JPWO2008044737A1 - Electrostatic spraying apparatus and electrostatic spraying method - Google Patents

Electrostatic spraying apparatus and electrostatic spraying method Download PDF

Info

Publication number
JPWO2008044737A1
JPWO2008044737A1 JP2008538755A JP2008538755A JPWO2008044737A1 JP WO2008044737 A1 JPWO2008044737 A1 JP WO2008044737A1 JP 2008538755 A JP2008538755 A JP 2008538755A JP 2008538755 A JP2008538755 A JP 2008538755A JP WO2008044737 A1 JPWO2008044737 A1 JP WO2008044737A1
Authority
JP
Japan
Prior art keywords
substrate
conductive layer
shape
cover
electrostatic spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008538755A
Other languages
Japanese (ja)
Inventor
仲神 竜一
竜一 仲神
善章 冨永
善章 冨永
幹夫 竹澤
幹夫 竹澤
光弘 高橋
光弘 高橋
弘良 青木
弘良 青木
努 原
努 原
麻理子 東條
麻理子 東條
山形 豊
豊 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuence Co Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Fuence Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuence Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Fuence Co Ltd
Publication of JPWO2008044737A1 publication Critical patent/JPWO2008044737A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/20Masking elements, i.e. elements defining uncoated areas on an object to be coated
    • B05B12/22Masking elements, i.e. elements defining uncoated areas on an object to be coated movable relative to the spray area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0537Arrangements for supplying power, e.g. charging power comprising a charge return path between the target and the spraying apparatus which is not the "true" earth, i.e. using a direct charge return path like a wire or the like, e.g. "floating earth"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • B05D1/045Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field on non-conductive substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists

Abstract

生物活性物質を絶縁性の基板1上に所望の形状で付着させる静電噴霧を用いた方法において、基板1上に所望の形状の導電層2を形成し、基板1と所定の距離をおいて配置される内部に電極線を有するキャピラリ40と、当該電極線に所定の高電圧を印加して生物活性物質を静電噴霧するための高圧電源15と、基板1とキャピラリ40との間に基板1と所定の距離を有し導電層2の形状と対応する貫通孔を有するカバー10と、を備え、導電層2上に生物活性物質を付着させるべき部分に対応してカバー10の位置合わせをして、所望のパターン形状の生物活性物質を静電噴霧により形成する。In a method using electrostatic spraying in which a biologically active substance is adhered to an insulating substrate 1 in a desired shape, a conductive layer 2 having a desired shape is formed on the substrate 1, and a predetermined distance from the substrate 1 is formed. A capillary 40 having an electrode wire disposed therein, a high-voltage power supply 15 for applying a predetermined high voltage to the electrode wire to electrostatically spray the bioactive substance, and a substrate between the substrate 1 and the capillary 40 1 and a cover 10 having a predetermined distance and a through hole corresponding to the shape of the conductive layer 2, and aligning the cover 10 corresponding to the portion on which the bioactive substance is to be deposited on the conductive layer 2. Then, a bioactive substance having a desired pattern shape is formed by electrostatic spraying.

Description

本発明は、溶液(生物活性を有する物質等を含む溶液)等を基板上に塗布する静電噴霧装置及び静電噴霧方法に関し、バイオチップの製造技術、及び基板上への前記溶液等の塗布技術を提供する。   The present invention relates to an electrostatic spraying apparatus and electrostatic spraying method for applying a solution (a solution containing a biologically active substance or the like) or the like on a substrate, a biochip manufacturing technique, and application of the solution or the like onto the substrate. Provide technology.

生物活性物質(生物活性を有する物質)を含む溶液を静電噴霧し、生物活性を維持した状態で、基板上に、所望の形状の生物活性物質を形成する方法としては、日本の特開2001−281252号公報に開示された方法がある。以下の説明において、特開2001−281252号公報を特許文献1と略称する。特許文献1では、生物活性物質を基板上に所望の形状で形成するために、マスクと呼ばれる貫通孔を形成した部材を用いている。マスクに形成された貫通孔の形状とほぼ同一形状の生物活性物質が基板上に塗布されて形成される。生物活性物質を基板上に塗布する技術は、特許文献1に記載の静電噴霧を用いた技術以外にもいくつかあるが、特許文献1に記載の方法では、乾燥した状態で生物活性物質を基板表面に塗布することができるという特徴がある。   As a method for forming a biologically active substance having a desired shape on a substrate while electrostatically spraying a solution containing a biologically active substance (substance having biological activity) and maintaining the biological activity, Japanese Patent Laid-Open Publication No. There is a method disclosed in Japanese Patent No. -281252. In the following description, Japanese Patent Laid-Open No. 2001-281252 is abbreviated as Patent Document 1. In Patent Document 1, in order to form a bioactive substance in a desired shape on a substrate, a member in which a through hole called a mask is formed is used. A bioactive substance having substantially the same shape as the shape of the through-hole formed in the mask is applied on the substrate. There are several techniques for applying a biologically active substance on a substrate other than the technique using electrostatic spray described in Patent Document 1, but in the method described in Patent Document 1, the biologically active substance is applied in a dry state. It has the feature that it can be applied to the substrate surface.

静電噴霧以外の方法では、基板上に、不完全な乾燥状態または溶液状態で、生物活性物質を塗布するため、塗布後に乾燥ムラに起因する塗布ムラが発生することが分かっている。特許文献1に開示されている静電噴霧による方法では、乾燥した状態の生物活性物質を基板上に塗布できるため、塗布後の乾燥ムラが発生せず、静電噴霧以外の方法と比較して、塗布均一性が優れているという特徴がある。   In methods other than electrostatic spraying, it has been found that since the bioactive substance is applied onto the substrate in an incompletely dried state or in a solution state, uneven coating due to uneven drying occurs after coating. In the method by electrostatic spraying disclosed in Patent Document 1, since the biologically active substance in a dry state can be coated on the substrate, drying unevenness after coating does not occur and compared with methods other than electrostatic spraying. The coating uniformity is excellent.

しかし、特許文献1の方法では、絶縁性材料で作製されるマスクの帯電状態が、噴霧された溶液に影響を与えることが分かっており、マスクの帯電が大きいほど基板上に形成される生物活性物質の形状が細くなり、塗布均一性にもばらつきを生じる。高精度な形状及び高い塗布均一性を得るためには、マスクの帯電状態が常に一定になるように制御する必要があった。マスクの帯電状態は、湿度の管理やイオナイザーによる除電を行うことにより、ある程度の制御は可能である。しかし、生物活性物質の形状や均一性に影響を与えない程に、帯電状態を制御することは困難であった。塗布均一性の測定の一般的な方法として、蛍光物質を含む溶液を基板上に塗布し、塗布後の蛍光値を測定することで塗布均一性を評価する方法がある。   However, in the method of Patent Document 1, it is known that the charged state of a mask made of an insulating material affects the sprayed solution, and the biological activity formed on the substrate is increased as the mask is charged more. The shape of the material becomes thin, and the coating uniformity also varies. In order to obtain a highly accurate shape and high coating uniformity, it was necessary to control the charged state of the mask to be always constant. The charged state of the mask can be controlled to some extent by controlling the humidity and removing electricity with an ionizer. However, it has been difficult to control the charged state to the extent that it does not affect the shape and uniformity of the bioactive substance. As a general method for measuring coating uniformity, there is a method in which coating uniformity is evaluated by coating a solution containing a fluorescent substance on a substrate and measuring the fluorescence value after coating.

塗布均一性は、一般的に、変動係数(Coefficient of Variance:CV)値と呼ばれる数値で表される。本明細書内でも塗布均一性を表す値としてCV値を用いるが、本明細書内でCV値とは、蛍光測定値の標準偏差を蛍光測定値の平均で除算し、100を乗算した値のことである。CV値が小さいほど塗布ムラや形状不良の少ない優れた塗布方法であると言える。
特許文献1の方法を用いて作製したバイオチップでは、塗布均一性が不十分であり、改善が望まれていた。
The coating uniformity is generally represented by a numerical value called a coefficient of variation (CV) value. In this specification, the CV value is used as a value representing the coating uniformity. In this specification, the CV value is a value obtained by dividing the standard deviation of the fluorescence measurement value by the average of the fluorescence measurement value and multiplying by 100. That is. It can be said that the smaller the CV value, the better the coating method with less coating unevenness and shape defects.
The biochip produced using the method of Patent Document 1 has insufficient coating uniformity, and improvement has been desired.

本発明は、従来の課題を解決するものであり、高い均一性を有して生物活性物質を所定の形状に塗布した基板を提供することを目的とするとともに、そのような基板の製造方法を提供することを目的とする。   The present invention solves the conventional problems, and aims to provide a substrate having a high uniformity and a bioactive substance applied in a predetermined shape, and a method for manufacturing such a substrate. The purpose is to provide.

従来の課題を解決するために、本発明の静電噴霧装置は、溶液を絶縁性の基板上に所望のパターン形状で付着させる静電噴霧装置において、前記基板上に所望のパターン形状の導電層を形成し、前記基板と所定の距離をおいて配置される内部に電極線を有するキャピラリと、当該電極線に所定の高電圧を印加して前記溶液を静電噴霧するための高圧電源と、前記基板と前記キャピラリとの間に前記基板に近接して配置され前記導電層の形状と対応する貫通孔を有するカバーと、を備え、前記導電層上に前記溶液を付着させるべき部分に対応して前記カバーの位置合わせをして当該溶液を静電噴霧して、所望のパターン形状の基板を形成するものである。   In order to solve the conventional problems, an electrostatic spraying apparatus according to the present invention is an electrostatic spraying apparatus that deposits a solution in a desired pattern shape on an insulating substrate, and a conductive layer having a desired pattern shape on the substrate. A capillary having an electrode wire disposed at a predetermined distance from the substrate, a high voltage power source for electrostatically spraying the solution by applying a predetermined high voltage to the electrode wire, A cover disposed between the substrate and the capillary in the vicinity of the substrate and having a through hole corresponding to the shape of the conductive layer, and corresponding to a portion on which the solution is to be deposited on the conductive layer. Then, the cover is aligned and the solution is electrostatically sprayed to form a substrate having a desired pattern shape.

また、本発明の静電噴霧方法は、溶液を絶縁性の基板上に所望のパターン形状で付着させる静電噴霧方法において、前記基板上に所望のパターン形状の導電層を形成し、前記導電層の形状と対応する形状の貫通孔を有するカバーを前記基板から所定の距離を離して配置し、前記基板上に形成すべき所望のパターン形状の基準位置となる基準マークを形成し当該基準マークに基づいて前記カバーの貫通孔の位置を位置合わせし、前記基板上の導電層上に前記カバーを介して静電噴霧して前記前記溶液を積層して、所望のパターン形状の基板を形成するものである。   Further, the electrostatic spraying method of the present invention is the electrostatic spraying method in which a solution is deposited on an insulating substrate in a desired pattern shape, and a conductive layer having a desired pattern shape is formed on the substrate, and the conductive layer A cover having a through hole having a shape corresponding to the shape of the substrate is disposed at a predetermined distance from the substrate, and a reference mark serving as a reference position of a desired pattern shape to be formed on the substrate is formed on the reference mark. The position of the through hole of the cover is aligned based on this, and the solution is stacked by electrostatic spraying on the conductive layer on the substrate through the cover to form a substrate having a desired pattern shape It is.

また、本発明の静電噴霧方法は、正極性の高電圧を印加して溶液を絶縁性の基板上に所望のパターン形状で付着させる静電噴霧方法において、前記基板上に所望のパターン形状の複数の導電層を形成し、前記導電層の形状と対応する形状の貫通孔を有するカバーを前記基板から所定の距離を離して配置し、前記複数の導電層の内の静電噴霧すべき導電層をアース電位又はマイナス電位に設定するとともに他の導電層を当該電位より高く設定し、当該アース電位又はマイナス電位に設定される導電層を順次選択して前記複数の導電層に前記溶液を静電噴霧して、所望のパターン形状の基板を形成するものである。   Further, the electrostatic spraying method of the present invention is an electrostatic spraying method in which a positive high voltage is applied to adhere a solution on an insulating substrate in a desired pattern shape. A plurality of conductive layers are formed, a cover having a through-hole having a shape corresponding to the shape of the conductive layer is arranged at a predetermined distance from the substrate, and the conductive to be electrostatically sprayed among the plurality of conductive layers A layer is set to a ground potential or a negative potential, and another conductive layer is set to be higher than the potential, and a conductive layer set to the ground potential or the negative potential is sequentially selected, and the solution is placed on the plurality of conductive layers. Electrospraying is performed to form a substrate having a desired pattern shape.

本発明に係る静電噴霧装置及び静電噴霧方法によれば、基板上に生物活性物質などを含む溶液を所望の形状に均一性高く塗布することが可能となる。   According to the electrostatic spraying apparatus and the electrostatic spraying method of the present invention, it is possible to apply a solution containing a bioactive substance or the like on a substrate in a desired shape with high uniformity.

本発明に係る実施例1の静電噴霧装置により製作された基板の構成を示す図The figure which shows the structure of the board | substrate manufactured by the electrostatic spraying apparatus of Example 1 which concerns on this invention. 本発明に係る実施例1の静電噴霧方法の加工手順を説明するための図The figure for demonstrating the process sequence of the electrostatic spraying method of Example 1 which concerns on this invention. 本発明に係る実施例1において、導電層を成膜するための成膜装置を示す図The figure which shows the film-forming apparatus for forming the conductive layer in Example 1 which concerns on this invention 本発明に係る実施例1の静電噴霧装置の構成を示す図The figure which shows the structure of the electrostatic spraying apparatus of Example 1 which concerns on this invention. 本発明に係る実施例1の静電噴霧装置におけるカバーを示す平面図The top view which shows the cover in the electrostatic spraying apparatus of Example 1 which concerns on this invention. 本発明に係る実施例1の静電噴霧装置により製作された基板の蛍光強度の測定結果を示す図The figure which shows the measurement result of the fluorescence intensity of the board | substrate manufactured by the electrostatic spraying apparatus of Example 1 which concerns on this invention. 本発明に係る実施例1の静電噴霧装置により製作された基板における蛍光測定位置を説明するための図The figure for demonstrating the fluorescence measurement position in the board | substrate manufactured with the electrostatic spraying apparatus of Example 1 which concerns on this invention. 本発明に係る実施例1の静電噴霧装置において、導電層にバイアス電圧を印加して行う基板製作を説明するための図The figure for demonstrating board | substrate manufacture performed by applying a bias voltage to a conductive layer in the electrostatic spraying apparatus of Example 1 which concerns on this invention. 図8Aの静電噴霧装置内に配置された基板を示す平面図The top view which shows the board | substrate arrange | positioned in the electrostatic spraying apparatus of FIG. 8A. 本発明に係る実施例2の静電噴霧装置により製作された基板の構成を示す図The figure which shows the structure of the board | substrate manufactured by the electrostatic spraying apparatus of Example 2 which concerns on this invention. 本発明に係る実施例2の静電噴霧装置における基板の露光用マスクを示す平面図The top view which shows the exposure mask of the board | substrate in the electrostatic spraying apparatus of Example 2 which concerns on this invention.

以下に、本発明に係る所定の溶液を塗布した基板の作製方法に関して、好適な実施の形態を添付の図面を参照して詳細に説明する。ここで、溶液とは、生物活性物質を有する溶液のことである。生物活性物質は、それ自体が液体、希釈液と混合した溶液又は、生物活性物質の検査試薬を含むものであり、以下の説明においては、単に生物活性物質という。生物活性物質は、一般的に、DNAや蛋白質などをいうが、もちろん、生物活性物質以外を含有する溶液の場合も同様に適用することができることは、当然である。   Hereinafter, preferred embodiments of a method for manufacturing a substrate coated with a predetermined solution according to the present invention will be described in detail with reference to the accompanying drawings. Here, the solution is a solution having a biologically active substance. The biologically active substance itself contains a liquid, a solution mixed with a diluent, or a biologically active substance test reagent, and is simply referred to as a biologically active substance in the following description. The biologically active substance generally refers to DNA, protein, and the like, but of course, it is naturally applicable to a solution containing a substance other than the biologically active substance.

図1は、本発明に係る実施例1の静電噴霧装置及び静電噴霧方法を用いて生物活性物質を形成した基板の構造を示すものである。   FIG. 1 shows the structure of a substrate on which a bioactive substance is formed using the electrostatic spraying apparatus and electrostatic spraying method of Example 1 according to the present invention.

図1において、基板1は、材料としてガラスを用い、当該基板1上に電気導電の導電層2を形成する。そして、導電層2の上に生物活性物質3を塗布する。基板材料は、ガラス以外のプラスチックや絶縁樹脂材料なども利用できる。生物活性物質3として、実施例1では、蛍光色素標識抗体タンパク(モレキュラープローブ製Alexa Fluor 568 標識Anti-goat IgG)を使用した。生物活性物質3は、導電層2上に導電層2にほぼ一致した形状で形成されている。図1に示すように、10本の導電層2の全てが接続線4により電気的に導電性が得られるように接続されており、接続線4及び導電層2の電位は接続部5に与えられた電位と等しくなるように構成されている。図1において、円形の破線内は、基板上の導電層2と生物活性物質3を示す断面図である。   In FIG. 1, a substrate 1 uses glass as a material, and an electrically conductive conductive layer 2 is formed on the substrate 1. Then, the bioactive substance 3 is applied on the conductive layer 2. As the substrate material, plastics other than glass, insulating resin materials, and the like can be used. In Example 1, a fluorescent dye-labeled antibody protein (Alexa Fluor 568 labeled Anti-goat IgG manufactured by Molecular Probes) was used as the biologically active substance 3. The biologically active substance 3 is formed on the conductive layer 2 in a shape that substantially matches the conductive layer 2. As shown in FIG. 1, all of the ten conductive layers 2 are connected so as to be electrically conductive by the connection lines 4, and the potentials of the connection lines 4 and the conductive layers 2 are applied to the connection portions 5. It is configured to be equal to the generated potential. In FIG. 1, the inside of a circular broken line is a cross-sectional view showing the conductive layer 2 and the bioactive substance 3 on the substrate.

図1に示す基板1の加工方法について、図2を参照しながら詳細に説明する。   A method for processing the substrate 1 shown in FIG. 1 will be described in detail with reference to FIG.

(1)成膜工程
まず、成膜工程は、図2の(a)に示すように成膜工程で基板1に対して、銅薄膜を成膜する。実施例1では、導電層2に銅を使用した場合について記載するが、導電層2の材質としては、例えば、銅以外でも金、銀、白金、アルミなどの金属や、インジウム錫酸化物(ITO)などの非金属でも導電性があれば使用可能である。特に、バイオチップの用途では、基板1に付着させた生物活性物質3を基板1の裏表の両方から光学的に観察する場合があり、そのような用途では薄膜材料として透明で導電性を有するITOのような材料を用いる必要がある。
(1) Film Forming Process First, in the film forming process, a copper thin film is formed on the substrate 1 in the film forming process as shown in FIG. In Example 1, although the case where copper is used for the conductive layer 2 is described, as the material of the conductive layer 2, for example, metals other than copper, such as gold, silver, platinum, and aluminum, indium tin oxide (ITO Even non-metals such as) can be used if they are conductive. In particular, in biochip applications, the bioactive substance 3 attached to the substrate 1 may be optically observed from both the front and back sides of the substrate 1. In such applications, transparent and conductive ITO is used as a thin film material. It is necessary to use a material such as

導電層2の成膜は図3に示す成膜装置を用いて行った。図3において、導体で構成される基板ホルダー32に基板1を固定する。基板ホルダー32は、当該基板ホルダー32に高周波電力を印加するため高周波電源に接続される。真空チャンバー31は、所定の真空度に排気するため、メインバルブ35を介して排気装置34に接続される。真空チャンバー31内には、基板1に、所定の真空度で加熱し蒸着する蒸着材料37を搭載する蒸着ポート36を備える。また、真空チャンバー31は、所定のガスを導入するガス導入管38を有し、真空チャンバー31の筐体は、アース39に接続されている。   The conductive layer 2 was formed using the film forming apparatus shown in FIG. In FIG. 3, the board | substrate 1 is fixed to the board | substrate holder 32 comprised with a conductor. The substrate holder 32 is connected to a high frequency power source for applying high frequency power to the substrate holder 32. The vacuum chamber 31 is connected to the exhaust device 34 via the main valve 35 in order to exhaust to a predetermined degree of vacuum. In the vacuum chamber 31, a vapor deposition port 36 for mounting a vapor deposition material 37 that is heated and vapor-deposited on the substrate 1 at a predetermined degree of vacuum is provided. The vacuum chamber 31 has a gas introduction pipe 38 for introducing a predetermined gas, and the housing of the vacuum chamber 31 is connected to the ground 39.

まず、基板1を基板ホルダー32に設置後、真空チャンバー31内を真空引きする。真空チャンバー31内の圧力は1.0×10-3Pa以下にする。
次に、基板1のガラス基板表面をプラズマ処理する。プラズマ処理は基板1の表面を粗化する目的で行う。プラズマ処理時には真空チャンバー31内に純度99.9%以上の窒素ガスを導入し、圧力を5.0×10-2Paにし、高周波電源33により基板1を支持する基板ホルダー32に高周波電力を印加する。高周波電力の印加により、真空チャンバー31内にグロー放電が生じ、窒素プラズマが発生する。
First, after the substrate 1 is placed on the substrate holder 32, the vacuum chamber 31 is evacuated. The pressure in the vacuum chamber 31 is set to 1.0 × 10 −3 Pa or less.
Next, the glass substrate surface of the substrate 1 is subjected to plasma treatment. The plasma treatment is performed for the purpose of roughening the surface of the substrate 1. During plasma processing, nitrogen gas having a purity of 99.9% or more is introduced into the vacuum chamber 31, the pressure is set to 5.0 × 10 −2 Pa, and high frequency power is applied to the substrate holder 32 supporting the substrate 1 by the high frequency power source 33. To do. By applying the high frequency power, glow discharge is generated in the vacuum chamber 31 and nitrogen plasma is generated.

図3において、窒素プラズマの発生とともに基板1に第1の負のバイアス電圧が誘起され、基板1が窒素プラズマ処理される。実施例1では、第1の負のバイアス電圧を300Vとした。窒素プラズマ処理後に、真空チャンバー31内の圧力を1.0×10-4Pa以下まで真空引きする。真空引き後にアルゴンガスを導入し、真空チャンバー31内の圧力を1.0×10-2Paとし、蒸着ボート36から銅を蒸発させると同時に基板1を支持する基板ホルダー32に高周波電圧を印加する。高周波電圧の印加により真空チャンバー31内にグロー放電が生じ、アルゴンと銅のプラズマが発生する。アルゴンと銅のプラズマの発生とともに基板1には第2の負のバイアス電圧が誘起されるため、プラズマ中のアルゴンイオンおよび銅イオンは第2の負のバイアス電圧で加速されて基板1の表面に向かって加速される。In FIG. 3, with the generation of nitrogen plasma, a first negative bias voltage is induced on the substrate 1, and the substrate 1 is subjected to nitrogen plasma treatment. In Example 1, the first negative bias voltage was set to 300V. After the nitrogen plasma treatment, the pressure in the vacuum chamber 31 is evacuated to 1.0 × 10 −4 Pa or less. Argon gas is introduced after evacuation, the pressure in the vacuum chamber 31 is set to 1.0 × 10 −2 Pa, copper is evaporated from the vapor deposition boat 36, and a high frequency voltage is applied to the substrate holder 32 that supports the substrate 1. . Application of a high frequency voltage causes glow discharge in the vacuum chamber 31 to generate argon and copper plasma. Since the second negative bias voltage is induced in the substrate 1 with the generation of the argon and copper plasma, the argon ions and the copper ions in the plasma are accelerated by the second negative bias voltage to the surface of the substrate 1. It is accelerated toward.

実施例1では第2の負のバイアス電圧を400Vにして銅成膜を行った。銅イオンが基板1の表面に衝突して銅薄膜を形成する効果と、イオン化していない銅が真空蒸着される効果とにより基板1の表面に銅薄膜が形成される。また、銅薄膜を形成させる速度を0.1nm/sec〜10nm/secの間で成膜開始から終了まで徐々に成膜速度を増加させるように制御した。上記の条件で膜厚が500nmとなるように成膜を行った。   In Example 1, the second negative bias voltage was set to 400 V to form a copper film. A copper thin film is formed on the surface of the substrate 1 by the effect of copper ions colliding with the surface of the substrate 1 to form a copper thin film and the effect of vacuum deposition of non-ionized copper. In addition, the film formation rate was controlled to gradually increase from the start of film formation to the end between 0.1 nm / sec and 10 nm / sec. Film formation was performed so that the film thickness was 500 nm under the above conditions.

(2)レジスト塗布工程からレジスト除去工程までについて
次に、図2の(b)から図2の(f)に示すようにレジスト塗布工程からレジスト除去工程について説明する。
銅薄膜を成膜した基板1上に、レジスト10をスピンコートにより塗布する。実施例1ではレジスト10として、OFPR800(粘度30cp)を用いた。次に、露光工程において、マスク7を介して、光8をレジスト10に照射する。実施例1で用いたレジスト10はポジ型レジストであるため、マスク7は、導電層2上に形成したいレジスト形状に一致する形状を有し、光8を遮光するように構成されている。マスク7の光8を遮光する領域は、マスク7の作製時に自由に設計できるため、所望の形状にレジスト10を露光することができる。
(2) From the resist coating process to the resist removal process Next, the resist coating process to the resist removal process will be described as shown in FIG. 2 (b) to FIG. 2 (f).
A resist 10 is applied by spin coating on the substrate 1 on which the copper thin film is formed. In Example 1, OFPR800 (viscosity 30 cp) was used as the resist 10. Next, in the exposure step, the resist 10 is irradiated with light 8 through the mask 7. Since the resist 10 used in Example 1 is a positive resist, the mask 7 has a shape that matches the shape of the resist to be formed on the conductive layer 2 and is configured to shield the light 8. Since the area | region which shields the light 8 of the mask 7 can be designed freely at the time of preparation of the mask 7, the resist 10 can be exposed to a desired shape.

以上のようにしてレジスト10を光8により露光した後、現像液11に浸して現像した。現像液には、NMD−3を用いた。現像後、導電層2上のレジスト10は、現像工程の図2の(d)に示すように、光8の照射された部分が溶解し、光8が遮光された領域の形状に一致した形状にレジスト10が残る。   After the resist 10 was exposed with the light 8 as described above, it was immersed in the developer 11 and developed. NMD-3 was used as the developer. After the development, the resist 10 on the conductive layer 2 has a shape corresponding to the shape of the region where the light 8 is melted and the light 8 is shielded as shown in FIG. The resist 10 remains on the surface.

現像後、基板1をエッチング液12に浸す。エッチング液12には塩化第二鉄溶液を用いた。エッチングにより、図2の(e)のエッチング工程に示すように、レジスト10が形成されていない部分の導電層2は溶解して、基板1上から除去される。つまり、導電層2は、マスク7において光8が遮光された領域の形状に一致した形状に加工される。
エッチング後、基板1をレジスト剥離液13に浸すことによりレジスト10を溶解剥離した(図2の(f)参照)。
After development, the substrate 1 is immersed in the etching solution 12. As the etching solution 12, a ferric chloride solution was used. By etching, as shown in the etching step of FIG. 2E, the conductive layer 2 in the portion where the resist 10 is not formed is dissolved and removed from the substrate 1. That is, the conductive layer 2 is processed into a shape that matches the shape of the region where the light 8 is shielded in the mask 7.
After the etching, the resist 10 was dissolved and peeled by immersing the substrate 1 in the resist stripping solution 13 (see FIG. 2 (f)).

以上の手順により、基板1上にパターニングされた導電層2を形成した基板を作製した。導電層2は、マスク7において光8が遮光された領域の形状に一致した形状に加工されている。マスク7の光8が遮光される領域の形状はマスク7の設計製作時に自由に作製できるため、上記手順により、基板1上に、任意の形状の導電層2を形成することが可能である。
実施例1と異なり、レジスト10にネガ型レジストを用いた場合には、マスク7の光8を透過する部分が、導電層2上に形成したいレジスト形状に一致するようにマスク7を作製することにより、所望の形状の導電層2が形成された基板1を作製することが可能である。
By the above procedure, a substrate on which the patterned conductive layer 2 was formed on the substrate 1 was produced. The conductive layer 2 is processed into a shape that matches the shape of the region of the mask 7 where the light 8 is shielded. Since the shape of the area of the mask 7 where the light 8 is shielded can be freely produced when the mask 7 is designed and manufactured, the conductive layer 2 having any shape can be formed on the substrate 1 by the above procedure.
Unlike the first embodiment, when a negative resist is used for the resist 10, the mask 7 is manufactured so that the portion of the mask 7 that transmits light 8 matches the resist shape to be formed on the conductive layer 2. Thus, it is possible to produce the substrate 1 on which the conductive layer 2 having a desired shape is formed.

(3)噴霧工程1及び噴霧工程2について
次に、図2の(g)から図2の(h)に示すように、図2の(b)のレジスト塗布工程から図2の(f)のレジスト除去工程までで作製した基板1を、図4に示す静電噴霧装置にセットし、基板1の導電層2上に、生物活性物質3を塗布した。
(3) Spraying Step 1 and Spraying Step 2 Next, as shown in FIG. 2 (g) to FIG. 2 (h), from the resist coating step of FIG. 2 (b) to FIG. 2 (f). The substrate 1 produced up to the resist removal step was set in the electrostatic spraying device shown in FIG. 4, and the bioactive substance 3 was applied on the conductive layer 2 of the substrate 1.

図4において、キャピラリ40に挿入される電極線である高電圧線28は、高電圧電源14のプラス極側が接続され、高電圧電源14のマイナス極側は、レジスト除去工程後の基板1に接続される。このように、静電噴霧装置は、高電圧電源14が、キャピラリ40とレジスト除去工程後の基板1の間に電位差を発生させるように構成されている。高電圧電源14には制御装置45が接続されており、高電圧電源14が発生する電圧を制御する。また、カバー9が、基板1から所定の距離Xを離して配置される。カバー9には、生物活性物質を塗布するパターンの形状より少し大きい略同形状の貫通孔48が形成されている。
図5は実施例1において用いたカバー9の平面図である。実施例1においては、図5に示すように、貫通孔48の幅寸法Yは、1.5mm、貫通孔48の長さ寸法Zは、14mmとした。
In FIG. 4, a high voltage line 28, which is an electrode line inserted into the capillary 40, is connected to the positive electrode side of the high voltage power supply 14, and the negative electrode side of the high voltage power supply 14 is connected to the substrate 1 after the resist removal process. Is done. Thus, the electrostatic spraying device is configured such that the high voltage power supply 14 generates a potential difference between the capillary 40 and the substrate 1 after the resist removal process. A controller 45 is connected to the high voltage power supply 14 and controls the voltage generated by the high voltage power supply 14. Further, the cover 9 is arranged at a predetermined distance X from the substrate 1. The cover 9 is formed with a substantially identical through-hole 48 that is slightly larger than the shape of the pattern on which the bioactive substance is applied.
FIG. 5 is a plan view of the cover 9 used in the first embodiment. In Example 1, as shown in FIG. 5, the width dimension Y of the through-hole 48 was 1.5 mm, and the length dimension Z of the through-hole 48 was 14 mm.

カバー9はキャピラリ40とレジスト除去工程後の基板1の間に配置され、レジスト除去工程後の基板1の表面の生物活性物質3を付着させたい部分が、貫通孔48と重なるように位置合わせする。カバー9と基板1の位置合わせの有効な方法については、後述する実施例2において説明する。   The cover 9 is disposed between the capillary 40 and the substrate 1 after the resist removal step, and is aligned so that a portion to which the bioactive substance 3 on the surface of the substrate 1 after the resist removal step is to adhere is overlapped with the through hole 48. . An effective method for aligning the cover 9 and the substrate 1 will be described in Example 2 described later.

実施例1では、高電圧電源14によりキャピラリ40と基板ホルダー46上に載置されたレジスト除去工程後の基板1の間に電極線27、高電圧線28を介して3kVの電圧を加えた。また、キャピラリ40の先端からレジスト除去工程後の基板1の表面までの距離は35mmとし、キャピラリ40の先端は外形が50μmのものを使用した。カバー9の材質としては、厚さ0.1mmのガラスエポキシを用いた。噴霧量はキャピラリ内の溶液の液高さをCCDカメラにより画像認識し、計測することで、1μlitre噴霧した。実施例1では、図2の(g)の噴霧工程1に示すように、導電層2の1箇所にのみ生物活性物質3を付着させた。また、カバー9と導電層2の表面との間隔Xは、0.05mm以下になるように配置した。発明者らの実験に依れば、間隔Xが0.05mm以上あると、導電層2上に形成される生物活性物質3の形状が導電層2の形状よりも小さくなることが分かった。   In Example 1, a voltage of 3 kV was applied via the electrode line 27 and the high voltage line 28 between the capillary 40 and the substrate 1 after the resist removal process placed on the substrate holder 46 by the high voltage power supply 14. The distance from the tip of the capillary 40 to the surface of the substrate 1 after the resist removal process was 35 mm, and the tip of the capillary 40 had an outer shape of 50 μm. As a material for the cover 9, glass epoxy having a thickness of 0.1 mm was used. The amount of spray was 1 μlitre sprayed by measuring the liquid height of the solution in the capillary with a CCD camera. In Example 1, as shown in the spraying process 1 of FIG. 2G, the bioactive substance 3 was attached to only one portion of the conductive layer 2. Further, the distance X between the cover 9 and the surface of the conductive layer 2 was arranged to be 0.05 mm or less. According to the experiments by the inventors, it was found that when the distance X is 0.05 mm or more, the shape of the bioactive substance 3 formed on the conductive layer 2 is smaller than the shape of the conductive layer 2.

上記の原因について、発明者らは次のように考察した。噴霧を開始すると、プラスに帯電した生物活性物質3の液滴が発生する。帯電した液滴は、カバー9や装置外壁にも拡散していき、付着する。付着した部分が絶縁性である場合、液滴の持つプラス電荷のために液滴が付着した部分はプラスに帯電する。カバー9は実施例1では、ガラスエポキシから作製されており、絶縁性材料であるため、噴霧中はプラスに帯電すると考えられる。カバー9がプラスに帯電しており、カバー9の貫通孔48を通過する液滴もプラスに帯電している。このため、液滴はカバー9から電気的な反発力を受け、貫通孔48よりも小さな形状で導電層2上に付着する。カバー9から導電層2までの間隔が長いと、液滴は、導電層2から離れた位置でカバー9の帯電による反発力を受けることになり、カバー9からの電気的な反発力で変化した軌道で、導電層2に到達するまでに長い距離を飛行することになる。そのため、噴霧された生物活性物質3の液滴が、導電層2に到達した時には、カバー9から導電層2までの間隔が短い場合に比較して、貫通孔48の形状より小さな形状で導電層2上に付着すると考えられる。   The inventors considered the above cause as follows. When spraying is started, droplets of the positively charged bioactive substance 3 are generated. The charged droplets diffuse and adhere to the cover 9 and the outer wall of the apparatus. When the attached portion is insulative, the portion to which the droplet is attached is positively charged due to the positive charge of the droplet. In the first embodiment, the cover 9 is made of glass epoxy and is an insulating material. Therefore, it is considered that the cover 9 is positively charged during spraying. The cover 9 is positively charged, and the droplet passing through the through hole 48 of the cover 9 is also positively charged. Therefore, the droplet receives an electric repulsive force from the cover 9 and adheres onto the conductive layer 2 in a shape smaller than the through hole 48. When the distance from the cover 9 to the conductive layer 2 is long, the droplet receives a repulsive force due to the charging of the cover 9 at a position away from the conductive layer 2 and changes due to the electric repulsive force from the cover 9. In the orbit, the aircraft travels a long distance before reaching the conductive layer 2. Therefore, when the sprayed droplets of the bioactive substance 3 reach the conductive layer 2, the conductive layer has a shape smaller than the shape of the through hole 48 compared to the case where the distance from the cover 9 to the conductive layer 2 is short. 2 is considered to adhere to the surface.

また、カバー9の貫通孔48における幅寸法Y及び長さ寸法Zは、導電層2の寸法より大きくすることが望ましい。導電層2と幅寸法Y及び長さ寸法Zが同じ寸法だと、導電層2の寸法より小さな寸法で、噴霧した生物活性物質3が導電層2上に付着するからである。この原因は、カバー9が帯電するためと考えられる。これに対応するために、実施例1では、導電層2のパターンに対応するカバー9に形成される幅寸法Yが1.5mm、長さ寸法Zが14mmであるのに対して、導電層2の寸法は、0.8mmと11mmであり、幅寸法Y及び長さ寸法Zが導電層2の形状寸法より大きくなるように作製する。   In addition, it is desirable that the width dimension Y and the length dimension Z in the through hole 48 of the cover 9 are larger than the dimension of the conductive layer 2. This is because if the conductive layer 2 and the width dimension Y and the length dimension Z are the same, the sprayed bioactive substance 3 adheres onto the conductive layer 2 with a smaller dimension than the conductive layer 2. This is probably because the cover 9 is charged. In order to cope with this, in Example 1, the width dimension Y formed on the cover 9 corresponding to the pattern of the conductive layer 2 is 1.5 mm and the length dimension Z is 14 mm, whereas the conductive layer 2 The dimensions are 0.8 mm and 11 mm, and the width dimension Y and the length dimension Z are made larger than the shape dimension of the conductive layer 2.

図2の(g)に示す噴霧工程1までで作製された基板1の表面を蛍光顕微鏡により観察した結果を図6に示す。蛍光測定には、OLYMPUS製蛍光顕微鏡BX51W1を用いた。観察倍率は1倍であり、20mWの出力で、波長540nmから590nmの励起光をサンプルに1秒間照射し、615nmから695nmの間の光を透過するフィルターを介して、サンプルの蛍光強度を測定した。実験は3回行い、それぞれの結果をサンプル1、サンプル2、サンプル3とした。図9にはサンプル1、サンプル2、サンプル3として測定された蛍光強度を示した。   The result of having observed the surface of the board | substrate 1 produced until the spraying process 1 shown to (g) of FIG. 2 with the fluorescence microscope is shown in FIG. For fluorescence measurement, a fluorescent microscope BX51W1 manufactured by OLYMPUS was used. The observation magnification was 1 ×, the sample was irradiated with excitation light with a wavelength of 540 nm to 590 nm for 1 second at an output of 20 mW, and the fluorescence intensity of the sample was measured through a filter that transmitted light between 615 nm and 695 nm. . The experiment was performed three times, and the results were designated as sample 1, sample 2, and sample 3, respectively. FIG. 9 shows the fluorescence intensities measured as Sample 1, Sample 2, and Sample 3.

図7は、作製したサンプルの導電層2の形状を示している。測定点AからGは、図7中で、接続線4に近い側の導電層2上を測定点Aとし、接続線4から遠い側を測定点Gとし、その間を等間隔に分割して測定点BからFとした。図7中では、接続線4に近い位置PEが測定点Aであり、接続線4から遠い位置DEが測定点Gである。3回の実験でCV値として、2.1%から3.2%という値が得られた。発明者らの知る限りにおいて、従来の静電噴霧により、CV値3%程度の均一性が得られたという報告は今まで受け取っていない。発明者らは、特許文献1で開示されている従来の静電噴霧技術と比較して、塗布均一性を改善できる理由を以下のように考える。   FIG. 7 shows the shape of the conductive layer 2 of the manufactured sample. The measurement points A to G are measured by dividing the conductive layer 2 on the side close to the connection line 4 as the measurement point A and the measurement point G on the side far from the connection line 4 in FIG. Points B to F were set. In FIG. 7, the position PE near the connection line 4 is the measurement point A, and the position DE far from the connection line 4 is the measurement point G. In three experiments, a CV value of 2.1% to 3.2% was obtained. To the best of the inventors' knowledge, no report has been received that a uniformity of about 3% CV value has been obtained by conventional electrostatic spraying. The inventors consider the reason why the coating uniformity can be improved as compared with the conventional electrostatic spraying technique disclosed in Patent Document 1.

特許文献1に記載の従来の静電噴霧技術では、マスクと呼ばれる貫通孔を有する部材で基板表面を覆うことにより、貫通孔の形状に対応した形状で、生物活性物質を基板上に塗布している。   In the conventional electrostatic spray technique described in Patent Document 1, the substrate surface is covered with a member having a through-hole called a mask, so that a bioactive substance is applied onto the substrate in a shape corresponding to the shape of the through-hole. Yes.

特許文献1の方法により、マスクの貫通孔の形状に対応した形状で、生物活性物質を塗布することは可能である。しかし、マスクの帯電状態が、噴霧された溶液に影響を与えることが分かっており、マスクの帯電が大きいほど形成される生物活性物質の形状が細くなる。このため、高精度な形状で均一性の高い生物活性物質を基板上に形成するにはマスクの帯電状態が常に一定になるように管理する必要があった。マスクの帯電状態は、湿度の管理や、イオナイザーによる除電を行うことにより、ある程度の制御は可能であるが、生物活性物質の形状や均一性に影響を与えない程、帯電状態を制御することは困難であった。   By the method of Patent Document 1, it is possible to apply the bioactive substance in a shape corresponding to the shape of the through hole of the mask. However, it has been found that the charged state of the mask affects the sprayed solution, and the larger the charge of the mask, the thinner the shape of the bioactive substance formed. For this reason, in order to form a highly-accurate shape and highly uniform bioactive substance on the substrate, it is necessary to manage the charged state of the mask to be always constant. The charged state of the mask can be controlled to some extent by controlling the humidity or removing the charge with an ionizer, but it is not possible to control the charged state so as not to affect the shape and uniformity of the bioactive substance. It was difficult.

本発明の方法では、基板1の表面に生物活性物質3を塗布したい形状と一致する形状の導電層2を形成しており、導電層2をアースまたはマイナス電位にすることにより、プラスに帯電した生物活性物質を含む小滴が、導電層2に収束し、導電層2の形状に一致した形状の生物活性物質を基板上に形成できる。本発明の静電噴霧装置におけるカバー9は、基板1の表面全面への微量な付着を防止するために用いられるものであり、特許文献1に記載のマスクと異なり、基板上に形成される生物活性物質の形状を決定しない。本発明において、基板1の表面に形成される生物活性物質3の形状は導電層2の形状により決定される。そのため、本発明におけるカバー9は特許文献1に記載のマスクと異なり、導電層2上に付着させる生物活性物質3の形状に比較して、帯電の影響が十分小さくなる程度にカバー9の貫通孔48の形状を大きく形成し、そのカバー9が基板1上に配置されている。カバー9の帯電は、基板1上に形成される生物活性物質3にほとんど影響を与えないため、帯電状態のばらつきによる基板1上に付着した生物活性物質3の形状や塗布均一性への影響はほとんどない。本発明の方法は、特許文献1に記載の方法に比較して、帯電状態のばらつきに起因した塗布均一性のばらつきを生じないため、優れた塗布均一性を得ることができる。   In the method of the present invention, the conductive layer 2 having a shape that matches the shape to which the biologically active substance 3 is to be applied is formed on the surface of the substrate 1, and the conductive layer 2 is positively charged by being grounded or a negative potential. The droplet containing the biologically active substance converges on the conductive layer 2, and a biologically active substance having a shape corresponding to the shape of the conductive layer 2 can be formed on the substrate. The cover 9 in the electrostatic spraying apparatus of the present invention is used to prevent a very small amount of adhesion to the entire surface of the substrate 1. Unlike the mask described in Patent Document 1, a cover 9 is formed on the substrate. Does not determine the shape of the active substance. In the present invention, the shape of the bioactive substance 3 formed on the surface of the substrate 1 is determined by the shape of the conductive layer 2. Therefore, unlike the mask described in Patent Document 1, the cover 9 in the present invention has a through-hole in the cover 9 to the extent that the effect of charging is sufficiently small compared to the shape of the bioactive substance 3 to be deposited on the conductive layer 2. 48 is formed in a large shape, and its cover 9 is disposed on the substrate 1. Since the charging of the cover 9 hardly affects the bioactive substance 3 formed on the substrate 1, the influence on the shape and coating uniformity of the bioactive substance 3 attached on the substrate 1 due to the variation in the charged state is not affected. rare. Compared with the method described in Patent Document 1, the method of the present invention does not cause variation in coating uniformity due to variation in the charged state, and therefore, excellent coating uniformity can be obtained.

本発明において、カバー9の貫通孔48の幅寸法Y及び長さ寸法Zが、導電層2の寸法より大きいため、カバー9に覆われていない部分に生物活性物質3が付着することも考えられるが、発明者らの実験の結果においてはほとんど付着していなかった。導電層2が帯電した粒子を収束させる効果は、導電層2に近いほど強く働くため、カバー9の貫通孔48の幅寸法Y及び長さ寸法Zを導電層2の寸法より多少大きくしても、カバー9の貫通孔48を通過した小滴のほとんどが、導電層2に収束する。この結果、導電層2の周辺に生物活性物質がほとんど付着しないものと考えられる。即ち、導電層2上に生物活性物質が付着し、導電層2のない基板上の部分6には、生物活性物質はほとんど付着しない状態となる。   In the present invention, since the width dimension Y and the length dimension Z of the through hole 48 of the cover 9 are larger than the dimension of the conductive layer 2, the bioactive substance 3 may be attached to a portion not covered with the cover 9. However, almost no adhesion was found in the results of experiments by the inventors. The effect of converging the charged particles in the conductive layer 2 works stronger as it is closer to the conductive layer 2, so even if the width dimension Y and the length dimension Z of the through hole 48 of the cover 9 are slightly larger than the dimension of the conductive layer 2. Most of the droplets that have passed through the through hole 48 of the cover 9 converge on the conductive layer 2. As a result, it is considered that the bioactive substance hardly adheres around the conductive layer 2. That is, the biologically active substance adheres on the conductive layer 2 and the biologically active substance hardly adheres to the portion 6 on the substrate without the conductive layer 2.

本発明の方法は、塗布均一性の改善以外にも、特許文献1に記載の従来の方法に比較して優れた点がある。本発明の方法では、基板1の表面に形成される生物活性物質3の形状は導電層2の形状により決定されため、基板1上に付着する生物活性物質3の形状の精度は、導電層2の加工精度により決定されることになる。導電層2の形状は、フォトリソグラフィ及びエッチング加工により形成され、非常に精度が高いため、生物活性物質3の形状を高精度に形成することができる。これに対して、特許文献1の方法は、マスクの貫通孔を通過した生物活性物質を含む液滴を、マスクの貫通孔の形状に対応した形状で、導電層に付着させるものであり、マスクの貫通孔は通常機械加工により行っている。このため、特許文献1の方法では、数十μm程度の加工誤差を生じる。マスクの貫通孔の形状が導電層上に付着する生物活性物質の形状を決定するため、生物活性物質の形状の精度は、数十μmの誤差を持つことになる。特許文献1に記載のマスクもフォトリソグラフィ及びエッチング加工により、貫通孔を形成することにより、高い精度を得ることは可能であるが、マスクの取り扱いの都合上、マスクは一定の剛性が必要であり、厚みを厚く作製する必要がある。そのため、貫通孔を形成する工程で相当な厚みをエッチングで除去する必要が生じ、加工時間が長時間になるため、加工コストが高くなるという問題を生じる。   The method of the present invention is superior to the conventional method described in Patent Document 1 in addition to the improvement of coating uniformity. In the method of the present invention, since the shape of the bioactive substance 3 formed on the surface of the substrate 1 is determined by the shape of the conductive layer 2, the accuracy of the shape of the bioactive substance 3 attached on the substrate 1 is determined by the conductive layer 2. This is determined by the processing accuracy. Since the shape of the conductive layer 2 is formed by photolithography and etching and has a very high accuracy, the shape of the bioactive substance 3 can be formed with a high accuracy. On the other hand, the method of Patent Document 1 attaches a droplet containing a biologically active substance that has passed through a through hole of a mask to a conductive layer in a shape corresponding to the shape of the through hole of the mask. These through holes are usually machined. For this reason, the method of Patent Document 1 causes a processing error of about several tens of μm. Since the shape of the through-hole of the mask determines the shape of the bioactive substance attached on the conductive layer, the accuracy of the shape of the bioactive substance has an error of several tens of μm. Although the mask described in Patent Document 1 can also obtain high accuracy by forming a through hole by photolithography and etching, the mask needs to have a certain rigidity for the convenience of handling the mask. It is necessary to make the thickness thick. For this reason, it is necessary to remove a considerable thickness by etching in the process of forming the through hole, and the processing time becomes long, so that the processing cost increases.

更に、本発明では、キャピラリ内の液高さを画像認識するため、生物活性物質の噴霧量を、高精度に制御可能であり、基板1上に付着した生物活性物質3の形状は、前述のように非常に高精度である。このため、本発明の静電噴霧装置においては、高精度に制御された噴霧量を所定の高精度な形状内に噴霧可能であり、1回の噴霧で形成される生物活性物質の形状や塗布均一性だけでなく、複数回の噴霧で形成される複数の生物活性物質間の形状ばらつきや塗布均一性ばらつきも小さく抑えて塗布することが可能である。   Furthermore, in the present invention, since the liquid height in the capillary is image-recognized, the spray amount of the bioactive substance can be controlled with high accuracy, and the shape of the bioactive substance 3 attached on the substrate 1 is as described above. So is very accurate. For this reason, in the electrostatic spraying device of the present invention, the spray amount controlled with high accuracy can be sprayed into a predetermined highly accurate shape, and the shape and application of the bioactive substance formed by one spray In addition to uniformity, it is possible to apply the coating while suppressing variation in shape and variation in application uniformity among a plurality of biologically active substances formed by a plurality of sprays.

本発明の方法を用いて、複数の異なる生物活性物質を基板上に塗布したバイオチップを作製する場合には、図2の(g)の噴霧工程1の後に、図2の(h)の噴霧工程2を必要な回数だけ繰り返し行う。噴霧工程2では、基板1をカバー9に対して相対的に移動した後、噴霧を行う。噴霧に用いる生物活性物質3は、噴霧毎に異なる材料を用いることが可能であり、導電層2の形状は前述の露光・現像・エッチング工程で記載のように任意に形状を作製できるため、噴霧工程2を繰り返し行うことにより、所望の材料を所望の形状に形成したバイオチップを作製することが可能である。   When producing a biochip in which a plurality of different bioactive substances are applied on a substrate using the method of the present invention, after the spraying step 1 of FIG. 2 (g), the spray of FIG. Repeat step 2 as many times as necessary. In the spraying step 2, spraying is performed after the substrate 1 is moved relative to the cover 9. As the bioactive substance 3 used for spraying, different materials can be used for each spray, and the shape of the conductive layer 2 can be arbitrarily formed as described in the above-described exposure, development, and etching steps. By repeating Step 2, it is possible to produce a biochip in which a desired material is formed in a desired shape.

本発明の方法では、噴霧前にカバー9の貫通孔48と生物活性物質3を塗布する導電層2とを位置合わせして基板1を配置する必要がある。位置合わせ精度が悪いと、カバー9の貫通孔48のエッジ部分が導電層2に近づくことになり、カバー9の帯電の影響が強く働くため、導電層2上に塗布される生物活性物質3の塗布均一性が悪化する。また、カバー9の貫通孔48のエッジ部分が導電層2を覆う程、位置合わせ誤差があると、カバー9で覆われた部分には、生物活性物質3が塗布されない。   In the method of the present invention, it is necessary to arrange the substrate 1 by aligning the through hole 48 of the cover 9 and the conductive layer 2 to which the bioactive substance 3 is applied before spraying. If the alignment accuracy is poor, the edge portion of the through hole 48 of the cover 9 approaches the conductive layer 2, and the influence of the charging of the cover 9 works strongly, so that the bioactive substance 3 applied on the conductive layer 2 Application uniformity deteriorates. In addition, if there is an alignment error such that the edge portion of the through hole 48 of the cover 9 covers the conductive layer 2, the bioactive substance 3 is not applied to the portion covered with the cover 9.

本発明において、カバー9と基板1との位置合わせが重要であり、位置合わせに対する要求精度を緩和できれば、位置合わせ機構の簡素化による低コスト化や、位置合わせ時間の短縮が可能になるというメリットが得られる。位置合わせに対する要求精度を緩和するためには、カバー9の貫通孔48を大きな寸法にすることが効果的である。貫通孔48の寸法が大きければ、位置合わせ誤差を生じても、貫通孔48の寸法が小さい場合に比較して、カバー9のエッジと導電層2の間に大きな間隔をあけることができる。そのため、カバー9の帯電が、生物活性物質3の塗布均一性に与える影響を小さく抑えることができる。しかし、カバー9の貫通孔48の寸法を大きくすると、わずかであるが、導電層2周辺の基板1上に噴霧した生物活性物質3が付着することが確認されている。付着量は、貫通孔48の寸法に比例するため、付着量を減らすには、貫通孔48を小さくする方が望ましい。   In the present invention, alignment between the cover 9 and the substrate 1 is important, and if the required accuracy for alignment can be relaxed, the cost can be reduced by simplifying the alignment mechanism and the alignment time can be shortened. Is obtained. In order to ease the required accuracy for alignment, it is effective to make the through hole 48 of the cover 9 large in size. If the dimension of the through hole 48 is large, even if an alignment error occurs, a large gap can be provided between the edge of the cover 9 and the conductive layer 2 as compared with the case where the dimension of the through hole 48 is small. Therefore, the influence of the charging of the cover 9 on the application uniformity of the bioactive substance 3 can be suppressed to a small level. However, when the size of the through hole 48 of the cover 9 is increased, it is confirmed that the sprayed bioactive substance 3 adheres to the substrate 1 around the conductive layer 2. Since the adhesion amount is proportional to the size of the through hole 48, it is desirable to reduce the through hole 48 in order to reduce the adhesion amount.

つまり、貫通孔48の寸法を大きくして、カバー9と基板1の位置合わせ精度への要求を緩和するには、貫通孔48を大きくしても、導電層2周辺の基板1上への生物活性物質の付着を抑えられる方法が必要になる。発明者らは、貫通孔48の寸法を大きくしても、導電層2周辺の基板1上への生物活性物質の付着を抑えられる方法として、以下に説明する生物活性物質の付着抑制方法を発明した。   That is, in order to increase the size of the through hole 48 and ease the requirement for the alignment accuracy of the cover 9 and the substrate 1, even if the through hole 48 is enlarged, the biological material on the substrate 1 around the conductive layer 2 can be reduced. A method that can suppress the adhesion of the active substance is required. The inventors have invented the bioactive substance adhesion suppression method described below as a method for suppressing the adhesion of the bioactive substance on the substrate 1 around the conductive layer 2 even if the size of the through hole 48 is increased. did.

以下、導電層周辺の基板上への生物活性物質の付着抑制方法の詳細について前述の図2、図4及び図5、並びに図8A及び図8Bを用いて説明する。図8Aは実施例1の静電噴霧装置において、導電層にバイアス電圧を印加して基板製作を説明するための図であり、図8Bは、図8Aの静電噴霧装置内に配置された基板を示す平面図である。   Hereinafter, the details of the method for suppressing the adhesion of the bioactive substance to the substrate around the conductive layer will be described with reference to FIGS. 2, 4 and 5, and FIGS. 8A and 8B. FIG. 8A is a diagram for explaining substrate fabrication by applying a bias voltage to the conductive layer in the electrostatic spraying apparatus of Example 1, and FIG. 8B is a substrate disposed in the electrostatic spraying apparatus of FIG. 8A. FIG.

図2の(a)に示す成膜工程と同じ手順で基板1上に導電層2を成膜する。次に、図2の(b)に示すレジスト塗布工程から図2の(f)に示すレジスト除去工程と同じ手順により、図8Bに示す形状の導電層2を加工する。図8Bにおいて、基板1には5つの導電層17から21が形成されている。レジスト10としては、ポジ型レジストのOFPR800(粘度30cp)を用いており、図8Bの導電層17から21に示すように、マスク7の光8を遮光する領域の形状は同じ形状である。   A conductive layer 2 is formed on the substrate 1 by the same procedure as the film forming step shown in FIG. Next, the conductive layer 2 having the shape shown in FIG. 8B is processed by the same procedure from the resist coating process shown in FIG. 2B to the resist removal process shown in FIG. In FIG. 8B, five conductive layers 17 to 21 are formed on the substrate 1. As the resist 10, a positive resist OFPR800 (viscosity 30 cp) is used. As shown in the conductive layers 17 to 21 in FIG. 8B, the regions of the mask 7 that shield the light 8 are the same.

以上の手順により、基板1上に、第1の導電層17から第5の導電層21を作製した。   Through the above procedure, the first conductive layer 17 to the fifth conductive layer 21 were formed on the substrate 1.

次に、第1の導電層17から第5の導電層21上に生物活性物質3を付着させるための手順について説明する。
レジスト除去工程後の第1の導電層17から第5の導電層21を形成した基板1を図4に示す静電噴霧装置のキャピラリ40の下部に配置する。そして、図8Aに示すように、目標導電層を、例えば第3の導電層19とした場合、第3の導電層19を貫通孔48の内側に対向して配置し、高電圧電源14のマイナス極に接続する。高電圧電源14のマイナス極はアース16に接続されているため、第3の導電層19はアース電位になる。残りの第1、2、4、5の導電層17、18、20、21は、直流電源15のプラス極に接続し、直流電源15のマイナス極をアース16に接続した。第1、2、4、5の導電層17、18、20、21は、アース電位より直流電源15の電圧分だけ高いプラスの電位、即ち、正のバイアス電圧が印加されている。このように構成することにより、生物活性物質3は第3の導電層19に付着しにくくなる。また、図4中のカバー9には、図5に示すように貫通孔48が形成されており、カバー9は、貫通孔48の内側に対向する位置に第3の導電層19が配置されるように位置合わせされる。貫通孔48の幅寸法Yは、2.0mm、長さ寸法Zは、14mmとし、貫通孔48の中心が第3の導電層19の中心と一致するように位置合わせした。このように位置合わせすることにより、第1、2、4、5の導電層17、18、20、21はカバー9によりある程度覆われた状態となり、キャピラリ40から噴霧された生物活性物質3の付着が防止される。図4に示したキャピラリ40は、X軸方向の位置調整を行うキャピラリホルダー41、Y軸方向の位置調整を行うキャピラリホルダー42、および各キャピラリホルダー41,42を固定する押え部材43を用いて保持されている。このように、キャピラリ40はチャンバー外壁47に対してX軸方向及びY軸方向における所定の位置に確実に固定され保持される。尚、ここで、X軸方向とは図4の紙面に対して直交する方向であり、Y軸方向とはX軸方向と直交する図4における左右方向である。
Next, a procedure for attaching the bioactive substance 3 from the first conductive layer 17 to the fifth conductive layer 21 will be described.
The substrate 1 on which the first conductive layer 17 to the fifth conductive layer 21 after the resist removing step are formed is placed below the capillary 40 of the electrostatic spraying device shown in FIG. 8A, when the target conductive layer is, for example, the third conductive layer 19, the third conductive layer 19 is disposed facing the inside of the through hole 48, and the negative voltage of the high voltage power source 14 is set. Connect to the pole. Since the negative pole of the high voltage power supply 14 is connected to the ground 16, the third conductive layer 19 becomes the ground potential. The remaining first, second, fourth, and fifth conductive layers 17, 18, 20, and 21 were connected to the positive pole of the DC power supply 15, and the negative pole of the DC power supply 15 was connected to the ground 16. The first, second, fourth, and fifth conductive layers 17, 18, 20, and 21 are applied with a positive potential that is higher than the ground potential by the voltage of the DC power source 15, that is, a positive bias voltage. By configuring in this way, the biologically active substance 3 becomes difficult to adhere to the third conductive layer 19. Further, as shown in FIG. 5, the cover 9 in FIG. 4 has a through hole 48, and the cover 9 has the third conductive layer 19 disposed at a position facing the inside of the through hole 48. So that they are aligned. The width dimension Y of the through hole 48 was 2.0 mm, the length dimension Z was 14 mm, and the center of the through hole 48 was aligned with the center of the third conductive layer 19. By aligning in this way, the first, second, fourth, and fifth conductive layers 17, 18, 20, and 21 are covered to some extent by the cover 9, and the bioactive substance 3 sprayed from the capillary 40 is attached. Is prevented. The capillary 40 shown in FIG. 4 is held using a capillary holder 41 that adjusts the position in the X-axis direction, a capillary holder 42 that adjusts the position in the Y-axis direction, and a pressing member 43 that fixes the capillary holders 41 and 42. Has been. Thus, the capillary 40 is securely fixed and held at predetermined positions in the X-axis direction and the Y-axis direction with respect to the chamber outer wall 47. Here, the X-axis direction is a direction orthogonal to the paper surface of FIG. 4, and the Y-axis direction is the left-right direction in FIG. 4 orthogonal to the X-axis direction.

以上のような構成により、位置調整されたキャピラリ40に3kVの電圧を加え、第1、2、4、5の導電層17、18、20、21に+140Vの電圧を加えて、静電噴霧を行った。キャピラリ40の先端から目標導電層である第3の導電層19までの距離は35mmであった。このように実施した静電噴霧の後、導電層2周辺の基板1上の蛍光強度を測定したところ、貫通孔48の寸法が1.5mmの場合と同様に、生物活性物質3の付着はほとんど観察されなかった。このため、カバー9の貫通孔48の寸法を大きくしても、第1、2、4、5の導電層17、18、20、21にプラスのバイアス電圧を加えることにより、基板1上への生物活性物質3の付着を抑えた条件で、第3の導電層19上にのみ所定量の生物活性物質3を確実に塗布できることが分かった。以上のように、本発明においては貫通孔48の寸法を大きくできるため、基板1とカバー9の位置合わせ精度に対する要求を緩和することができる。   With the configuration as described above, a voltage of 3 kV is applied to the capillary 40 whose position has been adjusted, and a voltage of +140 V is applied to the first, second, fourth, and fifth conductive layers 17, 18, 20, and 21, and electrostatic spraying is performed. went. The distance from the tip of the capillary 40 to the third conductive layer 19 as the target conductive layer was 35 mm. After the electrostatic spraying performed in this way, the fluorescence intensity on the substrate 1 around the conductive layer 2 was measured. As in the case where the dimension of the through hole 48 was 1.5 mm, the bioactive substance 3 was hardly adhered. Not observed. For this reason, even if the size of the through hole 48 of the cover 9 is increased, a positive bias voltage is applied to the first, second, fourth, and fifth conductive layers 17, 18, 20, and 21, so that It was found that a predetermined amount of the biologically active material 3 can be reliably applied only on the third conductive layer 19 under the condition that the adhesion of the biologically active material 3 is suppressed. As described above, in the present invention, since the size of the through hole 48 can be increased, the requirement for the alignment accuracy between the substrate 1 and the cover 9 can be relaxed.

複数の異なる種類の生物活性物質3を付着させる場合には、静電噴霧すべき導電層をキャピラリ40の直下に移動していき、噴霧すべき導電層のみをアース電位に設定し、他の導電層を所定のプラスのバイアス電位に設定して、噴霧工程を行い、複数の導電層のそれぞれに対して上記の方法により順次所望の生物活性物質を形成することができる。   In the case of attaching a plurality of different types of bioactive substances 3, the conductive layer to be electrostatically sprayed is moved directly below the capillary 40, and only the conductive layer to be sprayed is set to the ground potential. The spraying process is performed by setting the layer to a predetermined positive bias potential, and a desired bioactive substance can be sequentially formed on each of the plurality of conductive layers by the above method.

また、上記の実施例においては目標導電層である第3の導電層19をアース電位としたが、目標導電層をマイナス電位にすることにより、噴霧された生物活性物質を積極的に導電層上に集める効果が生じるため、生物活性物質の利用効率をさらに改善する効果が期待できる。   In the above embodiment, the third conductive layer 19 as the target conductive layer is set to the ground potential. However, by setting the target conductive layer to a negative potential, the sprayed bioactive substance is positively applied to the conductive layer. Therefore, the effect of further improving the utilization efficiency of the bioactive substance can be expected.

実施例1に記載のカバー9を使用して作製する基板1を量産する場合、静電噴霧工程を行う前に、基板1の位置を正確に調整して、固定するための効率的な方法が必要になる。理由として、カバー9を使用する場合には、カバー9の位置調整誤差が、貫通孔48と生物活性物質3を付着させたい位置との誤差になり、誤差が大きいと隣接する導電層2に不要な付着を生じるため、製品の品質上問題になる。位置調整誤差は小さく抑える必要があるが、噴霧毎に作業者が観察して調整していたのでは、調整に時間がかかり、効率的ではない。   When mass-producing the substrate 1 manufactured using the cover 9 described in the first embodiment, there is an efficient method for accurately adjusting and fixing the position of the substrate 1 before performing the electrostatic spraying process. I need it. The reason is that when the cover 9 is used, the position adjustment error of the cover 9 is an error between the through hole 48 and the position where the bioactive substance 3 is to be attached. If the error is large, the adjacent conductive layer 2 is not necessary. This causes a problem in product quality. The position adjustment error needs to be kept small, but if the operator observes and adjusts for each spray, the adjustment takes time and is not efficient.

実施例2では、位置調整時間の短縮と調整精度の向上を図るため、基板表面の電気的または光学的な性質を変化させるための位置調整用マークを形成しており、その位置調整用マークを形成する方法について以下に説明する。   In the second embodiment, in order to shorten the position adjustment time and improve the adjustment accuracy, a position adjustment mark for changing the electrical or optical property of the substrate surface is formed. A method of forming will be described below.

図9は、実施例2の位置調整用マーク52を形成した基板100の構造を示す図である。実施例2の基板100は、実施例1に記載の図1の基板1の表面に位置調整用マーク52を形成した構造を有している。位置調整用マーク52は、銅薄膜であり、細い直線形状である。位置調整用マーク52の形成は、図2の(c)から(f)に示す加工方法の露光工程からレジスト除去工程までの工程において導電層2の加工と同時に行った。具体的には、露光用マスクとして、図10に示した形状のマスク53を用いて、生物活性物質3を付着させる部分に加えて、位置調整用マーク52を形成する部分にもレジスト10が導電層2上に形成されるようにした。その後エッチングを行うことにより、レジスト10が形成されている部分以外の銅薄膜を溶解除去し、最後にレジスト10を除去することにより、生物活性物質3を付着させる部分に加えて、位置調整用マーク52を基板上に形成した。図10においてマスク53の斜線部分は光を遮光するように作製されている。   FIG. 9 is a diagram illustrating the structure of the substrate 100 on which the position adjustment mark 52 according to the second embodiment is formed. The substrate 100 of the second embodiment has a structure in which a position adjustment mark 52 is formed on the surface of the substrate 1 of FIG. 1 described in the first embodiment. The position adjustment mark 52 is a copper thin film and has a thin linear shape. The position adjustment mark 52 was formed simultaneously with the processing of the conductive layer 2 in the steps from the exposure step to the resist removal step of the processing method shown in FIGS. Specifically, using the mask 53 having the shape shown in FIG. 10 as an exposure mask, the resist 10 is electrically conductive not only in the portion where the bioactive substance 3 is attached but also in the portion where the position adjustment mark 52 is formed. It was formed on layer 2. Etching is then performed to dissolve and remove the copper thin film other than the portion where the resist 10 is formed. Finally, the resist 10 is removed, and in addition to the portion to which the bioactive substance 3 is attached, the position adjustment mark 52 was formed on the substrate. In FIG. 10, the hatched portion of the mask 53 is fabricated so as to block light.

作製された基板100の位置調整用マーク52と導電層2は、前述のようにフォトリソグラフィで加工されるため、位置誤差は数μm以下に抑えられる。実施例2では位置調整用マーク52が銅薄膜で形成されているため、位置調整用マーク52は光を反射する。位置調整用マーク52の周辺はガラス表面であるため、光を透過する。この性質を利用して、位置調整用マーク52を画像認識することにより、自動で高精度に位置調整を行うことが可能である。カバー9に対して位置合わせする具体的な方法としては、カバー9の貫通孔48のエッジの一部分を画像認識し、位置調整用マーク52を貫通孔48のエッジから所定の位置に位置調整することにより、位置誤差を数μm以下にすることが可能である。実施例2では光学的な位置調整方法について説明したが、例えば、位置調整用マーク52は導電性であるため、電気抵抗値の変化を測定するための測定針により、基板上を走査することにより、位置調整用マーク52を認識し、カバー9のエッジの画像認識結果に対して位置調整する方法でも、高い位置調整精度が得られる。   Since the position adjustment mark 52 and the conductive layer 2 of the manufactured substrate 100 are processed by photolithography as described above, the position error is suppressed to several μm or less. In the second embodiment, since the position adjustment mark 52 is formed of a copper thin film, the position adjustment mark 52 reflects light. Since the periphery of the position adjustment mark 52 is a glass surface, it transmits light. By recognizing the position adjustment mark 52 using this property, it is possible to automatically perform position adjustment with high accuracy. As a specific method of aligning with the cover 9, image recognition is performed on a part of the edge of the through hole 48 of the cover 9, and the position adjustment mark 52 is adjusted to a predetermined position from the edge of the through hole 48. Thus, the position error can be reduced to several μm or less. In the second embodiment, the optical position adjustment method has been described. For example, since the position adjustment mark 52 is conductive, the substrate is scanned with a measuring needle for measuring a change in electric resistance value. Even when the position adjustment mark 52 is recognized and the position is adjusted with respect to the image recognition result of the edge of the cover 9, high position adjustment accuracy can be obtained.

本発明に係る静電噴霧装置及び静電噴霧方法は、微細な形状に均一的に材料を塗布することが可能であり、生物活性物質を基板上に所定の形状に塗布する必要があるバイオチップとして有用である。   The electrostatic spraying device and electrostatic spraying method according to the present invention are capable of uniformly applying a material in a fine shape, and need to apply a bioactive substance to a predetermined shape on a substrate. Useful as.

Claims (7)

溶液を絶縁性の基板上に所望のパターン形状で付着させる静電噴霧装置において、
所望のパターン形状の導電層が形成された前記基板と所定の距離をおいて配置され、内部に電極線を有するキャピラリと、
前記電極線に所定の高電圧を印加して前記溶液を静電噴霧するための高圧電源と、
前記基板と前記キャピラリとの間に前記基板に近接して配置され、前記導電層の形状と対応する貫通孔を有するカバーと、
を備え、
前記カバーが前記導電層上の前記溶液を付着させるべき部分に対応して配置され、前記溶液が前記基板に対して前記カバーを介して静電噴霧されるよう構成された静電噴霧装置。
In an electrostatic spraying apparatus for depositing a solution in a desired pattern shape on an insulating substrate,
A capillary having a predetermined distance from the substrate on which a conductive layer having a desired pattern shape is formed and having an electrode wire inside;
A high-voltage power supply for electrostatically spraying the solution by applying a predetermined high voltage to the electrode wire;
A cover disposed between the substrate and the capillary close to the substrate and having a through hole corresponding to the shape of the conductive layer;
With
The electrostatic spraying device is configured such that the cover is disposed corresponding to a portion on the conductive layer to which the solution is to be attached, and the solution is electrostatically sprayed to the substrate through the cover.
前記基板とカバーとの距離は、0.05mm以下とすることを特徴とする請求項1に記載の静電噴霧装置。   The electrostatic spraying device according to claim 1, wherein a distance between the substrate and the cover is 0.05 mm or less. 前記カバーに形成される貫通孔は、前記導電層の対応する形状より大きく形成されることを特徴とする請求項2に記載の静電噴霧装置。   The electrostatic spraying device according to claim 2, wherein the through hole formed in the cover is formed to be larger than a corresponding shape of the conductive layer. 溶液を絶縁性の基板上に所望のパターン形状で付着させる静電噴霧方法において、
前記基板上に所望のパターン形状の導電層を形成するステップ、
前記導電層の形状と対応する形状の貫通孔を有するカバーを前記基板から所定の距離を有して配置するステップ、
前記基板上に形成すべき所望のパターン形状の基準位置となる基準マークを形成し、当該基準マークに基づいて前記カバーの貫通孔の位置の位置合わせを行うステップ、及び
前記基板上の導電層上に前記カバーを介して静電噴霧して前記溶液を積層するステップ、を有する静電噴霧方法。
In an electrostatic spraying method in which a solution is deposited in a desired pattern shape on an insulating substrate,
Forming a conductive layer having a desired pattern shape on the substrate;
Disposing a cover having a through hole having a shape corresponding to the shape of the conductive layer at a predetermined distance from the substrate;
Forming a reference mark serving as a reference position of a desired pattern shape to be formed on the substrate, aligning the position of the through hole of the cover based on the reference mark, and on the conductive layer on the substrate A step of laminating the solution by electrostatic spraying through the cover.
正極性の高電圧を印加して溶液を絶縁性の基板上に所望のパターン形状で付着させる静電噴霧方法において、
前記基板上に所望のパターン形状の複数の導電層を形成するステップ、
前記導電層の形状と対応する形状の貫通孔を有するカバーを前記基板から所定の距離を離して配置するステップ、
前記複数の導電層の内の静電噴霧すべき導電層をアース電位又はマイナス電位に設定するとともに他の導電層を当該電位より高く設定するステップ、及び
当該アース電位又はマイナス電位に設定される導電層を順次選択して前記複数の導電層に前記溶液を静電噴霧するステップ、を有する静電噴霧方法。
In an electrostatic spraying method in which a high voltage of positive polarity is applied to adhere a solution on an insulating substrate in a desired pattern shape,
Forming a plurality of conductive layers having a desired pattern shape on the substrate;
Disposing a cover having a through hole having a shape corresponding to the shape of the conductive layer at a predetermined distance from the substrate;
Of the plurality of conductive layers, a step of setting a conductive layer to be electrostatically sprayed to a ground potential or a negative potential and setting another conductive layer higher than the potential, and a conductivity set to the ground potential or the negative potential. And electrostatic spraying the solution onto the plurality of conductive layers by sequentially selecting layers.
前記所定の距離は、0.05mm以下とすることを特徴とする請求項4又は請求項5に記載の静電噴霧方法。   The electrostatic spraying method according to claim 4 or 5, wherein the predetermined distance is 0.05 mm or less. 前記カバーに形成される貫通孔は、前記導電層の形状より大きく形成することを特徴とする請求項6に記載の静電噴霧方法。   The electrostatic spraying method according to claim 6, wherein the through hole formed in the cover is formed larger than the shape of the conductive layer.
JP2008538755A 2006-10-12 2007-10-11 Electrostatic spraying apparatus and electrostatic spraying method Pending JPWO2008044737A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006278986 2006-10-12
JP2006278986 2006-10-12
PCT/JP2007/069862 WO2008044737A1 (en) 2006-10-12 2007-10-11 Electrostatic spraying apparatus, and electrostatic spraying method

Publications (1)

Publication Number Publication Date
JPWO2008044737A1 true JPWO2008044737A1 (en) 2010-02-18

Family

ID=39282927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008538755A Pending JPWO2008044737A1 (en) 2006-10-12 2007-10-11 Electrostatic spraying apparatus and electrostatic spraying method

Country Status (2)

Country Link
JP (1) JPWO2008044737A1 (en)
WO (1) WO2008044737A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656038B2 (en) * 2006-10-16 2011-03-23 パナソニック株式会社 Electrostatic spraying method and microfluidic chip
KR101425021B1 (en) * 2012-09-13 2014-08-04 주식회사 나래나노텍 Improved Spray-Type Pattern Forming Apparatus and Method
KR101625714B1 (en) * 2013-08-27 2016-05-30 엔젯 주식회사 Apparatus for spray patterning using electrostatic force
KR102206027B1 (en) 2014-10-06 2021-01-20 삼성전자주식회사 Thin film fabricating apparatus and manufacturing method of orgarnic light emitting device using the same
KR102479926B1 (en) 2015-09-03 2022-12-20 삼성전자주식회사 Thin film fabricating apparatus, and of orgarnic light emitting device and manufacturing method of orgarnic light emitting device using the same
KR20180005082A (en) 2016-07-05 2018-01-15 삼성전자주식회사 Apparatus and method for patterning substrate, method for manufacturing organic light emitting device
CN109382251B (en) * 2018-10-24 2020-09-08 绵阳飞远科技有限公司 Environment-friendly spraying and air treatment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022269A1 (en) * 1997-10-27 1999-05-06 Sekisui Chemical Co., Ltd. Apparatus for spraying microparticles and spraying method using the apparatus, and method for manufacturing liquid crystal display
JP2001281252A (en) * 2000-04-03 2001-10-10 Inst Of Physical & Chemical Res Micro array-creating device
JP3500777B2 (en) * 1995-06-22 2004-02-23 セイコーエプソン株式会社 Substrate coating method, substrate coating apparatus, method of manufacturing liquid crystal display, and method of manufacturing surface illumination device
JP2004074050A (en) * 2002-08-20 2004-03-11 Dainippon Screen Mfg Co Ltd Coating apparatus and coating method
JP2004219813A (en) * 2003-01-16 2004-08-05 Mitsubishi Electric Corp Photosensitive resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3500777B2 (en) * 1995-06-22 2004-02-23 セイコーエプソン株式会社 Substrate coating method, substrate coating apparatus, method of manufacturing liquid crystal display, and method of manufacturing surface illumination device
WO1999022269A1 (en) * 1997-10-27 1999-05-06 Sekisui Chemical Co., Ltd. Apparatus for spraying microparticles and spraying method using the apparatus, and method for manufacturing liquid crystal display
JP2001281252A (en) * 2000-04-03 2001-10-10 Inst Of Physical & Chemical Res Micro array-creating device
JP2004074050A (en) * 2002-08-20 2004-03-11 Dainippon Screen Mfg Co Ltd Coating apparatus and coating method
JP2004219813A (en) * 2003-01-16 2004-08-05 Mitsubishi Electric Corp Photosensitive resin composition

Also Published As

Publication number Publication date
WO2008044737A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JPWO2008044737A1 (en) Electrostatic spraying apparatus and electrostatic spraying method
KR101450350B1 (en) Apparatus for substrate processing and methods therefor
CN103066012B (en) Localized, In-Vacuum Modification of Small Structures
US9190239B2 (en) Plasma immersion ion milling apparatus and method
US20060228491A1 (en) Method for focusing patterning nano-sized structure
CN107079572A (en) Electron beam-induced plasma(eBIP)Application in inspection, test, debugging and surfaction
WO2021219032A1 (en) Curved substrate etching method
KR20160145607A (en) Deposition mask, method for producing deposition mask, and method for producing touch panel
JP4656038B2 (en) Electrostatic spraying method and microfluidic chip
TW201541197A (en) Apparatus
JP2004310031A (en) Method for manufacturing liquid crystal display
NL8103848A (en) METHOD FOR MANUFACTURING INTEGRATED CHAINS
KR20180008578A (en) Apparatus and method for multi-layer deposition
CN109767975B (en) Preparation method and device of semiconductor layer and preparation method of display substrate
KR20060116733A (en) Method for manufacturing electron emission source
JP3958869B2 (en) MgO film forming method and panel
JP2010199402A (en) Method and device for forming film
JP3958870B2 (en) Vacuum deposition system
CN109867260B (en) Method for carrying out electron beam or ion beam focusing etching and microscopic imaging on non-conductive substrate
JPH0494524A (en) Cleaning of electron beam device
US7724003B1 (en) Substrate conditioning for corona charge control
US20030118947A1 (en) System and method for selective deposition of precursor material
JP2653575B2 (en) Cantilever body and surface modification device using the same
US20200098595A1 (en) Semiconductor manufacturing apparatus and method for operating the same
KR100729102B1 (en) Deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219