JPWO2009014165A1 - Method for concentrating colloidal dispersion - Google Patents

Method for concentrating colloidal dispersion Download PDF

Info

Publication number
JPWO2009014165A1
JPWO2009014165A1 JP2009524503A JP2009524503A JPWO2009014165A1 JP WO2009014165 A1 JPWO2009014165 A1 JP WO2009014165A1 JP 2009524503 A JP2009524503 A JP 2009524503A JP 2009524503 A JP2009524503 A JP 2009524503A JP WO2009014165 A1 JPWO2009014165 A1 JP WO2009014165A1
Authority
JP
Japan
Prior art keywords
colloid
colloidal dispersion
concentration
concentrating
colloidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009524503A
Other languages
Japanese (ja)
Inventor
好正 村田
好正 村田
酒井 千尋
千尋 酒井
桂子 黒崎
桂子 黒崎
吉井 哲朗
哲朗 吉井
仲間 健一
健一 仲間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JPWO2009014165A1 publication Critical patent/JPWO2009014165A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/06Separation of liquids from each other by electricity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0009Settling tanks making use of electricity or magnetism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0039Post treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Colloid Chemistry (AREA)

Abstract

コロイド分散液に電位勾配を与えるコロイド分散液の濃縮方法であって、濃縮のための装置が、コロイド分散液に陽極及び陰極を浸漬して濃縮する濃縮容器を有し、かつ、分離膜を有さないことを特徴とするコロイド分散液の濃縮方法である。分離膜を使用することなく、小型でエネルギー消費の少ない装置を用いて、高い濃縮率で濃縮可能なコロイド分散液の濃縮方法を提供することができる。A method for concentrating a colloidal dispersion by applying a potential gradient to the colloidal dispersion, wherein the apparatus for concentration has a concentrating container for concentrating by immersing the anode and cathode in the colloidal dispersion and has a separation membrane. This is a method for concentrating a colloidal dispersion characterized by not. It is possible to provide a method for concentrating a colloidal dispersion that can be concentrated at a high concentration rate using a small and low energy consumption device without using a separation membrane.

Description

本発明はコロイド分散液の濃縮方法に関する。   The present invention relates to a method for concentrating a colloidal dispersion.

一般に、貴金属コロイド分散液などのコロイド分散液を濃縮する方法として、加熱によりコロイド分散液中の水分を蒸発させてコロイド分散液を濃縮する方法(以下、「蒸発法」という。)が知られている(例えば特許文献1参照)。しかしながら、高温の加熱を行うとコロイド粒子が凝集するなどの問題が生じるため、例えば特許文献1においては、常圧下又は減圧下に50〜90℃程度の温度で、15分〜240分程度の時間をかけて水を留去する濃縮方法が提案されている(特許文献1[0018]参照)。
しかしながら、この蒸発法は、緩やかな加熱条件であっても、本質的に加熱を伴うため貴金属コロイドの酸化、凝集などの変質を生じる可能性がある。また加熱するための燃料や電力の費用、さらに減圧設備や蒸気回収用冷却装置などの設備費用が生じ、製造コストが大きくなるという点も問題である。
In general, as a method of concentrating a colloidal dispersion such as a noble metal colloidal dispersion, a method of concentrating the colloidal dispersion by evaporating water in the colloidal dispersion by heating (hereinafter referred to as “evaporation method”) is known. (For example, refer to Patent Document 1). However, problems such as aggregation of colloidal particles occur when heating at a high temperature. For example, in Patent Document 1, a time of about 15 minutes to 240 minutes at a temperature of about 50 to 90 ° C. under normal pressure or reduced pressure. Has been proposed (see Patent Document 1 [0018]).
However, this evaporation method is inherently accompanied by heating even under mild heating conditions, and may cause alterations such as oxidation and aggregation of the noble metal colloid. In addition, there are problems in that the cost of fuel and electric power for heating and the cost of equipment such as a decompression equipment and a steam recovery cooling device arise, resulting in an increase in manufacturing cost.

また加熱を伴わない濃縮方法として、浸透膜を用い、固形懸濁物やコロイドのような不溶性成分を含む水溶液を濃縮する方法が提案されている(例えば特許文献2参照)。特許文献2には、概略以下の濃縮方法が開示されている。
すなわち、容器を半透膜で2つに分け、その片方に濃縮する対象である固形懸濁物やコロイドのような不溶性成分を含む溶液(以下、「低浸透圧溶液」という。)を入れ、もう片方に前記低浸透圧溶液よりも浸透圧が高くなるように調整された溶液(以下、「高浸透圧溶液」という。)を入れる。その後浸透膜を通って前記低浸透圧溶液から前記高浸透圧溶液に溶媒成分が移動するため、前記低浸透圧溶液中の前記不溶性成分の濃度が高くなり、結果的に低浸透圧溶液が濃縮されるという方法である。
しかしながら、浸透膜を用いる方法は、一般に処理時間が長いという問題がある。具体的には、特許文献2の実施例において、高浸透圧溶液として塩化ナトリウム水溶液を用いて、牛乳を1.5倍に濃縮するために12時間を要し(特許文献2、実施例1参照)、切削油排水を濃縮するために15時間を要している(特許文献2、実施例2参照)。さらに、高浸透圧溶液の溶質が処理対象の溶液に混入する可能性がある点も問題である。
As a concentration method that does not involve heating, a method of concentrating an aqueous solution containing an insoluble component such as a solid suspension or a colloid using an osmotic membrane has been proposed (see, for example, Patent Document 2). Patent Document 2 discloses the following concentration method.
That is, the container is divided into two with a semipermeable membrane, and a solution containing an insoluble component such as a solid suspension or colloid to be concentrated (hereinafter referred to as “low osmotic pressure solution”) is placed in one of the containers. A solution adjusted to have a higher osmotic pressure than the low osmotic pressure solution (hereinafter referred to as “high osmotic pressure solution”) is placed on the other side. Thereafter, since the solvent component moves from the low osmotic pressure solution to the high osmotic pressure solution through the osmotic membrane, the concentration of the insoluble component in the low osmotic pressure solution is increased, and as a result, the low osmotic pressure solution is concentrated. It is a method of being done.
However, the method using an osmotic membrane generally has a problem that the processing time is long. Specifically, in the example of Patent Document 2, it takes 12 hours to concentrate milk by 1.5 times using a sodium chloride aqueous solution as a hyperosmotic solution (see Patent Document 2, Example 1). ), 15 hours are required to concentrate the cutting oil drainage (see Patent Document 2 and Example 2). Further, there is a problem in that the solute of the high osmotic pressure solution may be mixed into the solution to be treated.

これらの方法に対し、コロイド分散液に電位勾配を与え、コロイドの帯電状態により電極付近にコロイドが移動する現象を利用して濃縮する方法がある。この場合には、電位勾配と同じ方向に濃度勾配が生じる。すなわち、正に帯電したコロイド粒子は負極側に集まり、負に帯電したコロイド粒子は正極側に集まる(例えば、非特許文献1及び非特許文献2参照)。なお、電位勾配とは電極に印加した印加電圧を電極間の距離で除したものをいう。   In contrast to these methods, there is a method of applying a potential gradient to the colloidal dispersion and concentrating using a phenomenon in which the colloid moves near the electrode depending on the charged state of the colloid. In this case, a concentration gradient occurs in the same direction as the potential gradient. That is, the positively charged colloidal particles gather on the negative electrode side, and the negatively charged colloidal particles gather on the positive electrode side (see, for example, Non-Patent Document 1 and Non-Patent Document 2). The potential gradient is obtained by dividing the applied voltage applied to the electrodes by the distance between the electrodes.

また、生産効率の点から、コロイド分散液を連続的に濃縮する方法が望まれるが、従来、コロイド分散液の連続濃縮方法として、種々の方法が提案されており、例えば、限外濾過によるコロイド分散液の連続濃縮方法が知られている(特許文献3[0087]及び[0102]参照)。限外濾過はフィルターにより水と粒子を分離する一般的な濾過に対して、制御された細孔を有する濾過膜を用い、該濾過膜を介して圧力差によって溶媒を排出して濃縮する方法である。この方法であれば、微小なコロイド粒子をも濃縮し得る。
しかしながら、限外濾過による方法では、使用する濾過膜をコロイド粒子の大きさに合わせて交換する必要があり、作業が煩雑であるという問題点があった。また、濃縮比率を大きくすることができず、通常、約2〜3倍程度の濃縮比率であるため、高濃度のコロイド分散液を得るためには、複数回の濃縮工程が必要であった。さらには、濾過に際して、0.1〜1MPaの圧力をかける必要があるため、少量の濃縮を行う場合であっても、装置が大型化するなどの問題があった。
In addition, from the viewpoint of production efficiency, a method for continuously concentrating a colloidal dispersion is desired. However, various methods have been proposed as a method for continuously concentrating a colloidal dispersion. For example, colloidal dispersion by ultrafiltration is proposed. A method for continuously concentrating a dispersion is known (see Patent Documents 3 [0087] and [0102]). Ultrafiltration is a general filtration method that separates water and particles by a filter, and uses a filtration membrane with controlled pores, and drains the solvent by the pressure difference through the filtration membrane and concentrates it. is there. With this method, even minute colloidal particles can be concentrated.
However, the method using ultrafiltration has a problem that it is necessary to exchange the filtration membrane to be used according to the size of the colloidal particles, and the work is complicated. Further, since the concentration ratio cannot be increased and the concentration ratio is usually about 2 to 3 times, a plurality of concentration steps are required to obtain a high concentration colloidal dispersion. Furthermore, since it is necessary to apply a pressure of 0.1 to 1 MPa during filtration, there is a problem that the apparatus is enlarged even when a small amount of concentration is performed.

また、コロイド分散液の連続濃縮方法として、限外濾過装置と電気透析装置を用いて行う方法が提案されている(特許文献4、請求項3、[0021]参照)。これは、限外濾過に、イオン交換膜を用いた電気透析を同時に組み合わせることにより、短時間に濃縮するものである。
イオン交換膜は電荷を有する多孔質膜であり、陽イオン又は陰イオンのみを通す性質を有する。電気透析法は、このイオン交換膜を組み合わせて水に溶けているイオン成分の濃縮を行うものである。この濃縮方法における駆動力は電気量であり、加えた電気量に比例して水中のイオンを濃縮できる。そのため、逆浸透などの圧力駆動の膜分離による濃縮方法に比較して、濃縮倍率が高いのが特徴である。
しかしながら、電気透析は、電気泳動と陽イオン交換膜及び陰イオン交換膜の組み合わせによって濃縮するため、使用する陽イオン交換膜及び陰イオン交換膜を濃縮するコロイドの材料によって選択する必要があり、作業が煩雑であるという問題点があった。また、濃縮過程で大きなイオン電導電流(30〜40Vで数A〜10A)を流さなければならないため、装置自体は小型化できるが、電源装置は非常に大きなものを必要とし、エネルギー消費が大きいという問題もあった。
As a method for continuously concentrating a colloidal dispersion, a method using an ultrafiltration device and an electrodialysis device has been proposed (see Patent Document 4, Claim 3, and [0021]). This concentrates in a short time by combining ultrafiltration with electrodialysis using an ion exchange membrane.
An ion exchange membrane is a porous membrane having a charge, and has the property of allowing only cations or anions to pass through. In the electrodialysis method, the ion components dissolved in water are concentrated by combining the ion exchange membranes. The driving force in this concentration method is the amount of electricity, and ions in water can be concentrated in proportion to the amount of electricity added. Therefore, the concentration ratio is higher than that of the concentration method using pressure-driven membrane separation such as reverse osmosis.
However, since electrodialysis is concentrated by a combination of electrophoresis and a cation exchange membrane and an anion exchange membrane, it is necessary to select the cation exchange membrane to be used and the colloidal material that concentrates the anion exchange membrane. There is a problem that is complicated. In addition, since a large ion conductive current (several A to 10 A at 30 to 40 V) must be flowed during the concentration process, the device itself can be reduced in size, but the power supply device requires a very large device and consumes a large amount of energy. There was also a problem.

特開2005−169333号公報JP 2005-169333 A 特開平9−75677号公報JP-A-9-75677 特開2002−83518号公報JP 2002-83518 A 特開平8−278580号公報JP-A-8-278580 近藤保ら「やさしいコロイドと界面の科学」第21〜25頁(1983年、三共出版)Tamotsu Kondo et al. “Easy Colloids and Interface Science” 21-25 (1983, Sankyo Publishing) 池田勝一「基礎化学選書22コロイド化学」第117〜121頁(1986年、裳華房)Katsuichi Ikeda "Basic Chemistry Selection 22 Colloid Chemistry" 117-121 (1986, Saika Huafusa)

このような状況下、本発明は、分離膜を使用することなく、小型でエネルギー消費の少ない装置を用いて、高い濃縮率で濃縮可能なコロイド分散液の濃縮方法を提供することを目的とする。   Under such circumstances, an object of the present invention is to provide a method for concentrating a colloidal dispersion that can be concentrated at a high concentration rate using a small and low energy consumption device without using a separation membrane. .

本発明者らは、保護コロイドを有さない貴金属コロイド粒子を電着法により基体に担持する技術の研究過程において、特定の条件下でコロイド分散液などの電荷を有する微粒子の分散液に電位勾配を付与すると、従来の技術常識に反して、電位勾配とは必ずしも一致せず、自由平面に対して垂直方向(重力方向)に該微粒子が移動することを発見した。すなわち、上述のように、一般にはコロイド分散液に電位勾配を付与すると、正に帯電したコロイド粒子は負極側に集まり、負に帯電したコロイド粒子は正極に集まるとされているが、コロイド分散液のイオン濃度など、電流量等を制御することで、負に帯電した貴金属コロイド粒子などの微粒子が正極への電着をほとんど起こさず、負極から遠ざかるように分散液中で高濃度部分と希薄部分に分離する現象が生じることを見出した。
この現象が生じる機構の詳細は不明であるが、本発明者らは、この知見に基づき、貴金属コロイド分散液などの電荷を有するコロイドを、本質的に加熱を伴わない方法で濃縮する本発明を完成した。
また、本発明者らは、上記コロイド分散液の濃縮方法において、特定の構造を有する濃縮容器、さらにはコロイド分散液を連続的に補充する補充容器を用いることで、分離膜を用いることなくコロイド分散液を効率的に濃縮することができることを見出した。本発明はかかる知見に基づき完成したものである。
In the course of research on the technology for supporting noble metal colloid particles having no protective colloid on a substrate by electrodeposition, a potential gradient is applied to a dispersion of charged fine particles such as a colloid dispersion under specific conditions. It has been found that the fine particles move in a direction perpendicular to the free plane (gravity direction), which does not necessarily match the potential gradient, contrary to conventional common general knowledge. That is, as described above, generally, when a potential gradient is applied to a colloidal dispersion, positively charged colloidal particles gather on the negative electrode side, and negatively charged colloidal particles gather on the positive electrode. By controlling the amount of current, such as the ion concentration, the fine particles such as negatively charged noble metal colloid particles hardly cause electrodeposition on the positive electrode, and the high-concentration part and the dilute part in the dispersion so as to move away from the negative electrode It was found that the phenomenon of separation occurs.
Although the details of the mechanism by which this phenomenon occurs are unknown, the present inventors based on this finding, have concentrated on a colloid having a charge, such as a noble metal colloid dispersion, by a method that is essentially not accompanied by heating. completed.
In addition, in the above-described method for concentrating a colloidal dispersion, the present inventors have used a concentrating container having a specific structure, and further a replenishing container for continuously replenishing the colloidal dispersion, so that the colloid can be obtained without using a separation membrane. It has been found that the dispersion can be concentrated efficiently. The present invention has been completed based on such findings.

すなわち、本発明は、
(1)コロイド分散液に電位勾配を与えるコロイド分散液の濃縮方法であって、濃縮のための装置が、コロイド分散液に陽極及び陰極を浸漬して濃縮する濃縮容器を有し、分離膜を有さないことを特徴とするコロイド分散液の濃縮方法、
(2)コロイドの電荷と同符号の電極を相対的にコロイド分散液表面に近く、異符号の電極を相対的に濃縮容器の底部に近く配置することを特徴とする上記(1)に記載のコロイド分散液の濃縮方法、
(3)さらにコロイド分散液を連続的に補充する補充容器を有し、前記濃縮容器と該補充容器とが該濃縮容器の開口部で接続されており、該開口部がコロイド分散液で満たされている上記(1)又は(2)に記載のコロイド分散液の濃縮方法、
(4)前記濃縮容器中のコロイド分散液にコロイドの高濃縮領域と欠損領域が存在し、前記補充容器から連続的に補充されるコロイド分散液が、該コロイドの高濃縮領域に供給される上記(3)に記載のコロイド分散液の濃縮方法、
(5)前記コロイドを構成する組成及び組成比と陽極及び陰極を構成する材料の組成及び組成比が同一、あるいは陽極及び陰極を構成する材料がコロイドに対して電気化学的に不活性な材料である上記(1)〜(4)のいずれかに記載のコロイド分散液の濃縮方法、
(6)前記濃縮容器が絶縁性材料で構成される上記(1)〜(5)のいずれかに記載のコロイド分散液の濃縮方法、
(7)前記補充容器が絶縁性材料で構成される上記(3)〜(6)のいずれかに記載のコロイド分散液の濃縮方法、及び
(8)前記コロイドが貴金属コロイドである上記(1)〜(7)のいずれかに記載のコロイド分散液の濃縮方法、
を提供するものである。
That is, the present invention
(1) A method for concentrating a colloidal dispersion by applying a potential gradient to the colloidal dispersion, wherein the apparatus for concentration has a concentration container for concentrating by immersing the anode and cathode in the colloidal dispersion, A method for concentrating a colloidal dispersion, characterized by not having
(2) The electrode having the same sign as that of the charge of the colloid is disposed relatively close to the surface of the colloidal dispersion, and the electrode having a different sign is disposed relatively close to the bottom of the concentration vessel. A method for concentrating the colloidal dispersion,
(3) Further, a replenishing container for continuously replenishing the colloidal dispersion is provided, the concentrating container and the replenishing container are connected by an opening of the concentrating container, and the opening is filled with the colloidal dispersion. The method for concentrating a colloidal dispersion according to (1) or (2) above,
(4) The colloid dispersion liquid in the concentration container has a colloid highly concentrated region and a defect region, and the colloid dispersion liquid continuously replenished from the replenishment container is supplied to the colloid highly concentrated region. The method for concentrating the colloidal dispersion according to (3),
(5) The composition and composition ratio constituting the colloid are the same as the composition and composition ratio of the material constituting the anode and cathode, or the material constituting the anode and cathode is an electrochemically inert material with respect to the colloid. A method for concentrating a colloidal dispersion according to any one of (1) to (4) above,
(6) The method for concentrating a colloidal dispersion according to any one of (1) to (5) above, wherein the concentration container is made of an insulating material,
(7) The method for concentrating a colloidal dispersion according to any one of (3) to (6) above, wherein the replenishing container is made of an insulating material, and (8) the above (1), wherein the colloid is a noble metal colloid. A method for concentrating the colloidal dispersion according to any one of to (7),
Is to provide.

本発明によれば、分離膜を使用することなく、小型でエネルギー消費の少ない装置を用いて、高い濃縮率でコロイド分散液を濃縮することができる。   According to the present invention, a colloidal dispersion can be concentrated at a high concentration rate using a small apparatus with low energy consumption without using a separation membrane.

コロイド分散液の濃縮方法の説明図である。It is explanatory drawing of the concentration method of a colloid dispersion liquid. 電圧印加後のコロイド分散液の分離状態を示す説明図である。It is explanatory drawing which shows the isolation | separation state of the colloid dispersion liquid after a voltage application. 高濃度領域を分離回収する容器の構造を示す模式図である。It is a schematic diagram which shows the structure of the container which isolate | separates and collects a high concentration area | region. 希薄領域を分離し、高濃度領域を分離回収する容器の構造を示す模式図である。It is a schematic diagram which shows the structure of the container which isolate | separates a thin area | region and isolate | separates and collects a high concentration area | region. コロイド分散液の濃縮方法の説明図である。It is explanatory drawing of the concentration method of a colloid dispersion liquid.

符号の説明Explanation of symbols

1 コロイド分散液(電圧印加前)
10 コロイド分散液(欠損領域)
11 濃縮槽
12 陽極
13 陰極
14 電源(直流電源)
14' 導線
15 分散液界面
16 コロイド分散液(高濃度領域)
17 補充槽
18 補充コロイド分散液
19 開口部(濃縮槽と補充槽の連結部)
21 排出バルブ(容器底部近傍)
22 排出バルブ(電極下端近傍)
1 Colloidal dispersion (before voltage application)
10 Colloidal dispersion (defect area)
11 Concentration tank 12 Anode 13 Cathode 14 Power supply (DC power supply)
14 'conductor 15 dispersion interface 16 colloid dispersion (high concentration region)
17 Replenishment tank 18 Replenishment colloid dispersion 19 Opening (connection between the concentration tank and the replenishment tank)
21 Discharge valve (near container bottom)
22 Discharge valve (near electrode bottom)

本発明のコロイド分散液の濃縮方法は、コロイド分散液に電位勾配を与えるコロイド分散液の濃縮方法であって、濃縮のための装置が、コロイド分散液に陽極及び陰極を浸漬して濃縮する濃縮容器を有し、かつ、分離膜を有さないことを特徴とする。
本発明のコロイド分散液中におけるコロイドは、純水などの絶縁性分散媒中で、微視的に電気的反発によって凝集せずに存在する。但し、コロイド粒子の反対の電荷を持つ単原子イオンにゆるく囲まれ、全体として電気的に中性を保っている。本発明は、これらのコロイド分散液に陽極及び陰極を浸漬して、電位勾配を与えて濃縮するものである。
The method for concentrating a colloidal dispersion according to the present invention is a method for concentrating a colloidal dispersion that imparts a potential gradient to the colloidal dispersion, wherein the concentration device immerses and concentrates the anode and cathode in the colloidal dispersion. It has a container and has no separation membrane.
The colloid in the colloidal dispersion of the present invention is present in an insulating dispersion medium such as pure water without being aggregated microscopically due to electrical repulsion. However, it is loosely surrounded by monoatomic ions with the opposite charge of colloidal particles, and as a whole is electrically neutral. In the present invention, an anode and a cathode are immersed in these colloidal dispersions, and concentrated by applying a potential gradient.

通常、電荷を有する微粒子の分散液に電極を浸漬して電位勾配を与えると、正に帯電した微粒子は負極側に集まり、負に帯電した微粒子は正極側に集まる。しかしながら、特定の条件下であると、電荷を有する微粒子がこのような泳動を起こさず、電極に対して重力方向(下方向)に濃縮される。
より具体的には、濃縮容器中において、電極間に一定の直流電圧を印加すると、コロイドは容器の底近くに一様に濃縮され、コロイドの高濃縮領域とコロイドが除去された欠損領域が生じる。このとき、電流はほとんど流れない。具体的には、数十ボルト(V)の印加電圧に対して、1mA以下である。ここでは、コロイド粒子とそれを取り囲む反対電荷のイオンは一緒に行動し、電気分解は起こさない。なお、1mA以上の電流が流れると水などの分散媒の電気分解が起こり、コロイドの濃縮を妨げる結果となる。
このような濃縮を生じさせるための方法としては種々の方法があり、電極の位置関係を特定のものとする方法、電位勾配を付与する際のコロイド溶液の条件を設定する方法、流す電流を制御する方法などがある。
Usually, when an electrode is immersed in a dispersion of charged fine particles to apply a potential gradient, positively charged fine particles gather on the negative electrode side, and negatively charged fine particles gather on the positive electrode side. However, under certain conditions, charged fine particles do not undergo such migration and are concentrated in the direction of gravity (downward) with respect to the electrode.
More specifically, when a constant DC voltage is applied between the electrodes in the concentration container, the colloid is uniformly concentrated near the bottom of the container, resulting in a highly concentrated region of colloid and a defect region from which the colloid has been removed. . At this time, almost no current flows. Specifically, it is 1 mA or less with respect to an applied voltage of several tens of volts (V). Here, colloidal particles and the oppositely charged ions that surround them act together and do not undergo electrolysis. In addition, when a current of 1 mA or more flows, electrolysis of a dispersion medium such as water occurs, which results in preventing colloid concentration.
There are various methods for causing such concentration, such as a method for specifying the positional relationship of the electrodes, a method for setting the conditions of the colloidal solution when applying a potential gradient, and a control of the flowing current. There are ways to do it.

電極の位置を特定する方法としては、コロイドの電荷と同符号の電極を相対的に分散液表面に近く、異符号の電極を相対的に容器の底部に近く配置する方法がある。
コロイドが負に帯電している場合、すなわちコロイドの電荷が負である場合には、これと同符号の電極、すなわち負極を相対的にコロイド分散液の分散液表面近くに配置し、一方、コロイドの電荷と異符号の電極である正極を相対的に容器の底部近くに配置する。
As a method for specifying the position of the electrode, there is a method in which an electrode having the same sign as the charge of the colloid is relatively close to the surface of the dispersion and an electrode having a different sign is relatively close to the bottom of the container.
When the colloid is negatively charged, that is, when the charge of the colloid is negative, the electrode having the same sign, that is, the negative electrode is placed relatively near the dispersion surface of the colloid dispersion, The positive electrode, which is an electrode having a different sign from that of the electric charge, is disposed relatively near the bottom of the container.

また、濃縮されたコロイド分散液を抜き出し、それと同量の未濃縮コロイド分散液を供給することで、もしくは、濃縮されたコロイド領域に未濃縮コロイド分散液を供給し、供給したコロイド量と同等の濃縮されたコロイド分散液を採取することで、連続的に濃縮コロイドを得ることができる。
さらに好ましい態様としては、濃縮のための装置が、コロイド分散液に陽極及び陰極を浸漬して濃縮する濃縮容器と、コロイド分散液を連続的に補充する補充容器とを有し、これらの容器が濃縮容器の開口部で接続されており、該開口部がコロイド分散液で満たされているものである。
Also, the concentrated colloidal dispersion is extracted and the same amount of unconcentrated colloidal dispersion is supplied, or the concentrated colloidal dispersion is supplied to the concentrated colloidal region and is equivalent to the amount of colloid supplied. By collecting a concentrated colloidal dispersion, a concentrated colloid can be obtained continuously.
In a more preferred embodiment, the apparatus for concentration has a concentration container for concentrating by immersing the anode and cathode in the colloidal dispersion, and a replenishing container for continuously replenishing the colloidal dispersion, and these containers are The concentrating container is connected at the opening, and the opening is filled with the colloidal dispersion.

濃縮容器にはその開口部を通じて、コロイド分散液を連続的に補充する補充容器と接続され、濃縮されたコロイド分散液および濃縮度に対応する欠損領域にある分散媒を抜き出し、その和と同量の未濃縮コロイド分散液を供給することで、分離膜を有さずともコロイド分散液を効率的に濃縮することができる。もしくは、高濃度領域に未濃縮コロイド分散液を供給し、供給したコロイド量と同等の濃縮されたコロイド分散液を採取することで、連続的に濃縮コロイドを効率的に得ることができる。この際、供給したコロイド分散液の分散媒量に相当する分散媒を取り除く。特に補充容器から連続的に補充されるコロイド分散液がコロイドの高濃度領域に供給される後者の態様が好ましい。
また、濃縮容器と補充容器は、コロイド分散液の電気的な絶縁性を維持するとの観点から、また濃縮の様子を観察する観点から,透明な絶縁性材料で構成されていることが好ましい。具体的には、ガラスなどの材料が挙げられる。
The concentrating container is connected to a replenishing container that continuously replenishes the colloidal dispersion liquid through the opening, and the concentrated colloidal dispersion liquid and the dispersion medium in the defect region corresponding to the concentration degree are extracted, and the same amount as the sum of them. By supplying this unconcentrated colloidal dispersion, the colloidal dispersion can be efficiently concentrated without a separation membrane. Alternatively, a concentrated colloid can be obtained continuously and efficiently by supplying an unconcentrated colloidal dispersion to a high concentration region and collecting a concentrated colloidal dispersion equivalent to the amount of colloid supplied. At this time, the dispersion medium corresponding to the amount of the dispersion medium supplied is removed. In particular, the latter embodiment in which the colloidal dispersion continuously replenished from the replenishing container is supplied to the high concentration region of the colloid is preferable.
In addition, the concentration container and the replenishment container are preferably made of a transparent insulating material from the viewpoint of maintaining the electrical insulation of the colloidal dispersion and from the viewpoint of observing the state of concentration. Specific examples include materials such as glass.

上記方法により、コロイド分散液が濃縮される機構については以下のように考えられる。すなわち、純水のような絶縁性の分散媒中で、例えばコロイドが負に帯電している場合には、電極間に直流電圧を印加することで、陰極からわずかに放出された電子によって、コロイドが反発して陰極付近より徐々にコロイドの欠損領域が広がる。そのようにして形成された欠損領域と高濃度領域の界面は、表面エネルギーを小さくしようとして動き、界面がなめらかになって広がる。一旦、高濃度領域と欠損領域との界面が容器中に広がると、陰極から放出された電子である負電荷が絶縁性分散媒の表面に一様に分布し、これと対向する高濃度領域の界面に等量の正電荷が誘起されることから、電気的な界面が水平に形成されると考えられる。このようにしてコロイドの濃度が急峻に変化する界面が形成され、欠損領域と高濃度領域に分離する。しかもコロイドは高濃度領域で一様な分布をする。
また、前述したように、高濃度領域に、未濃縮コロイド分散液が流入すると、コロイドは界面が移動しつつ高濃度領域に保持されるため、高濃度領域に維持され、絶縁性の分散媒のみが移動するため、濃縮されたコロイド分散液が連続的に得られていく。
従って、容器の底に近い側の電極と容器の底の距離を定め、高濃度領域のかさ高さを決定することで、高濃度領域におけるコロイドの濃度を制御することができる。
The mechanism by which the colloidal dispersion is concentrated by the above method is considered as follows. That is, in an insulating dispersion medium such as pure water, for example, when the colloid is negatively charged, by applying a DC voltage between the electrodes, the colloid is slightly emitted by the electrons emitted from the cathode. Repelled and the colloidal defect area gradually spreads from the vicinity of the cathode. The interface between the defect region and the high-concentration region thus formed moves so as to reduce the surface energy, and the interface becomes smooth and widens. Once the interface between the high-concentration region and the defect region spreads in the container, negative charges, which are electrons emitted from the cathode, are uniformly distributed on the surface of the insulating dispersion medium, Since an equal amount of positive charge is induced at the interface, the electrical interface is considered to be formed horizontally. In this way, an interface in which the concentration of the colloid changes sharply is formed and separated into a defect region and a high concentration region. Moreover, the colloid has a uniform distribution in the high concentration region.
In addition, as described above, when the unconcentrated colloidal dispersion flows into the high concentration region, the colloid is maintained in the high concentration region while moving the interface, so that the colloid is maintained in the high concentration region, and only the insulating dispersion medium is retained. Therefore, a concentrated colloidal dispersion is continuously obtained.
Accordingly, the colloid concentration in the high concentration region can be controlled by determining the distance between the electrode near the bottom of the vessel and the bottom of the vessel and determining the bulk height of the high concentration region.

また、連続的に追加されるコロイド分散液の濃度については、50〜500mg/Lの範囲であることが望まれる。この範囲であると、コロイド分散液の濃縮が効果的に成される。
上記した連続的にコロイド分散液を濃縮する場合において、該濃度が50mg/L以上であれば、追加投入される分散媒の量が多くなりすぎないため、高濃度領域と欠損領域(希薄領域)の界面の乱れが生じにくく、連続的な濃縮が効果的に行われる。以上の観点から、後から追加投入される未濃縮コロイド分散液の濃度は、60〜150mg/Lの範囲がさらに好ましい。
Moreover, about the density | concentration of the colloid dispersion liquid added continuously, it is desirable that it is the range of 50-500 mg / L. Within this range, the colloidal dispersion is effectively concentrated.
In the case of continuously concentrating the colloidal dispersion liquid as described above, if the concentration is 50 mg / L or more, the amount of the dispersion medium added additionally does not increase too much, so the high concentration region and the defect region (dilute region). Therefore, the continuous interface is effectively concentrated. From the above viewpoint, the concentration of the unconcentrated colloidal dispersion added later is more preferably in the range of 60 to 150 mg / L.

次に、コロイド分散液に電流が実質的に流れないようにし、コロイドの濃縮を可能にする条件としてはとしては、以下のようなものがある。
コロイドの平均粒子径については、平均粒径1〜200nmの範囲が好適である。
コロイド分散液の温度は40℃以下とすることが好ましい。40℃以下とすることで、コロイド分散液中のコロイドの熱拡散の影響が小さくなり、コロイド分散液の濃縮が行われる。コロイド分散液の温度は、コロイド溶液の液体状態を維持する中でなるべく低温、例えば、コロイド溶液の流体本体が25℃以下であることが好ましい。
Next, the conditions for preventing the current from substantially flowing through the colloidal dispersion and enabling the concentration of the colloid include the following.
The average particle diameter of the colloid is preferably in the range of an average particle diameter of 1 to 200 nm.
The temperature of the colloidal dispersion is preferably 40 ° C. or lower. By setting the temperature to 40 ° C. or less, the influence of the thermal diffusion of the colloid in the colloidal dispersion is reduced, and the colloidal dispersion is concentrated. The temperature of the colloidal dispersion is preferably as low as possible while maintaining the liquid state of the colloidal solution, for example, the fluid body of the colloidal solution is preferably 25 ° C. or lower.

本発明の濃縮方法において、電位勾配は2V/cm以上であることが好ましい。2V/cm以上であると十分な濃縮が可能となる。電位勾配の上限値については、負の電極から放出される電子が界面を乱すため、通常は50V/cm程度である。   In the concentration method of the present invention, the potential gradient is preferably 2 V / cm or more. If it is 2 V / cm or more, sufficient concentration is possible. The upper limit of the potential gradient is usually about 50 V / cm because electrons emitted from the negative electrode disturb the interface.

本発明の方法における分散媒は絶縁性を有することが必要である。具体的には、抵抗率が7MΩcm以上であることが好ましい。該抵抗率が7MΩcm未満であると、分散媒に電流が流れ、電気分解の現象が起こるため、初期の界面形成現象が現れない。具体的には純水を好適に使用することができる。   The dispersion medium in the method of the present invention needs to have insulating properties. Specifically, the resistivity is preferably 7 MΩcm or more. When the resistivity is less than 7 MΩcm, an electric current flows through the dispersion medium and an electrolysis phenomenon occurs, so that an initial interface formation phenomenon does not appear. Specifically, pure water can be suitably used.

本発明によって濃縮し得るコロイドについては、貴金属としては、白金、ルテニウム、パラジウム、ロジウム、レニウム、オスミウム、金、イリジウム、銀などが挙げられる。これらの貴金属は一種単独であっても、また二種以上が併用されている場合であってもよい。例えば、二種以上の貴金属元素からなる合金コロイド粒子又は二種類以上の貴金属元素の層が重なるコア/シェル構造を有する貴金属コロイド粒子によって構成されるコロイド分散液に、本発明の濃縮方法は好適に使用される。   For colloids that can be concentrated according to the present invention, noble metals include platinum, ruthenium, palladium, rhodium, rhenium, osmium, gold, iridium, silver and the like. These noble metals may be used alone or in combination of two or more. For example, the concentration method of the present invention is suitably applied to a colloidal dispersion composed of an alloy colloidal particle composed of two or more kinds of noble metal elements or a noble metal colloid particle having a core / shell structure in which two or more kinds of noble metal element layers overlap. used.

また、本発明の方法は、保護コロイド形成剤を実質上含まないものを用いることができる。ここで、保護コロイド形成剤とは、従来コロイド粒子の分散安定性を保持するためにコロイド液に含有されているもので、コロイド粒子表面に付着して保護コロイドを形成する物質のことである。このような保護コロイド形成剤としては、例えばポリビニルアルコール、ポリビニルピロリドン、ゼラチンなどの水溶性高分子物質、界面活性剤、高分子キレート化剤(例えば、特開2000−279818号公報における〔0013〕に記載の化合物)などが挙げられる。   In addition, the method of the present invention can be used which does not substantially contain a protective colloid-forming agent. Here, the protective colloid-forming agent is a substance that is conventionally contained in a colloid liquid in order to maintain the dispersion stability of the colloidal particles, and adheres to the surface of the colloidal particles to form a protective colloid. Examples of such a protective colloid-forming agent include water-soluble polymer substances such as polyvinyl alcohol, polyvinyl pyrrolidone, and gelatin, surfactants, and polymer chelating agents (for example, [0013] in JP-A-2000-279818). And the like).

本発明において、保護コロイドを有さない貴金属コロイド分散液は、例えば、前記特許文献に記載されるように、金属塩化物が溶解した溶液に還元剤を添加し、金属イオンを還元して金属微粒子を生成させる方法により得ることができる。なお、このようにして得られる貴金属コロイド分散液は保護コロイド形成剤を実質上含まなくても、貴金属コロイド粒子の分散安定性が良好であり、実用上十分な長期間、例えば3日〜30日間程度安定した分散性を保持する。   In the present invention, the noble metal colloid dispersion without protective colloid is prepared by adding a reducing agent to a solution in which a metal chloride is dissolved and reducing metal ions, as described in the above-mentioned patent document. It can obtain by the method of producing | generating. The noble metal colloid dispersion obtained in this way has good dispersion stability of the noble metal colloid particles even when substantially free of a protective colloid-forming agent, and has a practically sufficient long period, for example, 3 to 30 days. Maintains stable dispersibility.

次に、本発明の実施の形態を、図面を参照しつつ説明する。
本発明のコロイド分散液の濃縮方法は、図1に示されるように、容器11中のコロイド分散液1に、陽極12と陰極13の二つの電極が浸漬され、この電極には電圧印加用の電源14が接続されている。
Next, embodiments of the present invention will be described with reference to the drawings.
In the method of concentrating a colloidal dispersion according to the present invention, as shown in FIG. 1, two electrodes, an anode 12 and a cathode 13, are immersed in the colloidal dispersion 1 in a container 11. A power supply 14 is connected.

陽極及び陰極の位置については、本発明の効果を奏する範囲であれば特に制限はないが、効率的にコロイドの濃縮をするためには、以下の位置関係にあることが好ましい。すなわち、コロイドの電荷が負である場合には、重力方向に対して、陽極の下端が陰極の下端と同じ位置かもしくは陰極の下端よりも下方に位置するように制御し、コロイドの電荷が正である場合には、重力方向に対して、陰極の下端が陽極の下端と同じ位置かもしくは陽極の下端よりも下方に位置するように制御することが好ましい。   The positions of the anode and the cathode are not particularly limited as long as the effects of the present invention are achieved. However, in order to efficiently concentrate the colloid, the following positional relationship is preferable. In other words, if the colloidal charge is negative, the colloidal charge is controlled so that the lower end of the anode is located at the same position as the lower end of the cathode or below the lower end of the cathode. In this case, it is preferable to control so that the lower end of the cathode is located at the same position as the lower end of the anode or below the lower end of the anode with respect to the direction of gravity.

このような、電極に電圧を印加すると、電極が存在する付近のコロイドが電極より下方に移動し、図2に示すように希薄領域10と高濃度領域16が形成されてコロイド分散液が濃縮される。このとき、高濃度領域16の最も高い位置は電極12の下端にほぼ一致する。
次いで、図3に示すように、バルブ21を開栓して高濃度コロイド分散液を直接分離回収するか、又は、図4に示すように、バルブ22を開栓して希薄分散液を分離回収することで、高濃度コロイド分散液を得ることができる。
When a voltage is applied to such an electrode, the colloid in the vicinity where the electrode exists moves below the electrode, and as shown in FIG. 2, a dilute region 10 and a high concentration region 16 are formed, and the colloidal dispersion is concentrated. The At this time, the highest position of the high concentration region 16 substantially coincides with the lower end of the electrode 12.
Then, as shown in FIG. 3, the valve 21 is opened to directly separate and collect the high-concentration colloidal dispersion, or as shown in FIG. 4, the valve 22 is opened to separate and collect the diluted dispersion. By doing so, a high concentration colloidal dispersion can be obtained.

次に、図5は本発明のコロイド分散液の濃縮方法における他の態様を示す説明図である。図5では、コロイドが負電荷を帯びている場合について説明する。
本態様は、図5に示されるように、濃縮容器11中のコロイド分散液10に、陽極12と陰極13の二つの電極が浸漬され、この電極には電圧印加用の電源14が接続されている。また補充容器17は濃縮容器11と開口部19で接続され、開口部19にはいかなる隔膜も有さない。
Next, FIG. 5 is explanatory drawing which shows the other aspect in the concentration method of the colloid dispersion liquid of this invention. FIG. 5 illustrates a case where the colloid is negatively charged.
In this embodiment, as shown in FIG. 5, two electrodes, an anode 12 and a cathode 13, are immersed in the colloidal dispersion 10 in the concentration container 11, and a power supply 14 for applying voltage is connected to these electrodes. Yes. The replenishing container 17 is connected to the concentrating container 11 through the opening 19, and the opening 19 does not have any diaphragm.

陽極及び陰極の位置については、コロイドが負電荷を帯びているので、陰極13を相対的に分散液表面の近くに位置させ、陽極12を相対的に容器の底部近くに位置させている。陽極及び陰極の電極は、濃縮容器11全体で開口部19を介して補充容器17より追加投入される補充コロイド分散液の流れを考慮して、濃縮容器11の底部に平行に長く伸びている。
このような、電極に電圧を印加すると、コロイドが陽極よりも下方に移動し、陽極の下に高濃度領域16を生じさせる。
Regarding the positions of the anode and the cathode, since the colloid is negatively charged, the cathode 13 is positioned relatively near the dispersion surface, and the anode 12 is positioned relatively near the bottom of the container. The anode and cathode electrodes extend in parallel to the bottom of the concentration vessel 11 in consideration of the flow of the replenishment colloid dispersion liquid added from the replenishment vessel 17 through the opening 19 throughout the concentration vessel 11.
When a voltage is applied to such an electrode, the colloid moves below the anode, and a high concentration region 16 is generated under the anode.

本発明における濃縮容器11は絶縁性材料で構成されていること、すなわち絶縁性の容器であることが望ましい。そして補充容器17についても絶縁性材料であることが望ましい。また開口部19は、高濃度領域16の中にある必要がある。濃縮容器11は補充容器17を共通にして、複数のものを並列的に並べてもよい。   The concentration container 11 in the present invention is preferably made of an insulating material, that is, an insulating container. The refill container 17 is also preferably made of an insulating material. The opening 19 needs to be in the high concentration region 16. Concentration containers 11 may be arranged in parallel with a common replenishment container 17.

本発明の方法に用いる電極としては、コロイド分散液への難溶解性の点から、貴金属材料が望ましく、特にコロイド材料と同一の金属、さらには、コロイドを構成する組成及び組成比と陽極及び陰極を構成する材料の組成及び組成比が同一であることが望ましい。また、その他コロイドに対して電気化学的に不活性な材料を用いることもできる。   The electrode used in the method of the present invention is preferably a noble metal material from the viewpoint of poor solubility in a colloidal dispersion, and in particular, the same metal as the colloid material, and further, the composition and composition ratio constituting the colloid, the anode and the cathode It is desirable that the composition and composition ratio of the materials constituting the same are the same. In addition, other materials that are electrochemically inert to the colloid can be used.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、この例によってなんら限定されるものではない。
実施例1
(1)白金コロイド分散液の調製
0.8質量%の塩化白金酸水溶液(H2PtCl6・6H2O)50gを純水850gで希釈し、この溶液を100℃に達するまで加熱した。さらにこの溶液に1.0質量%クエン酸ナトリウム水溶液100gを加え、1.5時間還流して、白金コロイド分散液を得た。さらに、該白金コロイド分散液を酸性・塩基性混合物のイオン交換樹脂を通してイオン交換し、濃縮用白金コロイド分散液を得た。この白金コロイド分散液は、白金コロイド粒子の濃度が約130mg/L、コロイドの平均粒子径が5.2nmであった。なお、分散媒である純水の抵抗率は7〜20MΩcmであり、保護コロイドは使用していない。また、コロイド分散液のイオン濃度はICP法を用いて測定し、コロイドの平均粒子径は、粒径測定装置(大塚電子株式会社製FPAR−1000型測定装置)を用いて測定した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example.
Example 1
(1) Preparation of platinum colloid dispersion 50 g of 0.8 mass% chloroplatinic acid aqueous solution (H 2 PtCl 6 · 6H 2 O) was diluted with 850 g of pure water, and this solution was heated until reaching 100 ° C. Further, 100 g of a 1.0 mass% aqueous sodium citrate solution was added to this solution and refluxed for 1.5 hours to obtain a platinum colloid dispersion. Further, the platinum colloid dispersion was subjected to ion exchange through an ion exchange resin of an acidic / basic mixture to obtain a platinum colloid dispersion for concentration. This platinum colloid dispersion had a platinum colloid particle concentration of about 130 mg / L and an average colloid particle size of 5.2 nm. The resistivity of pure water as a dispersion medium is 7 to 20 MΩcm, and no protective colloid is used. In addition, the ion concentration of the colloidal dispersion was measured using an ICP method, and the average particle size of the colloid was measured using a particle size measuring device (FPAR-1000 type measuring device manufactured by Otsuka Electronics Co., Ltd.).

(2)白金コロイド分散液の濃縮
3.5×1×4cm3のプラスチック製濃縮槽を準備した。コロイド導入口も同様に0.5×1×4cm3のプラスチック製であり、開口部は断面1×0.3cm2、長さ1cmである。この濃縮槽に、上記白金コロイド分散液12mLを入れた。電極としては、径0.3mmの白金線を用い、電極位置としては、陽極が濃縮槽の底部から6mmの位置、陰極がコロイド分散媒の表面(水面)より5mmの位置とした。
この電極間に25℃の条件下、40Vの直流電圧(電位勾配26V/cmに相当)を印加し、電流100〜200μAが流れた。電圧印加により白金コロイドは陽極より下方に向かって移動し、陽極の下端位置を境界として、その下側は白金コロイドが高濃度に存在する領域(高濃度領域)となり、その上側は白金コロイドが存在しない透明な欠損領域に分離した。電圧印加を開始後、5分間で約7倍に濃縮された。
また、ここに未濃縮コロイド分散液2.5mLを追加供給したところ、高濃度領域と欠損領域の界面が一部変化したが、すぐに濃縮領域が回復し、濃縮が維持された。一方、濃縮領域のコロイド分散液を一部スポイトで取り出しても、すぐに濃縮領域が回復し、濃縮が維持された。
(2) Concentration of platinum colloidal dispersion A 3.5 × 1 × 4 cm 3 plastic concentration tank was prepared. Similarly, the colloid inlet is made of 0.5 × 1 × 4 cm 3 plastic, and the opening has a cross section of 1 × 0.3 cm 2 and a length of 1 cm. In this concentration tank, 12 mL of the platinum colloidal dispersion was added. A platinum wire having a diameter of 0.3 mm was used as the electrode, and the electrode position was 6 mm from the bottom of the concentration tank, and the cathode was 5 mm from the surface (water surface) of the colloidal dispersion medium.
A 40 V DC voltage (corresponding to a potential gradient of 26 V / cm) was applied between the electrodes at 25 ° C., and a current of 100 to 200 μA flowed. When voltage is applied, the platinum colloid moves downward from the anode, with the lower end position of the anode as a boundary, the lower side is a region where the platinum colloid is present at a high concentration (high concentration region), and the upper side is where the platinum colloid is present. Not separated into transparent defect areas. After the voltage application was started, it was concentrated about 7 times in 5 minutes.
Further, when 2.5 mL of the unconcentrated colloidal dispersion was additionally supplied here, the interface between the high concentration region and the defect region was partially changed, but the concentration region immediately recovered and the concentration was maintained. On the other hand, even if the colloidal dispersion in the concentrated region was partially removed with a dropper, the concentrated region was recovered immediately and the concentration was maintained.

実施例2
(1)白金コロイド分散液の調製
保護コロイドを含有する白金コロイド分散液(TMA(テトラメチルアンモニウムヒドロキシド)表面修飾白金コロイド分散液、田中貴金属工業(株)製の市販品、白金含有量10g/L)について、本発明の方法で濃縮を行った。該TMA表面修飾白金コロイド分散液0.6mLに蒸留水11.4mLを加えて20倍に希釈して試料とした(500mg/L)。
(2)白金コロイド分散液の濃縮
3×1×4cm3のプラスチック製濃縮槽を準備した。コロイド導入口も同様に1×1×4cm3のプラスチック製であり、開口部は断面1×0.3cm2、長さ1cmである。この濃縮槽に、上記白金コロイド分散液12mLを入れた。電極としては、径0.3mmの白金線の先端以外をガラス管で被覆したものを用い、電極位置としては、陽極が濃縮槽の底部から12mmの位置、陰極がコロイド分散媒の表面(水面)より3mm下の位置とした。
この電極間に25℃の条件下、40Vの直流電圧(電位勾配26V/cmに相当)を印加した。電圧印加直後の電流は8.5mAであった。電圧印加により、陰極付近に白金コロイドの希薄な領域が発生して徐々に濃縮槽の表面付近を覆い(希薄領域)、5分後には濃縮槽の上側が希薄領域、陽極の下端付近を境界として、その下側が白金コロイドの高濃度に存在する領域(高濃度領域)となった。このときの電流は12mAであり、安定した状態での界面の高さは濃縮槽の底から5mmの位置であった。
この状態で2時間放置した後、コロイド導入口に上記500mg/L TMA表面修飾白金コロイド分散液2mLを追加供給したところ、高濃度領域と希薄領域の界面が一時上昇したが、すぐに界面の低下が始まり、15分後には界面の高さが濃縮槽の底から5mmの位置となり、濃縮が維持された。
この状態からさらにコロイド導入口の上記500mg/L TMA表面修飾白金コロイド分散液2mLを追加供給したところ、高濃度領域と希薄領域の界面が一時上昇したが、すぐに界面の低下が始まり、15分後には界面の高さが濃縮槽の底から5mmの位置となり、濃縮が維持された。
さらに、希薄領域の一部をスポイトで静かに4mL取り出し、コロイド導入口に上記500mg/L TMA表面修飾白金コロイド分散液4mLを追加供給したところ、高濃度領域と希薄領域の界面が乱れたが、30分後には界面の高さが濃縮槽の底から5mmの位置となり、濃縮が維持されることが確認された。
電圧印加の間中、それぞれの電極からは、水の電気分解による気泡が発生した。この場合、白金コロイド粒子とは反対の電荷を持つイオンが単原子イオンに比べてずっと大きいため、電界濃縮の過程で両者のイオンが一緒に行動しなかったものと考えられる。したがって、電気分解が生じ、過剰な電流が流れたが、同時に電界濃縮も起きたものと思われる。
また、陽極側のコロイド分散媒の表面(水面)付近では、コロイドの濃度(目視による色の濃さ)のムラが発生して溶液中を波状に伝播する現象が確認された。これについては、ムラの発生地点が、陽極側で発生した泡が水面に達して消失する地点と対応していると考えられる。
また、濃縮槽外表面の温度を非接触式の温度計で測定したところ、電圧印加直後から温度上昇が始まり(毎分0.3℃)、最終的には35℃で安定となった。一方、補充槽の該表面の温度は29℃程度のままであった。
Example 2
(1) Preparation of platinum colloid dispersion Platinum colloid dispersion containing protective colloid (TMA (tetramethylammonium hydroxide) surface modified platinum colloid dispersion, commercial product manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., platinum content 10 g / L) was concentrated by the method of the present invention. Distilled water (11.4 mL) was added to the TMA surface-modified platinum colloidal dispersion (0.6 mL) to dilute it 20 times to obtain a sample (500 mg / L).
(2) Concentration of platinum colloidal dispersion A 3 × 1 × 4 cm 3 plastic concentration tank was prepared. Similarly, the colloid inlet is made of 1 × 1 × 4 cm 3 plastic, and the opening has a cross section of 1 × 0.3 cm 2 and a length of 1 cm. In this concentration tank, 12 mL of the platinum colloidal dispersion was added. As the electrode, a glass tube other than the tip of a platinum wire having a diameter of 0.3 mm was used. As the electrode position, the anode was positioned 12 mm from the bottom of the concentration tank, and the cathode was the surface of the colloidal dispersion medium (water surface). The position was 3 mm below.
A 40 V DC voltage (corresponding to a potential gradient of 26 V / cm) was applied between the electrodes at 25 ° C. The current immediately after voltage application was 8.5 mA. When a voltage is applied, a dilute region of platinum colloid is generated near the cathode and gradually covers the surface of the concentrating tank (diluted region). After 5 minutes, the upper side of the concentrating tank is the dilute region and the lower end of the anode is the boundary. The lower side became a region (high concentration region) present in a high concentration of platinum colloid. The current at this time was 12 mA, and the height of the interface in a stable state was 5 mm from the bottom of the concentration tank.
After 2 hours of standing in this state, when 2 mL of the above-mentioned 500 mg / L TMA surface-modified platinum colloid dispersion liquid was additionally supplied to the colloid inlet, the interface between the high concentration region and the dilute region temporarily increased, but the interface decreased immediately. After 15 minutes, the height of the interface was 5 mm from the bottom of the concentration tank, and the concentration was maintained.
From this state, when 2 mL of the above-mentioned 500 mg / L TMA surface-modified platinum colloid dispersion liquid at the colloid introduction port was additionally supplied, the interface between the high concentration region and the dilute region temporarily rose, but the interface began to decline immediately, Later, the height of the interface was 5 mm from the bottom of the concentration tank, and the concentration was maintained.
Furthermore, when 4 mL of the diluted region was gently taken out with a dropper and 4 mL of the above-mentioned 500 mg / L TMA surface-modified platinum colloid dispersion liquid was additionally supplied to the colloid inlet, the interface between the high concentration region and the diluted region was disturbed. After 30 minutes, the height of the interface was 5 mm from the bottom of the concentration tank, and it was confirmed that concentration was maintained.
During the voltage application, bubbles were generated from each electrode due to electrolysis of water. In this case, it is considered that both ions did not act together in the process of electric field concentration because the ions having the opposite charge to the colloidal platinum particles are much larger than the monoatomic ions. Therefore, electrolysis occurred and an excessive current flowed, but at the same time, electric field concentration seems to have occurred.
Further, in the vicinity of the surface (water surface) of the colloidal dispersion medium on the anode side, a phenomenon in which unevenness of the colloid concentration (color density by visual observation) occurred and propagated in a wave shape in the solution was confirmed. About this, it is thought that the generation | occurrence | production point of a nonuniformity respond | corresponds with the point where the bubble generated on the anode side reaches the water surface and disappears.
Further, when the temperature of the outer surface of the concentration tank was measured with a non-contact type thermometer, the temperature started to increase immediately after the voltage application (0.3 ° C. per minute) and finally became stable at 35 ° C. On the other hand, the temperature of the surface of the replenishing tank remained at about 29 ° C.

実施例3
(1)金コロイド分散液の調製
1質量%の塩化金酸水溶液9.41gを純水954.32gで希釈し、この溶液を100℃に達するまで加熱した。さらに、この溶液に0.7質量%クエン酸ナトリウム水溶液14.4gを加え、1時間還流して、金コロイド分散液を得た。さらに、該金コロイド分散液を酸性・塩基性混合物のイオン交換樹脂を通してイオン交換し、濃縮用金コロイド分散液を得た。
(2)金コロイド分散液の濃縮
実施例2で用いたのと同様のプラスチック製濃縮槽に金コロイド分散液12mLを入れた。電極についても実施例2で用いたのと同様のものを用いた。
この電極間に25℃の条件下、40Vの直流電圧(電位勾配26V/cmに相当)を印加した。電圧印加直後の電流は58μAであった。電圧印加により、陰極付近に金コロイドの希薄な領域が発生して徐々に濃縮槽の表面付近を覆い(希薄領域)、14分後には濃縮槽の上側が希薄領域、陽極の下端付近を境界として、その下側が金コロイドの高濃度に存在する領域(高濃度領域)となった。このときの電流は70μAであり、界面の高さは濃縮槽の底から15mmの位置であった。
この状態で、コロイド導入口に上記金コロイド分散液2mLを追加供給したところ、高濃度領域と希薄領域の界面が一時上昇したが、すぐに界面の低下が始まり、電圧印加開始から24分後には界面の高さが濃縮槽の底から10mmの位置となり、濃縮が維持された。
Example 3
(1) Preparation of gold colloid dispersion 9.41 g of a 1% by mass chloroauric acid aqueous solution was diluted with 954.32 g of pure water, and this solution was heated until reaching 100 ° C. Further, 14.4 g of a 0.7% by mass aqueous sodium citrate solution was added to this solution and refluxed for 1 hour to obtain a gold colloid dispersion. Further, the gold colloid dispersion was ion exchanged through an ion exchange resin of an acidic / basic mixture to obtain a gold colloid dispersion for concentration.
(2) Concentration of colloidal gold dispersion 12 mL of colloidal gold dispersion was placed in the same plastic concentration tank as used in Example 2. The same electrode as used in Example 2 was used.
A 40 V DC voltage (corresponding to a potential gradient of 26 V / cm) was applied between the electrodes at 25 ° C. The current immediately after voltage application was 58 μA. By applying voltage, a thin region of colloidal gold is generated near the cathode and gradually covers the surface of the concentration tank (dilute region). After 14 minutes, the upper side of the concentration tank is a thin region, and the vicinity of the lower end of the anode is the boundary. The lower side became a region (high concentration region) present at a high concentration of colloidal gold. The current at this time was 70 μA, and the height of the interface was 15 mm from the bottom of the concentration tank.
In this state, when 2 mL of the gold colloid dispersion liquid was additionally supplied to the colloid introduction port, the interface between the high concentration region and the dilute region temporarily increased, but the interface started to decrease immediately and 24 minutes after the voltage application started. The height of the interface was 10 mm from the bottom of the concentration tank, and concentration was maintained.

本発明の濃縮方法は、電気透析と異なり、電気的な界面形成による状態変化を利用した濃縮であり、ほとんど電力を消費しないため、電源は小型のものを用いることができる。また、分離膜を利用せず、圧力をかけた送液系も不要であるため、ポンプも小型でよい。従って、全体として装置を小型化でき、効果的に短時間でコロイドの濃縮をすることができる。また、希薄コロイド分散液を追加して投入しても、高濃度領域と欠損領域の界面が維持され、連続的にコロイド分散液の濃縮を行うことができる。   Unlike the electrodialysis, the concentration method of the present invention is a concentration utilizing a change in state due to the formation of an electrical interface and consumes little power, so that a small power source can be used. In addition, since a liquid feeding system that does not use a separation membrane and applies pressure is unnecessary, the pump may be small. Therefore, the apparatus can be downsized as a whole, and the colloid can be concentrated effectively in a short time. Further, even if a dilute colloidal dispersion is added, the interface between the high concentration region and the defect region is maintained, and the colloidal dispersion can be continuously concentrated.

Claims (8)

コロイド分散液に電位勾配を与えるコロイド分散液の濃縮方法であって、濃縮のための装置が、コロイド分散液に陽極及び陰極を浸漬して濃縮する濃縮容器を有し、かつ、分離膜を有さないことを特徴とするコロイド分散液の濃縮方法。   A method for concentrating a colloidal dispersion by applying a potential gradient to the colloidal dispersion, wherein the apparatus for concentration has a concentration container for immersing and concentrating the anode and cathode in the colloidal dispersion and has a separation membrane. A method for concentrating a colloidal dispersion characterized by not. コロイドの電荷と同符号の電極を相対的にコロイド分散液表面に近く、異符号の電極を相対的に濃縮容器の底部に近く配置することを特徴とする請求項1に記載のコロイド分散液の濃縮方法。   2. The colloid dispersion liquid according to claim 1, wherein an electrode having the same sign as that of the charge of the colloid is relatively close to the surface of the colloid dispersion liquid, and an electrode having a different sign is relatively close to the bottom of the concentration vessel. Concentration method. さらにコロイド分散液を連続的に補充する補充容器を有し、前記濃縮容器と該補充容器とが該濃縮容器の開口部で接続されており、該開口部がコロイド分散液で満たされている請求項1又は2に記載のコロイド分散液の濃縮方法。   And a replenishment container for continuously replenishing the colloidal dispersion, wherein the concentration container and the replenishment container are connected by an opening of the concentration container, and the opening is filled with the colloidal dispersion. Item 3. A method for concentrating a colloidal dispersion according to item 1 or 2. 前記濃縮容器中のコロイド分散液にコロイドの高濃縮領域と欠損領域が存在し、前記補充容器から連続的に補充されるコロイド分散液が、該コロイドの高濃縮領域に供給される請求項3に記載のコロイド分散液の濃縮方法。   The colloidal dispersion liquid in the concentration container has a colloidal highly concentrated region and a defect region, and the colloidal dispersion liquid continuously replenished from the replenishing container is supplied to the colloidal highly concentrated region. A method for concentrating a colloidal dispersion as described. 前記コロイドを構成する組成及び組成比と陽極及び陰極を構成する材料の組成及び組成比が同一、あるいは陽極及び陰極を構成する材料がコロイドに対して電気化学的に不活性な材料である請求項1〜4のいずれかに記載のコロイド分散液の濃縮方法。   The composition and composition ratio constituting the colloid are the same as the composition and composition ratio of the material constituting the anode and the cathode, or the material constituting the anode and the cathode is an electrochemically inactive material with respect to the colloid. The method for concentrating a colloidal dispersion according to any one of 1 to 4. 前記濃縮容器が絶縁性材料で構成される請求項1〜5のいずれかに記載のコロイド分散液の濃縮方法。   The method for concentrating a colloidal dispersion according to any one of claims 1 to 5, wherein the concentration container is made of an insulating material. 前記補充容器が絶縁性材料で構成される請求項3〜6のいずれかに記載のコロイド分散液の濃縮方法。   The method for concentrating a colloidal dispersion according to any one of claims 3 to 6, wherein the replenishing container is made of an insulating material. 前記コロイドが貴金属コロイドである請求項1〜7のいずれかに記載のコロイド分散液の濃縮方法。   The method for concentrating a colloidal dispersion according to any one of claims 1 to 7, wherein the colloid is a noble metal colloid.
JP2009524503A 2007-07-24 2008-07-24 Method for concentrating colloidal dispersion Pending JPWO2009014165A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007192081 2007-07-24
JP2007192081 2007-07-24
PCT/JP2008/063247 WO2009014165A1 (en) 2007-07-24 2008-07-24 Method of concentrating colloid dispersion liquid

Publications (1)

Publication Number Publication Date
JPWO2009014165A1 true JPWO2009014165A1 (en) 2010-10-07

Family

ID=40281413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009524503A Pending JPWO2009014165A1 (en) 2007-07-24 2008-07-24 Method for concentrating colloidal dispersion

Country Status (2)

Country Link
JP (1) JPWO2009014165A1 (en)
WO (1) WO2009014165A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011074606A1 (en) * 2009-12-15 2013-04-25 公立大学法人大阪府立大学 Metal nanoparticles and method for producing metal nanoparticles
US10710162B2 (en) 2015-07-23 2020-07-14 National Institute Of Advanced Industrial Science And Technology Apparatus and method for manufacturing metal nanoparticle dispersion, method for manufacturing metal nanoparticle support, metal nanoparticle, metal nanoparticle dispersion, and metal nanoparticle support
CN116651211A (en) * 2021-11-23 2023-08-29 青岛科技大学 Method for regulating and controlling particle size of colloid in aqueous solution, colloid obtained by method and application of colloid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128588B1 (en) * 1968-07-31 1976-08-20
WO2006051825A1 (en) * 2004-11-09 2006-05-18 Nippon Sheet Glass Company, Limited Method for producing noble metal-loaded body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648938B2 (en) * 2003-12-15 2010-01-19 Nippon Sheet Glass Company, Limited Metal nanocolloidal liquid, method for producing metal support and metal support

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128588B1 (en) * 1968-07-31 1976-08-20
WO2006051825A1 (en) * 2004-11-09 2006-05-18 Nippon Sheet Glass Company, Limited Method for producing noble metal-loaded body

Also Published As

Publication number Publication date
WO2009014165A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
EP3375907B1 (en) Carbon dioxide electrolytic device
CN110573238B (en) Apparatus and method for three-dimensional electrodialysis
US4127468A (en) Process for preparing a metal electrode
RU2456356C1 (en) Nanosilver colloidal solution and preparation method thereof
US20140030527A1 (en) Dissymmetric particles (janus particles), and method for synthesizing same by means of bipolar electrochemistry
TW200815294A (en) Non-faraday based systems, devices and methods for removing ionic species from liquid
CN105492665B (en) Film forming nickel solution and the film build method using the solution
CN105612273A (en) Electrolytic device, electrode unit, and method for generating electrolytic water
Zolotukhina et al. Synthesis and kinetics of growth of metal nanoparticles inside ion-exchange polymers
US20170137959A1 (en) Inert anode electroplating processor and replenisher with anionic membranes
JPWO2009014165A1 (en) Method for concentrating colloidal dispersion
Khan et al. Nanostructured, Fluid‐Bicontinuous Gels for Continuous‐Flow Liquid–Liquid Extraction
CN106119927A (en) Electrochemical treatments prepares the method for anisotropy oil-water separation copper mesh
JP2016132788A (en) Electroplating cell and method for producing metallic film
JP4758867B2 (en) Microfluidic device for electrochemically adjusting the pH of a fluid and method for adjusting the pH using the same
GB1601374A (en) Isoelectric focusing
CN109889099A (en) The method and its electrolytic cell device and nano-porous films of a kind of nano-fluid power generation
WO2001094668A1 (en) Gas diffusion electrode, method for manufacturing the same and fuel cell using it
KR20130138295A (en) Electrolyser having a spiral inlet tube
US5035869A (en) Process for reducing uranyl salt
JP2021075774A (en) Gas supply apparatus, electrochemical reaction apparatus and gas supply method
WO2019076151A1 (en) Electro-deposition method for producing metallic silver
JP4649200B2 (en) Radical oxygen water generator and radical oxygen water generator system
JP2004149867A (en) Gas diffusion electrode and manufacturing method therefor
Pearson et al. Nanoparticle–electrode collisions as a dynamic seeding route for the growth of metallic nanostructures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130813