JPWO2009008463A1 - Membrane separator and filtration method - Google Patents

Membrane separator and filtration method Download PDF

Info

Publication number
JPWO2009008463A1
JPWO2009008463A1 JP2008533803A JP2008533803A JPWO2009008463A1 JP WO2009008463 A1 JPWO2009008463 A1 JP WO2009008463A1 JP 2008533803 A JP2008533803 A JP 2008533803A JP 2008533803 A JP2008533803 A JP 2008533803A JP WO2009008463 A1 JPWO2009008463 A1 JP WO2009008463A1
Authority
JP
Japan
Prior art keywords
pipe
membrane
water
filtrate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008533803A
Other languages
Japanese (ja)
Other versions
JP5326571B2 (en
Inventor
啓伸 鈴木
啓伸 鈴木
久保 広明
広明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008533803A priority Critical patent/JP5326571B2/en
Publication of JPWO2009008463A1 publication Critical patent/JPWO2009008463A1/en
Application granted granted Critical
Publication of JP5326571B2 publication Critical patent/JP5326571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2653Degassing
    • B01D2311/2657Deaeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type

Abstract

安定な膜ろ過運転を行う際の障害となるろ過水配管内に滞留する空気を、逆洗開始時に確実にろ過水配管から排出することができ、さらに、配管内の空気排出時における洗浄水の浪費を大幅に減少させることができる膜分離装置を提供することを目的とし、処理槽内に浸漬させる複数本の浸漬型膜モジュールと、該膜モジュールのろ過水取出口から延びるろ過水配管とを備えてなる膜分離装置において、前記ろ過水配管の途中には、各々の浸漬型膜モジュールから延びるろ過水配管をまとめた幹配管を設け、該幹配管に排気用の上向き分岐管と排気手段を設けるとともに、該排気手段の下方側の前記幹配管に、上下方向に延びた、その他のろ過水配管の部分より内径が太い太配管の部分を設ける。Air stagnant in the filtered water piping, which is an obstacle to stable membrane filtration operation, can be reliably discharged from the filtered water piping at the start of backwashing. An object of the present invention is to provide a membrane separation apparatus capable of greatly reducing waste, and a plurality of submerged membrane modules immersed in a treatment tank, and a filtrate water pipe extending from a filtrate outlet of the membrane module. In the membrane separation apparatus provided, in the middle of the filtrate pipe, a trunk pipe is formed by collecting filtrate pipes extending from each submerged membrane module, and an upward branch pipe for exhaust and exhaust means are provided in the trunk pipe. At the same time, a portion of a thick pipe having an inner diameter larger than that of other filtrate water pipes extending in the vertical direction is provided on the trunk pipe below the exhaust means.

Description

本発明は、浸漬型膜モジュールを用いて水をろ過処理する装置に関するものである。さらに詳しくは、ろ過時における膜間差圧の上昇を抑制するために有効な膜分離装置に関するものである。   The present invention relates to an apparatus for filtering water using a submerged membrane module. More specifically, the present invention relates to a membrane separation apparatus effective for suppressing an increase in transmembrane pressure difference during filtration.

膜分離法は、省エネルギー、省スペース、省力化および製品の品質向上等の特徴を有するため、様々な分野での使用が拡大している。例えば、精密ろ過膜や限外ろ過膜は、河川水や地下水、下水処理水から、工業用水や水道水を製造する浄水プロセスへの適用があげられる。   The membrane separation method has features such as energy saving, space saving, labor saving, and product quality improvement, and therefore, its use in various fields is expanding. For example, microfiltration membranes and ultrafiltration membranes can be applied to water purification processes for producing industrial water and tap water from river water, groundwater, and sewage treated water.

また、膜モジュールには、大きく分けて、加圧型膜モジュールと浸漬型膜モジュールが存在する。加圧型膜モジュールは、加圧した原水をモジュール内に導入し、膜面によってろ過を行うタイプの膜モジュールである。一方、浸漬型膜モジュールは、大気開放された処理槽内の原水中に膜モジュールを浸漬させ、ろ過水側を吸引等してろ過を行うタイプの膜モジュールである。   The membrane module is roughly classified into a pressure membrane module and an immersion membrane module. The pressurized membrane module is a type of membrane module that introduces pressurized raw water into the module and performs filtration through the membrane surface. On the other hand, the submerged membrane module is a type of membrane module that performs filtration by immersing the membrane module in raw water in a treatment tank that is open to the atmosphere and suctioning the filtered water side.

加圧型膜モジュールは、浸漬型に比べろ過圧力をより大きく設定できることから、膜面積あたりの処理量が増加し、そのため処理に必要な膜モジュール本数を減らせる、設置面積を小さくできる等の長所を持つ。一方、浸漬型膜モジュールは、耐圧性の筒状ケースが無く処理原水中に膜を浸漬させて使用されることから、膜間に詰まる濁質の排出性に優れ、高濁質の原水でも膜ろ過が行えるという長所がある。また、ろ過方法が単純であり、付帯配管も少ないことから、設備費を低減できる長所もある。   The pressure membrane module has the advantage that the filtration pressure can be set higher than that of the immersion type, so the amount of treatment per membrane area increases, so the number of membrane modules required for treatment can be reduced and the installation area can be reduced. Have. On the other hand, the submerged membrane module does not have a pressure-resistant cylindrical case and is used by immersing the membrane in the treated raw water, so it is excellent in discharging turbidity clogged between membranes, and even in highly turbid raw water There is an advantage that it can be filtered. Moreover, since the filtration method is simple and there are few incidental piping, there also exists an advantage which can reduce installation cost.

浸漬型膜モジュールは前述したとおり、大気開放された処理槽内の原水中に膜モジュールを浸漬させ、ろ過水側を吸引等してろ過を行う。吸引ろ過の場合、浸漬型膜モジュールのろ過水出口から、膜モジュールのろ過水側を吸引する吸引手段(吸引ポンプなど)までの間のろ過水配管内は、ろ過工程中に、吸引されることにより負圧状態、ないしはそれに近い状態となる。よって、大気圧下の原水中では水に溶存していた空気が、負圧状態となるろ過水配管内で一部気化して気体となり、ろ過水配管内で空気が滞留する。   As described above, the submerged membrane module performs the filtration by immersing the membrane module in the raw water in the treatment tank opened to the atmosphere and sucking the filtered water side. In the case of suction filtration, the inside of the filtrate pipe from the filtrate outlet of the submerged membrane module to the suction means (suction pump, etc.) that sucks the filtrate water side of the membrane module must be sucked during the filtration process. As a result, a negative pressure state or a state close thereto is obtained. Therefore, the air dissolved in the water in the raw water under atmospheric pressure is partially vaporized in the filtered water pipe that is in a negative pressure state to become a gas, and the air stays in the filtered water pipe.

また、浸漬型膜モジュールを用いて原水を膜ろ過すると、原水中に含まれる濁質や有機物等の除去対象物が膜面に蓄積し、膜の閉塞現象が起こるため、膜のろ過抵抗が上昇し、やがてろ過を行うことができなくなる。そこで、膜ろ過性能を維持するため、定期的に膜ろ過を停止し、物理洗浄を行うのが一般的である。通常、前述のろ過工程と物理洗浄工程は、自動的に繰り返しで実施される。   In addition, when raw water is membrane filtered using a submerged membrane module, removal objects such as turbidity and organic matter contained in the raw water accumulate on the membrane surface, resulting in membrane clogging phenomenon, increasing membrane filtration resistance. Eventually, filtration cannot be performed. Therefore, in order to maintain the membrane filtration performance, it is common to periodically stop the membrane filtration and perform physical cleaning. Usually, the filtration process and the physical cleaning process described above are automatically and repeatedly performed.

物理洗浄には、膜モジュール下部に空気を吹き込んで膜を水中で振動させることにより、膜面に付着した汚染物質を震い落とす空気洗浄(空洗)や、膜モジュールのろ過方向とは逆方向、つまりろ過水側から供給水側に膜ろ過水などの水(洗浄水)を圧力で押し込み、膜などに付着した汚染物質を排除する逆圧水洗浄(逆洗)などがある。   For physical cleaning, air is blown into the lower part of the membrane module and the membrane is vibrated in water to shake off contaminants adhering to the membrane surface (air washing), or in the direction opposite to the filtration direction of the membrane module That is, there is reverse pressure water washing (back washing) that pushes water (washing water) such as membrane filtration water from the filtrate water side to the supply water side with pressure to eliminate contaminants adhering to the membrane.

この逆洗を行う時には、ろ過水側から供給する洗浄水が膜モジュールの膜面を通過できる程度の圧力で洗浄水を逆流方向に圧入させている。この一般的な逆洗の圧力水準では、ろ過水配管中に空気が滞留していると、膜モジュールの膜面にて洗浄水のみが膜の内側から外側に向かって膜を透過し、ろ過水配管中に滞留していた空気は膜を透過できない。よって、膜モジュール内のろ過水側に空気が蓄積していき、空気が蓄積した部分では洗浄水が透過せずに逆洗されないので、逆洗による膜面清浄ができない膜面積が生じ広がっていく。このため、物理洗浄効率が低下し、膜ろ過差圧の上昇速度が速くなるという問題がある。   When performing this backwash, the wash water supplied from the filtered water side is press-fitted in the reverse flow direction at a pressure that allows the wash water to pass through the membrane surface of the membrane module. Under this general backwashing pressure level, if air stays in the filtrate piping, only the washing water permeates through the membrane from the inside of the membrane to the outside at the membrane surface of the membrane module. Air staying in the pipe cannot penetrate the membrane. Therefore, air accumulates on the filtered water side in the membrane module, and since the washing water does not permeate and is not backwashed in the portion where the air is accumulated, a membrane area that cannot be cleaned by backwashing is generated and spreads. . For this reason, there exists a problem that physical washing efficiency falls and the raise speed | rate of a membrane filtration differential pressure becomes quick.

この問題を回避し、膜モジュールの安定運転性を維持するため、洗浄水による逆洗を行う前に、ろ過水配管内や膜モジュール内のろ過水側に滞留している空気をろ過水配管外に排出することが有効である。その具体的手段として、特許文献1では膜モジュールの吸引口の上端に連通させて排気手段と空気抜きバルブを設け、逆洗をおこなう前に空気抜きバルブを開け、膜モジュールのろ過水流路内に滞留している気体を系外へ排出することが提案されている。   In order to avoid this problem and maintain the stable operation of the membrane module, the air remaining in the filtrate water pipe or the filtrate water side in the membrane module is removed from the filtrate water pipe before backwashing with the washing water. It is effective to discharge to As a specific means, in Patent Document 1, an exhaust means and an air vent valve are provided in communication with the upper end of the suction port of the membrane module, and the air vent valve is opened before backwashing, and the membrane module stays in the filtrate flow path of the membrane module. It is proposed to discharge the gas that is out of the system.

しかしながら、特許文献1の装置は、空気抜きバルブを開けるだけで滞留している空気全てを系外へ排出することが難しい。もちろん、逆洗開始後に空気抜きバルブを開としておくことで、ろ過水配管内の空気を洗浄液で押し出し、系外に排出することもできる。しかしながら、特許文献1に記載の装置では、複数の膜エレメントが鉛直方向に配列され、それら膜エレメントから得られるろ過水が側方で集水されているため、下方に配置されている膜エレメントから得られるろ過水に混入している空気は上方に溜まりにくく、ろ過水配管内に分散して存在することとなり易い。そのため、ろ過水配管内の空気を排出させるためにはかなりの時間を要し、その間の洗浄水が空気抜きバルブを通して系外に排出され浪費されてしまう。この結果として、洗浄水の供給量が増加してしまうという問題があった。   However, it is difficult for the device of Patent Document 1 to exhaust all the remaining air out of the system simply by opening the air vent valve. Of course, by opening the air vent valve after the start of backwashing, the air in the filtered water pipe can be pushed out with the washing liquid and discharged out of the system. However, in the apparatus described in Patent Document 1, a plurality of membrane elements are arranged in the vertical direction, and filtered water obtained from these membrane elements is collected laterally. The air mixed in the filtered water obtained does not easily accumulate upward and tends to be dispersed in the filtered water piping. For this reason, it takes a considerable time to discharge the air in the filtered water pipe, and the wash water during that time is discharged outside the system through the air vent valve and is wasted. As a result, there is a problem that the supply amount of cleaning water increases.

加えて、特許文献1に記載の装置は、鉛直方向に配列された複数の膜エレメントから得られるろ過水が側方で集水されるため、ろ過工程中に溜まる空気によって、上方に位置する膜エレメントがろ過に用いられなくなる場合がある。そして、その場合には、一部の膜エレメントのみが膜分離に用いられることとなり、効率的で安定な膜ろ過運転を行えなくなるという問題がある。   In addition, in the apparatus described in Patent Document 1, since filtered water obtained from a plurality of membrane elements arranged in the vertical direction is collected laterally, the membrane positioned above by the air accumulated during the filtration step The element may not be used for filtration. In that case, only a part of the membrane elements is used for membrane separation, and there is a problem that an efficient and stable membrane filtration operation cannot be performed.

そこで、特許文献1における問題の1つである洗浄水の浪費を避けるため、特許文献2では、逆洗工程に入る前にエア抜き工程を設け、ろ過配管内の空気を空気抜き用の配管に溜め、その後の逆洗工程で系外に排出することが提案されている。   Therefore, in order to avoid wasting of washing water, which is one of the problems in Patent Document 1, in Patent Document 2, an air venting process is provided before entering the backwash process, and the air in the filtration pipe is stored in the air vent pipe. It has been proposed to discharge out of the system in the subsequent backwashing step.

しかしながら、特許文献2の装置は、エア抜き工程で洗浄水を逆洗水配管を通じてろ過膜内に送り込み、ろ過水配管を通じてろ過水槽に循環する流れを形成させ、その際に配管内の空気をこの水の流れに同伴させて、ろ過配管から空気抜き弁に連通する空気抜き配管内に集め、その後の逆洗工程にて空気抜き配管に集められた空気を系外に放出させるものである。すなわち、エア抜き工程を設けることで、運転全体の稼働率を低下させるとともに、特許文献1と同様、洗浄水も空気と共に系外に放出するため、結果として洗浄水の供給量が増加してしまうという問題があった。   However, the apparatus of Patent Document 2 sends the washing water into the filtration membrane through the backwash water pipe in the air venting process, and forms a flow that circulates through the filtrate water pipe to the filtrate water tank. Along with the flow of water, the air is collected from the filtration pipe into the air vent pipe communicating with the air vent valve, and the air collected in the air vent pipe in the subsequent backwashing process is discharged out of the system. That is, by providing an air venting process, the operating rate of the entire operation is reduced, and, as in Patent Document 1, the cleaning water is also discharged out of the system together with the air, resulting in an increase in the supply amount of the cleaning water. There was a problem.

一方、特許文献3では、ろ過水配管にT字管を設け、T字管の下部方向をろ過水槽につなげ、T字管の上部方向を浸漬槽水面より上方に突出させ、ろ過水に混入する空気を系外に排出することが提案されている。特許文献3の装置は、ろ過工程中に、ろ過水配管中のT字管部分でろ過水中に混入した空気を分離することが可能となる。しかしながら、ろ過水配管の径がすべて同じであるため、ろ過水配管内の流速によっては、ろ過水槽につながるろ過水配管側に空気が混入したり、T字管の上部方向に接続された排気管内が空気で満たされ、ろ過水槽につながるろ過水配管側に空気が滞留したりするという問題があった。   On the other hand, in Patent Document 3, a T-tube is provided in the filtered water pipe, the lower direction of the T-shaped tube is connected to the filtered water tank, and the upper direction of the T-shaped tube is protruded upward from the immersion tank water surface and mixed into the filtered water. It has been proposed to discharge air out of the system. The apparatus of patent document 3 can isolate | separate the air mixed in filtrate water in the T-shaped tube part in filtrate water piping during a filtration process. However, since all the diameters of the filtrate pipes are the same, depending on the flow rate in the filtrate pipe, air may enter the filtrate pipe side connected to the filtrate tank or in the exhaust pipe connected to the upper part of the T-tube. Is filled with air, and there is a problem that air stays on the filtrate pipe side connected to the filtrate tank.

また、特許文献4では、ろ過水配管に立下り部を設け、その立下り部を鉛直線に対して傾斜させることで空気溜まり部を備え、空気溜まり部から吸引ポンプによって配管内の空気を抜き取ることで系外に排出することが提案されている。特許文献4の装置においては、ろ過水配管の立下り部を傾斜させることにより、ろ過水に混入している空気が立下り管の上側壁面に集まり、それが溜まることにより大きな気泡となって、立下り管の上側壁面に沿って上昇していき空気溜まり部に向かうことで立下り管での空気の滞留が防止されることになる。しかしながら、空気溜まり部に溜まった空気を吸引ポンプにて吸引する際に、ろ過水配管内のろ過水も一緒に吸引してしまう可能性があり、ろ過水も空気とともに系外に排出されてしまう問題があった。また、ろ過水配管内のろ過水を系外に排出しないように吸引ポンプを作動させた場合、ろ過水配管内の空気をすべて排出できないといった可能性も有しており、それが効率的なろ過運転の妨げになるといった問題もあった。
特開平8−332354号公報 特開平11−207332号公報 特開2005−161218号公報 特開2002−248303号公報
Moreover, in patent document 4, a falling part is provided in filtered water piping, the falling part is inclined with respect to a vertical line, an air reservoir part is provided, and the air in piping is extracted from the air reservoir part with a suction pump. It has been proposed to discharge out of the system. In the device of Patent Document 4, by inclining the falling part of the filtrate pipe, air mixed in the filtrate gathers on the upper wall surface of the fall pipe, and when it accumulates, it becomes a large bubble, Ascending along the upper wall surface of the downcomer and heading toward the air reservoir, air retention in the downcomer is prevented. However, when the air collected in the air reservoir is sucked by the suction pump, the filtered water in the filtered water pipe may be sucked together, and the filtered water is also discharged out of the system together with the air. There was a problem. In addition, if the suction pump is operated so that the filtrate in the filtrate pipe is not discharged out of the system, there is a possibility that not all the air in the filtrate pipe can be discharged. There was also a problem that hindered driving.
JP-A-8-332354 JP-A-11-207332 JP 2005-161218 A JP 2002-248303 A

本発明は、処理槽内に浸漬型膜モジュールを設置してろ過水を取り出す膜分離装置において、安定な膜ろ過運転を行う際の障害となるろ過水配管内に滞留する空気を、逆洗開始時に確実にろ過水配管から排出することができ、さらに、配管内の空気排出時における洗浄水の浪費を大幅に減少させることができる膜分離装置を提供することを目的とする。   The present invention is a membrane separation apparatus in which a submerged membrane module is installed in a treatment tank to take out filtrated water, and backwashing is started for air staying in the filtrate water pipe which becomes an obstacle when performing stable membrane filtration operation. It is an object of the present invention to provide a membrane separation device that can be reliably discharged from filtered water piping sometimes, and that can greatly reduce waste of washing water when air is discharged from the piping.

上記目的を達成するための本発明は、以下の構成からなる。
(1)処理槽内に浸漬させる複数本の浸漬型膜モジュールと、該膜モジュールのろ過水取出口から延びるろ過水配管とを備えてなる膜分離装置であって、前記ろ過水配管の途中には、各々の浸漬型膜モジュールから延びるろ過水配管をまとめた幹配管を備え、該幹配管に排気用の上向き分岐管と排気手段が設けられるとともに、該排気手段の下方側の前記幹配管に、上下方向に延びた、その他のろ過水配管の部分より内径が太い太配管の部分が設けられている膜分離装置。
(2)前記上向き分岐管における排気手段より下方の部分が太配管である、前記(1)に記載の膜分離装置。
(3)前記上下方向に延びた太配管の配管長さが全長0.2m以上である、前記(1)または(2)に記載の膜分離装置。
(4)前記上下方向に延びた太配管の内径は、ろ過時に該太配管の部分を通過するろ過水の線速度が0.2m/s以下となる内径である、前記(1)〜(3)のいずれかに記載の膜分離装置。
(5)前記浸漬型膜モジュールは、膜面が上下方向となるように配置されてなる、前記(1)〜(4)のいずれかに記載の膜分離装置。
(6)さらに前記浸漬型膜モジュールの内部のろ過水側を吸引する吸引手段と、ろ過時の通液方向とは逆方向に洗浄水を前記膜モジュール内に圧入する送水手段とを備えている、前記(1)〜(5)のいずれかに記載の膜分離装置。
(7)前記(1)〜(6)のいずれかに記載の膜分離装置によって水をろ過処理する方法であって、前記上下方向に延びる太配管の部分を通過するろ過水の線速度が0.2m/s以下となるようにろ過を行うろ過処理方法。
In order to achieve the above object, the present invention has the following configuration.
(1) A membrane separation apparatus comprising a plurality of submerged membrane modules immersed in a treatment tank and a filtrate pipe extending from a filtrate outlet of the membrane module, wherein the membrane separator is in the middle of the filtrate pipe Is provided with a trunk pipe in which filtered water pipes extending from each submerged membrane module are combined, and the trunk pipe is provided with an upward branch pipe for exhaust and exhaust means, and the trunk pipe below the exhaust means is provided in the trunk pipe. A membrane separator provided with a portion of a thick pipe extending in the vertical direction and having a larger inner diameter than other filtrate water pipe portions.
(2) The membrane separation apparatus according to (1), wherein a portion below the exhaust unit in the upward branch pipe is a thick pipe.
(3) The membrane separation apparatus according to (1) or (2), wherein a pipe length of the thick pipe extending in the vertical direction is 0.2 m or more in total length.
(4) The inner diameter of the thick pipe extending in the vertical direction is the inner diameter at which the linear velocity of filtrate passing through the thick pipe portion during filtration is 0.2 m / s or less. ).
(5) The submerged membrane module according to any one of (1) to (4), wherein the submerged membrane module is disposed such that a membrane surface is in a vertical direction.
(6) Furthermore, a suction means for sucking the filtrate water side inside the submerged membrane module, and a water supply means for press-fitting washing water into the membrane module in a direction opposite to the liquid passing direction at the time of filtration are provided. The membrane separator according to any one of (1) to (5).
(7) A method of filtering water with the membrane separator according to any one of (1) to (6), wherein the linear velocity of filtered water passing through the portion of the thick pipe extending in the vertical direction is 0. A filtration method for performing filtration so that the pressure is 2 m / s or less.

本発明によれば、ろ過水配管内に滞留する空気を、短時間で逆洗開始時に確実にろ過水配管から排出することができ、かつ、配管内の空気排出時における洗浄水の浪費を大幅に減少させることができる。このため、長期間にわたり安定運転可能で経済的な膜分離装置を提供することができる。     According to the present invention, the air staying in the filtrate water pipe can be reliably discharged from the filtrate water pipe at the start of backwashing in a short time, and the waste of the wash water when discharging the air in the pipe is greatly reduced. Can be reduced. For this reason, an economical membrane separation apparatus capable of stable operation over a long period of time can be provided.

本発明の膜分離装置の一実施様態を示す概略構成図である。It is a schematic block diagram which shows one embodiment of the membrane separator of this invention. 本発明の膜分離装置の別の一実施様態を示す概略構成図である。It is a schematic block diagram which shows another one embodiment of the membrane separator of this invention. 本発明外の膜分離装置(太配管の部分がない装置)の一実施様態を示す概略構成図である。It is a schematic block diagram which shows one embodiment of the membrane separation apparatus (apparatus which does not have the part of a thick piping) outside this invention.

符号の説明Explanation of symbols

1 処理槽
2 膜モジュール
3 吸引手段(吸引ポンプ)
4 送水手段(逆洗ポンプ)
5 排気手段(開閉弁、排気バルブ)
6 ろ過水配管
7 幹配管における太配管の部分
8 上向き分岐管
31 ろ過水バルブ
41 逆洗バルブ
42 洗浄水配管
43 ろ過水貯槽
1 treatment tank 2 membrane module 3 suction means (suction pump)
4 Water supply means (backwash pump)
5 Exhaust means (open / close valve, exhaust valve)
6 Filtrated water pipe 7 Thick pipe part 8 in main pipe Upward branch pipe 31 Filtered water valve 41 Backwash valve 42 Washed water pipe 43 Filtrated water storage tank

本発明の膜分離装置は、例えば、処理槽内に浸漬させた複数本の浸漬型膜モジュールと、該膜モジュールの内部のろ過水側を吸引する吸引手段と、ろ過時の通液方向とは逆方向に洗浄水を膜モジュール内に圧入する送水手段と、前記膜モジュールのろ過水出口と前記吸引手段との間を連通させるろ過水配管とを備えている。前記ろ過水配管は、途中に、各々の浸漬型モジュールから延びるろ過水配管をまとめた幹配管を備え、その幹配管に排気用の上向き分岐管と排気手段(開閉弁等)が設けられている。さらに、この排気手段の下方側の幹配管には、上下方向に延びた太配管等の部分が設けられている。この太配管の部分は、その他のろ過水配管の部分よりもろ過水の線速度が低流速となるような配管部分である。通常、ろ過水配管の配管径(内径)は、ろ過時のろ過水の線速度が1.0m/s程度になるよう設計されるが、本発明における該太配管の部分は、ろ過時において該太配管の部分を通過するろ過水の線速度が0.2m/s以下の低流速となるような管内径に設計される。このような太配管としては、その他のろ過水配管の部分の配管径(内径)に比べて明らかに太い配管径(内径)とすることが好ましい。   The membrane separation apparatus of the present invention includes, for example, a plurality of submerged membrane modules immersed in a treatment tank, suction means for sucking the filtrate water side inside the membrane module, and a liquid passing direction during filtration. Water supply means for press-fitting the wash water into the membrane module in the reverse direction, and filtrate water piping for communicating between the filtrate outlet of the membrane module and the suction means. The filtrate pipe is provided with a trunk pipe in which the filtrate pipes extending from the respective submersible modules are arranged on the way, and the trunk pipe is provided with an upward branch pipe for exhaust and exhaust means (such as an on-off valve). . Further, the trunk pipe below the exhaust means is provided with a portion such as a thick pipe extending in the vertical direction. This thick pipe portion is a pipe portion in which the linear velocity of filtrate is lower than that of other filtrate water pipe portions. Usually, the pipe diameter (inner diameter) of the filtrate pipe is designed so that the linear velocity of filtrate at the time of filtration is about 1.0 m / s. The inner diameter of the pipe is designed so that the linear velocity of the filtrate passing through the thick pipe portion is a low flow rate of 0.2 m / s or less. As such a thick pipe, it is preferable that the pipe diameter (inner diameter) is obviously larger than the pipe diameter (inner diameter) of the other filtrate water pipe portions.

以下、本発明に係る膜分離装置について、その一実施形態の膜分離装置を模式的に示す図1及び図2を参照しながら説明する。ただし、本発明の装置はこれらの実施形態に限られるものではない。   Hereinafter, the membrane separation apparatus according to the present invention will be described with reference to FIGS. 1 and 2 schematically showing the membrane separation apparatus of one embodiment. However, the apparatus of the present invention is not limited to these embodiments.

図1は本発明に係る膜分離装置の一実施様態を示す概略構成図であり、また、図2は、本発明にかかる膜分離装置の別の一実施様態を示す概略構成図である。図1と図2とでは、後述する上向き分岐管8の、排気手段より下方の部分が、太配管か否かという違いがあるが、その他の構成は同じである。また、図3は、比較のために示す本発明外の膜分離装置の一実施様態を示す概略構成図である。     FIG. 1 is a schematic configuration diagram showing one embodiment of the membrane separation apparatus according to the present invention, and FIG. 2 is a schematic configuration diagram showing another embodiment of the membrane separation apparatus according to the present invention. In FIG. 1 and FIG. 2, there is a difference whether or not a portion below the exhaust means of the upward branch pipe 8 described later is a thick pipe, but the other configurations are the same. FIG. 3 is a schematic configuration diagram showing an embodiment of a membrane separation apparatus other than the present invention shown for comparison.

本発明における浸漬型膜モジュール2は、大気開放された処理槽1中に浸漬させて設置され、ろ過水側を吸引することによって、または水位差によってろ過するタイプの膜モジュールであり、1つの処理槽内に膜モジュールが複数本(例えば2〜数百本)設置される。   The submerged membrane module 2 according to the present invention is a membrane module of a type that is installed by being immersed in a treatment tank 1 that is open to the atmosphere, and is filtered by sucking the filtered water side or by the difference in water level. A plurality of membrane modules (for example, 2 to several hundreds) are installed in the tank.

この膜モジュールに適用できる分離膜は、精密ろ過膜又は限外ろ過膜であり、その形状は特に限定されず、平膜、中空糸膜、管状型膜、その他いかなる形状のものも適宜用いることができる。しかしながら、逆洗の際に膜破損が起こりにくく、かつ単位体積あたりの膜面積が高いことから、中空糸膜を用いることが好ましい。   The separation membrane applicable to this membrane module is a microfiltration membrane or an ultrafiltration membrane, and its shape is not particularly limited, and a flat membrane, a hollow fiber membrane, a tubular membrane, or any other shape can be used as appropriate. it can. However, it is preferable to use a hollow fiber membrane because membrane damage hardly occurs during backwashing and the membrane area per unit volume is high.

精密ろ過膜や限外ろ過膜に使用される膜の素材は、特に限定しないが、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロースやセラミック等の無機素材からなる群から選ばれる少なくとも1種を含んでいると好ましい。さらに膜強度、耐薬品性の点から、ポリフッ化ビニリデンを主成分とする樹脂膜であることがより好ましい。   The material of the membrane used for the microfiltration membrane and the ultrafiltration membrane is not particularly limited, but polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, ceramic, etc. It is preferable that at least one selected from the group consisting of these inorganic materials is included. Further, from the viewpoint of film strength and chemical resistance, a resin film mainly composed of polyvinylidene fluoride is more preferable.

膜表面の細孔径についても特に限定されないが、0.001μm〜1μmの範囲内で適宜選択することができる。   The pore diameter on the membrane surface is not particularly limited, but can be appropriately selected within the range of 0.001 μm to 1 μm.

中空糸膜モジュールは、数百本から数万本の中空糸膜を束ねた中空糸膜束の端部を接着してなる構造の膜モジュールであり、大きくは次の2タイプに分けられる。一つは、一方の端部において各中空糸膜の端面を開口した状態で中空糸膜同士を接着し、他方の端部において各中空糸膜の端面を閉塞した状態で中空糸膜同士を接着したタイプである。もう一つは、両端共に各中空糸膜の端面を開口した状態で中空糸膜同士を接着したタイプである。本発明においてはいずれのタイプのモジュールであってもよい。なお、図1に示す浸漬型膜モジュール2は、一方の端部(図における上端側)において各中空糸膜端面を開口した状態で中空糸膜同士を接着固定し、もう一方の端部(図における下端側)において各中空糸膜端面を閉塞した状態で接着したタイプである。さらに、図1に示す態様においては、モジュール下端側において、全中空糸膜を一体的に接着するのではなく、中空糸膜を複数の小束に分割し、それらを互いに分離しつつ、小束ごとに接着している。このように構成することで、ろ過処理時には中空糸膜が上下左右に適度に揺れ、膜表面への懸濁物質の付着を抑制できるとともに、洗浄時には膜表面から剥離した懸濁物質の除去性能を向上することができる。   The hollow fiber membrane module is a membrane module having a structure in which ends of hollow fiber membrane bundles in which several hundred to tens of thousands of hollow fiber membranes are bundled are bonded, and is roughly divided into the following two types. First, the hollow fiber membranes are bonded to each other with the end surfaces of the hollow fiber membranes open at one end, and the hollow fiber membranes are bonded to each other with the end surfaces of the hollow fiber membranes closed at the other end. Type. The other is a type in which the hollow fiber membranes are bonded to each other with both end surfaces of the hollow fiber membranes open. Any type of module may be used in the present invention. In addition, the immersion type membrane module 2 shown in FIG. 1 adheres and fixes the hollow fiber membranes in a state where the end surfaces of the hollow fiber membranes are opened at one end (upper end side in the figure), and the other end (see FIG. 1). The bottom end side of each of the hollow fiber membranes is bonded in a closed state. Furthermore, in the embodiment shown in FIG. 1, the hollow fiber membrane is not bonded integrally on the lower end side of the module, but the hollow fiber membrane is divided into a plurality of small bundles and separated from each other. Each is glued. By configuring in this way, the hollow fiber membrane can be shaken moderately up and down and left and right during the filtration process, and the suspension substance can be prevented from adhering to the membrane surface. Can be improved.

中空糸膜束の両側端部を接着剤で接着固定する際の接着剤については、特に限定されないが、エポキシ樹脂、ウレタン樹脂などの熱硬化性樹脂が一般的に用いられる。   There are no particular restrictions on the adhesive used to bond and fix the both ends of the hollow fiber membrane bundle with an adhesive, but thermosetting resins such as epoxy resins and urethane resins are generally used.

また、中空糸膜束の両端にそれぞれ形成された接着固定部同士は、その間に存在する多数本の中空糸膜部分を介して繋がっており、その多数本の中空糸膜部分では中空糸膜が並列に引き揃えられた状態にあり、この部分で膜ろ過機能が発揮される。この多数本の中空糸膜束は、特に補強部材を介在させない構造であってもよいし、また、補強手段を介在させた構造であってもよい。その補強手段を介在させた構造としては、例えば円筒形のステー(金属棒等)を1〜30本程度、中空糸膜束の外周や内部に配置し、接着固定部同士がステーによっても連結している構造が挙げられる。またネット等の多孔板状素材を中空糸膜束の外周を覆うように設置しても構わない。   In addition, the adhesive fixing portions formed on both ends of the hollow fiber membrane bundle are connected via a large number of hollow fiber membrane portions existing between the hollow fiber membrane bundles, and the hollow fiber membranes are connected to the multiple hollow fiber membrane portions. The membranes are arranged in parallel, and the membrane filtration function is exhibited in this part. The multiple hollow fiber membrane bundles may have a structure in which no reinforcing member is interposed, or may have a structure in which a reinforcing means is interposed. As a structure including the reinforcing means, for example, about 1 to 30 cylindrical stays (metal rods, etc.) are arranged on the outer periphery or inside of the hollow fiber membrane bundle, and the adhesive fixing parts are also connected by the stays. Structure. Further, a porous plate material such as a net may be installed so as to cover the outer periphery of the hollow fiber membrane bundle.

また、浸漬型膜モジュールは、縦置き、つまり膜面が上下方向(中空糸膜モジュールの場合は中空糸膜の長手方向が略上下方向)になるよう配置して膜ろ過運転を行ってもよいし、横置き、つまり膜面が水平方向(中空糸膜モジュールの場合は中空糸膜の長手方向が略水平方向)になるよう配置して膜ろ過運転を行っても構わない。しかしながら、空気洗浄(空洗)に必要なエア量を少なくできるという点で、膜モジュールを縦置きし、ろ過水取出し口が上となるように設置することが好ましい。   The submerged membrane module may be placed vertically, that is, the membrane filtration operation may be performed by arranging the membrane surface in the vertical direction (in the case of a hollow fiber membrane module, the longitudinal direction of the hollow fiber membrane is substantially vertical). However, the membrane filtration operation may be performed by placing horizontally, that is, the membrane surface is in the horizontal direction (in the case of a hollow fiber membrane module, the longitudinal direction of the hollow fiber membrane is substantially horizontal). However, it is preferable to install the membrane module vertically so that the filtrate outlet is on the upper side in that the amount of air required for air washing (air washing) can be reduced.

上記のような浸漬型膜モジュール2には、そのモジュール内のろ過水側を吸引するため、吸引手段3が接続される。吸引手段3としては一般的に吸引ポンプが用いられる。また、浸漬型膜モジュール2を逆洗するために、ろ過時の通液方向とは逆方向に膜モジュール内に洗浄水を圧入するための送水手段4も設けられる。送水手段4としては、一般的に逆洗ポンプが用いられる。   A suction means 3 is connected to the submerged membrane module 2 as described above in order to suck the filtrate side in the module. A suction pump is generally used as the suction means 3. Further, in order to backwash the submerged membrane module 2, a water supply means 4 for press-fitting the washing water into the membrane module in the direction opposite to the liquid passing direction at the time of filtration is also provided. As the water supply means 4, a backwash pump is generally used.

吸引手段3は、ろ過水配管6によって、膜モジュール2のろ過水側に連通するように接続される。ろ過水配管6は、浸漬型膜モジュール2のろ過水取出口に接続されており、各々の膜モジュールから延びるろ過水配管をまとめる幹配管が含まれている。そして、この幹配管には、ろ過水配管6内に滞留している気体を逆洗開始時に配管系外へと排出させるための、上向き分岐管と排気手段5(開閉弁、排気バルブ)が接続されており、かつ、該排気手段5の下方の幹配管には、上下方向に延びた太配管の部分7が設けられている。なお、本発明において上下方向とは、完全な垂直(鉛直)上下方向のほか、多少傾斜した上下方向(略上下方向)も含むものとする。なお、この時の傾斜角度は、最大で45度までが好ましい。これ以上の傾斜角度で配管を設けると、太配管の部分7でろ過水から分離され上向き分岐管8に向かう空気の動きが妨げられるため、太配管の部分7でのろ過水と空気の分離が効率的に進行しない。また、太配管の部分とは、ろ過水配管の中で相対的に内径が大きい部分をいう。   The suction means 3 is connected by a filtrate water pipe 6 so as to communicate with the filtrate water side of the membrane module 2. The filtrate water pipe 6 is connected to the filtrate water outlet of the submerged membrane module 2 and includes a trunk pipe that collects the filtrate water pipes extending from each membrane module. The trunk pipe is connected with an upward branch pipe and an exhaust means 5 (open / close valve, exhaust valve) for discharging the gas remaining in the filtrate pipe 6 to the outside of the piping system at the start of backwashing. In addition, the main pipe below the exhaust means 5 is provided with a thick pipe portion 7 extending in the vertical direction. In the present invention, the vertical direction includes not only a completely vertical (vertical) vertical direction but also a slightly inclined vertical direction (substantially vertical direction). The inclination angle at this time is preferably up to 45 degrees. If the pipe is provided at an inclination angle greater than this, since the movement of the air that is separated from the filtrate water at the thick pipe portion 7 and directed to the upward branch pipe 8 is hindered, the separation of the filtrate water and the air at the thick pipe portion 7 is prevented. Does not proceed efficiently. Moreover, the part of thick piping means the part with a relatively large internal diameter in filtrate water piping.

排気手段5として設けられる開閉弁、排気バルブは、逆洗を行うために洗浄水を逆流方向に圧入させ始める逆先開始時から、ある一定時間のみ開とする。排気手段5としては、開閉弁、排気バルブの代わりに、加圧時に空気のみを排出する排気手段でも構わない。加圧時に空気のみを排出する排気手段としては、例えば、管内が減圧時には閉止し管内が加圧時には開口し空気のみを排出する逆止弁や疎水性の膜が挙げられる。しかしながら、空気排出時の圧力損失が高いと、逆洗開始時にろ過水配管に滞留している空気が膜モジュール側に流れ易くなるため、排気手段としては空気排出時の圧力損失が低い開閉弁が好ましい。   The on-off valve and the exhaust valve provided as the exhaust means 5 are opened only for a certain time from the start of the reverse destination where the wash water is pressed in the reverse flow direction for backwashing. The exhaust unit 5 may be an exhaust unit that exhausts only air during pressurization instead of the on-off valve and the exhaust valve. Examples of the exhaust means for discharging only air at the time of pressurization include a check valve that closes when the inside of the pipe is decompressed and opens when the inside of the pipe is pressurized and discharges only air, and a hydrophobic membrane. However, if the pressure loss at the time of air discharge is high, air staying in the filtered water pipe at the start of backwashing will easily flow to the membrane module side. preferable.

ろ過工程中にろ過水配管内が負圧となることによって発生した空気は、逆先開始時にろ過水配管内に滞留しているので、逆洗開始時に洗浄水を逆流方向に圧入させると、洗浄水の圧入によって、分岐部から上向き分岐管8内へと押し出され、排気手段5を介して排出される。   The air generated by the negative pressure in the filtered water pipe during the filtration process stays in the filtered water pipe at the start of the reverse flow. The water is pressed into the branch pipe 8 upward from the branch portion and discharged through the exhaust means 5.

ここで、図3に示す従来の浸漬型膜ろ過装置(太配管の部分がない場合)では、ろ過水配管内に滞留していた空気がろ過水の流れに合わせて移動し、ろ過水配管全体に拡散して滞留する。そのため、逆洗工程開始時に、ろ過水配管内の大部分の空気を、上向き分岐管8及び排気手段5を介してろ過水配管6から排出するには、排気手段5をかなりの時間(例えば、10秒程度)開としておく必要がある。さらにこの排気手段5が開の時には空気と同時に洗浄水も排気手段5から排出されるため、この時に圧入した洗浄水は、膜モジュールの洗浄には寄与せず、浪費される。この結果として、浸漬型膜モジュール2を洗浄するためには、多量の洗浄水を必要としてしまう。   Here, in the conventional submerged membrane filtration apparatus shown in FIG. 3 (when there is no part of the thick pipe), the air staying in the filtrate pipe moves along with the flow of the filtrate, and the whole filtrate pipe It diffuses and stays. Therefore, in order to exhaust most of the air in the filtrate water pipe from the filtrate water pipe 6 through the upward branch pipe 8 and the exhaust means 5 at the start of the backwashing process, the exhaust means 5 is left for a considerable time (for example, (It must be open for about 10 seconds). Further, since the cleaning water is discharged from the exhaust means 5 simultaneously with the air when the exhaust means 5 is open, the wash water injected at this time does not contribute to the cleaning of the membrane module and is wasted. As a result, a large amount of cleaning water is required to clean the submerged membrane module 2.

一方、図1や図2に示す本発明の浸漬型膜ろ過装置では、排気手段5の下方側の、略上下方向に延びる幹配管に、太配管の部分7を設けている。図1の場合には、さらに、排気手段5下方の上向き分岐管8も太配管としている。この太配管は、幹配管に設けられた太配管の部分7と同様、その他のろ過水配管の配管径(内径)に比べ太い配管径(内径)を有するものである。   On the other hand, in the submerged membrane filtration apparatus of the present invention shown in FIGS. 1 and 2, the thick pipe portion 7 is provided on the trunk pipe extending in the substantially vertical direction on the lower side of the exhaust means 5. In the case of FIG. 1, the upward branch pipe 8 below the exhaust means 5 is also a thick pipe. The thick pipe has a larger pipe diameter (inner diameter) than the pipe diameter (inner diameter) of other filtrate water pipes, like the thick pipe portion 7 provided in the main pipe.

このような構成の本発明の膜ろ過装置では、ろ過工程中に管内の負圧によって発生した空気が、ろ過水配管6中をろ過水の流れに合わせて移動するが、太配管の部分7を通過する際に一時的に管内流速が低下し、空気とろ過水が上下方向に分離され、管内の気体の大部分が排気手段5の下方の上向き分岐管8内に集まり滞留する。よって、逆洗工程開始時に排気手段5を開とし、洗浄水を圧入させ始めると、ろ過水配管内の滞留空気は速やかにろ過水配管から排出されるので、排気手段5を開としておく時間を大幅に短縮できる。またこの際、空気とろ過水が分離されていて、排気手段5の近傍に空気が集中しているため、排気手段5からは空気が率先して排出され、空気排出に続く洗浄水の排出を最小限に抑えることができる。   In the membrane filtration device of the present invention having such a structure, air generated by the negative pressure in the pipe during the filtration step moves in the filtrate water pipe 6 in accordance with the flow of the filtrate water. When passing, the flow velocity in the pipe temporarily decreases, the air and filtered water are separated in the vertical direction, and most of the gas in the pipe gathers and stays in the upward branch pipe 8 below the exhaust means 5. Therefore, when the exhaust means 5 is opened at the start of the backwash process and the washing water is started to be press-fitted, the staying air in the filtrate water pipe is quickly discharged from the filtrate water pipe. Can be greatly shortened. At this time, since air and filtered water are separated and air is concentrated in the vicinity of the exhaust means 5, the air is preempted from the exhaust means 5, and the washing water is discharged following the air discharge. Can be minimized.

なお、太配管の部分7が上下方向に延びる配管でない場合、即ち、水平方向やそれに近い斜め方向である場合には、ろ過工程時に、太配管の部分7を流れるろ過水が、配管内で上下方向にろ過水と空気とが分離しても、分離した空気が排気手段5の下方の上向き分岐管8内に集中し難くなる。そのため、排気手段5を開にして空気を排出させる際の所要時間を十分に短縮できず、結果として、排気手段5を介して流出する洗浄水の量も多くなり易い。   When the thick pipe portion 7 is not a vertically extending pipe, that is, in a horizontal direction or an oblique direction close thereto, the filtered water flowing through the thick pipe portion 7 flows vertically in the pipe during the filtration process. Even if the filtered water and the air are separated in the direction, the separated air is not easily concentrated in the upward branch pipe 8 below the exhaust means 5. For this reason, the time required for exhausting the air by opening the exhaust means 5 cannot be sufficiently shortened, and as a result, the amount of washing water flowing out through the exhaust means 5 tends to increase.

さらに、図1、図2に示す態様においては、排出された洗浄水を処理槽に戻す構成になっている。このような構成により、膜モジュールを洗浄するために圧入する洗浄水が系外に排出されることを防ぎ、浪費される洗浄水の量を大幅に削減することができる。   Furthermore, in the aspect shown in FIG. 1, FIG. 2, it is the structure which returns the discharged | emitted wash water to a processing tank. With such a configuration, it is possible to prevent the wash water that is injected to wash the membrane module from being discharged out of the system, and to greatly reduce the amount of wasted wash water.

また、図1、図2に示す浸漬型膜ろ過装置では、太配管の部分7でろ過水と空気が上下方向に分離され、分離された空気が、ろ過工程中に上向き分岐管8に溜まる。このとき、分離された空気の容積が上向き分岐管8内の配管内容積を超えた場合、太配管の部分7に空気が滞留し、幹配管全体に拡散することになる。そのため、図1に示すように、排気手段5より下方の上向き分岐管8も太配管とすることが好ましい。上向き分岐管8にも太配管の部分を設けることで、太配管の部分7で分離された空気が溜まる容積が十分に確保され、太配管の部分7に空気が滞留することを防ぐことができる。なお、この場合には、ろ過水配管の太配管部分7と上向き分岐管8とは連続した太配管とすればよい。   Moreover, in the submerged membrane filtration apparatus shown in FIGS. 1 and 2, filtered water and air are separated in the vertical direction at the thick pipe portion 7, and the separated air is accumulated in the upward branch pipe 8 during the filtration process. At this time, when the volume of the separated air exceeds the pipe internal volume in the upward branch pipe 8, the air stays in the thick pipe portion 7 and diffuses throughout the main pipe. Therefore, as shown in FIG. 1, it is preferable that the upward branch pipe 8 below the exhaust means 5 is also a thick pipe. By providing a thick pipe portion in the upward branch pipe 8 as well, a sufficient volume for storing the air separated in the thick pipe portion 7 is secured, and air can be prevented from staying in the thick pipe portion 7. . In this case, the thick pipe portion 7 and the upward branch pipe 8 of the filtrate water pipe may be a continuous thick pipe.

上記作用効果は、ろ過時にろ過水が流下する幹配管の太配管の部分7において奏される。この作用効果のためには、太配管の部分7が略上下方向に0.2m未満の距離の途中で水平向へ折れることなく、延びていることが好ましい。すなわち、上下方向に延びる太配管の部分7の長さは、配管方向の長さで連続的に0.2m以上、さらには0.5m以上であることが好ましい。   The said effect is show | played in the part 7 of the thick piping of the trunk piping from which filtered water flows down at the time of filtration. For this function and effect, it is preferable that the thick pipe portion 7 extends in the substantially vertical direction without being bent horizontally in the middle of a distance of less than 0.2 m. That is, the length of the thick pipe portion 7 extending in the vertical direction is preferably 0.2 m or more, and more preferably 0.5 m or more continuously in the pipe direction.

確かに、太配管の部分7の長さが0.2m未満と短い場合、あるいは0.2m未満の長さで配管が水平方向に折れている場合でも、太配管の部分7でろ過水と空気とを分離することは可能である。しかしながら、造水コストを低減するためには、ろ過流束を大きくすることが求められ、ろ過流束が大きくなると、ろ過水の流れに随伴されて空気も移動し易くなる。そのため、空気とろ過水とを完全に分離させることが難しくなり、幹配管全体に空気が移動し、配管内の空気を十分に集めることが難しくなる。そこで本発明においては、ろ過流束が大きいような運転においても十分に上記作用効果を奏するために、太配管の部分7の長さを0.2m以上、さらには0.5m以上とすることが好ましい。なお、太配管の部分7におけるろ過工程時のろ過水の線速度が0.2m/sよりも速い場合も同様である。   Certainly, even when the length of the thick pipe portion 7 is as short as less than 0.2 m, or even when the pipe is folded in the horizontal direction with a length of less than 0.2 m, filtered water and air in the thick pipe portion 7. Can be separated. However, in order to reduce the water production cost, it is required to increase the filtration flux. When the filtration flux increases, the air easily moves along with the flow of the filtrate. Therefore, it becomes difficult to completely separate the air and the filtered water, the air moves to the entire trunk pipe, and it becomes difficult to sufficiently collect the air in the pipe. Therefore, in the present invention, the length of the thick pipe portion 7 is set to 0.2 m or more, and further to 0.5 m or more in order to achieve the above-described effects even in an operation where the filtration flux is large. preferable. The same applies to the case where the linear velocity of the filtered water at the filtration step in the thick pipe portion 7 is faster than 0.2 m / s.

一方、ろ過水配管6における分岐点(上向き分岐管が分岐する位置)から下側で上下方向に延びる部分全てを太配管とし、ろ過工程中に負圧によって発生した空気をろ過水と上下方向に分離させてもよい。しかし、上下方向の太配管の部分はその系において必要な長さがあれば十分であるので、必要以上の長さを太配管とする場合は、配管を太くすることによる設備コストの増加というデメリットがある。したがって、上限としては、2m以下であることが好ましい。   On the other hand, the portion extending vertically from the branch point (the position where the upward branch tube branches) in the filtrate pipe 6 is a thick pipe, and the air generated by the negative pressure during the filtration process is passed vertically with the filtrate water. It may be separated. However, the length of the thick pipe in the vertical direction is sufficient if it has the required length in the system. Therefore, if the length of pipe is longer than necessary, the disadvantage is that the equipment cost increases by making the pipe thicker. There is. Therefore, the upper limit is preferably 2 m or less.

なお、本発明では、排気手段5の下方側のろ過水配管に上下方向の太配管の部分7が設けられればよいので、その上下方向の太配管の部分に続いて、横方向に延びる太配管があってもよいし、また、横方向や上下方向に延びる通常径の配管が配設されてもよい。但し、前述のように、ろ過水と空気を分離するために配設される太配管の部分7以外の部分を太配管にすると、配管を太くすることによる設備コストの増加というデメリットがあるため、通常径の配管を配設することの方が好ましい。   In the present invention, it is only necessary to provide a vertical pipe portion 7 in the filtrate pipe on the lower side of the exhaust means 5, so that the thick pipe extending in the lateral direction follows the thick pipe portion in the vertical direction. In addition, a pipe having a normal diameter extending in the horizontal direction or the vertical direction may be provided. However, as described above, if the portion other than the thick pipe portion 7 disposed for separating the filtrate and air is made a thick pipe, there is a demerit that the equipment cost is increased by making the pipe thick, It is preferable to arrange a pipe having a normal diameter.

一方、上向き分岐管8の上下方向の配管長さは、0.15m以上0.5m以下が好ましい。上向き分岐管8の長さが0.15m未満と短い場合、太配管の部分7でろ過水から分離された空気が溜まる容積を十分に確保することができず、太配管の部分7に空気が混入し、幹配管全体に拡散、滞留することになる。また、上向き分岐管8の長さを0.5mより長くすると、太配管の部分7でろ過水から分離された空気が溜まる容積を十分に確保することはできるが、逆洗工程開始時に排気手段5を開とし、洗浄水を圧入させ始めた際に、配管内にかかっているヘッド圧力の分だけ排気手段5から空気を排出するための余分な圧力が必要になってくる。さらには、上向き分岐管8の長さを0.5m以上にすることで、逆洗工程開始時に排気手段5を開とし、洗浄水を圧入させ始め、ろ過工程時に上向き分岐管8に溜まった空気を排気手段5を通じて排出するための距離が長くなり、空気を排出するための洗浄水を余分に使用することになり、規定時間内に膜の十分な洗浄ができないことになる。   On the other hand, the vertical pipe length of the upward branch pipe 8 is preferably 0.15 m or more and 0.5 m or less. When the length of the upward branch pipe 8 is as short as less than 0.15 m, it is not possible to secure a sufficient volume for storing the air separated from the filtrate in the thick pipe portion 7, so that air is It is mixed and diffuses and stays in the whole trunk pipe. Further, if the length of the upward branch pipe 8 is longer than 0.5 m, it is possible to secure a sufficient volume for storing the air separated from the filtrate in the thick pipe portion 7, but the exhaust means at the start of the backwash process When 5 is opened and the washing water is started to be injected, an extra pressure is required to exhaust air from the exhaust means 5 by the amount of the head pressure applied in the pipe. Furthermore, by making the length of the upward branch pipe 8 to be 0.5 m or more, the exhaust means 5 is opened at the start of the backwash process, the washing water starts to be injected, and the air accumulated in the upward branch pipe 8 at the filtration process As a result, the distance for discharging the air through the exhaust means 5 becomes longer, and extra cleaning water for discharging the air is used, so that the membrane cannot be sufficiently cleaned within the specified time.

また、図1のように上向き分岐管8も太配管にし、太配管の部分7と連続させたときの配管方向の合計長さ(上向き分岐管8+太配管の部分7の長さ)は、0.35m以上が好ましく、さらには0.65m以上が好ましい。なお、それら太配管の内径は、ろ過時において太配管の部分7を通過するろ過水の線速度が0.2m/s以下となる径であることが好ましい。   Further, as shown in FIG. 1, when the upward branch pipe 8 is also made of a thick pipe and connected to the thick pipe portion 7, the total length in the pipe direction (the length of the upward branch pipe 8 + the thick pipe portion 7) is 0. .35 m or more is preferable, and 0.65 m or more is more preferable. In addition, it is preferable that the internal diameter of these thick piping is a diameter from which the linear velocity of the filtered water which passes the part 7 of thick piping at the time of filtration will be 0.2 m / s or less.

さらに、太配管の部分7にて確実に空気とろ過水とが分離されていることを目視するため、太配管の部分7の一部または全部を透明な素材で構成し、配管内の流れを外部から視認できるようにすることが好ましい。透明な部材としては、透明樹脂や透明ガラスが例示される。また排気手段5の下方の上向き分岐管8も透明な素材で構成されるほうが好ましい。   Furthermore, in order to make sure that air and filtered water are reliably separated in the thick pipe portion 7, a part or all of the thick pipe portion 7 is made of a transparent material, and the flow in the pipe is reduced. It is preferable to be visible from the outside. Examples of the transparent member include transparent resin and transparent glass. The upward branch pipe 8 below the exhaust means 5 is also preferably made of a transparent material.

次に、本発明の膜分離装置において、ろ過を行い、続いて逆洗を行う方法を、図1の膜分離装置による場合を例にとって、説明する。   Next, a method of performing filtration and then backwashing in the membrane separation apparatus of the present invention will be described taking the case of using the membrane separation apparatus of FIG. 1 as an example.

ろ過工程においては、ろ過水バルブ31を開とし、吸引手段3による吸引作用により、膜モジュール2からろ過水が取出され、ろ過水配管6を通してろ過水貯槽43へと送水される。ここで、本発明における装置においては、幹配管中の太配管の部分7をろ過水が通過する際、ろ過水の線速度が低流速となる。そのため、ろ過水中に混入していた空気は、ろ過水の下向き流と分離されて上昇し、排気手段5の下方の上向き分岐管8へと移動する。この結果、空気は、排気手段5の下方の上向き分岐管8内に集中して滞留する。   In the filtration step, the filtrate water valve 31 is opened, the filtrate water is taken out from the membrane module 2 by the suction action by the suction means 3, and is sent to the filtrate water storage tank 43 through the filtrate water pipe 6. Here, in the apparatus according to the present invention, when the filtrate passes through the thick pipe portion 7 in the trunk pipe, the linear velocity of the filtrate becomes a low flow rate. Therefore, the air mixed in the filtered water is separated from the downward flow of the filtered water and rises, and moves to the upward branch pipe 8 below the exhaust means 5. As a result, air concentrates and stays in the upward branch pipe 8 below the exhaust means 5.

ろ過を停止させるためには、吸引手段3を停止し、ろ過水バルブ31を閉とする。   In order to stop the filtration, the suction means 3 is stopped and the filtered water valve 31 is closed.

続いて、排気手段5を開にし、同時に、洗浄水配管42の途中の逆洗バルブ41を開とし、送水手段4を作動させて洗浄水を逆流方向に圧送させる。この洗浄水の圧送により、排気手段5の下方の上向き分岐管8内に集中していた空気は、排気手段5を介してろ過水配管から排出される。よって、排気手段5を開としている時間を大幅に短縮でき(例えば3秒程度と短縮化でき)、さらに排気手段5を介して最初に排出されるもののほとんどが空気となる。加えて、排気手段5下方の上向き分岐管8が透明であれば空気が排気手段5から抜けきった時点を管外から視認できるので、排気手段5を速やかに閉とすることが可能であり、排気手段5から全く洗浄水を排出しない運転も可能となる。また、上向き分岐管8の先端部が処理槽の上方にて開口しているので、ろ過水配管から排出された洗浄水は処理槽内に供給される。なお、配管内の空気を排出させることができる時間が経過した後に排気手段5を閉とすると、洗浄液は膜モジュールのろ過水側へと送水され、膜モジュール内の逆洗が行なわれる。   Subsequently, the exhaust means 5 is opened, and at the same time, the backwash valve 41 in the middle of the wash water pipe 42 is opened, and the water feed means 4 is operated to feed the wash water in the reverse flow direction. By this pumping of the washing water, the air concentrated in the upward branch pipe 8 below the exhaust means 5 is discharged from the filtrate pipe through the exhaust means 5. Therefore, the time during which the exhaust means 5 is opened can be greatly shortened (for example, can be shortened to about 3 seconds), and most of the gas discharged first through the exhaust means 5 is air. In addition, if the upward branch pipe 8 below the exhaust means 5 is transparent, the point in time when the air has escaped from the exhaust means 5 can be visually recognized from outside the pipe, so that the exhaust means 5 can be quickly closed. An operation in which no cleaning water is discharged from the exhaust means 5 is also possible. Moreover, since the front-end | tip part of the upward branch pipe 8 is opened above the processing tank, the wash water discharged | emitted from filtrate water piping is supplied in a processing tank. In addition, if the exhaust means 5 is closed after the time which can discharge the air in piping passes, cleaning liquid will be sent to the filtrate side of a membrane module, and the back washing in a membrane module will be performed.

本発明を以下の実施例を用いて詳細に説明する。なお、実施例1〜4においては、図1に示す上向き分岐管8も太配管にした膜分離装置を用いた。一方、比較例1においては、図3に示す膜分離装置を用いた。なお、いずれの膜分離装置も、下記構造の浸漬型膜モジュール(有効膜長1m、有効膜面積25m)を処理槽に5本直列に連結・浸漬して構成した。The present invention will be described in detail using the following examples. In Examples 1 to 4, a membrane separation apparatus in which the upward branch pipe 8 shown in FIG. On the other hand, in Comparative Example 1, the membrane separation apparatus shown in FIG. 3 was used. Each membrane separator was constructed by connecting and immersing five immersion membrane modules (effective membrane length 1 m, effective membrane area 25 m 2 ) having the following structure in series in a treatment tank.

浸漬型膜モジュール:
・外径1.0mm、公称孔径0.01mmのポリフッ化ビニリデン製中空糸膜
・中空糸膜8000本を、上端部ではまとめてモジュール構成部材に接着固定し、下端部では複数の小束に分割し、それらを互いに分離しつつ、小束ごとに接着
・各中空糸膜は上接着端側が開口、下接着端側が封止状態
・上側の接着部の上に、透過水出口のあるモジュールキャップを配置
〈実施例1〉
図1に示す膜分離装置の太配管の部分7(内径:その他のろ過水配管6の部分の内径の2.5倍)の長さを0.1mとした膜分離装置を用いて、浸漬型膜モジュールのろ過運転をろ過流束0.5m/dにておこなった。その結果、幹配管(ろ過水配管6の太配管の部分7よりも上流側の部分)内のろ過水の線速度は1.2m/sであったが、太配管の部分7に流れ込んだ時点でろ過水の線速度は0.08m/sになった。また、ろ過水および空気の流れを目視で確認した結果、ろ過水中に溶存していた空気は太配管の部分7にて分離され、上向き分岐管8に溜まっていた。そのため、逆洗開始時に洗浄水を逆流方向に圧入させると、洗浄水の圧入によって、上向き分岐管8に溜まっていた空気を排出できることがわかる。ただし、ろ過水と空気の分離がおこなわれるための太配管の部分7の配管長が短かったため、ろ過水に随伴されて下流側へ流れた空気があり、それが下流側の配管内に分散・滞留していた。
Immersion membrane module:
-8000 hollow fiber membranes and hollow fiber membranes made of polyvinylidene fluoride with an outer diameter of 1.0 mm and a nominal pore diameter of 0.01 mm are bonded and fixed to the module components at the upper end and divided into a plurality of small bundles at the lower end While separating them from each other, each small bundle is bonded.Each hollow fiber membrane is open on the upper bonding end side and sealed on the lower bonding end side.A module cap with a permeate outlet is provided on the upper bonding portion. Arrangement <Example 1>
Using the membrane separation apparatus in which the length of the thick pipe portion 7 (inner diameter: 2.5 times the inner diameter of the other filtrate water pipe 6 portion) of the membrane separation apparatus shown in FIG. The membrane module was filtered at a filtration flux of 0.5 m / d. As a result, the linear velocity of the filtrate water in the trunk pipe (the upstream part of the thick pipe part 7 of the filtrate water pipe 6) was 1.2 m / s, but when it flowed into the thick pipe part 7 As a result, the linear velocity of filtered water became 0.08 m / s. Moreover, as a result of visually confirming the flow of filtrate and air, the air dissolved in the filtrate was separated at the thick pipe portion 7 and accumulated in the upward branch pipe 8. Therefore, it can be seen that if the wash water is pressed in the reverse flow direction at the start of the back wash, the air accumulated in the upward branch pipe 8 can be discharged by the press-fitting of the wash water. However, since the pipe length of the thick pipe portion 7 for separating the filtered water and the air was short, there was air that flowed downstream along with the filtered water, which was dispersed in the downstream pipe. It stayed.

〈実施例2〉
太配管の部分7の長さを0.2mとした以外は実施例1と同様にしてろ過運転をおこなった。その結果、幹配管内のろ過水の線速度は1.2m/sであったが、太配管の部分7に流れ込んだ時点でろ過水の線速度は0.08m/sになった。また、ろ過水および空気の流れを目視で確認した結果、ろ過水中に溶存していた空気は太配管の部分7にて(分離され、上向き分岐管8に溜まっていた。一方、下流側の配管内に分散・滞留している空気は見られなかった。したがって、逆洗開始時に洗浄水を逆流方向に圧入させると、洗浄水の圧入によって、上向き分岐管8に溜まっていた空気を効率的に排出できることがわかる。
<Example 2>
The filtration operation was performed in the same manner as in Example 1 except that the length of the thick pipe portion 7 was 0.2 m. As a result, the linear velocity of filtered water in the trunk pipe was 1.2 m / s, but when it flowed into the portion 7 of the thick pipe, the linear velocity of filtered water became 0.08 m / s. Moreover, as a result of visually confirming the flow of filtrate and air, the air dissolved in the filtrate was separated at the thick pipe portion 7 (and separated and accumulated in the upward branch pipe 8. On the other hand, the downstream pipe Therefore, when the washing water was injected in the reverse flow direction at the start of the backwashing, the air accumulated in the upward branch pipe 8 was efficiently removed by the injection of the washing water. It turns out that it can discharge.

そして、ろ過水中に溶存していた空気が太配管の部分7にて分離され、上向き分岐管8のみに溜まっていたことから、ろ過流束が0.5m/dであっても、太配管の部分7が少なくとも0.2mあれば、ろ過水と空気の分離が確実におこなわれることがわかった。   And since the air dissolved in the filtered water was separated at the thick pipe portion 7 and accumulated only in the upward branch pipe 8, even if the filtration flux was 0.5 m / d, It was found that if the portion 7 was at least 0.2 m, the filtered water and air were reliably separated.

〈実施例3〉
太配管の部分7(内径:その他のろ過水配管6の部分の内径の2.5倍)の長さを0.3mとし、ろ過流束を1.0m/dとした以外は実施例1と同様にしてろ過運転をおこなった。その結果、幹配管内のろ過水の線速度は2.42m/sであったが、太配管の部分7に流れ込んだ時点でろ過水の線速度は0.17m/sになった。また、ろ過水および空気の流れを目視で確認した結果、ろ過水中に溶存していた空気は太配管の部分7にて分離され、上向き分岐管8に溜まっていた。そのため、逆洗開始時に洗浄水を逆流方向に圧入させると、洗浄水の圧入によって、上向き分岐管8に溜まっていた空気を排出できることがわかる。ただし、ろ過水と空気の分離がおこなわれるための太配管の部分7の配管長が短かったため、ろ過水に随伴されて下流側に流れた空気があり、それが下流側の配管内に分散・滞留していた。
<Example 3>
Example 1 except that the length of the thick pipe portion 7 (inner diameter: 2.5 times the inner diameter of the other filtrate water pipe 6 portion) is 0.3 m and the filtration flux is 1.0 m / d. The filtration operation was performed in the same manner. As a result, the linear velocity of filtered water in the trunk pipe was 2.42 m / s, but when it flowed into the thick pipe portion 7, the linear velocity of filtered water became 0.17 m / s. Moreover, as a result of visually confirming the flow of filtrate and air, the air dissolved in the filtrate was separated at the thick pipe portion 7 and accumulated in the upward branch pipe 8. Therefore, it can be seen that if the wash water is pressed in the reverse flow direction at the start of the back wash, the air accumulated in the upward branch pipe 8 can be discharged by the press-fitting of the wash water. However, because the pipe length of the thick pipe portion 7 for separating the filtered water and air was short, there was air that flowed downstream along with the filtered water, which was dispersed in the downstream pipe. It stayed.

〈実施例4〉
太配管の部分7の長さを0.5mとした以外は実施例3と同様にしてろ過運転をおこなった。その結果、幹配管内のろ過水の線速度は2.42m/sであったが、太配管の部分7に流れ込んだ時点でろ過水の線速度は0.17m/sになった。また、ろ過水および空気の流れを目視で確認した結果、ろ過水中に溶存していた空気は太配管の部分7にて分離され、上向き分岐管8に溜まっていた。一方、下流側の配管内に分散・滞留している空気は見られなかった。したがって、逆洗開始時に洗浄水を逆流方向に圧入させると、洗浄水の圧入によって、上向き分岐管8に溜まっていた空気を効率的に排出できることがわかる。
<Example 4>
A filtration operation was performed in the same manner as in Example 3 except that the length of the thick pipe portion 7 was 0.5 m. As a result, the linear velocity of filtered water in the trunk pipe was 2.42 m / s, but when it flowed into the thick pipe portion 7, the linear velocity of filtered water became 0.17 m / s. Moreover, as a result of visually confirming the flow of filtrate and air, the air dissolved in the filtrate was separated at the thick pipe portion 7 and accumulated in the upward branch pipe 8. On the other hand, air dispersed and staying in the downstream piping was not observed. Therefore, it can be seen that if the wash water is press-fitted in the back flow direction at the start of the back wash, the air accumulated in the upward branch pipe 8 can be efficiently discharged by the press-fitting of the wash water.

そして、ろ過水中に溶存していた空気が太配管の部分7にて分離され、上向き分岐管8のみに溜まっていたことから、ろ過流束が1.0m/dであっても、太配管の部分7が少なくとも0.5mあればで、ろ過水と空気の分離が確実におこなわれることがわかった。   And since the air dissolved in the filtered water was separated at the portion 7 of the thick pipe and accumulated only in the upward branch pipe 8, even if the filtration flux was 1.0 m / d, It has been found that if the portion 7 is at least 0.5 m, the filtered water and air are reliably separated.

〈比較例1〉
太配管の部分がない図3に示す膜分離装置を用いて、浸漬型膜モジュールのろ過運転をろ過流束0.5m/dにておこなった。その結果、ろ過水配管6内のろ過水の線速度は1.2m/sで一定であった。また、ろ過水および空気の流れを目視で確認した結果、ろ過水中に溶存していた空気は、上向き分岐管8にごく一部が溜まったが、ろ過水配管中でろ過水と空気の分離がおこなわれず、大部分の空気がろ過水に随伴されて下流側に流れていき、下流側の配管内に分散、滞留していた。したがって、逆洗開始時に洗浄水を逆流方向に圧入させても、空気を効率的に排出することができず、逆洗による膜面清浄が十分に行われず安定なろ過運転が難しくなることがわかる。
<Comparative example 1>
Using the membrane separation apparatus shown in FIG. 3 having no thick pipe portion, the filtration operation of the submerged membrane module was performed at a filtration flux of 0.5 m / d. As a result, the linear velocity of filtrate in the filtrate pipe 6 was constant at 1.2 m / s. Moreover, as a result of visually confirming the flow of filtrate and air, a part of the air dissolved in the filtrate was collected in the upward branch pipe 8, but the filtrate and air were separated in the filtrate pipe. It was not performed, and most of the air was accompanied by the filtered water and flowed downstream, and was dispersed and stayed in the downstream piping. Therefore, even if the washing water is pressed in the reverse flow direction at the start of the backwashing, the air cannot be discharged efficiently, and the membrane surface cleaning by the backwashing is not sufficiently performed, which makes it difficult to perform a stable filtration operation. .

本発明の、浸漬型膜モジュールを設置した膜分離装置は、上水処理、下水処理、海水淡水化の前処理、産業排水処理などに適用することができる。その適用範囲はこれらに限られるものではない。   The membrane separation apparatus provided with the submerged membrane module of the present invention can be applied to water treatment, sewage treatment, pretreatment for seawater desalination, industrial wastewater treatment, and the like. The scope of application is not limited to these.

Claims (7)

処理槽内に浸漬させる複数本の浸漬型膜モジュールと、該膜モジュールのろ過水取出口から延びるろ過水配管とを備えてなる膜分離装置であって、前記ろ過水配管の途中には、各々の浸漬型膜モジュールから延びるろ過水配管をまとめた幹配管を備え、該幹配管に排気用の上向き分岐管と排気手段が設けられるとともに、該排気手段の下方側の前記幹配管に、上下方向に延びた、その他のろ過水配管の部分より内径が太い太配管の部分が設けられている膜分離装置。   A membrane separation apparatus comprising a plurality of submerged membrane modules immersed in a treatment tank and a filtrate water pipe extending from a filtrate outlet of the membrane module, each in the middle of the filtrate water pipe, The main pipe is provided with a main pipe that collects filtrate water pipes extending from the submerged membrane module, and the main pipe is provided with an upward branch pipe for exhaust and exhaust means, and the main pipe on the lower side of the exhaust means has a vertical direction. The membrane separation apparatus is provided with a thick pipe portion having an inner diameter larger than that of other filtrate water pipe portions. 前記上向き分岐管における排気手段より下方の部分が太配管である、請求項1に記載の膜分離装置。   The membrane separation apparatus according to claim 1, wherein a portion below the exhaust unit in the upward branch pipe is a thick pipe. 前記上下方向に延びた太配管の配管長さが全長0.2m以上である、請求項1または2に記載の膜分離装置。   The membrane separation apparatus according to claim 1 or 2, wherein a pipe length of the thick pipe extending in the vertical direction is 0.2 m or more in total length. 前記上下方向に延びた太配管の内径は、ろ過時に該太配管の部分を通過するろ過水の線速度が0.2m/s以下となる内径である、請求項1〜3のいずれかに記載の膜分離装置。   The internal diameter of the said thick piping extended in the said up-down direction is an internal diameter in which the linear velocity of the filtrate water which passes through the part of this thick piping at the time of filtration becomes 0.2 m / s or less. Membrane separator. 前記浸漬型膜モジュールは、膜面が上下方向となるように配置されてなる、請求項1〜4のいずれかに記載の膜分離装置。   The membrane separator according to any one of claims 1 to 4, wherein the submerged membrane module is arranged such that a membrane surface is in a vertical direction. さらに前記浸漬型膜モジュールの内部のろ過水側を吸引する吸引手段と、ろ過時の通液方向とは逆方向に洗浄水を前記膜モジュール内に圧入する送水手段とを備えている、請求項1〜5のいずれかに記載の膜分離装置。   The apparatus further comprises suction means for sucking the filtrate water side inside the submerged membrane module, and water supply means for press-fitting wash water into the membrane module in a direction opposite to the liquid flow direction during filtration. The membrane separation apparatus in any one of 1-5. 請求項1〜6のいずれかに記載の膜分離装置によって水をろ過処理する方法であって、前記上下方向に延びる太配管の部分を通過するろ過水の線速度が0.2m/s以下となるようにろ過を行うろ過処理方法。   A method for filtering water with the membrane separation device according to any one of claims 1 to 6, wherein a linear velocity of filtered water passing through a portion of the thick pipe extending in the vertical direction is 0.2 m / s or less. Filtration processing method to perform filtration.
JP2008533803A 2007-07-12 2008-07-10 Filtration method Expired - Fee Related JP5326571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008533803A JP5326571B2 (en) 2007-07-12 2008-07-10 Filtration method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007182894 2007-07-12
JP2007182894 2007-07-12
PCT/JP2008/062446 WO2009008463A1 (en) 2007-07-12 2008-07-10 Membrane separation apparatus and method for filtration treatment
JP2008533803A JP5326571B2 (en) 2007-07-12 2008-07-10 Filtration method

Publications (2)

Publication Number Publication Date
JPWO2009008463A1 true JPWO2009008463A1 (en) 2010-09-09
JP5326571B2 JP5326571B2 (en) 2013-10-30

Family

ID=40228634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008533803A Expired - Fee Related JP5326571B2 (en) 2007-07-12 2008-07-10 Filtration method

Country Status (2)

Country Link
JP (1) JP5326571B2 (en)
WO (1) WO2009008463A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101332684B1 (en) * 2012-12-28 2013-11-25 코오롱환경서비스주식회사 Membrane water treatment device having air ejector
CN104891606A (en) * 2015-06-04 2015-09-09 黎建军 Mechanical membrane process water treatment device and method
JP6878050B2 (en) * 2017-03-06 2021-05-26 オルガノ株式会社 Membrane filtration device, membrane filtration method and blow device of membrane filtration device
US11904280B2 (en) 2018-06-12 2024-02-20 Dupont Safety & Construction, Inc. Filtration system and method for filtering water
CN109701393B (en) * 2019-01-01 2021-03-02 中国人民解放军63653部队 Underground water colloid in-situ tangential flow ultrafiltration device
JP7396395B2 (en) 2022-04-26 2023-12-12 栗田工業株式会社 Water treatment equipment and how to operate it

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327948A (en) * 1993-05-26 1994-11-29 Kubota Corp Solid-liquid separator
JP3264794B2 (en) * 1995-06-08 2002-03-11 株式会社クボタ Solid-liquid separation device and its cleaning method
JPH11114590A (en) * 1997-10-09 1999-04-27 Hitachi Ltd Filtration device
JP3892960B2 (en) * 1998-01-28 2007-03-14 前澤工業株式会社 Siphon suction type membrane filtration device
JP2001070938A (en) * 1999-09-09 2001-03-21 Kubota Corp Immersion type membrane filter
JP2002248303A (en) * 2001-02-23 2002-09-03 Katsumi Sugimoto Sewage treatment device
JP2005161218A (en) * 2003-12-03 2005-06-23 Toyota Auto Body Co Ltd Membrane separator
JP2005270711A (en) * 2004-03-23 2005-10-06 Toray Ind Inc Immersed membrane filtration device and method
JP4197669B2 (en) * 2004-08-18 2008-12-17 株式会社神鋼環境ソリューション Immersion type membrane separation sewage treatment apparatus and operation method thereof

Also Published As

Publication number Publication date
WO2009008463A1 (en) 2009-01-15
JP5326571B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
US6402956B1 (en) Treatment system and treatment method employing spiral wound type membrane module
CN101039739B (en) Methods and apparatus for removing solids from a membrane module
JP4447457B2 (en) Filtration equipment, membrane bioreactors, and membrane bioreactor processes
JP5326571B2 (en) Filtration method
WO2011158559A1 (en) Method for cleaning membrane modules
WO2006080482A1 (en) Method for manufacturing module having selectively permeable membrane and module having selectively permeable membrane
JP2013052364A (en) Oil-containing wastewater treatment system
CN102026711B (en) Submerged hollow fiber membrane module
JPH11128692A (en) Hollow fiber membrane module
WO2007083723A1 (en) Membrane filtration apparatus and its operating method
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
JP2016068046A (en) Vertically-arranged external pressure type hollow fiber membrane module and method of operating the same
KR100999945B1 (en) Air relif device for membrane filter pipe
KR101392755B1 (en) Wastewater disposal plant using tubular membrane
JP2010188250A (en) Water treatment method
JP2006239642A (en) Hollow fiber membrane module, and operating method of dipped type filtering device using the same
JP5918033B2 (en) Method and apparatus for treating wastewater containing oil
JP2009233504A (en) Method of cleaning dipping-type membrane module and cleaner for dipping-type membrane module as well as dipping-type membrane filter using the same
JP6937175B2 (en) Hollow fiber membrane filtration device and its cleaning method
JP2010119948A (en) Membrane separator, and filtration treatment operation method
KR100340450B1 (en) Membrane for Water Treatment Using Hollow Fiber
JP3572267B2 (en) Tubular membrane separator
JP2000271461A (en) Spiral type membrane element and operation of spiral type membrane module
JP2001224931A (en) Spiral type membrane module and method for loading spiral type membrane element
KR102336809B1 (en) Filtering apparatus of submerged type

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees