JPWO2009020054A1 - FRP reinforced vinyl chloride resin pipe joint and method for manufacturing the same - Google Patents

FRP reinforced vinyl chloride resin pipe joint and method for manufacturing the same Download PDF

Info

Publication number
JPWO2009020054A1
JPWO2009020054A1 JP2009526419A JP2009526419A JPWO2009020054A1 JP WO2009020054 A1 JPWO2009020054 A1 JP WO2009020054A1 JP 2009526419 A JP2009526419 A JP 2009526419A JP 2009526419 A JP2009526419 A JP 2009526419A JP WO2009020054 A1 JPWO2009020054 A1 JP WO2009020054A1
Authority
JP
Japan
Prior art keywords
frp
pipe joint
mold
vinyl chloride
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009526419A
Other languages
Japanese (ja)
Inventor
等 内田
等 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Publication of JPWO2009020054A1 publication Critical patent/JPWO2009020054A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C43/146Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making multilayered articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons
    • F16L43/008Bends; Siphons made from plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C2043/141Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making single layer articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/24Pipe joints or couplings
    • B29L2031/243Elbows

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

補強繊維および熱硬化性樹脂が均一分散され、十分に充填補強され、外観良好で破損しにくいFRP補強PVC管継手及びその製造方法を提供することを目的とする。内部にキャビティが形成された上型と下型からなる金型を用い下型にFRP層を形成するバルクモールディングコンパウンド(BMC)又はシートモールディングコンパウンド(SMC)を挿填し、下型に予め成形された塩化ビニル系樹脂製管継手を固定し、塩化ビニル系樹脂製管継手の上部にBMC又はSMCを挿填した後、上型と下型を閉止して加圧一体成形する。An object of the present invention is to provide an FRP-reinforced PVC pipe joint in which reinforcing fibers and a thermosetting resin are uniformly dispersed, sufficiently filled and reinforced, have a good appearance and are not easily damaged, and a method for manufacturing the same. Bulk mold compound (BMC) or sheet molding compound (SMC) that forms an FRP layer is inserted into the lower mold using a mold consisting of an upper mold and a lower mold in which cavities are formed. After fixing the vinyl chloride resin pipe joint and inserting BMC or SMC into the upper part of the vinyl chloride resin pipe joint, the upper mold and the lower mold are closed and pressure integrated molding is performed.

Description

本発明は主として高温の酸やアルカリを示す化学薬品や高温の温泉水等の輸送配管に使用されるFRP(繊維強化熱硬化性樹脂)補強塩化ビニル系樹脂製管継手及びその製造方法に関するものである。   The present invention mainly relates to FRP (fiber reinforced thermosetting resin) reinforced vinyl chloride resin pipe joints used for transport pipes for chemicals showing high temperature acids and alkalis, high temperature hot spring water, and the like, and a method for manufacturing the same. is there.

従来、高温の腐食性を有する上記化学薬品や高温の温泉水等の輸送配管に使用されるFRP補強塩化ビニル系樹脂製管継手(以下FRP補強PVC管継手と記す)は、通常ハンドレイアップ法(手積成形法)が採用されているが、ハンドレイアップ法は手作業で行われるため、能率が悪く、また、熟練を要し、製造後に廃棄される無駄な材料が多く生産性が非常に悪い。しかも均質な成形品を得ることが困難で、外観も悪く外径寸法が一定にならない等の問題があった。これらの問題点を解決する方法として、FRP補強熱可塑性樹脂製フランジ付き管継手の製造方法がある(特開平5−185536号公報参照)。その構成は、繊維強化熱硬化性樹脂でなるFRP層により補強された合成樹脂製フランジ付き管継手を製造するに当たり、フランジ付き管継手素材の外面形状に対応する内面形状を有して管継手素材のセット時に継手素材の外面との間に一定の樹脂厚を確保しうる型を用意し、先ずハンドレイアップ法により上記管継手素材の外面に繊維強化熱硬化性樹脂を積層した。次に、その管継手素材を型にセットして全体的に均一に加圧しながら繊維強化熱硬化性樹脂を硬化させ、その樹脂が完全に硬化した後に脱型して仕上げるものである。この方法は、管継手素材におけるフランジ外面やフランジ根元等の樹脂の行き渡り難い部分に対しても、均一に繊維強化熱硬化性樹脂層(以下、FRP層と記す)を密着させることができるので、フランジ各部形状の揃った良好な外観を有し且つFRPとフランジとの界面やFRP内に気泡のない製品を得ることはできる。
また、ソケットやエルボなどのFRP補強PVC管継手の他の製造方法として、フィラメントワインディング法による強化樹脂管継手の製造方法がある(特開平4−45918号公報参照)。その構成は、管継手の分岐変形部を有する中央部の内層をあらかじめ樹脂あるいは強化樹脂で成形して成形体とし、成形体に受口部の形状を成形する芯型を装着した後、芯型および成形体の外周にフイラメントワインディング法により強化樹脂成形材料を供給して管継手を成形し、硬化させた後、芯型を抜去するものであり、継手の均質化が図れ、内圧に対する強度が強く、受口部の寸法精度も良い。
Conventionally, FRP reinforced vinyl chloride resin pipe joints (hereinafter referred to as FRP reinforced PVC pipe joints) used for transport pipes for the above chemicals having high temperature corrosivity and high temperature hot spring water, etc. (Hand pile molding method) is adopted, but the hand lay-up method is performed manually, so it is inefficient, requires skill, and has a lot of wasted materials that are discarded after production. It ’s bad. In addition, it is difficult to obtain a homogeneous molded product, and the appearance is poor and the outer diameter is not constant. As a method for solving these problems, there is a method of manufacturing a flanged pipe joint made of FRP reinforced thermoplastic resin (refer to JP-A-5-185536). When manufacturing a synthetic resin flanged pipe joint reinforced with an FRP layer made of fiber reinforced thermosetting resin, the structure has an inner surface shape corresponding to the outer surface shape of the flanged pipe joint material. A mold capable of ensuring a constant resin thickness between the outer surface of the joint material at the time of setting was prepared, and a fiber reinforced thermosetting resin was first laminated on the outer surface of the pipe joint material by a hand lay-up method. Next, the pipe joint material is set in a mold, and the fiber-reinforced thermosetting resin is cured while being uniformly pressurized as a whole. After the resin is completely cured, the mold is removed and finished. Since this method can evenly adhere a fiber reinforced thermosetting resin layer (hereinafter referred to as FRP layer) even to a portion of the pipe joint material where the resin is difficult to spread such as the flange outer surface and the flange base, It is possible to obtain a product having a good appearance in which the shape of each part of the flange is uniform and free of bubbles in the interface between the FRP and the flange or in the FRP.
As another method for manufacturing FRP-reinforced PVC pipe joints such as sockets and elbows, there is a method for manufacturing a reinforced resin pipe joint by a filament winding method (see Japanese Patent Application Laid-Open No. 4-45918). Its structure is that the inner layer of the central part having the branch deformation part of the pipe joint is molded in advance with a resin or reinforced resin to form a molded body, and after the core mold for molding the shape of the receiving portion is attached to the molded body, the core mold In addition, a reinforced resin molding material is supplied to the outer periphery of the molded body by the filament winding method to mold and cure the pipe joint, and then the core mold is removed, so that the joint can be homogenized and strong against internal pressure. The dimensional accuracy of the receiving part is also good.

しかしながら、前記従来のFRP補強合成樹脂製フランジ付き管継手の製造方法は、最初にハンドレイアップ法により管継手素材にセットする型をFRP(繊維強化熱硬化性樹脂)を積層して作成する工程が必要となり、管継手の製造には手間や時間が掛かるという問題がある。また、管継手の中ではフランジ形状のもの以外には有効性が低く、ソケットや、特にエルボやチーズのような屈曲した流路を持つ円筒形状の管継手に対して本製造方法を用いた場合、不具合が生じるという問題がある。これは、仮にエルボ形状の管継手に対して本製造方法を用いると、管継手素材であるエルボの両側面からセットされる二つ割りの型をFRPを積層して作成し、管継手素材を二つの型で挟んだ状態で加圧しながら製造することになる。しかし、二つの型をFRPを積層して各々作らなければならないので、型の製造工程が二倍となり、管継手の製造により手間と時間が掛かる。また、二つの型の合わせ面となるウェルドラインの部分の強度が他の部分に比べて劣るので、特にウェルドラインは応力の集中し易い継手の屈曲部分に形成されるため、ウェルドラインから破損し易いという問題があった。型の形状を工夫して継手の屈曲部分にウエルドラインができない形状にする方法も考えられるが、型の形状が複雑になるので成形が困難となる。
また、前記強化樹脂管継手の製造方法は、エルボやチーズなどの形状に対応できるが、芯材に樹脂を含浸させたガラス繊維をワインディングして製造するのでワインディングを行うための製造設備を新たに設ける必要があり、製造設備の費用が多く掛かると共に製造設備の設置スペースを多く取るという問題がある。また、ワインディング作業の工程が増え、1つの管継手を製造するのに時間が掛かる(特にワインディング工程)という問題や、受口部の寸法精度が良い反面外径寸法が一定にならないため、配管施工時に管継手部分にサポートを取り付ける作業が困難になるという問題がある。
上記問題に鑑み、本発明はFRP層で補強した塩化ビニル系樹脂製管継手において、補強繊維および熱硬化性樹脂が均一分散され、且つ十分に充填補強された、外観良好で破損しにくい主にエルボやチーズ形状のFRP補強PVC管継手及びその製造方法を提供することを目的とする。
However, the manufacturing method of the conventional FRP reinforced synthetic resin flanged pipe joint is a process in which a mold that is first set on a pipe joint material by a hand lay-up method is formed by laminating FRP (fiber reinforced thermosetting resin). Therefore, there is a problem that it takes time and labor to manufacture the pipe joint. Also, in pipe fittings other than flange-shaped ones, the effectiveness is low, and when this manufacturing method is used for sockets, especially cylindrical pipe fittings with bent flow paths such as elbows and cheeses There is a problem that a malfunction occurs. If this manufacturing method is used for an elbow-shaped pipe joint, a split mold set from both sides of the elbow, which is a pipe joint material, is created by laminating FRP, and two pipe joint materials are prepared. It is manufactured while pressing with the mold sandwiched. However, since two molds must be made by laminating FRP, the mold manufacturing process is doubled, and it takes time and labor to manufacture the pipe joint. In addition, since the strength of the weld line portion that becomes the mating surface of the two molds is inferior to that of the other portions, the weld line is formed at the bent portion of the joint where stress is likely to concentrate. There was a problem that it was easy. A conceivable method is to devise the shape of the mold so that a weld line cannot be formed at the bent portion of the joint. However, since the shape of the mold becomes complicated, molding becomes difficult.
In addition, the method of manufacturing the reinforced resin pipe joint can cope with shapes such as elbows and cheeses, but since the core material is manufactured by winding glass fiber impregnated with resin, a manufacturing facility for performing winding is newly provided. There is a problem that it is necessary to provide a large amount of manufacturing equipment and a large installation space for the manufacturing equipment. In addition, the number of winding processes increases and it takes time to manufacture one pipe joint (especially the winding process), and the dimensional accuracy of the receiving part is good, but the outer diameter is not constant, so pipe construction There is a problem that it becomes difficult to attach the support to the pipe joint part.
In view of the above problems, the present invention is mainly applied to a vinyl chloride resin pipe joint reinforced with an FRP layer, in which reinforcing fibers and thermosetting resin are uniformly dispersed and sufficiently filled and reinforced. An object is to provide an elbow or cheese-shaped FRP-reinforced PVC pipe joint and a method for producing the same.

本発明者等は、上記従来技術の問題点を解決するために種々検討した結果、FRP層にバルクモールディングコンパウンド(以下BMCと略記する)又はシートモールディングコンパウンド(以下SMCと略記する)を使用することで、上記目的が達成されることを見出し本発明を成すに至った。
すなわち本発明は、内部にキャビティが形成された上型と下型からなる金型を用いた繊維FRP層で補強したFRP補強塩化ビニル系樹脂製管継手の製造方法であって、前記下型に前記FRP層を形成するBMC又はSMCを挿填し、前記下型に予め成形された塩化ビニル系樹脂製管継手を固定し、前記塩化ビニル系樹脂製管継手の上部に前記BMC又は前記SMCを挿填した後、前記上型を閉止して加圧一体成形してなることを第一の特徴とする。
また、前記金型に油圧シリンダで駆動されるスライドコアが設けられ、前記塩化ビニル系樹脂製管継手の各開口部に前記スライドコアが各々挿嵌されて固定されることを第二の特徴とする。
前記スライドコアに前記FRP補強塩化ビニル系管継手の開口部の端面と当接する当接面が設けられ、前記当接面が前記FRP補強塩化ビニル系管継手の開口部の端面の位置より0.3〜0.8mm突出してなることを第三の特徴とする。
前記上型と前記下型の閉止が段階的に行なわれ、前記上型と前記下型の全開時の開度100%から、開度15〜25%まで閉止した状態で一旦停止し、その後、開度3〜8%まで閉止した状態で一旦停止し、その後、開度0%の全閉状態とすることを第四の特徴とする。
また、前記金型の上型および/または下型の当接面の少なくとも一部が、前記キャビティの周縁部を先端として鋭角に形成されている、ことを第五の特徴とする。
さらに、これらのFRP補強塩化ビニル系樹脂製管継手の製造方法で製造されてなるFRP補強塩化ビニル系樹脂製管継手であることを第六の特徴とする。
As a result of various investigations to solve the above-described problems of the prior art, the present inventors use a bulk molding compound (hereinafter abbreviated as BMC) or a sheet molding compound (hereinafter abbreviated as SMC) for the FRP layer. Thus, the inventors have found that the above object can be achieved and achieved the present invention.
That is, the present invention relates to a method for manufacturing a FRP-reinforced vinyl chloride resin pipe joint reinforced with a fiber FRP layer using a mold composed of an upper mold and a lower mold in which a cavity is formed. The BMC or SMC forming the FRP layer is inserted, the vinyl chloride resin pipe joint molded in advance in the lower mold is fixed, and the BMC or SMC is placed on top of the vinyl chloride resin pipe joint. After the insertion, the first feature is that the upper mold is closed and integrally molded under pressure.
A second feature is that the mold is provided with a slide core driven by a hydraulic cylinder, and the slide core is inserted and fixed in each opening of the vinyl chloride resin pipe joint. To do.
The slide core is provided with a contact surface that contacts the end surface of the opening of the FRP-reinforced vinyl chloride pipe joint, and the contact surface is 0. 0 mm from the position of the end surface of the opening of the FRP-reinforced vinyl chloride pipe joint. The third feature is that it protrudes by 3 to 0.8 mm.
The upper mold and the lower mold are closed stepwise, and the upper mold and the lower mold are temporarily stopped in a state where the upper mold and the lower mold are closed from the opening degree of 100% to the opening degree of 15 to 25%. The fourth feature is that the valve is temporarily stopped in a state in which the opening degree is closed to 3 to 8%, and then is fully closed in an opening degree of 0%.
A fifth feature is that at least a part of the contact surface of the upper mold and / or the lower mold of the mold is formed at an acute angle with the peripheral edge of the cavity as a tip.
Furthermore, a sixth feature is that the FRP-reinforced vinyl chloride resin pipe joint manufactured by the method for manufacturing these FRP reinforced vinyl chloride resin pipe joints is used.

本発明は以上の様な構成をしており、これを使用することにより以下の優れた効果が得られる。
(1)エルボやチーズなどの円筒形状の塩化ビニル系樹脂製管継手(以下、PVC管継手と記す)に対して、容易で製造工程を多くすることなくFRP層を形成してFRP補強PVC管継手を製造することができ、材料の無駄がなく廃棄物が少なく製造することができる。
(2)複雑形状な管継手の構成であっても端々まで補強繊維を全周に亘って均一に設けることができ、物性及び外観ともに安定し、外径寸法が一定となるFRP補強PVC管継手が得られる。
(3)均一な肉厚のFRP層を形成でき、ウェルドライン部分の強度を有するため、高い耐水圧強度を維持し破損しにくい継手を得ることができる。
(4)固定されるPVC管継手の寸法がずれていた場合でも、加熱されたスライドコアを挿嵌して加圧一体成形することで、成形時に受口のテーパや継手の角度のずれ等の寸法を矯正することができ、寸法精度の良いFRP補強PVC管継手を得ることができる。
(5)バリが発生しても金型内でバリを切断してFRP補強PVC管継手を取り出すことができる。
(6)上型と下型の閉止を段階的に行なうことにより、確実なエア抜きを行うことができるので金型内にエアが残ることでボイドや成形ムラが発生することを防止できる。
The present invention has the above-described configuration, and the following excellent effects can be obtained by using this.
(1) An FRP reinforced PVC pipe is formed by forming an FRP layer easily and without increasing the number of manufacturing steps for cylindrical vinyl chloride resin pipe joints (hereinafter referred to as PVC pipe joints) such as elbows and cheeses. A joint can be manufactured, and there is no waste of material, and it can be manufactured with little waste.
(2) FRP reinforced PVC pipe fittings that can provide uniform reinforcing fibers over the entire circumference even with a complicated pipe joint configuration, have stable physical properties and appearance, and have a constant outer diameter. Is obtained.
(3) Since the FRP layer having a uniform thickness can be formed and the weld line portion has strength, a joint that maintains high water pressure strength and is not easily damaged can be obtained.
(4) Even when the dimensions of the PVC pipe joint to be fixed are deviated, by inserting the heated slide core and integrally forming with pressure, it is possible to reduce the taper of the receiving port or the angle of the joint at the time of molding. The dimensions can be corrected, and an FRP-reinforced PVC pipe joint with good dimensional accuracy can be obtained.
(5) Even if burrs are generated, the burrs can be cut in the mold and the FRP-reinforced PVC pipe joint can be taken out.
(6) Since the upper mold and the lower mold are closed stepwise, reliable air bleeding can be performed, so that voids and molding unevenness can be prevented from remaining in the mold.

図1は下型にBMCを挿填した時の金型を示す縦断面図である。
図2は図1からPVC管継手を設置してPVC管継手の上部にBMCを挿填した時の金型を示す縦断面図である。
図3は図2から上型を閉止して加圧一体成形したときの金型を示す縦断面図である。
図4はFRP補強PVC管継手を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a mold when BMC is inserted into the lower mold.
FIG. 2 is a longitudinal sectional view showing a mold when the PVC pipe joint is installed from FIG. 1 and BMC is inserted into the upper part of the PVC pipe joint.
FIG. 3 is a longitudinal sectional view showing a mold when the upper mold is closed from FIG.
FIG. 4 is a longitudinal sectional view showing an FRP-reinforced PVC pipe joint.

以下、本発明の実施形態について図面を参照して説明するが、本発明が本実施形態に限定されないことは言うまでもない。図1は下型にBMCを挿填した時の金型を示す縦断面図である。図2は図1からPVC管継手を設置してPVC管継手の上部にBMCを挿填した時の金型を示す縦断面図である。図3は図2から上型を閉止して加圧一体成形したときの金型を示す縦断面図である。図4はFRP補強PVC管継手を示す縦断面図である。
図において、1は金型の下型であり、内部にはFRP補強PVCエルボ2のキャビティ3が形成されている。下型1の2方(PVCエルボ8の両開口部側)には油圧式のシリンダ4が開口部と略同一の軸線上に各々設置され、シリンダ4には、後記PVCエルボ8の開口部に挿嵌されるスライドコア5が各々設けられている。また、下型1の下部にはFRP補強PVCエルボ2を取り出すための突き出しピン(図示せず)が設けられている。
スライドコアをPVCエルボ8の各開口部に各々挿嵌することで、PVCエルボ8を金型に固定する作業を簡略化し、PVCエルボ8が動かないように固定すると共に、成形中にPVCエルボ8の変形することを防止することができる。ここで、スライドコア5の外周寸法は、PVCエルボ8の内周寸法と0.1〜0.3mmのクリアランスで形成されており、加圧一体成形時にPVCエルボ8が軟化して変形しようとしてもスライドコア5によって設定された寸法に矯正することができる。このとき、固定されるPVCエルボ8が射出成形時に内部応力によって寸法がずれていた場合でも、加熱されたスライドコアをPVCエルボ8の開口部に各々挿嵌して加圧一体成形することで、成形時に受口のテーパや継手の角度のずれ等の寸法を正確な寸法に矯正することができ、寸法精度の良いFRP補強PVCエルボ2を得ることができる。また、スライドコア5には、PVCエルボ8及びFRP層10からなるFRP補強PVCエルボ2の開口部端面が当接する当接面12が形成され、スライドコア5をPVCエルボ8に挿嵌した時に、当接面12がPVCエルボ8端面の位置より0.3〜1.0mmほど突出するようになっている。これにより、加圧一体成形時に当接面12がPVCエルボ8及びFRP層10からなるFRP補強PVCエルボ2の開口部端面を押圧して、端面がシールされた状態となり、PVCエルボ8の端面や内周にBMC9が漏れ入ることが防止される。ここで、当接面12の突出量は、PVCエルボ8端面を押圧させるために0.3mm以上である必要があり、PVCエルボ8端面への押圧の力が大きくなってPVCエルボ8に負荷がかからないように1.0mm以下である必要がある。
また、シリンダ4の使用圧力は、加圧一体成形時にキャビティ3内に加わる内圧と同等以上であることが好ましい。さらに、上型6と下型1が閉止した時に上型6及び/又は下型1にスライドコア5又はシリンダ4に係合可能なストッパ部(図示せず)を設けることが好ましい。これは例えば、上型6に凸状のストッパ部を設け、スライドコア5にストッパ部と嵌合可能な凹状の嵌合部を設け、上型6と下型1を閉止した時にストッパ部と嵌合部が嵌合されるように形成することで、加圧一体成形時にキャビティ3内に加わる内圧によってスライドコア5が移動することを防止し、寸法精度の良いFRP補強PVCエルボ2を得ることができる。また、ストッパ部を設けると、シリンダの使用圧力が加圧一体成形時にキャビティ3内に内圧より低くても良好な成形ができるので好適である。
6は金型の上型であり、内部にFRP補強PVCエルボ2のキャビティ3が形成されている。下型1と当接する上型6の当接面のうちキャビティ3の周縁部7は、キャビティ3の周縁部7を先端として鋭角になるように形成されている。このときの周縁部7の角度θは下型1との当接面に対して45°になるように設けられている。
8は金型内に設置される予め射出成形にて成形されたPVC管継手であるPVCエルボである。なお、本実施形態ではPVC管継手はエルボであるが、エルボ、ベンド、チーズ、ソケットが特に好適なものとして挙げられ、フランジ、キャップなどでも良い。
9は下型1、上型6に挿填されたBMCであり、PVCエルボ8をFRP補強したときのFRP補強PVCエルボ2においてFRP層10を形成する。
本発明で使用される予め成形されたPVC管継手の材質は特に限定されないが、一般に使用されている硬質塩化ビニル樹脂、塩素化塩化ビニル樹脂、エチレン−塩化ビニル共重合体樹脂、又は酢酸ビニル−塩化ビニル共重合体樹脂等が好適なものとして挙げられる。
BMCは、プリミックスとも呼ばれ、樹脂及び補強繊維のほかに必要に応じて充填材等を加え、混練して粘土状にした成形材料である。一方、SMCは補強繊維マットに樹脂を含浸させたシート状の成形材料をいう。いずれも、金型内に適当量を挿填し、加熱、加圧して成形するが、樹脂を液状のまま使用しないので金型の構造上の制約があまりないという特徴を有する成形材料である。特にBMCは1回の成形に必要な材料を配分し易く、材料の無駄がなく廃棄物が少なく成形することができ、成形時にキャビティに合うように形を合わせて成形し易いので好適である。
本発明のBMC又はSMCに使用される熱硬化性樹脂は、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、又はフェノール樹脂等が挙げられるが、中でも不飽和ポリエステル樹脂が種々の面で好適なものとして挙げられる。不飽和ポリエステル樹脂は、ビスフェノール系不飽和ポリエステル樹脂であるとPVC継手にFRP層を形成する際にある程度の時間をかけて硬化することでエルボのような屈曲した流路を有する形状の継手に対して均質なFRP層を形成できるので好適であり、不飽和ポリエステル樹脂の多価アルコール成分として少なくとも一部にビスフェノール付加物を用いたもので、ビスフェノールを含む多価アルコール成分と、多塩基性酸成分を反応して得られる不飽和ポリエステル樹脂をスチレンモノマーに溶解し、重合禁止剤、重合触媒などを添加した液状樹脂が好適である。また、不飽和ポリエステル樹脂は、高分子量ビスフェノール系不飽和ポリエステル樹脂含有液状樹脂と低分子量ビスフェノール系不飽和ポリエステル樹脂含有液状樹脂からなるマトリックス液状樹脂を用いると、FRP補強PVC管継手の耐アルカリ性が向上するので好適である。また、BMC又はSMCは、上記した補強繊維や熱硬化性樹脂の他に必要に応じ硬化剤、増粘剤、充填材、着色剤等を添加して構成される。
また、BMC又はSMCに使用される熱硬化性樹脂は、不飽和ポリエステル樹脂100重量部に対して、補強繊維50〜150重量部を配合することが好ましい。これは、補強用樹脂組成物の強度を得るために50重量部以上である必要があり、組成物製造時の混練がやりやすい範囲内であり、成形後の表面に繊維が出て外観が悪くならないように150重量部以下である必要がある。また、FRP層を形成するBMC又はSMCに使用される補強繊維は、ガラス繊維が特に好ましいものとして挙げられ、ポリビニルアルコール繊維、芳香族ポリアミド繊維、又はカーボン繊維等が好適なものとして挙げられる。又、その形状は、3〜25mmにカットされたチョップドストランドが好適なものとして挙げられる。
また、不飽和ポリエステル樹脂100重量部に対して無機充填材が0.2重量部〜10重量部を配合することが好ましい。これは、組成物の熱伝導性を向上させるために0.2重量部以上である必要があり、組成物の貯蔵安定性を良好にして、耐衝撃性を低下させないために10重量部以下である必要がある。また、本発明における無機充填材は、炭酸カルシウム、マイカ、硫酸バリウム、硫酸カルシウム、クレー、パーライト、シラスバルーン、けいそう土、焼成アルミナ、ケイ酸カルシウム、タルク、などが挙げられる。この中でもシリカや炭酸カルシウムが特に好適である。
また、不飽和ポリエステル樹脂100重量部に対して、硬化剤を0.5〜4重量部を配合することが好ましい。樹脂組成物を好適な成形条件で硬化させるために0.5重量部以上である必要があり、樹脂が早く硬化しすぎて成形困難にならないように4重量部以下である必要がある。また、硬化剤としては低温用のものが望ましく、ビス(4−ターシャルブチルシクロヘキシル)パーオキシジカーボネート(パーカドックス16)、ターシャルアミルパーオキシ2−エチルヘキサノエート(トリゴノックス)、ベンゾイルパーオキサイド(カドックス)等が好適なものとして挙げられる。
また、不飽和ポリエステル樹脂100重量部に対して、その他に必要に応じて離型剤、増粘剤、着色剤、硬化促進剤等を添加することにより構成されても良い。各々の添加剤については、添加剤の硬化が発揮できる程度配合すれば良く、離型剤0〜2重量部、増粘剤0〜5重量部、着色剤0〜15重量部、硬化促進剤0〜1重量部を配合してなることが好ましい。
また、BMCの製造方法を挙げると、熱硬化性樹脂、離型剤、着色剤、硬化剤等を予め混合したものと、充填材とをニーダーで混練し、次いで増粘剤を混合した後、補強繊維を均一に分散する。ニーダーからその混合物を取出し所定の大きさ形状となし、熟成してBMCとする。また、SMCの製造方法を挙げると、熱硬化性樹脂、充填材、離型剤、着色剤、硬化剤等を均一に混練分散した混合物に増粘剤を混合したコンパウンドをポリエチレンフィルム上に塗布し、所定の補強繊維に圧着含浸してシート状とした後、ロール巻きし、室温ないし加温下で熟成してSMCとする。
ここで、上型6と下型1とからなる金型の温度は、40〜120℃に設定する必要があり、60〜100℃がより好ましい。これは、BMC9が硬化する時間を長くさせずに成形効率を上げるために金型温度は40℃以上が良く、PVCエルボ8に膨れなどの変形が生じないために金型温度は120℃以下が良い。これにより、BMC9の硬化温度は、40〜120℃、より好ましくは60〜100℃であることが好適である。成形時間を長くさせずに生産性を向上させるために硬化温度は40℃以上が良く、BMC9の長期間使用できるように材質の劣化を抑えるために硬化温度は120℃以下が良い。ここで硬化温度とは、その温度の金型にてBMC9又はSMCを使用して100×100×10mmの板状成形品を得るのに必要な成形時間が5分乃至20分となるときの温度である。例えば、硬化温度80℃のBMC9とは、80℃の金型にて成形品を得るのに必要な成形時間が5〜20分であるBMC9のことである。
これにより、BMC9に用いられる硬化剤は一般に使用される硬化剤よりも低温で反応するものである必要がある。例えば、不飽和ポリエステル樹脂を用いた硬化温度が70℃であるBMC9の硬化剤としては、10時間半減期温度が40〜50℃程度である過酸化物が好ましく使用される。また、この場合のBMC9の製造時においては、原料混合物の温度は、その混合物が硬化しない低温に保つことが必要であり、その熟成も同様に低温で行う必要がある。例えば、不飽和ポリエステル樹脂を用いた硬化温度が80℃であるBMC9の製法としては、20℃にて不飽和ポリエステル樹脂、充填材、離型剤、増粘剤、硬化剤等を予備混合し、補強繊維とこの予備混合物をヘンセルミキサーで混合して混合物を得た後、混合物を密封して20℃にて1日間熟成することによりBMC9を得る方法が採用される。
また、本発明の金型は上型および/または下型の当接面の少なくとも一部が、キャビティの周縁部7を先端として鋭角に形成されていることが好ましい。周縁部7の角度θは30〜60°で設けることが望ましく、30〜45°がより望ましい。鋭角とした周縁部7の先端強度を得るために30°以上が良く、キャビティ3からはみ出たBMCを金型で切断させるために60°以下が良い。
次にFRP補強PVC管継手の製造方法について説明する。
まず、80℃に加熱された下型1にBMC9を挿填する(図1の状態)。次に、下型1の挿填されたBMC9の上に予め外周にプライマーを塗布したPVCエルボ8を設置し、スライドコア5をPVCエルボ8の各々の開口部に挿嵌させることでPVCエルボ8を固定する。次に、PVCエルボ8の上部にBMC9を挿填する(図2の状態)。このとき、BMC9の挿填量は、下型1にはキャビティ体積の25〜40%、PVCエルボ8の上部にはキャビティ体積の60〜80%を挿填する。また、PVCエルボ8の上部に挿填されるBMC9は、屈曲部分(図4の屈曲部分11に相当するキャビティ3の位置)が多めになるように挿填する。
次に、80℃に加熱された上型6と下型1を段階的に閉止する。BMC9を挿填したときの上型6と下型1の全開時を開度100%とすると、第一段階として開度15〜25%まで閉止した状態で一旦停止させて約1分間保持する。このとき上型6の凸部13と下型1の凹部14が半分程度まで嵌合した状態となり、金型内でBMC9が加熱されると共に、金型内のエア抜きが行なわれる。第二段階として開度3〜8%まで閉止した状態で一旦停止させて約1分間保持する。このとき上型6と下型1は僅かに隙間がある状態となり、BMC9がキャビティ3内に行き渡るように押圧変形されると共にエア抜きが行なわれる。第三段階として開度0%の全閉状態で加圧一体成形が行われる。加圧一体成形して一定時間保持した後に、PVCエルボ8にFRP層10が設けられてFRP補強PVCエルボ2を形成し(図3の状態)、上型6を開いてスライドコア5を抜いた後、エジェクタピンでFRP補強PVCエルボ2を押し出す。
以上の製造方法により、上型6と下型1の閉止を段階的に行なうことで確実なエア抜きを行うことができ、金型内にエアが残ることでボイドや成形ムラが発生することを防止でき、BMC9を効率良く加熱することができる。また、本実施形態では下型1にキャビティ体積の25〜40%、PVCエルボ8の上部にキャビティ体積の60〜80%のBMC9を挿填しているが、BMC9をPVCエルボ8の上部に多く挿填しているのは、下型1とPVCエルボ8の上部に同量のBMC9を挿填した時に、加圧一体成形時に下型1側のBMC9を上方向へ押し上げてキャビティ3内に充填させるより、PVCエルボ8の上部に挿填するBMC9の量を多くして、加圧一体成形時にPVCエルボ8側のBMC9を下方向へ押し下げてキャビティ3内へ充填するほうが、BMC9をキャビティ3内により効率よく行き渡らせることができるため好適である。管継手がエルボ、ベンド、チーズなどの流路の屈曲部分を有する場合、キャビティ3の屈曲部分にBMC9が多めになるように挿填すると、FRP補強PVCエルボ2の使用時に流体圧が掛かると応力の集中するPVCエルボ8の屈曲部分11に強い強度を得て破損しにくくなるので好適である。
ここで、BMC9の挿填量の合計はキャビティ体積に対して105〜115%の範囲内であることが望ましい。100%を超えても良い理由は、キャビティ体積より少し多めに挿填することで金型内でBMC9がより強く加圧されて密度の高いFRP層10を継手の全周に亘って均一に過不足なく形成させるためである。また、余分なBMC9がバリとして金型から漏れ出ることがあるが、金型から漏れ出たバリは、金型の当接面のキャビティの周縁部7の先端が鋭角に設けられていることにより、鋭角な周縁部7の先端でバリを切断することができ、発生したバリは金型内で切断された状態でFRP補強PVCエルボ2を取り出すことができる。これにより、バリを取り外す手間を省くことができ、より短い時間で成形することができる。また、本発明の製造方法はBMCを用いて成形することで、FRP補強PVCエルボを製造する方法の中でも1回の成形に必要な材料の配分が容易で正確に行うことができる。このため、外径寸法の安定したFRP補強PVCエルボを成形できると共に、成形時の材料の無駄がなくなるので廃棄物が少なく成形を行うことができる。
上記の製造方法によって得られたFRP補強PVCエルボ2は、均一な肉厚のFRP層が形成されており、ウェルドライン部分の強度が他の部分と同等の強度が得られており、応力の集中し易い屈曲部分11が破損しにくいため、高い耐水圧強度を有している。また、加熱されたスライドコアを挿嵌して加圧一体成形することで、受口のテーパや管継手の角度のずれ等の寸法を矯正して寸法精度の良いFRP補強PVCエルボを得ることができる。さらに、加圧一体成形により良好な外観を有しており、精度の良い外径寸法を得ることができる。そのため、配管施工した時のサポートの取り付けが行い易くなり好適である。
また、本発明の製造方法において、PVCエルボ8とFRP層10との間にプライマー層(図示せず)を形成しても良く、PVCエルボ8の外周に予めプライマーを塗布しておき、FRP層10を形成しても良い。プライマー層(図示せず)を形成することにより、PVCエルボ8とFRP層10とを強固に接合させ、PVCエルボ8とFRP層10間に隙間が発生することを防止し確実な補強を行うことができる。また、FRP補強PVCエルボ2に内水圧が加わった時に、FRP層10にクラックが生じた場合にはクラックがPVCエルボ8へ伝播することを阻止することができ、FRP補強PVCエルボ2の耐水圧強度を向上することができる。
次に、本発明のFRP補強PVCエルボを成形し、その性能を以下に示す試験方法で評価した。
(1)耐水圧強度試験
FRP補強PVCエルボの両開口部を密閉した状態で満水にした後、液温を上昇させて内部液温が90℃となった状態で2時間保持し、その後徐々に水圧を上昇させ、FRP補強PVCエルボが破損した時の水圧を測定した。
試験に使用したBMCは以下の方法で製造した。
ビスフェノール系不飽和ポリエステル樹脂を100重量部、補強繊維として13mmにカットされたガラスチョップドストランド95重量部、無機充填材としてシリカ粉末を1重量部、硬化剤を2.5重量部、着色剤を8重量部、ステアリン酸亜鉛を2重量部、酸化マグネシウムを2重量部とし、まず不飽和ポリエステル樹脂と着色剤と硬化剤を添加して約1分間ほど撹拌混合した後に上記ガラスチョップドストランドを除く残りの原料を添加して約3分間ほど撹拌混合する。次にガラスチョップドストランドを添加して約10分間ほど攪拌混合する。そして得られた混合物を熟成させることによりBMCを得た。
Hereinafter, although an embodiment of the present invention is described with reference to drawings, it cannot be overemphasized that the present invention is not limited to this embodiment. FIG. 1 is a longitudinal sectional view showing a mold when BMC is inserted into the lower mold. FIG. 2 is a longitudinal sectional view showing a mold when the PVC pipe joint is installed from FIG. 1 and BMC is inserted into the upper part of the PVC pipe joint. FIG. 3 is a longitudinal sectional view showing a mold when the upper mold is closed from FIG. FIG. 4 is a longitudinal sectional view showing an FRP-reinforced PVC pipe joint.
In the figure, reference numeral 1 denotes a lower mold of a mold, in which a cavity 3 of an FRP-reinforced PVC elbow 2 is formed. On the two sides of the lower mold 1 (both opening sides of the PVC elbow 8), hydraulic cylinders 4 are respectively installed on substantially the same axis as the opening, and the cylinder 4 has an opening in the PVC elbow 8 to be described later. A slide core 5 to be inserted and fitted is provided. In addition, a protrusion pin (not shown) for taking out the FRP-reinforced PVC elbow 2 is provided at the lower part of the lower mold 1.
By inserting the slide core into each opening of the PVC elbow 8, the operation of fixing the PVC elbow 8 to the mold is simplified, and the PVC elbow 8 is fixed so that it does not move. Can be prevented from being deformed. Here, the outer peripheral dimension of the slide core 5 is formed by the inner peripheral dimension of the PVC elbow 8 and a clearance of 0.1 to 0.3 mm. Even if the PVC elbow 8 is softened and deformed at the time of pressure integral molding, The dimension set by the slide core 5 can be corrected. At this time, even if the PVC elbow 8 to be fixed is displaced due to internal stress at the time of injection molding, the heated slide core is inserted into the opening of the PVC elbow 8 and is integrally molded by pressure. It is possible to correct the dimensions such as the taper of the receiving port and the shift of the joint angle at the time of molding, and to obtain the FRP-reinforced PVC elbow 2 with good dimensional accuracy. Further, the slide core 5 is formed with a contact surface 12 with which the opening end surface of the FRP-reinforced PVC elbow 2 made of the PVC elbow 8 and the FRP layer 10 contacts, and when the slide core 5 is inserted into the PVC elbow 8, The contact surface 12 protrudes about 0.3 to 1.0 mm from the position of the end surface of the PVC elbow 8. Thereby, the contact surface 12 presses the opening end surface of the FRP-reinforced PVC elbow 2 composed of the PVC elbow 8 and the FRP layer 10 at the time of pressure integral molding, and the end surface is sealed, and the end surface of the PVC elbow 8 The BMC 9 is prevented from leaking into the inner periphery. Here, the protruding amount of the contact surface 12 needs to be 0.3 mm or more in order to press the end surface of the PVC elbow 8, and the force applied to the end surface of the PVC elbow 8 becomes large and a load is applied to the PVC elbow 8. It is necessary to be 1.0 mm or less so as not to be applied.
Further, the working pressure of the cylinder 4 is preferably equal to or higher than the internal pressure applied to the cavity 3 at the time of pressure integral molding. Furthermore, it is preferable to provide a stopper portion (not shown) that can be engaged with the slide core 5 or the cylinder 4 in the upper mold 6 and / or the lower mold 1 when the upper mold 6 and the lower mold 1 are closed. For example, the upper die 6 is provided with a convex stopper portion, the slide core 5 is provided with a concave fitting portion that can be fitted with the stopper portion, and the upper die 6 and the lower die 1 are closed when the upper die 6 and the lower die 1 are closed. By forming the joint portion so as to be fitted, it is possible to prevent the slide core 5 from moving due to the internal pressure applied to the cavity 3 during pressure integral molding, and to obtain the FRP-reinforced PVC elbow 2 with good dimensional accuracy. it can. In addition, it is preferable to provide a stopper portion because good molding can be performed even if the operating pressure of the cylinder is lower than the internal pressure in the cavity 3 at the time of pressure integral molding.
Reference numeral 6 denotes an upper mold of the mold, in which a cavity 3 of an FRP-reinforced PVC elbow 2 is formed. Of the contact surface of the upper mold 6 that contacts the lower mold 1, the peripheral edge 7 of the cavity 3 is formed to have an acute angle with the peripheral edge 7 of the cavity 3 as the tip. The angle θ of the peripheral edge 7 at this time is provided to be 45 ° with respect to the contact surface with the lower mold 1.
Reference numeral 8 denotes a PVC elbow which is a PVC pipe joint previously formed by injection molding and installed in a mold. In this embodiment, the PVC pipe joint is an elbow, but elbows, bends, cheeses, and sockets are particularly suitable, and flanges, caps, and the like may be used.
Reference numeral 9 denotes a BMC inserted into the lower mold 1 and the upper mold 6, and the FRP layer 10 is formed in the FRP-reinforced PVC elbow 2 when the PVC elbow 8 is FRP reinforced.
The material of the pre-formed PVC pipe joint used in the present invention is not particularly limited, but generally used rigid vinyl chloride resin, chlorinated vinyl chloride resin, ethylene-vinyl chloride copolymer resin, or vinyl acetate- A vinyl chloride copolymer resin and the like are preferable.
BMC is also called a premix, and is a molding material that is kneaded into a clay by adding a filler or the like as required in addition to resin and reinforcing fibers. On the other hand, SMC refers to a sheet-like molding material in which a reinforcing fiber mat is impregnated with a resin. All of them are molding materials having a characteristic that there is not much restriction on the structure of the mold because the resin is not used in a liquid state, although an appropriate amount is inserted into the mold and heated and pressurized. In particular, BMC is suitable because it is easy to distribute the material necessary for one molding, can be molded without waste of material and with little waste, and can be easily molded in a shape that matches the cavity during molding.
Examples of the thermosetting resin used in the BMC or SMC of the present invention include unsaturated polyester resins, vinyl ester resins, epoxy resins, and phenol resins. Among them, unsaturated polyester resins are preferred in various aspects. As mentioned. When the unsaturated polyester resin is a bisphenol-based unsaturated polyester resin, it takes a certain amount of time to cure when a FRP layer is formed on the PVC joint, so that the joint has a bent flow path such as an elbow. It is suitable because it can form a homogeneous FRP layer, and is a polyhydric alcohol component containing at least a part of a polyhydric alcohol component of an unsaturated polyester resin. A liquid resin obtained by dissolving an unsaturated polyester resin obtained by reacting in a styrene monomer and adding a polymerization inhibitor, a polymerization catalyst or the like is preferable. In addition, when the unsaturated polyester resin is a matrix liquid resin comprising a liquid resin containing a high molecular weight bisphenol unsaturated polyester resin and a liquid resin containing a low molecular weight bisphenol unsaturated polyester resin, the alkali resistance of the FRP-reinforced PVC pipe joint is improved. Therefore, it is preferable. Moreover, BMC or SMC is comprised by adding a hardening | curing agent, a thickener, a filler, a coloring agent, etc. as needed other than the above-mentioned reinforcing fiber and thermosetting resin.
Moreover, it is preferable that the thermosetting resin used for BMC or SMC mix | blends 50-150 weight part of reinforcement fibers with respect to 100 weight part of unsaturated polyester resin. This is required to be 50 parts by weight or more in order to obtain the strength of the reinforcing resin composition, and is within the range where kneading is easily performed at the time of producing the composition, and fibers appear on the surface after molding, resulting in poor appearance. It is necessary to be 150 parts by weight or less so as not to become. The reinforcing fiber used for the BMC or SMC forming the FRP layer is preferably a glass fiber, and a polyvinyl alcohol fiber, an aromatic polyamide fiber, a carbon fiber, or the like is preferable. Moreover, the shape is mentioned as a suitable thing for the chopped strand cut | disconnected by 3-25 mm.
Moreover, it is preferable that an inorganic filler mix | blends 0.2 weight part-10 weight part with respect to 100 weight part of unsaturated polyester resin. This needs to be 0.2 parts by weight or more in order to improve the thermal conductivity of the composition, and in order to improve the storage stability of the composition and not to reduce the impact resistance, it is 10 parts by weight or less. There must be. Examples of the inorganic filler in the present invention include calcium carbonate, mica, barium sulfate, calcium sulfate, clay, perlite, shirasu balloon, diatomaceous earth, calcined alumina, calcium silicate, talc, and the like. Of these, silica and calcium carbonate are particularly suitable.
Moreover, it is preferable to mix | blend 0.5-4 weight part with a hardening | curing agent with respect to 100 weight part of unsaturated polyester resin. In order to cure the resin composition under suitable molding conditions, it is necessary to be 0.5 parts by weight or more, and it is necessary to be 4 parts by weight or less so that the resin is hardened too quickly and molding becomes difficult. Further, a curing agent for low temperature is desirable, and bis (4-tertiarybutylcyclohexyl) peroxydicarbonate (Percadox 16), tertiary amyl peroxy 2-ethylhexanoate (trigonox), benzoyl peroxide (Cadox) etc. are mentioned as a suitable thing.
Moreover, you may comprise by adding a mold release agent, a thickener, a coloring agent, a hardening accelerator, etc. to 100 weight part of unsaturated polyester resins as needed. About each additive, what is necessary is just to mix | blend to such an extent that the hardening of an additive can be exhibited, 0-2 weight part of mold release agents, 0-5 weight part of thickeners, 0-15 weight part of coloring agents, hardening accelerator 0 It is preferable to blend ~ 1 part by weight.
In addition, when the production method of BMC is given, after kneading a mixture of a thermosetting resin, a release agent, a colorant, a curing agent and the like with a filler, and then mixing a thickener, Disperse the reinforcing fibers uniformly. The mixture is taken out from the kneader, formed into a predetermined size and shape, and aged to form BMC. In addition, SMC production methods include applying a compound in which a thickening agent is mixed with a mixture in which a thermosetting resin, a filler, a release agent, a colorant, a curing agent and the like are uniformly kneaded and dispersed on a polyethylene film. Then, a predetermined reinforcing fiber is pressure-impregnated and formed into a sheet, and then rolled, and aged at room temperature or under heating to obtain SMC.
Here, the temperature of the mold composed of the upper mold 6 and the lower mold 1 needs to be set to 40 to 120 ° C, more preferably 60 to 100 ° C. This is because the mold temperature is preferably 40 ° C. or higher in order to increase the molding efficiency without lengthening the time for the BMC 9 to cure, and the mold temperature is 120 ° C. or lower because the PVC elbow 8 is not deformed such as swelling. good. Thereby, it is suitable that the curing temperature of BMC9 is 40-120 degreeC, More preferably, it is 60-100 degreeC. In order to improve productivity without prolonging the molding time, the curing temperature is preferably 40 ° C. or higher, and the curing temperature is preferably 120 ° C. or lower in order to suppress deterioration of the material so that the BMC 9 can be used for a long period of time. Here, the curing temperature is the temperature at which the molding time required to obtain a plate-shaped molded product of 100 × 100 × 10 mm using BMC9 or SMC with a mold at that temperature is 5 to 20 minutes. It is. For example, BMC 9 having a curing temperature of 80 ° C. is BMC 9 having a molding time of 5 to 20 minutes required for obtaining a molded product with an 80 ° C. mold.
Accordingly, the curing agent used for BMC 9 needs to react at a lower temperature than the curing agent generally used. For example, as a curing agent for BMC 9 having a curing temperature of 70 ° C. using an unsaturated polyester resin, a peroxide having a 10-hour half-life temperature of about 40 to 50 ° C. is preferably used. Further, at the time of manufacturing the BMC 9 in this case, the temperature of the raw material mixture needs to be kept at a low temperature at which the mixture is not cured, and the aging needs to be performed at a low temperature as well. For example, as a method for producing BMC 9 having a curing temperature of 80 ° C. using an unsaturated polyester resin, an unsaturated polyester resin, a filler, a release agent, a thickener, a curing agent, etc. are premixed at 20 ° C., A method of obtaining BMC 9 by mixing the reinforcing fiber and this premix with a Hensell mixer to obtain a mixture, sealing the mixture and aging at 20 ° C. for 1 day is employed.
In the mold of the present invention, it is preferable that at least a part of the contact surface of the upper mold and / or the lower mold is formed at an acute angle with the peripheral edge 7 of the cavity as a tip. The angle θ of the peripheral edge portion 7 is desirably provided at 30 to 60 °, more preferably 30 to 45 °. 30 ° or more is good for obtaining the sharp edge strength of the peripheral edge portion 7, and 60 ° or less is good for cutting the BMC protruding from the cavity 3 with a mold.
Next, the manufacturing method of a FRP reinforced PVC pipe joint is demonstrated.
First, BMC 9 is inserted into the lower mold 1 heated to 80 ° C. (state shown in FIG. 1). Next, a PVC elbow 8 preliminarily coated with a primer is placed on the BMC 9 in which the lower mold 1 is inserted, and the slide core 5 is inserted into each opening of the PVC elbow 8 to insert the PVC elbow 8. To fix. Next, the BMC 9 is inserted into the upper portion of the PVC elbow 8 (state shown in FIG. 2). At this time, the insertion amount of the BMC 9 is 25 to 40% of the cavity volume in the lower mold 1 and 60 to 80% of the cavity volume is inserted in the upper part of the PVC elbow 8. Further, the BMC 9 to be inserted into the upper part of the PVC elbow 8 is inserted so that the bent part (the position of the cavity 3 corresponding to the bent part 11 in FIG. 4) becomes larger.
Next, the upper mold 6 and the lower mold 1 heated to 80 ° C. are closed stepwise. Assuming that the opening degree of the upper mold 6 and the lower mold 1 when the BMC 9 is inserted is 100%, the first stage is temporarily stopped in a state where the opening degree is closed to 15 to 25% and held for about 1 minute. At this time, the convex portion 13 of the upper mold 6 and the concave portion 14 of the lower mold 1 are fitted to about a half, and the BMC 9 is heated in the mold and the air is released from the mold. As a second step, the valve is temporarily stopped with the opening degree closed to 3 to 8% and held for about 1 minute. At this time, the upper mold 6 and the lower mold 1 are in a state where there is a slight gap, and the BMC 9 is pressed and deformed so as to reach the inside of the cavity 3 and the air is released. As a third stage, pressure integral molding is performed in a fully closed state with an opening degree of 0%. After the pressure integrated molding and holding for a certain period of time, the FRP layer 10 is provided on the PVC elbow 8 to form the FRP-reinforced PVC elbow 2 (the state shown in FIG. 3), the upper die 6 is opened, and the slide core 5 is removed. Thereafter, the FRP-reinforced PVC elbow 2 is pushed out with an ejector pin.
According to the above manufacturing method, the upper mold 6 and the lower mold 1 can be closed in stages, so that reliable air bleeding can be performed, and voids and molding unevenness are generated by the air remaining in the mold. The BMC 9 can be efficiently heated. In this embodiment, BMC 9 having 25 to 40% of the cavity volume and 60 to 80% of the cavity volume is inserted in the upper part of the PVC elbow 8 in the lower mold 1. The reason is that when the same amount of BMC 9 is inserted into the upper part of the lower mold 1 and the PVC elbow 8, the BMC 9 on the lower mold 1 side is pushed upward and filled into the cavity 3 at the time of pressure integral molding. Rather than letting the amount of BMC 9 inserted into the upper part of the PVC elbow 8 increase, the BMC 9 on the PVC elbow 8 side is pushed downward and filled into the cavity 3 at the time of pressure integral molding. This is preferable because it can be distributed more efficiently. If the pipe joint has a bent part of the flow path such as elbow, bend, cheese, etc., if the BMC 9 is inserted in the bent part of the cavity 3 so that there is a large amount, stress will occur if fluid pressure is applied when using the FRP-reinforced PVC elbow 2 This is preferable because strong strength is obtained at the bent portion 11 of the PVC elbow 8 where the concentration of the PVC elbow 8 is difficult to break.
Here, the total amount of insertion of BMC 9 is desirably in the range of 105 to 115% with respect to the cavity volume. The reason why it may exceed 100% is that the BMC 9 is more strongly pressed in the mold by inserting it slightly more than the cavity volume, and the dense FRP layer 10 is uniformly passed over the entire circumference of the joint. This is because it is formed without a shortage. Moreover, although excess BMC 9 may leak from the mold as burrs, the burrs that have leaked from the mold are due to the tip of the peripheral edge portion 7 of the cavity on the contact surface of the mold being provided at an acute angle. The burr can be cut at the tip of the sharp peripheral edge 7, and the FRP-reinforced PVC elbow 2 can be taken out while the generated burr is cut in the mold. Thereby, the effort which removes a burr | flash can be saved and it can shape | mold in a shorter time. In addition, the manufacturing method of the present invention can be performed using BMC, whereby the material necessary for one molding can be easily and accurately distributed among the methods for manufacturing the FRP-reinforced PVC elbow. For this reason, it is possible to form an FRP-reinforced PVC elbow having a stable outer diameter, and it is possible to perform molding with less waste because there is no waste of material during molding.
The FRP-reinforced PVC elbow 2 obtained by the above manufacturing method has an FRP layer with a uniform thickness, and the strength of the weld line portion is equal to that of the other portions, and stress concentration Since the easily bent portion 11 is not easily damaged, it has high water pressure strength. In addition, by inserting and inserting a heated slide core and press-molding integrally, it is possible to correct the dimensions such as the taper of the receiving port and the deviation of the angle of the pipe joint and obtain an FRP-reinforced PVC elbow with good dimensional accuracy it can. Furthermore, it has a good external appearance by pressure integral molding, and an accurate outer diameter dimension can be obtained. For this reason, it is preferable that the support is easily attached when the pipe is constructed.
In the production method of the present invention, a primer layer (not shown) may be formed between the PVC elbow 8 and the FRP layer 10, and a primer is applied to the outer periphery of the PVC elbow 8 in advance. 10 may be formed. By forming a primer layer (not shown), the PVC elbow 8 and the FRP layer 10 are firmly bonded, and a gap is not generated between the PVC elbow 8 and the FRP layer 10 to be surely reinforced. Can do. Further, when an internal water pressure is applied to the FRP reinforced PVC elbow 2, if a crack occurs in the FRP layer 10, the crack can be prevented from propagating to the PVC elbow 8. Strength can be improved.
Next, the FRP-reinforced PVC elbow of the present invention was molded and its performance was evaluated by the test method shown below.
(1) Water pressure strength test After filling both openings of the FRP-reinforced PVC elbow with water filled, the liquid temperature was raised and the internal liquid temperature was maintained at 90 ° C for 2 hours, and then gradually The water pressure was increased and the water pressure when the FRP-reinforced PVC elbow was damaged was measured.
The BMC used for the test was manufactured by the following method.
100 parts by weight of bisphenol unsaturated polyester resin, 95 parts by weight of glass chopped strands cut to 13 mm as reinforcing fibers, 1 part by weight of silica powder as inorganic filler, 2.5 parts by weight of curing agent, and 8 parts of colorant 1 part by weight, 2 parts by weight of zinc stearate, and 2 parts by weight of magnesium oxide. First, an unsaturated polyester resin, a colorant, and a curing agent are added, and the mixture is stirred and mixed for about 1 minute. Add ingredients and stir and mix for about 3 minutes. Next, glass chopped strands are added and mixed with stirring for about 10 minutes. And BMC was obtained by ageing | curing the obtained mixture.

呼び径100mmのPVCエルボ8に、本実施形態の手順でFRP層10を形成し、FRP補強PVCエルボ2を得た。成形時の作業性と、成形後のFRP補強PVCエルボの外観と、耐水圧強度の評価を行なった。試験結果を表1に示す。
<比較例1>
熱硬化性樹脂として、不飽和ポリエステル樹脂、補強繊維としてガラスチョップドストランドマット及びガラスロービングクロスを用いて、ハンドレイアップ法にて、呼び径100mmのPVCエルボに積層し、FRP補強PVCエルボを得た。FRP層の厚みは実施例1と同一に設定した。成形時の作業性と、成形後のFRP補強PVCエルボ2の外観と、耐水圧強度の評価を行なった。試験結果を表1に示す。

Figure 2009020054
表1より、作業性においては、実施例1は作業が簡単で特に困難な作業がなく手間が掛からずに作業性が良好であったのに対し、比較例1ではハンドレイアップでPVCエルボ全体にFRP層を設けるので作業が困難で手間が掛かるので作業性は悪かった。また、比較例1では成形中に廃棄物が多く出るため材料の無駄が多かったのに対し、実施例1ではバリが少し出た以外は廃棄されるものは無く、廃棄物は少なくて済んだ。また、外観においては、実施例1はFRP層が均一な肉厚で形成されて外径寸法が安定しており、表面がなめらかで光沢があり外観が良好であるのに対し、比較例1ではFRP層の肉厚にばらつきがあり、外径寸法も安定しておらず、表面にざらつきがあり光沢がなく外観は悪かった。また、耐水圧強度においては、強度自体は共に継手として使用するのに必要な強度を有しており、あまり大きな差はないが、肉厚が均一でありFRP層の密度が高く形成された実施例1の方が比較例1より耐圧強度は若干高くなり、より高い水圧に対して使用が可能である。The FRP layer 10 was formed on the PVC elbow 8 having a nominal diameter of 100 mm by the procedure of this embodiment, and the FRP-reinforced PVC elbow 2 was obtained. The workability at the time of molding, the appearance of the FRP-reinforced PVC elbow after molding, and the water pressure resistance were evaluated. The test results are shown in Table 1.
<Comparative Example 1>
Using an unsaturated polyester resin as a thermosetting resin, a glass chopped strand mat and a glass roving cloth as a reinforcing fiber, and laminated on a PVC elbow having a nominal diameter of 100 mm by a hand lay-up method, an FRP-reinforced PVC elbow was obtained. . The thickness of the FRP layer was set to be the same as in Example 1. The workability at the time of molding, the appearance of the FRP-reinforced PVC elbow 2 after molding, and the water pressure resistance were evaluated. The test results are shown in Table 1.
Figure 2009020054
As shown in Table 1, in terms of workability, Example 1 was simple, and there was no particularly difficult work, and the workability was good with no effort, whereas in Comparative Example 1, the entire PVC elbow was obtained by hand lay-up. Since the FRP layer is provided on the work, the work is difficult and time-consuming, so the workability is poor. Further, in Comparative Example 1, a large amount of waste was generated during molding, so that a lot of material was wasted. In Example 1, there was no waste except for a small amount of burrs, and there was little waste. . In addition, in Example 1, the FRP layer was formed with a uniform thickness and the outer diameter was stable, the surface was smooth and glossy, and the appearance was good. The thickness of the FRP layer varied, the outer diameter was not stable, the surface was rough, the surface was not glossy, and the appearance was poor. In addition, in terms of the water pressure resistance, both strengths have the strength necessary for use as a joint and there is not much difference, but the thickness is uniform and the density of the FRP layer is high. Example 1 has a slightly higher pressure resistance than Comparative Example 1, and can be used for higher water pressures.

Claims (6)

内部にキャビティが形成された上型と下型からなる金型を用いた繊維強化熱硬化性樹脂(FRP)層で補強したFRP補強塩化ビニル系樹脂製管継手の製造方法であって、
前記下型に前記FRP層を形成するバルクモールディングコンパウンド(BMC)又はシートモールディングコンパウンド(SMC)を挿填し、
前記下型に予め成形された塩化ビニル系樹脂製管継手を固定し、
前記塩化ビニル系樹脂製管継手の上部に前記BMC又は前記SMCを挿填した後、
前記上型と前記下型を閉止して加圧一体成形してなる、
ことを特徴とするFRP補強塩化ビニル系樹脂製管継手の製造方法。
A method of manufacturing a FRP-reinforced vinyl chloride resin pipe joint reinforced with a fiber reinforced thermosetting resin (FRP) layer using a mold composed of an upper mold and a lower mold in which a cavity is formed,
Insert the bulk molding compound (BMC) or sheet molding compound (SMC) that forms the FRP layer into the lower mold,
Fix the pre-formed vinyl chloride resin pipe joint to the lower mold,
After inserting the BMC or the SMC on top of the vinyl chloride resin pipe joint,
The upper mold and the lower mold are closed and formed by pressure integral molding.
A method for producing an FRP-reinforced vinyl chloride resin pipe joint, characterized in that:
前記金型に油圧シリンダで駆動されるスライドコアが設けられ、前記塩化ビニル系樹脂製管継手の各開口部に前記スライドコアが各々挿嵌されて固定される、ことを特徴とする請求項1記載のFRP補強塩化ビニル系樹脂製管継手の製造方法。 2. A slide core driven by a hydraulic cylinder is provided in the mold, and the slide core is inserted and fixed in each opening of the vinyl chloride resin pipe joint. The manufacturing method of the FRP reinforced vinyl chloride resin pipe joint as described. 前記スライドコアに前記FRP補強塩化ビニル系管継手の開口部の端面と当接する当接面が設けられ、前記当接面が前記FRP補強塩化ビニル系管継手の開口部の端面の位置より0.3〜0.8mm突出してなる、ことを特徴とする請求項2記載のFRP補強塩化ビニル系樹脂製管継手の製造方法。 The slide core is provided with a contact surface that contacts the end surface of the opening of the FRP-reinforced vinyl chloride pipe joint, and the contact surface is 0. 0 mm from the position of the end surface of the opening of the FRP-reinforced vinyl chloride pipe joint. The method for producing an FRP-reinforced vinyl chloride resin pipe joint according to claim 2, wherein the pipe joint protrudes by 3 to 0.8 mm. 前記上型と前記下型の閉止が段階的に行なわれ、
前記上型と前記下型の全開時の開度100%から、
開度15〜25%まで閉止した状態で一旦停止し、
その後、開度3〜8%まで閉止した状態で一旦停止し、
その後、開度0%の全閉状態とする、ことを特徴とする請求項1乃至請求項3のいずれか1項に記載のFRP補強塩化ビニル系樹脂製管継手の製造方法。
The upper mold and the lower mold are closed in stages,
From the opening degree 100% when the upper mold and the lower mold are fully opened,
Stop once with the opening degree 15-25% closed,
After that, stop once with the opening degree 3-8% closed,
4. The method for manufacturing an FRP-reinforced vinyl chloride resin pipe joint according to claim 1, wherein the fully closed state with an opening degree of 0% is thereafter set. 5.
前記金型の上型および/または下型の当接面の少なくとも一部が、前記キャビティの周縁部を先端として鋭角に形成されている、ことを特徴とする請求項1乃至請求項4のいずれか1項に記載のFRP補強塩化ビニル系樹脂製管継手の製造方法。 The at least part of the contact surface of the upper mold and / or the lower mold of the mold is formed at an acute angle with the peripheral edge of the cavity as a tip. A method for producing the FRP-reinforced vinyl chloride resin pipe joint according to claim 1. 請求項1乃至請求項5のいずれか1項に記載のFRP補強塩化ビニル系樹脂製管継手の製造方法で製造されてなるFRP補強塩化ビニル系樹脂製管継手。 An FRP-reinforced vinyl chloride resin pipe joint manufactured by the method for manufacturing an FRP-reinforced vinyl chloride resin pipe joint according to any one of claims 1 to 5.
JP2009526419A 2007-08-09 2008-07-25 FRP reinforced vinyl chloride resin pipe joint and method for manufacturing the same Pending JPWO2009020054A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007208377 2007-08-09
JP2007208377 2007-08-09
PCT/JP2008/063810 WO2009020054A1 (en) 2007-08-09 2008-07-25 Frp reinforced vinyl chloride resin pipe joint and process for manufacturing the same

Publications (1)

Publication Number Publication Date
JPWO2009020054A1 true JPWO2009020054A1 (en) 2010-11-04

Family

ID=40341288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009526419A Pending JPWO2009020054A1 (en) 2007-08-09 2008-07-25 FRP reinforced vinyl chloride resin pipe joint and method for manufacturing the same

Country Status (5)

Country Link
JP (1) JPWO2009020054A1 (en)
KR (1) KR20100043063A (en)
CN (1) CN101778706A (en)
TW (1) TW200923240A (en)
WO (1) WO2009020054A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501384A (en) * 2011-11-03 2012-06-20 厦门建霖工业有限公司 One-time moulding method and moulding device for hose with joint
CN103162053A (en) * 2011-12-08 2013-06-19 上海启鹏工程材料科技有限公司 Pipe connector and manufacture method thereof
US20130191966A1 (en) * 2012-01-26 2013-08-01 Richard A. Rivkin Bi-colored insulating sleeve
CN105415709B (en) * 2015-12-16 2018-08-31 上海晋飞碳纤科技股份有限公司 3D nylon wind pipes are molded the moulding process of fire-retardant camber beam and make mold
CN106369238A (en) * 2016-10-08 2017-02-01 威海纳川管材有限公司 Non-metal pipeline joint
JP7019988B2 (en) * 2017-07-27 2022-02-16 株式会社オンダ製作所 Resin elbow fitting
CN109723924B (en) * 2018-10-16 2022-03-15 上海船舶工艺研究所(中国船舶工业集团公司第十一研究所) Carbon fiber elbow for ship and manufacturing method thereof
JP2022189011A (en) * 2021-06-10 2022-12-22 株式会社神戸製鋼所 Mold, apparatus and method for manufacturing metal-resin composite

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537763A (en) * 1976-07-09 1978-01-24 Nippon Glass Fiber Co Ltd Method of producing tube joint formed with synthetic resin inside layer
JPS62275719A (en) * 1986-05-26 1987-11-30 Arai Pump Mfg Co Ltd Manufacture of resin reed valve
JPH0339235A (en) * 1989-07-07 1991-02-20 Asahi Organic Chem Ind Co Ltd Fiber reinforced plastic reinforced polyvinyl chloride-based resin pipe joint and manufacture thereof
JPH1134088A (en) * 1997-07-15 1999-02-09 Kawasaki Steel Corp Manufacture of rubber roll
JPH1180525A (en) * 1997-09-10 1999-03-26 Asahi Organic Chem Ind Co Ltd Resin composition for reinforcing pipe joint made of vinyl chloride-based resin
JP2003136554A (en) * 2001-11-07 2003-05-14 Risho Kogyo Co Ltd Method for manufacturing laminated sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537763A (en) * 1976-07-09 1978-01-24 Nippon Glass Fiber Co Ltd Method of producing tube joint formed with synthetic resin inside layer
JPS62275719A (en) * 1986-05-26 1987-11-30 Arai Pump Mfg Co Ltd Manufacture of resin reed valve
JPH0339235A (en) * 1989-07-07 1991-02-20 Asahi Organic Chem Ind Co Ltd Fiber reinforced plastic reinforced polyvinyl chloride-based resin pipe joint and manufacture thereof
JPH1134088A (en) * 1997-07-15 1999-02-09 Kawasaki Steel Corp Manufacture of rubber roll
JPH1180525A (en) * 1997-09-10 1999-03-26 Asahi Organic Chem Ind Co Ltd Resin composition for reinforcing pipe joint made of vinyl chloride-based resin
JP2003136554A (en) * 2001-11-07 2003-05-14 Risho Kogyo Co Ltd Method for manufacturing laminated sheet

Also Published As

Publication number Publication date
KR20100043063A (en) 2010-04-27
TW200923240A (en) 2009-06-01
WO2009020054A1 (en) 2009-02-12
CN101778706A (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JPWO2009020054A1 (en) FRP reinforced vinyl chloride resin pipe joint and method for manufacturing the same
US7758715B2 (en) Method of forming a composite structure
CN101131032A (en) Moulded glass fibre reinforced plastic grille and manufacturing method thereof
CN104031311A (en) Formula and preparation process of rubber-synthesizing crosslinked polymer
CN105694372A (en) Carbon fiber reinforced epoxy resin composite and preparation method thereof
US6103156A (en) Method for rapid production of structural prototype plastic parts
JP2006321897A (en) Method for molding fiber-reinforced thermoplastic resin
JPS582988B2 (en) Method for manufacturing swellable adhesive water stop material
EP3335859A1 (en) Resin composition, cured product thereof, and friction stir welding method
CN110791071A (en) High-strength composite material storage battery cover and preparation method thereof
KR101082984B1 (en) Composite material composition of low specific gravity, high strength and fast curing, and method for producing the same
CN104999671A (en) Glass fiber reinforced plastic die pressing flange and manufacturing technology thereof
US3888712A (en) Method for producing fiberglass reinforced plastic composite pipes
CN107964228A (en) A kind of preparation process of transparent SMC moulding materials
CN105985543B (en) A kind of rubber composition and preparation method thereof
CN109732802B (en) Preparation process of embedded co-curing damping composite material T-shaped stiffened plate
JPH0839580A (en) Manufacture of resin tube joint
JPH0339235A (en) Fiber reinforced plastic reinforced polyvinyl chloride-based resin pipe joint and manufacture thereof
KR100549369B1 (en) Bulk molding compound for mold motor
JP2006230625A (en) Bathtub molding
KR101504218B1 (en) Fiber glass reinforced polymer concrete manhole
KR100533929B1 (en) Advanced processing technology of Grating in Composite materials
CN113321913B (en) Carbon fiber cotton composite material and preparation method thereof
CN115071138B (en) Large-size fluororubber sealing ring and preparation method thereof
TWM396194U (en) Plastic plate forming die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008