JPWO2008120355A1 - Organic EL device - Google Patents

Organic EL device Download PDF

Info

Publication number
JPWO2008120355A1
JPWO2008120355A1 JP2009507346A JP2009507346A JPWO2008120355A1 JP WO2008120355 A1 JPWO2008120355 A1 JP WO2008120355A1 JP 2009507346 A JP2009507346 A JP 2009507346A JP 2009507346 A JP2009507346 A JP 2009507346A JP WO2008120355 A1 JPWO2008120355 A1 JP WO2008120355A1
Authority
JP
Japan
Prior art keywords
light emitting
emitting layer
organic
phosphorescent material
phosphorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009507346A
Other languages
Japanese (ja)
Inventor
大志 辻
大志 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Publication of JPWO2008120355A1 publication Critical patent/JPWO2008120355A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/18Light sources with substantially two-dimensional radiating surfaces characterised by the nature or concentration of the activator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Abstract

有機EL素子は、一対の陰極及び陽極間に配置された発光層と、発光層及び陽極間に配置された正孔輸送層と、発光層及び陰極間に配置された電子輸送層と、を含む有機EL素子であって、発光層が、第1燐光材料と、第2燐光材料と、含窒素芳香族複素環を有するホスト材料とからなり、第2燐光材料の励起三重項準位は、第1燐光材料の励起三重項準位より高く、ホスト材料は、第1燐光材料、及び、第2燐光材料より、少なくとも0.5eV以上大きいイオン化ポテンシャルエネルギーを有する。The organic EL device includes a light emitting layer disposed between a pair of a cathode and an anode, a hole transport layer disposed between the light emitting layer and the anode, and an electron transport layer disposed between the light emitting layer and the cathode. In the organic EL element, the light-emitting layer includes a first phosphorescent material, a second phosphorescent material, and a host material having a nitrogen-containing aromatic heterocycle, and the excited triplet level of the second phosphorescent material is It is higher than the excited triplet level of one phosphorescent material, and the host material has an ionization potential energy of at least 0.5 eV or more higher than that of the first phosphorescent material and the second phosphorescent material.

Description

本発明は、電流の注入によって発光する有機化合物のエレクトロルミネセンス(以下、ELともいう)を利用して、かかる物質を層状に形成した発光層を備えた有機EL素子(以下、有機EL素子ともいう)に関する。   The present invention utilizes an organic compound electroluminescence (hereinafter also referred to as EL) that emits light by current injection, and includes an organic EL element (hereinafter also referred to as an organic EL element) having a light emitting layer in which such a substance is formed in a layer shape. Say).

一般に、有機材料を用いたデイスプレイパネルを構成する各有機EL素子は、表示面としてのガラス基板上に、透明電極としての陽極、有機発光層を含む複数の有機材料層、金属電極からなる陰極を、順次、薄膜として積層した構造を有している。有機材料層には、有機発光層の他に、正孔注入層、正孔輸送層などの正孔輸送能を持つ材料からなる層や、電子輸送層、電子注入層などの電子輸送能を持つ材料からなる層などが含まれ、これらが設けられた構成の有機EL素子も提案されている。電子注入層には無機化合物も含まれる。   In general, each organic EL element constituting a display panel using an organic material has a glass substrate as a display surface, an anode as a transparent electrode, a plurality of organic material layers including an organic light emitting layer, and a cathode made of a metal electrode. In this way, it has a structure in which thin films are sequentially stacked. In addition to the organic light-emitting layer, the organic material layer has a layer made of a material having a hole transport ability such as a hole injection layer and a hole transport layer, and an electron transport ability such as an electron transport layer and an electron injection layer. An organic EL element including a layer made of a material and provided with these layers has also been proposed. The electron injection layer includes an inorganic compound.

有機発光層並びに電子あるいは正孔の輸送層の積層体の有機EL素子に電界が印加されると、陽極からは正孔が、陰極からは電子が注入される。有機EL素子は、この電子と正孔が有機発光層において再結合し、励起子が形成され、それが基底状態に戻るときに放出される発光を利用したものである。発光の高効率化や素子を安定駆動させるために、発光層に色素をゲスト材料としてドープすることもある。   When an electric field is applied to the organic EL element of the organic light emitting layer and the laminate of the electron or hole transport layer, holes are injected from the anode and electrons are injected from the cathode. In the organic EL element, the electrons and holes are recombined in the organic light emitting layer, excitons are formed, and light emission emitted when it returns to the ground state is used. In order to increase the efficiency of light emission and to stably drive the device, the light emitting layer may be doped with a dye as a guest material.

近年、発光層に蛍光材料の他に、燐光材料を利用することも提案されている。   In recent years, it has been proposed to use a phosphorescent material in addition to a fluorescent material for the light emitting layer.

特許文献1は、発光層がホスト材料、第1燐光不純物及び第2燐光不純物を含む少なくとも2以上の不純物を含み、第1燐光不純物及び第2燐光不純物は各々イリジウムまたは白金を含むことを特徴とする有機電界発光ディスプレー装置を開示している。寿命特性が優秀な第1燐光不純物を用いれば第2燐光不純物の寿命を向上させることを示唆している。第1燐光不純物は、0.1%から30%の濃度を用い、第2燐光不純物は0.1%から20%の濃度で用いる。ホスト材料からのエネルギー伝達が一次的に第1燐光不純物に伝えられるので、発光効率及び発光領域は第1燐光不純物によって決定されるようになる。   Patent Document 1 is characterized in that the light emitting layer contains at least two impurities including a host material, a first phosphorescent impurity and a second phosphorescent impurity, and the first phosphorescent impurity and the second phosphorescent impurity each contain iridium or platinum. An organic electroluminescent display device is disclosed. This suggests that the use of the first phosphorescent impurity having excellent lifetime characteristics improves the lifetime of the second phosphorescent impurity. The first phosphorescent impurity is used at a concentration of 0.1% to 30%, and the second phosphorescent impurity is used at a concentration of 0.1% to 20%. Since energy transfer from the host material is primarily transferred to the first phosphorescent impurity, the light emission efficiency and the light emitting region are determined by the first phosphorescent impurity.

特許文献2は、第1の電極と第2の電極との間に発光層を備えた有機エレクトロルミネッセンス素子であって、前記発光層は、異なる2種以上の発光材料を含み、前記異なる2種以上の発光材料のうち少なくとも1種は燐光発光材料であることを特徴とする有機エレクトロルミネッセンス素子を開示している。すなわち、陽極と陰極との間に長波長発光層および短波長発光層が順に形成され、前記長波長発光層は、燐光材料とホール輸送能力を有する補助ドーパントを含む。発光層ホスト材料のHOMOレベルH(h)、燐光材料のHOMOレベルH(p)、補助ドーパントのHOMOレベルH(a)は、|H(h)−H(a)|<0.4eV、|H(a)−H(p)|<0.4eVの関係を満足している。補助ドーパントは、アミン系材料、アントラセン誘導体またはイリジウム錯体からなる。   Patent Document 2 is an organic electroluminescence element including a light emitting layer between a first electrode and a second electrode, wherein the light emitting layer includes two or more different kinds of light emitting materials, and the two different kinds of light emitting materials. An organic electroluminescent element is disclosed in which at least one of the above light emitting materials is a phosphorescent light emitting material. That is, a long wavelength light emitting layer and a short wavelength light emitting layer are sequentially formed between an anode and a cathode, and the long wavelength light emitting layer includes a phosphorescent material and an auxiliary dopant having a hole transport capability. The HOMO level H (h) of the light emitting layer host material, the HOMO level H (p) of the phosphorescent material, and the HOMO level H (a) of the auxiliary dopant are | H (h) −H (a) | <0.4 eV, | The relationship of H (a) −H (p) | <0.4 eV is satisfied. The auxiliary dopant is made of an amine-based material, an anthracene derivative, or an iridium complex.

特許文献2は、一対の電極と、前記一対の電極間に配置される有機層と、を有し、前記有機層は少なくとも発光層を有し、前記発光層がホスト材料と、第1ドーパントと第2ドーパントを少なくとも有するドーパントと、から少なくとも構成される有機エレクトロルミネッセント素子において、前記第1ドーパントの三重項最低励起準位が前記ホスト材料の三重項最低励起準位よりも高く、且つ、前記第2ドーパントの三重項最低励起準位が前記ホスト材料の三重項最低励起準位よりも低い有機エレクトロルミネッセント素子を開示している。第1ドーパント濃度は0.1重量%以上40重量%以下が好ましいことを示唆している。
特開2004−281386 特開2004−311420 特開2006−128632
Patent Document 2 includes a pair of electrodes and an organic layer disposed between the pair of electrodes, wherein the organic layer includes at least a light emitting layer, and the light emitting layer includes a host material, a first dopant, An organic electroluminescent device comprising at least a dopant having at least a second dopant, wherein the triplet lowest excitation level of the first dopant is higher than the triplet lowest excitation level of the host material; and An organic electroluminescent device is disclosed in which the triplet lowest excitation level of the second dopant is lower than the triplet lowest excitation level of the host material. This suggests that the first dopant concentration is preferably 0.1% by weight or more and 40% by weight or less.
JP2004-281386 JP 2004-311420 A JP 2006-128632 A

従来のように、CBPを発光層ホスト材料に用いた場合、CBPは高い正孔輸送性を有するため、素子の高効率化のためには、発光層に隣接して陰極側に正孔ブロッキング層を挿入することが不可欠である。正孔ブロッキング層は、イオン化ポテンシャルエネルギーが大きく、かつ、電子輸送性が極めて高い材料から構成されるのが一般的であるが、電子輸送性が高いが故に、正孔ブロッキング層中での正孔の存在を許容できず、正孔が侵入した場合は材料自体の劣化がおこると考えられる。   When CBP is used as a light emitting layer host material as in the prior art, CBP has a high hole transporting property. Therefore, in order to increase the efficiency of the device, a hole blocking layer adjacent to the light emitting layer on the cathode side. It is essential to insert The hole blocking layer is generally composed of a material having a high ionization potential energy and an extremely high electron transporting property. It is considered that the material itself is deteriorated when holes cannot be allowed to exist and holes enter.

一方、Ir(ppy)3に代表される燐光材料は正孔輸送性を有することから、発光層がこのような燐光材料を高濃度に有する場合は、発光層ホスト材料であるCBP正孔輸送層に加えて、正孔が燐光材料をも介して正孔ブロッキング層へ注入され易い状態となる。従来、このような状態になると、ホスト材料の酸化劣化は防げるものの、正孔ブロッキング材料は過剰の正孔により著しく酸化劣化し、結果的に有機EL素子の駆動寿命が短くなる。   On the other hand, a phosphorescent material typified by Ir (ppy) 3 has a hole transporting property. Therefore, when the light emitting layer has such a phosphorescent material at a high concentration, a CBP hole transporting layer which is a light emitting layer host material. In addition to this, holes are easily injected into the hole blocking layer through the phosphorescent material. Conventionally, in such a state, although the host material can be prevented from oxidative deterioration, the hole blocking material is remarkably oxidized and deteriorated by excessive holes, and as a result, the driving life of the organic EL element is shortened.

そこで、発明が解決しようとする課題は、延命化が図れる有機EL素子を提供することが一例として挙げられる。   Thus, the problem to be solved by the invention is to provide an organic EL element capable of extending the life as an example.

本発明の有機EL素子は、一対の陰極及び陽極間に配置された発光層と、前記発光層及び前記陽極間に配置された正孔輸送層と、前記発光層及び前記陰極間に配置された電子輸送層と、を含む有機EL素子であって、前記発光層が、第1燐光材料と、第2燐光材料と、含窒素芳香族複素環を有するホスト材料とからなり、前記第2燐光材料の励起三重項準位は、前記第1燐光材料の励起三重項準位より高く、前記ホスト材料は、前記第1燐光材料、及び、前記第2燐光材料より、少なくとも0.5eV以上大きいイオン化ポテンシャルエネルギーを有することを特徴とする。   The organic EL device of the present invention is a light emitting layer disposed between a pair of cathode and anode, a hole transport layer disposed between the light emitting layer and the anode, and disposed between the light emitting layer and the cathode. An organic EL element including an electron transport layer, wherein the light-emitting layer includes a first phosphorescent material, a second phosphorescent material, and a host material having a nitrogen-containing aromatic heterocycle, and the second phosphorescent material The excited triplet level of the first phosphorescent material is higher than the excited triplet level of the first phosphorescent material, and the host material has an ionization potential that is at least 0.5 eV higher than the first phosphorescent material and the second phosphorescent material. It has energy.

本発明においては、ホスト材料は、第1及び第2燐光材料より、少なくとも0.5eV以上大きいイオン化ポテンシャルエネルギーを有するように、それらのイオン化ポテンシャルエネルギーの差を大きくすることにより、正孔が確実に、第1及び第2燐光材料に捕捉され、過剰な正孔により、ホスト材料が酸化劣化することを防止することができる。本発明では、正孔ブロッキング層を用いた場合、電子輸送層への正孔の過剰な供給を防止している。   In the present invention, the host material has a larger ionization potential energy than the first and second phosphorescent materials by at least 0.5 eV or more so that positive holes can be reliably obtained. The host material can be prevented from being oxidized and deteriorated due to the excessive holes trapped by the first and second phosphorescent materials. In the present invention, when a hole blocking layer is used, excessive supply of holes to the electron transport layer is prevented.

本発明の実施形態においては、発光層ホスト材料として、BAlqを用い得、特許文献1及び2の上記先行技術では、ホスト材料としてCBPが開示されているのみで、特許文献3ではフルオレンの多量体が開示されているのみである。また、特許文献2の上記先行技術では、発光層ホスト材料と補助ドーパントとのHOMOレベルの差を0.4eV未満としているが、本発明においては、発光層ホスト材料と、補助ドーパントに相当する第2燐光材料のイオン化ポテンシャルエネルギーの差は、0.5eV以上であることが必要である。   In the embodiment of the present invention, BAlq can be used as the light emitting layer host material. In the above prior arts of Patent Documents 1 and 2, only CBP is disclosed as the host material. In Patent Document 3, a fluorene multimer is disclosed. Is only disclosed. In the above prior art of Patent Document 2, the difference in the HOMO level between the light emitting layer host material and the auxiliary dopant is less than 0.4 eV. In the present invention, the light emitting layer host material and the auxiliary dopant correspond to the first. The difference in ionization potential energy between the two phosphorescent materials needs to be 0.5 eV or more.

本発明による有機EL素子を示す構造図である。1 is a structural diagram showing an organic EL device according to the present invention. 本発明による有機EL素子を示す構造図である。1 is a structural diagram showing an organic EL device according to the present invention. 本発明による有機EL素子を示す構造図である。1 is a structural diagram showing an organic EL device according to the present invention.

符号の説明Explanation of symbols

1 ガラス基板
2 透明電極(陽極)
3 有機正孔輸送層
3a 正孔注入層
4 有機発光層
6 電子輸送層
7 金属電極(陰極)
7a 電子注入層
1 Glass substrate 2 Transparent electrode (anode)
3 Organic hole transport layer 3a Hole injection layer 4 Organic light emitting layer 6 Electron transport layer 7 Metal electrode (cathode)
7a Electron injection layer

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下に本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の有機EL素子は、図1に示すように、少なくとも陽極2、正孔輸送層3、発光層4、電子輸送層6及び陰極7から構成され、例えば、ガラスなどの透明基板1上にて、透明な陽極2、有機化合物からなる正孔輸送層3、有機化合物からなる発光層4、有機化合物からなる電子輸送層6及び低仕事関数の材料の例えば金属陰極7が積層されて得られる。   As shown in FIG. 1, the organic EL device of the present invention is composed of at least an anode 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 6 and a cathode 7, for example, on a transparent substrate 1 such as glass. Thus, a transparent anode 2, a hole transport layer 3 made of an organic compound, a light emitting layer 4 made of an organic compound, an electron transport layer 6 made of an organic compound, and a metal cathode 7 of a low work function material, for example, are obtained. .

他の有機EL素子構造には、上記構造に加えて、図2に示すように、電子輸送層6及び陰極7間にLi2Oなどの電子注入層7aを薄膜として積層、成膜したものも含まれる。さらに、他の有機EL素子構造には、上記構造に加えて、図3に示すように、陽極2及び正孔輸送層3間に、銅フタロシアニン(CuPc)などのポルフィリン化合物などの正孔注入層3aを薄膜として積層、成膜したものも含まれる。In addition to the above structure, other organic EL element structures include those in which an electron injection layer 7a such as Li 2 O is laminated as a thin film between the electron transport layer 6 and the cathode 7 as shown in FIG. included. Further, in addition to the above structure, other organic EL element structures include a hole injection layer such as a porphyrin compound such as copper phthalocyanine (CuPc) between the anode 2 and the hole transport layer 3 as shown in FIG. Also included are those obtained by laminating and forming 3a as a thin film.

陰極1には、例えばアルミニウム、マグネシウム、インジウム、銀又は各々の合金等の仕事関数が小さな金属からなり厚さが約100〜5000オングストローム程度のものが用い得る。また、例えば陽極2には、インジウムすず酸化物(以下、ITO)等の仕事関数の大きな導電性材料からなり厚さが1000〜3000オングストローム程度で、又は金で厚さが800〜1500オングストローム程度のものが用い得る。なお、金を電極材料として用いた場合には、電極は半透明の状態となる。陰極及び陽極について一方が透明又は半透明であればよい。   The cathode 1 may be made of a metal having a small work function such as aluminum, magnesium, indium, silver, or an alloy of each of which has a thickness of about 100 to 5000 angstroms. Further, for example, the anode 2 is made of a conductive material having a large work function such as indium tin oxide (hereinafter referred to as ITO) and has a thickness of about 1000 to 3000 angstroms or gold and a thickness of about 800 to 1500 angstroms. Things can be used. In addition, when gold is used as an electrode material, the electrode is in a translucent state. One of the cathode and the anode may be transparent or translucent.

本実施形態の有機EL素子においては、発光層4は電子輸送能を有する有機材料をホスト材料として、燐光材料をゲスト材料としてドーピングしたものであり、該有機ホスト材料のイオン化ポテンシャルエネルギー(Ip)が第1及び第2燐光材料より、少なくとも0.5eV以上大きいイオン化ポテンシャルエネルギーを有していることを特徴とするものである。発光層4において、その膜厚が5nm〜3000nmであり、第1及び第2燐光材料の合計の含有量は、50重量%以下が全体の種類の材料に対してドープされていることが好ましい。燐光材料を介して正孔の発光層から電子輸送層への通過を阻害するためである。   In the organic EL device of this embodiment, the light emitting layer 4 is doped with an organic material having an electron transporting ability as a host material and a phosphorescent material as a guest material, and the ionization potential energy (Ip) of the organic host material is It has an ionization potential energy that is at least 0.5 eV or more greater than that of the first and second phosphorescent materials. In the light emitting layer 4, the film thickness is 5 nm to 3000 nm, and the total content of the first and second phosphorescent materials is preferably 50% by weight or less doped with respect to all kinds of materials. This is for inhibiting the passage of holes from the light emitting layer to the electron transporting layer through the phosphorescent material.

発光層4ホスト材料としては、例えば、下記(A1)で示されるキノリン環を含むアルミキレート錯体のいずれでも良い。   As a host material of the light emitting layer 4, any of the aluminum chelate complexes containing the quinoline ring shown by the following (A1) may be used, for example.

(A1)

Figure 2008120355
上記(A1)中、Rはアルキル基、オキシ基、アミノ基、又は少なくとも1個の炭素原子を有する炭化水素基が置換基に含まれ、いずれの炭化水素部分においても、炭素原子数が1〜10個であり、R〜Rは独立に、水素原子、アルキル基、オキシ基、アミノ基、又は少なくとも1個の炭素原子を有する炭化水素基が置換基に含まれ、いずれの炭化水素部分においても、炭素原子数が1〜10個であり、また、R、R、及びRは、独立に、シアノ、ハロゲン、並びに10個以下の炭素原子を含有するα−ハロアルキル、α−ハロアルコキシ、アミド、スルホニル、カルボニル、カルボニルオキシ、及びオキシカルボニル置換基、から選択され得、Lは、下記(A2)の何れかである。(A1)
Figure 2008120355
In the above (A1), R 1 is an alkyl group, an oxy group, an amino group, or a hydrocarbon group having at least one carbon atom in the substituent, and any hydrocarbon moiety has 1 carbon atom. R 2 to R 6 are each independently a hydrogen atom, an alkyl group, an oxy group, an amino group, or a hydrocarbon group having at least one carbon atom, and any hydrocarbon. The moiety also has 1 to 10 carbon atoms, and R 4 , R 5 , and R 6 are independently cyano, halogen, and α-haloalkyl containing 10 or less carbon atoms, α -Haloalkoxy, amide, sulfonyl, carbonyl, carbonyloxy, and oxycarbonyl substituents, wherein L is any of (A2) below.

(A2)

Figure 2008120355
上記(A2)中、R〜R11は、独立して、水素又は炭素原子数1〜12個の炭化水素基を表し、また、R及びRは一緒に、あるいはR及びRは一緒に縮合ベンゾ環を形成され得、R12〜R26は、独立して、水素又は炭素原子数1〜12個の炭化水素基を表し、また、R12及びR13若しくはR13及びR14は一緒に、R17及びR18若しくはR18及びR19は一緒に、並びにR22及びR23若しくはR23及びR24は一緒に、縮合ベンゾ環を形成され得る。(A2)
Figure 2008120355
In the above (A2), R 7 to R 11 independently represent hydrogen or a hydrocarbon group having 1 to 12 carbon atoms, and R 7 and R 8 together, or R 8 and R 9 Can form a fused benzo ring together, R 12 to R 26 independently represent hydrogen or a hydrocarbon group having 1 to 12 carbon atoms, and R 12 and R 13 or R 13 and R 14 together, R 17 and R 18 or R 18 and R 19 together, and R 22 and R 23 or R 23 and R 24 together can form a fused benzo ring.

かかるアルミキレート錯体には、下記式(44)〜(73)に示されるものもあるが、これらに限定されない。   Although there exist some which are shown by following formula (44)-(73) in this aluminum chelate complex, it is not limited to these.

(44)

Figure 2008120355
(44)
Figure 2008120355

(45)

Figure 2008120355
(45)
Figure 2008120355

(46)

Figure 2008120355
(46)
Figure 2008120355

(47)

Figure 2008120355
(47)
Figure 2008120355

(48)

Figure 2008120355
(48)
Figure 2008120355

(49)

Figure 2008120355
(49)
Figure 2008120355

(50)

Figure 2008120355
(50)
Figure 2008120355

(51)

Figure 2008120355
(51)
Figure 2008120355

(52)

Figure 2008120355
(52)
Figure 2008120355

(53)

Figure 2008120355
(53)
Figure 2008120355

(54)

Figure 2008120355
(54)
Figure 2008120355

(55)

Figure 2008120355
(55)
Figure 2008120355

(56)

Figure 2008120355
(56)
Figure 2008120355

(57)

Figure 2008120355
(57)
Figure 2008120355

(58)

Figure 2008120355
(58)
Figure 2008120355

(59)

Figure 2008120355
(59)
Figure 2008120355

(60)

Figure 2008120355
(60)
Figure 2008120355

(61)

Figure 2008120355
(61)
Figure 2008120355

(62)

Figure 2008120355
(62)
Figure 2008120355

(63)

Figure 2008120355
(63)
Figure 2008120355

(64)

Figure 2008120355
(64)
Figure 2008120355

(65)

Figure 2008120355
(65)
Figure 2008120355

(66)

Figure 2008120355
(66)
Figure 2008120355

(67)

Figure 2008120355
(67)
Figure 2008120355

(68)

Figure 2008120355
(68)
Figure 2008120355

(69)

Figure 2008120355
(69)
Figure 2008120355

(70)

Figure 2008120355
(70)
Figure 2008120355

(71)

Figure 2008120355
(71)
Figure 2008120355

(72)

Figure 2008120355
(72)
Figure 2008120355

(73)

Figure 2008120355
なお、上記式中、Buはブチル基を示し、t−Buは第3級ブチル基を示す。(73)
Figure 2008120355
In the above formula, Bu represents a butyl group, and t-Bu represents a tertiary butyl group.

また、本実施形態の有機EL素子の発光層4の電子輸送性ホスト材料は、下記式(B1)〜(B3)に示すようなピリジン環とカルバゾリル基を含む電子輸送性の含窒素芳香族複素環化合物であっても良い。   Moreover, the electron transporting host material of the light emitting layer 4 of the organic EL element of this embodiment is an electron transporting nitrogen-containing aromatic complex containing a pyridine ring and a carbazolyl group as shown in the following formulas (B1) to (B3). It may be a ring compound.

(B1)

Figure 2008120355
上記式(B1)中、Zは、直接結合、あるいは、カルバゾール環の窒素原子同士を共役可能とする任意の連結基を表す。Qは、Gにつながる直接結合を表す。Bは、ヘテロ原子としてN原子をn個有する六員環の芳香族複素環である。nは、1〜3の整数である。Gは、環BのN原子のオルト位及びパラ位にあるC原子に結合する。Gは、Qにつながる場合は、Qにつながる直接結合または任意の連結基を表す。Gは、Qにつながらない場合は、芳香族炭化水素基を表す。mは、3〜5の整数である。一分子中に存在する複数個のGは、同一であっても異なっていてもよい。環Bは、G以外にも置換基を有していてもよい。(B1)
Figure 2008120355
In the above formula (B1), Z represents a direct bond or an arbitrary linking group capable of conjugating nitrogen atoms of the carbazole ring. Q represents a direct bond leading to G. B is a 6-membered aromatic heterocycle having n N atoms as heteroatoms. n is an integer of 1 to 3. G is bonded to C atoms at the ortho and para positions of the N atom of ring B. When G is connected to Q, it represents a direct bond or any linking group connected to Q. When G does not lead to Q, it represents an aromatic hydrocarbon group. m is an integer of 3-5. A plurality of G present in one molecule may be the same or different. Ring B may have a substituent other than G.

(B2)

Figure 2008120355
上記式(B2)中、Z1及びZ2は、直接結合または任意の連結基を表す。Z1、Z2及び環Aは、置換基を有していてもよい。Z1及びZ2は、同一であっても異なっていてもよい。Qは、Gにつながる直接結合を表す。Bは、ヘテロ原子としてN原子をn個有する六員環の芳香族複素環である。Gは、環BのN原子のオルト位及びパラ位にあるC原子に結合する。Gは、Qにつながる場合は、Qにつながる直接結合または任意の連結基を表す。Gは、Qにつながらない場合は、芳香族炭化水素基を表す。mは、3〜5の整数である。一分子中に存在する複数個のGは、同一であっても異なっていてもよい。環Bは、G以外にも置換基を有していてもよい。(B2)
Figure 2008120355
In said formula (B2), Z1 and Z2 represent a direct bond or arbitrary coupling groups. Z1, Z2 and ring A may have a substituent. Z1 and Z2 may be the same or different. Q represents a direct bond leading to G. B is a 6-membered aromatic heterocycle having n N atoms as heteroatoms. G is bonded to C atoms at the ortho and para positions of the N atom of ring B. When G is connected to Q, it represents a direct bond or any linking group connected to Q. When G does not lead to Q, it represents an aromatic hydrocarbon group. m is an integer of 3-5. A plurality of G present in one molecule may be the same or different. Ring B may have a substituent other than G.

(B3)

Figure 2008120355
上記式(B3)中、Z1及びZ2は、直接結合又は任意の連結基を表す。Z1及びZ2は同一であっても異なっていても良い。環B1及び環B2は、ピリジン環である。Z1、Z2、環B1及び環B2は、それぞれ置換基を有していても良い。(B3)
Figure 2008120355
In said formula (B3), Z1 and Z2 represent a direct bond or arbitrary coupling groups. Z1 and Z2 may be the same or different. Ring B1 and ring B2 are pyridine rings. Z1, Z2, ring B1 and ring B2 may each have a substituent.

かかる含窒素芳香族複素環化合物の具体例としては、下記式(74)〜(79)のような化合物が挙げられる。   Specific examples of such nitrogen-containing aromatic heterocyclic compounds include compounds represented by the following formulas (74) to (79).

(74)

Figure 2008120355
(74)
Figure 2008120355

(75)

Figure 2008120355
(75)
Figure 2008120355

(76)

Figure 2008120355
(76)
Figure 2008120355

(77)

Figure 2008120355
(77)
Figure 2008120355

(78)

Figure 2008120355
(78)
Figure 2008120355

(79)

Figure 2008120355
以上のように、高い電子輸送性を期待できる材料、つまり、キノリン環やピリジン環を有する含窒素複素環化合物を発光層ホスト材料とする。(79)
Figure 2008120355
As described above, a material that can be expected to have a high electron transport property, that is, a nitrogen-containing heterocyclic compound having a quinoline ring or a pyridine ring is used as the light emitting layer host material.

さらにまた、本実施形態の有機EL素子の発光層4における第1及び第2燐光材料は、下記一般式(C1)で示されるいずれの有機金属錯体であれば良い。   Furthermore, the first and second phosphorescent materials in the light emitting layer 4 of the organic EL element of this embodiment may be any organometallic complex represented by the following general formula (C1).

(C1)

Figure 2008120355
式(C1)中、MはOs、Ir、Pt、Auのいずれかの金属であり、mは該金属の価数を表し、R〜R11は独立に、水素原子、アルキル基、オキシ基、アミノ基、又は少なくとも1個の炭素原子を有する炭化水素基が置換基に含まれ、いずれの炭化水素部分においても、炭素原子数が1〜10個であり、また、R〜R11は、独立に、シアノ、ハロゲン、並びに10個以下の炭素原子を含有するα−ハロアルキル、α−ハロアルコキシ、アミド、スルホニル、カルボニル、カルボニルオキシ、及びオキシカルボニル置換基、から選択され得、また、R及びRは、一緒に、あるいはR及びRは一緒に、あるいはR及びRは一緒に、あるいはR及びRは一緒に、あるいはR及びRは一緒に、あるいはR及びRは一緒に、あるいはR及びRは一緒に、縮合ベンゾ環を形成され得る。
イオン化ポテンシャルエネルギーは、光電子分光法により求めることができる。上記式(44)乃至(79)の化合物のイオン化ポテンシャルエネルギーを、光電子分光法(理研計器AC−1)により測定した結果を表1にまとめる。(C1)
Figure 2008120355
In the formula (C1), M is a metal selected from Os, Ir, Pt, and Au, m represents the valence of the metal, and R 1 to R 11 are independently a hydrogen atom, an alkyl group, or an oxy group. , An amino group, or a hydrocarbon group having at least one carbon atom is included in the substituent, and in any hydrocarbon portion, the number of carbon atoms is 1 to 10, and R 1 to R 11 are , Independently, cyano, halogen, and α-haloalkyl, α-haloalkoxy, amide, sulfonyl, carbonyl, carbonyloxy, and oxycarbonyl substituents containing up to 10 carbon atoms, and R 1 and R 2 together, R 2 and R 3 together, R 3 and R 4 together, R 4 and R 5 together, R 5 and R 6 together, or R 6 Fine R 7 together, or R 7 and R 8 together may form a fused benzo ring.
The ionization potential energy can be obtained by photoelectron spectroscopy. Table 1 summarizes the results of measuring the ionization potential energy of the compounds of the above formulas (44) to (79) by photoelectron spectroscopy (RIKEN KEIKI AC-1).

Figure 2008120355
実施形態において、発光中心となる第1燐光材料に加えて、第2燐光材料を発光層に添加する。
Figure 2008120355
In the embodiment, a second phosphorescent material is added to the light emitting layer in addition to the first phosphorescent material that becomes the emission center.

発光層ホスト材料のイオン化ポテンシャルエネルギーは、第1及び第2燐光材料のイオン化ポテンシャルエネルギーより、0.5eV以上大きいものが選択される。   The ionization potential energy of the light emitting layer host material is selected to be 0.5 eV or greater than the ionization potential energy of the first and second phosphorescent materials.

かかる第1及び第2燐光材料には、下記式(80)〜(91)に示されるものもあるが、これらに限定されない。   Some of the first and second phosphorescent materials are represented by the following formulas (80) to (91), but are not limited thereto.

(80)

Figure 2008120355
(80)
Figure 2008120355

(81)

Figure 2008120355
(81)
Figure 2008120355

(82)

Figure 2008120355
(82)
Figure 2008120355

(83)

Figure 2008120355
(83)
Figure 2008120355

(84)

Figure 2008120355
(84)
Figure 2008120355

(85)

Figure 2008120355
(85)
Figure 2008120355

(86)

Figure 2008120355
(86)
Figure 2008120355

(87)

Figure 2008120355
(87)
Figure 2008120355

(88)

Figure 2008120355
(88)
Figure 2008120355

(89)

Figure 2008120355
(89)
Figure 2008120355

(90)

Figure 2008120355
(90)
Figure 2008120355

(91)

Figure 2008120355
燐光材料の励起三重項準位は、燐光発光スペクトルから求めることができる。燐光発光スペクトルの最大強度波長から求めた励起三重項準位と、前記発光層ホスト材料と同様に測定したイオン化ポテンシャルエネルギーを表2にまとめる。(91)
Figure 2008120355
The excited triplet level of the phosphorescent material can be determined from the phosphorescence emission spectrum. Table 3 summarizes the excited triplet level obtained from the maximum intensity wavelength of the phosphorescence emission spectrum and the ionization potential energy measured in the same manner as the light emitting layer host material.

Figure 2008120355
さらにまた、実施形態において、正孔輸送層3に含まれる成分は、例えば、下記式(7)〜(28)に示される正孔輸送能力を有する物質である。
Figure 2008120355
Furthermore, in the embodiment, the component contained in the hole transport layer 3 is a substance having a hole transport ability represented by the following formulas (7) to (28), for example.

(7)

Figure 2008120355
(7)
Figure 2008120355

(8)

Figure 2008120355
(8)
Figure 2008120355

(9)

Figure 2008120355
(9)
Figure 2008120355

(10)

Figure 2008120355
(10)
Figure 2008120355

(11)

Figure 2008120355
(11)
Figure 2008120355

(12)

Figure 2008120355
(12)
Figure 2008120355

(13)

Figure 2008120355
(13)
Figure 2008120355

(14)

Figure 2008120355
(14)
Figure 2008120355

(15)

Figure 2008120355
(15)
Figure 2008120355

(16)

Figure 2008120355
(16)
Figure 2008120355

(17)

Figure 2008120355
(17)
Figure 2008120355

(18)

Figure 2008120355
(18)
Figure 2008120355

(19)

Figure 2008120355
(19)
Figure 2008120355

(20)

Figure 2008120355
(20)
Figure 2008120355

(21)

Figure 2008120355
(21)
Figure 2008120355

(22)

Figure 2008120355
(22)
Figure 2008120355

(23)

Figure 2008120355
(23)
Figure 2008120355

(24)

Figure 2008120355
(24)
Figure 2008120355

(25)

Figure 2008120355
(25)
Figure 2008120355

(26)

Figure 2008120355
(26)
Figure 2008120355

(27)

Figure 2008120355
(27)
Figure 2008120355

(28)

Figure 2008120355
正孔輸送層の膜厚は5nm〜3000nmであり、単層に限られず、複数の異なる材料から構成されていてもよい。複数の層から構成される場合において、発光層と隣接する正孔輸送層を第一の正孔輸送層とし、それ以外の正孔輸送層の構成層よりも第一の正孔輸送層を第一還元電位の小さいワイドバンドギャップの正孔輸送性材料から構成すると、発光層内で生成した励起子の発光層内への束縛がより促進され、効率が向上する場合がある。(28)
Figure 2008120355
The thickness of the hole transport layer is 5 nm to 3000 nm, and is not limited to a single layer, and may be composed of a plurality of different materials. In the case of being composed of a plurality of layers, the hole transporting layer adjacent to the light emitting layer is the first hole transporting layer, and the first hole transporting layer is more than the other constituent layers of the hole transporting layer. When a hole transporting material having a wide band gap with a small one reduction potential is used, the binding of excitons generated in the light emitting layer into the light emitting layer is further promoted, and the efficiency may be improved.

さらにまた、実施形態において、実施形態において、電子輸送層6に含まれる成分は、例えば、例えば、下記式(29)〜(43)に示される物質から選択され得る。   Furthermore, in the embodiment, in the embodiment, the component included in the electron transport layer 6 may be selected from, for example, substances represented by the following formulas (29) to (43).

(29)

Figure 2008120355
(29)
Figure 2008120355

(30)

Figure 2008120355
(30)
Figure 2008120355

(31)

Figure 2008120355
(31)
Figure 2008120355

(32)

Figure 2008120355
(32)
Figure 2008120355

(33)

Figure 2008120355
(33)
Figure 2008120355

(34)

Figure 2008120355
(34)
Figure 2008120355

(35)

Figure 2008120355
(35)
Figure 2008120355

(36)

Figure 2008120355
(36)
Figure 2008120355

(37)

Figure 2008120355
(37)
Figure 2008120355

(38)

Figure 2008120355
(38)
Figure 2008120355

(39)

Figure 2008120355
(39)
Figure 2008120355

(40)

Figure 2008120355
(40)
Figure 2008120355

(41)

Figure 2008120355
(41)
Figure 2008120355

(42)

Figure 2008120355
(42)
Figure 2008120355

(43)

Figure 2008120355
なお、上記式中、Buはブチル基を示し、t−Buは第3級ブチル基を示す。(43)
Figure 2008120355
In the above formula, Bu represents a butyl group, and t-Bu represents a tertiary butyl group.

実施形態において、電子輸送層6に含まれる成分は、上記有機ホスト材料として挙げた電子輸送能力を有する有機材料からも選択できる。   In the embodiment, the component contained in the electron transport layer 6 can be selected from the organic materials having the electron transport capability mentioned as the organic host material.

電子輸送層の膜厚は5nm〜3000nmであり、単層に限られず、複数の異なる材料から構成されていてもよい。複数の層から構成される場合において、発光層と隣接する電子輸送層を第一の電子輸送層とし、それ以外の電子輸送層の構成層よりも第一の電子輸送層を第一酸化電位の大きいワイドバンドギャップの電子輸送性材料から構成すると、発光層内で生成した励起子の発光層内への束縛がより促進され、効率が向上する場合がある。   The film thickness of the electron transport layer is 5 nm to 3000 nm, and is not limited to a single layer, and may be composed of a plurality of different materials. In the case of being composed of a plurality of layers, the electron transport layer adjacent to the light-emitting layer is the first electron transport layer, and the first electron transport layer has a first oxidation potential more than the constituent layers of the other electron transport layers. When the electron transporting material has a large wide band gap, the binding of excitons generated in the light emitting layer into the light emitting layer is further promoted, and the efficiency may be improved.

ガラス基板上のITOの陽極(膜厚110nm)上に、以下のように材料を順次成膜し、有機EL素子を作製した。   On the ITO anode (thickness 110 nm) on the glass substrate, materials were sequentially formed as follows to produce an organic EL element.

真空蒸着により銅フタロシアニンを成膜し、膜厚25nmの正孔注入層を形成した。   Copper phthalocyanine was deposited by vacuum deposition to form a hole injection layer having a thickness of 25 nm.

次に、同様に上記式(22)のNPB(4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル)を成膜し、膜厚55nmの正孔輸送層を形成した。   Next, similarly, NPB (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) of the above formula (22) is formed to form a 55 nm-thick hole transport layer. did.

さらに、正孔輸送層上に、第1燐光材料として上記式(89)のIr(piq)2acac(ビス(フェニルイソキノリン)イリジウム アセチルアセトナート)と、第2燐光材料として上記式(86)のIr(ppy)2acac(ビス(2−フェニルピリジン)イリジウム アセチルアセトナート)を用い、並びにホスト材料として上記式(50)のBAlq(ビス(2−メチル−8−キノリノラト−N1,O8)−(1,1’−ビフェニル−4−オラト)アルミニウム)を用い、共真空蒸着により40nmの発光層を形成した。このとき、第1燐光材料であるIr(piq)2acacの発光層中における含有量を5重量%に調整した。また、第2燐光材料であるIr(ppy)2acacの発光層中における含有量を、下記の表3に示すように、0重量%、19重量%、32重量%、48重量%に調整した。   Further, on the hole transport layer, Ir (piq) 2acac (bis (phenylisoquinoline) iridium acetylacetonate) of the above formula (89) as the first phosphorescent material and Ir of the above formula (86) as the second phosphorescent material. (ppy) 2acac (bis (2-phenylpyridine) iridium acetylacetonate), and BAlq (bis (2-methyl-8-quinolinolato-N1, O8)-(1, 1′-biphenyl-4-olato) aluminum) was used to form a 40 nm light emitting layer by co-vacuum deposition. At this time, the content of Ir (piq) 2acac as the first phosphorescent material in the light emitting layer was adjusted to 5% by weight. Further, the content of Ir (ppy) 2acac as the second phosphorescent material in the light emitting layer was adjusted to 0 wt%, 19 wt%, 32 wt%, and 48 wt% as shown in Table 3 below.

次に、この混合発光層上に、上記式(29)のAlq3を37.5nmの厚さに蒸着し、電子輸送層を形成した。   Next, Alq3 of the above formula (29) was vapor-deposited to a thickness of 37.5 nm on this mixed light emitting layer to form an electron transport layer.

さらに、発光層上に電子注入層としてLiFを膜厚1nmで蒸着した。   Furthermore, LiF was vapor-deposited with a film thickness of 1 nm as an electron injection layer on the light emitting layer.

さらに、電子注入層上に陰極としてアルミニウム(Al)を膜厚100nm積層し、有機EL素子サンプル1〜4を作製した。   Furthermore, 100 nm-thickness of aluminum (Al) was laminated as a cathode on the electron injection layer, and organic EL element samples 1 to 4 were produced.

これらの有機EL素子サンプルを、電流密度20mA/cmで連続駆動し、表3に示すように、初期における輝度、電流効率、その輝度が測定開始直後から50%減少する時間を測定した。These organic EL element samples were continuously driven at a current density of 20 mA / cm 2 , and as shown in Table 3, the initial luminance, current efficiency, and the time during which the luminance was reduced by 50% were measured.

Figure 2008120355
表3の素子サンプル1が比較例、素子サンプル2が実施例に相当する。発光層中に第2燐光材料として、Ir(ppy)2acacを19重量%含む素子サンプル2の電流効率は、比較例である素子サンプル1の0.6倍となったが、輝度半減時間は2.3倍と大幅に改善している。
Figure 2008120355
The element sample 1 in Table 3 corresponds to a comparative example, and the element sample 2 corresponds to an example. The current efficiency of the device sample 2 containing 19% by weight of Ir (ppy) 2acac as the second phosphorescent material in the light emitting layer was 0.6 times that of the device sample 1 of the comparative example, but the luminance half time was 2 It has improved significantly by 3 times.

燐光材料に捕捉された正孔の離脱として、熱的励起による離脱と電界印加時のトンネル効果による離脱が考えられる。有機EL素子駆動時には、10V/mに及び高電界が印加される。このような状態においても、発光層ホスト材料と燐光材料のイオン化ポテンシャルエンルギーの差は0.5eV以上とすることにより、正孔が確実に、第1及び第2燐光材料に捕捉され、過剰な正孔により、ホスト材料が酸化劣化することを防止することができ、駆動寿命が改善したと考える。As the detachment of the holes trapped in the phosphorescent material, detachment due to thermal excitation and detachment due to the tunnel effect when an electric field is applied can be considered. When driving the organic EL element, a high electric field of 10 6 V / m is applied. Even in such a state, by setting the difference in ionization potential energy between the light emitting layer host material and the phosphorescent material to be 0.5 eV or more, holes are surely captured by the first and second phosphorescent materials, and an excessive positive polarity is obtained. The holes can prevent the host material from being deteriorated by oxidation, and the driving life is considered to be improved.

また、BAlqの電子及びホールの移動度を、タイムオブフライト法により測定したところ、電子移動度1.0×10−5cm/Vs、正孔移動度2.7×10−7cm/Vsであった。BAlqは、正孔移動度に比較して、電子移動度の方が高く電子輸送性材料と言える。Further, when the mobility of electrons and holes in BAlq was measured by the time-of-flight method, the electron mobility was 1.0 × 10 −5 cm 2 / Vs, the hole mobility was 2.7 × 10 −7 cm 2 / Vs. BAlq is higher in electron mobility than hole mobility and can be said to be an electron transporting material.

上記実施例に記すように、発光層を、電子輸送性ホスト材料であるBAlq、及び、第1燐光材料であるIr(piq)2acacに加えて、第2燐光材料としてIr(ppy)2acacを添加した方が駆動寿命が改善されている。これは、第2燐光材料により、電子輸送性ホスト材料であるBAlqの酸化劣化が抑制された結果と考えられる。つまり、発光層中に注入された正孔は、第1及び第2燐光材料に確実に捕捉され、過剰な正孔がホスト材料にとどまることを防ぐことができる。また、発光層中における第1及び第2燐光材料の合計の含有量は、24%に及んでいるので、これら燐光発光材料に直接的に正孔が注入されることも考えられる。   As described in the above example, Ir (ppy) 2acac is added as a second phosphorescent material in addition to BAlq, which is an electron transporting host material, and Ir (piq) 2acac, which is a first phosphorescent material. The driving life is improved. This is considered to be a result of suppressing the oxidative degradation of BAlq, which is an electron transporting host material, by the second phosphorescent material. That is, the holes injected into the light emitting layer are surely captured by the first and second phosphorescent materials, and excess holes can be prevented from remaining in the host material. Further, since the total content of the first and second phosphorescent materials in the light emitting layer reaches 24%, it is considered that holes are directly injected into these phosphorescent light emitting materials.

このように、正孔を燐光材料上に確実に捕捉するといった観点から、ホスト材料は、第1及び第2燐光材料より、少なくとも0.5eV以上大きいイオン化ポテンシャルエネルギーを有していることが必要である。ただし、第1燐光材料を発光中心として考えているので、第1燐光材料より第2燐光材料の方が、高い励起三重項準位を有することが必須となる。また、第1及び第2燐光材料との発光層中における合計の含有量は、50重量%以下であることが好ましい。これ以上の含有量になると、Ir(piq)2acac、Ir(ppy)2acacのような燐光材料は正孔輸送性を有するため、正孔が発光層中に留まらず、燐光材料を介して電子輸送層へと通過してしまうことにより、効率の低下が著しいからである。   Thus, from the viewpoint of reliably capturing holes on the phosphorescent material, the host material needs to have an ionization potential energy that is at least 0.5 eV or more larger than that of the first and second phosphorescent materials. is there. However, since the first phosphorescent material is considered as the emission center, it is essential that the second phosphorescent material has a higher excited triplet level than the first phosphorescent material. The total content of the first and second phosphorescent materials in the light emitting layer is preferably 50% by weight or less. If the content exceeds this, phosphorescent materials such as Ir (piq) 2acac and Ir (ppy) 2acac have hole transporting properties, so that holes do not stay in the light-emitting layer, and electrons are transported through the phosphorescent material. This is because the efficiency is remarkably reduced by passing through the layers.

これと同様な駆動寿命改善の効果は、発光層を、電子輸送性ホスト材料と、発光層中に高濃度に含有させた第1燐光材料のみから構成しても得られるが、この場合は、所謂、濃度消光により、効率の低下が著しい。   The same driving life improvement effect can be obtained even when the light emitting layer is composed of only the electron transporting host material and the first phosphorescent material contained in the light emitting layer at a high concentration. The so-called concentration quenching significantly reduces the efficiency.

上記実施例では、発光層を、ホスト材料BAlq、第1燐光材料Ir(piq)2acac、第2燐光発光材Ir(ppy)2acacから構成したが、これらに限定されない。   In the above embodiment, the light emitting layer is composed of the host material BAlq, the first phosphorescent material Ir (piq) 2acac, and the second phosphorescent light emitting material Ir (ppy) 2acac, but is not limited thereto.

Claims (5)

一対の陰極及び陽極間に配置された発光層と、前記発光層及び前記陽極間に配置された正孔輸送層と、前記発光層及び前記陰極間に配置された電子輸送層と、を含む有機EL素子であって、前記発光層が、第1燐光材料と、第2燐光材料と、含窒素芳香族複素環を有するホスト材料とからなり、前記第2燐光材料の励起三重項準位は、前記第1燐光材料の励起三重項準位より高く、前記ホスト材料は、前記第1燐光材料、及び、前記第2燐光材料より、少なくとも0.5eV以上大きいイオン化ポテンシャルエネルギーを有することを特徴とする有機EL素子。   An organic layer comprising: a light emitting layer disposed between a pair of cathodes and an anode; a hole transport layer disposed between the light emitting layer and the anode; and an electron transport layer disposed between the light emitting layer and the cathode. In the EL element, the light-emitting layer includes a first phosphorescent material, a second phosphorescent material, and a host material having a nitrogen-containing aromatic heterocycle, and the excited triplet level of the second phosphorescent material is: It is higher than the excited triplet level of the first phosphorescent material, and the host material has an ionization potential energy of at least 0.5 eV or more higher than that of the first phosphorescent material and the second phosphorescent material. Organic EL element. 前記ホスト材料がアルミキレート錯体であり、前記アルミキレート錯体が下記一般式
Figure 2008120355
ただし、式(A1)中、Rはアルキル基、オキシ基、アミノ基、又は少なくとも1個の炭素原子を有する炭化水素基が置換基に含まれ、いずれの炭化水素部分においても、炭素原子数が1〜10個であり、R〜Rは独立に、水素原子、アルキル基、オキシ基、アミノ基、又は少なくとも1個の炭素原子を有する炭化水素基が置換基に含まれ、いずれの炭化水素部分においても、炭素原子数が1〜10個であり、また、R、R、及びRは、独立に、シアノ、ハロゲン、並びに10個以下の炭素原子を含有するα−ハロアルキル、α−ハロアルコキシ、アミド、スルホニル、カルボニル、カルボニルオキシ、及びオキシカルボニル置換基、から選択され得、Lは、下記式(A2)の何れかであり、
Figure 2008120355
ただし、式(A2)中、R〜R11は、独立して、水素又は炭素原子数1〜12個の炭化水素基を表し、また、R及びRは一緒に、あるいはR及びRは一緒に縮合ベンゾ環を形成され得、R12〜R26は、独立して、水素又は炭素原子数1〜12個の炭化水素基を表し、また、R12及びR13若しくはR13及びR14は一緒に、R17及びR18若しくはR18及びR19は一緒に、並びにR22及びR23若しくはR23及びR24は一緒に、縮合ベンゾ環を形成され得る、で表される化合物からなることを特徴とする請求項1に記載の有機EL素子。
The host material is an aluminum chelate complex, and the aluminum chelate complex has the following general formula
Figure 2008120355
However, in the formula (A1), R 1 is an alkyl group, an oxy group, an amino group, or a hydrocarbon group having at least one carbon atom in the substituent, and in any hydrocarbon part, the number of carbon atoms 1 to 10 and R 2 to R 6 independently include a hydrogen atom, an alkyl group, an oxy group, an amino group, or a hydrocarbon group having at least one carbon atom in the substituent. The hydrocarbon moiety also has 1 to 10 carbon atoms, and R 4 , R 5 , and R 6 are independently cyano, halogen, and α-haloalkyl containing 10 or fewer carbon atoms. , Α-haloalkoxy, amide, sulfonyl, carbonyl, carbonyloxy, and oxycarbonyl substituents, wherein L is any of the following formula (A2):
Figure 2008120355
However, in formula (A2), R 7 to R 11 independently represent hydrogen or a hydrocarbon group having 1 to 12 carbon atoms, and R 7 and R 8 together, or R 8 and R 9 together can form a condensed benzo ring, R 12 to R 26 independently represent hydrogen or a hydrocarbon group having 1 to 12 carbon atoms, and R 12 and R 13 or R 13 And R 14 together, R 17 and R 18 or R 18 and R 19 together, and R 22 and R 23 or R 23 and R 24 together can form a fused benzo ring. It consists of a compound, The organic EL element of Claim 1 characterized by the above-mentioned.
前記ホスト材料が、カルバゾリル基とピリジン環を有する化合物であることを特徴とする請求項1に記載の有機EL素子。   The organic EL device according to claim 1, wherein the host material is a compound having a carbazolyl group and a pyridine ring. 前記第1燐光材料、及び、前記第2燐光材料が有機金属錯体であり、前記有機金属錯体が下記一般式(C1)
Figure 2008120355
ただし、式(C1)中、MはOs、Ir、Pt、Auのいずれかの金属であり、mは該金属の価数を表し、R〜R11は独立に、水素原子、アルキル基、オキシ基、アミノ基、又は少なくとも1個の炭素原子を有する炭化水素基が置換基に含まれ、いずれの炭化水素部分においても、炭素原子数が1〜10個であり、また、R〜R11は、独立に、シアノ、ハロゲン、並びに10個以下の炭素原子を含有するα−ハロアルキル、α−ハロアルコキシ、アミド、スルホニル、カルボニル、カルボニルオキシ、及びオキシカルボニル置換基、から選択され得、また、R及びRは、一緒に、あるいはR及びRは一緒に、あるいはR及びRは一緒に、あるいはR及びRは一緒に、あるいはR及びRは一緒に、あるいはR及びRは一緒に、縮合ベンゾ環を形成され得る、で表される化合物からなることを特徴とする請求項1〜請求項3のいずれかに記載の有機EL素子。
The first phosphorescent material and the second phosphorescent material are organometallic complexes, and the organometallic complex is represented by the following general formula (C1)
Figure 2008120355
However, in Formula (C1), M is any metal of Os, Ir, Pt, Au, m represents the valence of the metal, R 1 to R 11 are independently a hydrogen atom, an alkyl group, The substituent includes an oxy group, an amino group, or a hydrocarbon group having at least one carbon atom, and any hydrocarbon moiety has 1 to 10 carbon atoms, and R 1 to R 11 can be independently selected from cyano, halogen, and α-haloalkyl, α-haloalkoxy, amide, sulfonyl, carbonyl, carbonyloxy, and oxycarbonyl substituents containing up to 10 carbon atoms, and R 1 and R 2 together, or R 2 and R 3 together, R 3 and R 4 together, R 4 and R 5 together, or R 6 and R 7 together. ,is there The organic EL device according to any one of R 7 and R 8 together claims 1 to 3, characterized in that it consists of fused benzo rings may be formed, a compound represented by the.
前記第1燐光材料と、前記第2燐光材料との発光層中における合計の含有量が、50重量%以下であることを特徴とする請求項1〜4のいずれかに記載の有機EL素子。 5. The organic EL element according to claim 1, wherein the total content of the first phosphorescent material and the second phosphorescent material in the light emitting layer is 50% by weight or less.
JP2009507346A 2007-03-29 2007-03-29 Organic EL device Pending JPWO2008120355A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/056873 WO2008120355A1 (en) 2007-03-29 2007-03-29 Organic el device

Publications (1)

Publication Number Publication Date
JPWO2008120355A1 true JPWO2008120355A1 (en) 2010-07-15

Family

ID=39807948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009507346A Pending JPWO2008120355A1 (en) 2007-03-29 2007-03-29 Organic EL device

Country Status (2)

Country Link
JP (1) JPWO2008120355A1 (en)
WO (1) WO2008120355A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384283B2 (en) 2007-09-20 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
DE102011008463B4 (en) * 2010-01-15 2022-01-13 Sumitomo Chemical Co., Ltd. Process for preparing a liquid composition for an organic semiconductor device
CN105810846B (en) 2014-12-31 2020-07-07 北京维信诺科技有限公司 Organic electroluminescent device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077674A (en) * 2000-10-04 2003-03-14 Mitsubishi Chemicals Corp Organic electroluminescent element
JP2004281386A (en) * 2003-03-13 2004-10-07 Samsung Sdi Co Ltd Organic electroluminescent display unit
JP2005259492A (en) * 2004-03-11 2005-09-22 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2005314414A (en) * 2004-04-02 2005-11-10 Semiconductor Energy Lab Co Ltd Organometallic complex, light emitting element and light emitting device using organometallic complex
JP2006188493A (en) * 2004-12-10 2006-07-20 Pioneer Electronic Corp Organic compound, charge transport material and organic electroluminescent element
WO2006137640A1 (en) * 2005-06-23 2006-12-28 Gracel Display Inc. Precursors of organometallic compounds for electroluminescent materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3970253B2 (en) * 2003-03-27 2007-09-05 三洋電機株式会社 Organic electroluminescence device
TWI252055B (en) * 2003-10-03 2006-03-21 Pioneer Corp Organic electroluminescent device
US20060125379A1 (en) * 2004-12-09 2006-06-15 Au Optronics Corporation Phosphorescent organic optoelectronic structure
JP4850521B2 (en) * 2005-02-28 2012-01-11 富士フイルム株式会社 Organic electroluminescence device
KR100787428B1 (en) * 2005-03-05 2007-12-26 삼성에스디아이 주식회사 Organic electroluminescence device
EP1887640A4 (en) * 2005-05-24 2012-04-04 Pioneer Corp Organic electroluminescent device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077674A (en) * 2000-10-04 2003-03-14 Mitsubishi Chemicals Corp Organic electroluminescent element
JP2004281386A (en) * 2003-03-13 2004-10-07 Samsung Sdi Co Ltd Organic electroluminescent display unit
JP2005259492A (en) * 2004-03-11 2005-09-22 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2005314414A (en) * 2004-04-02 2005-11-10 Semiconductor Energy Lab Co Ltd Organometallic complex, light emitting element and light emitting device using organometallic complex
JP2006188493A (en) * 2004-12-10 2006-07-20 Pioneer Electronic Corp Organic compound, charge transport material and organic electroluminescent element
WO2006137640A1 (en) * 2005-06-23 2006-12-28 Gracel Display Inc. Precursors of organometallic compounds for electroluminescent materials
JP2008546762A (en) * 2005-06-23 2008-12-25 グレイセル ディスプレイ インク. Precursor compounds of organometallic complexes for electroluminescent materials

Also Published As

Publication number Publication date
WO2008120355A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
US6989273B2 (en) Light emissive iridium (III) complexes
JP5008557B2 (en) Organic electroluminescence device
JP4011325B2 (en) Organic electroluminescence device
USRE42561E1 (en) Phosphorescent organic light emitting devices
JP4931827B2 (en) Organic electroluminescence device
US20070254182A1 (en) Organic Electroluminescent Device
JP2010515255A (en) Long-life phosphorescent organic light-emitting device (OLED) structure
CN108475732B (en) Organic electroluminescent element
JP4251553B2 (en) Organic electroluminescence device
JP5040070B2 (en) Charge transport material, laminate and organic electroluminescent device
JP4218311B2 (en) Organometallic complex compound and organic light emitting device using the same
JP2013012505A (en) Organic electroluminescent element
EP1809077A2 (en) Organic electroluminescent element
JP5649327B2 (en) Organic electroluminescence device
JP5080272B2 (en) Organic electroluminescence device
JPWO2008120355A1 (en) Organic EL device
KR101989746B1 (en) White organic electroluminescence element
WO2011055608A1 (en) Organic electroluminescent element
TW201634466A (en) Material for organic electroluminescent element and organic electroluminescent element in which same is used
TWI376983B (en)
KR101131886B1 (en) Blue luminescent compound with high luminous efficiency and display device including the same
KR100611852B1 (en) Phosphorescent red-emitting iridium complex and organic electroluminescent device comprising same
JP2007150338A (en) Organic electroluminescent element
KR20110088875A (en) Blue luminescent compound with high luminous efficiency and display device including the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402