することによって、二核ルテニウム錯体色素が析出してくる。この析出した固体を濾過等によって取得することにより、二核ルテニウム錯体色素を単離することができる。   In the second step of the present invention, an acid is added to the reaction solution obtained in the first step, and the pH of the reaction solution is more than 2.5 and not more than 5 (5 or less when making a dinuclear ruthenium complex dye acidic aqueous solution, The adjustment is preferably made to be 2.5 to 5). By adjusting the pH of the reaction solution within this range, the binuclear ruthenium complex dye is precipitated. The dinuclear ruthenium complex dye can be isolated by obtaining the precipitated solid by filtration or the like.

本発明の二核ルテニウム錯体色素酸性水溶液は、第2工程で得られた二核ルテニウム錯体色素から以下の工程によって得られる。
(B−2)第2工程で得られた二核ルテニウム錯体色素、水及び塩基(塩基性水溶液を含む)を混合して二核ルテニウム錯体色素水溶液とし、次いで酸を加えて二核ルテニウム錯体色素酸性水溶液を得る工程。
The dinuclear ruthenium complex dye acidic aqueous solution of the present invention is obtained from the dinuclear ruthenium complex dye obtained in the second step by the following steps.
(B-2) The binuclear ruthenium complex dye obtained in the second step, water and a base (including a basic aqueous solution) are mixed to obtain a dinuclear ruthenium complex dye aqueous solution, and then an acid is added to the dinuclear ruthenium complex dye. Obtaining an acidic aqueous solution;

(B−2)工程
本発明の(B−2)工程においては、まず、当該二核ルテニウム錯体色素(第2工程で取得された二核ルテニウム錯体色素)、水及び塩基(塩基性水溶液を含む)を混合して二核ルテニウム錯体色素水溶液を調製する。次いで、これに酸を加えることによって、二核ルテニウム錯体色素酸性水溶液を製造する。
(B-2) Step In the (B-2) step of the present invention, first, the binuclear ruthenium complex dye (the binuclear ruthenium complex dye obtained in the second step), water and a base (including a basic aqueous solution). ) To prepare a dinuclear ruthenium complex dye aqueous solution. Subsequently, an acid is added to this to produce a dinuclear ruthenium complex dye acidic aqueous solution.

本発明の(B−2)工程において使用される塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩;水酸化アンモニウム;水酸化テトラブチルアンモニウム等の水酸化四級アンモニウム塩;ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムt−ブトキシド、カリウムt−ブトキシド等のアルカリ金属アルコキシド;トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン等のアミン類;ピリジン、キノリン等の複素環式アミン類が挙げられるが、好ましくはアルカリ金属水酸化物、水酸化四級アンモニウム塩、アミン類、複素環式アミン類であり、更に好ましくは水酸化リチウム、トリエチルアミン、水酸化テトラブチルアンモニウムが使用される。なお、これらの塩基は、単独又は二種以上を混合して使用しても良く、水や各種有機溶媒に溶解しているもの(例えば、アルカリ金属アルコキシドのアルコール溶液等)を使用しても良い。   Examples of the base used in the step (B-2) of the present invention include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; Alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; ammonium hydroxide; quaternary ammonium hydroxide salts such as tetrabutyl ammonium hydroxide; sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium Alkali metal alkoxides such as t-butoxide and potassium t-butoxide; amines such as triethylamine, diisopropylethylamine and tributylamine; heterocyclic amines such as pyridine and quinoline are preferable, but alkali metal hydroxides and water are preferable. Quaternary oxide Ammonium salts, amines, and heterocyclic amines, more preferably lithium hydroxide, triethylamine, tetrabutylammonium hydroxide is used. In addition, these bases may be used alone or in admixture of two or more, or those dissolved in water or various organic solvents (for example, alcohol solutions of alkali metal alkoxides) may be used. .

塩基の使用量(加える塩基の量)は、二核ルテニウム錯体色素を完全に溶解させることができる量であれば特に制限されないが、その際の溶液のpHとしては、5〜12とすることが好ましく、7〜11とすることが更に好ましい。   The amount of base used (the amount of base added) is not particularly limited as long as it can dissolve the dinuclear ruthenium complex dye completely, but the pH of the solution at that time should be 5-12. Preferably, it is 7-11.

当該操作によって二核ルテニウム錯体色素水溶液が得られるが、その二核ルテニウム錯体色素の濃度は、好ましくは0.001〜100mmol/l、更に好ましくは0.01〜10mmol/l、特に好ましくは0.1〜1mmol/lである。この濃度の二核ルテニウム錯体色素水溶液が得られるように、加える水の量は適宜調節する。   By this operation, an aqueous dinuclear ruthenium complex dye solution is obtained. The concentration of the dinuclear ruthenium complex dye is preferably 0.001 to 100 mmol / l, more preferably 0.01 to 10 mmol / l, and particularly preferably 0.00. 1-1 mmol / l. The amount of water added is appropriately adjusted so that an aqueous dinuclear ruthenium complex dye solution having this concentration can be obtained.

本発明の(B−2)工程では、次いで、得られた二核ルテニウム錯体色素水溶液に酸を加えて二核ルテニウム錯体色素酸性水溶液を得る。   In the step (B-2) of the present invention, an acid is then added to the obtained dinuclear ruthenium complex dye aqueous solution to obtain an aqueous dinuclear ruthenium complex dye aqueous solution.

本発明の(B−2)工程において使用される酸としては、例えば、ヘキサフルオロリン酸、過塩素酸、テトラフェニルホウ酸、テトラフルオロホウ酸、トリフルオロメタンスルホン酸、チオシアン酸、硫酸、硝酸、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、酢酸等が挙げられるが、好ましくはヘキサフルオロリン酸、テトラフルオロホウ酸、トリフルオロメタンスルホン酸、硝酸、ヨウ化水素酸であり、更に好ましくはヘキサフルオロリン酸、テトラフルオロホウ酸、硝酸、ヨウ化水素酸が使用される。なお、これらの酸は、単独又は二種以上を混合して使用しても良い。   Examples of the acid used in the step (B-2) of the present invention include hexafluorophosphoric acid, perchloric acid, tetraphenylboric acid, tetrafluoroboric acid, trifluoromethanesulfonic acid, thiocyanic acid, sulfuric acid, nitric acid, Hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, acetic acid and the like can be mentioned, preferably hexafluorophosphoric acid, tetrafluoroboric acid, trifluoromethanesulfonic acid, nitric acid, hydroiodic acid, More preferably, hexafluorophosphoric acid, tetrafluoroboric acid, nitric acid, or hydriodic acid is used. In addition, you may use these acids individually or in mixture of 2 or more types.

酸の使用量(加える酸の量)は、二核ルテニウム錯体色素の水溶液のpHが、好ましくは3.5〜7、更に好ましくは4〜5となるような量であれば特に制限されない。   The amount of acid used (the amount of acid to be added) is not particularly limited as long as the pH of the aqueous solution of the dinuclear ruthenium complex dye is preferably 3.5 to 7, more preferably 4 to 5.

このようにして本発明の二核ルテニウム錯体色素酸性水溶液が得られるが、その二核ルテニウム錯体色素の濃度は、好ましくは0.001〜100mmol/l、更に好ましくは0.01〜10mmol/l、特に好ましくは0.1〜1mmol/lである。この濃度の二核ルテニウム錯体色素酸性水溶液が得られるように、加える水の量を適宜調節する。   Thus, the dinuclear ruthenium complex dye acidic aqueous solution of the present invention is obtained. The concentration of the dinuclear ruthenium complex dye is preferably 0.001 to 100 mmol / l, more preferably 0.01 to 10 mmol / l, Most preferably, it is 0.1-1 mmol / l. The amount of water added is adjusted as appropriate so that a dinuclear ruthenium complex dye acidic aqueous solution having this concentration can be obtained.

本発明の二核ルテニウム錯体色素によって増感された半導体微粒子は、前記の第2工程によって得られた二核ルテニウム錯体色素を含む溶液と半導体微粒子とを公知の方法で接触させ、色素を半導体微粒子に吸着させることによって得られる。   The semiconductor fine particles sensitized with the dinuclear ruthenium complex dye of the present invention are obtained by bringing the solution containing the dinuclear ruthenium complex dye obtained in the second step and the semiconductor fine particles into contact with each other by a known method. It is obtained by making it adsorb | suck to.

半導体微粒子としては、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化ニオブ、酸化タングステン、酸化バナジウム等の金属酸化物類;チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、ニオブ酸カリウム等の複合酸化物類;硫化カドミウム、硫化ビスマス等の金属硫化物;セレン化カドミウム等の金属セレン化物;テルル化カドミウム等の金属テルル化物;リン化ガリウム等の金属リン化物;ヒ素化ガリウム等の金属ヒ素化物が挙げられるが、好ましくは金属酸化物、更に好ましくは酸化チタン、酸化亜鉛、酸化スズが使用される。なお、半導体微粒子の一次粒子径は特に制限されないが、好ましくは1〜5000nm、更に好ましくは2〜500nm、特に好ましくは3〜300nmのものが使用される。これらの半導体微粒子は、単独又は二種以上を混合して使用しても良い。   Examples of the semiconductor fine particles include metal oxides such as titanium oxide, zinc oxide, tin oxide, indium oxide, niobium oxide, tungsten oxide, and vanadium oxide; strontium titanate, calcium titanate, barium titanate, potassium niobate, and the like. Complex oxides of: metal sulfides such as cadmium sulfide and bismuth sulfide; metal selenides such as cadmium selenide; metal tellurides such as cadmium telluride; metal phosphides such as gallium phosphide; metals such as gallium arsenide; An arsenide may be mentioned, but a metal oxide is preferably used, and titanium oxide, zinc oxide and tin oxide are more preferably used. The primary particle size of the semiconductor fine particles is not particularly limited, but those having a particle size of preferably 1 to 5000 nm, more preferably 2 to 500 nm, and particularly preferably 3 to 300 nm are used. These semiconductor fine particles may be used alone or in admixture of two or more.

前記二核ルテニウム錯体色素により増感された半導体微粒子は、例えば、二核ルテニウム錯体色素を溶媒に溶解した溶液を半導体微粒子に接触(例えば、塗布、浸漬等)させることによって製造される(例えば、国際公開第2006/038587号パンフレット参照)。本発明においては、半導体微粒子に接触させる溶液として、二核ルテニウム錯体色素を通常使用される有機溶媒に溶解した溶液を使用することができ、また、上記のような(B−2)工程によって得られる二核ルテニウム錯体色素酸性水溶液を使用することもできる。なお、接触させた後に、各種溶媒で洗浄して乾燥させることが望ましい。   The semiconductor fine particles sensitized with the dinuclear ruthenium complex dye are produced, for example, by bringing a solution obtained by dissolving the dinuclear ruthenium complex dye in a solvent into contact with the semiconductor fine particles (for example, coating, dipping, etc.) (for example, (See International Publication No. 2006/038587 pamphlet). In the present invention, a solution in which a dinuclear ruthenium complex dye is dissolved in a commonly used organic solvent can be used as the solution to be brought into contact with the semiconductor fine particles, and it can be obtained by the step (B-2) as described above. A dinuclear ruthenium complex dye acidic aqueous solution can also be used. In addition, after making it contact, it is desirable to wash | clean with various solvents and to dry.

本発明の光電変換素子は、先述した二核ルテニウム錯体色素により増感された半導体微粒子を含むものであり、具体的には、例えば、当該ルテニウム錯体色素により増感された半導体微粒子を電極上に固定したものである。   The photoelectric conversion element of the present invention includes semiconductor fine particles sensitized by the aforementioned binuclear ruthenium complex dye. Specifically, for example, the semiconductor fine particles sensitized by the ruthenium complex dye are disposed on the electrode. It is fixed.

前記電極は、導電性電極であり、好ましくは透明基板上に形成された透明電極である。導電剤としては、例えば、金、銀、銅、白金、パラジウム等の金属、スズをドープした酸化インジウム(ITO)に代表される酸化インジウム系化合物、フッ素をドープした酸化スズ(FTO)に代表される酸化スズ系化合物、酸化亜鉛系化合物などが挙げられる。   The electrode is a conductive electrode, preferably a transparent electrode formed on a transparent substrate. Examples of the conductive agent include metals such as gold, silver, copper, platinum, and palladium, indium oxide compounds represented by indium oxide (ITO) doped with tin, and tin oxide (FTO) doped with fluorine. Examples thereof include tin oxide compounds and zinc oxide compounds.

本発明の光化学電池は、上記の二核ルテニウム錯体色素により増感された半導体微粒子を用いて製造することができる。   The photochemical cell of the present invention can be produced using semiconductor fine particles sensitized with the above-described dinuclear ruthenium complex dye.

本発明の光化学電池は、具体的には、電極として上記の本発明の光電変換素子と対極とを有し、その間に電解質溶液層を有するものである。なお、本発明の光電変換素子に用いた電極と対極の少なくとも片方は透明電極である。   Specifically, the photochemical cell of the present invention has the above-described photoelectric conversion element of the present invention and a counter electrode as electrodes, and an electrolyte solution layer therebetween. Note that at least one of the electrode and the counter electrode used in the photoelectric conversion element of the present invention is a transparent electrode.

対極は、光電変換素子と組み合わせて光化学電池としたときに正極として作用するものである。対極としては、上記導電性電極と同様に導電層を有する基板を用いることもできるが、金属板そのものを使用すれば、基板は必ずしも必要ではない。対極に用いる導電剤としては、例えば、白金等の金属、炭素、フッ素をドープした酸化スズ等の導電性金属酸化物が好適に使用される。   The counter electrode functions as a positive electrode when combined with a photoelectric conversion element to form a photochemical battery. As the counter electrode, a substrate having a conductive layer can be used as in the case of the conductive electrode. However, if the metal plate itself is used, the substrate is not necessarily required. As the conductive agent used for the counter electrode, for example, a conductive metal oxide such as tin oxide doped with a metal such as platinum or carbon or fluorine is preferably used.

電解質溶液は、レドックス対(酸化還元対)を含んでいることが望ましい。使用するレドックス対は特に限定されないが、例えば、
(1)ヨウ素とヨウ化物(例えば、ヨウ化リチウム、ヨウ化カリウム等の金属ヨウ化物;ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化ピリジニウム、ヨウ化イミダゾリウム等の4級アンモニウム化合物のヨウ化物)の組み合わせ、
(2)臭素と臭化物(例えば、臭化リチウム、臭化カリウム等の金属臭化物;臭化テトラブチルアンモニウム、臭化テトラプロピルアンモニウム、臭化ピリジニウム、臭化イミダゾリウム等の4級アンモニウム化合物の臭化物)の組み合わせ、
(3)塩素と塩化物(例えば、塩化リチウム、塩化カリウム等の金属塩化物;塩化テトラブチルアンモニウム、塩化テトラプロピルアンモニウム、塩化ピリジニウム、塩化イミダゾリウム等の4級アンモニウム化合物の塩化物)の組み合わせ、
(4)アルキルビオローゲンとその還元体の組み合わせ、
(5)キノン/ハイドロキノン、鉄(II)イオン/鉄(III)イオン、銅(I)イオン/銅(II)イオン、マンガン(II)イオン/マンガン(III)イオン、コバルトイオン(II)/コバルトイオン(III))等の遷移金属イオン対、
(6)フェロシアン/フェリシアン、四塩化コバルト(II)/四塩化コバルト(III)、四臭化コバルト(II)/四臭化コバルト(III)、六塩化イリジウム(II)/六塩化イリジウム(III)、六シアノ化ルテニウム(II)/六シアノ化ルテニウム(III)、六塩化ロジウム(II)/六塩化ロジウム(III)、六塩化レニウム(III)/六塩化レニウム(IV)、六塩化レニウム(IV)/六塩化レニウム(V)、六塩化オスミウム(III)/六塩化オスミウム(IV)、六塩化オスミウム(IV)/六塩化オスミウム(V)等の錯イオンの組み合わせ、
(7)コバルト、鉄、ルテニウム、マンガン、ニッケル、レニウム等の遷移金属と、ビピリジンやその誘導体、ターピリジンやその誘導体、フェナントロリンやその誘導体等の複素共役環及びその誘導体で形成されている錯体類、
(8)フェロセン/フェロセニウムイオン、コバルトセン/コバルトセニウムイオン、ルテノセン/ルテノセウムイオン等のシクロペンタジエン及びその誘導体と金属の錯体類、(9)ポルフィリン系化合物類
が挙げられるが、好ましくは前記(1)で挙げたレドックス対が使用される。なお、これらのレドックス対は、単独又は二種以上を混合して使用しても良い。
The electrolyte solution preferably contains a redox pair (a redox pair). The redox pair to be used is not particularly limited.
(1) iodine and iodide (for example, metal iodides such as lithium iodide and potassium iodide; quaternary ammonium compounds such as tetrabutylammonium iodide, tetrapropylammonium iodide, pyridinium iodide and imidazolium iodide) (Iodide) combinations,
(2) Bromine and bromides (for example, metal bromides such as lithium bromide and potassium bromide; bromides of quaternary ammonium compounds such as tetrabutylammonium bromide, tetrapropylammonium bromide, pyridinium bromide and imidazolium bromide) A combination of
(3) Combination of chlorine and chloride (for example, metal chloride such as lithium chloride and potassium chloride; chloride of quaternary ammonium compound such as tetrabutylammonium chloride, tetrapropylammonium chloride, pyridinium chloride, imidazolium chloride),
(4) Combination of alkyl viologen and its reduced form,
(5) quinone / hydroquinone, iron (II) ion / iron (III) ion, copper (I) ion / copper (II) ion, manganese (II) ion / manganese (III) ion, cobalt ion (II) / cobalt Transition metal ion pairs such as ions (III)),
(6) Ferrocyanian / ferricyan, cobalt tetrachloride (II) / cobalt tetrachloride (III), cobalt tetrabromide (II) / cobalt tetrabromide (III), iridium hexachloride (II) / iridium hexachloride ( III), ruthenium hexacyanide (II) / ruthenium hexacyanide (III), rhodium hexachloride (II) / rhodium hexachloride (III), rhenium hexachloride (III) / rhenium hexachloride (IV), rhenium hexachloride A combination of complex ions such as (IV) / rhenium hexachloride (V), osmium hexachloride (III) / osmium hexachloride (IV), osmium hexachloride (IV) / osmium hexachloride (V),
(7) Complexes formed of transition metals such as cobalt, iron, ruthenium, manganese, nickel, rhenium, and complex conjugate rings such as bipyridine and derivatives thereof, terpyridine and derivatives thereof, phenanthroline and derivatives thereof, and derivatives thereof,
(8) Cyclopentadiene such as ferrocene / ferrocenium ion, cobaltcene / cobaltcenium ion, ruthenocene / ruthenoseium ion and their derivatives and metal complexes, and (9) porphyrin compounds are preferable. The redox couple mentioned in the above (1) is used. In addition, you may use these redox pairs individually or in mixture of 2 or more types.

本発明の光化学電池は、従来から適用されている方法によって製造することができ、例えば、
(1)透明電極上に酸化物等の半導体微粒子のペーストを塗布し、加熱焼成して半導体微粒子の薄膜を作製する。
(2)次いで、半導体微粒子の薄膜がチタニアの場合、温度400〜550℃で0.5〜1時間焼成する。
(3)得られた薄膜の付いた透明電極を色素溶液に浸漬し、二核ルテニウム錯体色素を担持して光電変換素子を作製する。
(4)得られた光電変換素子と対極として白金又は炭素を蒸着した透明電極を合わせ、その間に電解質溶液を入れる。
という操作を行うことにより、本発明の光化学電池を製造することが出来る。
The photochemical cell of the present invention can be manufactured by a conventionally applied method, for example,
(1) A semiconductor fine particle paste such as an oxide is applied on a transparent electrode and heated and fired to produce a thin film of semiconductor fine particles.
(2) Next, when the thin film of semiconductor fine particles is titania, baking is performed at a temperature of 400 to 550 ° C. for 0.5 to 1 hour.
(3) The transparent electrode with the obtained thin film is immersed in a dye solution, and a dinuclear ruthenium complex dye is supported to produce a photoelectric conversion element.
(4) The obtained photoelectric conversion element is combined with a transparent electrode on which platinum or carbon is vapor-deposited as a counter electrode, and an electrolyte solution is put therebetween.
The photochemical battery of the present invention can be manufactured by performing the operation described above.

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。なお、光化学電池の光電変換効率は、ソーラーシュミレーター(英弘精機株式会社製)の擬似太陽光を照射して測定した。   Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto. In addition, the photoelectric conversion efficiency of the photochemical cell was measured by irradiating simulated sunlight from a solar simulator (manufactured by Eihiro Seiki Co., Ltd.).

参考例A1(ルテニウム錯体(1)(Y=塩素原子)の合成)
攪拌装置、温度計及び還流冷却器を備えた内容積500mlの三口フラスコに、市販の三塩化ルテニウム・三水和物3.22g(12.3mmol)、4,4’−ジカルボキシ−2,2’−ビピリジン5.72g(23.4mmol)及びN,N’−ジメチルホルムアミド300mlを加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら158〜162℃で45分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。得られた濃縮物をアセトン/ジエチルエーテル(=1/4(容量比))の混合液で洗浄し、次いで、2mol/l塩酸300mlを加え、超音波攪拌を30分間、通常の攪拌を2時間行った。攪拌終了後、得られた溶液を濾過し、濾物を2mol/l塩酸、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄した後、固体を乾燥させ、暗紫色固体として、ルテニウム錯体(1)7.23gを得た(単離収率;88.6%)。
Reference Example A1 (Synthesis of ruthenium complex (1) (Y = chlorine atom))
In a three-necked flask having an internal volume of 500 ml equipped with a stirrer, a thermometer and a reflux condenser, 3.22 g (12.3 mmol) of commercially available ruthenium trichloride trihydrate, 4,4′-dicarboxy-2,2 5.72 g (23.4 mmol) of '-bipyridine and 300 ml of N, N'-dimethylformamide were added, and the mixture was reacted at 158 to 162 ° C. for 45 minutes with stirring under a nitrogen atmosphere under 2.45 GHz microwave irradiation. It was. After completion of the reaction, the reaction solution was filtered, and the filtrate was concentrated under reduced pressure. The obtained concentrate was washed with a mixed solution of acetone / diethyl ether (= 1/4 (volume ratio)), then 300 ml of 2 mol / l hydrochloric acid was added, ultrasonic stirring for 30 minutes, and normal stirring for 2 hours. went. After completion of the stirring, the obtained solution was filtered, and the residue was washed with a mixture of 2 mol / l hydrochloric acid, acetone / diethyl ether (= 1/4 (volume ratio)) and diethyl ether in this order, and then the solid was dried. Then, 7.23 g of ruthenium complex (1) was obtained as a dark purple solid (isolated yield; 88.6%).

参考例A2(ルテニウム錯体(2−2)の合成)
攪拌装置、温度計及び還流冷却器を備えた内容積100mlの三口フラスコに、ジクロロビス(1,10−フェナントロリン)ルテニウム(II)1.00g(1.76mmol)、2,2’−ビベンズイミダゾール0.495g(2.11mmol)及びエチレングリコール40mlを加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら200〜204℃で5分間反応させた。反応終了後、水80mlを加えて1時間攪拌した後、得られた溶液を濾過し、濾液に3.52mol/lヘキサフルオロリン酸アンモニウム水溶液2mlを加え、更に1時間攪拌した。攪拌終了後、析出した固体を濾過し、濾物を水、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄した後、固体を乾燥させ、橙色固体として、ルテニウム錯体(2−2)1.40gを得た(単離収率;80.6%)。
Reference Example A2 (Synthesis of Ruthenium Complex (2-2))
Into a 100 ml three-necked flask equipped with a stirrer, a thermometer and a reflux condenser, 1.00 g (1.76 mmol) of dichlorobis (1,10-phenanthroline) ruthenium (II), 2,2′-bibenzimidazole 0 was added. .495 g (2.11 mmol) and 40 ml of ethylene glycol were added, and the mixture was allowed to react at 200 to 204 ° C. for 5 minutes with stirring under a nitrogen atmosphere under microwave irradiation at 2.45 GHz. After completion of the reaction, 80 ml of water was added and stirred for 1 hour. The resulting solution was filtered, and 2 ml of an aqueous 3.52 mol / l ammonium hexafluorophosphate solution was added to the filtrate, followed by further stirring for 1 hour. After the stirring, the precipitated solid was filtered, and the residue was washed with water, a mixture of acetone / diethyl ether (= 1/4 (volume ratio)) and diethyl ether in this order, and then the solid was dried to give an orange solid. As a result, 1.40 g of a ruthenium complex (2-2) was obtained (isolation yield: 80.6%).

参考例A3(脱プロトン化されたルテニウム錯体(2−2)の合成)
攪拌装置、温度計及び還流冷却器を備えた内容積100mlの三口フラスコに、参考例A2で得られたルテニウム錯体(2−2)1.39g(1.41mmol)及びメタノール28mlを加えた後、28%ナトリウムメトキシドメタノール溶液2.81ml(14.1mmol)を加え、窒素雰囲気下、攪拌しながら82〜86℃で1時間反応させた。反応終了後、反応液を濾過し、濾物を冷却したメタノール、水、ジエチルエーテルの順で洗浄した後、固体を乾燥させ、暗赤紫色固体として、脱プロトン化されたルテニウム錯体(2−2)0.881gを得た(単離収率;83.7%)。
Reference Example A3 (Synthesis of deprotonated ruthenium complex (2-2))
After adding 1.39 g (1.41 mmol) of ruthenium complex (2-2) obtained in Reference Example A2 and 28 ml of methanol to a three-necked flask having an internal volume of 100 ml equipped with a stirrer, a thermometer and a reflux condenser, 28% sodium methoxide methanol solution 2.81 ml (14.1 mmol) was added, and the mixture was reacted at 82 to 86 ° C. for 1 hour with stirring under a nitrogen atmosphere. After completion of the reaction, the reaction solution was filtered, and the filtrate was washed with cooled methanol, water, and diethyl ether in this order, and then the solid was dried to obtain a deprotonated ruthenium complex (2-2 as a dark red purple solid. ) 0.881 g was obtained (isolation yield; 83.7%).

実施例A1(二核ルテニウム錯体色素(pH2.8)の合成)
攪拌装置、温度計及び還流冷却器を備えた内容積500mlの三口フラスコに、ルテニウム錯体(1)1.08g(1.55mmol)、水100ml、エタノール100ml及び1mol/l水酸化ナトリウム水溶液6.05ml(6.05mmol)を加えた。次いで、脱プロトン化されたルテニウム錯体(2−2)1.22g(1.63mmol)を加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら86〜90℃で90分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。濃縮後、得られた溶液を濾過し、濾液に0.5mol/lヘキサフルオロリン酸水溶液を反応液のpHが2.8になるまで加え、4℃に冷却して一晩放置した。析出した結晶を濾過し、pH2.8のヘキサフルオロリン酸水溶液、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄した後、固体を乾燥させ、暗赤紫色固体として、二核ルテニウム錯体色素(pH2.8)2.11gを得た(単離収率;93.2%)。
Example A1 (Synthesis of dinuclear ruthenium complex dye (pH 2.8))
A ruthenium complex (1) 1.08 g (1.55 mmol), water 100 ml, ethanol 100 ml and 1 mol / l sodium hydroxide aqueous solution 6.05 ml were added to a 500 ml three-necked flask equipped with a stirrer, a thermometer and a reflux condenser. (6.05 mmol) was added. Next, 1.22 g (1.63 mmol) of deprotonated ruthenium complex (2-2) was added, and the mixture was stirred at 86 to 90 ° C. for 90 minutes under stirring in a nitrogen atmosphere under microwave irradiation at 2.45 GHz. Reacted. After completion of the reaction, the reaction solution was filtered, and the filtrate was concentrated under reduced pressure. After concentration, the resulting solution was filtered, 0.5 mol / l hexafluorophosphoric acid aqueous solution was added to the filtrate until the pH of the reaction solution reached 2.8, and the solution was cooled to 4 ° C. and left overnight. The precipitated crystals were filtered, washed with an aqueous hexafluorophosphoric acid solution of pH 2.8, a mixed solution of acetone / diethyl ether (= 1/4 (volume ratio)) and diethyl ether in this order, and then the solid was dried and darkened. As a reddish purple solid, 2.11 g of a binuclear ruthenium complex dye (pH 2.8) was obtained (isolation yield: 93.2%).

実施例A2〜A3、比較例A1(反応液のpHを変えた二核ルテニウム錯体色素の合成)
実施例A1において、二核ルテニウム錯体色素を単離する際の反応液のpHを3.5、3.8に変えたこと以外は実施例A1と同様に反応を行い、それぞれ、二核ルテニウム錯体色素(pH3.5)、二核ルテニウム錯体色素(pH3.8)を得た。又、比較例として、反応液のpHを2.5としたこと以外は実施例A1と同様に反応を行い、二核ルテニウム錯体色素(pH2.5)も得た。
Examples A2 to A3, Comparative Example A1 (Synthesis of a dinuclear ruthenium complex dye in which the pH of the reaction solution was changed)
In Example A1, the reaction was carried out in the same manner as in Example A1 except that the pH of the reaction solution for isolating the dinuclear ruthenium complex dye was changed to 3.5 and 3.8. A dye (pH 3.5) and a dinuclear ruthenium complex dye (pH 3.8) were obtained. Further, as a comparative example, a reaction was performed in the same manner as in Example A1 except that the pH of the reaction solution was 2.5, and a binuclear ruthenium complex dye (pH 2.5) was also obtained.

なお、pH5.0を超える条件下においては、二核ルテニウム錯体色素の単離が困難であった。   In addition, it was difficult to isolate the dinuclear ruthenium complex dye under conditions exceeding pH 5.0.

実施例A4(光電変換効率の評価)
(多孔質チタニア電極の作製)
チタニアペーストPST−18NR(触媒化成製)を透明層に、PST−400C(触媒化成製)を拡散層に用い、透明導電性ガラス電極(旭硝子株式会社製)の上に、スクリーン印刷機を用いて塗布した。得られた膜を25℃、相対湿度60%の雰囲気下で5分間エージングし、このエージングした膜を440〜460℃で30分間焼成した。この操作を繰り返すことで、16mmの多孔質チタニア電極を作製した。
Example A4 (Evaluation of photoelectric conversion efficiency)
(Preparation of porous titania electrode)
Using a titania paste PST-18NR (catalyst conversion) for the transparent layer, PST-400C (catalyst conversion) for the diffusion layer, and using a screen printer on a transparent conductive glass electrode (Asahi Glass Co., Ltd.) Applied. The obtained film was aged for 5 minutes in an atmosphere of 25 ° C. and a relative humidity of 60%, and the aged film was baked at 440 to 460 ° C. for 30 minutes. By repeating this operation, a 16 mm 2 porous titania electrode was produced.

(色素を吸着した多孔質チタニア電極の作製)
実施例A1〜A3、比較例A1で合成した各種二核ルテニウム錯体色素をイソプロピルアルコールに加えて、当該ルテニウム錯体色素の飽和色素溶液を調製した。次いで、調製した飽和色素溶液に多孔質チタニア電極を内温30℃の恒温器中で20時間浸漬した後、乾燥させ、色素を吸着した多孔質チタニア電極を作製した。
(Preparation of porous titania electrode adsorbed with dye)
Various dinuclear ruthenium complex dyes synthesized in Examples A1 to A3 and Comparative Example A1 were added to isopropyl alcohol to prepare saturated dye solutions of the ruthenium complex dyes. Next, the porous titania electrode was immersed in the prepared saturated dye solution for 20 hours in an incubator with an internal temperature of 30 ° C. and then dried to prepare a porous titania electrode adsorbed with the dye.

(光化学電池の作製)
3−メトキシプロピオニトリル、ヨウ化リチウム、ヨウ素、4−t−ブチルピリジン及び1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドから、ヨウ化物イオンの濃度が1.0mol/lの電解質溶液を調製した。そして、前記色素吸着多孔質チタニア電極と白金板(対極)を重ね合わせた後、調製した電解質溶液を両電極の隙間に毛細管現象を利用して染み込ませることによって光化学電池を作製した。各々の二核ルテニウム錯体色素を用いて作製した光化学電池の変換効率を表1に示す。
(Production of photochemical battery)
From 3-methoxypropionitrile, lithium iodide, iodine, 4-t-butylpyridine and 1,2-dimethyl-3-propylimidazolium iodide, an electrolyte solution having an iodide ion concentration of 1.0 mol / l was prepared. Prepared. And after superposing | stacking the said pigment | dye adsorption porous titania electrode and a platinum plate (counter electrode), the photoelectrochemical cell was produced by making the prepared electrolyte solution permeate into the clearance gap between both electrodes using a capillary phenomenon. Table 1 shows the conversion efficiencies of the photochemical batteries prepared using each dinuclear ruthenium complex dye.

Figure 2009025382
Figure 2009025382

この結果から、実施例A1〜A3の二核ルテニウム錯体色素(pH2.8)、二核ルテニウム錯体色素(pH3.5)、二核ルテニウム錯体色素(pH3.8)が、比較例A1のルテニウム錯体色素(pH2.5)よりも高い変換効率を示すことが分かる。   From these results, the binuclear ruthenium complex dye (pH 2.8), the dinuclear ruthenium complex dye (pH 3.5), and the dinuclear ruthenium complex dye (pH 3.8) of Examples A1 to A3 were compared with the ruthenium complex of Comparative Example A1. It can be seen that the conversion efficiency is higher than that of the dye (pH 2.5).

参考例B1(ルテニウム錯体(2−1)及び脱プロトン化されたルテニウム錯体(2−1)の合成)
攪拌装置、温度計及び還流冷却器を備えた内容積200mlの三口フラスコに、ジクロロビス(2,2’−ビピリジル)ルテニウム(II)0.505g(0.97mmol)、2,2’−ビベンズイミダゾール0.34g(1.46mmol)及びエチレングリコール20mlを加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら200〜204℃で5分間反応させた。反応終了後、反応液に水20mlを加えて1時間攪拌した後に濾過し、濾液にヘキサフルオロリン酸アンモニウム水溶液を加え、更に1時間攪拌した。攪拌終了後、得られた溶液を濾過し、濾液にヘキサフルオロリン酸アンモニウム水溶液を加え、更に1時間攪拌した後、析出した固体を濾過し、濾物を水、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄した。そして、得られた固体を乾燥させ、橙色固体として、ルテニウム錯体(2−1)0.905gを得た(単離収率;96%)。
Reference Example B1 (Synthesis of Ruthenium Complex (2-1) and Deprotonated Ruthenium Complex (2-1))
A three-necked flask having an internal volume of 200 ml equipped with a stirrer, a thermometer and a reflux condenser was charged with 0.505 g (0.97 mmol) of dichlorobis (2,2′-bipyridyl) ruthenium (II) and 2,2′-bibenzimidazole. 0.34 g (1.46 mmol) and 20 ml of ethylene glycol were added, and the mixture was reacted at 200 to 204 ° C. for 5 minutes with stirring under a nitrogen atmosphere under microwave irradiation at 2.45 GHz. After completion of the reaction, 20 ml of water was added to the reaction solution and stirred for 1 hour, followed by filtration. An aqueous ammonium hexafluorophosphate solution was added to the filtrate, and the mixture was further stirred for 1 hour. After completion of the stirring, the resulting solution was filtered, an aqueous ammonium hexafluorophosphate solution was added to the filtrate, and the mixture was further stirred for 1 hour, and then the precipitated solid was filtered, and the residue was filtered with water, acetone / diethyl ether (= 1/1 / 4 (volume ratio)) and the diethyl ether were washed in this order. The obtained solid was dried to obtain 0.905 g of ruthenium complex (2-1) as an orange solid (isolation yield: 96%).

次いで、得られたルテニウム錯体(2−1)0.877g(0.90mmol)、メタノール30ml及び28%ナトリウムメトキシドメタノール溶液1.8ml(9.0mmol)を加え、窒素雰囲気下、攪拌しながら85℃で1時間反応させた。反応終了後、反応液を室温まで冷却した後に濾過し、濾物を冷却したメタノール、水、ジエチルエーテルの順で洗浄した後、乾燥させ、暗赤紫色固体として、脱プロトン化されたルテニウム錯体(2−1)0.587gを得た(単離収率;96%)。   Next, 0.877 g (0.90 mmol) of the obtained ruthenium complex (2-1), 30 ml of methanol, and 1.8 ml (9.0 mmol) of 28% sodium methoxide methanol solution were added, and 85% with stirring under a nitrogen atmosphere. The reaction was carried out at 1 ° C. for 1 hour. After completion of the reaction, the reaction solution was cooled to room temperature and then filtered, and the residue was washed with cooled methanol, water, and diethyl ether in that order, and then dried to obtain a deprotonated ruthenium complex ( 2-1) 0.587 g was obtained (isolation yield: 96%).

実施例B1〜B5(二核ルテニウム錯体色素(pH2.5)の合成・pHの異なる二核ルテニウム錯体色素酸性水溶液の調製)
攪拌装置、温度計及び還流冷却器を備えた内容積500mlの三口フラスコに、ルテニウム錯体(1)0.509g(0.73mmol)、水50ml、エタノール50ml及び1mol/l水酸化ナトリウム水溶液3.2ml(3.20mmol)を加えた。次いで、脱プロトン化されたルテニウム錯体(2−1)0.522g(0.77mmol)を加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら85〜90℃で30分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。濃縮後、得られた溶液を濾過し、濾液に0.5mol/lヘキサフルオロリン酸水溶液を反応液のpHが2.5になるまで加え、液温を4℃に冷却して一晩放置した。析出した結晶を濾過し、pH2.5のヘキサフルオロリン酸水溶液、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄した後、固体を乾燥させ、暗赤紫色固体として、二核ルテニウム錯体色素(pH2.5)0.873gを得た(単離収率;85%)。
Examples B1 to B5 (Synthesis of dinuclear ruthenium complex dye (pH 2.5) and preparation of acidic aqueous solution of dinuclear ruthenium complex dye having different pH)
To a 500 ml three-necked flask equipped with a stirrer, thermometer and reflux condenser, 0.509 g (0.73 mmol) of ruthenium complex (1), 50 ml of water, 50 ml of ethanol and 3.2 ml of 1 mol / l sodium hydroxide aqueous solution (3.20 mmol) was added. Next, 0.522 g (0.77 mmol) of deprotonated ruthenium complex (2-1) was added, and the mixture was stirred at 85 to 90 ° C. for 30 minutes under stirring in a nitrogen atmosphere under microwave irradiation at 2.45 GHz. Reacted. After completion of the reaction, the reaction solution was filtered, and the filtrate was concentrated under reduced pressure. After concentration, the resulting solution was filtered, and 0.5 mol / l hexafluorophosphoric acid aqueous solution was added to the filtrate until the pH of the reaction solution reached 2.5, and the solution temperature was cooled to 4 ° C. and left overnight. . The precipitated crystals were filtered, washed with an aqueous solution of hexafluorophosphoric acid at pH 2.5, a mixture of acetone / diethyl ether (= 1/4 (volume ratio)) and diethyl ether in this order, and then the solid was dried and darkened. As a reddish purple solid, 0.873 g of a binuclear ruthenium complex dye (pH 2.5) was obtained (isolation yield: 85%).

得られた二核ルテニウム錯体色素(pH2.5)と水とを混合した(懸濁状態となった)後、この懸濁液にトリエチルアミンをpHが10になるまで加え、0.2mmol/l二核ルテニウム錯体色素水溶液(pH10)を得た。次いで、得られた溶液に0.5mol/l及び0.02mol/lヨウ化水素酸水溶液を適当量加えて、pH4.0、pH4.3、pH4.5、pH5.0、pH7.0の二核ルテニウム錯体色素酸性水溶液をそれぞれ調製した。調製した二核ルテニウム錯体色素酸性水溶液は全て、二核ルテニウム錯体色素の濃度を0.2mmol/lとした。   The obtained dinuclear ruthenium complex dye (pH 2.5) and water were mixed (become suspended), and triethylamine was added to the suspension until the pH reached 10, and 0.2 mmol / l 2 A nuclear ruthenium complex dye aqueous solution (pH 10) was obtained. Next, appropriate amounts of 0.5 mol / l and 0.02 mol / l hydroiodic acid aqueous solution are added to the resulting solution to obtain pH 4.0, pH 4.3, pH 4.5, pH 5.0, pH 7.0. A nuclear ruthenium complex dye acidic aqueous solution was prepared. All of the prepared dinuclear ruthenium complex dye acidic aqueous solutions had a dinuclear ruthenium complex dye concentration of 0.2 mmol / l.

なお、pH4.0未満では二核ルテニウム錯体色素が析出してしまったために、当該酸性水溶液を調製することはできなかった。   In addition, since the binuclear ruthenium complex pigment | dye precipitated at pH less than 4.0, the said acidic aqueous solution was not able to be prepared.

実施例B6(光電変換効率の評価)
(多孔質チタニア電極の作製)
チタニアペーストPST−18NR(触媒化成製)を透明層に、PST−400C(触媒化成製)を拡散層に用い、透明導電性ガラス電極(旭硝子株式会社製)の上に、スクリーン印刷機を用いて塗布した。得られた膜を25℃、相対湿度60%の雰囲気下で5分間エージングし、このエージングした膜を440〜460℃で30分間焼成した。この操作を繰り返すことで、16mmの多孔質チタニア電極を作製した。
Example B6 (Evaluation of photoelectric conversion efficiency)
(Preparation of porous titania electrode)
Using a titania paste PST-18NR (catalyst conversion) for the transparent layer, PST-400C (catalyst conversion) for the diffusion layer, and using a screen printer on a transparent conductive glass electrode (Asahi Glass Co., Ltd.) Applied. The obtained film was aged for 5 minutes in an atmosphere of 25 ° C. and a relative humidity of 60%, and the aged film was baked at 440 to 460 ° C. for 30 minutes. By repeating this operation, a 16 mm 2 porous titania electrode was produced.

(色素を吸着した多孔質チタニア電極の作製)
実施例B1〜B5で調製した二核ルテニウム錯体色素酸性水溶液に多孔質チタニア電極を内温30℃の恒温器中で20時間浸漬した後、乾燥させ、色素を吸着した多孔質チタニア電極を作製した。
(Preparation of porous titania electrode adsorbed with dye)
The porous titania electrode was immersed in the aqueous solution of the dinuclear ruthenium complex dye prepared in Examples B1 to B5 in a thermostat at an internal temperature of 30 ° C. for 20 hours, and then dried to prepare a porous titania electrode adsorbed with the dye. .

(光化学電池の作製)
3−メトキシプロピオニトリル、ヨウ化リチウム、ヨウ素、4−t−ブチルピリジン及び1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドから、ヨウ化物イオンの濃度が0.65mol/lの電解質溶液を調製した。そして、前記色素吸着多孔質チタニア電極に25mmの孔を開けた30μm厚のスペーサーを乗せ、調製した電解質溶液を滴下した後、白金板(対極)を重ね合わせることによって光化学電池を作製した。pHの異なる各々の二核ルテニウム錯体色素酸性水溶液を用いて作製した光化学電池の変換効率を表2に示す。なお、色素を吸着させる時間(吸着時間)はいずれも20時間である。
(Production of photochemical battery)
From 3-methoxypropionitrile, lithium iodide, iodine, 4-t-butylpyridine and 1,2-dimethyl-3-propylimidazolium iodide, an electrolyte solution having an iodide ion concentration of 0.65 mol / l was prepared. Prepared. A 30 μm-thick spacer having a 25 mm 2 hole was placed on the dye-adsorbing porous titania electrode, the prepared electrolyte solution was dropped, and a platinum plate (counter electrode) was overlaid to produce a photochemical battery. Table 2 shows the conversion efficiencies of photochemical cells prepared using acidic aqueous solutions of dinuclear ruthenium complex dyes having different pHs. The time for adsorbing the dye (adsorption time) is 20 hours.

Figure 2009025382
Figure 2009025382

又、pHが4.0、4.3、4.5の0.2mmol/l二核ルテニウム錯体色素酸性水溶液(実施例B1〜B3)を使用して、色素を吸着させる時間を変えて光化学電池を作製し、吸着時間に対する変換効率を測定した。その結果を表3に示す。   In addition, a 0.2 mmol / l dinuclear ruthenium complex dye acidic aqueous solution (Examples B1 to B3) having a pH of 4.0, 4.3, or 4.5 is used to change the time for adsorbing the dye, and the photochemical battery. The conversion efficiency with respect to adsorption time was measured. The results are shown in Table 3.

Figure 2009025382
Figure 2009025382

これらの結果から、0.2mmol/l二核ルテニウム錯体色素酸性水溶液のうち、特にpHが4.0〜4.5の範囲で高い変換効率を示すことが分かる。   From these results, it can be seen that, in the 0.2 mmol / l dinuclear ruthenium complex dye acidic aqueous solution, high conversion efficiency is exhibited particularly in the pH range of 4.0 to 4.5.

本発明の二核ルテニウム錯体色素、または本発明の二核ルテニウム錯体色素酸性水溶液を用いることにより、光電変換効率が高い光電変換素子、及びそれを用いた光化学電池を得ることができる。   By using the dinuclear ruthenium complex dye of the present invention or the dinuclear ruthenium complex dye acidic aqueous solution of the present invention, a photoelectric conversion element having high photoelectric conversion efficiency and a photochemical battery using the same can be obtained.

Claims (21)

一般式(1)
Figure 2009025382
(式中、Yは、ハロゲン原子を示す。)
で示されるルテニウム錯体(1)と、一般式(2−A)
Figure 2009025382
(式中、R111、R112、R113及びR114は、それぞれ独立に、水素原子、メチル基またはエチル基を示し、
121、R122、R123、R124、R125、R126、R127、R128、R129、R130、R131、R132、R133、R134、R135及びR136は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R121〜R136の隣接する二つ、もしくはR124とR125、R132とR133が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。
ただし、NH基は脱プロトン化されて、Nとなっていてもよい。)
または、一般式(2−B)
Figure 2009025382
(式中、R211、R212、R213及びR214は、それぞれ独立に、水素原子、メチル基またはエチル基を示し、
221、R222、R223、R224、R225、R226、R227、R228、R229、R230、R231、R232、R233、R234、R235及びR236は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R221〜R236の隣接する二つ、もしくはR224とR225、R232とR233が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。
ただし、NH基は脱プロトン化されて、Nとなっていてもよい。)
または、一般式(2−C)
Figure 2009025382
(式中、R311、R312、R313、R314、R315及びR316は、それぞれ独立に、水素原子、メチル基またはエチル基を示し、
321、R322、R323、R324、R325、R326、R327、R328、R329、R330、R331、R332、R333、R334、R335及びR336は、それぞれ独立に、水素原子、メチル基またはエチル基を示すか、または、R321〜R336の隣接する二つ、もしくはR324とR325、R332とR333が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環を形成している。)
で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整して単離させることによって得られる二核ルテニウム錯体色素。
General formula (1)
Figure 2009025382
(In the formula, Y represents a halogen atom.)
And a ruthenium complex (1) represented by general formula (2-A)
Figure 2009025382
(Wherein R 111 , R 112 , R 113 and R 114 each independently represent a hydrogen atom, a methyl group or an ethyl group,
R 121 , R 122 , R 123 , R 124 , R 125 , R 126 , R 127 , R 128 , R 129 , R 130 , R 131 , R 132 , R 133 , R 134 , R 135, and R 136 are respectively Independently represents a hydrogen atom, a methyl group or an ethyl group, or adjacent two of R 121 to R 136 , or carbon to which R 124 and R 125 , R 132 and R 133 are bonded together A 6-membered aromatic hydrocarbon ring is formed together with the atoms.
However, NH groups are deprotonated, N - may become a. )
Or general formula (2-B)
Figure 2009025382
(Wherein R 211 , R 212 , R 213 and R 214 each independently represents a hydrogen atom, a methyl group or an ethyl group,
R 221 , R 222 , R 223 , R 224 , R 225 , R 226 , R 227 , R 228 , R 229 , R 230 , R 231 , R 232 , R 233 , R 234 , R 235 and R 236 are respectively Independently represents a hydrogen atom, a methyl group or an ethyl group, or adjacent two of R 221 to R 236 , or carbons to which R 224 and R 225 , R 232 and R 233 are bonded together A 6-membered aromatic hydrocarbon ring is formed together with the atoms.
However, NH groups are deprotonated, N - may become a. )
Or general formula (2-C)
Figure 2009025382
(Wherein R 311 , R 312 , R 313 , R 314 , R 315 and R 316 each independently represents a hydrogen atom, a methyl group or an ethyl group,
R 321 , R 322 , R 323 , R 324 , R 325 , R 326 , R 327 , R 328 , R 329 , R 330 , R 331 , R 332 , R 333 , R 334 , R 335 and R 336 are respectively Independently represents a hydrogen atom, a methyl group or an ethyl group, or adjacent two of R 321 to R 336 , or carbon to which R 324 and R 325 , R 332 and R 333 are bonded together A 6-membered aromatic hydrocarbon ring is formed together with the atoms. )
A binuclear ruthenium complex dye obtained by reacting with the ruthenium complex (2) represented by the formula (2) and then isolating it by adjusting the pH of the reaction solution to be greater than 2.5 and less than or equal to 5 .
ルテニウム錯体(1)とルテニウム錯体(2)とを水と有機溶媒の混合溶媒中で反応させる請求項1記載の二核ルテニウム錯体色素。   The binuclear ruthenium complex dye according to claim 1, wherein the ruthenium complex (1) and the ruthenium complex (2) are reacted in a mixed solvent of water and an organic solvent. 反応液に加える酸が、ヘキサフルオロリン酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、過塩素酸、テトラフルオロホウ酸、テトラフェニルホウ酸、トリフルオロメタンスルホン酸または酢酸のいずれか1種以上である請求項1または2記載の二核ルテニウム錯体色素。   The acid added to the reaction solution is any one of hexafluorophosphoric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, perchloric acid, tetrafluoroboric acid, tetraphenylboric acid, trifluoromethanesulfonic acid or acetic acid. The binuclear ruthenium complex dye according to claim 1 or 2, which is a species or more. 前記ルテニウム錯体(2)が、下記式(2−1)で示されるルテニウム錯体または下記式(2−2)で示されるルテニウム錯体である請求項1〜3のいずれかに記載の二核ルテニウム錯体色素。
Figure 2009025382
Figure 2009025382
The binuclear ruthenium complex according to any one of claims 1 to 3, wherein the ruthenium complex (2) is a ruthenium complex represented by the following formula (2-1) or a ruthenium complex represented by the following formula (2-2). Pigment.
Figure 2009025382
Figure 2009025382
前記一般式(1)で示されるルテニウム錯体(1)と、前記一般式(2−A)、一般式(2−B)または一般式(2−C)で示されるルテニウム錯体(2)とを水と有機溶媒の混合溶媒中で反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整して、析出した固体を取得することを特徴とする、請求項1〜4のいずれかに記載の二核ルテニウム錯体色素の製造方法。   A ruthenium complex (1) represented by the general formula (1) and a ruthenium complex (2) represented by the general formula (2-A), the general formula (2-B) or the general formula (2-C). After reacting in a mixed solvent of water and an organic solvent, an acid is added to adjust the pH of the reaction solution to be greater than 2.5 and 5 or less to obtain a precipitated solid, The manufacturing method of the binuclear ruthenium complex dye in any one of Claims 1-4. ルテニウム錯体(1)とルテニウム錯体(2)との反応を塩基の存在下で行う請求項5記載の二核ルテニウム錯体色素の製造方法。   The method for producing a dinuclear ruthenium complex dye according to claim 5, wherein the reaction between the ruthenium complex (1) and the ruthenium complex (2) is carried out in the presence of a base. 前記一般式(1)で示されるルテニウム錯体(1)と、前記一般式(2−A)、一般式(2−B)または一般式(2−C)で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5〜5となるように調整することによって二核ルテニウム錯体を単離した後、当該錯体、水及び塩基(塩基性水溶液を含む)を混合して二核ルテニウム錯体色素水溶液とし、次いで、これに酸を加えることによって得られる二核ルテニウム錯体色素酸性水溶液。   A ruthenium complex (1) represented by the general formula (1) and a ruthenium complex (2) represented by the general formula (2-A), the general formula (2-B) or the general formula (2-C). After the reaction, the dinuclear ruthenium complex is isolated by adjusting the pH of the reaction solution to 2.5 to 5 by adding an acid, and then the complex, water and base (including basic aqueous solution). Are mixed into a dinuclear ruthenium complex dye aqueous solution, and then an acid is added to the dinuclear ruthenium complex dye aqueous solution. 二核ルテニウム錯体色素の濃度が0.1〜1mmol/lである請求項7記載の二核ルテニウム錯体色素酸性水溶液。   The dinuclear ruthenium complex dye acidic aqueous solution according to claim 7, wherein the concentration of the dinuclear ruthenium complex dye is 0.1 to 1 mmol / l. 酸を加える前の二核ルテニウム錯体色素水溶液の二核ルテニウム錯体色素の濃度が0.1〜1mmol/lである請求項7または8記載の二核ルテニウム錯体色素酸性水溶液。   The dinuclear ruthenium complex dye acidic aqueous solution according to claim 7 or 8, wherein the concentration of the dinuclear ruthenium complex dye in the dinuclear ruthenium complex dye aqueous solution before adding the acid is 0.1 to 1 mmol / l. pHが4.0〜5.0である請求項7〜9のいずれかに記載の二核ルテニウム錯体色素酸性水溶液。   pH is 4.0-5.0, The dinuclear ruthenium complex dye acidic aqueous solution in any one of Claims 7-9. 加える酸が、ヘキサフルオロリン酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、過塩素酸、テトラフルオロホウ酸、テトラフェニルホウ酸、トリフルオロメタンスルホン酸または酢酸のいずれか1種以上である請求項7〜10のいずれかに記載の二核ルテニウム錯体色素酸性水溶液。   The acid to be added is at least one of hexafluorophosphoric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, perchloric acid, tetrafluoroboric acid, tetraphenylboric acid, trifluoromethanesulfonic acid or acetic acid. The binuclear ruthenium complex dye acidic aqueous solution according to any one of claims 7 to 10. 前記ルテニウム錯体(2)が、前記式(2−1)で示されるルテニウム錯体または前記式(2−2)で示されるルテニウム錯体である請求項7〜11のいずれかに記載の二核ルテニウム錯体色素酸性水溶液。   The binuclear ruthenium complex according to any one of claims 7 to 11, wherein the ruthenium complex (2) is a ruthenium complex represented by the formula (2-1) or a ruthenium complex represented by the formula (2-2). Pigment acid aqueous solution. 前記一般式(1)で示されるルテニウム錯体(1)と、前記一般式(2−A)、一般式(2−B)または一般式(2−C)で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5〜5となるように調整することによって二核ルテニウム錯体を単離した後、当該錯体、水及び塩基(塩基性水溶液を含む)を混合して二核ルテニウム錯体色素水溶液とし、次いで、これに酸を加えることを特徴とする、請求項7〜12のいずれかに記載の二核ルテニウム錯体色素酸性水溶液の製造方法。   A ruthenium complex (1) represented by the general formula (1) and a ruthenium complex (2) represented by the general formula (2-A), the general formula (2-B) or the general formula (2-C). After the reaction, the dinuclear ruthenium complex is isolated by adjusting the pH of the reaction solution to 2.5 to 5 by adding an acid, and then the complex, water and base (including basic aqueous solution). The method for producing a dinuclear ruthenium complex dye acidic aqueous solution according to any one of claims 7 to 12, wherein an aqueous solution of the dinuclear ruthenium complex dye is mixed, and then an acid is added thereto. ルテニウム錯体(1)とルテニウム錯体(2)との反応を塩基の存在下で行う請求項13記載の二核ルテニウム錯体色素酸性水溶液の製造方法。   The method for producing an acidic aqueous solution of a dinuclear ruthenium complex dye according to claim 13, wherein the reaction between the ruthenium complex (1) and the ruthenium complex (2) is carried out in the presence of a base. 前記一般式(1)で示されるルテニウム錯体(1)と、前記一般式(2−A)、一般式(2−B)または一般式(2−C)で示されるルテニウム錯体(2)とを反応させた後、酸を加えて二核ルテニウム錯体を単離した後、当該錯体、水及び塩基(塩基性水溶液を含む)を混合して二核ルテニウム錯体色素水溶液とし、次いで、これに酸を加えることによって得られる二核ルテニウム錯体色素酸性水溶液であって、
pHが4.0〜5.0であることを特徴とする二核ルテニウム錯体色素酸性水溶液。
A ruthenium complex (1) represented by the general formula (1) and a ruthenium complex (2) represented by the general formula (2-A), the general formula (2-B) or the general formula (2-C). After the reaction, an acid is added to isolate the binuclear ruthenium complex, and then the complex, water and a base (including a basic aqueous solution) are mixed to obtain a dinuclear ruthenium complex dye aqueous solution. A dinuclear ruthenium complex dye acidic aqueous solution obtained by adding,
A dinuclear ruthenium complex dye acidic aqueous solution having a pH of 4.0 to 5.0.
加える酸が、ヘキサフルオロリン酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、過塩素酸、テトラフルオロホウ酸、テトラフェニルホウ酸、トリフルオロメタンスルホン酸または酢酸のいずれか1種以上である請求項15記載の二核ルテニウム錯体色素酸性水溶液。   The acid to be added is at least one of hexafluorophosphoric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, perchloric acid, tetrafluoroboric acid, tetraphenylboric acid, trifluoromethanesulfonic acid or acetic acid. The dinuclear ruthenium complex dye acidic aqueous solution according to claim 15. 請求項1〜4のいずれかに記載の二核ルテニウム錯体色素によって増感された半導体微粒子。   Semiconductor fine particles sensitized by the binuclear ruthenium complex dye according to any one of claims 1 to 4. 請求項7〜12、15または16のいずれかに記載の二核ルテニウム錯体色素酸性水溶液を用いて色素を吸着させた、二核ルテニウム錯体色素によって増感された半導体微粒子。   Semiconductor fine particles sensitized with a dinuclear ruthenium complex dye, wherein the dye is adsorbed using the acidic aqueous solution of the dinuclear ruthenium complex dye according to any one of claims 7 to 12, 15 or 16. 半導体微粒子が、酸化チタン、酸化亜鉛、酸化スズ、又はそれらの混合物である請求項17または18記載の二核ルテニウム錯体色素によって増感された半導体微粒子。   The semiconductor fine particles sensitized by the binuclear ruthenium complex dye according to claim 17 or 18, wherein the semiconductor fine particles are titanium oxide, zinc oxide, tin oxide, or a mixture thereof. 請求項17または18記載の二核ルテニウム錯体色素によって増感された半導体微粒子を含む光電変換素子。   The photoelectric conversion element containing the semiconductor fine particle sensitized with the binuclear ruthenium complex dye of Claim 17 or 18. 請求項20記載の光電変換素子と電解質溶液を備える光化学電池。   A photochemical battery comprising the photoelectric conversion element according to claim 20 and an electrolyte solution.
JP2009529086A 2007-08-23 2008-08-25 Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same Expired - Fee Related JP5493857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009529086A JP5493857B2 (en) 2007-08-23 2008-08-25 Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007217169 2007-08-23
JP2007217169 2007-08-23
JP2007277954 2007-10-25
JP2007277954 2007-10-25
JP2009529086A JP5493857B2 (en) 2007-08-23 2008-08-25 Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same
PCT/JP2008/065126 WO2009025382A1 (en) 2007-08-23 2008-08-25 Binuclear ruthenium complex dye, acidic aqueous solution of binuclear ruthenium complex dye, and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2009025382A1 true JPWO2009025382A1 (en) 2010-11-25
JP5493857B2 JP5493857B2 (en) 2014-05-14

Family

ID=40378280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009529086A Expired - Fee Related JP5493857B2 (en) 2007-08-23 2008-08-25 Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same

Country Status (3)

Country Link
JP (1) JP5493857B2 (en)
TW (1) TW200914423A (en)
WO (1) WO2009025382A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556096B2 (en) * 2009-09-10 2014-07-23 宇部興産株式会社 Photoelectric conversion element having a binuclear ruthenium complex dye having a linking molecule having an electron withdrawing group as a substituent, and a photochemical battery
KR20120099026A (en) * 2009-10-20 2012-09-06 우베 고산 가부시키가이샤 Photoelectric conversion device wherein dye consisting of binuclear ruthenium complex having substituted bipyridyl groups is used, and photochemical cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038587A1 (en) * 2004-10-01 2006-04-13 Ube Industries, Ltd. Binuclear metal complex, metal complex dye, photoelectric transducer and photochemical battery
WO2008093742A1 (en) * 2007-01-31 2008-08-07 Ube Industries, Ltd. Process for production of binuclear metal complex

Also Published As

Publication number Publication date
WO2009025382A1 (en) 2009-02-26
JP5493857B2 (en) 2014-05-14
TW200914423A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
JP5003871B2 (en) Binuclear metal complex, metal complex dye, photoelectric conversion element, and photochemical battery
JP5633370B2 (en) Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element having the complex dye, and photochemical battery
KR20110084301A (en) Photochemical cell comprising semiconductor microparticles sensitized with binuclear metal complex dye and electrolysis solution mainly composed of ionic liquid
JP5761024B2 (en) Photoelectric conversion element having binuclear ruthenium complex dye having substituted bipyridyl group, and photochemical battery
JP5003865B2 (en) Binuclear metal complex dye solution, photoelectric conversion element using this solution, and photochemical battery
JP5293190B2 (en) Method for producing binuclear metal complex
JP5170357B2 (en) Photoelectric conversion element and photochemical battery
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
JP5493857B2 (en) Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same
JPWO2009102068A1 (en) Binuclear ruthenium complex dye solution, photoelectric conversion element using photosensitized semiconductor fine particles obtained using the complex dye solution, and photochemical battery using the same
KR20130028912A (en) Photoelectric conversion element that contains dye consisting of binuclear ruthenium complex having substituted bipyridyl groups, and photochemical cell
JP5061626B2 (en) Method for producing binuclear metal complex
JP6086069B2 (en) Binuclear ruthenium complex dye, photoelectric conversion element having the dye, and photochemical battery
JP2011195745A (en) Dye and dye-sensitized solar cell using the same
JP5682574B2 (en) A photochemical battery comprising semiconductor fine particles sensitized with a dinuclear ruthenium complex dye and an electrolyte solution containing an ammonium salt compound or a phosphonium salt compound
JP5273044B2 (en) A photochemical battery comprising semiconductor fine particles sensitized with a dinuclear ruthenium complex dye and an electrolyte solution mainly composed of an ionic liquid
JP5239269B2 (en) Dinuclear ruthenium complex dye and method for producing the same
JP2009129652A (en) Photoelectric conversion element and photochemical battery
JP5573056B2 (en) A photochemical battery comprising semiconductor fine particles sensitized by a dinuclear ruthenium complex dye and an electrolyte solution containing an arylamine compound
JP5838820B2 (en) Binuclear ruthenium complex dye, photoelectric conversion element having the dye, and photochemical battery
JP5556096B2 (en) Photoelectric conversion element having a binuclear ruthenium complex dye having a linking molecule having an electron withdrawing group as a substituent, and a photochemical battery
JP5446207B2 (en) Photoelectric conversion element and photochemical battery
JP2011146276A (en) Photoelectric conversion element using photosensitized semiconductor fine particle obtained using binuclear ruthenium complex dye solution, and photochemical battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5493857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees