JPWO2008026482A1 - Unsaturated fatty acid ester, polymerizable liquid crystal composition, optically anisotropic material, and optical element using the same - Google Patents

Unsaturated fatty acid ester, polymerizable liquid crystal composition, optically anisotropic material, and optical element using the same Download PDF

Info

Publication number
JPWO2008026482A1
JPWO2008026482A1 JP2008532028A JP2008532028A JPWO2008026482A1 JP WO2008026482 A1 JPWO2008026482 A1 JP WO2008026482A1 JP 2008532028 A JP2008532028 A JP 2008532028A JP 2008532028 A JP2008532028 A JP 2008532028A JP WO2008026482 A1 JPWO2008026482 A1 JP WO2008026482A1
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
group
polymerizable liquid
crystal composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008532028A
Other languages
Japanese (ja)
Inventor
海田 由里子
由里子 海田
中野 貴志
貴志 中野
山本 祐治
祐治 山本
正紀 澤口
正紀 澤口
森澤 義富
義富 森澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2008026482A1 publication Critical patent/JPWO2008026482A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/54Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • C07C69/653Acrylic acid esters; Methacrylic acid esters; Haloacrylic acid esters; Halomethacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/302Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and two or more oxygen atoms in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate

Abstract

膜厚むら及び配向乱れを同時に抑制し、室温に放置しても結晶が析出し難く、耐熱性を有する重合物を調製可能な新規不飽和脂肪酸エステル、これを用いた重合性液晶組成物、光学異方性材料及び光学素子を提供する。不飽和脂肪酸エステルは下式(1)で表され、これを含む重合性液晶組成物を調製し、重合して光学異方性材料及び光学素子が提供される。式中、RF:炭素数2〜12のポリフルオロアルキレン基、又は-CF2-(OCF2CF2)x-OCF2-で表される基(xは1〜6の整数)。R1:水素原子又はメチル基。R2:炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、フッ素原子、又はシアノ基。E1:1,4−フェニレン基。E2、E3、E4:各々独立に1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基である。m:1〜3の整数。n:1〜3の整数。k:0又は1。h:0又は1。CH2=CR1-COO-(CH2)m-RF-(CH2)n-O-E1-(E2)k-(E3)h-E4-R2(1)A novel unsaturated fatty acid ester capable of preparing a heat-resistant polymer, which suppresses unevenness of film thickness and disorder of alignment at the same time, hardly precipitates crystals even when left at room temperature, polymerizable liquid crystal composition using the same, optical Anisotropic materials and optical elements are provided. The unsaturated fatty acid ester is represented by the following formula (1), and a polymerizable liquid crystal composition containing the unsaturated fatty acid ester is prepared and polymerized to provide an optically anisotropic material and an optical element. In the formula, RF: a polyfluoroalkylene group having 2 to 12 carbon atoms, or a group represented by —CF 2 — (OCF 2 CF 2) x —OCF 2 — (x is an integer of 1 to 6). R1: a hydrogen atom or a methyl group. R2: an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, or a cyano group. E1: 1,4-phenylene group. E2, E3, E4: each independently represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group. m: An integer of 1 to 3. n: An integer of 1 to 3. k: 0 or 1. h: 0 or 1. CH2 = CR1-COO- (CH2) m-RF- (CH2) n-O-E1- (E2) k- (E3) h-E4-R2 (1)

Description

本発明は、光学素子等の製造に用いられる重合性液晶組成物の構成成分として有用な新規な不飽和脂肪酸エステル及びこれを用いた重合性液晶組成物、並びに、この重合性液晶組成物を用いて調製される光学異方性材料及び光学素子に関する。   The present invention relates to a novel unsaturated fatty acid ester useful as a component of a polymerizable liquid crystal composition used in the production of optical elements and the like, a polymerizable liquid crystal composition using the same, and the polymerizable liquid crystal composition. The present invention relates to an optically anisotropic material and an optical element.

位相差フィルムの製造方法として、重合性液晶組成物を基板に塗布した後、重合させる方法が知られている。この製造方法において、重合性液晶組成物を塗布する際に発生する膜厚むらを解消することを目的として、重合性液晶組成物に界面活性剤又はレベリング剤を添加することが有効である(特許文献1及び2参照)。   As a method for producing a retardation film, a method is known in which a polymerizable liquid crystal composition is applied to a substrate and then polymerized. In this production method, it is effective to add a surfactant or a leveling agent to the polymerizable liquid crystal composition for the purpose of eliminating the film thickness unevenness that occurs when the polymerizable liquid crystal composition is applied (patent) Reference 1 and 2).

特開平8−231958号公報JP-A-8-231958 特開平11−148080号公報JP-A-11-148080

しかし、従来の界面活性剤及びレベリング剤は、液晶組成物に対する相溶性が低く、配向乱れを引き起こすという問題があった。   However, conventional surfactants and leveling agents have a problem that they have low compatibility with the liquid crystal composition and cause alignment disorder.

また、塗布による位相差フィルムの製造方法において、基板に重合性液晶組成物を塗布して室温に放置すると、結晶が析出し、透明なフィルムが得られないという問題があった。さらに、この結晶が析出する問題を克服するために、結果としてフィルムの高温での耐熱性を犠牲にする場合が多かった。   Further, in the method for producing a retardation film by coating, there is a problem that when a polymerizable liquid crystal composition is coated on a substrate and left at room temperature, crystals are precipitated and a transparent film cannot be obtained. Furthermore, in order to overcome the problem of precipitation of the crystals, the heat resistance of the film at a high temperature is often sacrificed as a result.

本発明は、上記事情に鑑みてなされたものであり、膜厚むら及び配向乱れが抑制され、室温に放置しても結晶が析出しにくく、広い面積の基板に塗布するのに適した重合性液晶組成物、及び、これを調製するのに適した新規な不飽和脂肪酸エステルを提供することを課題とする。   The present invention has been made in view of the above circumstances, the film thickness unevenness and the alignment disorder are suppressed, the crystals are hardly precipitated even when left at room temperature, and the polymerizability is suitable for application to a substrate having a large area. It is an object of the present invention to provide a liquid crystal composition and a novel unsaturated fatty acid ester suitable for preparing the liquid crystal composition.

また、本発明は、耐熱性に優れた重合物が得られる重合性液晶組成物、及び、これを用いて製造される光学異方性材料、光学素子を提供することを課題とする。   Moreover, this invention makes it a subject to provide the polymeric liquid crystal composition from which the polymer excellent in heat resistance is obtained, the optically anisotropic material manufactured using this, and an optical element.

本発明の一態様によれば、不飽和脂肪酸エステルは、下式(1)で表されることを要旨とする。   According to one aspect of the present invention, the unsaturated fatty acid ester is represented by the following formula (1).

CH2=CR1-COO-(CH2)m-RF-(CH2)n-O-E1-(E2)k-(E3)h-E4-R2 (1)CH 2 = CR 1 -COO- (CH 2 ) m -R F- (CH 2 ) n -OE 1- (E 2 ) k- (E 3 ) h -E 4 -R 2 (1)

但し、式(1)中の記号は、以下の通りである。
:炭素数2〜12のポリフルオロアルキレン基、又は-CF2-(OCF2CF2)x-OCF2-で表される基(xは1〜6の整数)。
:水素原子又はメチル基。
:炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、フッ素原子、又はシアノ基。
:1,4−フェニレン基であり、該基中の炭素原子に結合した水素原子がフッ素原子、塩素原子又はメチル基に置換されていてもよい。
、E、E:各々、独立に、1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基であり、該基中の炭素原子に結合した水素原子がフッ素原子、塩素原子又はメチル基に置換されていてもよい。
m:1〜3の整数。
n:1〜3の整数。
k:0又は1。
h:0又は1。
However, the symbol in Formula (1) is as follows.
R F : a polyfluoroalkylene group having 2 to 12 carbon atoms or a group represented by —CF 2 — (OCF 2 CF 2 ) x —OCF 2 — (x is an integer of 1 to 6).
R 1 : a hydrogen atom or a methyl group.
R 2 : an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, or a cyano group.
E 1 is a 1,4-phenylene group, and a hydrogen atom bonded to a carbon atom in the group may be substituted with a fluorine atom, a chlorine atom or a methyl group.
E 2 , E 3 , E 4 : each independently a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and a hydrogen atom bonded to a carbon atom in the group is a fluorine atom or a chlorine atom Alternatively, it may be substituted with a methyl group.
m: An integer of 1 to 3.
n: An integer of 1 to 3.
k: 0 or 1.
h: 0 or 1.

また、本発明の一態様によれば、重合性液晶組成物は、下式(1)で表される不飽和脂肪酸エステルと下式(1)に該当しない重合性液晶化合物とを含有することを要旨とする。   Moreover, according to one aspect of the present invention, the polymerizable liquid crystal composition contains an unsaturated fatty acid ester represented by the following formula (1) and a polymerizable liquid crystal compound not corresponding to the following formula (1). The gist.

CH2=CR1-COO-(CH2)m-RF-(CH2)n-O-E1-(E2)k-(E3)h-E4-R2 (1)CH 2 = CR 1 -COO- (CH 2 ) m -R F- (CH 2 ) n -OE 1- (E 2 ) k- (E 3 ) h -E 4 -R 2 (1)

但し、式(1)中の記号は、以下の通りである。
:炭素数2〜12のポリフルオロアルキレン基、又は-CF2-(OCF2CF2)x-OCF2-で表される基(xは1〜6の整数)。
:水素原子又はメチル基。
:炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、フッ素原子、又はシアノ基。
:1,4−フェニレン基であり、該基中の炭素原子に結合した水素原子がフッ素原子、塩素原子又はメチル基に置換されていてもよい。
、E、E:各々、独立に、1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基であり、該基中の炭素原子に結合した水素原子がフッ素原子、塩素原子又はメチル基に置換されていてもよい。
m:1〜3の整数。
n:1〜3の整数。
k:0又は1。
h:0又は1。
However, the symbol in Formula (1) is as follows.
R F : a polyfluoroalkylene group having 2 to 12 carbon atoms or a group represented by —CF 2 — (OCF 2 CF 2 ) x —OCF 2 — (x is an integer of 1 to 6).
R 1 : a hydrogen atom or a methyl group.
R 2 : an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, or a cyano group.
E 1 is a 1,4-phenylene group, and a hydrogen atom bonded to a carbon atom in the group may be substituted with a fluorine atom, a chlorine atom or a methyl group.
E 2 , E 3 , E 4 : each independently a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and a hydrogen atom bonded to a carbon atom in the group is a fluorine atom or a chlorine atom Alternatively, it may be substituted with a methyl group.
m: An integer of 1 to 3.
n: An integer of 1 to 3.
k: 0 or 1.
h: 0 or 1.

前記式(1)で表される不飽和脂肪酸エステルは液晶性を有する重合性液晶化合物であると好ましい。   The unsaturated fatty acid ester represented by the formula (1) is preferably a polymerizable liquid crystal compound having liquid crystallinity.

前記式(1)に該当しない重合性液晶化合物の少なくとも一部が下記式(2)で表される化合物であると好ましい。   It is preferable that at least a part of the polymerizable liquid crystal compound not corresponding to the formula (1) is a compound represented by the following formula (2).

CH2=CR3-COO-(CH2)t-(O)p-E5-w-E6-(E7)q-(E8)s-R4 (2)CH 2 = CR 3 -COO- (CH 2 ) t- (O) p -E 5 -wE 6- (E 7 ) q- (E 8 ) s -R 4 (2)

但し、式(2)中の記号は、以下の通りである。
:水素原子又はメチル基。
:炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、フッ素原子、又はシアノ基。
、E、E、E:それぞれ独立に1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基であり、該基中の炭素原子に結合した水素原子がフッ素原子、塩素原子又はメチル基に置換されていてもよい。
w:−OCO−又は単結合。
t:0〜8の整数。
p:tが0のとき0、tが1〜8のとき1。
q:0又は1。
s:qが0のとき0、qが1のとき0又は1。
However, the symbol in Formula (2) is as follows.
R 3 : a hydrogen atom or a methyl group.
R 4 : an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, or a cyano group.
E 5 , E 6 , E 7 , E 8 : each independently 1,4-phenylene group or trans-1,4-cyclohexylene group, and a hydrogen atom bonded to a carbon atom in the group is a fluorine atom, chlorine It may be substituted with an atom or a methyl group.
w: -OCO- or a single bond.
t: An integer from 0 to 8.
p: 0 when t is 0, 1 when t is 1-8.
q: 0 or 1.
s: 0 when q is 0, 0 or 1 when q is 1.

前記式(1)で表される不飽和脂肪酸エステルと前記式(1)に該当しない重合性液晶化合物との合計量が、重合性液晶組成物に対して70質量%以上であると好ましい。   The total amount of the unsaturated fatty acid ester represented by the formula (1) and the polymerizable liquid crystal compound not corresponding to the formula (1) is preferably 70% by mass or more based on the polymerizable liquid crystal composition.

前記式(1)で表される不飽和脂肪酸エステルの量が、当該式(1)で表される不飽和脂肪酸エステルと式(1)に該当しない重合性液晶化合物との合計量に対して5〜50モル%であると好ましい。   The amount of the unsaturated fatty acid ester represented by the formula (1) is 5 with respect to the total amount of the unsaturated fatty acid ester represented by the formula (1) and the polymerizable liquid crystal compound not corresponding to the formula (1). It is preferable in it being -50 mol%.

本発明の光学異方性材料は、上記の重合性液晶組成物を、当該組成物中の重合性液晶化合物が液晶相を示しかつ配向した状態で重合して得られることを要旨とする。   The gist of the optically anisotropic material of the present invention is that it is obtained by polymerizing the above polymerizable liquid crystal composition in a state where the polymerizable liquid crystal compound in the composition exhibits a liquid crystal phase and is aligned.

本発明の光学素子は、上記の重合性液晶組成物を、当該組成物中の重合性液晶化合物が液晶相を示しかつ配向した状態で重合して得られる重合体と、該重合体を支持する支持体とを有することを要旨とする。   The optical element of the present invention supports a polymer obtained by polymerizing the above polymerizable liquid crystal composition in a state where the polymerizable liquid crystal compound in the composition exhibits a liquid crystal phase and is aligned, and the polymer. The gist is to have a support.

なお、上記の光学素子は、位相板として好適に用いられる。   In addition, said optical element is used suitably as a phase plate.

本発明によれば、新規な不飽和脂肪酸エステルを用いることによって、調製される重合性液晶組成物は、基板に塗布した際に膜厚むら及び配向乱れが抑制され、室温に放置しても結晶が析出し難くなり、広い面積の基板に好適に塗布することができる。該重合性液晶組成物を重合して得られる光学異方性材料は、耐熱性に優れ、位相板等の光学素子を構成するのに有用である。   According to the present invention, by using a novel unsaturated fatty acid ester, the prepared polymerizable liquid crystal composition has reduced film thickness unevenness and alignment disorder when applied to a substrate, and is crystallized even when left at room temperature. Can hardly be deposited, and can be suitably applied to a substrate having a large area. An optically anisotropic material obtained by polymerizing the polymerizable liquid crystal composition is excellent in heat resistance and useful for constituting an optical element such as a phase plate.

以下、本発明について詳細に説明するが、本願の記載において使用される用語は、下記に従って解釈するものとする。また、式で表される化合物は、その式の番号を付した化合物としても表記し、例えば、式(1)で表される化合物は、化合物(1)とも表記する。   Hereinafter, the present invention will be described in detail. Terms used in the description of the present application shall be interpreted in accordance with the following. In addition, the compound represented by the formula is also expressed as a compound given the number of the formula, for example, the compound represented by the formula (1) is also expressed as the compound (1).

「液晶化合物」とは、「単独で液晶相を示し得る化合物」を意味し、「重合性液晶化合物」とは、「重合性を有し、単独で液晶相を示し得る化合物」を意味する。「重合性液晶組成物」とは、「重合性を有し、液晶相を示し得る組成物」を意味する。   “Liquid crystal compound” means “a compound capable of exhibiting a liquid crystal phase alone”, and “polymerizable liquid crystal compound” means “a compound capable of exhibiting polymerizability and capable of exhibiting a liquid crystal phase alone”. “Polymerizable liquid crystal composition” means “a composition having polymerizability and capable of exhibiting a liquid crystal phase”.

「(メタ)アクリロイル基」とは、「アクリロイル基又はメタクリロイル基」を意味し、「(メタ)アクリロイルオキシ基」とは、「アクリロイルオキシ基又はメタクリロイルオキシ基」を意味する。「Ph」とは1,4−フェニレン基を示し、該基中の炭素原子に結合した水素原子はフッ素原子、塩素原子又はメチル基に置換されたものを含み得るものとする。「Cy」とはトランス−1,4−シクロヘキシレン基を示し、該基中の炭素原子に結合した水素原子はフッ素原子、塩素原子又はメチル基に置換されたものを含み得るものとする。   “(Meth) acryloyl group” means “acryloyl group or methacryloyl group”, and “(meth) acryloyloxy group” means “acryloyloxy group or methacryloyloxy group”. “Ph” represents a 1,4-phenylene group, and a hydrogen atom bonded to a carbon atom in the group may include a hydrogen atom substituted by a fluorine atom, a chlorine atom or a methyl group. “Cy” refers to a trans-1,4-cyclohexylene group, and the hydrogen atom bonded to the carbon atom in the group may include those substituted with a fluorine atom, a chlorine atom or a methyl group.

「Δn」とは、「屈折率異方性」の略記である。尚、以下の記載における波長の値は、記載値±2nmの範囲を含み得るものとする。   “Δn” is an abbreviation for “refractive index anisotropy”. In addition, the wavelength value in the following description shall include the range of description value +/- 2nm.

<新規な化合物(1)及び重合性液晶化合物>
本発明の重合性液晶組成物の調製に用いられる化合物は、下式(1)で表される化合物である。但し、式(1)中の記号R、R、E〜E、m、n、x、k、hは前記の規定と同じものを示す。この化合物(1)は、複数の6員環による液晶性骨格を含有する不飽和脂肪酸エステルであり、重合性と液晶性とを併有する。化合物(1)には、単独では液晶相を示すものも示さないものもあるが、他の成分との混合状態では液晶状態となり得て、液晶相を示す重合性液晶組成物の構成成分として利用可能である。
<New compound (1) and polymerizable liquid crystal compound>
The compound used for the preparation of the polymerizable liquid crystal composition of the present invention is a compound represented by the following formula (1). However, symbols R 1 , R 2 , E 1 to E 4 , m, n, x, k, and h in the formula (1) are the same as defined above. This compound (1) is an unsaturated fatty acid ester containing a liquid crystalline skeleton composed of a plurality of 6-membered rings, and has both polymerizability and liquid crystallinity. The compound (1) may or may not exhibit a liquid crystal phase alone, but can be in a liquid crystal state when mixed with other components and used as a constituent component of a polymerizable liquid crystal composition exhibiting a liquid crystal phase. Is possible.

CH2=CR1-COO-(CH2)m-RF-(CH2)n-O-E1-(E2)k-(E3)h-E4-R2 (1)CH 2 = CR 1 -COO- (CH 2 ) m -R F- (CH 2 ) n -OE 1- (E 2 ) k- (E 3 ) h -E 4 -R 2 (1)

化合物(1)は、分子のスペーサー部にポリフルオロアルキレン基又はポリフルオロアルキレンオキサイド基を有する構造であり、この基の作用によって、重合性液晶組成物(詳細は後述する)中に含まれる化合物(1)は重合の際に組成物膜の表面へ移行して最表面で硬化する。このため、重合性液晶組成物のレベリング性が向上し、膜厚ムラが解消される。重合性液晶組成物中においてフッ素原子を含まない成分との相溶性を低下させないために、ポリフルオロアルキレン基の炭素数は2〜12とし、ポリフルオロアルキレンオキサイド基の数xは1〜6とする。レベリング性、相溶性の観点からポリフルオロアルキレン基の炭素数は2〜8が好ましく、ポリフルオロアルキレンオキサイド基の数xは1〜4が好ましい。また、非結晶性を奏することから、ポリフルオロアルキレン基の炭素数は2、4、6が特に好ましい。また、ポリフルオロアルキレン基は、その末端炭素原子にはフッ素原子が1個以上結合しているのが好ましく、ペルフルオロアルキレン基であるのがより好ましい。ポリフルオロアルキレン基は、ポリフルオロアルキレンオキサイド基より液晶性が良好である。
ポリフルオロアルキレン基として具体的には以下の基が挙げられる。
−(CF−、−(CF−、−(CF−、−(CF−、−(CF10−、−(CF12−、−CFCHF−、−CFCHF(CF−、−CFCHF(CF−、−CFCHF(CFCHFCF−、−CFCHF(CFCHF−、−CFCH(CFCHCF−、−CFCHF(CFCHFCF−、−CHF(CFCHF−、−CFCH(CFCF)(CFCH−。
The compound (1) has a structure having a polyfluoroalkylene group or a polyfluoroalkylene oxide group in the spacer portion of the molecule, and the compound contained in the polymerizable liquid crystal composition (details will be described later) by the action of this group ( 1) moves to the surface of the composition film during polymerization and cures on the outermost surface. For this reason, the leveling property of the polymerizable liquid crystal composition is improved, and the film thickness unevenness is eliminated. In order to prevent the compatibility with the component not containing a fluorine atom in the polymerizable liquid crystal composition, the carbon number of the polyfluoroalkylene group is 2 to 12, and the number x of the polyfluoroalkylene oxide group is 1 to 6. . In terms of leveling properties and compatibility, the polyfluoroalkylene group preferably has 2 to 8 carbon atoms, and the polyfluoroalkylene oxide group x has preferably 1 to 4 carbon atoms. In addition, the polyfluoroalkylene group preferably has 2, 4, or 6 carbon atoms because of non-crystallinity. The polyfluoroalkylene group preferably has one or more fluorine atoms bonded to the terminal carbon atom, more preferably a perfluoroalkylene group. The polyfluoroalkylene group has better liquid crystallinity than the polyfluoroalkylene oxide group.
Specific examples of the polyfluoroalkylene group include the following groups.
- (CF 2) 2 -, - (CF 2) 4 -, - (CF 2) 6 -, - (CF 2) 8 -, - (CF 2) 10 -, - (CF 2) 12 -, - CF 2 CHF -, - CF 2 CHF (CF 2) 2 -, - CF 2 CHF (CF 2) 4 -, - CF 2 CHF (CF 2) 2 CHFCF 2 -, - CF 2 CHF (CF 2) 4 CHF- , -CF 2 CH 2 (CF 2 ) 4 CH 2 CF 2 -, - CF 2 CHF (CF 2) 4 CHFCF 2 -, - CHF (CF 2) 6 CHF -, - CF 2 CH (CF 2 CF 3) (CF 2) 2 CH 2 - .

化合物(1)のRは水素原子又はメチル基である。Rが水素原子(つまり化合物(1)はアクリル酸エステルである)である場合、化合物(1)を含む重合性液晶組成物を光重合させて光学異方性材料及び光学素子を得る際に重合反応が速やかに進行するので好ましい。また、光重合反応によって得られる光学異方性材料及び光学素子の特性が外部環境(温度等)の影響を受けにくく、リタデーションの面内分布が小さい利点もある。R 1 of the compound (1) is a hydrogen atom or a methyl group. When R 1 is a hydrogen atom (that is, the compound (1) is an acrylate ester), a polymerizable liquid crystal composition containing the compound (1) is photopolymerized to obtain an optically anisotropic material and an optical element. This is preferable because the polymerization reaction proceeds rapidly. In addition, the characteristics of the optically anisotropic material and the optical element obtained by the photopolymerization reaction are not easily affected by the external environment (temperature, etc.), and there is an advantage that the in-plane distribution of retardation is small.

化合物(1)は、Rとしてアルキル基、アルコキシ基、フッ素原子又はシアノ基を有し、これによって、化合物(1)を含む重合性液晶組成物の液晶性を示す温度範囲が広くなる。Rがアルキル基又はアルコキシ基の場合、炭素数は2〜6が好ましく、3〜5がより好ましく、直鎖構造であると特に化合物(1)が液晶性を示す温度範囲を広くできるので好適である。The compound (1) has an alkyl group, an alkoxy group, a fluorine atom or a cyano group as R 2 , and this widens the temperature range showing the liquid crystallinity of the polymerizable liquid crystal composition containing the compound (1). When R 2 is an alkyl group or an alkoxy group, the number of carbon atoms is preferably 2 to 6, more preferably 3 to 5, and the linear structure is particularly preferable because the temperature range in which the compound (1) exhibits liquid crystallinity can be widened. It is.

m及びnは、各々、1〜3の整数であり、1又は2が好ましい。また、mとnが同じ値であると化合物(1)の製造容易性の点から好ましい。
化合物(1)の好ましい具体例として、下記化合物(1A)〜(1C)が挙げられる。
m and n are each an integer of 1 to 3, and 1 or 2 is preferable. Moreover, it is preferable from the point of the manufacture ease of a compound (1) that m and n are the same value.
Preferable specific examples of compound (1) include the following compounds (1A) to (1C).

CH2=CR1-COO-(CH2)m-RF-(CH2)n-O-Ph-Ph-R2 (1A)
CH2=CR1-COO-(CH2)m-RF-(CH2)n-O-Ph-Cy-Ph-R2 (1B)
CH2=CR1-COO-(CH2)m-RF-(CH2)n-O-Ph-Cy-Ph-Ph-R2 (1C)
CH 2 = CR 1 -COO- (CH 2 ) m -R F- (CH 2 ) n -O-Ph-Ph-R 2 (1A)
CH 2 = CR 1 -COO- (CH 2 ) m -R F- (CH 2 ) n -O-Ph-Cy-Ph-R 2 (1B)
CH 2 = CR 1 -COO- (CH 2 ) m -R F- (CH 2 ) n -O-Ph-Cy-Ph-Ph-R 2 (1C)

但し、式(1A)〜(1C)中の記号R,R,R,m,nは、各々、式毎に独立しており、前述の規定と同じである。また、Ph及びCyも、各々、式毎に独立して前述の規定と同じであり、一分子中における複数のPhも互いに独立して置換又は非置換のフェニレン基を示し得るものとする。However, the symbols R F , R 1 , R 2 , m, and n in the formulas (1A) to (1C) are independent for each formula, and are the same as those described above. In addition, Ph and Cy are each independently the same as defined above for each formula, and a plurality of Ph in one molecule can also independently represent a substituted or unsubstituted phenylene group.

より具体的な例として、下記化合物(1A0a)〜化合物(1A0aa)、下記化合物(1B0a)〜化合物(1B0aa)、下記化合物(1C0a)〜化合物(1C0aa)、下記化合物(1A5a)〜化合物(1A5r)、下記化合物(1B5a)〜化合物(1B5r)、下記化合物(1C5a)〜化合物(1C5r)が挙げられる。但し、下記式中の表記Ph、Cyは、各々、式毎に独立して、前記の規定と同じであり、一分子中の複数のPhも互いに独立して置換又は非置換のフェニレン基を示し得るものとする。記号rは、式毎に独立して1〜8の整数を示す。   As more specific examples, the following compound (1A0a) to compound (1A0aa), the following compound (1B0a) to compound (1B0aa), the following compound (1C0a) to compound (1C0aa), the following compound (1A5a) to compound (1A5r) The following compounds (1B5a) to (1B5r) and the following compounds (1C5a) to (1C5r) can be mentioned. However, the symbols Ph and Cy in the following formula are the same as defined above independently for each formula, and a plurality of Ph in one molecule also independently represent a substituted or unsubstituted phenylene group. To get. The symbol r represents an integer of 1 to 8 independently for each formula.

CH2=CH-COO-CH2-(CF2)2-CH2-O-Ph-Ph-CN (1A0a)
CH2=CH-COO-CH2-(CF2)4-CH2-O-Ph-Ph-CN (1A0b)
CH2=CH-COO-CH2-(CF2)6-CH2-O-Ph-Ph-CN (1A0c)
CH2=CH-COO-CH2-(CF2)8-CH2-O-Ph-Ph-CN (1A0d)
CH2=CH-COO-CH2-(CF2)10-CH2-O-Ph-Ph-CN (1A0e)
CH2=CH-COO-CH2-(CF2)12-CH2-O-Ph-Ph-CN (1A0f)
CH2=CH-COO-(CH2)2-(CF2)2-(CH2)2-O-Ph-Ph-CN (1A0g)
CH2=CH-COO-(CH2)3-(CF2)2-(CH2)3-O-Ph-Ph-CN (1A0h)
CH2=CH-COO-(CH2)2-(CF2)4-(CH2)2-O-Ph-Ph-CN (1A0i)
CH2=CH-COO-(CH2)3-(CF2)4-(CH2)3-O-Ph-Ph-CN (1A0j)
CH2=CH-COO-(CH2)2-(CF2)6-(CH2)2-O-Ph-Ph-CN (1A0k)
CH2=CH-COO-(CH2)3-(CF2)6-(CH2)3-O-Ph-Ph-CN (1A0l)
CH2=CH-COO-(CH2)2-(CF2)8-(CH2)2-O-Ph-Ph-CN (1A0m)
CH2=CH-COO-(CH2)3-(CF2)8-(CH2)3-O-Ph-Ph-CN (1A0n)
CH2=CH-COO-(CH2)2-(CF2)10-(CH2)2-O-Ph-Ph-CN (1A0o)
CH2=CH-COO-(CH2)3-(CF2)10-(CH2)3-O-Ph-Ph-CN (1A0p)
CH2=CH-COO-(CH2)2-(CF2)12-(CH2)2-O-Ph-Ph-CN (1A0q)
CH2=CH-COO-(CH2)3-(CF2)12-(CH2)3-O-Ph-Ph-CN (1A0r)
CH2=CH-COO-CH2-CF2CHF-CH2-O-Ph-Ph-CN (1A0s)
CH2=CH-COO-CH2-CF2CHF(CF2)2-CH2-O-Ph-Ph-CN (1A0t)
CH2=CH-COO-CH2-CF2CHF(CF2)4-CH2-O-Ph-Ph-CN (1A0u)
CH2=CH-COO-CH2-CF2CHF(CF2)2CHFCF2-CH2-O-Ph-Ph-CN (1A0v)
CH2=CH-COO-CH2-CF2CHF(CF2)4CHF-CH2-O-Ph-Ph-CN (1A0w)
CH2=CH-COO-CH2-CF2CH2(CF2)4CH2CF2-CH2-O-Ph-Ph-CN (1A0x)
CH2=CH-COO-CH2-CF2CHF(CF2)4CHFCF2-CH2-O-Ph-Ph-CN (1A0y)
CH2=CH-COO-CH2-CHF(CF2)6CHF-CH2-O-Ph-Ph-CN (1A0z)
CH2=CH-COO-CH2-CF2CH(CF2CF3)(CF2)2-CH2-O-Ph-Ph-CN (1A0aa)
CH 2 = CH-COO-CH 2- (CF 2 ) 2 -CH 2 -O-Ph-Ph-CN (1A0a)
CH 2 = CH-COO-CH 2- (CF 2 ) 4 -CH 2 -O-Ph-Ph-CN (1A0b)
CH 2 = CH-COO-CH 2- (CF 2 ) 6 -CH 2 -O-Ph-Ph-CN (1A0c)
CH 2 = CH-COO-CH 2- (CF 2 ) 8 -CH 2 -O-Ph-Ph-CN (1A0d)
CH 2 = CH-COO-CH 2- (CF 2 ) 10 -CH 2 -O-Ph-Ph-CN (1A0e)
CH 2 = CH-COO-CH 2- (CF 2 ) 12 -CH 2 -O-Ph-Ph-CN (1A0f)
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 2- (CH 2 ) 2 -O-Ph-Ph-CN (1A0g)
CH 2 = CH-COO- (CH 2 ) 3- (CF 2 ) 2- (CH 2 ) 3 -O-Ph-Ph-CN (1A0h)
CH 2 = CH-COO- (CH 2) 2 - (CF 2) 4 - (CH 2) 2 -O-Ph-Ph-CN (1A0i)
CH 2 = CH-COO- (CH 2) 3 - (CF 2) 4 - (CH 2) 3 -O-Ph-Ph-CN (1A0j)
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 6- (CH 2 ) 2 -O-Ph-Ph-CN (1A0k)
CH 2 = CH-COO- (CH 2 ) 3- (CF 2 ) 6- (CH 2 ) 3 -O-Ph-Ph-CN (1A0l)
CH 2 = CH-COO- (CH 2) 2 - (CF 2) 8 - (CH 2) 2 -O-Ph-Ph-CN (1A0m)
CH 2 = CH-COO- (CH 2) 3 - (CF 2) 8 - (CH 2) 3 -O-Ph-Ph-CN (1A0n)
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 10- (CH 2 ) 2 -O-Ph-Ph-CN (1A0o)
CH 2 = CH-COO- (CH 2 ) 3- (CF 2 ) 10- (CH 2 ) 3 -O-Ph-Ph-CN (1A0p)
CH 2 = CH-COO- (CH 2) 2 - (CF 2) 12 - (CH 2) 2 -O-Ph-Ph-CN (1A0q)
CH 2 = CH-COO- (CH 2) 3 - (CF 2) 12 - (CH 2) 3 -O-Ph-Ph-CN (1A0r)
CH 2 = CH-COO-CH 2 -CF 2 CHF-CH 2 -O-Ph-Ph-CN (1A0s)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 2 -CH 2 -O-Ph-Ph-CN (1A0t)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 4 -CH 2 -O-Ph-Ph-CN (1A0u)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 2 CHFCF 2 -CH 2 -O-Ph-Ph-CN (1A0v)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 4 CHF-CH 2 -O-Ph-Ph-CN (1A0w)
CH 2 = CH-COO-CH 2 -CF 2 CH 2 (CF 2 ) 4 CH 2 CF 2 -CH 2 -O-Ph-Ph-CN (1A0x)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 4 CHFCF 2 -CH 2 -O-Ph-Ph-CN (1A0y)
CH 2 = CH-COO-CH 2 -CHF (CF 2 ) 6 CHF-CH 2 -O-Ph-Ph-CN (1A0z)
CH 2 = CH-COO-CH 2 -CF 2 CH (CF 2 CF 3 ) (CF 2 ) 2 -CH 2 -O-Ph-Ph-CN (1A0aa)

CH2=CH-COO-CH2-(CF2)2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0a)
CH2=CH-COO-CH2-(CF2)4-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0b)
CH2=CH-COO-CH2-(CF2)6-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0c)
CH2=CH-COO-CH2-(CF2)8-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0d)
CH2=CH-COO-CH2-(CF2)10-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0e)
CH2=CH-COO-CH2-(CF2)12-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0f)
CH2=CH-COO-(CH2)2-(CF2)2-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B0g)
CH2=CH-COO-(CH2)3-(CF2)2-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B0h)
CH2=CH-COO-(CH2)2-(CF2)4-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B0i)
CH2=CH-COO-(CH2)3-(CF2)4-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B0j)
CH2=CH-COO-(CH2)2-(CF2)6-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B0k)
CH2=CH-COO-(CH2)3-(CF2)6-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B0l)
CH2=CH-COO-(CH2)2-(CF2)8-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B0m)
CH2=CH-COO-(CH2)3-(CF2)8-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B0n)
CH2=CH-COO-(CH2)2-(CF2)10-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B0o)
CH2=CH-COO-(CH2)3-(CF2)10-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B0p)
CH2=CH-COO-(CH2)2-(CF2)12-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B0q)
CH2=CH-COO-(CH2)3-(CF2)12-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B0r)
CH2=CH-COO-CH2-CF2CHF-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0s)
CH2=CH-COO-CH2-CF2CHF(CF2)2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0t)
CH2=CH-COO-CH2-CF2CHF(CF2)4-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0u)
CH2=CH-COO-CH2-CF2CHF(CF2)2CHFCF2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0v)
CH2=CH-COO-CH2-CF2CHF(CF2)4CHF-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0w)
CH2=CH-COO-CH2-CF2CH2(CF2)4CH2CF2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0x)
CH2=CH-COO-CH2-CF2CHF(CF2)4CHFCF2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0y)
CH2=CH-COO-CH2-CHF(CF2)6CHF-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0z)
CH2=CH-COO-CH2-CF2CH(CF2CF3)(CF2)2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B0aa)
CH 2 = CH-COO-CH 2- (CF 2 ) 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0a)
CH 2 = CH-COO-CH 2- (CF 2 ) 4 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0b)
CH 2 = CH-COO-CH 2- (CF 2 ) 6 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0c)
CH 2 = CH-COO-CH 2- (CF 2 ) 8 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0d)
CH 2 = CH-COO-CH 2- (CF 2 ) 10 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0e)
CH 2 = CH-COO-CH 2- (CF 2 ) 12 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0f)
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 2- (CH 2 ) 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0g)
CH 2 = CH-COO- (CH 2 ) 3- (CF 2 ) 2- (CH 2 ) 3 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0h)
CH 2 = CH-COO- (CH 2) 2 - (CF 2) 4 - (CH 2) 2 -O-Ph-Cy-Ph- (CH 2) r H (1B0i)
CH 2 = CH-COO- (CH 2) 3 - (CF 2) 4 - (CH 2) 3 -O-Ph-Cy-Ph- (CH 2) r H (1B0j)
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 6- (CH 2 ) 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0k)
CH 2 = CH-COO- (CH 2 ) 3- (CF 2 ) 6- (CH 2 ) 3 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0l)
CH 2 = CH-COO- (CH 2) 2 - (CF 2) 8 - (CH 2) 2 -O-Ph-Cy-Ph- (CH 2) r H (1B0m)
CH 2 = CH-COO- (CH 2) 3 - (CF 2) 8 - (CH 2) 3 -O-Ph-Cy-Ph- (CH 2) r H (1B0n)
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 10- (CH 2 ) 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0o)
CH 2 = CH-COO- (CH 2 ) 3- (CF 2 ) 10- (CH 2 ) 3 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0p)
CH 2 = CH-COO- (CH 2) 2 - (CF 2) 12 - (CH 2) 2 -O-Ph-Cy-Ph- (CH 2) r H (1B0q)
CH 2 = CH-COO- (CH 2) 3 - (CF 2) 12 - (CH 2) 3 -O-Ph-Cy-Ph- (CH 2) r H (1B0r)
CH 2 = CH-COO-CH 2 -CF 2 CHF-CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0s)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0t)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 4 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0u)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 2 CHFCF 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0v)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 4 CHF-CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0w)
CH 2 = CH-COO-CH 2 -CF 2 CH 2 (CF 2 ) 4 CH 2 CF 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0x)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 4 CHFCF 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0y)
CH 2 = CH-COO-CH 2 -CHF (CF 2 ) 6 CHF-CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0z)
CH 2 = CH-COO-CH 2 -CF 2 CH (CF 2 CF 3 ) (CF 2 ) 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B0aa)

CH2=CH-COO-CH2-(CF2)2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0a)
CH2=CH-COO-CH2-(CF2)4-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0b)
CH2=CH-COO-CH2-(CF2)6-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0c)
CH2=CH-COO-CH2-(CF2)8-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0d)
CH2=CH-COO-CH2-(CF2)10-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0e)
CH2=CH-COO-CH2-(CF2)12-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0f)
CH2=CH-COO-(CH2)2-(CF2)2-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0g)
CH2=CH-COO-(CH2)3-(CF2)2-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0h)
CH2=CH-COO-(CH2)2-(CF2)4-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0i)
CH2=CH-COO-(CH2)3-(CF2)4-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0j)
CH2=CH-COO-(CH2)2-(CF2)6-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0k)
CH2=CH-COO-(CH2)3-(CF2)6-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0l)
CH2=CH-COO-(CH2)2-(CF2)8-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0m)
CH2=CH-COO-(CH2)3-(CF2)8-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0n)
CH2=CH-COO-(CH2)2-(CF2)10-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0o)
CH2=CH-COO-(CH2)3-(CF2)10-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0p)
CH2=CH-COO-(CH2)2-(CF2)12-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0q)
CH2=CH-COO-(CH2)3-(CF2)12-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0r)
CH2=CH-COO-CH2-CF2CHF-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0s)
CH2=CH-COO-CH2-CF2CHF(CF2)2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0t)
CH2=CH-COO-CH2-CF2CHF(CF2)4-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0u)
CH2=CH-COO-CH2-CF2CHF(CF2)2CHFCF2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0v)
CH2=CH-COO-CH2-CF2CHF(CF2)4CHF-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0w)
CH2=CH-COO-CH2-CF2CH2(CF2)4CH2CF2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0x)
CH2=CH-COO-CH2-CF2CHF(CF2)4CHFCF2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0y)
CH2=CH-COO-CH2-CHF(CF2)6CHF-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0z)
CH2=CH-COO-CH2-CF2CH(CF2CF3)(CF2)2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C0aa)
CH 2 = CH-COO-CH 2- (CF 2 ) 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0a)
CH 2 = CH-COO-CH 2- (CF 2 ) 4 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0b)
CH 2 = CH-COO-CH 2- (CF 2 ) 6 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0c)
CH 2 = CH-COO-CH 2- (CF 2 ) 8 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0d)
CH 2 = CH-COO-CH 2- (CF 2 ) 10 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0e)
CH 2 = CH-COO-CH 2- (CF 2 ) 12 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0f)
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 2- (CH 2 ) 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0g)
CH 2 = CH-COO- (CH 2 ) 3- (CF 2 ) 2- (CH 2 ) 3 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0h)
CH 2 = CH-COO- (CH 2) 2 - (CF 2) 4 - (CH 2) 2 -O-Ph-Cy-Ph-Ph- (CH 2) r H (1C0i)
CH 2 = CH-COO- (CH 2) 3 - (CF 2) 4 - (CH 2) 3 -O-Ph-Cy-Ph-Ph- (CH 2) r H (1C0j)
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 6- (CH 2 ) 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0k)
CH 2 = CH-COO- (CH 2 ) 3- (CF 2 ) 6- (CH 2 ) 3 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0l)
CH 2 = CH-COO- (CH 2) 2 - (CF 2) 8 - (CH 2) 2 -O-Ph-Cy-Ph-Ph- (CH 2) r H (1C0m)
CH 2 = CH-COO- (CH 2) 3 - (CF 2) 8 - (CH 2) 3 -O-Ph-Cy-Ph-Ph- (CH 2) r H (1C0n)
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 10- (CH 2 ) 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0o)
CH 2 = CH-COO- (CH 2 ) 3- (CF 2 ) 10- (CH 2 ) 3 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0p)
CH 2 = CH-COO- (CH 2) 2 - (CF 2) 12 - (CH 2) 2 -O-Ph-Cy-Ph-Ph- (CH 2) r H (1C0q)
CH 2 = CH-COO- (CH 2) 3 - (CF 2) 12 - (CH 2) 3 -O-Ph-Cy-Ph-Ph- (CH 2) r H (1C0r)
CH 2 = CH-COO-CH 2 -CF 2 CHF-CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0s)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0t)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 4 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0u)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 2 CHFCF 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0v)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 4 CHF-CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0w)
CH 2 = CH-COO-CH 2 -CF 2 CH 2 (CF 2 ) 4 CH 2 CF 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0x)
CH 2 = CH-COO-CH 2 -CF 2 CHF (CF 2 ) 4 CHFCF 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0y)
CH 2 = CH-COO-CH 2 -CHF (CF 2 ) 6 CHF-CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0z)
CH 2 = CH-COO-CH 2 -CF 2 CH (CF 2 CF 3 ) (CF 2 ) 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C0aa)

CH2=CH-COO-CH2-CF2-OCF2CF2-OCF2-CH2-O-Ph-Ph-CN (1A5a)
CH2=CH-COO-CH2-CF2-(OCF2CF2)2-OCF2-CH2-O-Ph-Ph-CN (1A5b)
CH2=CH-COO-CH2-CF2-(OCF2CF2)3-OCF2-CH2-O-Ph-Ph-CN (1A5c)
CH2=CH-COO-CH2-CF2-(OCF2CF2)4-OCF2-CH2-O-Ph-Ph-CN (1A5d)
CH2=CH-COO-CH2-CF2-(OCF2CF2)5-OCF2-CH2-O-Ph-Ph-CN (1A5e)
CH2=CH-COO-CH2-CF2-(OCF2CF2)6-OCF2-CH2-O-Ph-Ph-CN (1A5f)
CH2=CH-COO-(CH2)2-CF2-OCF2CF2-OCF2-(CH2)2-O-Ph-Ph-CN (1A5g)
CH2=CH-COO-(CH2)3-CF2-OCF2CF2-OCF2-(CH2)3-O-Ph-Ph-CN (1A5h)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)2-OCF2-(CH2)2-O-Ph-Ph-CN (1A5i)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)2-OCF2-(CH2)3-O-Ph-Ph-CN (1A5j)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)3-OCF2-(CH2)2-O-Ph-Ph-CN (1A5k)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)3-OCF2-(CH2)3-O-Ph-Ph-CN (1A5l)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)4-OCF2-(CH2)2-O-Ph-Ph-CN (1A5m)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)4-OCF2-(CH2)3-O-Ph-Ph-CN (1A5n)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)5-OCF2-(CH2)2-O-Ph-Ph-CN (1A5o)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)5-OCF2-(CH2)3-O-Ph-Ph-CN (1A5p)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)6-OCF2-(CH2)2-O-Ph-Ph-CN (1A5q)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)6-OCF2-(CH2)3-O-Ph-Ph-CN (1A5r)
CH 2 = CH-COO-CH 2 -CF 2 -OCF 2 CF 2 -OCF 2 -CH 2 -O-Ph-Ph-CN (1A5a)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2 -CH 2 -O-Ph-Ph-CN (1A5b)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2 -CH 2 -O-Ph-Ph-CN (1A5c)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2 -CH 2 -O-Ph-Ph-CN (1A5d)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2 -CH 2 -O-Ph-Ph-CN (1A5e)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2 -CH 2 -O-Ph-Ph-CN (1A5f)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2 -OCF 2 CF 2 -OCF 2- (CH 2 ) 2 -O-Ph-Ph-CN (1A5g)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2 -OCF 2 CF 2 -OCF 2- (CH 2 ) 3 -O-Ph-Ph-CN (1A5h)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2- (CH 2 ) 2 -O-Ph-Ph-CN (1A5i)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2- (CH 2 ) 3 -O-Ph-Ph-CN (1A5j)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2- (CH 2 ) 2 -O-Ph-Ph-CN (1A5k)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2- (CH 2 ) 3 -O-Ph-Ph-CN (1A5l)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2- (CH 2 ) 2 -O-Ph-Ph-CN (1A5m)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2- (CH 2 ) 3 -O-Ph-Ph-CN (1A5n)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2- (CH 2 ) 2 -O-Ph-Ph-CN (1A5o)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2- (CH 2 ) 3 -O-Ph-Ph-CN (1A5p)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2- (CH 2 ) 2 -O-Ph-Ph-CN (1A5q)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2- (CH 2 ) 3 -O-Ph-Ph-CN (1A5r)

CH2=CH-COO-CH2-CF2-OCF2CF2-OCF2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B5a)
CH2=CH-COO-CH2-CF2-(OCF2CF2)2-OCF2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B5b)
CH2=CH-COO-CH2-CF2-(OCF2CF2)3-OCF2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B5c)
CH2=CH-COO-CH2-CF2-(OCF2CF2)4-OCF2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B5d)
CH2=CH-COO-CH2-CF2-(OCF2CF2)5-OCF2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B5e)
CH2=CH-COO-CH2-CF2-(OCF2CF2)6-OCF2-CH2-O-Ph-Cy-Ph-(CH2)rH (1B5f)
CH2=CH-COO-(CH2)2-CF2-OCF2CF2-OCF2-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B5g)
CH2=CH-COO-(CH2)3-CF2-OCF2CF2-OCF2-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B5h)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)2-OCF2-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B5i)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)2-OCF2-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B5j)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)3-OCF2-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B5k)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)3-OCF2-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B5l)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)4-OCF2-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B5m)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)4-OCF2-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B5n)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)5-OCF2-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B5o)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)5-OCF2-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B5p)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)6-OCF2-(CH2)2-O-Ph-Cy-Ph-(CH2)rH (1B5q)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)6-OCF2-(CH2)3-O-Ph-Cy-Ph-(CH2)rH (1B5r)
CH 2 = CH-COO-CH 2 -CF 2 -OCF 2 CF 2 -OCF 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5a)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5b)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5c)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5d)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5e)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2 -CH 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5f)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2 -OCF 2 CF 2 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5g)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2 -OCF 2 CF 2 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5h)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5i)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5j)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5k)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5l)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5m)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5n)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5o)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5p)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5q)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph- (CH 2 ) r H (1B5r)

CH2=CH-COO-CH2-CF2-OCF2CF2-OCF2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5a)
CH2=CH-COO-CH2-CF2-(OCF2CF2)2-OCF2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5b)
CH2=CH-COO-CH2-CF2-(OCF2CF2)3-OCF2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5c)
CH2=CH-COO-CH2-CF2-(OCF2CF2)4-OCF2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5d)
CH2=CH-COO-CH2-CF2-(OCF2CF2)5-OCF2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5e)
CH2=CH-COO-CH2-CF2-(OCF2CF2)6-OCF2-CH2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5f)
CH2=CH-COO-(CH2)2-CF2-OCF2CF2-OCF2-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5g)
CH2=CH-COO-(CH2)3-CF2-OCF2CF2-OCF2-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5h)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)2-OCF2-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5i)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)2-OCF2-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5j)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)3-OCF2-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5k)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)3-OCF2-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5l)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)4-OCF2-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5m)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)4-OCF2-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5n)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)5-OCF2-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5o)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)5-OCF2-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5p)
CH2=CH-COO-(CH2)2-CF2-(OCF2CF2)6-OCF2-(CH2)2-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5q)
CH2=CH-COO-(CH2)3-CF2-(OCF2CF2)6-OCF2-(CH2)3-O-Ph-Cy-Ph-Ph-(CH2)rH (1C5r)
CH 2 = CH-COO-CH 2 -CF 2 -OCF 2 CF 2 -OCF 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C5a)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C5b)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C5c)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C5d)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C5e)
CH 2 = CH-COO-CH 2 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2 -CH 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C5f)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2 -OCF 2 CF 2 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C5g)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2 -OCF 2 CF 2 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H (1C5h)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H ( 1C5i)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H ( 1C5j)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H ( 1C5k)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H ( 1C5l)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H ( 1C5m)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H ( 1C5n)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H ( 1C5o)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H ( 1C5p)
CH 2 = CH-COO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2- (CH 2 ) 2 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H ( 1C5q)
CH 2 = CH-COO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2- (CH 2 ) 3 -O-Ph-Cy-Ph-Ph- (CH 2 ) r H ( 1C5r)

上記化合物において、rは2〜6の整数であると好ましく、3〜5であるとより好ましい。また、Phが非置換の1,4−フェニレン基又はメチル基置換された1,4−フェニレン基であり、Cyが非置換のトランス−1,4−シクロヘキシレン基であると好ましい。上記化合物のなかでも特に、化合物(1A0a)〜(1A0c)、化合物(1A0j)〜(1A0l)、化合物(1B0a)〜(1B0c)、化合物(1B0j)〜(1B0l)、化合物(1C0a)〜(1C0c)、化合物(1C0j)〜(1C0l)、化合物(1A5a)〜(1A5c)、化合物(1A5g)〜(1A5j)、化合物(1B5a)〜(1B5c)、化合物(1B5g)〜(1B5j)、化合物(1C5a)〜(1C5c)、化合物(1C5g)〜(1C5j)が好ましい。   In the above compound, r is preferably an integer of 2 to 6, and more preferably 3 to 5. Further, it is preferable that Ph is an unsubstituted 1,4-phenylene group or a methyl-substituted 1,4-phenylene group, and Cy is an unsubstituted trans-1,4-cyclohexylene group. Among the above compounds, compounds (1A0a) to (1A0c), compounds (1A0j) to (1A0l), compounds (1B0a) to (1B0c), compounds (1B0j) to (1B0l), compounds (1C0a) to (1C0c) ), Compounds (1C0j) to (1C01), compounds (1A5a) to (1A5c), compounds (1A5g) to (1A5j), compounds (1B5a) to (1B5c), compounds (1B5g) to (1B5j), compounds (1C5a) ) To (1C5c) and compounds (1C5g) to (1C5j) are preferred.

本発明の化合物(1)の合成方法について、具体例を挙げて説明する。前記化合物(1A0b)の合成方法としては、下記反応式に示す方法が挙げられる。但し、式中の記号は前記と同じ意味を示す。   A method for synthesizing the compound (1) of the present invention will be described with specific examples. Examples of the method for synthesizing the compound (1A0b) include the method shown in the following reaction formula. However, the symbols in the formula have the same meaning as described above.

まず、下記化合物(01b)と3,4−ジヒドロピランとをジクロロメタン中、p−トルエンスルホン酸の存在下で反応させて、下記化合物(02b)を得る。次に、この化合物(02b)に、トリエチルアミン存在下でパーフルオロブタンスルホニルフルオライドを反応させ、これと下記化合物(13A)とをDMF中、炭酸セシウム存在下で反応させて、下記化合物(14A0b)を得る。更に、この化合物(14A0b)とp−トルエンスルホン酸とを反応させて下記化合物(15A0b)を得る。この化合物(15A0b)を、トリエチルアミン存在下でアクリル酸クロリドと反応させて、化合物(1A0b)を得る。   First, the following compound (01b) and 3,4-dihydropyran are reacted in dichloromethane in the presence of p-toluenesulfonic acid to obtain the following compound (02b). Next, this compound (02b) is reacted with perfluorobutanesulfonyl fluoride in the presence of triethylamine, and this is reacted with the following compound (13A) in DMF in the presence of cesium carbonate to obtain the following compound (14A0b) Get. Further, this compound (14A0b) is reacted with p-toluenesulfonic acid to obtain the following compound (15A0b). This compound (15A0b) is reacted with acrylic acid chloride in the presence of triethylamine to obtain compound (1A0b).

Figure 2008026482
Figure 2008026482

上記化合物(1A0a)は、上記化合物(1A0b)の合成方法における化合物(01b)を下記化合物(01a)に換えることで合成できる。また、(1A0c)〜(1A0aa)は、上記合成方法における化合物(01b)をそれぞれ下記化合物(01c)〜(01aa)に換えることで合成できる。   The compound (1A0a) can be synthesized by replacing the compound (01b) in the synthesis method of the compound (1A0b) with the following compound (01a). (1A0c) to (1A0aa) can be synthesized by replacing the compound (01b) in the above synthesis method with the following compounds (01c) to (01aa), respectively.

HO-CH2-(CF2)2-CH2-OH (01a)
HO-CH2-(CF2)4-CH2-OH (01b)
HO-CH2-(CF2)6-CH2-OH (01c)
HO-CH2-(CF2)8-CH2-OH (01d)
HO-CH2-(CF2)10-CH2-OH (01e)
HO-CH2-(CF2)12-CH2-OH (01f)
HO-(CH2)2-(CF2)2-(CH2)2-OH (01g)
HO-(CH2)3-(CF2)2-(CH2)3-OH (01h)
HO-(CH2)2-(CF2)4-(CH2)2-OH (01i)
HO-(CH2)3-(CF2)4-(CH2)3-OH (01j)
HO-(CH2)2-(CF2)6-(CH2)2-OH (01k)
HO-(CH2)3-(CF2)6-(CH2)3-OH (01l)
HO-(CH2)2-(CF2)8-(CH2)2-OH (01m)
HO-(CH2)3-(CF2)8-(CH2)3-OH (01n)
HO-(CH2)2-(CF2)10-(CH2)2-OH (01o)
HO-(CH2)3-(CF2)10-(CH2)3-OH (01p)
HO-(CH2)2-(CF2)12-(CH2)2-OH (01q)
HO-(CH2)3-(CF2)12-(CH2)3-OH (01r)
HO-CH2-CF2CHF-CH2-OH (01s)
HO-CH2-CF2CHF(CF2)2-CH2-OH (01t)
HO-CH2-CF2CHF(CF2)4-CH2-OH (01u)
HO-CH2-CF2CHF(CF2)2CHFCF2-CH2-OH (01v)
HO-CH2-CF2CHF(CF2)4CHF-CH2-OH (01w)
HO-CH2-CF2CH2(CF2)4CH2CF2-CH2-OH (01x)
HO-CH2-CF2CHF(CF2)4CHFCF2-CH2-OH (01y)
HO-CH2-CHF(CF2)6CHF-CH2-OH (01z)
HO-CH2-CF2CH(CF2CF3)(CF2)2-CH2-OH (01aa)
HO-CH 2- (CF 2 ) 2 -CH 2 -OH (01a)
HO-CH 2- (CF 2 ) 4 -CH 2 -OH (01b)
HO-CH 2- (CF 2 ) 6 -CH 2 -OH (01c)
HO-CH 2- (CF 2 ) 8 -CH 2 -OH (01d)
HO-CH 2- (CF 2 ) 10 -CH 2 -OH (01e)
HO-CH 2- (CF 2 ) 12 -CH 2 -OH (01f)
HO- (CH 2 ) 2- (CF 2 ) 2- (CH 2 ) 2 -OH (01g)
HO- (CH 2 ) 3- (CF 2 ) 2- (CH 2 ) 3 -OH (01h)
HO- (CH 2) 2 - ( CF 2) 4 - (CH 2) 2 -OH (01i)
HO- (CH 2) 3 - ( CF 2) 4 - (CH 2) 3 -OH (01j)
HO- (CH 2 ) 2- (CF 2 ) 6- (CH 2 ) 2 -OH (01k)
HO- (CH 2 ) 3- (CF 2 ) 6- (CH 2 ) 3 -OH (01l)
HO- (CH 2) 2 - ( CF 2) 8 - (CH 2) 2 -OH (01m)
HO- (CH 2) 3 - ( CF 2) 8 - (CH 2) 3 -OH (01n)
HO- (CH 2 ) 2- (CF 2 ) 10- (CH 2 ) 2 -OH (01o)
HO- (CH 2 ) 3- (CF 2 ) 10- (CH 2 ) 3 -OH (01p)
HO- (CH 2) 2 - ( CF 2) 12 - (CH 2) 2 -OH (01q)
HO- (CH 2) 3 - ( CF 2) 12 - (CH 2) 3 -OH (01r)
HO-CH 2 -CF 2 CHF-CH 2 -OH (01s)
HO-CH 2 -CF 2 CHF (CF 2 ) 2 -CH 2 -OH (01t)
HO-CH 2 -CF 2 CHF (CF 2 ) 4 -CH 2 -OH (01u)
HO-CH 2 -CF 2 CHF (CF 2 ) 2 CHFCF 2 -CH 2 -OH (01v)
HO-CH 2 -CF 2 CHF (CF 2 ) 4 CHF-CH 2 -OH (01w)
HO-CH 2 -CF 2 CH 2 (CF 2 ) 4 CH 2 CF 2 -CH 2 -OH (01x)
HO-CH 2 -CF 2 CHF (CF 2 ) 4 CHFCF 2 -CH 2 -OH (01y)
HO-CH 2 -CHF (CF 2 ) 6 CHF-CH 2 -OH (01z)
HO-CH 2 -CF 2 CH (CF 2 CF 3 ) (CF 2 ) 2 -CH 2 -OH (01aa)

また、前記化合物(1B0b)は、上記化合物(1A0b)の合成方法における化合物(13A)を下記化合物(13B)に換えることで同様に合成できる。また、(1B0a)、(1B0c)〜(1B0aa)は、化合物(13A)を化合物(13B)に変更し、さらに化合物(01b)をそれぞれ(01a)、(01c)〜(01aa)に変更することで同様に合成できる。
また、前記化合物(1C0b)は、上記化合物(1A0b)の合成方法における化合物(13A)を下記化合物(13C)に換えることで同様に合成できる。また、(1C0a)、(1C0c)〜(1C0aa)は、化合物(13A)を化合物(13C)に変更し、さらに化合物(01b)をそれぞれ(01a)、(01c)〜(01aa)に変更することで同様に合成できる。
尚、式中の記号は、各々、式毎に独立して、前記規定と同じものを示す。
The compound (1B0b) can be similarly synthesized by replacing the compound (13A) in the method for synthesizing the compound (1A0b) with the following compound (13B). (1B0a) and (1B0c) to (1B0aa) are obtained by changing the compound (13A) to the compound (13B) and further changing the compound (01b) to (01a) and (01c) to (01aa), respectively. Can be synthesized in the same way.
The compound (1C0b) can be synthesized in the same manner by replacing the compound (13A) in the synthesis method of the compound (1A0b) with the following compound (13C). (1C0a) and (1C0c) to (1C0aa) are obtained by changing the compound (13A) to the compound (13C) and further changing the compound (01b) to (01a) and (01c) to (01aa), respectively. Can be synthesized in the same way.
The symbols in the formulas are the same as defined above independently for each formula.

HO-Ph-Ph-CN (13A)
HO-Ph-Cy-Ph-(CH2)rH (13B)
HO-Ph-Cy-Ph-Ph-(CH2)rH (13C)
前記化合物(1A5a)の合成方法としては、下記反応式に従って合成する方法が挙げられる。尚、式中の記号の規定は前記と同じである。
HO-Ph-Ph-CN (13A)
HO-Ph-Cy-Ph- (CH 2 ) r H (13B)
HO-Ph-Cy-Ph-Ph- (CH 2 ) r H (13C)
Examples of a method for synthesizing the compound (1A5a) include a method for synthesizing according to the following reaction formula. The definition of the symbols in the formula is the same as described above.

まず、下記化合物(51a)と3,4−ジヒドロピランとをジクロロメタン中、p−トルエンスルホン酸の存在下で反応させて、下記化合物(52a)を得る。次に、この化合物(52a)に、トリエチルアミン存在下でパーフルオロブタンスルホニルフルオライドを反応させ、これと下記化合物(13A)とをDMF中、炭酸セシウム存在下で反応させて、下記化合物(14A5a)を得る。更に、この化合物(14A5a)とp−トルエンスルホン酸とを反応させて下記化合物(15A5a)を得る。この化合物(15A5a)を、トリエチルアミン存在下でアクリル酸クロリドと反応させて、化合物(1A5a)を得る。   First, the following compound (51a) and 3,4-dihydropyran are reacted in dichloromethane in the presence of p-toluenesulfonic acid to obtain the following compound (52a). Next, this compound (52a) is reacted with perfluorobutanesulfonyl fluoride in the presence of triethylamine, and this is reacted with the following compound (13A) in DMF in the presence of cesium carbonate, whereby the following compound (14A5a) Get. Furthermore, this compound (14A5a) and p-toluenesulfonic acid are reacted to obtain the following compound (15A5a). This compound (15A5a) is reacted with acrylic acid chloride in the presence of triethylamine to obtain compound (1A5a).

Figure 2008026482
Figure 2008026482

上記化合物(1A5b)〜(1A5r)は、上記合成方法における化合物(51a)をそれぞれ下記化合物(51b)〜(51r)に換えることで合成できる。   The compounds (1A5b) to (1A5r) can be synthesized by replacing the compound (51a) in the synthesis method with the following compounds (51b) to (51r), respectively.

HO-CH2-CF2-OCF2CF2-OCF2-CH2-OH (51a)
HO-CH2-CF2-(OCF2CF2)2-OCF2-CH2-OH (51b)
HO-CH2-CF2-(OCF2CF2)3-OCF2-CH2-OH (51c)
HO-CH2-CF2-(OCF2CF2)4-OCF2-CH2-OH (51d)
HO-CH2-CF2-(OCF2CF2)5-OCF2-CH2-OH (51e)
HO-CH2-CF2-(OCF2CF2)6-OCF2-CH2-OH (51f)
HO-(CH2)2-CF2-OCF2CF2-OCF2-(CH2)2-OH (51g)
HO-(CH2)3-CF2-OCF2CF2-OCF2-(CH2)3-OH (51h)
HO-(CH2)2-CF2-(OCF2CF2)2-OCF2-(CH2)2-OH (51i)
HO-(CH2)3-CF2-(OCF2CF2)2-OCF2-(CH2)3-OH (51j)
HO-(CH2)2-CF2-(OCF2CF2)3-OCF2-(CH2)2-OH (51k)
HO-(CH2)3-CF2-(OCF2CF2)3-OCF2-(CH2)3-OH (51l)
HO-(CH2)2-CF2-(OCF2CF2)4-OCF2-(CH2)2-OH (51m)
HO-(CH2)3-CF2-(OCF2CF2)4-OCF2-(CH2)3-OH (51n)
HO-(CH2)2-CF2-(OCF2CF2)5-OCF2-(CH2)2-OH (51o)
HO-(CH2)3-CF2-(OCF2CF2)5-OCF2-(CH2)3-OH (51p)
HO-(CH2)2-CF2-(OCF2CF2)6-OCF2-(CH2)2-OH (51q)
HO-(CH2)3-CF2-(OCF2CF2)6-OCF2-(CH2)3-OH (51r)
HO-CH 2 -CF 2 -OCF 2 CF 2 -OCF 2 -CH 2 -OH (51a)
HO-CH 2 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2 -CH 2 -OH (51b)
HO-CH 2 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2 -CH 2 -OH (51c)
HO-CH 2 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2 -CH 2 -OH (51d)
HO-CH 2 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2 -CH 2 -OH (51e)
HO-CH 2 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2 -CH 2 -OH (51f)
HO- (CH 2 ) 2 -CF 2 -OCF 2 CF 2 -OCF 2- (CH 2 ) 2 -OH (51g)
HO- (CH 2 ) 3 -CF 2 -OCF 2 CF 2 -OCF 2- (CH 2 ) 3 -OH (51h)
HO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2- (CH 2 ) 2 -OH (51i)
HO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 2 -OCF 2- (CH 2 ) 3 -OH (51j)
HO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2- (CH 2 ) 2 -OH (51k)
HO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 3 -OCF 2- (CH 2 ) 3 -OH (51l)
HO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2- (CH 2 ) 2 -OH (51m)
HO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 4 -OCF 2- (CH 2 ) 3 -OH (51n)
HO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2- (CH 2 ) 2 -OH (51o)
HO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 5 -OCF 2- (CH 2 ) 3 -OH (51p)
HO- (CH 2 ) 2 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2- (CH 2 ) 2 -OH (51q)
HO- (CH 2 ) 3 -CF 2- (OCF 2 CF 2 ) 6 -OCF 2- (CH 2 ) 3 -OH (51r)

また、前記化合物(1B5a)は、上記化合物(1A5a)の合成方法における化合物(13A)を化合物(13B)に換えることで同様に合成できる。また、化合物(1B5b)〜(1B5r)は、上記合成方法における化合物(13A)を化合物(13B)に変更し、さらに化合物(51a)をそれぞれ化合物(51b)〜(51r)に変更することで同様に合成できる。   Moreover, the said compound (1B5a) is compoundable similarly by changing the compound (13A) in the synthesis | combining method of the said compound (1A5a) with the compound (13B). Compounds (1B5b) to (1B5r) are similarly obtained by changing compound (13A) to compound (13B) in the above synthesis method and further changing compound (51a) to compounds (51b) to (51r), respectively. Can be synthesized.

また、前記化合物(1C5a)は、上記化合物(1A5a)の合成方法における化合物(13A)を化合物(13C)に換えることで同様に合成できる。また、化合物(1C5b)〜(1C5r)は、化合物(13A)を化合物(13C)に変更し、さらに化合物(51a)をそれぞれ化合物(51b)〜(51r)に変更することで同様に合成できる。
尚、式中の記号は、各々、式毎に独立して、前記規定と同じものを示す。
The compound (1C5a) can be synthesized in the same manner by replacing the compound (13A) in the method for synthesizing the compound (1A5a) with the compound (13C). Compounds (1C5b) to (1C5r) can be synthesized in the same manner by changing compound (13A) to compound (13C) and further changing compound (51a) to compounds (51b) to (51r), respectively.
The symbols in the formulas are the same as defined above independently for each formula.

また、式(1)においてRがメチル基である化合物についても、アクリル酸クロリドをメタクリル酸クロリドに変更することによって同様に合成できる。In addition, a compound in which R 1 is a methyl group in formula (1) can be synthesized in the same manner by changing acrylic acid chloride to methacrylic acid chloride.

<重合性液晶組成物>
本発明の化合物(1)は、不飽和結合による重合性基と複数の6員環による液晶性骨格とを含有し、高分子液晶を得るための重合性液晶組成物を構成する液晶成分、つまり、重合性液晶化合物としての使用が可能である。但し、重合性液晶組成物の調製においては、化合物(1)は、必ずしも単独で液晶相を示す必要性はなく、重合性液晶組成物に対し良好な相溶性を示し、過冷却状態を発現すればよい。つまり、化合物(1)と、式(1)に該当しない重合性液晶化合物とを組み合わせて重合性液晶組成物が構成できる(以下、化合物(1)の中で単独で液晶相を示すものを重合性液晶化合物(A)と称し、式(1)に該当しない重合性液晶化合物を重合性液晶化合物(B)と称する)。
<Polymerizable liquid crystal composition>
The compound (1) of the present invention contains a polymerizable group by an unsaturated bond and a liquid crystalline skeleton by a plurality of 6-membered rings, and constitutes a liquid crystal component constituting a polymerizable liquid crystal composition for obtaining a polymer liquid crystal, that is, It can be used as a polymerizable liquid crystal compound. However, in the preparation of the polymerizable liquid crystal composition, the compound (1) is not necessarily required to exhibit a liquid crystal phase alone, exhibits good compatibility with the polymerizable liquid crystal composition, and exhibits a supercooled state. That's fine. That is, a polymerizable liquid crystal composition can be constituted by combining the compound (1) and a polymerizable liquid crystal compound not corresponding to the formula (1) (hereinafter, the compound (1) alone which exhibits a liquid crystal phase is polymerized. A polymerizable liquid crystal compound that is referred to as a polymerizable liquid crystal compound (A) and does not correspond to the formula (1) is referred to as a polymerizable liquid crystal compound (B)).

化合物(1)は、重合性液晶化合物(B)と組み合わせて重合性液晶組成物に調製すると、液晶相を示す温度範囲をより広くすることが可能である。また、融点(T)降下が生じるので、組成物の取り扱いが容易になる。従って、化合物(1)と重合性液晶化合物(B)とを含有する重合性液晶組成物を調製すると、高分子液晶を得るための重合性液晶組成物が低温域においても液晶性を示すことが可能になる。重合性液晶組成物の液晶相を構成する重合性液晶成分が、化合物(1)の1種以上と、重合性液晶化合物(B)の1種以上とからなると好適である。When compound (1) is prepared into a polymerizable liquid crystal composition in combination with polymerizable liquid crystal compound (B), the temperature range showing the liquid crystal phase can be broadened. Moreover, since melting | fusing point ( Tm ) fall arises, the handling of a composition becomes easy. Therefore, when a polymerizable liquid crystal composition containing the compound (1) and the polymerizable liquid crystal compound (B) is prepared, the polymerizable liquid crystal composition for obtaining a polymer liquid crystal exhibits liquid crystallinity even in a low temperature range. It becomes possible. The polymerizable liquid crystal component constituting the liquid crystal phase of the polymerizable liquid crystal composition is preferably composed of one or more compounds (1) and one or more polymerizable liquid crystal compounds (B).

本発明の化合物(1)は、スペーサー部にポリフルオロアルキレン基又はポリフルオロアルキレンオキサイド基を含む構造であるため、これを用いて重合性液晶組成物を調製すると、化合物(1)は重合過程において重合性液晶組成物の表面へ向かって移行して最表面で硬化し、組成物は優れたレベリング性を発現し得る。特にフッ素原子を含有しない重合性液晶化合物と組み合わせて調製した組成物において優れたレベリング性を発現する。これは、フッ素原子含有モノマーとフッ素原子を含有しないモノマーとで重合速度が異なり、重合の進行に従って相対的に相溶性が低下したフッ素原子含有モノマーが膜表面へ凝離するためと考えられる。つまり、フッ素原子がモノマーの重合反応性に差を生じさせることに起因する。従って、組み合わせた複数種のモノマー間でフッ素原子含有量の差が大きいほど、反応性の差が大きく高いレベリング性の発現が可能になる。但し、化合物(1)は、1分子中のフッ素原子の数が28個以下と比較的少なく、特に、ポリフルオロアルキレン基又はポリフルオロアルキレンオキサイド基が分子内部に存在するので、重合性液晶組成物中でフッ素原子を含まない他の成分に対しても良好な相溶性を示す。また、化合物(1)は、他の液晶化合物を用いた重合性液晶組成物に添加すると、重合性液晶組成物の融点の低下によって、重合性液晶組成物を室温に放置した時の結晶析出を防ぐことができる。さらに、(メタ)アクリロイルオキシ基に−(CH(CH−が連結しているため、重合性液晶の重合反応の前後でしばしば観測されるΔn値の低下を抑制でき、重合物が高Δn値を示す。この性質はRがポリフルオロアルキレン基の場合に顕著である。従って、化合物(1)を用いた重合性液晶組成物から重合物を調製することによって、低散乱で、位相差の面内分布均一性に優れる光学異方性材料及び光学素子を提供できる。Since the compound (1) of the present invention has a structure containing a polyfluoroalkylene group or a polyfluoroalkylene oxide group in the spacer portion, when a polymerizable liquid crystal composition is prepared using this, the compound (1) It moves toward the surface of the polymerizable liquid crystal composition and cures at the outermost surface, and the composition can exhibit excellent leveling properties. In particular, it exhibits excellent leveling properties in a composition prepared by combining with a polymerizable liquid crystal compound containing no fluorine atom. This is presumably because the fluorine atom-containing monomer and the monomer not containing a fluorine atom have different polymerization rates, and the fluorine atom-containing monomer whose compatibility is relatively lowered as the polymerization proceeds progresses to the film surface. That is, the fluorine atom causes a difference in the polymerization reactivity of the monomer. Therefore, the greater the difference in fluorine atom content among the plural types of monomers combined, the greater the difference in reactivity and the higher leveling can be expressed. However, the compound (1) has a relatively small number of fluorine atoms in one molecule of 28 or less, and in particular, since a polyfluoroalkylene group or a polyfluoroalkylene oxide group exists in the molecule, the polymerizable liquid crystal composition Good compatibility with other components that do not contain fluorine atoms. In addition, when compound (1) is added to a polymerizable liquid crystal composition using another liquid crystal compound, the crystalline liquid crystal composition undergoes crystal precipitation when left at room temperature due to a decrease in the melting point of the polymerizable liquid crystal composition. Can be prevented. Furthermore, since — (CH 2 ) m R F (CH 2 ) n — is linked to the (meth) acryloyloxy group, it is possible to suppress a decrease in Δn value often observed before and after the polymerization reaction of the polymerizable liquid crystal. The polymer exhibits a high Δn value. This property is remarkable when R F is a polyfluoroalkylene group. Therefore, by preparing a polymer from the polymerizable liquid crystal composition using the compound (1), it is possible to provide an optically anisotropic material and an optical element that are low in scattering and excellent in in-plane distribution uniformity of retardation.

本発明の重合性液晶組成物は、非液晶性の成分や非重合性の液晶化合物を含んでいてもよいが、式(1)で表される不飽和脂肪酸エステル、つまり、化合物(1)と、重合性液晶化合物(B)との合計量は、重合性液晶組成物全量に対して70質量%以上であることが好ましく、80質量%であることがより好ましく、90質量以上であることが特に好ましい。このような割合であると、重合性液晶組成物が広い温度領域で液晶性を確保でき、当該重合性液晶組成物を重合して得られる重合体が必要なΔnを発現し、Δnの温度による変化が少ないからである。   The polymerizable liquid crystal composition of the present invention may contain a non-liquid crystalline component or a non-polymerizable liquid crystal compound, but the unsaturated fatty acid ester represented by the formula (1), that is, the compound (1) and The total amount of the polymerizable liquid crystal compound (B) is preferably 70% by mass or more, more preferably 80% by mass, and more preferably 90% by mass or more based on the total amount of the polymerizable liquid crystal composition. Particularly preferred. When the ratio is such, the polymerizable liquid crystal composition can ensure liquid crystallinity in a wide temperature range, and a polymer obtained by polymerizing the polymerizable liquid crystal composition expresses the necessary Δn, depending on the temperature of Δn. This is because there is little change.

重合性液晶化合物(B)は、(メタ)アクリロイル基を有する化合物であることが好ましく、アクリロイル基を有する化合物がより好ましい。具体的には、重合性液晶化合物(B)としては、下式(2)で表される化合物が好ましい。但し、式(2)中の記号R、R、E〜E、t、p、q、s、wの規定は、前記と同じである。The polymerizable liquid crystal compound (B) is preferably a compound having a (meth) acryloyl group, and more preferably a compound having an acryloyl group. Specifically, the polymerizable liquid crystal compound (B) is preferably a compound represented by the following formula (2). However, the definitions of symbols R 3 , R 4 , E 5 to E 8 , t, p, q, s, and w in the formula (2) are the same as described above.

CH2=CR3-COO-(CH2)t-(O)p-E5-w-E6-(E7)q-(E8)s-R4 (2)CH 2 = CR 3 -COO- (CH 2 ) t- (O) p -E 5 -wE 6- (E 7 ) q- (E 8 ) s -R 4 (2)

化合物(2)のRは水素原子又はメチル基であるが、Rが水素原子であると、重合性液晶組成物を光重合させて光学異方性材料及び光学素子を得る際に重合反応が速やかに進行するので好ましい。R 3 of the compound (2) is a hydrogen atom or a methyl group, but when R 3 is a hydrogen atom, a polymerization reaction occurs when the polymerizable liquid crystal composition is photopolymerized to obtain an optically anisotropic material and an optical element. Is preferable because it proceeds rapidly.

化合物(2)は、Rとしてアルキル基、アルコキシ基、フッ素原子又はシアノ基を有することによって、重合性液晶組成物の液晶性を示す温度範囲を広くすることができる。Rがアルキル基又はアルコキシ基の場合、炭素数は2〜6が好ましく、3〜5がより好ましく、Rが直鎖構造のアルキル基又はアルコキシ基であると、化合物(2)が液晶性を示す温度範囲を広くできるので好ましい。When the compound (2) has an alkyl group, an alkoxy group, a fluorine atom or a cyano group as R 4 , the temperature range showing the liquid crystallinity of the polymerizable liquid crystal composition can be widened. When R 4 is an alkyl group or an alkoxy group, the number of carbon atoms is preferably 2-6, more preferably 3-5, and when R 4 is a linear alkyl group or alkoxy group, the compound (2) is liquid crystalline. This is preferable because the temperature range showing can be increased.

化合物(2)の好ましい例として、具体的には下記式(2A)〜(2G)の化合物が挙げられる。但し、式(2A)〜(2G)中、Z〜Z14は、各々、式毎に独立してPh又はCyであるが、Z〜Z11の少なくとも1つはCyであり、ZとZ10は同時にPhにならない。また、Z14がPhである場合はZ13はCyであり、Z12がCyである場合はZ13はPhである。尚、式(2A)〜(2G)中の記号R、R、t、Ph及びCyは、各々、式毎に独立し、前記規定と同じである。Specific preferred examples of the compound (2) include compounds represented by the following formulas (2A) to (2G). However, in formulas (2A) to (2G), Z 1 to Z 14 are each independently Ph or Cy for each formula, but at least one of Z 9 to Z 11 is Cy, and Z 9 And Z 10 do not become Ph at the same time. When Z 14 is Ph, Z 13 is Cy, and when Z 12 is Cy, Z 13 is Ph. The symbols R 3 , R 4 , t, Ph and Cy in the formulas (2A) to (2G) are independent for each formula and are the same as defined above.

CH2=CR3-COO-Ph-OCO-Cy-Z1-R4 (2A)
CH2=CR3-COO-Ph-OCO-Z2-R4 (2B)
CH2=CR3-COO-Z3-Z4-R4 (2C)
CH2=CR3-COO-(CH2)t-O-Ph-Z5-R4 (2D)
CH2=CR3-COO-Z6-Z7-Z8-R4 (2E)
CH2=CR3-COO-(CH2)t-O-Z9-Z10-Z11-R4 (2F)
CH2=CR3-COO-(CH2)t-O-Ph-Z12-Z13-Z14-R4 (2G)
CH 2 = CR 3 -COO-Ph-OCO-Cy-Z 1 -R 4 (2A)
CH 2 = CR 3 -COO-Ph-OCO-Z 2 -R 4 (2B)
CH 2 = CR 3 -COO-Z 3 -Z 4 -R 4 (2C)
CH 2 = CR 3 -COO- (CH 2 ) t -O-Ph-Z 5 -R 4 (2D)
CH 2 = CR 3 -COO-Z 6 -Z 7 -Z 8 -R 4 (2E)
CH 2 = CR 3 -COO- (CH 2 ) t -OZ 9 -Z 10 -Z 11 -R 4 (2F)
CH 2 = CR 3 -COO- (CH 2 ) t -O-Ph-Z 12 -Z 13 -Z 14 -R 4 (2G)

化合物(2)の好ましい例として、より具体的には、下記式(2Aa)、(2Ab)、(2Ba)、(2Bb)、(2Ca)、(2Cb)、(2Da)、(2Db)、(2Ea)、(2Eb)、(2Fa)、(2Ga)の化合物が挙げられる。但し、式(2Aa)〜(2Ga)中の記号R、Ph及びCyは、各々、式毎に独立して前記規定と同じであり、一分子中の複数のPh、複数のCyも、各々、独立して互いに異なる置換又は非置換のフェニレン基、異なる置換又は非置換のシクロヘキシレン基を示し得るものとする。式中の記号tは1〜8の整数であり、2〜6の整数であることが好ましい。More specifically, preferred examples of the compound (2) include the following formulas (2Aa), (2Ab), (2Ba), (2Bb), (2Ca), (2Cb), (2Da), (2Db), ( 2Ea), (2Eb), (2Fa), (2Ga) compounds. However, the symbols R 4 , Ph and Cy in formulas (2Aa) to (2Ga) are the same as defined above independently for each formula, and a plurality of Ph and a plurality of Cy in one molecule are each Independently different substituted or unsubstituted phenylene groups, different substituted or unsubstituted cyclohexylene groups may be represented. The symbol t in the formula is an integer of 1 to 8, and preferably an integer of 2 to 6.

CH2=CH-COO-Ph-OCO-Cy-Ph-R4 (2Aa)
CH2=CH-COO-Ph-OCO-Cy-Cy-R4 (2Ab)
CH2=CH-COO-Ph-OCO-Cy-R4 (2Ba)
CH2=CH-COO-Ph-OCO-Ph-R4 (2Bb)
CH2=CH-COO-Cy-Cy-R4 (2Ca)
CH2=CH-COO-Ph-Cy-R4 (2Cb)
CH2=CH-COO-Ph-Ph-R4 (2Cc)
CH2=CH-COO-(CH2)t-O-Ph-Ph-R4 (2Da)
CH2=CH-COO-(CH2)t-O-Ph-Cy-R4 (2Db)
CH2=CH-COO-Ph-Ph-Cy-R4 (2Ea)
CH2=CH-COO-Ph-Cy-Ph-R4 (2Eb)
CH2=CH-COO-(CH2)t-O-Ph-Cy-Ph-R4 (2Fa)
CH2=CH-COO-(CH2)t-O-Ph-Cy-Ph-Ph-R4 (2Ga)
CH 2 = CH-COO-Ph-OCO-Cy-Ph-R 4 (2Aa)
CH 2 = CH-COO-Ph-OCO-Cy-Cy-R 4 (2Ab)
CH 2 = CH-COO-Ph-OCO-Cy-R 4 (2Ba)
CH 2 = CH-COO-Ph-OCO-Ph-R 4 (2Bb)
CH 2 = CH-COO-Cy-Cy-R 4 (2Ca)
CH 2 = CH-COO-Ph-Cy-R 4 (2Cb)
CH 2 = CH-COO-Ph-Ph-R 4 (2Cc)
CH 2 = CH-COO- (CH 2 ) t -O-Ph-Ph-R 4 (2Da)
CH 2 = CH-COO- (CH 2 ) t -O-Ph-Cy-R 4 (2Db)
CH 2 = CH-COO-Ph-Ph-Cy-R 4 (2Ea)
CH 2 = CH-COO-Ph-Cy-Ph-R 4 (2Eb)
CH 2 = CH-COO- (CH 2 ) t -O-Ph-Cy-Ph-R 4 (2Fa)
CH 2 = CH-COO- (CH 2 ) t -O-Ph-Cy-Ph-Ph-R 4 (2Ga)

化合物(1)及び化合物(2)を用いて本発明の重合性液晶組成物を調製する際に、化合物(1)の種類に応じて、例えば、相溶性、液晶温度範囲等を考慮して適宜化合物(2)を選択することによって好ましい組み合わせを決定するとよい。上記選択基準による好ましい例としては、前述の化合物(1A)又は化合物(1B)と前記化合物(2Bb)又は前記化合物(2Da)とを含有する重合性液晶組成物、及び、前記化合物(1C)と前記化合物(2Eb)とを含有する重合性液晶組成物などが挙げられる。   When preparing the polymerizable liquid crystal composition of the present invention using the compound (1) and the compound (2), depending on the type of the compound (1), for example, the compatibility, the liquid crystal temperature range, etc. are taken into consideration as appropriate. A preferred combination may be determined by selecting the compound (2). Preferred examples based on the above selection criteria include a polymerizable liquid crystal composition containing the compound (1A) or compound (1B) and the compound (2Bb) or the compound (2Da), and the compound (1C) Examples thereof include a polymerizable liquid crystal composition containing the compound (2Eb).

また、本発明の重合性液晶組成物に配合される化合物(2)として、以下の化合物(2Ha),(2Hb),(2Ia),(2Ib),(2Ja),(2Jb),(2Ka),(2Kb)を用いてもよい。但し、式中の記号R、Ph及びCyは、各々、式毎に独立して前記規定と同じであり、一分子中の複数のPh、Cyも、各々、独立して互いに異なる置換又は非置換のフェニレン基、互いに異なる置換又は非置換のシクロヘキシレン基を示し得るものとする。Further, as the compound (2) blended in the polymerizable liquid crystal composition of the present invention, the following compounds (2Ha), (2Hb), (2Ia), (2Ib), (2Ja), (2Jb), (2Ka) , (2 Kb) may be used. However, the symbols R 4 , Ph and Cy in the formula are each independently the same as defined above for each formula, and a plurality of Ph and Cy in one molecule are each independently substituted or non-substituted. A substituted phenylene group and different substituted or unsubstituted cyclohexylene groups may be represented.

CH2=CH-COO-Ph-Cy-COO-Cy-Ph-R4 (2Ha)
CH2=CH-COO-Ph-Cy-OCO-Cy-Ph-R4 (2Hb)
CH2=CH-COO-Cy-COO-Cy-Ph-R4 (2Ia)
CH2=CH-COO-Cy-OCO-Cy-Ph-R4 (2Ib)
CH2=CH-COO-Ph-Ph-C≡C-Ph-Cy-R4 (2Ja)
CH2=CH-COO-Cy-Ph-C≡C-Ph-Cy-R4 (2Jb)
CH2=CH-COO-Ph-C≡C-Ph-Ph-Cy-R4 (2Ka)
CH2=CH-COO-Ph-C≡C-Ph-Cy-Ph-R4 (2Kb)
CH 2 = CH-COO-Ph-Cy-COO-Cy-Ph-R 4 (2Ha)
CH 2 = CH-COO-Ph-Cy-OCO-Cy-Ph-R 4 (2Hb)
CH 2 = CH-COO-Cy-COO-Cy-Ph-R 4 (2Ia)
CH 2 = CH-COO-Cy-OCO-Cy-Ph-R 4 (2Ib)
CH 2 = CH-COO-Ph-Ph-C≡C-Ph-Cy-R 4 (2Ja)
CH 2 = CH-COO-Cy-Ph-C≡C-Ph-Cy-R 4 (2Jb)
CH 2 = CH-COO-Ph-C≡C-Ph-Ph-Cy-R 4 (2Ka)
CH 2 = CH-COO-Ph-C≡C-Ph-Cy-Ph-R 4 (2Kb)

化合物(1)の含量は、化合物(1)と重合性液晶化合物(B)の合計量に対して5〜50モル%であるのが好ましく、8〜30モル%がより好ましい。5モル%未満であると膜厚のむらが制御しにくい傾向にあり、50モル%より多いと相分離によるドメインが形成され均一な膜が得られ難い傾向にある。   The content of the compound (1) is preferably 5 to 50 mol%, more preferably 8 to 30 mol%, based on the total amount of the compound (1) and the polymerizable liquid crystal compound (B). If it is less than 5 mol%, the film thickness unevenness tends to be difficult to control, and if it exceeds 50 mol%, domains due to phase separation are formed and a uniform film tends to be difficult to obtain.

本発明の重合性液晶組成物に含まれていてもよい非液晶性の成分(以下、他の成分と記す。)としては、重合開始剤、カイラル剤、紫外線吸収剤、酸化防止剤、光安定剤、二色性色素等が挙げられる。   Non-liquid crystalline components (hereinafter referred to as other components) that may be contained in the polymerizable liquid crystal composition of the present invention include a polymerization initiator, a chiral agent, an ultraviolet absorber, an antioxidant, and light stability. Agents, dichroic dyes and the like.

前述したように、重合性液晶組成物に含まれる化合物(1)及び重合性液晶化合物(B)(以下、これらを液晶性成分と称する)の好ましい割合は70質量%以上となるが、実際には、上述のような非液晶性成分の配合割合が用途によって大きく変動することから、重合性液晶組成物中の液晶性成分及び他の成分の割合は、用途に応じて適宜調整される。
例えば、他の成分としてカイラル剤を使用する場合、カイラル剤の含量は、重合性液晶組成物の全量に対して5〜29質量%が好ましく、5〜20質量%が特に好ましい。従って、液晶性成分の量は、重合性液晶組成物の全量に対して71〜95質量%が好ましく、80〜95質量%が特に好ましい。
As described above, the preferred ratio of the compound (1) and the polymerizable liquid crystal compound (B) (hereinafter referred to as liquid crystal components) contained in the polymerizable liquid crystal composition is 70% by mass or more. Since the blending ratio of the non-liquid crystalline component as described above varies greatly depending on the application, the ratio of the liquid crystalline component and other components in the polymerizable liquid crystal composition is appropriately adjusted depending on the application.
For example, when a chiral agent is used as the other component, the content of the chiral agent is preferably 5 to 29% by mass, particularly preferably 5 to 20% by mass with respect to the total amount of the polymerizable liquid crystal composition. Therefore, the amount of the liquid crystal component is preferably 71 to 95% by mass, and particularly preferably 80 to 95% by mass with respect to the total amount of the polymerizable liquid crystal composition.

他の成分として二色性色素を使用する場合、二色性色素の量は、重合性液晶組成物の全量に対して1〜20質量%が好ましく、3〜18質量%が特に好ましい。従って、液晶性成分の量は、重合性液晶組成物の全量に対して80〜99質量%が好ましく、82〜97質量%が特に好ましい。   When using a dichroic dye as another component, 1-20 mass% is preferable with respect to the whole quantity of a polymeric liquid crystal composition, and, as for the quantity of a dichroic dye, 3-18 mass% is especially preferable. Therefore, the amount of the liquid crystal component is preferably 80 to 99% by mass, particularly preferably 82 to 97% by mass, based on the total amount of the polymerizable liquid crystal composition.

他の成分として、紫外線吸収剤、酸化防止剤、光安定剤等を使用する場合は、これらの成分の量は、重合性液晶組成物の全量に対して5質量%以下が好ましく、2質量%以下が特に好ましい。従って、この場合の液晶性成分の量は、重合性液晶組成物の全量に対して95〜100質量%が好ましく、98〜100質量%が特に好ましい。なお、重合開始剤の割合については後述する。   When using an ultraviolet absorber, an antioxidant, a light stabilizer, etc. as other components, the amount of these components is preferably 5% by mass or less based on the total amount of the polymerizable liquid crystal composition, and 2% by mass. The following are particularly preferred: Accordingly, the amount of the liquid crystal component in this case is preferably 95 to 100% by mass, particularly preferably 98 to 100% by mass, based on the total amount of the polymerizable liquid crystal composition. The ratio of the polymerization initiator will be described later.

上述の非液晶性の成分として複数の機能成分を組み合わせて用いる場合は、重合性液晶化合物が不足しないように、各機能成分の含量の好ましい範囲内で各々の量を少なめに設定することが好ましい。各機能成分が複数種の化合物の組み合わせである場合は、合計量が上記範囲となることが好ましい。   When a plurality of functional components are used in combination as the non-liquid crystalline component described above, it is preferable to set each amount to be small within a preferable range of the content of each functional component so that the polymerizable liquid crystal compound is not insufficient. . When each functional component is a combination of a plurality of compounds, the total amount is preferably within the above range.

<光学異方性材料及び光学素子>
本発明の化合物(1)又はこれを用いた重合性液晶組成物が液晶相を示す環境において、化合物(1)又は重合性液晶組成物を液晶が配向した状態で重合させることによって得られる重合体は、光学異方性材料として利用できるものであり、光学素子の構成部材に適用することができる。特に重合性液晶組成物を用いて重合体を得ることが好ましい。
以下、重合性液晶組成物を用いた重合体の調製について説明する。
<Optically anisotropic material and optical element>
Polymer obtained by polymerizing compound (1) or polymerizable liquid crystal composition in a state where the liquid crystal is aligned in an environment in which compound (1) of the present invention or a polymerizable liquid crystal composition using the same exhibits a liquid crystal phase Can be used as an optically anisotropic material and can be applied to components of optical elements. In particular, it is preferable to obtain a polymer using a polymerizable liquid crystal composition.
Hereinafter, preparation of a polymer using the polymerizable liquid crystal composition will be described.

一般的に、液晶相の呈示に影響を及ぼす環境には、温度、圧力、電場、磁場、組成物の混合状態、組成物の界面の状態等があり、本発明において重合性液晶組成物が液晶相を示す状態に保つには、雰囲気温度をネマチック相−等方相相転移温度(T)以下に調節すればよい。但し、Tに近い温度では重合性液晶組成物のΔn値が極めて小さいので、雰囲気温度の上限は(T−10)℃以下とすることが好ましい。In general, the environment that affects the presentation of the liquid crystal phase includes temperature, pressure, electric field, magnetic field, composition mixing state, composition interface state, etc. In the present invention, the polymerizable liquid crystal composition is a liquid crystal. In order to maintain the state showing the phase, the atmospheric temperature may be adjusted to be equal to or lower than the nematic phase-isotropic phase transition temperature (T c ). However, since the Δn value of the polymerizable liquid crystal composition is extremely small at a temperature close to T c , the upper limit of the ambient temperature is preferably (T c −10) ° C. or lower.

重合反応としては、光重合反応及び熱重合反応等が挙げられ、光重合反応が好ましい。光重合反応に用いる光としては、紫外線又は可視光線が好ましい。光重合反応を行う場合は光重合開始剤を用いることが好ましく、光重合開始剤は、アセトフェノン類、ベンゾフェノン類、ベンゾイン類、ベンジル類、ミヒラーケトン類、ベンゾインアルキルエーテル類、ベンジルジメチルケタール類及びチオキサントン類等から適宜選択することができ、1種又は2種以上を組み合わせて使用できる。光重合開始剤の量は、重合性液晶組成物の全量に対して0.1〜5質量%が好ましく、0.3〜2質量%が特に好ましい。複数種の光重合開始剤を用いる場合は、合計量が上記範囲であると好ましい。   Examples of the polymerization reaction include a photopolymerization reaction and a thermal polymerization reaction, and a photopolymerization reaction is preferred. The light used for the photopolymerization reaction is preferably ultraviolet light or visible light. When carrying out the photopolymerization reaction, it is preferable to use a photopolymerization initiator, and the photopolymerization initiators are acetophenones, benzophenones, benzoins, benzyls, Michler's ketones, benzoin alkyl ethers, benzyldimethylketals and thioxanthones. It can select suitably from etc., and can be used 1 type or in combination of 2 or more types. The amount of the photopolymerization initiator is preferably from 0.1 to 5% by mass, particularly preferably from 0.3 to 2% by mass, based on the total amount of the polymerizable liquid crystal composition. When using a plurality of types of photopolymerization initiators, the total amount is preferably in the above range.

本発明の重合体は、重合性液晶組成物を液晶成分が配向した状態で重合させて得られる。具体的には、重合性液晶組成物を、配向処理を施した基板に塗布して液晶を配向させ、重合成分を重合することによって、基板に支持された重合体が得られ、これをそのまま光学素子として利用することもできる。   The polymer of the present invention is obtained by polymerizing a polymerizable liquid crystal composition in a state where liquid crystal components are aligned. Specifically, a polymerizable liquid crystal composition is applied to a substrate that has been subjected to an alignment treatment, the liquid crystal is aligned, and a polymerization component is polymerized to obtain a polymer supported on the substrate. It can also be used as an element.

基板としては、例えば、綿、羊毛、ナイロン、ポリエステル等の繊維等でラビング処理した基板、又は、表面に有機薄膜を形成して布等でラビング処理した基板、あるいは、SiOを斜方蒸着した配向膜を有する基板等を使用できる。このような配向処理を施した基板を用意して塗布することによって、基板上の塗膜は液晶成分が配向した状態になる。As the substrate, for example, a substrate rubbed with fibers such as cotton, wool, nylon, polyester, or the like, a substrate formed with an organic thin film on the surface and rubbed with cloth, or SiO 2 was obliquely deposited. A substrate having an alignment film can be used. By preparing and applying a substrate subjected to such an alignment treatment, the coating film on the substrate is in a state where the liquid crystal component is aligned.

上述のラビング処理やSiOの斜方蒸着以外の手段を用いた配向処理として、重合性液晶組成物の流動配向や電場又は磁場を利用する方法等も利用可能である。これらの配向手段は、単独で用いても組み合わせて用いてもよい。また、ラビング処理の代わりに光配向法を配向処理方法として用いることもできる。この方法は、例えば、ポリビニルシンナメート等の分子内に光二量化反応する官能基を有する有機薄膜、光で異性化する官能基を有する有機薄膜、ポリイミド薄膜等の有機薄膜を形成し、これに、偏光した光、好ましくは偏光した紫外線を照射することによって配向膜を形成するものである。この光配向法において光マスクを適用することによって、配向のパターン化が容易に達成できるので、重合体内部の分子配向も精密に制御することが可能となる。As the alignment treatment using means other than the rubbing treatment and the oblique deposition of SiO 2 , a flow alignment of the polymerizable liquid crystal composition, a method using an electric field or a magnetic field, and the like can be used. These orientation means may be used alone or in combination. Further, a photo-alignment method can be used as an alignment treatment method instead of the rubbing treatment. In this method, for example, an organic thin film having a functional group that undergoes photodimerization reaction in a molecule such as polyvinyl cinnamate, an organic thin film having a functional group that isomerizes with light, and an organic thin film such as a polyimide thin film are formed. The alignment film is formed by irradiating polarized light, preferably polarized ultraviolet rays. By applying an optical mask in this photo-alignment method, alignment patterning can be easily achieved, so that the molecular orientation inside the polymer can be precisely controlled.

基板の形状としては、平板の他に、曲面を構成部分として有していてもよい。基板を構成する材料は、有機材料、無機材料を問わずに用いることができる。基板の材料となる有機材料としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリアミド、ポリメタクリル酸メチル、ポリスチレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリアリレート、ポリスルホン、トリアセチルセルロース、セルロース、ポリエーテルエーテルケトン等が挙げられ、また、無機材料としては、例えば、シリコン、ガラス、方解石等が挙げられる。   As a shape of the substrate, in addition to a flat plate, a curved surface may be included as a constituent part. The material which comprises a board | substrate can be used regardless of an organic material and an inorganic material. Examples of the organic material used as the substrate material include polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyarylate, polysulfone, and triacetyl. Cellulose, cellulose, polyetheretherketone and the like can be mentioned, and examples of the inorganic material include silicon, glass and calcite.

綿、羊毛、ナイロン、ポリエステル等の繊維等で基板をラビングすることでは適当な配向性を得られない場合には、公知の方法に従ってポリイミド薄膜又はポリビニルアルコール薄膜等の有機薄膜を基板表面に形成し、これを布等でラビングするとよい。また、通常のツイステッド・ネマチック(TN)素子又はスーパー・ツイステッド・ネマチック(STN)素子で使用されているプレチルト角を与えるポリイミド薄膜は、重合体内部の分子配向構造を更に精密に制御できるので、特に好ましい。   If appropriate orientation cannot be obtained by rubbing the substrate with fibers such as cotton, wool, nylon, polyester, etc., an organic thin film such as a polyimide thin film or a polyvinyl alcohol thin film is formed on the substrate surface according to a known method. This may be rubbed with a cloth or the like. In addition, the polyimide thin film that gives a pretilt angle used in a normal twisted nematic (TN) element or a super twisted nematic (STN) element can control the molecular orientation structure inside the polymer more precisely. preferable.

本発明の重合性液晶組成物を基板上に塗布する方法としては、スピンコーティング、ダイコーティング、エクストルージョンコーティング、ロールコーティング、ワイヤーバーコーティング、グラビアコーティング、スプレーコーティング、ディッピング、プリント法等を挙げることができる。塗布の際、塗布性を向上させる希釈剤として有機溶媒を重合性液晶組成物に添加して用いてもよく、この場合、有機溶媒は、基板に塗布した後に揮発させて除去する。有機溶媒としては、酢酸エチル、テトラヒドロフラン、トルエン、ヘキサン、メタノール、エタノール、ジメチルホルムアミド、塩化メチレン、イソプロパノール、アセトン、メチルエチルケトン、アセトニトリル、セロソルブ類等が挙げられる。溶媒は、単独でも複数種を組み合わせて用いてもよく、その蒸気圧と化合物(1)及び重合性液晶組成物の溶解性とを考慮して適宜選択すればよい。添加した有機溶媒を揮発させる方法としては、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥を用いることができる。   Examples of the method for applying the polymerizable liquid crystal composition of the present invention on a substrate include spin coating, die coating, extrusion coating, roll coating, wire bar coating, gravure coating, spray coating, dipping, and printing. it can. At the time of coating, an organic solvent may be added to the polymerizable liquid crystal composition as a diluent for improving the coating property. In this case, the organic solvent is volatilized and removed after coating on the substrate. Examples of the organic solvent include ethyl acetate, tetrahydrofuran, toluene, hexane, methanol, ethanol, dimethylformamide, methylene chloride, isopropanol, acetone, methyl ethyl ketone, acetonitrile, cellosolves and the like. The solvent may be used alone or in combination of a plurality of types, and may be appropriately selected in consideration of the vapor pressure and the solubility of the compound (1) and the polymerizable liquid crystal composition. As a method for volatilizing the added organic solvent, natural drying, heat drying, reduced pressure drying, or reduced pressure heat drying can be used.

重合性液晶組成物の塗布性をさらに向上させるためには、基板上にポリイミド薄膜等の中間層を設けることも有効である。ポリイミド薄膜等の中間層は、重合体と基板との密着性が良くない場合に密着性を向上させる手段としても有効である。   In order to further improve the applicability of the polymerizable liquid crystal composition, it is also effective to provide an intermediate layer such as a polyimide thin film on the substrate. An intermediate layer such as a polyimide thin film is also effective as a means for improving the adhesion when the adhesion between the polymer and the substrate is not good.

本発明の重合性液晶組成物を重合させる方法としては、紫外線又は電子線等の活性エネルギー線を照射することによって重合させる方法が特に好ましい。紫外線を使用する場合、偏光光源を用いてもよく、非偏光光源を用いてもよい。また、重合性液晶組成物を2枚の基板間に挟持させた状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適切な透明性が与えられていなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場又は温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、さらに活性エネルギー線を照射して重合させる手法を用いてもよい。光照射時の温度は、本発明の重合性液晶組成物の液晶状態が保持される温度範囲内であることが好ましい。活性エネルギー線の強度は、0.1〜2W/cmが好ましく、0.5〜1.5W/cmがより好ましい。強度が0.1mW/cm以下の場合、光重合を完了させるのに多大な時間が必要になり、生産性が低下するおそれがある。強度が2W/cm以上の場合、重合性液晶組成物が劣化するおそれがある。As a method of polymerizing the polymerizable liquid crystal composition of the present invention, a method of polymerizing by irradiating active energy rays such as ultraviolet rays or electron beams is particularly preferable. When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used. In addition, when polymerization is performed in a state where the polymerizable liquid crystal composition is sandwiched between two substrates, at least the substrate on the irradiation surface side must be provided with appropriate transparency with respect to active energy rays. . Moreover, after polymerizing only a specific part using a mask at the time of light irradiation, the orientation state of the unpolymerized part is changed by changing conditions such as an electric field, a magnetic field, or temperature, and further irradiation with active energy rays is performed. Then, a polymerization method may be used. The temperature at the time of light irradiation is preferably within a temperature range in which the liquid crystal state of the polymerizable liquid crystal composition of the present invention is maintained. Intensity of the active energy ray is preferably 0.1~2W / cm 2, 0.5~1.5W / cm 2 is more preferable. When the strength is 0.1 mW / cm 2 or less, a great amount of time is required to complete the photopolymerization, which may reduce productivity. When the strength is 2 W / cm 2 or more, the polymerizable liquid crystal composition may be deteriorated.

重合反応によって調製される重合体は、更に、重合体の初期の特性変化を軽減して安定的な特性発現を図ることを目的として、熱処理を施すこともできる。熱処理の温度は50〜250℃の範囲、好ましくは80〜180℃であり、熱処理時間は30秒〜12時間の範囲が好ましい。
本発明の重合性液晶組成物を重合して得られる重合体の膜厚は、0.5〜8μmが好ましく、0.7〜6μmがより好ましい。薄すぎると、塗布むらが生じ、面内におけるリタデーションの均一性が低下するおそれがある。厚過ぎると、配向が乱れ、透過率が低下するおそれがある。
本発明においては、重合反応によって得られる重合体は、基板を支持体として、支持体に保持したまま利用してもよく、基板から剥離して用いてもよい。また、得られた重合体を積層したり、他の基板に貼り合わせて利用してもよい。本発明の重合体は、光学的に透明で、異方性を有するので、偏光を変調する機能を利用する用途に有用である。具体的には、偏光の位相状態及び/又は波面状態を変調する用途に使用される光学異方性材料として有用であり、光学異方性材料からなる部材を有する光学素子に好適に適用できる。例えば、本発明の重合体を位相板等として液晶ディスプレイや光ピックアップ装置に搭載して使用可能である。位相板として使用する具体的な形態としては、例えば、1/4波長板としてLcosパネル前面に設置し、黒色表示時の光漏れを改善する形態が挙げられる。
The polymer prepared by the polymerization reaction can be further subjected to heat treatment for the purpose of reducing the initial characteristic change of the polymer and achieving stable characteristic expression. The temperature of the heat treatment is in the range of 50 to 250 ° C, preferably 80 to 180 ° C, and the heat treatment time is preferably in the range of 30 seconds to 12 hours.
The thickness of the polymer obtained by polymerizing the polymerizable liquid crystal composition of the present invention is preferably 0.5 to 8 μm, more preferably 0.7 to 6 μm. If it is too thin, uneven coating may occur, and the uniformity of retardation in the surface may be reduced. If it is too thick, the orientation may be disturbed and the transmittance may be reduced.
In the present invention, the polymer obtained by the polymerization reaction may be used while being held on the support using the substrate as a support, or may be used after being peeled off from the substrate. Further, the obtained polymer may be laminated or bonded to another substrate for use. Since the polymer of the present invention is optically transparent and has anisotropy, it is useful for applications utilizing the function of modulating polarized light. Specifically, it is useful as an optically anisotropic material used for the purpose of modulating the phase state and / or wavefront state of polarized light, and can be suitably applied to an optical element having a member made of an optically anisotropic material. For example, the polymer of the present invention can be used as a phase plate or the like mounted on a liquid crystal display or an optical pickup device. As a specific form used as the phase plate, for example, a form in which a quarter wave plate is installed on the front surface of the Lcos panel to improve light leakage at the time of black display can be cited.

[ヒドロキシル化合物(13B−1)の合成]
下記の手順に従って、化合物(21)から化合物(22)、化合物(24)、化合物(25)及び化合物(26)を経てヒドロキシル化合物(13B−1)を合成した。
(1)化合物(22)の合成
[Synthesis of Hydroxyl Compound (13B-1)]
The hydroxyl compound (13B-1) was synthesized from the compound (21) through the compound (22), the compound (24), the compound (25) and the compound (26) according to the following procedure.
(1) Synthesis of compound (22)

Figure 2008026482
Figure 2008026482

還流装置、撹拌機、滴下装置を装備した500mLの4つ口フラスコに化合物(21)(13.00g)を加え、これに2mol/Lの水酸化ナトリウム水溶液(250mL)を加えた。これに、硫酸ジメチル(34.48g)を、窒素気流下で反応容器の温度が60℃を超えないように注意しながら1時間を要して滴下を行った。滴下終了後、30分を要して反応容器中の温度を70℃にまで上げ、12時間撹拌、還流した。反応終了後、水及びジエチルエーテルを加えて分液し、有機層を回収した。回収した有機層を飽和塩化ナトリウム水溶液(40mL)で洗浄し、つぎに水洗し、再度有機層を回収した。
有機層を無水硫酸マグネシウムで乾燥した後、減圧濾過によって無水硫酸マグネシウムを除去し、濾液を濃縮した。
Compound (21) (13.00 g) was added to a 500 mL four-necked flask equipped with a reflux apparatus, a stirrer, and a dropping apparatus, and a 2 mol / L sodium hydroxide aqueous solution (250 mL) was added thereto. To this, dimethyl sulfate (34.48 g) was added dropwise over 1 hour while taking care that the temperature of the reaction vessel did not exceed 60 ° C. under a nitrogen stream. After completion of dropping, the temperature in the reaction vessel was raised to 70 ° C. over 30 minutes, and the mixture was stirred and refluxed for 12 hours. After completion of the reaction, water and diethyl ether were added for liquid separation, and the organic layer was recovered. The collected organic layer was washed with a saturated aqueous sodium chloride solution (40 mL), then washed with water, and the organic layer was collected again.
The organic layer was dried over anhydrous magnesium sulfate, the anhydrous magnesium sulfate was removed by filtration under reduced pressure, and the filtrate was concentrated.

この濾液をジクロロメタン/ヘキサン(5:5、容量比)を展開液としたシリカゲルカラムクロマトグラフィーにより精製を行った後、目的物を含む画分を濃縮することにより粉末結晶を得た。この粉末結晶にジクロロメタンとヘキサンの混合溶媒(200mL)を加えて再結晶を行い、化合物(22)(11.8g)を得た。収率は85%であった。   The filtrate was purified by silica gel column chromatography using dichloromethane / hexane (5: 5, volume ratio) as a developing solution, and then the fraction containing the target product was concentrated to obtain powder crystals. A mixed solvent (200 mL) of dichloromethane and hexane was added to the powder crystals and recrystallization was performed to obtain Compound (22) (11.8 g). The yield was 85%.

(2)化合物(24)の合成   (2) Synthesis of compound (24)

Figure 2008026482
Figure 2008026482

還流装置、撹拌機、滴下装置を装備した500mLの4つ口フラスコに、マグネシウム(1.53g)を加え、化合物(23)(19.3g)を脱水テトラヒドロフラン(50mL)に溶解させたものを、窒素気流下にて30分を要して滴下した。滴下終了後、70℃で3時間撹拌、還流してグリニヤール試薬を調製した。次に、この4つ口フラスコを0℃に冷却し、化合物(22)(18.4g)を脱水テトラヒドロフラン(100mL)に溶解させたものを、窒素気流下にて30分を要して滴下した。滴下終了後、70℃で3時間撹拌、還流した後、1mol/Lの塩化アンモニウム水溶液(100mL)を加えて反応を停止させた。   To a 500 mL four-necked flask equipped with a reflux apparatus, a stirrer, and a dropping apparatus, magnesium (1.53 g) was added and compound (23) (19.3 g) was dissolved in dehydrated tetrahydrofuran (50 mL). It was added dropwise over 30 minutes under a nitrogen stream. After completion of dropping, the mixture was stirred and refluxed at 70 ° C. for 3 hours to prepare a Grignard reagent. Next, this four-necked flask was cooled to 0 ° C., and compound (22) (18.4 g) dissolved in dehydrated tetrahydrofuran (100 mL) was added dropwise over 30 minutes under a nitrogen stream. . After completion of the dropwise addition, the mixture was stirred and refluxed at 70 ° C. for 3 hours, and then a 1 mol / L aqueous ammonium chloride solution (100 mL) was added to stop the reaction.

化合物(22)の合成におけるのと同様の後処理を行って得られた濾液を酢酸エチル/ヘキサン(7:3、容量比)を展開液としたシリカゲルカラムクロマトグラフィーにより精製を行い、化合物(24)21.5gを得た。収率は68%であった。   The filtrate obtained by carrying out the same post-treatment as in the synthesis of compound (22) was purified by silica gel column chromatography using ethyl acetate / hexane (7: 3, volume ratio) as a developing solution, and compound (24 ) 21.5 g was obtained. The yield was 68%.

(3)化合物(25)の合成   (3) Synthesis of compound (25)

Figure 2008026482
Figure 2008026482

還流装置、撹拌機を装備した500mLのナス型フラスコに化合物(24)(21.1g)、パラトルエンスルホン酸一水和物(0.65g)、トルエン(400mL)を加え、これに、モレキュラーシーブ4A(50g)の入った等圧滴下漏斗をつけ、110℃で4時間撹拌、還流した。反応終了後、化合物(22)の合成におけるのと同様の後処理を行って化合物(25)を15.5g得た。収率は71%であった。   Compound (24) (21.1 g), paratoluenesulfonic acid monohydrate (0.65 g), and toluene (400 mL) were added to a 500 mL eggplant-shaped flask equipped with a reflux apparatus and a stirrer, and molecular sieve was added thereto. An isobaric dropping funnel containing 4A (50 g) was attached, and the mixture was stirred and refluxed at 110 ° C. for 4 hours. After completion of the reaction, the same post-treatment as in the synthesis of compound (22) was performed to obtain 15.5 g of compound (25). The yield was 71%.

(4)化合物(26)の合成   (4) Synthesis of compound (26)

Figure 2008026482
Figure 2008026482

5000mLの耐圧反応器に、化合物(25)(12.9g)、テトラヒドロフラン(200mL)、10%パラジウム活性炭素(2.5g)を添加し、化合物(26)のシス−トランス混合物(12.2g)を得た。収率は95%であった。
これにヘキサン(100mL)を加えて再結晶を行い、式(26)で表される化合物のトランス体(2.00g)を得た。また濾液を濃縮したものを、500mLのナス型フラスコに移し、t−ブトキシカリウム(28.0g)、N,N−ジメチルホルムアミド(300mL)を加え、100℃で6時間撹拌、還流して式(26)で表される化合物のシス体をトランス体に変換した。反応終了後、水(500mL)を加えて反応を停止し、化合物(22)の合成におけるのと同様の後処理を行った後、ヘキサン(100mL)を加えて再結晶を行い、式(26)で表される化合物のトランス体(2.07g)を得た。トランス体である化合物(26)の全収量は4.27gで、収率は32%であった。
Compound (25) (12.9 g), tetrahydrofuran (200 mL), 10% palladium activated carbon (2.5 g) were added to a 5000 mL pressure-resistant reactor, and a cis-trans mixture of compound (26) (12.2 g) Got. The yield was 95%.
Hexane (100 mL) was added thereto and recrystallization was performed to obtain a trans isomer (2.00 g) of the compound represented by the formula (26). The filtrate was concentrated, transferred to a 500 mL eggplant-shaped flask, t-butoxypotassium (28.0 g) and N, N-dimethylformamide (300 mL) were added, and the mixture was stirred and refluxed at 100 ° C. for 6 hours. The cis isomer of the compound represented by 26) was converted to a trans isomer. After completion of the reaction, water (500 mL) was added to stop the reaction, and after the same post-treatment as in the synthesis of compound (22), hexane (100 mL) was added and recrystallization was performed. A trans isomer of the compound represented by (2.07 g) was obtained. The total yield of the compound (26) which was a trans isomer was 4.27 g, and the yield was 32%.

(5)ヒドロキシル化合物(13B−1)の合成   (5) Synthesis of hydroxyl compound (13B-1)

Figure 2008026482
Figure 2008026482

還流装置、撹拌機、滴下装置を装備した500mLの4つ口フラスコに化合物(26)(4.07g)、ジクロロメタン(200mL)を加えた。窒素気流下にて、三臭化ホウ素(12.74g)を30分かけて滴下した。滴下操作は、内温が10℃を超えないように氷冷しながら行った。室温で3時間撹拌を続けた後、水を加えて反応の停止を行い、化合物(22)の合成におけるのと同様の後処理を行った後、ジクロロメタンとヘキサンとの混合溶媒(100mL)を用いて再結晶を行い、ヒドロキシル化合物(13B−1)(3.68g)を得た。収率は95%であった。   Compound (26) (4.07 g) and dichloromethane (200 mL) were added to a 500 mL four-necked flask equipped with a reflux apparatus, a stirrer, and a dropping apparatus. Under a nitrogen stream, boron tribromide (12.74 g) was added dropwise over 30 minutes. The dropping operation was performed while cooling with ice so that the internal temperature did not exceed 10 ° C. After stirring for 3 hours at room temperature, the reaction was stopped by adding water, and after the same post-treatment as in the synthesis of compound (22), a mixed solvent (100 mL) of dichloromethane and hexane was used. Recrystallization gave hydroxyl compound (13B-1) (3.68 g). The yield was 95%.

[ヒドロキシル化合物(13C−1)の合成]
下記の手順に従って、化合物(31)から化合物(33)、化合物(34)、化合物(35)及び化合物(36)を経てヒドロキシル化合物(13C−1)を合成した。
[Synthesis of Hydroxyl Compound (13C-1)]
The hydroxyl compound (13C-1) was synthesized from the compound (31) through the compound (33), the compound (34), the compound (35) and the compound (36) according to the following procedure.

(1)化合物(33)の合成   (1) Synthesis of compound (33)

Figure 2008026482
Figure 2008026482

還流装置、撹拌機、滴下装置を装備した1000mLの4つ口フラスコに化合物(31)(23.57g)、化合物(32)(14.25g)、酢酸パラジウム(0.90g)、トリフェニルホスフィン(2.07g)を加えた。これに、窒素気流下でアセトン(200mL)、2mol/Lの炭酸水素ナトリウム水溶液(250mL)を加え、65℃で18時間撹拌、還流した。反応終了後、合成例1の化合物(22)の合成におけるのと同様の後処理及びシリカゲルカラムクロマトグラフィー精製を行い、化合物(33)(16.0g)を得た。収率は70%であった。   In a 1000 mL four-necked flask equipped with a reflux apparatus, a stirrer, and a dropping apparatus, compound (31) (23.57 g), compound (32) (14.25 g), palladium acetate (0.90 g), triphenylphosphine ( 2.07 g) was added. Acetone (200 mL) and 2 mol / L sodium hydrogen carbonate aqueous solution (250 mL) were added thereto under a nitrogen stream, and the mixture was stirred and refluxed at 65 ° C. for 18 hours. After completion of the reaction, the same post-treatment as in the synthesis of compound (22) of Synthesis Example 1 and silica gel column chromatography purification were performed to obtain compound (33) (16.0 g). The yield was 70%.

(2)化合物(34)の合成   (2) Synthesis of compound (34)

Figure 2008026482
Figure 2008026482

還流装置、撹拌機、滴下装置を装備した500mLの4つ口フラスコに、マグネシウム(1.53g)を加え、化合物(33)(16.5g)を脱水テトラヒドロフラン(50mL)に溶解させたものを、窒素気流下にて30分を要して滴下した。滴下終了後、70℃で3時間撹拌、還流してグリニヤール試薬を調製した。次に、この4つ口フラスコを0℃に冷却し、合成例1で得た化合物(22)(11.7g)を脱水テトラヒドロフラン(100mL)に溶解させたものを、窒素気流下にて30分を要して滴下した。滴下終了後、70℃で3時間撹拌、還流した後、1mol/Lの塩化アンモニウム水溶液(100mL)を加えて反応を停止させた。   To a 500 mL four-necked flask equipped with a reflux apparatus, a stirrer, and a dropping apparatus, magnesium (1.53 g) was added and compound (33) (16.5 g) was dissolved in dehydrated tetrahydrofuran (50 mL). It was added dropwise over 30 minutes under a nitrogen stream. After completion of dropping, the mixture was stirred and refluxed at 70 ° C. for 3 hours to prepare a Grignard reagent. Next, this four-necked flask was cooled to 0 ° C., and a solution obtained by dissolving the compound (22) (11.7 g) obtained in Synthesis Example 1 in dehydrated tetrahydrofuran (100 mL) was added for 30 minutes under a nitrogen stream. Was added dropwise. After completion of the dropwise addition, the mixture was stirred and refluxed at 70 ° C. for 3 hours, and then a 1 mol / L aqueous ammonium chloride solution (100 mL) was added to stop the reaction.

前述の化合物(22)の合成におけるのと同様の後処理を行って得られた濾液を酢酸エチル/ヘキサン(7:3、容量比)を展開液としたシリカゲルカラムクロマトグラフィーにより精製を行い、化合物(34)13.6gを得た。収率は60%であった。   The filtrate obtained by carrying out the same post-treatment as in the synthesis of the above-mentioned compound (22) was purified by silica gel column chromatography using ethyl acetate / hexane (7: 3, volume ratio) as a developing solution. (34) 13.6 g was obtained. The yield was 60%.

(3)化合物(35)の合成   (3) Synthesis of compound (35)

Figure 2008026482
Figure 2008026482

還流装置、撹拌機を装備した500mLのナス型フラスコに化合物(34)(13.6g)、パラトルエンスルホン酸一水和物(0.32g)、トルエン(200mL)を加え、これに、モレキュラーシーブ4A(20g)の入った等圧滴下漏斗をつけ、110℃で4時間撹拌、還流した。反応終了後、合成例1の化合物(22)の合成におけるのと同様の後処理を行って化合物(35)を12.8g得た。収率は95%であった。   Compound (34) (13.6 g), paratoluenesulfonic acid monohydrate (0.32 g), and toluene (200 mL) were added to a 500 mL eggplant-shaped flask equipped with a reflux apparatus and a stirrer, and molecular sieve was added thereto. An isobaric dropping funnel containing 4A (20 g) was attached, and the mixture was stirred and refluxed at 110 ° C. for 4 hours. After completion of the reaction, the same post treatment as in the synthesis of compound (22) of Synthesis Example 1 was performed to obtain 12.8 g of compound (35). The yield was 95%.

(4)化合物(36)の合成   (4) Synthesis of compound (36)

Figure 2008026482
Figure 2008026482

5000mLの耐圧反応器に、化合物(35)(12.80g)、テトラヒドロフラン(200mL)、10%パラジウム活性炭素(2.5g)を添加し、合成例1の化合物(22)の合成におけるのと同様にして式(36)で表される化合物のシス−トランス混合物(12.1g)を得た。収率は95%であった。   Compound (35) (12.80 g), tetrahydrofuran (200 mL), 10% palladium activated carbon (2.5 g) were added to a 5000 mL pressure-resistant reactor, and the same as in the synthesis of compound (22) of Synthesis Example 1 Thus, a cis-trans mixture (12.1 g) of the compound represented by the formula (36) was obtained. The yield was 95%.

これにヘキサン(100mL)を加えて再結晶を行い、化合物(36)のトランス体(2.00g)を得た。また濾液を濃縮したものを、500mLのナス型フラスコに移し、t−ブトキシカリウム(28.0g)、N,N−ジメチルホルムアミド(300mL)を加え、100℃で6時間撹拌、還流して化合物(28d)のシス体をトランス体に変換した。反応終了後、水(500mL)を加えて反応を停止し、合成例1の化合物(22)の合成におけるのと同様の後処理を行った後、ヘキサン(100mL)を加えて再結晶を行い、式(36)で表される化合物のトランス体(1.88g)を得た。トランス体である化合物(36)の全収量は3.88gで、収率は30%であった。   Hexane (100 mL) was added thereto and recrystallization was performed to obtain a trans isomer (2.00 g) of compound (36). The filtrate was concentrated, transferred to a 500 mL eggplant-shaped flask, t-butoxypotassium (28.0 g) and N, N-dimethylformamide (300 mL) were added, and the mixture was stirred and refluxed at 100 ° C. for 6 hours. The cis form of 28d) was converted to the trans form. After completion of the reaction, water (500 mL) was added to stop the reaction, and after the same post-treatment as in the synthesis of compound (22) of Synthesis Example 1, hexane (100 mL) was added to perform recrystallization, A trans isomer (1.88 g) of the compound represented by the formula (36) was obtained. The total yield of the compound (36) which was a trans isomer was 3.88 g, and the yield was 30%.

(5)ヒドロキシル化合物(13C−1)の合成   (5) Synthesis of hydroxyl compound (13C-1)

Figure 2008026482
Figure 2008026482

還流装置、撹拌機、滴下装置を装備した500mLの4つ口フラスコに化合物(36)(3.70g)、ジクロロメタン(200mL)を加えた。窒素気流下にて、三臭化ホウ素(12.74g)を30分かけて滴下した。滴下操作は、内温が10℃を超えないように氷冷しながら行った。室温で3時間撹拌を続けた後、水を加えて反応の停止を行い、合成例1の化合物(22)の合成におけるのと同様の後処理を行った後、ジクロロメタンとヘキサンとの混合溶媒(100mL)を用いて再結晶を行い、ヒドロキシル化合物(13C−1)(3.40g)を得た。収率は95%であった。   Compound (36) (3.70 g) and dichloromethane (200 mL) were added to a 500 mL four-necked flask equipped with a reflux apparatus, a stirrer, and a dropping apparatus. Under a nitrogen stream, boron tribromide (12.74 g) was added dropwise over 30 minutes. The dropping operation was performed while cooling with ice so that the internal temperature did not exceed 10 ° C. After stirring for 3 hours at room temperature, the reaction was stopped by adding water, and after the same post-treatment as in the synthesis of compound (22) of Synthesis Example 1, a mixed solvent of dichloromethane and hexane ( 100 mL) was used for recrystallization to obtain hydroxyl compound (13C-1) (3.40 g). The yield was 95%.

[ジオール化合物(51a)の合成]
国際公開第02/004397号パンフレットの第39頁に記載された例4において、HO(CHO(CHOHをHO(CHO(CHO(CHOHに変更した以外は同様にして、FCOCFO(CFOCFCOFを得た。
特開2006−45159号公報の第22頁に記載された例1−4aにおいて、化合物(E1)をFCOCFO(CFOCFCOFに変更した以外は同様にして、CHOCOCFO(CFOCFCOCHを得た。さらに、第23頁に記載された例1−5において、化合物(G1−1)をCHOCOCFO(CFOCFCOCHに変更した以外は同様にして、HOCHCFO(CFOCFCHOH(ジオール化合物(51a))を得た。
[Synthesis of Diol Compound (51a)]
In Example 4 described on page 39 of WO 02/004397 pamphlet, HO (CH 2 ) 2 O (CH 2 ) 2 OH is converted to HO (CH 2 ) 2 O (CH 2 ) 2 O (CH 2 ) FCOCF 2 O (CF 2 ) 2 OCF 2 COF was obtained in the same manner except that it was changed to 2 OH.
In the same manner as in Example 1-4a described on page 22 of JP-A-2006-45159, except that compound (E1) is changed to FCOCF 2 O (CF 2 ) 2 OCF 2 COF, CH 3 OCOCF 2 O (CF 2 ) 2 OCF 2 CO 2 CH 3 was obtained. Furthermore, in Example 1-5 described on page 23, HOCH 2 CF was similarly obtained except that compound (G1-1) was changed to CH 3 OCOCF 2 O (CF 2 ) 2 OCF 2 CO 2 CH 3. 2 O (CF 2 ) 2 OCF 2 CH 2 OH (diol compound (51a)) was obtained.

[例1]不飽和脂肪酸エステル(1A0b−1)の合成
下記に示す合成ルートに従って、不飽和脂肪酸エステル(1A0b−1)を合成した。以下にその詳細を記載する。
Example 1 Synthesis of Unsaturated Fatty Acid Ester (1A0b-1) An unsaturated fatty acid ester (1A0b-1) was synthesized according to the synthesis route shown below. Details are described below.

Figure 2008026482
Figure 2008026482

(1)化合物(02b)の合成
化合物(01b)(2,2,3,3,4,4,5,5−オクタフルオロ−1,6−ヘキサンジオール、東京化成社製、17.3g)及び3,4−ジヒドロ−2H−ピラン(3.10g)をジクロロメタン(500mL)に溶解し、p−トルエンスルホン酸一水和物(180mg)を加えて室温で15時間撹拌した。トリエチルアミン(101mg)を加えて減圧下溶媒を留去して粗精製物(25.1g)を得た。シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製 M.S.GEL D−75−120A,500g,溶出液:ヘキサン/酢酸エチル=3/1)により、標題化合物(10.7g,収率47%)を得た。
(1) Synthesis of Compound (02b) Compound (01b) (2,2,3,3,4,4,5,5-octafluoro-1,6-hexanediol, manufactured by Tokyo Chemical Industry Co., Ltd., 17.3 g) and 3,4-Dihydro-2H-pyran (3.10 g) was dissolved in dichloromethane (500 mL), p-toluenesulfonic acid monohydrate (180 mg) was added, and the mixture was stirred at room temperature for 15 hr. Triethylamine (101 mg) was added and the solvent was distilled off under reduced pressure to obtain a crude product (25.1 g). The title compound (10.7 g, 47% yield) was obtained by silica gel column chromatography (silica gel: MS GEL D-75-120A, manufactured by Asahi Glass Stech Co., Ltd., 500 g, eluent: hexane / ethyl acetate = 3/1). )

化合物(02b)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):1.57−1.84(m,6H,CH),3.57(m,1H),3.79−4.21(m,5H),4.75(m,1H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.6(m,2F),−123.1(m,2F),−124.2(m,2F),−124.5(m,2F)。
Spectral data of the compound (02b);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.57-1.84 (m, 6H, CH 2 ), 3.57 (m, 1H), 3. 79-4.21 (m, 5H), 4.75 (m, 1H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): -120.6 (m, 2F), -123.1 (m, 2F), -124.2 (m , 2F), -124.5 (m, 2F).

(2)化合物(14A0b−1)の合成
化合物(02b)(5.30g)をエーテル(80mL)に溶解し、トリエチルアミン(3.88mL)を加えた。0℃に冷却した後、1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホニルフルオリド(5.55g)を加え、徐々に室温に上げて、40時間撹拌した。水(100mL)、t−ブチルメチルエーテル(100mL)を加えて、有機層を飽和食塩水で洗浄し、乾燥後、溶媒を除いて1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホン酸2,2,3,3,4,4,5,5−オクタフルオロ−6−(テトラヒドロ−2H−ピラン−2−イルオキシ)ヘキシルの粗精製物(9.33g)を得た。この粗精製物及び化合物(13A−1)(4−シアノ−4’−ヒドロキシ−ビフェニル、SYNTHON社製、3.59g)をN,N−ジメチルホルムアミド(80mL)に溶解し、炭酸セシウム(17.96g)を加えて、80℃で1時間撹拌した。水(100mL)を加え、t−ブチルメチルエーテル(80mL×3回)で抽出した。得られた有機層を飽和食塩水(100mL)で洗浄した後、溶媒を除いて化合物(14A0b−1)の粗精製物(9.42g)を得た。シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)300g,溶出液:ヘキサン/酢酸エチル=4/1)により精製し、標題化合物(6.42g,収率62%)を得た。
(2) Synthesis of Compound (14A0b-1) Compound (02b) (5.30 g) was dissolved in ether (80 mL), and triethylamine (3.88 mL) was added. After cooling to 0 ° C., 1,1,2,2,3,3,4,4,4-nonafluorobutanesulfonyl fluoride (5.55 g) was added, gradually warmed to room temperature and stirred for 40 hours. . Water (100 mL) and t-butyl methyl ether (100 mL) were added, and the organic layer was washed with saturated brine, dried and then the solvent was removed to remove 1,1,2,2,3,3,4,4,4. A crude product (9.33 g) of 4-nonafluorobutanesulfonic acid 2,2,3,3,4,4,5,5-octafluoro-6- (tetrahydro-2H-pyran-2-yloxy) hexyl was obtained. Obtained. This crude product and compound (13A-1) (4-cyano-4′-hydroxy-biphenyl, manufactured by SYNTHON, 3.59 g) were dissolved in N, N-dimethylformamide (80 mL), and cesium carbonate (17. 96 g) was added and stirred at 80 ° C. for 1 hour. Water (100 mL) was added, and the mixture was extracted with t-butyl methyl ether (80 mL × 3 times). The obtained organic layer was washed with saturated brine (100 mL), and then the solvent was removed to obtain a crude product (9.42 g) of compound (14A0b-1). Purification by silica gel column chromatography (silica gel: 300 g MS-GEL D50-60-A (N) manufactured by Asahi Glass Stech Co., eluent: hexane / ethyl acetate = 4/1) gave the title compound (6.42 g, yield). 62%) was obtained.

化合物(14A0b−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):1.53−1.92(m,6H,CH),3.58(m,1H),3.83(m,1H),3.96(q,J=13.5Hz,1H),4.16(q,J=14.0Hz,1H),4.52(t,J=13.0Hz,2H),4.75(t,J=3.0Hz,1H),7.06(m,2H),7.56(m,2H),7.66(m,2H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.1(m,2F),−120.4(m,2F),−124.0(m,4F)。
Spectral data of the compound (14A0b-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.53-1.92 (m, 6H, CH 2 ), 3.58 (m, 1H), 3. 83 (m, 1H), 3.96 (q, J = 13.5 Hz, 1H), 4.16 (q, J = 14.0 Hz, 1H), 4.52 (t, J = 13.0 Hz, 2H) ), 4.75 (t, J = 3.0 Hz, 1H), 7.06 (m, 2H), 7.56 (m, 2H), 7.66 (m, 2H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −120.1 (m, 2F), −120.4 (m, 2F), −124.0 (m , 4F).

(3)化合物(15A0b−1)の合成
化合物(14A0b−1)(6.11g)をメタノール(300mL)に溶解し、p−トルエンスルホン酸一水和物(266mg)を加えて室温で3時間撹拌した。トリエチルアミン(0.195mL)を加え、減圧下溶媒を留去して粗精製物を得た。
シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D75−120−A 400g,溶出液:ヘキサン/酢酸エチル=3/1)により精製し、標題化合物(4.83g,収率94%)を得た。
(3) Synthesis of Compound (15A0b-1) Compound (14A0b-1) (6.11 g) was dissolved in methanol (300 mL), and p-toluenesulfonic acid monohydrate (266 mg) was added for 3 hours at room temperature. Stir. Triethylamine (0.195 mL) was added, and the solvent was distilled off under reduced pressure to obtain a crude product.
Purification by silica gel column chromatography (silica gel: MS-GEL D75-120-A 400 g, manufactured by Asahi Glass Co., Ltd., eluent: hexane / ethyl acetate = 3/1) gave the title compound (4.83 g, yield 94%). Got.

化合物(15A0b−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):4.11(m,2H),4.52(t,J=13.0Hz,2H),7.06(m,2H),7.56(m,2H),7.68(m,4H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.1(m,2F),−123.0(m,2F),−124.1(m,2F),−124.3(m,2F)。
Spectral data of the compound (15A0b-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 4.11 (m, 2H), 4.52 (t, J = 13.0 Hz, 2H), 7.06 (M, 2H), 7.56 (m, 2H), 7.68 (m, 4H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −120.1 (m, 2F), −123.0 (m, 2F), −124.1 (m , 2F), -124.3 (m, 2F).

(4)不飽和脂肪酸エステル(1A0b−1)の合成
化合物(15A0b−1)(4.83g)をジクロロメタン(100mL)に溶解し、トリエチルアミン(2.30mL)を加えて0℃に冷却した。アクリル酸クロリド(1.35mL)を加え、室温まで徐々に上げて15時間撹拌した。減圧下溶媒を留去し、得られた粗精製物をシリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)400g,溶出液:ヘキサン/酢酸エチル=4/1)により精製し、標題化合物(5.14g,収率96%)を得た。
(4) Synthesis of unsaturated fatty acid ester (1A0b-1) Compound (15A0b-1) (4.83 g) was dissolved in dichloromethane (100 mL), triethylamine (2.30 mL) was added, and the mixture was cooled to 0 ° C. Acrylic acid chloride (1.35 mL) was added, and the mixture was gradually raised to room temperature and stirred for 15 hours. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 400 g, manufactured by Asahi Glass Stech Co., Ltd.), eluent: hexane / ethyl acetate = 4 / Purification by 1) gave the title compound (5.14 g, yield 96%).

化合物(1A0b−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):4.52(t,J=13.0Hz,2H),4.68(t,J=13.5Hz,2H),5.97(dd,J=1.0Hz,10.0Hz,1H),6.19(dd,J=10.5Hz,17.0Hz,1H),6.53(dd,J=1.0Hz,17.5Hz,1H),7.06(m,2H),7.55−7.72(m,6H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.1(m,4F),−123.9(m,2F),−124.2(m,2F)。
Spectral data of the compound (1A0b-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 4.52 (t, J = 13.0 Hz, 2H), 4.68 (t, J = 13.5 Hz, 2H), 5.97 (dd, J = 1.0 Hz, 10.0 Hz, 1H), 6.19 (dd, J = 10.5 Hz, 17.0 Hz, 1H), 6.53 (dd, J = 1) 0.0 Hz, 17.5 Hz, 1H), 7.06 (m, 2H), 7.55-7.72 (m, 6H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): -120.1 (m, 4F), -123.9 (m, 2F), -124.2 (m , 2F).

[例2]不飽和脂肪酸エステル(1B0b−1)の合成
上記で合成したヒドロキシル化合物(13B−1)を用い、下記に示す合成ルートにより不飽和脂肪酸エステル(1B0b−1)を合成した。以下にその詳細を記載する。
[Example 2] Synthesis of unsaturated fatty acid ester (1B0b-1) Using the hydroxyl compound (13B-1) synthesized above, an unsaturated fatty acid ester (1B0b-1) was synthesized by the synthesis route shown below. Details are described below.

Figure 2008026482
Figure 2008026482

(1)化合物(14B0b−1)の合成
例1に記載の方法と同様にして得た化合物(02b)(2.84g)をエーテル(40mL)に溶解し、トリエチルアミン(2.07mL)を加えた。0℃に冷却した後、1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホニルフルオリド(1.76g)を加え、徐々に室温に上げて、40時間撹拌した。水(100mL)、t−ブチルメチルエーテル(50mL)を加えて、有機層を飽和食塩水で洗浄し、乾燥後、溶媒を除いて1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホン酸2,2,3,3,4,4,5,5−オクタフルオロ−6−(テトラヒドロ−2H−ピラン−2−イルオキシ)ヘキシルの粗精製物(4.86g)を得た。
(1) Synthesis of Compound (14B0b-1) Compound (02b) (2.84 g) obtained in the same manner as in Example 1 was dissolved in ether (40 mL), and triethylamine (2.07 mL) was added. . After cooling to 0 ° C., 1,1,2,2,3,3,4,4,4-nonafluorobutanesulfonyl fluoride (1.76 g) was added, and the temperature was gradually raised to room temperature and stirred for 40 hours. . Water (100 mL) and t-butyl methyl ether (50 mL) were added, and the organic layer was washed with saturated brine, dried, and the solvent was removed to remove 1,1,2,2,3,3,4,4,4. A crude product (4.86 g) of 4-nonafluorobutanesulfonic acid 2,2,3,3,4,4,5,5-octafluoro-6- (tetrahydro-2H-pyran-2-yloxy) hexyl was obtained. Obtained.

この粗精製物と、前述のヒドロキシル化合物(13B−1)(2.99g)をN,N−ジメチルホルムアミド(40mL)に溶解し、炭酸セシウム(9.33g)を加えて、80℃で1時間撹拌した。水(50mL)を加え、t−ブチルメチルエーテル(50mL×3回)で抽出した。得られた有機層を飽和食塩水(50mL)で洗浄した後、溶媒を除いて化合物(14Bb−1)の粗精製物(9.42g)を得た。シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)150g,溶出液:ヘキサン/酢酸エチル=10/1)により精製し、標題化合物(4.77g,収率95%)を得た。   This crude product and the aforementioned hydroxyl compound (13B-1) (2.99 g) were dissolved in N, N-dimethylformamide (40 mL), cesium carbonate (9.33 g) was added, and the mixture was heated at 80 ° C. for 1 hour. Stir. Water (50 mL) was added, and the mixture was extracted with t-butyl methyl ether (50 mL × 3 times). The obtained organic layer was washed with saturated brine (50 mL), and then the solvent was removed to obtain a crude product (9.42 g) of compound (14Bb-1). Purification by silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 150 g, manufactured by Asahi Glass Stech Co., Ltd., eluent: hexane / ethyl acetate = 10/1) gave the title compound (4.77 g, yield). 95%).

化合物(14B0b−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.88(m,3H),1.31−2.04(m,20H),2.58(m,4H),3.58(m,1H),3.79−4.21(m,3H),4.44(t,J=13.0Hz,2H),4.75(m,1H),6.90(m,2H),7.11−7.21(m,6H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.4(m,4F),−124.2(m,4F)。
Spectral data of the compound (14B0b-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.88 (m, 3H), 1.31-1.04 (m, 20H), 2.58 (m , 4H), 3.58 (m, 1H), 3.79-4.21 (m, 3H), 4.44 (t, J = 13.0 Hz, 2H), 4.75 (m, 1H), 6.90 (m, 2H), 7.11-7.21 (m, 6H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −120.4 (m, 4F), −124.2 (m, 4F).

(2)化合物(15B0b−1)の合成
化合物(14B0b−1)(4.77g)を、メタノール(100mL)及びテトラヒドロフラン(100mL)の混合溶媒に溶解し、p−トルエンスルホン酸一水和物(136mg)を加えて室温で3時間撹拌した。トリエチルアミン(0.100mL)を加え、減圧下溶媒を留去して粗精製物を得た。
シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D75−120−A 400g,溶出液:ヘキサン/酢酸エチル=3/1)により精製し、標題化合物(3.96g,収率95%)を得た。
(2) Synthesis of Compound (15B0b-1) Compound (14B0b-1) (4.77 g) was dissolved in a mixed solvent of methanol (100 mL) and tetrahydrofuran (100 mL), and p-toluenesulfonic acid monohydrate ( 136 mg) was added and stirred at room temperature for 3 hours. Triethylamine (0.100 mL) was added, and the solvent was distilled off under reduced pressure to obtain a crude product.
Purification by silica gel column chromatography (silica gel: MS-GEL D75-120-A 400 g, manufactured by Asahi Glass Stech Co., Ltd., eluent: hexane / ethyl acetate = 3/1) gave the title compound (3.96 g, yield 95%). Got.

化合物(15B0b−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.90(m,3H),1.33(m,4H),1.59(m,6H),2.01(m,4H),2.58(m,4H),4.08(m,2H),4.44(t,J=13.0Hz,2H),6.90(m,2H),7.11−7.21(m,6H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.3(m,2F),−123.0(m,2F),−124.1(m,2F),−124.5(m,2F)。
Spectral data of the compound (15B0b-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.90 (m, 3H), 1.33 (m, 4H), 1.59 (m, 6H), 2.01 (m, 4H), 2.58 (m, 4H), 4.08 (m, 2H), 4.44 (t, J = 13.0 Hz, 2H), 6.90 (m, 2H) , 7.11-7.21 (m, 6H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −120.3 (m, 2F), −123.0 (m, 2F), −124.1 (m , 2F), -124.5 (m, 2F).

(3)不飽和脂肪酸エステル(1B0b−1)の合成
化合物(15B0b−1)(3.96g)をジクロロメタン(80mL)に溶解し、トリエチルアミン(1.46mL)を加えて0℃に冷却した。アクリル酸クロリド(0.852mL)を加え、室温まで徐々に上げて14時間撹拌した。減圧下溶媒を留去し、得られた粗精製物をシリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)50g,溶出液:ヘキサン/酢酸エチル=4/1)により精製し、標題化合物(3.27g,収率72%)を得た。
(3) Synthesis of unsaturated fatty acid ester (1B0b-1) Compound (15B0b-1) (3.96 g) was dissolved in dichloromethane (80 mL), triethylamine (1.46 mL) was added, and the mixture was cooled to 0 ° C. Acrylic acid chloride (0.852 mL) was added, and the mixture was gradually raised to room temperature and stirred for 14 hours. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 50 g, manufactured by Asahi Glass Stech Co., Ltd.), eluent: hexane / ethyl acetate = 4 / Purification by 1) gave the title compound (3.27 g, 72% yield).

化合物(1B0b−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.90(m,3H),1.33(m,4H),1.60(m,6H),2.01(m,4H),2.58(m,4H),4.44(t,J=13.0Hz,2H),4.67(t,J=13.5Hz,2H),5.97(dd,J=1.0Hz,10.5Hz,1H),6.19(dd,J=10.5Hz,17.5Hz,1H),6.53(m,1H),6.90(m,2H),7.14−7.21(m,6H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.2(m,4F),−124.1(m,2F)。
Spectral data of the compound (1B0b-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.90 (m, 3H), 1.33 (m, 4H), 1.60 (m, 6H), 2.01 (m, 4H), 2.58 (m, 4H), 4.44 (t, J = 13.0 Hz, 2H), 4.67 (t, J = 13.5 Hz, 2H), 5. 97 (dd, J = 1.0 Hz, 10.5 Hz, 1H), 6.19 (dd, J = 10.5 Hz, 17.5 Hz, 1H), 6.53 (m, 1H), 6.90 (m , 2H), 7.14-7.21 (m, 6H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −120.2 (m, 4F), −124.1 (m, 2F).

[例3]不飽和脂肪酸エステル(1C0b−1)の合成
上記で合成したヒドロキシル化合物(13C−1)を用い、下記に示す合成ルートにより化合物(1C0b−1)を合成した。以下にその詳細を記載する。
Example 3 Synthesis of Unsaturated Fatty Acid Ester (1C0b-1) Using the hydroxyl compound (13C-1) synthesized above, the compound (1C0b-1) was synthesized by the synthesis route shown below. Details are described below.

Figure 2008026482
Figure 2008026482

(1)化合物(14C0b−1)の合成
化合物(02b)(2.42g)をエーテル(50mL)に溶解し、トリエチルアミン(1.75mL)を加えた。0℃に冷却した後、1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホニルフルオリド(1.49mL)を加え、徐々に室温に上げて、40時間撹拌した。水(50mL)、t−ブチルメチルエーテル(30mL)を加えて、有機層を飽和食塩水で洗浄し、乾燥後、溶媒を除いて1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホン酸2,2,3,3,4,4,5,5−オクタフルオロ−6−(テトラヒドロ−2H−ピラン−2−イルオキシ)ヘキシルの粗精製物(4.28g)を得た。
(1) Synthesis of Compound (14C0b-1) Compound (02b) (2.42 g) was dissolved in ether (50 mL), and triethylamine (1.75 mL) was added. After cooling to 0 ° C., 1,1,2,2,3,3,4,4,4-nonafluorobutanesulfonyl fluoride (1.49 mL) was added, and the temperature was gradually raised to room temperature and stirred for 40 hours. . Water (50 mL) and t-butyl methyl ether (30 mL) were added, and the organic layer was washed with saturated brine, dried and then the solvent was removed to remove 1,1,2,2,3,3,4,4,4. A crude product (4.28 g) of 4-nonafluorobutanesulfonic acid 2,2,3,3,4,4,5,5-octafluoro-6- (tetrahydro-2H-pyran-2-yloxy) hexyl was obtained. Obtained.

この粗精製物及び前述のヒドロキシル化合物(13C−1)(2.99g)をN,N−ジメチルホルムアミド(30mL)に溶解し、炭酸セシウム(17.96g)を加えて、80℃で0.5時間撹拌した。水(40mL)を加え、t−ブチルメチルエーテル(40mL×3回)で抽出した。得られた有機層を飽和食塩水(50mL)で洗浄した後、溶媒を除いて化合物(14C0b−1)の粗精製物を得た。シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)100g,溶出液:ヘキサン/酢酸エチル=15/1)により精製し、標題化合物(2.29g,収率82%)を得た。   This crude product and the above-mentioned hydroxyl compound (13C-1) (2.99 g) were dissolved in N, N-dimethylformamide (30 mL), cesium carbonate (17.96 g) was added, and 0.5 ° C. was added at 80 ° C. Stir for hours. Water (40 mL) was added, and the mixture was extracted with t-butyl methyl ether (40 mL × 3 times). The obtained organic layer was washed with saturated brine (50 mL), and then the solvent was removed to obtain a crude product of compound (14C0b-1). Purification by silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 100 g, manufactured by Asahi Glass Stech Co., Ltd., eluent: hexane / ethyl acetate = 15/1) gave the title compound (2.29 g, yield). 82%).

化合物(14C0b−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.99(t,J=7.0Hz,3H),1.54−2.07(m,16H),2.29(s,3H),2.63(m,4H),3.59(m,1H),3.78−4.22(m,3H),4.45(t,J=13.0Hz,2H),4.76(m,1H),6.91(m,2H),7.11−7.23(m,9H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.4(m,4F),−124.1(m,4F)。
Spectral data of the compound (14C0b-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.99 (t, J = 7.0 Hz, 3H), 1.54-2.07 (m, 16H) 2.29 (s, 3H), 2.63 (m, 4H), 3.59 (m, 1H), 3.78-4.22 (m, 3H), 4.45 (t, J = 13) 0.0 Hz, 2H), 4.76 (m, 1H), 6.91 (m, 2H), 7.11-7.23 (m, 9H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −120.4 (m, 4F), −124.1 (m, 4F).

(2)化合物(15C0b−1)の合成
化合物(14C0b−1)(2.29g)を、メタノール(50mL)及びテトラヒドロフラン(50mL)の混合溶媒に溶解し、p−トルエンスルホン酸一水和物(73mg)を加えて室温で3時間撹拌した。トリエチルアミン(0.054mL)を加え、減圧下溶媒を留去して粗精製物を得た。
シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N) 100g,溶出液:ヘキサン/酢酸エチル=6/1)により精製し、標題化合物(1.88g,収率93%)を得た。
(2) Synthesis of Compound (15C0b-1) Compound (14C0b-1) (2.29 g) was dissolved in a mixed solvent of methanol (50 mL) and tetrahydrofuran (50 mL), and p-toluenesulfonic acid monohydrate ( 73 mg) was added and stirred at room temperature for 3 hours. Triethylamine (0.054 mL) was added, and the solvent was distilled off under reduced pressure to obtain a crude product.
Purification by silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 100 g, manufactured by Asahi Glass Stech Co., Ltd., eluent: hexane / ethyl acetate = 6/1) gave the title compound (1.88 g, yield). 93%).

化合物(15C0b−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.99(t,J=7.0Hz,3H),1.56−2.07(m,10H),2.29(s,3H),2.63(m,4H),4.10(m,2H),4.45(t,J=13.0Hz,2H),6.91(m,2H),7.11−7.25(m,9H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.3(m,2F),−123.1(m,2F),−124.1(m,2F),−124.4(m,2F)。
Spectral data of the compound (15C0b-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.99 (t, J = 7.0 Hz, 3H), 1.56-2.07 (m, 10H) 2.29 (s, 3H), 2.63 (m, 4H), 4.10 (m, 2H), 4.45 (t, J = 13.0 Hz, 2H), 6.91 (m, 2H) ), 7.11-7.25 (m, 9H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): -120.3 (m, 2F), -123.1 (m, 2F), -124.1 (m , 2F), -124.4 (m, 2F).

(3)不飽和脂肪酸エステル(1C0b−1)の合成
化合物(15C0b−1)(1.87g)をジクロロメタン(40mL)に溶解し、トリエチルアミン(0.622mL)を加えて0℃に冷却した。アクリル酸クロリド(0.363mL)を加え、室温まで徐々に上げて14時間撹拌した。減圧下溶媒を留去し、得られた粗精製物をシリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)100g,溶出液:ヘキサン/酢酸エチル=10/1)により精製し、標題化合物(1.46g,収率72%)を得た。
(3) Synthesis of unsaturated fatty acid ester (1C0b-1) Compound (15C0b-1) (1.87 g) was dissolved in dichloromethane (40 mL), triethylamine (0.622 mL) was added, and the mixture was cooled to 0 ° C. Acrylic acid chloride (0.363 mL) was added, and the mixture was gradually raised to room temperature and stirred for 14 hours. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 100 g, manufactured by Asahi Glass Stech Co., Ltd.), eluent: hexane / ethyl acetate = 10 / Purification by 1) gave the title compound (1.46 g, 72% yield).

化合物(1C0b−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.99(t,J=7.0Hz,3H),1.56−2.07(m,10H),2.29(s,3H),2.63(m,4H),4.45(t,J=13.0Hz,2H),4.67(t,J=13.5Hz,2H),5.97(dd,J=1.0Hz,10.5Hz,1H),6.19(dd,J=10.5Hz,17.0Hz,1H),6.53(dd,J=1.0Hz,17.5Hz,1H),6.91(m,2H),7.10−7.23(m,9H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.2(m,4F),−124.0(m,2F),−124.2(m,2F)。
Spectral data of the compound (1C0b-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.99 (t, J = 7.0 Hz, 3H), 1.56-2.07 (m, 10H) 2.29 (s, 3H), 2.63 (m, 4H), 4.45 (t, J = 13.0 Hz, 2H), 4.67 (t, J = 13.5 Hz, 2H), 5 .97 (dd, J = 1.0 Hz, 10.5 Hz, 1H), 6.19 (dd, J = 10.5 Hz, 17.0 Hz, 1H), 6.53 (dd, J = 1.0 Hz, 17 .5Hz, 1H), 6.91 (m, 2H), 7.10-7.23 (m, 9H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −120.2 (m, 4F), −124.0 (m, 2F), −124.2 (m , 2F).

[例4]不飽和脂肪酸エステル(1C0a−1)の合成
化合物(01b)を化合物(01a)(2,2,3,3−テトラフルオロ−1,4−ブタンジオール:東京化成社製)2.95gに換えた以外は例3と同様にして、化合物(1C0a−1)を合成し、標題化合物(3.38g,収率95%)を得た。

Figure 2008026482
Example 4 Synthesis of Unsaturated Fatty Acid Ester (1C0a-1) Compound (01b) is converted into Compound (01a) (2,2,3,3-tetrafluoro-1,4-butanediol: manufactured by Tokyo Chemical Industry Co., Ltd.) Compound (1C0a-1) was synthesized in the same manner as Example 3 except that the amount was changed to 95 g to obtain the title compound (3.38 g, yield 95%).
Figure 2008026482

化合物(1C0a−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.90(m,3H),1.33(m,4H),1.60(m,6H),2.01(m,4H),2.58(m,4H),4.44(t,J=13.0Hz,2H),4.67(t,J=13.5Hz,2H),5.97(dd,J=1.0Hz,10.5Hz,1H),6.19(dd,J=10.5Hz,17.5Hz,1H),6.53(m,1H),6.90(m,2H),7.14−7.21(m,6H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.2(m,2F),−124.1(m,2F)。
Spectral data of the compound (1C0a-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.90 (m, 3H), 1.33 (m, 4H), 1.60 (m, 6H), 2.01 (m, 4H), 2.58 (m, 4H), 4.44 (t, J = 13.0 Hz, 2H), 4.67 (t, J = 13.5 Hz, 2H), 5. 97 (dd, J = 1.0 Hz, 10.5 Hz, 1H), 6.19 (dd, J = 10.5 Hz, 17.5 Hz, 1H), 6.53 (m, 1H), 6.90 (m , 2H), 7.14-7.21 (m, 6H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −120.2 (m, 2F), −124.1 (m, 2F).

不飽和脂肪酸エステル(1C0a−1)の結晶相からネマチック相への相転移温度は121℃であった。また、不飽和脂肪酸エステル(1C0a−1)の60℃における波長589nmのレーザー光に対するΔnは0.1278(外挿値)であった。   The phase transition temperature from the crystal phase of the unsaturated fatty acid ester (1C0a-1) to the nematic phase was 121 ° C. Moreover, (DELTA) n with respect to the laser beam of wavelength 589nm in 60 degreeC of unsaturated fatty acid ester (1C0a-1) was 0.1278 (extrapolated value).

[例5]不飽和脂肪酸エステル(1C0c−1)の合成
化合物(01b)を化合物(01c)(2,2,3,3,4,4,5,5,6,6,7,7−ドデカフルオロ−1,8−オクタンジオール:東京化成社製)6.59gに換えた以外は例3と同様にして化合物(1C0c−1)を合成し、標題化合物(4.54g,収率95%)を得た。

Figure 2008026482
Example 5 Synthesis of unsaturated fatty acid ester (1C0c-1) Compound (01b) was converted to compound (01c) (2,2,3,3,4,4,5,5,6,6,7,7-dodeca Fluoro-1,8-octanediol (manufactured by Tokyo Chemical Industry Co., Ltd.) Compound (1C0c-1) was synthesized in the same manner as in Example 3 except that 6.59 g was used, and the title compound (4.54 g, yield 95%) Got.
Figure 2008026482

化合物(1C0c−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.90(m,3H),1.33(m,4H),1.60(m,6H),2.01(m,4H),2.58(m,4H),4.44(t,J=13.0Hz,2H),4.67(t,J=13.5Hz,2H),5.97(dd,J=1.0Hz,10.5Hz,1H),6.19(dd,J=10.5Hz,17.5Hz,1H),6.53(m,1H),6.90(m,2H),7.14−7.21(m,6H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.2(m,6F),−124.1(m,2F)。
Spectral data of the compound (1C0c-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.90 (m, 3H), 1.33 (m, 4H), 1.60 (m, 6H), 2.01 (m, 4H), 2.58 (m, 4H), 4.44 (t, J = 13.0 Hz, 2H), 4.67 (t, J = 13.5 Hz, 2H), 5. 97 (dd, J = 1.0 Hz, 10.5 Hz, 1H), 6.19 (dd, J = 10.5 Hz, 17.5 Hz, 1H), 6.53 (m, 1H), 6.90 (m , 2H), 7.14-7.21 (m, 6H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −120.2 (m, 6F), −124.1 (m, 2F).

不飽和脂肪酸エステル(1C0c−1)の結晶相からネマチック相への相転移温度は147℃であった。また、不飽和脂肪酸エステル(1C0c−1)の60℃における波長589nmのレーザー光に対するΔnは0.1367(外挿値)であった。
[例6]不飽和脂肪酸エステル(1A5a−1)の合成
上記で合成したジオール化合物(51a)を用い、下記に示す合成ルートに従って、不飽和脂肪酸エステル(1A5a−1)を合成した。以下にその詳細を記載する。
The phase transition temperature from the crystal phase of the unsaturated fatty acid ester (1C0c-1) to the nematic phase was 147 ° C. Moreover, (DELTA) n with respect to the laser beam of wavelength 589nm in 60 degreeC of unsaturated fatty acid ester (1C0c-1) was 0.1367 (extrapolated value).
[Example 6] Synthesis of unsaturated fatty acid ester (1A5a-1) Using the diol compound (51a) synthesized above, an unsaturated fatty acid ester (1A5a-1) was synthesized according to the synthetic route shown below. Details are described below.

Figure 2008026482
Figure 2008026482

(1)化合物(52a)の合成
化合物(51a)(19.85g)及び、3,4−ジヒドロ−2H−ピラン(2.53g)をジクロロメタン(1400mL)に溶解し、p−トルエンスルホン酸一水和物(1.03g)を加えて40℃で24時間撹拌した。トリエチルアミン(0.853mL)を加えて減圧下溶媒を留去して粗精製物を得た。シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製 M.S.GEL D−75−120A,500g,溶出液:ヘキサン/酢酸エチル=3/1〜1/1)により、標題化合物(10.8g,収率47%)を得た。
(1) Synthesis of Compound (52a) Compound (51a) (19.85 g) and 3,4-dihydro-2H-pyran (2.53 g) were dissolved in dichloromethane (1400 mL), and p-toluenesulfonic acid monohydrate The Japanese product (1.03 g) was added and stirred at 40 ° C. for 24 hours. Triethylamine (0.853 mL) was added, and the solvent was distilled off under reduced pressure to obtain a crude product. The title compound (10.8 g, Yield 47%) was obtained.

化合物(52a)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):1.53−1.86(m,6H),2.68(m,1H),3.58(m,1H),3.78−4.05(m,5H),4.77(m,1H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−78.2(m,2F),−81.0(m,2F),−89.3(m,4F)。
Spectral data of the compound (52a);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.53-1.86 (m, 6H), 2.68 (m, 1H), 3.58 (m , 1H), 3.78-4.05 (m, 5H), 4.77 (m, 1H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −78.2 (m, 2F), −81.0 (m, 2F), −89.3 (m , 4F).

(2)化合物(14A5a−1)の合成
化合物(52a)(3.00g)をエーテル(60mL)に溶解し、トリエチルアミン(3.93mL)を加えた。0℃に冷却した後、1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホニルフルオリド(3.30mL)を加え、徐々に室温に上げて、14時間撹拌した。水(100mL)、t−ブチルメチルエーテル(60mL)を加えて、有機層を飽和食塩水で洗浄し、乾燥後、溶媒を除いて1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホン酸2−(2−(1,1−ジフルオロ−2−(テトラヒドロ−2H−ピラン−2−イルオキシ)エトキシ)−1,1,2,2−テトラフルオロエトキシ)−2,2−ジフルオロエチルの粗精製物(6.29g)を得た。この粗精製物及び化合物(13A−1)(4−シアノ−4’−ヒドロキシ−ビフェニル、SYNTHON社製、1.86g)をN,N−ジメチルホルムアミド(60mL)に溶解し、炭酸セシウム(9.30g)を加えて、80℃で1時間撹拌した。水(80mL)を加え、t−ブチルメチルエーテル(60mL×3回)で抽出した。得られた有機層を飽和食塩水で洗浄した後、溶媒を除いて化合物(14A5a−1)の粗精製物(8.70g)を得た。シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)200g,溶出液:ヘキサン/酢酸エチル=4/1)により精製し、標題化合物(4.27g,収率97%)を得た。
(2) Synthesis of Compound (14A5a-1) Compound (52a) (3.00 g) was dissolved in ether (60 mL), and triethylamine (3.93 mL) was added. After cooling to 0 ° C., 1,1,2,2,3,3,4,4,4-nonafluorobutanesulfonyl fluoride (3.30 mL) was added, gradually warmed to room temperature and stirred for 14 hours. . Water (100 mL) and t-butyl methyl ether (60 mL) were added, and the organic layer was washed with saturated brine, dried and then the solvent was removed to remove 1,1,2,2,3,3,4,4,4. 4-nonafluorobutanesulfonic acid 2- (2- (1,1-difluoro-2- (tetrahydro-2H-pyran-2-yloxy) ethoxy) -1,1,2,2-tetrafluoroethoxy) -2, A crude product of 2-difluoroethyl (6.29 g) was obtained. This crude product and compound (13A-1) (4-cyano-4′-hydroxy-biphenyl, manufactured by SYNTHON, 1.86 g) were dissolved in N, N-dimethylformamide (60 mL), and cesium carbonate (9. 30 g) was added and stirred at 80 ° C. for 1 hour. Water (80 mL) was added, and the mixture was extracted with t-butyl methyl ether (60 mL × 3 times). The obtained organic layer was washed with saturated brine, and then the solvent was removed to obtain a crude product (8.70 g) of compound (14A5a-1). Purification by silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 200 g, manufactured by Asahi Glass Co., Ltd., eluent: hexane / ethyl acetate = 4/1) gave the title compound (4.27 g, yield). 97%).

化合物(14A5a−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):1.57−1.80(m,6H,CH),3.56(m,1H),3.76−4.04(m,3H),4.41(t,J=9.0Hz,2H),4.75(m,1H),7.06(m,2H),7.56(dd,J=1.5Hz,6.5Hz,2H),7.68(m,4H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−77.8(m,2F),−78.2(m,2F),−89.2(m,4F)。
Spectral data of the compound (14A5a-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.57-1.80 (m, 6H, CH 2 ), 3.56 (m, 1H), 3. 76-4.04 (m, 3H), 4.41 (t, J = 9.0 Hz, 2H), 4.75 (m, 1H), 7.06 (m, 2H), 7.56 (dd, J = 1.5 Hz, 6.5 Hz, 2H), 7.68 (m, 4H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −77.8 (m, 2F), −78.2 (m, 2F), −89.2 (m , 4F).

(3)化合物(15A5a−1)の合成
化合物(14A5a−1)(4.27g)をメタノール(100mL)に溶解し、p−トルエンスルホン酸一水和物(80mg)を加えて室温で15時間撹拌した。トリエチルアミン(0.129mL)を加え、減圧下溶媒を留去して粗精製物(3.83g)を得た。
(3) Synthesis of Compound (15A5a-1) Compound (14A5a-1) (4.27 g) was dissolved in methanol (100 mL), and p-toluenesulfonic acid monohydrate (80 mg) was added for 15 hours at room temperature. Stir. Triethylamine (0.129 mL) was added, and the solvent was distilled off under reduced pressure to obtain a crude product (3.83 g).

シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N) 60g,溶出液:ヘキサン/酢酸エチル=3/1)により精製し、標題化合物(3.56g,収率98%)を得た。   Purification by silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 60 g, manufactured by Asahi Glass Co., Ltd., eluent: hexane / ethyl acetate = 3/1) gave the title compound (3.56 g, yield). 98%).

化合物(15A5a−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):3.93(t,J=9.5Hz,2H),4.42(t,J=9.0Hz,2H),7.06(m,2H),7.56(m,2H),7.67(m,4H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−77.8(m,2F),−80.9(m,2F),−89.2(m,4F)。
Spectral data of the compound (15A5a-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 3.93 (t, J = 9.5 Hz, 2H), 4.42 (t, J = 9.0 Hz, 2H), 7.06 (m, 2H), 7.56 (m, 2H), 7.67 (m, 4H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −77.8 (m, 2F), −80.9 (m, 2F), −89.2 (m , 4F).

(4)不飽和脂肪酸エステル(1A5a−1)の合成
化合物(15A5a−1)(3.55g)をジクロロメタン(40mL)に溶解し、トリエチルアミン(1.57mL)を加えて0℃に冷却した。アクリル酸クロリド(0.917mL)を加え、室温まで徐々に上げて15時間撹拌した。減圧下溶媒を留去し、得られた粗精製物をシリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)100g,溶出液:ヘキサン/酢酸エチル=5/1)により精製し、不飽和脂肪酸エステル(1Aa−1)3.26g(収率82%)を得た。
(4) Synthesis of unsaturated fatty acid ester (1A5a-1) Compound (15A5a-1) (3.55 g) was dissolved in dichloromethane (40 mL), triethylamine (1.57 mL) was added, and the mixture was cooled to 0 ° C. Acrylic acid chloride (0.917 mL) was added, and the mixture was gradually raised to room temperature and stirred for 15 hours. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 100 g, manufactured by Asahi Glass Stech Co., Ltd.), eluent: hexane / ethyl acetate = 5 / 1) to obtain 3.26 g (yield 82%) of unsaturated fatty acid ester (1Aa-1).

不飽和脂肪酸エステル(1A5a−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):4.42(t,J=9.0Hz,2H),4.54(t,J=9.5Hz,2H),5.95(dd,J=1.0Hz,10.5Hz,1H),6.16(dd,J=10.5Hz,17.0Hz,1H),6.50(m,1H),7.06(m,2H),7.56(m,2H),7.67(m,4H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−77.8(m,4F),−89.2(m,4F)。
Spectral data of unsaturated fatty acid ester (1A5a-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 4.42 (t, J = 9.0 Hz, 2H), 4.54 (t, J = 9.5 Hz, 2H), 5.95 (dd, J = 1.0 Hz, 10.5 Hz, 1H), 6.16 (dd, J = 10.5 Hz, 17.0 Hz, 1H), 6.50 (m, 1H), 7.06 (m, 2H), 7.56 (m, 2H), 7.67 (m, 4H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −77.8 (m, 4F), −89.2 (m, 4F).

[例7]不飽和脂肪酸エステル(1B5a−1)の合成
上記で合成した化合物(52a)及びヒドロキシル化合物(13B−1)を用い、下記に示す合成ルートに従って不飽和脂肪酸エステル(1B5a−1)を合成した。以下にその詳細を記載する。
[Example 7] Synthesis of unsaturated fatty acid ester (1B5a-1) Using compound (52a) and hydroxyl compound (13B-1) synthesized above, unsaturated fatty acid ester (1B5a-1) was synthesized according to the synthesis route shown below. Synthesized. Details are described below.

Figure 2008026482
Figure 2008026482

(1)化合物(14B5a−1)の合成
化合物(52a)(3.00g)をエーテル(60mL)に溶解し、トリエチルアミン(2.32mL)を加えた。0℃に冷却した後、1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホニルフルオリド(1.97mL)を加え、徐々に室温に上げて、20時間撹拌した。水(100mL)、t−ブチルメチルエーテル(60mL)を加えて、有機層を飽和食塩水で洗浄し、乾燥後、溶媒を除いて1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホン酸2−(2−(1,1−ジフルオロ−2−(テトラヒドロ−2H−ピラン−2−イルオキシ)エトキシ)−1,1,2,2−テトラフルオロエトキシ)−2,2−ジフルオロエチルの粗精製物(5.39g)を得た。
(1) Synthesis of Compound (14B5a-1) Compound (52a) (3.00 g) was dissolved in ether (60 mL), and triethylamine (2.32 mL) was added. After cooling to 0 ° C., 1,1,2,2,3,3,4,4,4-nonafluorobutanesulfonyl fluoride (1.97 mL) was added, and the temperature was gradually raised to room temperature and stirred for 20 hours. . Water (100 mL) and t-butyl methyl ether (60 mL) were added, and the organic layer was washed with saturated brine, dried and then the solvent was removed to remove 1,1,2,2,3,3,4,4,4. 4-nonafluorobutanesulfonic acid 2- (2- (1,1-difluoro-2- (tetrahydro-2H-pyran-2-yloxy) ethoxy) -1,1,2,2-tetrafluoroethoxy) -2, A crude product of 2-difluoroethyl (5.39 g) was obtained.

この粗精製物と、前述のヒドロキシル化合物(13B−1)(3.07g)をN,N−ジメチルホルムアミド(40mL)に溶解し、炭酸セシウム(9.56g)を加えて、80℃で1時間撹拌した。水(50mL)を加え、t−ブチルメチルエーテル(50mL×3回)で抽出した。得られた有機層を飽和食塩水で洗浄した後、溶媒を除いて2−(2−(2−(1,1−ジフルオロ−2−(4−((1S,4S)−4−(4−ペンチルフェニル)シクロヘキシル)フェノキシ)エトキシ)−1,1,2,2−テトラフルオロエトキシ)−2,2−ジフルオロエトキシ)−テトラヒドロ−2H−ピランの粗精製物を得た。シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)150g,溶出液:ヘキサン/酢酸エチル=20/1)により精製し、標題化合物(3.72g、収率69%)を得た。   This crude product and the aforementioned hydroxyl compound (13B-1) (3.07 g) were dissolved in N, N-dimethylformamide (40 mL), cesium carbonate (9.56 g) was added, and the mixture was heated at 80 ° C. for 1 hour. Stir. Water (50 mL) was added, and the mixture was extracted with t-butyl methyl ether (50 mL × 3 times). The obtained organic layer was washed with saturated brine, and then the solvent was removed to remove 2- (2- (2- (1,1-difluoro-2- (4-((1S, 4S) -4- (4- A crude product of pentylphenyl) cyclohexyl) phenoxy) ethoxy) -1,1,2,2-tetrafluoroethoxy) -2,2-difluoroethoxy) -tetrahydro-2H-pyran was obtained. Purification by silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 150 g, manufactured by Asahi Glass Stech Co., Ltd., eluent: hexane / ethyl acetate = 20/1) gave the title compound (3.72 g, yield). 69%).

化合物(14B5a−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.90(m,3H),1.33−2.01(m,20H),2.58(m,4H),3.56(m,1H),3.81−4.01(m,3H),4.33(m,2H),4.76(m,1H),6.89(m,2H),7.11−7.21(m,6H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−78.0(m,2F),−78.2(m,2F),−89.2(m,4F)。
Spectral data of the compound (14B5a-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.90 (m, 3H), 1.33-2.01 (m, 20H), 2.58 (m , 4H), 3.56 (m, 1H), 3.81-4.01 (m, 3H), 4.33 (m, 2H), 4.76 (m, 1H), 6.89 (m, 2H), 7.11-7.21 (m, 6H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −78.0 (m, 2F), −78.2 (m, 2F), −89.2 (m , 4F).

(2)化合物(15B5a−1)の合成
化合物(14B5a−1)(3.72g)をメタノール(50mL)、テトラヒドロフラン(50mL)の混合溶媒に溶解し、p−トルエンスルホン酸一水和物(53mg)を加えて室温で3時間撹拌した。トリエチルアミン(0.093mL)を加え、減圧下溶媒を留去して粗精製物を得た。シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)200g,溶出液:ヘキサン/酢酸エチル=5/1)により精製し、標題化合物(2.49g,収率75%)を得た。
(2) Synthesis of Compound (15B5a-1) Compound (14B5a-1) (3.72 g) was dissolved in a mixed solvent of methanol (50 mL) and tetrahydrofuran (50 mL), and p-toluenesulfonic acid monohydrate (53 mg) ) And stirred at room temperature for 3 hours. Triethylamine (0.093 mL) was added, and the solvent was distilled off under reduced pressure to obtain a crude product. Purification by silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 200 g, manufactured by Asahi Glass Stech Co., Ltd., eluent: hexane / ethyl acetate = 5/1) gave the title compound (2.49 g, yield). 75%).

化合物(15B5b−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.90(m,3H),1.33(m,4H),1.59(m,6H),2.01(m,4H),2.58(m,4H),4.08(m,2H),4.44(t,J=13.0Hz,2H),6.90(m,2H),7.11−7.21(m,6H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−120.3(m,2F),−123.0(m,2F),−124.1(m,2F),−124.5(m,2F)。
Spectral data of the compound (15B5b-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.90 (m, 3H), 1.33 (m, 4H), 1.59 (m, 6H), 2.01 (m, 4H), 2.58 (m, 4H), 4.08 (m, 2H), 4.44 (t, J = 13.0 Hz, 2H), 6.90 (m, 2H) , 7.11-7.21 (m, 6H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −120.3 (m, 2F), −123.0 (m, 2F), −124.1 (m , 2F), -124.5 (m, 2F).

(3)不飽和脂肪酸エステル(1B5a−1)の合成
化合物(15B5a−1)(2.48g)をジクロロメタン(40mL)に溶解し、トリエチルアミン(0.868mL)を加えて0℃に冷却した。アクリル酸クロリド(0.494mL)を加え、室温まで徐々に上げて15時間撹拌した。減圧下溶媒を留去し、得られた粗精製物をシリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)300g,溶出液:ヘキサン/酢酸エチル=20/1)により精製し、標題化合物(2.55g、収率94%)を得た。
(3) Synthesis of unsaturated fatty acid ester (1B5a-1) Compound (15B5a-1) (2.48 g) was dissolved in dichloromethane (40 mL), triethylamine (0.868 mL) was added, and the mixture was cooled to 0 ° C. Acrylic acid chloride (0.494 mL) was added, and the mixture was gradually raised to room temperature and stirred for 15 hours. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to silica gel column chromatography (silica gel: 300 g MS-GEL D50-60-A (N) manufactured by Asahi Glass Stech Co., Ltd.), eluent: hexane / ethyl acetate = 20 / Purification by 1) gave the title compound (2.55 g, 94% yield).

不飽和脂肪酸エステル(1B5a−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.90(t,J=6.5Hz,3H),1.33(m,4H),1.60(m,6H),2.01(m,4H),2.58(m,4H),4.33(t,J=9.5Hz,2H),4.53(t,J=9.5Hz,2H),5.94(m,1H),6.16(dd,J=10.5Hz,17.0Hz,1H),6.51(m,1H),6.89(m,2H),7.11−7.21(m,6H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−77.8(m,2F),−78.0(m,2F),−89.2(m,4F)。
Spectral data of unsaturated fatty acid ester (1B5a-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.90 (t, J = 6.5 Hz, 3H), 1.33 (m, 4H), 1.60 (M, 6H), 2.01 (m, 4H), 2.58 (m, 4H), 4.33 (t, J = 9.5 Hz, 2H), 4.53 (t, J = 9.5 Hz) , 2H), 5.94 (m, 1H), 6.16 (dd, J = 10.5 Hz, 17.0 Hz, 1H), 6.51 (m, 1H), 6.89 (m, 2H), 7.11-7.21 (m, 6H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −77.8 (m, 2F), −78.0 (m, 2F), −89.2 (m , 4F).

[例8]不飽和脂肪酸エステル(1C5a−1)の合成
上記で合成した化合物(52a)及びヒドロキシル化合物(13C−1)を用い、下記に示す合成ルートに従って不飽和脂肪酸エステル(1C5a−1)を合成した。以下にその詳細を記載する。
[Example 8] Synthesis of unsaturated fatty acid ester (1C5a-1) Using compound (52a) and hydroxyl compound (13C-1) synthesized above, unsaturated fatty acid ester (1C5a-1) was synthesized according to the synthetic route shown below. Synthesized. Details are described below.

Figure 2008026482
Figure 2008026482

(1)化合物(14C5a−1)の合成
化合物(52a)(2.22g)をエーテル(50mL)に溶解し、トリエチルアミン(2.45mL)を加えた。0℃に冷却した後、1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホニルフルオリド(2.08mL)を加え、徐々に室温に上げて、40時間撹拌した。水(100mL)、t−ブチルメチルエーテル(80mL)を加えて、有機層を飽和食塩水で洗浄し、乾燥後、溶媒を除いて1,1,2,2,3,3,4,4,4−ノナフルオロブタンスルホン酸2−(2−(1,1−ジフルオロ−2−(4−((1S,4S)−4−(2−メチル−4’−プロピルビフェニル−4−イル)シクロヘキシル)フェノキシ)エトキシ)−1,1,2,2−テトラフルオロエトキシ)−2,2−ジフルオロエチルの粗精製物(4.53g)を得た。
(1) Synthesis of Compound (14C5a-1) Compound (52a) (2.22 g) was dissolved in ether (50 mL), and triethylamine (2.45 mL) was added. After cooling to 0 ° C., 1,1,2,2,3,3,4,4,4-nonafluorobutanesulfonyl fluoride (2.08 mL) was added, and the temperature was gradually raised to room temperature and stirred for 40 hours. . Water (100 mL) and t-butyl methyl ether (80 mL) were added, and the organic layer was washed with saturated brine, dried and then the solvent was removed to remove 1,1,2,2,3,3,4,4,4. 4-Nonafluorobutanesulfonic acid 2- (2- (1,1-difluoro-2- (4-((1S, 4S) -4- (2-methyl-4′-propylbiphenyl-4-yl) cyclohexyl)) A crude product (4.53 g) of phenoxy) ethoxy) -1,1,2,2-tetrafluoroethoxy) -2,2-difluoroethyl was obtained.

この粗精製物及び前述のヒドロキシル化合物(13C−1)(1.35g)をN,N−ジメチルホルムアミド(50mL)に溶解し、炭酸セシウム(3.44g)を加えて、80℃で2時間撹拌した。水(40mL)を加え、t−ブチルメチルエーテル(40mL×3回)で抽出した。得られた有機層を飽和食塩水で洗浄した後、溶媒を除いて2−(2−(2−(1,1−ジフルオロ−2−(4−((1S,4S)−4−(2−メチル−4’−プロピルビフェニル−4−イル)シクロヘキシル)フェノキシ)エトキシ)−1,1,2,2−テトラフルオロエトキシ)−2,2−ジフルオロエトキシ)−テトラヒドロ−2H−ピランの粗精製物を得た。シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)300g,溶出液:ヘキサン/酢酸エチル=40/1〜20/1)により精製し、標題化合物(1.28g、収率47%)を得た。   This crude product and the aforementioned hydroxyl compound (13C-1) (1.35 g) were dissolved in N, N-dimethylformamide (50 mL), cesium carbonate (3.44 g) was added, and the mixture was stirred at 80 ° C. for 2 hours. did. Water (40 mL) was added, and the mixture was extracted with t-butyl methyl ether (40 mL × 3 times). The obtained organic layer was washed with saturated brine, and then the solvent was removed to remove 2- (2- (2- (1,1-difluoro-2- (4-((1S, 4S) -4- (2- A crude product of methyl-4′-propylbiphenyl-4-yl) cyclohexyl) phenoxy) ethoxy) -1,1,2,2-tetrafluoroethoxy) -2,2-difluoroethoxy) -tetrahydro-2H-pyran was obtained. Obtained. Purification by silica gel column chromatography (silica gel: 300 g MS-GEL D50-60-A (N) manufactured by Asahi Glass Stech Co., eluent: hexane / ethyl acetate = 40/1 to 20/1) gave the title compound (1. 28 g, yield 47%).

化合物(14C5a−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.99(t,J=7.5Hz,3H),1.52−2.09(m,16H),2.29(s,3H),2.63(m,4H),3.57(m,1H),3.78−4.05(m,3H),4.34(t,J=9.0Hz,2H),4.76(m,1H),6.90(m,2H),7.11−7.23(m,9H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−78.0(m,2F),−78.2(m,2F),−89.2(m,4F)。
Spectral data of the compound (14C5a-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.99 (t, J = 7.5 Hz, 3H), 1.52-2.09 (m, 16H) , 2.29 (s, 3H), 2.63 (m, 4H), 3.57 (m, 1H), 3.78-4.05 (m, 3H), 4.34 (t, J = 9 0.0 Hz, 2H), 4.76 (m, 1H), 6.90 (m, 2H), 7.11-7.23 (m, 9H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −78.0 (m, 2F), −78.2 (m, 2F), −89.2 (m , 4F).

(2)化合物(15C5a−1)の合成
化合物(14C5a−1)(1.28g)をメタノール(30mL)、テトラヒドロフラン(20mL)の混合溶媒に溶解し、p−トルエンスルホン酸一水和物(34mg)を加えて室温で15時間撹拌した。トリエチルアミン(0.025mL)を加え、減圧下溶媒を留去して粗精製物を得た。シリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)60g,溶出液:ヘキサン/酢酸エチル=8/1)により精製し、標題化合物(0.862g,収率76%)を得た。
(2) Synthesis of Compound (15C5a-1) Compound (14C5a-1) (1.28 g) was dissolved in a mixed solvent of methanol (30 mL) and tetrahydrofuran (20 mL), and p-toluenesulfonic acid monohydrate (34 mg) ) And stirred at room temperature for 15 hours. Triethylamine (0.025 mL) was added, and the solvent was distilled off under reduced pressure to obtain a crude product. Purification by silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 60 g, manufactured by Asahi Glass Stech Co., Ltd., eluent: hexane / ethyl acetate = 8/1) gave the title compound (0.862 g, yield). 76%).

化合物(15C5a−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.99(t,J=7.0Hz,3H),1.56−2.13(m,10H),2.29(s,3H),2.63(m,4H),3.92(m,2H),4.35(t,J=9.0Hz,2H),6.91(m,2H),7.11−7.23(m,9H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−77.9(m,2F),−81.0(m,2F),−89.2(m,4F)。
Spectral data of the compound (15C5a-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.99 (t, J = 7.0 Hz, 3H), 1.56-2.13 (m, 10H) 2.29 (s, 3H), 2.63 (m, 4H), 3.92 (m, 2H), 4.35 (t, J = 9.0 Hz, 2H), 6.91 (m, 2H) ), 7.11-7.23 (m, 9H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −77.9 (m, 2F), −81.0 (m, 2F), −89.2 (m , 4F).

(3)不飽和脂肪酸エステル(1C5a−1)の合成
化合物(15C5a−1)(0.862g)をジクロロメタン(40mL)に溶解し、トリエチルアミン(0.289mL)を加えて0℃に冷却した。アクリル酸クロリド(0.171mL)を加え、室温まで徐々に上げて15時間撹拌した。減圧下溶媒を留去し、得られた粗精製物をシリカゲルカラムクロマトグラフィー(シリカゲル:旭硝子エスアイテック社製MS−GEL D50−60−A(N)100g,溶出液:ヘキサン/酢酸エチル=20/1)により精製し、標題化合物(0.915g、収率98%)を得た。
(3) Synthesis of unsaturated fatty acid ester (1C5a-1) Compound (15C5a-1) (0.862 g) was dissolved in dichloromethane (40 mL), triethylamine (0.289 mL) was added, and the mixture was cooled to 0 ° C. Acrylic acid chloride (0.171 mL) was added, and the mixture was gradually raised to room temperature and stirred for 15 hours. The solvent was distilled off under reduced pressure, and the resulting crude product was subjected to silica gel column chromatography (silica gel: MS-GEL D50-60-A (N) 100 g, manufactured by Asahi Glass Stech Co., Ltd.), eluent: hexane / ethyl acetate = 20 / Purification by 1) gave the title compound (0.915 g, 98% yield).

不飽和脂肪酸エステル(1C5a−1)のスペクトルデータ;
H−NMR(300.4MHz,溶媒:CDCl,基準:TMS)δ(ppm):0.99(t,J=7.0Hz,3H),1.55−2.05(m,10H),2.29(s,3H),2.63(m,4H),4.34(t,J=9.5Hz,2H),4.54(t,J=9.5Hz,2H),5.95(d,J=10.5Hz,1H),6.17(dd,J=10.5Hz,17.0Hz,1H),6.51(d,J=17.5Hz,1H),6.90(m,2H),7.10−7.22(m,9H)。
19F−NMR(282.7MHz,溶媒:CDCl,基準:CFCl)δ(ppm):−77.8(m,2F),−78.0(m,2F),−89.2(m,4F)。
Spectral data of unsaturated fatty acid ester (1C5a-1);
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 0.99 (t, J = 7.0 Hz, 3H), 1.55-2.05 (m, 10H) 2.29 (s, 3H), 2.63 (m, 4H), 4.34 (t, J = 9.5 Hz, 2H), 4.54 (t, J = 9.5 Hz, 2H), 5 .95 (d, J = 10.5 Hz, 1 H), 6.17 (dd, J = 10.5 Hz, 17.0 Hz, 1 H), 6.51 (d, J = 17.5 Hz, 1 H), 6. 90 (m, 2H), 7.10-7.22 (m, 9H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −77.8 (m, 2F), −78.0 (m, 2F), −89.2 (m , 4F).

不飽和脂肪酸エステル(1C5a−1)の結晶相からネマチック相への相転移温度は130℃であった。また、不飽和脂肪酸エステル(1C5a−1)の60℃における波長589nmのレーザー光に対するΔnは0.1327(外挿値)であった。   The phase transition temperature from the crystal phase of the unsaturated fatty acid ester (1C5a-1) to the nematic phase was 130 ° C. Moreover, (DELTA) n with respect to the laser beam of wavelength 589nm in 60 degreeC of unsaturated fatty acid ester (1C5a-1) was 0.1327 (extrapolated value).

[例9]重合性液晶組成物A,A1の調製
例1で得た不飽和脂肪酸エステル(1A0b−1)、下記化合物(2Bb−3)、下記化合物(2Bb−5)、下記化合物(2Cc−CN)及び下記化合物(2Da−3−CN)を11:21:20:27:21(モル比)で混合して、重合性液晶組成物Aを得た。
[Example 9] Preparation of polymerizable liquid crystal compositions A and A1 Unsaturated fatty acid ester (1A0b-1) obtained in Example 1, the following compound (2Bb-3), the following compound (2Bb-5), the following compound (2Cc- CN) and the following compound (2Da-3-CN) were mixed at 11: 21: 20: 27: 21 (molar ratio) to obtain a polymerizable liquid crystal composition A.

Figure 2008026482
Figure 2008026482

重合性液晶組成物Aは42℃でネマチック相を示した。またネマチック相から等方相への相転移温度は61℃であった。また、一度、等方性液体まで加熱してから冷却した際に発現するネマチック相は室温において2時間以上、保持された。
つぎに、重合性液晶組成物Aに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物A1を得た。
The polymerizable liquid crystal composition A exhibited a nematic phase at 42 ° C. The phase transition temperature from the nematic phase to the isotropic phase was 61 ° C. In addition, the nematic phase that appears once after heating to an isotropic liquid and then cooling was maintained at room temperature for 2 hours or more.
Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition A to obtain a polymerizable liquid crystal composition A1.

[例10]重合性液晶組成物B,B1の調製
例2で得た不飽和脂肪酸エステル(1B0b−1)、上記化合物(2Bb−3)、上記化合物(2Bb−5)、上記化合物(2Cc−CN)及び上記化合物(2Da−3−CN)を9:22:20:27:22(モル比)で混合し重合性液晶組成物Bを得た。
重合性液晶組成物Bは45℃でネマチック相を示した。またネマチック相から等方相への相転移温度は66℃であった。また、一度、等方性液体まで加熱してから冷却した際に発現するネマチック相は室温において2時間以上、保持された。
つぎに、重合性液晶組成物Bに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物B1を得た。
[Example 10] Preparation of polymerizable liquid crystal compositions B and B1 Unsaturated fatty acid ester (1B0b-1) obtained in Example 2, the compound (2Bb-3), the compound (2Bb-5), the compound (2Cc- CN) and the above compound (2Da-3-CN) were mixed at 9: 22: 20: 27: 22 (molar ratio) to obtain a polymerizable liquid crystal composition B.
The polymerizable liquid crystal composition B exhibited a nematic phase at 45 ° C. The phase transition temperature from the nematic phase to the isotropic phase was 66 ° C. In addition, the nematic phase that appears once after heating to an isotropic liquid and then cooling was maintained at room temperature for 2 hours or more.
Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition B to obtain a polymerizable liquid crystal composition B1.

[例11]重合性液晶組成物C,C1の調製
例3で得た化合物(1C0b−1)、上記化合物(2Bb−3)、上記化合物(2Bb−5)、上記化合物(2Cc−CN)及び上記化合物(2Da−3−CN)を9:22:20:27:22(モル比)で混合し重合性液晶組成物Cを得た。
重合性液晶組成物Cは39℃でネマチック相を示した。またネマチック相から等方相への相転移温度は68℃であった。また、一度、等方性液体まで加熱してから冷却した際に発現するネマチック相は室温において2時間以上、保持された。
つぎに、重合性液晶組成物Cに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物C1を得た。
[Example 11] Preparation of polymerizable liquid crystal compositions C and C1 The compound (1C0b-1) obtained in Example 3, the compound (2Bb-3), the compound (2Bb-5), the compound (2Cc-CN) and The compound (2Da-3-CN) was mixed at 9: 22: 20: 27: 22 (molar ratio) to obtain a polymerizable liquid crystal composition C.
The polymerizable liquid crystal composition C exhibited a nematic phase at 39 ° C. The phase transition temperature from the nematic phase to the isotropic phase was 68 ° C. In addition, the nematic phase that appears once after heating to an isotropic liquid and then cooling was maintained at room temperature for 2 hours or more.
Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition C to obtain a polymerizable liquid crystal composition C1.

[例12]重合性液晶組成物D,D1の調製
例3で得た化合物(1C0b−1)、下記化合物(2Eb−3)、及び下記化合物(2Eb−5)を2:1:1(モル比)で混合し重合性液晶組成物Dを得た。
重合性液晶組成物Dは68℃でネマチック相を示した。またネマチック相から等方相への相転移温度は124℃以上であった。また、一度、等方性液体まで加熱してから冷却した際に発現するネマチック相は室温において2時間以上、保持された。
つぎに、重合性液晶組成物Dに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物D1を得た。
[Example 12] Preparation of polymerizable liquid crystal composition D, D1 2: 1: 1 (mol) of the compound (1C0b-1) obtained in Example 3, the following compound (2Eb-3), and the following compound (2Eb-5). Ratio) to obtain a polymerizable liquid crystal composition D.
The polymerizable liquid crystal composition D exhibited a nematic phase at 68 ° C. The phase transition temperature from the nematic phase to the isotropic phase was 124 ° C. or higher. In addition, the nematic phase that appears once after heating to an isotropic liquid and then cooling was maintained at room temperature for 2 hours or more.
Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition D to obtain a polymerizable liquid crystal composition D1.

Figure 2008026482
Figure 2008026482

[例13]重合性液晶組成物E,E1の調製
例4で得た化合物(1C0a−1)、上記化合物(2Eb−3)、及び上記化合物(2Eb−5)を2:1:1(モル比)で混合し重合性液晶組成物Eを得た。
重合性液晶組成物Eは57℃でネマチック相を示した。またネマチック相から等方相への相転移温度は124℃以上であった。また、一度、等方性液体まで加熱してから冷却した際に発現するネマチック相は室温において2時間以上、保持された。
つぎに、重合性液晶組成物Eに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物E1を得た。
[Example 13] Preparation of polymerizable liquid crystal compositions E and E1 2: 1: 1 (moles) of the compound (1C0a-1) obtained in Example 4, the above compound (2Eb-3), and the above compound (2Eb-5). Ratio) to obtain a polymerizable liquid crystal composition E.
The polymerizable liquid crystal composition E exhibited a nematic phase at 57 ° C. The phase transition temperature from the nematic phase to the isotropic phase was 124 ° C. or higher. In addition, the nematic phase that appears once after heating to an isotropic liquid and then cooling was maintained at room temperature for 2 hours or more.
Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition E to obtain a polymerizable liquid crystal composition E1.

[例14]重合性液晶組成物F,F1の調製
例5で得た化合物(1C0c−1)、上記化合物(2Eb−3)、及び上記化合物(2Eb−5)を2:1:1(モル比)で混合し重合性液晶組成物Fを得た。
重合性液晶組成物Fは81℃でネマチック相を示した。またネマチック相から等方相への相転移温度は124℃以上であった。また、一度、等方性液体まで加熱してから冷却した際に発現するネマチック相は室温において2時間以上、保持された。
つぎに、重合性液晶組成物Fに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物F1を得た。
[Example 14] Preparation of polymerizable liquid crystal compositions F and F1 2: 1: 1 (moles) of the compound (1C0c-1) obtained in Example 5, the compound (2Eb-3), and the compound (2Eb-5) Ratio) to obtain a polymerizable liquid crystal composition F.
The polymerizable liquid crystal composition F exhibited a nematic phase at 81 ° C. The phase transition temperature from the nematic phase to the isotropic phase was 124 ° C. or higher. In addition, the nematic phase that appears once after heating to an isotropic liquid and then cooling was maintained at room temperature for 2 hours or more.
Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition F to obtain a polymerizable liquid crystal composition F1.

[例15]重合性液晶組成物G,G1の調製
例6で得た不飽和脂肪酸エステル(1A5a−1)、上記化合物(2Bb−3)、上記化合物(2Bb−5)、上記化合物(2Cc−CN)及び上記化合物(2Da−3−CN)を11:21:20:27:21(モル比)で混合して、重合性液晶組成物Gを得た。
Example 15 Preparation of Polymerizable Liquid Crystal Compositions G and G1 Unsaturated fatty acid ester (1A5a-1) obtained in Example 6, compound (2Bb-3), compound (2Bb-5), compound (2Cc- CN) and the above compound (2Da-3-CN) were mixed at 11: 21: 20: 27: 21 (molar ratio) to obtain a polymerizable liquid crystal composition G.

重合性液晶組成物Gは32℃でネマチック相を示した。またネマチック相から等方相への相転移温度は61℃であった。また、一度、等方性液体まで加熱してから冷却した際に発現するネマチック相は室温において2時間以上、保持された。   The polymerizable liquid crystal composition G exhibited a nematic phase at 32 ° C. The phase transition temperature from the nematic phase to the isotropic phase was 61 ° C. In addition, the nematic phase that appears once after heating to an isotropic liquid and then cooling was maintained at room temperature for 2 hours or more.

つぎに、重合性液晶組成物Gに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物G1を得た。   Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition G to obtain a polymerizable liquid crystal composition G1.

[例16]重合性液晶組成物H,H1の調製
例7で得た不飽和脂肪酸エステル(1B5a−1)、上記化合物(2Bb−3)、上記化合物(2Bb−5)、上記化合物(2Cc−CN)及び上記化合物(2Da−3−CN)を5:23:21:28:23(モル比)で混合して重合性液晶組成物Hを得た。
[Example 16] Preparation of polymerizable liquid crystal compositions H and H1 Unsaturated fatty acid ester (1B5a-1) obtained in Example 7, the compound (2Bb-3), the compound (2Bb-5), the compound (2Cc- CN) and the compound (2Da-3-CN) were mixed at 5: 23: 21: 28: 23 (molar ratio) to obtain a polymerizable liquid crystal composition H.

重合性液晶組成物Hは37℃でネマチック相を示した。またネマチック相から等方相への相転移温度は64℃であった。また、一度、等方性液体まで加熱してから冷却した際に発現するネマチック相は室温において2時間以上、保持された。   The polymerizable liquid crystal composition H exhibited a nematic phase at 37 ° C. The phase transition temperature from the nematic phase to the isotropic phase was 64 ° C. In addition, the nematic phase that appears once after heating to an isotropic liquid and then cooling was maintained at room temperature for 2 hours or more.

つぎに、重合性液晶組成物Hに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物H1を得た。   Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition H to obtain a polymerizable liquid crystal composition H1.

[例17]重合性液晶組成物I,I1の調製
例8で得た不飽和脂肪酸エステル(1C5a−1)、上記化合物(2Bb−3)、上記化合物(2Bb−5)、上記化合物(2Cc−CN)及び上記化合物(2Da−3−CN)を9:22:20:27:22(モル比)で混合して重合性液晶組成物Iを得た。
[Example 17] Preparation of polymerizable liquid crystal compositions I and I1 Unsaturated fatty acid ester (1C5a-1) obtained in Example 8, the above compound (2Bb-3), the above compound (2Bb-5), the above compound (2Cc- CN) and the above compound (2Da-3-CN) were mixed at 9: 22: 20: 27: 22 (molar ratio) to obtain a polymerizable liquid crystal composition I.

重合性液晶組成物Iは34℃でネマチック相を示した。またネマチック相から等方相への相転移温度は52℃であった。また、一度、等方性液体まで加熱してから冷却した際に発現するネマチック相は室温において2時間以上、保持された。   The polymerizable liquid crystal composition I exhibited a nematic phase at 34 ° C. The phase transition temperature from the nematic phase to the isotropic phase was 52 ° C. In addition, the nematic phase that appears once after heating to an isotropic liquid and then cooling was maintained at room temperature for 2 hours or more.

つぎに、重合性液晶組成物Iに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物I1を得た。   Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition I to obtain a polymerizable liquid crystal composition I1.

[例18]重合性液晶組成物J,J1の調製
例8で得た不飽和脂肪酸エステル(1C5a−1)、上記化合物(2Eb−3)及び上記化合物(3Eb−5)を2:1:1(モル比)で混合して重合性液晶組成物Jを得た。
[Example 18] Preparation of polymerizable liquid crystal compositions J and J1 2: 1: 1 of unsaturated fatty acid ester (1C5a-1) obtained in Example 8, the above compound (2Eb-3) and the above compound (3Eb-5). A polymerizable liquid crystal composition J was obtained by mixing at a molar ratio.

重合性液晶組成物Jは28℃でネマチック相を示した。またネマチック相から等方相への相転移温度は78℃であった。また、一度、等方性液体まで加熱してから冷却した際に発現するネマチック相は室温において2時間以上、保持された。   The polymerizable liquid crystal composition J exhibited a nematic phase at 28 ° C. The phase transition temperature from the nematic phase to the isotropic phase was 78 ° C. In addition, the nematic phase that appears once after heating to an isotropic liquid and then cooling was maintained at room temperature for 2 hours or more.

つぎに、重合性液晶組成物Jに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物J1を得た。   Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition J to obtain a polymerizable liquid crystal composition J1.

[例19]光学素子Aの作製
縦20cm、横20cm、厚さ0.5mmのガラス基板にポリイミド溶液をスピンコータで塗布して乾燥した後、ナイロンクロスで一定方向にラビング処理して支持体を作製した。
[Example 19] Fabrication of optical element A A polyimide substrate was coated on a glass substrate having a length of 20 cm, a width of 20 cm, and a thickness of 0.5 mm using a spin coater, dried, and then rubbed in a certain direction with a nylon cloth to produce a support. did.

つぎに、前記ガラス基板上に、例9で調製した重合性液晶組成物A1を濃度50質量%になるようにキシレンに溶解し、このキシレン溶液をスピンコーター(3000rpm、30秒)にて室温で塗布した。80℃のホットプレート上で3分アニールした。塗布状態は均一であり、偏光顕微鏡で観察したところドメインの発生もなく均一な配向状態が得られていることが確認できた。30℃において、強度80mW/cmの紫外線を積算光量が5300mJ/cmとなるよう照射して光重合反応を行い光学素子Aを得た。重合体の膜厚は約1μmであった。光学素子Aは基板のラビング方向に水平配向していた。光学素子Aは可視域で透明であり、散乱も認められなかった。また、25℃における波長589nmのレーザー光に対するΔnは0.1142であった。また、150℃、10時間加熱してもΔnの変化は見られず耐熱性に優れることを確認した。Next, on the glass substrate, the polymerizable liquid crystal composition A1 prepared in Example 9 was dissolved in xylene so as to have a concentration of 50% by mass, and this xylene solution was dissolved in a spin coater (3000 rpm, 30 seconds) at room temperature. Applied. Annealed on a hot plate at 80 ° C. for 3 minutes. The coating state was uniform, and when observed with a polarizing microscope, it was confirmed that a uniform alignment state was obtained without generation of domains. In 30 ° C., UV an integrated light quantity of intensity 80 mW / cm 2 was obtained an optical element A was photopolymerized by irradiating so as to be 5300mJ / cm 2. The film thickness of the polymer was about 1 μm. The optical element A was horizontally aligned in the rubbing direction of the substrate. Optical element A was transparent in the visible range, and no scattering was observed. Moreover, (DELTA) n with respect to the laser beam of wavelength 589nm in 25 degreeC was 0.1142. Moreover, even if it heated at 150 degreeC for 10 hours, the change of (DELTA) n was not seen but it confirmed that it was excellent in heat resistance.

[例20]光学素子Bの作製
重合性液晶組成物A1のかわりに、例10で調製した重合性液晶組成物B1を用いた以外は例19と同様にして光学素子Bを得た。
紫外線照射前において、塗布状態は均一であり、偏光顕微鏡で観察したところドメインの発生もなく均一な配向状態が得られていることが確認できた。重合体の膜厚は約1.5μmであった。光学素子Bは可視域で透明であり、散乱も認められなかった。また、25℃における波長589nmのレーザー光に対するΔnは0.1093であった。また、150℃、10時間加熱してもΔnの変化は見られず耐熱性に優れることを確認した。
[Example 20] Production of optical element B An optical element B was obtained in the same manner as in Example 19 except that the polymerizable liquid crystal composition B1 prepared in Example 10 was used instead of the polymerizable liquid crystal composition A1.
Before the ultraviolet irradiation, the coating state was uniform, and when observed with a polarizing microscope, it was confirmed that a uniform alignment state was obtained without generation of domains. The film thickness of the polymer was about 1.5 μm. Optical element B was transparent in the visible range, and no scattering was observed. In addition, Δn with respect to laser light having a wavelength of 589 nm at 25 ° C. was 0.1093. Moreover, even if it heated at 150 degreeC for 10 hours, the change of (DELTA) n was not seen but it confirmed that it was excellent in heat resistance.

[例21]光学素子Cの作製
重合性液晶組成物A1のかわりに、例11で調製した重合性液晶組成物C1を用いた以外は例19と同様にして光学素子Cを得た。
紫外線照射前において、塗布状態は均一であり、偏光顕微鏡で観察したところドメインの発生もなく均一な配向状態が得られていることが確認できた。重合体の膜厚は約1μmであった。光学素子Cは可視域で透明であり、散乱も認められなかった。また、25℃における波長589nmのレーザー光に対するΔnは0.1231であった。また、150℃、10時間加熱してもΔnの変化は見られず耐熱性に優れることを確認した。
[Example 21] Production of optical element C An optical element C was obtained in the same manner as in Example 19 except that the polymerizable liquid crystal composition C1 prepared in Example 11 was used instead of the polymerizable liquid crystal composition A1.
Before the ultraviolet irradiation, the coating state was uniform, and when observed with a polarizing microscope, it was confirmed that a uniform alignment state was obtained without generation of domains. The film thickness of the polymer was about 1 μm. The optical element C was transparent in the visible range, and no scattering was observed. Moreover, (DELTA) n with respect to the laser beam of wavelength 589nm in 25 degreeC was 0.1231. Moreover, even if it heated at 150 degreeC for 10 hours, the change of (DELTA) n was not seen but it confirmed that it was excellent in heat resistance.

[例22]光学素子Dの作製
重合性液晶組成物A1のかわりに、例12で調製した重合性液晶組成物D1を用いた以外は例19と同様にして光学素子Dを得た。
紫外線照射前において、塗布状態は均一であり、偏光顕微鏡で観察したところドメインの発生もなく均一な配向状態が得られていることが確認できた。重合体の膜厚は約0.8μmであった。光学素子Dは可視域で透明であり、散乱も認められなかった。また、25℃における波長589nmのレーザー光に対するΔnは0.0982であった。また、150℃、10時間加熱してもΔnの変化は見られず耐熱性に優れることを確認した。
[Example 22] Production of optical element D Optical element D was obtained in the same manner as in Example 19 except that the polymerizable liquid crystal composition D1 prepared in Example 12 was used instead of the polymerizable liquid crystal composition A1.
Before the ultraviolet irradiation, the coating state was uniform, and when observed with a polarizing microscope, it was confirmed that a uniform alignment state was obtained without generation of domains. The film thickness of the polymer was about 0.8 μm. The optical element D was transparent in the visible range, and no scattering was observed. Further, Δn with respect to laser light having a wavelength of 589 nm at 25 ° C. was 0.0982. Moreover, even if it heated at 150 degreeC for 10 hours, the change of (DELTA) n was not seen but it confirmed that it was excellent in heat resistance.

[例23]光学素子Eの作製
重合性液晶組成物A1のかわりに、例13で調製した重合性液晶組成物E1を用いた以外は例19と同様にして光学素子Eを得た。
紫外線照射前において、塗布状態は均一であり、偏光顕微鏡で観察したところドメインの発生もなく均一な配向状態が得られていることが確認できた。重合体の膜厚は約1.5μmであった。光学素子Eは可視域で透明であり、散乱も認められなかった。また、波長589nmのレーザー光に対するΔnは0.0989であった。また、150℃、10時間加熱してもΔnの変化は見られず耐熱性に優れることを確認した。
[Example 23] Production of optical element E An optical element E was obtained in the same manner as in Example 19 except that the polymerizable liquid crystal composition E1 prepared in Example 13 was used instead of the polymerizable liquid crystal composition A1.
Before the ultraviolet irradiation, the coating state was uniform, and when observed with a polarizing microscope, it was confirmed that a uniform alignment state was obtained without generation of domains. The film thickness of the polymer was about 1.5 μm. The optical element E was transparent in the visible range, and no scattering was observed. In addition, Δn with respect to laser light having a wavelength of 589 nm was 0.0989. Moreover, even if it heated at 150 degreeC for 10 hours, the change of (DELTA) n was not seen but it confirmed that it was excellent in heat resistance.

[例24]光学素子Fの作製
重合性液晶組成物A1のかわりに、例14で調製した重合性液晶組成物F1を用いた以外は例19と同様にして光学素子Fを得た。
紫外線照射前において、塗布状態は均一であり、偏光顕微鏡で観察したところドメインの発生もなく均一な配向状態が得られていることが確認できた。重合体の膜厚は約1.5μmであった。光学素子Fは可視域で透明であり、散乱も認められなかった。また、25℃における波長589nmのレーザー光に対するΔnは0.1473であった。また、150℃、10時間加熱してもΔnの変化は見られず耐熱性に優れることを確認した。
[Example 24] Production of optical element F An optical element F was obtained in the same manner as in Example 19 except that the polymerizable liquid crystal composition F1 prepared in Example 14 was used instead of the polymerizable liquid crystal composition A1.
Before the ultraviolet irradiation, the coating state was uniform, and when observed with a polarizing microscope, it was confirmed that a uniform alignment state was obtained without generation of domains. The film thickness of the polymer was about 1.5 μm. The optical element F was transparent in the visible range, and no scattering was observed. Further, Δn with respect to laser light having a wavelength of 589 nm at 25 ° C. was 0.1473. Moreover, even if it heated at 150 degreeC for 10 hours, the change of (DELTA) n was not seen but it confirmed that it was excellent in heat resistance.

[例25]光学素子Gの作製
縦20cm、横20cm、厚さ0.5mmのガラス基板にポリイミド溶液をスピンコータで塗布して乾燥した後、ナイロンクロスで一定方向にラビング処理して支持体を作製した。
[Example 25] Production of optical element G A polyimide substrate was coated on a glass substrate having a length of 20 cm, a width of 20 cm, and a thickness of 0.5 mm using a spin coater, dried, and then rubbed in a certain direction with nylon cloth to produce a support. did.

つぎに、前記ガラス基板上に、例15で得た重合性液晶組成物G1を濃度50質量%になるようにキシレンに溶解し、このキシレン溶液をスピンコーター(3000rpm、30秒)にて室温で塗布した。80℃のホットプレート上で3分アニールした。塗布状態は均一であり、偏光顕微鏡で観察したところドメインの発生もなく均一な配向状態が得られていることが確認できた。30℃において、強度80mW/cmの紫外線を積算光量が5300mJ/cmとなるよう照射して光重合反応を行い、光学素子Gを得た。重合体の膜厚は約1μmであった。光学素子Gは基板のラビング方向に水平配向していた。光学素子Aは可視域で透明であり、散乱も認められなかった。また、25℃における波長589nmのレーザー光に対するΔnは0.087であった。
また、150℃、10時間加熱してもΔnの変化は見られず耐熱性に優れることを確認した。
Next, on the glass substrate, the polymerizable liquid crystal composition G1 obtained in Example 15 was dissolved in xylene so as to have a concentration of 50% by mass, and this xylene solution was dissolved in a spin coater (3000 rpm, 30 seconds) at room temperature. Applied. Annealed on a hot plate at 80 ° C. for 3 minutes. The coating state was uniform, and when observed with a polarizing microscope, it was confirmed that a uniform alignment state was obtained without generation of domains. In 30 ° C., UV an integrated light quantity of intensity 80 mW / cm 2 performs a photopolymerization reaction by irradiation so as to be 5300mJ / cm 2, to obtain an optical element G. The film thickness of the polymer was about 1 μm. The optical element G was horizontally aligned in the rubbing direction of the substrate. Optical element A was transparent in the visible range, and no scattering was observed. Further, Δn with respect to laser light having a wavelength of 589 nm at 25 ° C. was 0.087.
Moreover, even if it heated at 150 degreeC for 10 hours, the change of (DELTA) n was not seen but it confirmed that it was excellent in heat resistance.

[例26]光学素子Hの作製
重合性液晶組成物G1のかわりに、例16で得た重合性液晶組成物H1を用いた以外は例25と同様にして光学素子Hを得た。
紫外線照射前において、塗布状態は均一であり、偏光顕微鏡で観察したところドメインの発生もなく均一な配向状態が得られていることが確認できた。重合体の膜厚は約1.5μmであった。光学素子Hは可視域で透明であり、散乱も認められなかった。また、25℃における波長589nmのレーザー光に対するΔnは0.1093であった。また、150℃、10時間加熱してもΔnの変化は見られず耐熱性に優れることを確認した。
[Example 26] Production of optical element H An optical element H was obtained in the same manner as in Example 25 except that the polymerizable liquid crystal composition H1 obtained in Example 16 was used instead of the polymerizable liquid crystal composition G1.
Before the ultraviolet irradiation, the coating state was uniform, and when observed with a polarizing microscope, it was confirmed that a uniform alignment state was obtained without generation of domains. The film thickness of the polymer was about 1.5 μm. The optical element H was transparent in the visible range, and no scattering was observed. In addition, Δn with respect to laser light having a wavelength of 589 nm at 25 ° C. was 0.1093. Moreover, even if it heated at 150 degreeC for 10 hours, the change of (DELTA) n was not seen but it confirmed that it was excellent in heat resistance.

[例27]光学素子Iの作製
重合性液晶組成物G1のかわりに、例17で得た重合性液晶組成物I1を用いた以外は例25と同様にして光学素子Iを得た。
[Example 27] Production of optical element I An optical element I was obtained in the same manner as in Example 25 except that the polymerizable liquid crystal composition I1 obtained in Example 17 was used instead of the polymerizable liquid crystal composition G1.

紫外線照射前において、塗布状態は均一であり、偏光顕微鏡で観察したところドメインの発生もなく均一な配向状態が得られていることが確認できた。重合体の膜厚は約1μmであった。光学素子Iは可視域で透明であり、散乱も認められなかった。また、25℃における波長589nmのレーザー光に対するΔnは0.065であった。また、150℃、10時間加熱してもΔnの変化は見られず耐熱性に優れることを確認した。   Before the ultraviolet irradiation, the coating state was uniform, and when observed with a polarizing microscope, it was confirmed that a uniform alignment state was obtained without generation of domains. The film thickness of the polymer was about 1 μm. The optical element I was transparent in the visible range, and no scattering was observed. Moreover, (DELTA) n with respect to the laser beam of wavelength 589nm in 25 degreeC was 0.065. Moreover, even if it heated at 150 degreeC for 10 hours, the change of (DELTA) n was not seen but it confirmed that it was excellent in heat resistance.

[例28]光学素子Jの作製
重合性液晶組成物G1のかわりに、例18で得た重合性液晶組成物J1を用いた以外は例25と同様にして光学素子Jを得た。
[Example 28] Production of optical element J An optical element J was obtained in the same manner as in Example 25 except that the polymerizable liquid crystal composition J1 obtained in Example 18 was used instead of the polymerizable liquid crystal composition G1.

紫外線照射前において、塗布状態は均一であり、偏光顕微鏡で観察したところドメインの発生もなく均一な配向状態が得られていることが確認できた。重合体の膜厚は約0.8μmであった。光学素子Jは可視域で透明であり、散乱も認められなかった。また、25℃における波長589nmのレーザー光に対するΔnは0.047であった。また、150℃、10時間加熱してもΔnの変化は見られず耐熱性に優れることを確認した。   Before the ultraviolet irradiation, the coating state was uniform, and when observed with a polarizing microscope, it was confirmed that a uniform alignment state was obtained without generation of domains. The film thickness of the polymer was about 0.8 μm. The optical element J was transparent in the visible range, and no scattering was observed. Further, Δn with respect to laser light having a wavelength of 589 nm at 25 ° C. was 0.047. Moreover, even if it heated at 150 degreeC for 10 hours, the change of (DELTA) n was not seen but it confirmed that it was excellent in heat resistance.

[例29]重合性液晶組成物K,K1の調製
上記化合物(2Bb−3)、上記化合物(2Bb−5)、上記化合物(2Cc−CN)及び上記化合物(2Da−3−CN)を24:22:30:24(モル比)で混合して、重合性液晶組成物Kを調製した。つぎに、重合性液晶組成物Kに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物K1を得た。
[Example 29] Preparation of polymerizable liquid crystal compositions K and K1 The above compound (2Bb-3), the above compound (2Bb-5), the above compound (2Cc-CN) and the above compound (2Da-3-CN) were mixed with 24: Polymerization liquid crystal composition K was prepared by mixing at 22:30:24 (molar ratio). Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition K to obtain a polymerizable liquid crystal composition K1.

[例30]
重合性液晶組成物A1を、例29で得た重合性液晶組成物K1に変更した以外は例19と同様の方法で、ガラス基板上に塗布を行った。膜厚みは約1μmであったが、偏光顕微鏡で観察したところ、ドメインが発生しており均一な配向状態が得られていなかった。塗布後、例19と同様にして紫外線照射を行ったところ、重合性液晶組成物K1は硬化してポリマーが得られたが、散乱が激しく、透明な光学素子は得られなかった。
[Example 30]
Coating was performed on a glass substrate in the same manner as in Example 19 except that the polymerizable liquid crystal composition A1 was changed to the polymerizable liquid crystal composition K1 obtained in Example 29. Although the film thickness was about 1 μm, when observed with a polarizing microscope, domains were generated and a uniform alignment state was not obtained. After the application, irradiation with ultraviolet rays was carried out in the same manner as in Example 19. As a result, the polymerizable liquid crystal composition K1 was cured to obtain a polymer, but scattering was intense and a transparent optical element could not be obtained.

[例31]重合性液晶組成物L,L1の調製
上記化合物(2Eb−3)、上記化合物(2Eb−5)、下記化合物(2Ga−6−Me)を27.5:27.5:45(モル比)で混合して、重合性液晶組成物Lを調製した。つぎに、重合性液晶組成物Lに対して2質量%の光重合開始剤(商品名:イルガキュア907、チバスペシャリティケミカルズ社製)を添加し、重合性液晶組成物L1を得た。
[Example 31] Preparation of polymerizable liquid crystal compositions L and L1 The above compound (2Eb-3), the above compound (2Eb-5) and the following compound (2Ga-6-Me) were mixed in 27.5: 27.5: 45 ( The polymerizable liquid crystal composition L was prepared by mixing at a molar ratio. Next, 2% by mass of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) was added to the polymerizable liquid crystal composition L to obtain a polymerizable liquid crystal composition L1.

Figure 2008026482
Figure 2008026482

[例32]
重合性液晶組成物A1を、例31で得た重合性液晶組成物L1に変更した以外は例19と同様の方法で、ガラス基板上に塗布を行った。膜厚みは約1μmであったが、偏光顕微鏡で観察したところ、ドメインが発生しており均一な配向状態が得られていなかった。塗布後、例19と同様にして紫外線照射を行ったところ、重合性液晶組成物L1は硬化してポリマーが得られたが、散乱が激しく、透明な光学素子は得られなかった。
[Example 32]
Coating was performed on a glass substrate in the same manner as in Example 19 except that the polymerizable liquid crystal composition A1 was changed to the polymerizable liquid crystal composition L1 obtained in Example 31. Although the film thickness was about 1 μm, when observed with a polarizing microscope, domains were generated and a uniform alignment state was not obtained. After the application, ultraviolet irradiation was performed in the same manner as in Example 19. As a result, the polymerizable liquid crystal composition L1 was cured to obtain a polymer, but scattering was intense and a transparent optical element could not be obtained.

本発明の不飽和脂肪酸エステルを用いて調製される重合性液晶組成物は、膜厚むら及び配向乱れが同時に抑制されて広い面積への塗布に適し、室温に放置しても結晶が析出し難いので、重合物フィルムの製造が容易になる。また、透明性及び耐熱性に優れた光学異方性材料が製造され、偏光を変調する位相板等の材料として有効に利用できる。

なお、2006年8月29日に出願された日本特許出願2006−232120号及び2006年12月22日に出願された日本特許出願2006−346617号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The polymerizable liquid crystal composition prepared by using the unsaturated fatty acid ester of the present invention is suitable for application over a wide area because the film thickness unevenness and the alignment disorder are simultaneously suppressed, and crystals are difficult to precipitate even when left at room temperature. Therefore, the production of the polymer film is facilitated. In addition, an optically anisotropic material excellent in transparency and heat resistance is manufactured, and can be effectively used as a material such as a phase plate for modulating polarization.

The specification, claims, and abstract of Japanese Patent Application No. 2006-232120 filed on August 29, 2006 and Japanese Patent Application No. 2006-346617 filed on December 22, 2006 are as follows. The entire contents are hereby incorporated by reference as the disclosure of the specification of the present invention.

Claims (9)

下式(1)で表される不飽和脂肪酸エステル。
CH2=CR1-COO-(CH2)m-RF-(CH2)n-O-E1-(E2)k-(E3)h-E4-R2 (1)
但し、式(1)中の記号は、以下の通りである。
:炭素数2〜12のポリフルオロアルキレン基、又は-CF2-(OCF2CF2)x-OCF2-で表される基(xは1〜6の整数)。
:水素原子又はメチル基。
:炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、フッ素原子、又はシアノ基。
:1,4−フェニレン基であり、該基中の炭素原子に結合した水素原子がフッ素原子、塩素原子又はメチル基に置換されていてもよい。
、E、E:各々、独立に、1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基であり、該基中の炭素原子に結合した水素原子がフッ素原子、塩素原子又はメチル基に置換されていてもよい。
m:1〜3の整数。
n:1〜3の整数。
k:0又は1。
h:0又は1。
Unsaturated fatty acid ester represented by the following formula (1).
CH 2 = CR 1 -COO- (CH 2 ) m -R F- (CH 2 ) n -OE 1- (E 2 ) k- (E 3 ) h -E 4 -R 2 (1)
However, the symbol in Formula (1) is as follows.
R F : a polyfluoroalkylene group having 2 to 12 carbon atoms or a group represented by —CF 2 — (OCF 2 CF 2 ) x —OCF 2 — (x is an integer of 1 to 6).
R 1 : a hydrogen atom or a methyl group.
R 2 : an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, or a cyano group.
E 1 is a 1,4-phenylene group, and a hydrogen atom bonded to a carbon atom in the group may be substituted with a fluorine atom, a chlorine atom or a methyl group.
E 2 , E 3 , E 4 : each independently a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and a hydrogen atom bonded to a carbon atom in the group is a fluorine atom or a chlorine atom Alternatively, it may be substituted with a methyl group.
m: An integer of 1 to 3.
n: An integer of 1 to 3.
k: 0 or 1.
h: 0 or 1.
下式(1)で表される不飽和脂肪酸エステルと下式(1)に該当しない重合性液晶化合物とを含有することを特徴とする重合性液晶組成物。
CH2=CR1-COO-(CH2)m-RF-(CH2)n-O-E1-(E2)k-(E3)h-E4-R2 (1)
但し、式(1)中の記号は、以下の通りである。
:炭素数2〜12のポリフルオロアルキレン基、又は-CF2-(OCF2CF2)x-OCF2-で表される基(xは1〜6の整数)。
:水素原子又はメチル基。
:炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、フッ素原子、又はシアノ基。
:1,4−フェニレン基であり、該基中の炭素原子に結合した水素原子がフッ素原子、塩素原子又はメチル基に置換されていてもよい。
、E、E:各々、独立に、1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基であり、該基中の炭素原子に結合した水素原子がフッ素原子、塩素原子又はメチル基に置換されていてもよい。
m:1〜3の整数。
n:1〜3の整数。
k:0又は1。
h:0又は1。
A polymerizable liquid crystal composition comprising an unsaturated fatty acid ester represented by the following formula (1) and a polymerizable liquid crystal compound not corresponding to the following formula (1).
CH 2 = CR 1 -COO- (CH 2 ) m -R F- (CH 2 ) n -OE 1- (E 2 ) k- (E 3 ) h -E 4 -R 2 (1)
However, the symbol in Formula (1) is as follows.
R F : a polyfluoroalkylene group having 2 to 12 carbon atoms or a group represented by —CF 2 — (OCF 2 CF 2 ) x —OCF 2 — (x is an integer of 1 to 6).
R 1 : a hydrogen atom or a methyl group.
R 2 : an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, or a cyano group.
E 1 is a 1,4-phenylene group, and a hydrogen atom bonded to a carbon atom in the group may be substituted with a fluorine atom, a chlorine atom or a methyl group.
E 2 , E 3 , E 4 : each independently a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and a hydrogen atom bonded to a carbon atom in the group is a fluorine atom or a chlorine atom Alternatively, it may be substituted with a methyl group.
m: An integer of 1 to 3.
n: An integer of 1 to 3.
k: 0 or 1.
h: 0 or 1.
式(1)で表される不飽和脂肪酸エステルが液晶性を有する重合性液晶化合物である請求項2に記載の重合性液晶組成物。   The polymerizable liquid crystal composition according to claim 2, wherein the unsaturated fatty acid ester represented by the formula (1) is a polymerizable liquid crystal compound having liquid crystallinity. 前記式(1)に該当しない重合性液晶化合物の少なくとも一部が下式(2)で表される化合物である請求項2又は3記載の重合性液晶組成物。
CH2=CR3-COO-(CH2)t-(O)p-E5-w-E6-(E7)q-(E8)s-R4 (2)
但し、式(2)中の記号は、以下の通りである。
:水素原子又はメチル基。
:炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、フッ素原子、又はシアノ基。
、E、E、E:各々、独立に、1,4−フェニレン基又はトランス−1,4−シクロヘキシレン基であり、該基中の炭素原子に結合した水素原子がフッ素原子、塩素原子又はメチル基に置換されていてもよい。
w:−OCO−又は単結合。
t:0〜8の整数。
p:tが0のとき0、tが1〜8のとき1。
q:0又は1。
s:qが0のとき0、qが1のとき0又は1。
The polymerizable liquid crystal composition according to claim 2 or 3, wherein at least a part of the polymerizable liquid crystal compound not corresponding to the formula (1) is a compound represented by the following formula (2).
CH 2 = CR 3 -COO- (CH 2 ) t- (O) p -E 5 -wE 6- (E 7 ) q- (E 8 ) s -R 4 (2)
However, the symbol in Formula (2) is as follows.
R 3 : a hydrogen atom or a methyl group.
R 4 : an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a fluorine atom, or a cyano group.
E 5 , E 6 , E 7 , E 8 : each independently a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and a hydrogen atom bonded to a carbon atom in the group is a fluorine atom , May be substituted with a chlorine atom or a methyl group.
w: -OCO- or a single bond.
t: An integer from 0 to 8.
p: 0 when t is 0, 1 when t is 1-8.
q: 0 or 1.
s: 0 when q is 0, 0 or 1 when q is 1.
式(1)で表される不飽和脂肪酸エステルと前記式(1)に該当しない重合性液晶化合物との合計量が、重合性液晶組成物に対して70質量%以上である請求項2〜4のいずれかに記載の重合性液晶組成物。   The total amount of the unsaturated fatty acid ester represented by the formula (1) and the polymerizable liquid crystal compound not corresponding to the formula (1) is 70% by mass or more based on the polymerizable liquid crystal composition. The polymerizable liquid crystal composition according to any one of the above. 式(1)で表される不飽和脂肪酸エステルの量が、当該式(1)で表される不飽和脂肪酸エステルと式(1)に該当しない重合性液晶化合物との合計量に対して5〜50モル%である請求項2〜5のいずれかに記載の重合性液晶組成物。   The amount of the unsaturated fatty acid ester represented by the formula (1) is 5 to 5 with respect to the total amount of the unsaturated fatty acid ester represented by the formula (1) and the polymerizable liquid crystal compound not corresponding to the formula (1). The polymerizable liquid crystal composition according to any one of claims 2 to 5, which is 50 mol%. 請求項2〜6のいずれかに記載の重合性液晶組成物を、当該組成物中の重合性液晶化合物が液晶相を示しかつ配向した状態で重合して得られる光学異方性材料。   An optically anisotropic material obtained by polymerizing the polymerizable liquid crystal composition according to claim 2 in a state where the polymerizable liquid crystal compound in the composition exhibits a liquid crystal phase and is aligned. 請求項2〜6のいずれかに記載の重合性液晶組成物を、当該組成物中の重合性液晶化合物が液晶相を示しかつ配向した状態で重合して得られる重合体と、該重合体を支持する支持体とを有する光学素子。   A polymer obtained by polymerizing the polymerizable liquid crystal composition according to any one of claims 2 to 6 in a state where the polymerizable liquid crystal compound in the composition exhibits a liquid crystal phase and is aligned, and the polymer. An optical element having a support to support. 位相板として用いられる請求項8に記載の光学素子。   The optical element according to claim 8, which is used as a phase plate.
JP2008532028A 2006-08-29 2007-08-21 Unsaturated fatty acid ester, polymerizable liquid crystal composition, optically anisotropic material, and optical element using the same Withdrawn JPWO2008026482A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006232120 2006-08-29
JP2006232120 2006-08-29
JP2006346617 2006-12-22
JP2006346617 2006-12-22
PCT/JP2007/066215 WO2008026482A1 (en) 2006-08-29 2007-08-21 Unsaturated fatty acid esters, and polymerizable liquid crystal compositions, optically anisotropic materials and optical elements, made by using the esters

Publications (1)

Publication Number Publication Date
JPWO2008026482A1 true JPWO2008026482A1 (en) 2010-01-21

Family

ID=39135765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008532028A Withdrawn JPWO2008026482A1 (en) 2006-08-29 2007-08-21 Unsaturated fatty acid ester, polymerizable liquid crystal composition, optically anisotropic material, and optical element using the same

Country Status (3)

Country Link
JP (1) JPWO2008026482A1 (en)
TW (1) TW200819521A (en)
WO (1) WO2008026482A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028576A1 (en) * 2007-08-31 2009-03-05 Asahi Glass Company, Limited Polymer liquid crystal, optically anisotropic film and optical device
JP5505686B2 (en) * 2009-01-23 2014-05-28 Dic株式会社 Polymerizable biphenyl compound
WO2011129404A1 (en) 2010-04-15 2011-10-20 旭硝子株式会社 Process for production of liquid crystal element, and liquid crystal element
WO2015080221A1 (en) * 2013-11-29 2015-06-04 Dic株式会社 Compound, polymer, liquid crystal alignment film, liquid crystal display element, and optical anisotropic body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100575A (en) * 1997-07-31 1999-04-13 Asahi Glass Co Ltd Liquid crystal composition and high-molecular liquid crystal prepared by polymerizing the same
WO2004092105A1 (en) * 2003-04-16 2004-10-28 Hwan-Kyu Kim Novel uv-curable perfluorinated, multifunctionalized acrylates monomers, copolyacrylates and their synthetic methods for photonic devices
JP4617837B2 (en) * 2003-11-21 2011-01-26 チッソ株式会社 Polymerizable liquid crystalline compound having alkylene fluoride and polymer thereof
CN101863770B (en) * 2004-06-23 2012-05-30 旭硝子株式会社 Polymerizable liquid crystal compound, liquid crystal composition, optically anisotropic material and optical device

Also Published As

Publication number Publication date
TW200819521A (en) 2008-05-01
WO2008026482A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
CN108085019B (en) Compound for homeotropic alignment of liquid crystal media
TWI613279B (en) Liquid-crystal displays and liquid-crystalline media having homeotropic alignment
US7927671B2 (en) Trifunctional compound, composition and polymer thereof
TWI498320B (en) Polymerisable compounds
JP5880992B2 (en) Polymerizable compound and liquid crystal composition using the same
JP5834489B2 (en) Polymerizable naphthalene compound
JP5162985B2 (en) Trifunctional compound, composition and polymer thereof
JP6031781B2 (en) Polymerizable compound and liquid crystal composition using the same
JP6308415B2 (en) Polymerizable compound and liquid crystal composition using the same
JP5545519B2 (en) Polymerizable compound
JP2011084477A (en) Polymerizable naphthalene compound
JP2010275244A (en) Polymerizable compound, and polymerizable composition by using the same
JP2011184417A (en) Polymerizable acetylene compound
JP5040259B2 (en) Lateral α-substituted acrylate compound and polymer thereof
JP2009084178A (en) Polymerizable chiral compound
JP5545516B2 (en) Polymerizable compound
JP4617641B2 (en) Liquid crystalline compounds and polymers having optically active groups
JP2003055661A (en) Polymerizable liquid crystal composition and optically anisotropic body using the same
US8168734B2 (en) Lateral alpha-substituted acrylate compound and polymer thereof
JPWO2008026482A1 (en) Unsaturated fatty acid ester, polymerizable liquid crystal composition, optically anisotropic material, and optical element using the same
JP6270016B2 (en) Polymerizable compound
JP4461692B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4766291B2 (en) Polymerizable liquid crystal compound, composition, and optical anisotropic body
KR101649178B1 (en) Polymerizable naphthalene compound
JP5648352B2 (en) Polymerizable naphthalene compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120801